WorldWideScience

Sample records for centre dot 2l

  1. Ferroelectric phase transition in hydrogen-bonded 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4

    CERN Document Server

    Czapla, Z; Waskowska, A

    2003-01-01

    A new crystal of 2-aminopyridine phosphate (NC sub 4 H sub 4 NH sub 2)centre dot H sub 3 PO sub 4 has been grown and its x-ray structure and physical properties were studied. At room temperature the crystals are monoclinic, space group C2/c. The flat 2-aminopyridine cations are hydrogen bonded to the anionic [PO sub 4 ] groups. The interesting feature of the crystal structure is the three-dimensional network of hydrogen bonds including, among others, two strong, symmetrical O centre dot centre dot centre dot H, H centre dot centre dot centre dot O interactions with disordered proton locations. Symmetrically related PO sub 4 anions linked through these protons form infinite (PO sub 4) subinfinity chains along the crystal a-axis. The anomalies in the temperature dependence of the electric permittivity showed that the crystal undergoes ferroelectric phase transition at T sub c = 103.5 K. The spontaneous polarization takes place along the crystal a-axis, being parallel to the chains of the hydrogen-bonded PO sub ...

  2. Ferroelectric TGS ((NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4) under high pressure

    CERN Document Server

    Kobayashi, Y; Furuta, H; Endo, S; Deguchi, K

    2002-01-01

    The ferroelectric transition temperature T sub c of (NH sub 2 CH sub 2 COOH) sub 3 centre dot H sub 2 SO sub 4 (TGS), which is a typical order-disorder-type ferroelectric, was determined by dielectric constant and Raman scattering measurements under high pressure. T sub c increased, passed through a maximum and then decreased slightly with increasing pressure, and then abruptly dropped at about 2.5 GPa, where a transition to a new high-pressure phase was confirmed to exist. A tentative p-T phase diagram was proposed for TGS.

  3. L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.

    Science.gov (United States)

    Singh, Avinash; Kunwar, Amit; Rath, M C

    2018-05-01

    L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.

  4. Flat-topped emission centred at 1 250 nm from quantum dot superluminescent diodes

    Directory of Open Access Journals (Sweden)

    R.A. Hogg

    2010-01-01

    Full Text Available We present a method for tailoring a broadband and flat-topped emission spectrum in quantum dot superluminescent diodes based upon modification of the dots-in-compositionally-modulated-well (DCMWELL technique. We demonstrate flat-topped emission with 95 nm full width at half maximum (FWHM, centred at 1 250 nm, and with output power in excess of 8 mW.

  5. A circular dichroism sensor for Ni{sup 2+} and Co{sup 2+} based on L-cysteine capped cadmium sulfide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Tedsana, Wimonsiri [Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand); Tuntulani, Thawatchai [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand); Ngeontae, Wittaya, E-mail: wittayange@kku.ac.th [Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-03-31

    Highlights: • Demonstrated a new efficient sensor platform based quantum dots. • Used chiral quantum dots as CD sensor for the detection of heavy metal ions for the first time. • The proposed CD sensor showed highest selectivity towards Ni{sup 2+} and Co{sup 2+}. • Low detection limits of 7.33 μM and 1.13 μM for Ni{sup 2+} and Co{sup 2+}, respectively. • Can be used in real water samples comparing with ICP-OES. - Abstract: A new circular dichroism sensor for detecting Ni{sup 2+} and Co{sup 2+} was proposed for the first time using chiral chelating quantum dots. The detection principle was based on changing of circular dichroism signals of the chiral quantum dots when forming a chiral complex with Ni{sup 2+} or Co{sup 2+}. L-Cysteine capped cadmium sulfide quantum dots (L-Cyst-CdS QDs) were proposed as a chiral probe. The CD spectrum of L-Cyst-CdS QDs was significantly changed in the presence of Ni{sup 2+} and Co{sup 2+}. On the other hand, other studied cations did not alter the original CD spectrum. Moreover, when increasing the concentration of Ni{sup 2+} or Co{sup 2+}, the intensity of the CD spectrum linearly increased as a function of concentration and could be useful for the quantitative analysis. The proposed CD sensor showed linear working concentration ranges of 10–60 μM and 4–80 μM with low detection limits of 7.33 μM and 1.13 μM for the detection of Ni{sup 2+} and Co{sup 2+}, respectively. Parameters possibly affected the detection sensitivity such as solution pH and incubation time were studied and optimized. The proposed sensor was applied to detect Ni{sup 2+} and Co{sup 2+} in real water samples, and the results agreed well with the analysis using the standard ICP-OES.

  6. Soutien organisationnel pour la phase 2 de l'ITT : Centre for Budget ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Soutien organisationnel pour la phase 2 de l'ITT : Centre for Budget and Governance Accountability. Ce financement contribuera à renforcer le rôle du Centre for Budget and Governance Accountability (CBGA) en tant qu'organisme crédible de recherche sur les politiques publiques en Inde en renforçant sa capacité à ...

  7. Soutien organisationnel de la phase 2 de l'ITT : Public Affairs Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Soutien organisationnel de la phase 2 de l'ITT : Public Affairs Centre. Ce financement contribuera à renforcer le rôle du Public Affairs Centre (PAC) en tant qu'organisme crédible de recherche sur les politiques publiques en Inde en renforçant sa capacité à fournir des recherches de qualité supérieure, influentes et utiles en ...

  8. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiupei, E-mail: xiupeiyang@163.com [Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637000 (China); College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China); Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan [College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637000 (China)

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  9. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    International Nuclear Information System (INIS)

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-01-01

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH 3 + moiety of doxorubicin and the −COO − moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum

  10. KNOWLEDGE AND MISCONCEPTIONS OF PULMONARY TUBERCULOSIS PATIENTS AT DOTS CENTRE, URBAN MEERUT.

    Directory of Open Access Journals (Sweden)

    R Bansal

    2013-06-01

    Full Text Available Background: India is the second most populated country in the world; it has more new TB cases annually than any other country. In 2008, 1.98 million were estimated to have occurred in India, of whom 0.87 million were infectious cases, thus amounting to a fifth of the global burden of TB.With the entire country geographically covered under the DOTS program, research into socioeconomic impact of TB on patients and their households is crucial for providing comprehensive patient-friendly TB services and to document the benefits of DOTS. Objective: The present study was undertaken with the following objectives: (1 To determine the socio-demographic variables of registered patients for DOTS Treatment at Urban Health Training center Meerut. (2 To assess knowledge, awareness and attitude regarding Pulmonary Tuberculosis and its treatment among the patients. Materials and Methods: A cross-sectional study of 200 TB patients was done using a pre-tested semi-quantitative questionnaire in UHTC Meerut Period of Study: During 2010-2012. Results: Knowledge and awareness regarding Pulmonary Tuberculosis in patients at DOTS centre, Urban Meerut was very poor. There is a great need to educate the people about misconceptions like food and utensils as mode of transmission. BCC using the person to person contact in community , at health center and awareness campaigns are crucial in educating the ignorance seen in our field practice area. Conclusion: Poor knowledge and misconceptions concerning tuberculosis was quite concern in the patients. TB control program will remain ineffective unless myths and fears of TB patients are addressed related to causation of tuberculosis, mode of spread, and methods of prevention.

  11. KNOWLEDGE AND MISCONCEPTIONS OF PULMONARY TUBERCULOSIS PATIENTS AT DOTS CENTRE, URBAN MEERUT.

    Directory of Open Access Journals (Sweden)

    R Bansal

    2013-08-01

    Full Text Available Background: India is the second most populated country in the world; it has more new TB cases annually than any other country. In 2008, 1.98 million were estimated to have occurred in India, of whom 0.87 million were infectious cases, thus amounting to a fifth of the global burden of TB.With the entire country geographically covered under the DOTS program, research into socioeconomic impact of TB on patients and their households is crucial for providing comprehensive patient-friendly TB services and to document the benefits of DOTS. Objective: The present study was undertaken with the following objectives: (1 To determine the socio-demographic variables of registered patients for DOTS Treatment at Urban Health Training center Meerut. (2 To assess knowledge, awareness and attitude regarding Pulmonary Tuberculosis and its treatment among the patients. Materials and Methods: A cross-sectional study of 200 TB patients was done using a pre-tested semi-quantitative questionnaire in UHTC Meerut Period of Study: During 2010-2012. Results: Knowledge and awareness regarding Pulmonary Tuberculosis in patients at DOTS centre, Urban Meerut was very poor. There is a great need to educate the people about misconceptions like food and utensils as mode of transmission. BCC using the person to person contact in community , at health center and awareness campaigns are crucial in educating the ignorance seen in our field practice area. Conclusion: Poor knowledge and misconceptions concerning tuberculosis was quite concern in the patients. TB control program will remain ineffective unless myths and fears of TB patients are addressed related to causation of tuberculosis, mode of spread, and methods of prevention.

  12. Les télécentres, centres de communications polyvalents | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    12 juil. 2011 ... ... la raison de leur absence et beaucoup répondent qu'ils ont eu une ... fournisseur de service Internet du télécentre, qui se trouve à Maputo ... Le télécentre s'est révélé être un fournisseur de services utile et recherché par les ...

  13. Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2.

    Directory of Open Access Journals (Sweden)

    Hongyu Wu

    Full Text Available Dot1l encodes histone H3 K79 methyltransferase Dot1a. Mice with Dot1l deficiency in renal Aqp2-expressing cells (Dot1l(AC develop polyuria by unknown mechanisms. Here, we report that Aqp5 links Dot1l deletion to polyuria through Aqp2. cDNA array analysis revealed and real-time RT-qPCR validated Aqp5 as the most upregulated gene in Dot1l(AC vs. control mice. Aqp5 protein is barely detectable in controls, but robustly expressed in the Dot1l(AC kidneys, where it colocalizes with Aqp2. The upregulation of Aqp5 is coupled with reduced association of Dot1a and H3 dimethyl K79 with specific subregions in Aqp5 5' flanking region in Dot1l(AC vs. control mice. In vitro studies in IMCD3, MLE-15 and 293Tcells using multiple approaches including real-time RT-qPCR, luciferase reporter assay, cell surface biotinylation assay, colocalization, and co-immunoprecipitation uncovered that Dot1a represses Aqp5. Human AQP5 interacts with AQP2 and impairs its cell surface localization. The AQP5/AQP2 complex partially resides in the ER/Golgi. Consistently, AQP5 is expressed in none of 15 normal controls, but in all of 17 kidney biopsies from patients with diabetic nephropathy. In the patients with diabetic nephropathy, AQP5 colocalizes with AQP2 in the perinuclear region and AQP5 expression is associated with impaired cellular H3 dimethyl K79. Taken together, these data for the first time identify Aqp5 as a Dot1a potential transcriptional target, and an Aqp2 binding partner and regulator, and suggest that the upregulated Aqp5 may contribute to polyuria, possibly by impairing Aqp2 membrane localization, in Dot1l(AC mice and in patients with diabetic nephropathy.

  14. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu{sup 2+} and L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Liping [College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 (China); Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru [Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 (China); Zhao, Li; Zhao, Tingting [Xiamen Huaxia College, Xiamen, 361024 (China); Chen, Xi, E-mail: xichen@xmu.edu.cn [Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005 (China)

    2015-09-03

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel “off-on” fluorescent probe for the label-free determination of Cu{sup 2+} and L-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu{sup 2+} owing to the coordination reaction between Cu{sup 2+} and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu{sup 2+} to L-Cys via the Cu–S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1–10 μM for Cu{sup 2+} and 0.5–50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu{sup 2+} and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu{sup 2+} and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. - Highlights: • The europium-decorated graphene quantum dots (Eu-GQDs) have been successfully prepared. • Various characterizations results proved that Eu atoms were successfully introduced into graphene quantum dots. • The introduced Eu atoms changed the electron density and surface chemical activities of Eu-GQDs. • Eu-GQDs were used as an “off-on” fluorescent probe for Cu{sup 2+} and L-cysteine detection

  15. DOT1L and H3K79 Methylation in Transcription and Genomic Stability.

    Science.gov (United States)

    Wood, Katherine; Tellier, Michael; Murphy, Shona

    2018-02-27

    The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  16. DOT1L and H3K79 Methylation in Transcription and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Katherine Wood

    2018-02-01

    Full Text Available The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79. H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  17. NMR investigation on isotope effect of glycinium phosphite H sub 3 NCH sub 2 COOH centre dot H sub 2 PO sub 3

    CERN Document Server

    Ishibashi, T

    2003-01-01

    The motions of the phosphite anions and glycinium cations in H sub 3 NCH sub 2 COOH centre dot H sub 2 PO sub 3 (GPI) and its deuterated analogue (DGPI) were investigated by sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P spin-lattice relaxation times T sub 1. For both GPI and DGPI, T sub 1 's of the sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P nuclei reflect the amino rotation, methylene libration and motion of the phosphite anions, respectively. Activation energies obtained from T sub 1 's of sup 1 H, sup 1 sup 3 C and sup 3 sup 1 P nuclei are 28.6(2), 26.0(4) and 26.2(4) kJ/mol for GPI and are 34.9(6), 27(1), 47(2) kJ/mol for DGPI, respectively. The deuterium substitution increases E sub a for the motion influenced by the hydrogen bonding. In all the observed motions, correlation times of DGPI are larger than those of GPI. (author)

  18. A study of the x-irradiated Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O crystal by EPR in the 80-415 K temperature range

    CERN Document Server

    Waplak, S; Baranov, A I; Shuvalov, L A

    1997-01-01

    The EPR spectra of the x-irradiated fast proton conductor Cs sub 5 H sub 3 (SO sub 4) sub 4 centre dot H sub 2 O were investigated in the temperature range of 80-415 K. Two kinds of paramagnetic SO sub 4 sup - centres with different proton configurations below about 370 K and freeze-out behaviour of one of them below about 200 K were observed. The role of acid proton dynamics with respect to the glassy-like transition is discussed. (author)

  19. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...

  20. Inversion of spin levels in Ni sup 2 sup + : Zn(BF sub 4) sub 2 centre dot 6H sub 2 O at all -round compression and effect of transition coincidence

    CERN Document Server

    Krygin, I M; Nejlo, G N; Prokhorov, A D

    2001-01-01

    The study of the EPR spectrum of the Ni sup 2 sup + ion, replacing Zn sup 2 sup + in the Zn(BF sub 4) centre dot 6H sub 2 O crystals in the wide temperature range by the all-round compression in the X- and Q-ranges is carried out. The basic changes by varying temperature and pressure occur with the D parameter, characterizing the initial splitting by practically unchanged g-factor. The increase in the temperature is accompanied by the D nonlinear growth. The all-round compression linearly changes the initial splitting and leads to the change in the D-sign, signifying the spin levels inversion by 3.5 kbar. Coincidence of EPR lines, relative to different transitions, leads to the crevasse appearance in the outline of this one, that is connected with cross-relaxation inside the spin system

  1. A 2x2 quantum dot array with controllable inter-dot tunnel couplings

    OpenAIRE

    Mukhopadhyay, Uditendu; Dehollain, Juan Pablo; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven M. K.

    2018-01-01

    The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$\\times$2 quantum dots defined electrostatically in a AlGaA...

  2. Académie des télécentres de l'Inde | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    appuyer le renforcement des capacités des exploitants de télécentres, dont le nombre devrait atteindre un million d'ici 2010. Les partenaires nationaux de telecentre.org ont participé à la mise sur pied de l'Académie telecentre.org, à laquelle ...

  3. Nanodiamond-based nanostructures for coupling nitrogen-vacancy centres to metal nanoparticles and semiconductor quantum dots.

    Science.gov (United States)

    Gong, Jianxiao; Steinsultz, Nat; Ouyang, Min

    2016-06-08

    The ability to control the interaction between nitrogen-vacancy centres in diamond and photonic and/or broadband plasmonic nanostructures is crucial for the development of solid-state quantum devices with optimum performance. However, existing methods typically employ top-down fabrication, which restrict scalable and feasible manipulation of nitrogen-vacancy centres. Here, we develop a general bottom-up approach to fabricate an emerging class of freestanding nanodiamond-based hybrid nanostructures with external functional units of either plasmonic nanoparticles or excitonic quantum dots. Precise control of the structural parameters (including size, composition, coverage and spacing of the external functional units) is achieved, representing a pre-requisite for exploring the underlying physics. Fine tuning of the emission characteristics through structural regulation is demonstrated by performing single-particle optical studies. This study opens a rich toolbox to tailor properties of quantum emitters, which can facilitate design guidelines for devices based on nitrogen-vacancy centres that use these freestanding hybrid nanostructures as building blocks.

  4. Carbon dots as fluorescent probes for "off-on" detection of Cu2+ and L-cysteine in aqueous solution.

    Science.gov (United States)

    Zong, Jie; Yang, Xiaoling; Trinchi, Adrian; Hardin, Simon; Cole, Ivan; Zhu, Yihua; Li, Chunzhong; Muster, Tim; Wei, Gang

    2014-01-15

    Copper ion (Cu(2+)) and L-cysteine (L-Cys) detection is critically important since an abnormal level of Cu(2+) or L-Cys is an indicator for many diseases. In this paper, we demonstrate an "off-on" approach for highly sensitive and selective detection of Cu(2+) and L-Cys using carbon dots (CDs) as fluorescent probes. CDs were prepared by using mesoporous silica (MS) spheres as nanoreactors. The binding ability of CDs towards metal ions was examined by comparing the fluorescence intensities of CDs before and after the addition of the metal ions. The addition of Cu(2+) cations leads to their absorption on the surface of CDs and the significant fluorescence quench of CDs (turn-off). The resulting in CDs-Cu(2+) system was found to be sensitive to L-Cys. The addition of L-Cys not only serves to shelter the CDs effectively from being quenched, but also to reverse the quenching and restore the fluorescence (turn-on) due to its ability to remove Cu(2+) from the surface of CDs. This method is facile, rapid, low cost, and environment-friendly. A detection limit as low as 2.3×10(-8) M for Cu(2+) and 3.4×10(-10) M for L-Cys is obtained, which is promising for biological applications. © 2013 Elsevier B.V. All rights reserved.

  5. Europium-decorated graphene quantum dots as a fluorescent probe for label-free, rapid and sensitive detection of Cu(2+) and L-cysteine.

    Science.gov (United States)

    Lin, Liping; Song, Xinhong; Chen, Yiying; Rong, Mingcong; Wang, Yiru; Zhao, Li; Zhao, Tingting; Chen, Xi

    2015-09-03

    In this work, europium-decorated graphene quantum dots (Eu-GQDs) were prepared by treating three-dimensional Eu-decorated graphene (3D Eu-graphene) via a strong acid treatment. Various characterizations revealed that Eu atoms were successfully complexed with the oxygen functional groups on the surface of graphene quantum dots (GQDs) with the atomic ratio of 2.54%. Compared with Eu free GQDs, the introduction of Eu atoms enhanced the electron density and improved the surface chemical activities of Eu-GQDs. Therefore, the obtained Eu-GQDs were used as a novel "off-on" fluorescent probe for the label-free determination of Cu(2+) and l-cysteine (L-Cys) with high sensitivity and selectivity. The fluorescence intensity of Eu-GQDs was quenched in the presence of Cu(2+) owing to the coordination reaction between Cu(2+) and carboxyl groups on the surface of the Eu-GQDs. The fluorescence intensity of Eu-GQDs recovered with the subsequent addition of L-Cys because of the strong affinity of Cu(2+) to L-Cys via the Cu-S bond. The experimental results showed that the fluorescence variation of the proposed approach had a good linear relationship in the range of 0.1-10 μM for Cu(2+) and 0.5-50 μM for L-Cys with corresponding detection limits of 0.056 μM for Cu(2+) and 0.31 μM for L-Cys. The current approach also displayed a special response to Cu(2+) and L-Cys over the other co-existing metal ions and amino acids, and the results obtained from buffer-diluted serum samples suggested its applicability in biological samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. V-dotO2max prediction from multi-frequency bioelectrical impedance analysis

    International Nuclear Information System (INIS)

    Stahn, Alexander; Strobel, Günther; Terblanche, Elmarie

    2008-01-01

    Bioelectrical impedance analysis (BIA) has been shown to be highly related to skeletal muscle mass and blood volume, both of which are important determinants of maximal oxygen uptake (V-dotO 2max ). The aim of the present study was therefore to investigate the ability of whole-body and segmental multi-frequency BIA to improve current nonexercise V-dotO 2max prediction models. Data for V-dotO 2max (mL min −1 ), anthropometry, self-reported physical activity (PA-R) and BIA were collected in 115 men and women. Multiple linear regression analysis (MLR) was used to develop the most parsimonious prediction model. Segmental BIA was not superior to whole-body measurements. Correlation coefficients between V-dotO 2max and resistance indices were significantly higher at 500 kHz compared to 50 kHz (p 2max (r = 0.89). After adjusting for age, gender and PA-R, MLR revealed that the inclusion of intracellular resistance index was slightly, but significantly (p 2max ( −1 ). In short, whole-body BIA marginally improves the accuracy of nonexercise V-dotO 2max prediction models and its advantage is most pronounced in individuals with particularly low V-dotO 2max

  7. Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin.

    Science.gov (United States)

    Wang, Qingqing; Zhan, Guoqing; Li, Chunya

    2014-01-03

    Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples. Copyright © 2013. Published by Elsevier B.V.

  8. [Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].

    Science.gov (United States)

    Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang

    2013-08-01

    This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.

  9. ESR investigation of the reactions of glutathione, cysteine and penicillamine thiyl radicals: competitive formation of RSOcenter dot, Rcenter dot, RSSRcenter dot-. , and RSScenter dot

    Energy Technology Data Exchange (ETDEWEB)

    Becker, David; Swarts, Steven; Champagne, Mark; Sevilla, M D

    1988-05-01

    The reactions of cysteine, glutathione and penicillamine thiyl radicals with oxygen and their parent thiols in frozen solutions have been elucidated with e.s.r. The major sulfur radicals observed are: (1) thiyl radicals, RS center dot; (2) disulfide radical anions, RSSR anion radicals; (3) perthiyl radicals, RSS center dot and upon introduction of oxygen; (4) sulfinyl radicals, RSO center dot, where R represents the remainder of the cysteine, glutathione or penicillamine moiety. The radical product observed depends on pH, concentration of thiol, and presence or absence of molecular oxygen. The sulfinyl radical is a ubiquitous intermediate, peroxyl radical attack on thiols may lead to sulfinyl radicals. The authors elaborate the observed reaction sequences that lead to sulfinyl radicals and, using /sup 17/O isotopic substitution studies, demonstrate the oxygen atom in sulfinyl radicals originates from dissolved molecular oxygen. The glutathione radical is found to abstract hydrogen from the ..cap alpha..-carbon position on the cysteine residue of glutathione to form a carbon-centred radical.

  10. Incommensurate phases in the improper ferroelastic MgGeF sub 6 centre dot 6H sub 2 O:Mn sup 2 sup + studied by means of EPR

    CERN Document Server

    Skrylnik, P G

    2002-01-01

    The results of an EPR study of the inhomogeneous phases existing in the temperature interval T sub C = 311.0 +- 0.3 K < T < T sub i sub 1 = 403 +- 0.3 K in improper ferroelastic crystals of MgGeF sub 6 centre dot 6H sub 2 O:Mn sup 2 sup + are presented. On the basis of the analysis of the temperature and angle dependences of the experimental parameters and numerical calculations, the conclusion has been drawn that at T sub i sub 1 the crystals considered undergo a transition to a structurally modulated phase and the order parameter of this transition may be the angle of the Mg[H sub 2 O] sub 6 sup 2 sup + octahedra rotation around the crystal C sub 3 -axis. From T sub i sub 1 to T sub C the modes of the modulated phase follow according to a completely classical scenario for incommensurate crystals: the origin of the incommensurate structure with plane-wave modulation at T sub i sub 1 , the appearance of structural phase solitons below T sub i sub 2 = 380 +- 0.3 K and decrease of the soliton density to v...

  11. A novel chemiluminescence method for determination of bisphenol Abased on the carbon dot-enhanced HCO3−–H2O2 system

    International Nuclear Information System (INIS)

    Amjadi, Mohammad; Manzoori, Jamshid L.; Hallaj, Tooba

    2015-01-01

    A simple and sensitive chemiluminescence (CL) method on the basis of carbon dot (C-dot) enhanced HCO 3 − –H 2 O 2 system, is designed for the determination of bisphenol A (BPA). The very weak CL of the HCO 3 − –H 2 O 2 system is enhanced by a factor of ∼100 in the presence of C-dots. Possible mechanisms that lead to the effect were elucidated by recording fluorescence and CL spectra and studying the effect of some radical scavengers. This enhancement is inhibited by BPA in the concentration range from 1.0 to 100 µg L −1 . This is exploited for its trace determination with a detection limit (3 s) of 0.3 µg L −1 . The established method was applied to the determination of BPA in baby bottle and water samples with satisfactory results. - Highlights: • The effect of carbon dots on HCO 3 − –H 2 O 2 chemiluminescence reaction is studied. • Carbon dots greatly enhance the CL signal of this reaction (∼100 fold). • The new CL system was applied to determination of bisphenol A in real samples

  12. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    Science.gov (United States)

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  13. Quantum Dots

    Science.gov (United States)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  14. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime

    KAUST Repository

    Zhitomirsky, David

    2014-05-06

    © 2014 Macmillan Publishers Limited. Colloidal quantum dots are attractive materials for efficient, low-cost and facile implementation of solution-processed optoelectronic devices. Despite impressive mobilities (1-30 cm2V-1 s-1) reported for new classes of quantum dot solids, it is-surprisingly-the much lower-mobility (10-3-10-2 cm2V-1 s-1) solids that have produced the best photovoltaic performance. Here we show that it is not mobility, but instead the average spacing among recombination centres that governs the diffusion length of charges in today\\'s quantum dot solids. In this regime, colloidal quantum dot films do not benefit from further improvements in charge carrier mobility. We develop a device model that accurately predicts the thickness dependence and diffusion length dependence of devices. Direct diffusion length measurements suggest the solid-state ligand exchange procedure as a potential origin of the detrimental recombination centres. We then present a novel avenue for in-solution passivation with tightly bound chlorothiols that retain passivation from solution to film, achieving an 8.5% power conversion efficiency.

  15. Quadra-quantum Dots and Related Patterns of Quantum Dot Molecules:

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Abstract Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called ‘‘Droplet Epitaxy” has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390°C with a droplet growth rate of 1ML/s. Arsenic flux (7–8×10-6Torr is then exposed for InGaAs crystallization at 200°C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or , which are preferable crystallographic directions of quantum dot alignment in general.

  16. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    Science.gov (United States)

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  17. Quantification of thyroxine by the selective photoluminescence quenching of L-cysteine–ZnS quantum dots in aqueous solution containing hexadecyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Khan, Sarzamin; Carneiro, Leonardo S.A.; Romani, Eric C.; Larrudé, Dunieskys G.; Aucelio, Ricardo Q.

    2014-01-01

    The determination of L-thyroxine is proposed based on the photoluminescence quenching effect caused on the L-cysteine modified ZnS quantum dots (L-cysteine ZnS QDs) aqueous dispersion. Under optimum conditions, the analytical response followed a Stern–Volmer model and the experimental conditions were adjusted to enable a robust and reproducible photoluminescence signal. The linear response observed in the quantum dots aqueous dispersion covered the L-thyroxine concentration from the LOQ (2.0×10 −8 mol L −1 ) to 4.0×10 −6 mol L −1 . The approach was tested in the determination of L-thyroxine in pharmaceutical formulations used to treat patients with thyroid gland disorder. The percent recoveries in controlled samples were between 93.3 and 103%. Analyte fortified saliva was also evaluated as a possible sample for L-thyroxine monitoring of a patient under treatment. It was identified a static type of photoluminescence quenching caused by L-thyroxine. - Highlights: • L-cysteine ZnS QDs were used as a photoluminescent probe to detect L-thyroxine. • Intensity of probe decreases following a Stern–Volmer model. • The method can detect down ng L −1 levels of L-thyroxine in the probe dispersion. • Method was used to determinate of L-thyroxine in saliva and in pharmaceuticals. • Mechanism of interaction between L-thyroxine and quantum dots was studied

  18. GRUNCLE, 1. Collision Source Calculation for Program DOT. DOT-3.5, 2-D Neutron Transport, Gamma Transport Program DOT with New Space-Scaling

    International Nuclear Information System (INIS)

    1996-01-01

    mesh. Anisotropic scattering is treated using a Legendre expansion of arbitrary order. Convergence can be accelerated by several optional schemes, including a pointwise rescaling technique. DOT-3.5/E: Differs from DOT-3.5 in that exponential supplementary equations, as well as the usual diamond and weighted schemes, may be used to find the mesh-centre flux from the fluxes at the faces of the mesh. The model: 1. always gives positive solutions and does not require any fix-up techniques provided that the source is non-negative; 2. improves convergence rate in most neutron deep-penetration problems and, for any practical spatial discretization, always requires CPU times not only smaller than those required by DOT-3 mixed (linear + step fix-up) model, but also shorter (generally 10-20%) than the times required by DOT-3.5 weighted difference model; 3. increasing spatial mesh size supplies solutions which are always reasonable overestimates of the exact solution and its numerical behaviour is more stable and coherent than the mixed mode. Experience up to now from several deep penetration problems in (r,z) and (x,y) geometry shows that, while for neutrons the exponential model almost always works very well, for gamma rays its behaviour may be critical and in some cases there is lack of convergence. C - Restrictions on the complexity of the problem: The total storage requirement is determined by a formula given in the input description. No other restrictions to problem size are applicable

  19. Quadra-Quantum Dots and Related Patterns of Quantum Dot Molecules: Basic Nanostructures for Quantum Dot Cellular Automata Application

    Directory of Open Access Journals (Sweden)

    Somsak Panyakeow

    2010-10-01

    Full Text Available Laterally close-packed quantum dots (QDs called quantum dot molecules (QDMs are grown by modified molecular beam epitaxy (MBE. Quantum dots could be aligned and cross hatched. Quantum rings (QRs created from quantum dot transformation during thin or partial capping are used as templates for the formations of bi-quantum dot molecules (Bi-QDMs and quantum dot rings (QDRs. Preferable quantum dot nanostructure for quantum computation based on quantum dot cellular automata (QCA is laterally close-packed quantum dot molecules having four quantum dots at the corners of square configuration. These four quantum dot sets are called quadra-quantum dots (QQDs. Aligned quadra-quantum dots with two electron confinements work like a wire for digital information transmission by Coulomb repulsion force, which is fast and consumes little power. Combination of quadra-quantum dots in line and their cross-over works as logic gates and memory bits. Molecular Beam Epitaxial growth technique called 'Droplet Epitaxy' has been developed for several quantum nanostructures such as quantum rings and quantum dot rings. Quantum rings are prepared by using 20 ML In-Ga (15:85 droplets deposited on a GaAs substrate at 390'C with a droplet growth rate of 1ML/s. Arsenic flux (7'8'10-6Torr is then exposed for InGaAs crystallization at 200'C for 5 min. During droplet epitaxy at a high droplet thickness and high temperature, out-diffusion from the centre of droplets occurs under anisotropic strain. This leads to quantum ring structures having non-uniform ring stripes and deep square-shaped nanoholes. Using these peculiar quantum rings as templates, four quantum dots situated at the corners of a square shape are regrown. Two of these four quantum dots are aligned either or, which are preferable crystallographic directions of quantum dot alignment in general.

  20. Rapport annuel au Parlement Loi sur l'accès à l'information Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    leonardi

    accès à l'information. Source. Nombre de demandes. 0. Médias. 1. Rapport statistique sur la Loi sur l'accès à l'information. Nom de l'institution : Centre de recherches pour le développement international. Période visée par le ...

  1. A near-infrared fluorescent bioassay for thrombin using aptamer-modified CuInS2 quantum dots

    International Nuclear Information System (INIS)

    Lin, Zihan; Hu, Tianyu; Liu, Ziping; Su, Xingguang; Pan, Dong

    2015-01-01

    We describe a near-infrared (NIR) fluorescent thrombin assay using a thrombin-binding aptamer (TBA) and Zn(II)-activated CuInS 2 quantum dots (Q-dots). The fluorescence of Zn(II)-activated Q-dots is quenched by the TBA via photoinduced electron transfer, but if thrombin is added, it will bind to TBA to form G-quadruplexes and the Q-dots are released. As a result, the fluorescence intensity of the system is restored. This effect was exploited to design an assay for thrombin whose calibration plot, under optimum conditions, is linear in the 0.034 to 102 nmol L −1 concentration range, with a 12 pmol L −1 detection limit. The method is fairly simple, fast, and due to its picomolar detection limits holds great potential in the diagnosis of diseases associated with coagulation abnormalities and certain kinds of cancer. (author)

  2. Quantification of thyroxine by the selective photoluminescence quenching of L-cysteine–ZnS quantum dots in aqueous solution containing hexadecyltrimethylammonium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sarzamin; Carneiro, Leonardo S.A. [Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro-RJ (Brazil); Romani, Eric C.; Larrudé, Dunieskys G. [Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro-RJ (Brazil); Aucelio, Ricardo Q., E-mail: aucelior@puc-rio.br [Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro-RJ (Brazil)

    2014-12-15

    The determination of L-thyroxine is proposed based on the photoluminescence quenching effect caused on the L-cysteine modified ZnS quantum dots (L-cysteine ZnS QDs) aqueous dispersion. Under optimum conditions, the analytical response followed a Stern–Volmer model and the experimental conditions were adjusted to enable a robust and reproducible photoluminescence signal. The linear response observed in the quantum dots aqueous dispersion covered the L-thyroxine concentration from the LOQ (2.0×10{sup −8} mol L{sup −1}) to 4.0×10{sup −6} mol L{sup −1}. The approach was tested in the determination of L-thyroxine in pharmaceutical formulations used to treat patients with thyroid gland disorder. The percent recoveries in controlled samples were between 93.3 and 103%. Analyte fortified saliva was also evaluated as a possible sample for L-thyroxine monitoring of a patient under treatment. It was identified a static type of photoluminescence quenching caused by L-thyroxine. - Highlights: • L-cysteine ZnS QDs were used as a photoluminescent probe to detect L-thyroxine. • Intensity of probe decreases following a Stern–Volmer model. • The method can detect down ng L{sup −1} levels of L-thyroxine in the probe dispersion. • Method was used to determinate of L-thyroxine in saliva and in pharmaceuticals. • Mechanism of interaction between L-thyroxine and quantum dots was studied.

  3. New small molecule inhibitors of histone methyl transferase DOT1L with a nitrile as a non-traditional replacement for heavy halogen atoms.

    Science.gov (United States)

    Spurr, Sophie S; Bayle, Elliott D; Yu, Wenyu; Li, Fengling; Tempel, Wolfram; Vedadi, Masoud; Schapira, Matthieu; Fish, Paul V

    2016-09-15

    A number of new nucleoside derivatives are disclosed as inhibitors of DOT1L activity. SARs established that DOT1L inhibition could be achieved through incorporation of polar groups and small heterocycles at the 5-position (5, 6, 12) or by the application of alternative nitrogenous bases (18). Based on these results, CN-SAH (19) was identified as a potent and selective inhibitor of DOT1L activity where the polar 5-nitrile group was shown by crystallography to bind in the hydrophobic pocket of DOT1L. In addition, we show that a polar nitrile group can be used as a non-traditional replacement for heavy halogen atoms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Optical power limiting in ensembles of colloidal Ag{sub 2}S quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, O V; Smirnov, M S; Perepelitsa, A S; Shatskikh, T S [Voronezh State University, Voronezh (Russian Federation); Shapiro, B I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2015-12-31

    The effect of power limiting for optical radiation at a wavelength of 660 nm with a pulse duration of 10 ms and operation threshold of 2.2 – 3.1 mJ cm{sup -2} is observed in ensembles of colloidal Ag{sub 2}S quantum dots (QDs). Using the z-scanning method in an open-aperture scheme it is found that the power is limited mainly due to reverse saturable absorption caused by two-photon optical transitions that involve energy levels of Ag{sub 2}S photoluminescence centres, related to structural impurity defects in colloidal Ag{sub 2}S QDs. At the same time, the z-scanning in a closed-aperture scheme demonstrates the formation of a thermal dynamic lens. (nonlinear optical phenomena)

  5. Soutien institutionnel à l'Economic Policy Research Centre (EPRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'Economic Policy Research Centre (EPRC) est un organisme autonome et à but non lucratif voué à la recherche dans le domaine des politiques qui a été établi en 1993 avec le soutien du gouvernement de l'Ouganda, de bailleurs de fonds et d'instituts de recherche étrangers. Il était prévu que l'EPRC fonctionne en ...

  6. Quantum features of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Lozada-Cassou, M.; Dong Shihai; Yu Jiang

    2004-01-01

    The exact solutions of the two-dimensional Schrodinger equation with the position-dependent mass for the square well potential in the semiconductor quantum dots system are obtained. The eigenvalues, which are closely related to the position-dependent masses μ1 and μ2, the potential well depth V0 and the radius of the quantum dots r0, can be calculated from two boundary conditions. We generalize this quantum system to three-dimensional case. The special cases for the angular momentum quantum number l=0, 1, 2 are studied in some detail. We find that the energy levels are proportional to the parameters μ2, V0 and r0 for l=0. The relations between them for l=1, 2 become very complicated. The scattering states of this quantum system are mentioned briefly

  7. Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamole, L-cysteine and glutathione

    International Nuclear Information System (INIS)

    Dong, Yajuan; Su, Ming; Chen, Peiyun; Sun, Hanwen

    2015-01-01

    Aqueous solutions of carbon dots (C-dots) were prepared by microwave-assisted thermal carbonization of poly(ethylene glycol). They were investigated by transmission electron microscopy, absorption and fluorescence spectra. It is shown that diperiodato-nicklate(IV), a strong oxidant, induces the chemiluminescence (CL) of C-dots in strongly alkaline solution without use of an additional reagent. A mechanism for this reaction is suggested. It is also found that the CL of the system is quenched by paracetamole, L-cysteine and glutathione. Under the optimized conditions, the calibration plot is linear with a correlation coefficient (r) of >0.995. The limits of detection are 90, 8, and 60 µg L -1 for paracetamole, L-cysteine, and glutathione, respectively. Spiked urine and serum samples were analyzed and gave recoveries in the range from 84.38 to 116.0 %, with an RSD of 1.22.7 %. (author)

  8. Influence of surface states of CuInS{sub 2} quantum dots in quantum dots sensitized photo-electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Wu, Lei [School of Electronic and Electrical, Wuhan Railway Vocational College of Technology, Wuhan 430205 (China); Zhao, Yinghan; Chen, Keqiang [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-12-01

    Graphical abstract: J–V curves of different ligands capped CuInS{sub 2} QDs sensitized TiO{sub 2} photo-electrodes. - Highlights: • DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared. • Surface states of quantum dots greatly influence the electrochemical performance of CuInS{sub 2} quantum dot sensitized photo-electrodes. • S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes. - Abstract: Surface states are significant factor for the enhancement of electrochemical performance in CuInS{sub 2} quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S{sup 2−} ligand capped CuInS{sub 2} quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S{sup 2−} ligand enhances the UV–vis absorption and electron–hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S{sup 2−} ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S{sup 2−}-capped CuInS{sub 2} quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  9. Evaluación de las pruebas dot blot y aglutinación de látex para el diagnóstico de cisticercosis en Perú

    Directory of Open Access Journals (Sweden)

    Eduardo Miranda-Ulloa

    Full Text Available Con el objetivo de evaluar las pruebas dot blot y aglutinación de látex para la detección de cisticercosis humana con antígeno de líquido de cisticerco de Taenia solium, se usaron 125 sueros humanos, de los cuales 60 procedían de personas con cisticercosis confirmada por Western Blot, 45 de personas con otras enfermedades parasitarias y 20 de personas aparentemente sanas. La concentración óptima del antígeno para impregnar las tiras dot blot fue de 0,01 ug/uL, y para impregnar las partículas de látex fue de 0,092 ug/uL. Para la prueba dot blot se encontró una sensibilidad del 100% y especificidad del 87,7%; para la aglutinación de látex una sensibilidad del 93,3% y especificidad del 89,2%. Ambas pruebas podrían ser de utilidad y factibles de implementar como alternativas de diagnóstico serológico en laboratorios de áreas endémicas del Perú

  10. Spontaneous polarization and pyroelectric effect in improper ferroelectrics-ferroelastics Gd2(MoO4)3 and Tb2(MoO4)3 at low temperature

    International Nuclear Information System (INIS)

    Matyjasik, S; Shaldin, Yu.V.

    2013-01-01

    Experimental dependencies for spontaneous polarization ΔP s (T) and pyroelectric coefficient γ s (T)for Gd 2 (MoO 4 ) 3 (GMO) and Tb 2 (MoO 4 ) 3 (TMO) reported here differs from those for intrinsic ferroelectrics. We found fundamental distinction in GMO and TMO samples behavior at their repolarization at the fixed temperatures 300 and 4.2 K. In TMO monodomainization temperature does not affect experimental data, while in GMO monodomainization at 4.2 K results in increase of ΔP s (T) by order of magnitude at 85 K and γ s (T) dependence shows well-defined anomalies, reaching a record magnitude of 3 centre dot 10 -4 C/(m 2 centre dot K) at T = 25 K. At T = 200 K the pyroelectric coefficients values are -1.45 centre dot 10 -6 C/(m 2 centre dot K) and-1.8 centre dot 10 -6 C/(m 2 centre dot K). Taking into account our data, results related to transformation of structure in (001) plane and symmetry reasons we suggested crystallographic model of GMO type improper ferroelectric. It is formed by four meso-tetrahedrons constructed of three coordination tetrahedrons MO 4 (a, b and c types). In the framework of this model we discuss the physical meaning of pseudodeviator Q 12 *, coefficient, that initiate the phase transition at T > 433 K from noncentrosymmetric phase (mm2) to another one (4-bar2m).

  11. Résultats de recherche | Page 2 | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce financement contribuera à renforcer le rôle du Public Affairs Centre (PAC) en tant qu'organisme crédible de recherche sur les politiques publiques en Inde en renforçant sa capacité à fournir des recherches de qualité ... Soutien organisationnel pour la phase 2 de l'ITT : Centre for Budget and Governance Accountability.

  12. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    Science.gov (United States)

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Appui au réseautage et au renforcement des télécentres ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    En Afrique de l'Ouest francophone, les télécentres luttent pour atteindre la viabilité financière tout en demeurant au diapason des collectivités, une situation qui tient au fait qu'ils ont accès à un moins grand nombre de ressources en ligne et à une communauté d'utilisateurs plus restreinte que les télécentres anglophones.

  14. A calorimetric and equilibrium investigation of the reaction {l_brace}methyl ferulate(aq) + H{sub 2}O(l) = methanol(aq) + ferulic acid(aq){r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Robert N., E-mail: robert.goldberg@nist.go [Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20876 (United States); Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Lang, Brian E., E-mail: brian.lang@nist.go [Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20876 (United States); Selig, Michael J., E-mail: michael.selig@nrel.go [National Renewable Energy Laboratory, Biosciences Center, 1617 Cole Boulevard, Golden, CO 80401 (United States); Decker, Stephen R., E-mail: steve.decker@nrel.go [National Renewable Energy Laboratory, Biosciences Center, 1617 Cole Boulevard, Golden, CO 80401 (United States)

    2011-03-15

    Microcalorimetry and high-performance liquid chromatography (HPLC) have been used to conduct a thermodynamic investigation of the reaction: {l_brace}methyl ferulate(aq) + H{sub 2}O(l) = methanol(aq) + ferulic acid(aq){r_brace}, as catalyzed by feruloyl esterase. Values of the apparent equilibrium constant K' = (29.6 {+-} 0.7) (T = 298.15 K, citrate buffer at pH 4.98, ionic strength I = 0.39 mol {center_dot} kg{sup -1}) and of the calorimetrically determined enthalpy of reaction {Delta}{sub r}H(cal) = (4.0 {+-} 0.9) kJ {center_dot} mol{sup -1} (T = 298.15 K and citrate buffer at pH 4.81, I = 0.36 mol {center_dot} kg{sup -1}) were measured. A chemical equilibrium model, together with pKs and standard enthalpies of reaction {Delta}{sub r}H{sup 0} for the H{sup +}(aq) binding reactions of the reactants and products, was then used to calculate the values K = (1.89 {+-} 0.06) . 10{sup -4}, {Delta}{sub r}H{sup o} = (7.3 {+-} 1.7) kJ {center_dot} mol{sup -1}, {Delta}{sub r}G{sup o} = (21.25 {+-} 0.07) kJ {center_dot} mol{sup -1}, and {Delta}{sub r}S{sup o} = - (46.8 {+-} 5.7) J {center_dot} K{sup -1} {center_dot} mol{sup -1} for the chemical reference reaction {l_brace}methyl ferulate(aq) + H{sub 2}O(l) = methanol(aq) + ferulic acid{sup -}(aq) + H{sup +}(aq){r_brace}. These values of K and {Delta}{sub r}H{sup o} are similar in magnitude to the corresponding values reported for the reaction {l_brace}propyl gallate(aq) + H{sub 2}O(l) = 3,4,5-trihydroxybenzoic acid{sup -}(aq) + 1-propanol(aq) + H{sup +}(aq){r_brace}. The results obtained in this study can be used in a chemical equilibrium model to calculate how K' and other standard transformed properties such as the standard transformed enthalpy {Delta}{sub r}H'{sup o}, standard transformed Gibbs free energy {Delta}{sub r}G'{sup o}, and the change in binding of H{sup +}(aq), {Delta}{sub r}N(H{sup +}), vary with the independent variables T, pH, and I.

  15. Sensing application of an optical fiber dip coated with L-Cystein ethyl ester hydrochloride capped ZnTe quantum dots

    Directory of Open Access Journals (Sweden)

    Sundaray Madhulita

    2016-09-01

    Full Text Available Optical fiber in conjunction with ZnTe quantum dots (QDs is investigated for sensing application. ZnTe QDs, are synthesized by a simple chemical bottom up approach. Quantum dots are capped with L-Cystein ethyl ester hydrochloride (LEEH, to increase their stability. Then LEEH capped ZnTe QDs, whose size is estimated as 2.29 nm by effective mass approximation (EMA, are dip-coated on a cladding removed optical fiber. Different concentrations of alcohol and ammonia are used to investigate the sensing behavior. It is found that sensitivity of the sensor increases with the use of QDs for both alcohol and ammonia.

  16. L'innovation sème l'espoir dans les régions arides | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    23 janv. 2013 ... L'ICARDA est l'un des 15 centres chapeautés par le Groupe consultatif pour la recherche agricole internationale (CGIAR), que le CRDI soutient depuis plus de 40 ans. ... Par ailleurs, cela prend un contexte de politiques propice et, ce qui est encore plus important, une approche communautaire, précise-t-il.

  17. Gunn's dots in retinal images of 2,286 adolescents

    DEFF Research Database (Denmark)

    Boberg-Ans, Lars C.; Munch, Inger C.; Larsen, Michael

    2017-01-01

    a 6 mm grid centered on the optic disc. Results: One or more Gunn's dots were seen in at least one eye in 82.6% of children. The median number of Gunn's dots per eye was 46 (range 0-482). Most Gunn's dots were found inferior and superior of the optic disc (49.3% and 45.8%, respectively, of the total...... number of Gunn's dots in the population). The odds for having 1 or more Gunn's dots were 3-fold greater in children with dark brown irides compared with children with blue irides (odds ratio 2.99, 95% CI 1.81 to 4.94, P, 0.0001 adjusted for age, sex, retinal nerve fiber layer thickness, refraction...

  18. Disruptor of telomeric silencing 1-like (DOT1L): disclosing a new class of non-nucleoside inhibitors by means of ligand-based and structure-based approaches.

    Science.gov (United States)

    Sabatino, Manuela; Rotili, Dante; Patsilinakos, Alexandros; Forgione, Mariantonietta; Tomaselli, Daniela; Alby, Fréderic; Arimondo, Paola B; Mai, Antonello; Ragno, Rino

    2018-03-01

    Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.

  19. Disruptor of telomeric silencing 1-like (DOT1L): disclosing a new class of non-nucleoside inhibitors by means of ligand-based and structure-based approaches

    Science.gov (United States)

    Sabatino, Manuela; Rotili, Dante; Patsilinakos, Alexandros; Forgione, Mariantonietta; Tomaselli, Daniela; Alby, Fréderic; Arimondo, Paola B.; Mai, Antonello; Ragno, Rino

    2018-03-01

    Chemical inhibition of chromatin-mediated signaling involved proteins is an established strategy to drive expression networks and alter disease progression. Protein methyltransferases are among the most studied proteins in epigenetics and, in particular, disruptor of telomeric silencing 1-like (DOT1L) lysine methyltransferase plays a key role in MLL-rearranged acute leukemia Selective inhibition of DOT1L is an established attractive strategy to breakdown aberrant H3K79 methylation and thus overexpression of leukemia genes, and leukemogenesis. Although numerous DOT1L inhibitors have been several structural data published no pronounced computational efforts have been yet reported. In these studies a first tentative of multi-stage and LB/SB combined approach is reported in order to maximize the use of available data. Using co-crystallized ligand/DOT1L complexes, predictive 3-D QSAR and COMBINE models were built through a python implementation of previously reported methodologies. The models, validated by either modeled or experimental external test sets, proved to have good predictive abilities. The application of these models to an internal library led to the selection of two unreported compounds that were found able to inhibit DOT1L at micromolar level. To the best of our knowledge this is the first report of quantitative LB and SB DOT1L inhibitors models and their application to disclose new potential epigenetic modulators.

  20. Printer model for dot-on-dot halftone screens

    Science.gov (United States)

    Balasubramanian, Raja

    1995-04-01

    A printer model is described for dot-on-dot halftone screens. For a given input CMYK signal, the model predicts the resulting spectral reflectance of the printed patch. The model is derived in two steps. First, the C, M, Y, K dot growth functions are determined which relate the input digital value to the actual dot area coverages of the colorants. Next, the reflectance of a patch is predicted as a weighted combination of the reflectances of the four solid C, M, Y, K patches and their various overlays. This approach is analogous to the Neugebauer model, with the random mixing equations being replaced by dot-on-dot mixing equations. A Yule-Neilsen correction factor is incorporated to account for light scattering within the paper. The dot area functions and Yule-Neilsen parameter are chosen to optimize the fit to a set of training data. The model is also extended to a cellular framework, requiring additional measurements. The model is tested with a four color xerographic printer employing a line-on-line halftone screen. CIE L*a*b* errors are obtained between measurements and model predictions. The Yule-Neilsen factor significantly decreases the model error. Accuracy is also increased with the use of a cellular framework.

  1. Évaluation des télécentres communautaires

    International Development Research Centre (IDRC) Digital Library (Canada)

    La plupart des études d'évaluation auront pour objectif de mesurer les .... Les télécentres peuvent faire du contrôle régulier une de leurs tâches de gestion ...... Planning, monitoring and évaluation of programme performance: a resource book.

  2. Development of cathepsin-L cysteine proteinase based Dot-enzyme-linked immunosorbent assay for the diagnosis of Fasciola gigantica infection in buffaloes.

    Science.gov (United States)

    Varghese, Anju; Raina, O K; Nagar, Gaurav; Garg, Rajat; Banerjee, P S; Maharana, B R; Kollannur, Justin D

    2012-02-10

    Native cathepsin-L cysteine proteinase (28 kDa) was purified from the excretory secretory products of Fasciola gigantica and was used for sero-diagnosis of F. gigantica infection in buffaloes by Dot-enzyme-linked immunosorbent assay (Dot-ELISA). The test detected F. gigantica field infection in these animals with a sensitivity of ∼ 90%. No specific IgG antibody binding was displayed by sera obtained from 76 buffaloes considered to be Fasciola and other parasite-free by microscopic examination of faeces and necropsy examination of liver, rumen and intestine. Additionally, sera from 156 Fasciola-free buffaloes, yet infected with Gigantocotyle explanatum, Paramphistomum epiclitum, Gastrothylax spp., Strongyloides papillosus and hydatid cyst were all negative, indicating that F. gigantica cathepsin-L cysteine proteinase does not cross-react with these helminth parasites in natural infection of the host. The data indicated that cathepsin-L cysteine proteinase based Dot-ELISA reached ∼ 90% sensitivity and 100% specificity with relation to above parasites in the detection of bubaline fasciolosis. The present Dot-ELISA diagnostic assay is relevant to the field diagnosis of F. gigantica infection in buffaloes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Specific detection of Vibrio parahaemolyticus by fluorescence quenching immunoassay based on quantum dots.

    Science.gov (United States)

    Wang, Ling; Zhang, Junxian; Bai, Haili; Li, Xuan; Lv, Pintian; Guo, Ailing

    2014-07-01

    In this study, anti-Vibrio parahaemolyticus polyclonal and monoclonal antibodies were prepared through intradermal injection immune and lymphocyte hybridoma technique respectively. CdTe quantum dots (QDs) were synthesized at pH 9.3, 98 °C for 1 h with stabilizer of 2.7:1. The fluorescence intensity was 586.499, and the yield was 62.43%. QD probes were successfully prepared under the optimized conditions of pH 7.4, 37 °C for 1 h, 250 μL of 50 mg/mL EDC · HCl, 150 μL of 4 mg/mL NHS, buffer system of Na2HPO4-citric acid, and 8 μL of 2.48 mg/mL polyclonal antibodies. As gold nanoparticles could quench fluorescence of quantum dots, the concentration of V. parahaemolyticus could be detected through measuring the reduction of fluorescence intensity in immune sandwich reaction composed of quantum dot probe, gold-labeled antibody, and the sample. For pure culture, fluorescence intensity of the system was proportional with logarithm concentration of antigen, and the correlation coefficient was 99.764%. The fluorescence quenching immunoassay based on quantum dots is established for the first time to detect Vibrio parahaemolyticus. This method may be used as rapid testing procedure due to its high simplicity and sensitivity.

  4. l-Tryptophan-capped carbon quantum dots for the sensitive and selective fluorescence detection of mercury ion in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Xuejuan; Li, Shifeng; Zhuang, Lulu; Tang, Jiaoning, E-mail: tjn@szu.edu.cn [Shenzhen University, Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering (China)

    2016-07-15

    l-Tryptophan-capped carbon quantum dots (l-CQDs) were facilely synthesized through “green” methodology, and the obtained material was utilized as a sensitive and selective fluorescence sensor for mercury ion (Hg{sup 2+}) in pure aqueous solutions. Carboxyl-functionalized CQDs were first green synthesized by a one-step hydrothermal route, and l-tryptophan was then attached to CQDs via direct surface condensation reaction in aqueous solution at room temperature. The as-synthesized l-CQDs had an average size of ca. 5 nm with a good dispersity in water, and exhibited a favorable selectivity for Hg{sup 2+} ions over a range of other common metal cations in aqueous solution (10 mM PBS buffer, pH 6.0). Upon the addition of Hg{sup 2+}, a complete fluorescence quenching (ON–OFF switching) of l-CQDs was evident from the fluorescence titration experiment, and the fluorescence detection limit of Hg{sup 2+} was calculated to be 11 nM, which indicated that the obtained environmentally friendly l-CQDs had sensitive detection capacity for Hg{sup 2+} in aqueous solution.

  5. Stark-shift of impurity fundamental state in a lens shaped quantum dot

    Science.gov (United States)

    Aderras, L.; Bah, A.; Feddi, E.; Dujardin, F.; Duque, C. A.

    2017-05-01

    We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is considered to be applied in the z-direction. The systematic theoretical investigation contains results with the quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the polarisability varies depends strongly on the dot size.

  6. Designing artificial 2D crystals with site and size controlled quantum dots.

    Science.gov (United States)

    Xie, Xuejun; Kang, Jiahao; Cao, Wei; Chu, Jae Hwan; Gong, Yongji; Ajayan, Pulickel M; Banerjee, Kaustav

    2017-08-30

    Ordered arrays of quantum dots in two-dimensional (2D) materials would make promising optical materials, but their assembly could prove challenging. Here we demonstrate a scalable, site and size controlled fabrication of quantum dots in monolayer molybdenum disulfide (MoS 2 ), and quantum dot arrays with nanometer-scale spatial density by focused electron beam irradiation induced local 2H to 1T phase change in MoS 2 . By designing the quantum dots in a 2D superlattice, we show that new energy bands form where the new band gap can be controlled by the size and pitch of the quantum dots in the superlattice. The band gap can be tuned from 1.81 eV to 1.42 eV without loss of its photoluminescence performance, which provides new directions for fabricating lasers with designed wavelengths. Our work constitutes a photoresist-free, top-down method to create large-area quantum dot arrays with nanometer-scale spatial density that allow the quantum dots to interfere with each other and create artificial crystals. This technique opens up new pathways for fabricating light emitting devices with 2D materials at desired wavelengths. This demonstration can also enable the assembly of large scale quantum information systems and open up new avenues for the design of artificial 2D materials.

  7. Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes.

    Science.gov (United States)

    Dindar, Gülcin; Anger, Andreas M; Mehlhorn, Christine; Hake, Sandra B; Janzen, Christian J

    2014-11-12

    DOT1 enzymes are conserved methyltransferases that catalyse the methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, with different enzymatic activities. DOT1A mediates mono- and dimethylation of H3K76, the homologue of H3K79 in other organisms, whereas DOT1B additionally catalyses H3K76 trimethylation. However, it is unclear how these different enzymatic activities are achieved. Here we employ a trypanosomal nucleosome reconstitution system and structure-guided homology modelling to identify critical residues within and outside the catalytic centre that modulate product specificity. Exchange of these residues transfers the product specificity from one enzyme to the other, and reveals the existence of distinct regulatory domains adjacent to the catalytic centre. Our study provides the first evidence that a few crucial residues in DOT1 enzymes are sufficient to catalyse methyl-state-specific reactions. These results might also have far-reaching consequences for the functional understanding of homologous enzymes in higher eukaryotes.

  8. Effect of different uranium compounds on the properties of U-Pt-Y-Ba-O double-perovskite pinning centres in textured Y-Ba-Cu-O superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sawh, Ravi-Persad; Weinstein, Roy; Parks, Drew; Gandini, Alberto [Beam Particle Dynamics Laboratories, University of Houston, Houston, TX 77204-5005 (United States); Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Texas Center for Superconductivity and Advanced Materials, University of Houston, Houston, TX 77204-5005 (United States)

    2005-02-01

    An experiment was performed to test the effect of different uranium compounds on the properties of chemical pinning centres. UO{sub 2}, UO{sub 3}, and UO{sub 4}{center_dot}2H{sub 2}O wereadmixed to Y 123+Pt, and textured. Tests of J{sub c} via measurements of trapped field (B{sub trap}) indicate a clear dependence of B{sub trap} on the U compound admixed to create the pinning centres. In all three cases there is a monotonic increase in B{sub trap} as the mass (M{sub U}) of U is increased. However, the magnitude of the increase in B{sub trap} depends on the admixed U compound. The highest increase in B{sub trap} is measured in samples doped with UO{sub 4}{center_dot}2H{sub 2}O, and the lowest is obtained in samples doped with UO{sub 2}. Microstructure studies indicate that the composition of the U-rich pinning deposits is the same in all three cases, i.e. all are the previously identified (U{sub 0.6}Pt{sub 0.4})Y Ba{sub 2}O{sub 6} compound. The primary difference among the three types of samples is that the size of the U-Pt-Y-Ba-O pinning deposits depends on the admixed U compound. While all are in the nanometre domain, the diameter of these deposits was markedly larger in UO{sub 2} doped samples than in UO{sub 3} doped samples, and smallest in UO{sub 4}{center_dot}2H{sub 2}O doped samples. Because some form of poisoning limits the amount of U that can be added to create pinning centres, to M{sub U} {approx}1 wt%, smaller deposits result in a greater number of pinning centres. We conclude that UO{sub 4}{center_dot}2H{sub 2}O is more effective than either UO{sub 3} or UO{sub 2} in the formation of U-Pt-Y-Ba-O pinning centres because of diminished pinning centre size, and consequent increase in pinning centre density.

  9. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    Science.gov (United States)

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  10. Preparation and purification of L-cysteine capped CdTe quantum dots and its self-recovery of degenerate fluorescence

    International Nuclear Information System (INIS)

    Li Mengying; Zhou Huameng; Zhang Hongyan; Sun Pan; Yi Kuiyu; Wang Meng; Dong Zaizheng; Xu Shukun

    2010-01-01

    L-cysteine capped CdTe quantum dots (QDs) were prepared in aqueous solution by a simple and efficient method, showing many advantages such as short synthesis period, the broaden range of starting pH value and the wide fluorescence emission wavelength range. A novel purification process was designed to remove excess Cd 2+ which has potential cytotoxicity for bio-analysis. Three-dimensional fluorescence charts of pre- and post-purification showed that the purified QDs were of better luminescent performance. The prepared QDs were of cubic crystal structure with an average size of 2-6 nm, which were characterized by XRD and HRTEM. It is confirmed by IR spectra that the L-cysteine ligands were conjugated with CdTe cores via covalent bond. The degenerate fluorescence of QDs can be self-recovered in the presence of L-cysteine without other processing steps.

  11. Soutien organisationnel de la phase 2 de l'Initiative Think tank ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Soutien organisationnel de la phase 2 de l'Initiative Think tank : Economic Policy Research Centre. Ce financement contribuera à renforcer le rôle de l'Economic Policy Research Centre (EPRC) en tant qu'organisme crédible de recherche sur les politiques publiques en Ouganda, en améliorant sa capacité à fournir des ...

  12. The Aube centre; Le Centre de l`Aube

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This educational booklet is devoted to a general presentation of the Aube radioactive wastes storage centre. After a short presentation of the Andra, the French national agency for the management of radioactive wastes, it gives some general information about radioactive wastes (origin, classification), containers (quality assurance and different types), wastes transportation (planning, safety), and about the Aube centre itself: description, treatment and conditioning of drums (compacting and injection), storage facilities, geological situation of the site, and environmental controls. (J.S.)

  13. Aspects of the historical development of targetry for heavy ions of 0.05-2000 A centre dot MeV at GSI

    CERN Document Server

    Folger, H

    1999-01-01

    The progressively improved GSI accelerators provide beams of heavy ions from energies of 0.05-2000 A centre dot MeV at high particle intensities now. Therefore, a wide variety of common and new heavy-ion target techniques had to be installed and developed during the past 25 years to prepare and characterize self-supported or backed heavy-ion-targets of chemical elements and compounds from hydrogen (as polyethylene) to uranium. The thickness ranged from 2x10 sup - sup 6 to 20 g/cm sup 2 for beam spots of about 5 mm in diameter. Homogeneity, surface structure or individual shape had to be adapted to the needs of each experiment. Special setups were required for targets of poisonous materials, of highly enriched stable isotopes or those of radioactive species in minute amounts. The capability of thin-layer technologies was as well applied to prepare and measure stripper foils or various high-vacuum deposits for experimental or accelerator purposes. The development of different rotating target wheels and control ...

  14. Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation

    International Nuclear Information System (INIS)

    Bayat, A.; Saievar-Iranizad, E.

    2017-01-01

    Blue photoluminescent WS 2 quantum dots (QDs) were synthesized using a simple top-down method from natural raw mineral tungsten disulfide via tip ultrasonication followed by centrifugation in a water-ethanol (0.7/0.3 ratio) as eco-friendly solvent. Cavitation process at a high power (300 W) led to the breaking of bulk WS 2 flakes to its quantum dots. The as synthesized WS 2 QDs showed blue photoluminescence upon UV excitation. The synthesized WS 2 QDs were analysed by UV–vis and photoluminescence spectrophotometry, transmission electron microscopy, atomic force microscopy and X-ray diffraction. According to the transmission electron microscopy images, the size of WS 2 QDs was obtained as 5 nm in average. - Highlights: •Large scale blue photoluminescent WS 2 quantum dots was synthesized using Ultrasonic probe (Cavitation Process). •A solution of water/ethanol (0.7/0.3) was used as eco-friendly solvent instead of unsuitable solvent such as NMP and ACN. •Edges of bulk WS 2 was increased with formation of its quantum dots. •Solution of WS 2 QDs was stable after 6 months.

  15. Soutien organisationnel de la phase 2 de l'ITT : Public Affairs Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    faire sa place en tant que centre de ressources principal, avec une solide équipe de chercheurs et un système robuste d'assurance de la qualité. ... will enhance the Centre for the Study of Developing Societies' (CSDS) role as a credible public policy institution in India by strengthening its ability to provide high-quality,.

  16. Contribution of dot-blot assay to the diagnosis and management of myositis: a three-year practice at a university hospital centre.

    Science.gov (United States)

    Martel, Clothilde; Vignaud, Guillaume; Liozon, Eric; Magy, Laurent; Gallouedec, Gael; Ly, Kim; Bezanahary, Holly; Cypierre, Anne; Lapébie, François-Xavier; Palat, Sylvain; Gondran, Guillaume; Jauberteau, Marie-Odile; Fauchais, Anne-Laure

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases with wide clinical spectrum that may lead to delayed diagnosis. The aim of this study was to examine the impact of IIM-specific dot-blot assay on diagnostic process of patients presenting with muscular or systemic symptoms evocating of IIM. We collected all the prescriptions of an IIM specific dot-blot assay (8 autoantigens including Jo-1, PL-7, PL-12, SRP, Mi-2, Ku, PM/Scl and Scl-70) over a 38-month period. 316 myositis dot-blot assays (MSD) were performed in 274 patients (156 women, mean age 53±10.6 years) referring for muscular and/or systemic symptoms suggesting IIM. The timing of dot prescription through the diagnostic process was highly variable: without (35%), concomitantly (16%) or after electromyographic studies (35%). Fifty-nine patients (22%) had IIM according to Bohan and Peter's criteria. Among them, 29 (49%) had positive dot (8 Jo-1, 6 PM-Scl, 5 PL-12, 5 SRP, 2 Mi-2, 2 PL-7 and 1 Ku). Various other diagnoses were performed including 35 autoimmune disease or granulomatosis (12%), 19 inflammatory rheumatic disease (7%), 16 non inflammatory muscular disorders (6%), 10 drug-induced myalgia (4%), 11 infectious myositis (4%). Except 11 borderline SRP results and one transient PM-Scl, MSD was positive only in one case of IIM. Dot allowed clinicians to correct diagnosis in 4 cases and improved the diagnosis of IIM subtypes in 4 cases. This study reflects the interest of myositis dot in the rapid diagnosis process of patients with non-specific muscular symptoms leading to various diagnoses including IIM.

  17. Fluorescent determination of graphene quantum dots in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Martínez, Sandra; Valcárcel, Miguel, E-mail: qa1meobj@uco.es

    2015-10-08

    This work presents a simple, fast and sensitive method for the preconcentration and quantification of graphene quantum dots (GQDs) in aqueous samples. GQDs are considered an object of analysis (analyte) not an analytical tool which is the most frequent situation in Analytical Nanoscience and Nanotechnology. This approach is based on the preconcentration of graphene quantum dots on an anion exchange sorbent by solid phase extraction and their subsequent elution prior fluorimetric analysis of the solution containing graphene quantum dots. Parameters of the extraction procedure such as sample volume, type of solvent, sample pH, sample flow rate and elution conditions were investigated in order to achieve extraction efficiency. The limits of detection and quantification were 7.5 μg L{sup −1} and 25 μg L{sup −1}, respectively. The precision for 200 μg L{sup −1}, expressed as %RSD, was 2.8%. Recoveries percentages between 86.9 and 103.9% were obtained for two different concentration levels. Interferences from other nanoparticles were studied and no significant changes were observed at the concentration levels tested. Consequently, the optimized procedure has great potential to be applied to the determination of graphene quantum dots at trace levels in drinking and environmental waters. - Highlights: • Development of a novel and simple method for determination of graphene quantum dots. • Preconcentration of graphene quantum dots by solid phase extraction. • Fluorescence spectroscopy allows fast measurements. • High sensitivity and great reproducibility are achieved.

  18. Assessing the occurrence of the dibromide radical (Br{sub 2}{sup -{center_dot}}) in natural waters: Measures of triplet-sensitised formation, reactivity, and modelling

    Energy Technology Data Exchange (ETDEWEB)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Mailhot, Gilles; Sarakha, Mohamed [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Brigante, Marcello, E-mail: marcello.brigante@univ-bpclermont.fr [Clermont Universite, Universite Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubiere (France); Vione, Davide, E-mail: davide.vione@unito.it [Universita degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Universita degli Studi di Torino, Centro Interdipartimentale NatRisk, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-11-15

    The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br{sup {center_dot}}/Br{sub 2}{sup -{center_dot}}, with rate constant (2-4) Dot-Operator 10{sup 9} M{sup -1} s{sup -1} that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ({sup 3}CDOM*). The brominating agent Br{sub 2}{sup -{center_dot}} could thus be formed in natural waters upon oxidation of bromide by both {sup {center_dot}}OH and {sup 3}CDOM*. Br{sub 2}{sup -{center_dot}} would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of {approx} 3 Dot-Operator 10{sup 2} L (mg C){sup -1} s{sup -1} was measured between Br{sub 2}{sup -{center_dot}} and DOM. It was thus possible to model the formation and reactivity of Br{sub 2}{sup -{center_dot}} in natural waters, assessing the steady-state [Br{sub 2}{sup -{center_dot}}] Almost-Equal-To 10{sup -13}-10{sup -12} M. It is concluded that bromide oxidation by {sup 3}CDOM* would be significant compared to oxidation by {sup {center_dot}}OH. The {sup 3}CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge {sup {center_dot}}OH. Under such conditions, {sup {center_dot}}OH-assisted formation of Br{sub 2}{sup -{center_dot}} would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of {sup 3}CDOM* is much higher compared to that of {sup {center_dot}}OH in most surface waters and would provide a large {sup 3}CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br{sub 2}{sup -{center_dot}} could be an important source of the nitrating agent {sup {center_dot

  19. Assembly of CdS Quantum Dots onto Hierarchical TiO2 Structure for Quantum Dots Sensitized Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Syed Mansoor Ali

    2015-05-01

    Full Text Available Quantum dot (QD sensitized solar cells based on Hierarchical TiO2 structure (HTS consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate is fabricated. The hierarchical TiO2 structure consisting of spherical nano-urchins on transparent conductive fluorine doped tin oxide glass substrate synthesized by hydrothermal route. The CdS quantum dots were grown by the successive ionic layer adsorption and reaction deposition method. The quantum dot sensitized solar cell based on the hierarchical TiO2 structure shows a current density JSC = 1.44 mA, VOC = 0.46 V, FF = 0.42 and η = 0.27%. The QD provide a high surface area and nano-urchins offer a highway for fast charge collection and multiple scattering centers within the photoelectrode.

  20. Electrochemiluminescent detection of Pb{sup 2+} by graphene/gold nanoparticles and CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Liping, E-mail: lipinglu@bjut.edu.cn; Guo, Linqing; Li, Jiao; Kang, Tianfang; Cheng, Shuiyuan

    2016-12-01

    Highlights: • An ECL sensor was fabricated based on the distance dependent between CdSe QDs and gold nanoparticles. • The ssDNA strands rich in G bases adopt the G4 conformation when Pb{sup 2+} is present in detection system. • AuNPs/RGO composite improved the performance of electron transfer of sensor. • The ECL sensor was used to detect Pb{sup 2+} concentration in an actual water sample with high sensitivity and selectivity. - Abstract: A highly sensitive electrochemiluminescent detection method for lead ions (Pb(II)) was fabricated based on the distance-dependent quenching of the electrochemiluminescence from CdSe quantum dots by nanocomposites of graphene and gold nanoparticles. Graphene/gold nanoparticles were electrochemically deposited onto a glassy carbon electrode through the constant potential method. Thiol-labeled DNA was then assembled on the surface of the electrode via gold−sulfur bonding, following which the amino-labeled terminal of the DNA was linked to carboxylated CdSe quantum dots by the formation of amide bonds. The 27-base aptamer was designed with two different domains: the immobilization and detection sequences. The immobilization sequence was paired with 12 complementary bases and immobilized on the gold electrode; the single-stranded detection sequence, rich in G bases, formed a G-quadruplex (G4) structure in the presence of Pb{sup 2+}. The formation of G4 shortens the distance between the CdSe quantum dots and the Au electrode, which decreases the electrochemiluminescent intensity in a linear fashion, proportional to the concentration of Pb(II). The linear range of the sensor was 10{sup −10} to 10{sup −8} mol/L (R = 0.9819) with a detection limit of 10{sup −10} mol/L. This sensor detected Pb(II) in real water samples with satisfactory results.

  1. Création d'une académie nationale des télécentres aux Philippines ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ces dernières années, le mouvement des télécentres a pris de l'ampleur dans les Philippines, principalement à cause du Réseau des centres électroniques communautaires des Philippines (PhilCeCNet) mis sur pied grâce au soutien financier et technique octroyé dans le cadre du programme telecentre.org du CRDI ...

  2. Complex dynamics in planar two-electron quantum dots

    International Nuclear Information System (INIS)

    Schroeter, Sebastian Josef Arthur

    2013-01-01

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two-electron quantum dots an

  3. Electronic transport through a quantum dot chain with strong dot-lead coupling

    International Nuclear Information System (INIS)

    Liu, Yu; Zheng, Yisong; Gong, Weijiang; Gao, Wenzhu; Lue, Tianquan

    2007-01-01

    By means of the non-equilibrium Green function technique, the electronic transport through an N-quantum-dot chain is theoretically studied. By calculating the linear conductance spectrum and the local density of states in quantum dots, we find the resonant peaks in the spectra coincides with the eigen-energies of the N-quantum-dot chain when the dot-lead coupling is relatively weak. With the increase of the dot-lead coupling, such a correspondence becomes inaccurate. When the dot-lead coupling exceeds twice the interdot coupling, such a mapping collapses completely. The linear conductance turn to reflect the eigen-energies of the (N-2)- or (N-1)-quantum dot chain instead. The two peripheral quantum dots do not manifest themselves in the linear conductance spectrum. More interestingly, with the further increase of the dot-lead coupling, the system behaves just like an (N-2)- or (N-1)-quantum dot chain in weak dot-lead coupling limit, since the resonant peaks becomes narrower with the increase of dot-lead coupling

  4. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  5. Complete quantum control of exciton qubits bound to isoelectronic centres.

    Science.gov (United States)

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  6. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    Science.gov (United States)

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  7. Red light emitting solid state hybrid quantum dot-near-UV GaN LED devices

    International Nuclear Information System (INIS)

    Song, Hongjoo; Lee, Seonghoon

    2007-01-01

    We produced core-shell (CdSe)ZnSe quantum dots by direct colloidal chemical synthesis and the surface-passivation method-an overcoating of the core CdSe with a larger-bandgap material ZnSe. The (CdSe)ZnSe quantum dots(QDs) play the role of a colour conversion centre. We call these quantum dots nanophosphors. We fabricated red light emitting hybrid devices of (CdSe)ZnSe QDs and a near-UV GaN LED by combining red light emitting (CdSe)ZnSe quantum dots (as a colour conversion centre) with a near-UV(NUV) GaN LED chip (as an excitation source). A few good red phosphors have been known for UV excitation wavelengths, and red phosphors for UV excitation have been sought for a long time. Here we tested the possibility of using (CdSe)ZnSe QDs as red nanophosphors for UV excitation. The fabricated red light emitting hybrid device of (CdSe)ZnSe and a NUV GaN LED chip showed a good luminance. We demonstrated that the (CdSe)ZnSe quantum dots were promising red nanophosphors for NUV excitation and that a red LED made of QDs and a NUV excitation source was a highly efficient hybrid device

  8. Synthesis of blue photoluminescent WS{sub 2} quantum dots via ultrasonic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, A.; Saievar-Iranizad, E., E-mail: saievare@modares.ac.ir

    2017-05-15

    Blue photoluminescent WS{sub 2} quantum dots (QDs) were synthesized using a simple top-down method from natural raw mineral tungsten disulfide via tip ultrasonication followed by centrifugation in a water-ethanol (0.7/0.3 ratio) as eco-friendly solvent. Cavitation process at a high power (300 W) led to the breaking of bulk WS{sub 2} flakes to its quantum dots. The as synthesized WS{sub 2} QDs showed blue photoluminescence upon UV excitation. The synthesized WS{sub 2} QDs were analysed by UV–vis and photoluminescence spectrophotometry, transmission electron microscopy, atomic force microscopy and X-ray diffraction. According to the transmission electron microscopy images, the size of WS{sub 2} QDs was obtained as 5 nm in average. - Highlights: •Large scale blue photoluminescent WS{sub 2} quantum dots was synthesized using Ultrasonic probe (Cavitation Process). •A solution of water/ethanol (0.7/0.3) was used as eco-friendly solvent instead of unsuitable solvent such as NMP and ACN. •Edges of bulk WS{sub 2} was increased with formation of its quantum dots. •Solution of WS{sub 2} QDs was stable after 6 months.

  9. Formaldehyde in the Galactic Centre

    International Nuclear Information System (INIS)

    Cohen, R.J.; Few, R.W.

    1981-01-01

    Formaldehyde 6-cm absorption in the direction of the Galactic Centre has been surveyed using the Jodrell Bank MK II radio telescope (beam-width 10 x 9 arcmin). The observations sample the region - 2 0 = 0 and - 0 0 .5 = 0 .5, with a velocity range of 620 km s -1 , a velocity resolution of 2.1 km s -1 and an rms noise level of approximately 0.03 K. The data are presented as contour maps showing line temperature as a function of latitude and velocity (b-V maps) and as a function of longitude and velocity (l-V maps). Similar maps of the line-to-continuum ratio are also presented. The radial distribution of formaldehyde (H 2 CO) in the Galactic Centre region is derived using two different kinematic models which give similar results. Formaldehyde is strongly concentrated in the Galactic Centre in a layer of latitude extent approximately 0 0 .5 and longitude extent approximately 4 0 which contains one quarter of all the H 2 CO in the Galaxy. The distribution is centred on l approximately 1 0 . The individual H 2 CO features are described in detail. (author)

  10. Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xie, Yajuan; Li, Jinping

    2015-01-01

    Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO 2 quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO 2 quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO 2 quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO 2 shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO 2 quantum dots to detect low-concentration hazardous

  11. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).

    Science.gov (United States)

    Chen, Jing; Dou, Runzhi; Yang, Zhongzhou; Wang, Xiaoping; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2016-08-01

    In this study, the toxicity of water-soluble carbon nanodots (C-dots) to maize (Zea mays L.) and their uptake and transport in plants were investigated. After exposed in sand matrix amended with 0-2000 mg/L C-dots for 4 weeks, we found that the phytotoxicity of C-dots was concentration-dependent. C-dots at 250 and 500 mg/L showed no toxicity to maize. However, 1000 and 2000 mg/L C-dots significantly reduced the fresh weight of root by 57% and 68%, and decreased the shoot fresh weight by 38% and 72%, respectively. Moreover, in maize roots, the exposure of C-dots at 2000 mg/L significantly increased the H2O2 content and lipid peroxidation (6.5 and 1.65 times higher, respectively), as well as, the antioxidant enzymes activities, up to 2, 1.5, 1.9 and 1.9 times higher for catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, respectively. On the other hand, C-dots were observed in detached root-cap cells, cortex and vascular bundle of roots and mesophyll cells of leaves through fluorescence microscopy analysis, suggesting that C-dots were absorbed and translocated systemically in maize. Remarkably, a certain amount of C-dots were excreted out from leaf blade. To our knowledge, this is the first study combined phenotypic observation with physiologic responses and bioaccumulation and translocation analysis of C-dots to investigate their effect and fate in maize.

  12. Exploring Graphene Quantum Dots/TiO2 interface in photoelectrochemical reactions: Solar to fuel conversion

    International Nuclear Information System (INIS)

    Sudhagar, Pitchaimuthu; Herraiz-Cardona, Isaac; Park, Hun; Song, Taesup; Noh, Seung Hyun; Gimenez, Sixto; Sero, Ivan Mora; Fabregat-Santiago, Francisco; Bisquert, Juan; Terashima, Chiaki; Paik, Ungyu; Kang, Yong Soo

    2016-01-01

    Highlights: • Low dimension ∼5 nm graphene quantum dots nanoparticles were synthesized using chemical exfoliation method. • One dimensional TiO 2 hallow nanowire is grown directly onto conducting substrates using ZnO nanowire as sacrificial template. • The merits of optical properties of the graphene quantum dots sensitizer with the transport properties of the host 1-D TiO 2 nanowire were combined and demonstrate as photoanode in photoelectrochemical hydrogen generation. • A photocurrent enhancement of ∼70% at pristine TiO 2 by graphene quantum dots was achieved through photoelectrocatalytic water oxidation using sacrificial-free electrolyte. • The underlying mechanism of photocharge carrier transfer characteristics at graphene quantum dots/TiO 2 interface is studied using electrochemical impedance spectroscopy. - Abstract: Photocarrier (e − /h + ) generation at low dimension graphene quantum dots offers multifunctional applications including bioimaging, optoelectronics and energy conversion devices. In this context, graphene quantum dots onto metal oxide electron transport layer finds great deal of attention in solar light driven photoelectrochemical (PEC) hydrogen fuel generation. The merits of combining tailored optical properties of the graphene quantum dots sensitizer with the transport properties of the host wide band gap one dimensional nanostructured semiconductor provide a platform for high charge collection which promotes catalytic proton reduction into fuel generation at PEC cells. However, understanding the underlying mechanism of photocarrier transfer characteristics at graphene quantum dots/metal oxide interface during operation is often difficult as graphene quantum dots may have a dual role as sensitizer and catalyst. Therefore, exploring photocarrier generation and injection at graphene quantum dot/metal oxide heterointerfaces in contact with hole scavenging electrolyte afford a new pathway in developing graphene quantum dots based

  13. Complex dynamics in planar two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, Sebastian Josef Arthur

    2013-06-25

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two

  14. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    DEFF Research Database (Denmark)

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  15. Orientations pour l'intégration des TICE dans l'enseignement du français en Syrie. L'exemple du centre de documentation pédagogique de Damas.

    Directory of Open Access Journals (Sweden)

    Christelle Demange-Ducrot

    2005-09-01

    Full Text Available Le secteur éducatif syrien souhaite orienter son action vers les nouvelles technologies de l'information et la sensibilisation du public scolaire aux applications de l'informatique dans le domaine éducatif et en particulier dans le cadre de l'enseignement des langues. Dans l'enseignement-apprentissage des langues, les apports des TICE sont nombreux, mais là où elles apportent sans doute la plus grande plus-value, c'est lors de la mise en place de projets de classe motivants et valorisants, intégrés à des projets de communication authentique. Partant de ce constat, le Centre de Documentation Pédagogique de Damas forme les enseignants de français syriens à l'intégration des TICE dans des projets pédagogiques de classe mettant en œuvre des activités créatives et stimulantes pour communiquer en français. Jusqu'alors, les formations ont centré leurs efforts sur les bases de l'environnement informatique et de la bureautique, avec pour parti pris l'utilisation de logiciels libres. L'année 2005 marquera le lancement et l'expérimentation du dispositif de formation continue à distance destiné aux professeurs de français dans le domaine des TICE.

  16. The ideal Atomic Centre; Le Centre Atomique ideal

    Energy Technology Data Exchange (ETDEWEB)

    Mas, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The author presents considerations which should prove to be of interest to all those who have to design, to construct and to operate a nuclear research centre. A large number of the ideas presented can also be applied to non-nuclear scientific research centres. In his report the author reviews: various problems with which the constructor is faced: ground-plan, infrastructure, buildings and the large units of scientific equipment in the centre, and those problems facing the director: maintenance, production, supplies, security. The author stresses the relationship which ought to exist between the research workers and the management. With this aim in view he proposes the creation of National School for Administration in Research which would train administrative executives for public or private organisations; they would be specialised in the fields of fundamental or applied research. (author) [French] L'auteur propose une base de reflexions a tous ceux qui doivent concevoir, realiser et faire vivre un Centre d'Etudes Nucleaires. Un grand nombre des idees exprimees peut d'ailleurs s'appliquer a un Centre d'Etudes Scientifiques non nucleaires. Dans son ouvrage, l'auteur passe en revue les differents problemes qui se posent au constructeur: plan, masse, infrastructure, batiments et grands appareils du Centre, et ceux qu'a a resoudre le directeur: entretien, fabrication, approvisionnements, securite. L'auteur insiste sur l'aspect des rapports qui doivent exister entre les chercheurs et ceux qui les administrent. Il propose a cette fin la creation d'une Ecole Nationale d'Administration de la Recherche qui formerait des cadres administratifs pour les organismes publics ou prives, specialises dans la Recherche fondamentale ou appliquee. (auteur)

  17. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    Science.gov (United States)

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  18. Cartes infographiques du Symposium Afrique de l'Ouest et du Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    fdieudonne

    VILLES SÛRES ET INCLUSIVES | AFRIQUE DE L'OUEST ET DU CENTRE. Spécificités de violence, d'exclusion, et de lutte contre la criminalité. République démocratique du Congo: Taux de natalité par femme, en moyenne 10 enfants, très élevé. Exclusion sociale exacerbée : des jeunes enfants accusés de sorcellerie.

  19. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.

    Science.gov (United States)

    Sheng, Zhen; Chen, Ligang

    2017-10-01

    The concentration of L-cysteine (Cys) and glutathione (GSH) is closely related to the critical risk of various diseases. In our study, a new rapid method for the determination of Cys and GSH in water and urine samples has been developed using a fluorescent probe technique, which was based on crystal violet (CV)-functionalized CdTe quantum dots (QDs). The original QDs emitted fluorescence light, which was turned off upon adding CV. This conjugation of CV and QDs could be attributed to electrostatic interaction between COO - of mercaptopropionic acid (MPA) on the surface of QDs and N + of CV in aqueous solution. In addition, Förster resonance energy transfer (FRET) also occurred between CdTe QDs and CV. After adding Cys or GSH to the solution, Cys or GSH exhibited a stronger binding preference toward Cd 2+ than Cd 2+ -MPA, which disturbed the interaction between MPA and QDs. Thus, most MPA was able to be separated from the surface of QDs because of the participation of Cys or GSH. Then, the fluorescence intensity of the CdTe QDs was enhanced. Good linear relationships were obtained in the range of 0.02-40 μg mL -1 and 0.02-50 μg mL -1 , and the detection limits were calculated as 10.5 ng mL -1 and 8.2 ng mL -1 , for Cys and GSH, respectively. In addition, the concentrations of biological thiols in water and urine samples were determined by the standard addition method using Cys as the standard; the quantitative recoveries were in the range of 97.3-105.8%, and relative standard deviations (RSDs) ranged from 2.5 to 3.7%. The method had several unique properties, such as simplicity, lower cost, high sensitivity, and environmental acceptability. Graphical abstract Crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione with switch-on fluorescent strategy.

  20. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    Science.gov (United States)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  1. Planification de la mise en place d'un Centre régional pour l ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Eric Smith. En octobre 2010, des intéressés de divers pays de l'Afrique de l'Ouest se sont réunis à Accra, au Ghana, afin de discuter de la mise en place d'un centre voué à la promotion de l'intégration régionale, de la bonne gouvernance et de la démocratie. Le Mécanisme africain d'évaluation par les pairs (MAEP) est un ...

  2. Size-controlled synthesis of SnO{sub 2} quantum dots and their gas-sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jianping, E-mail: dujp518@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Zhao, Ruihua [Shanxi Kunming Tobacco Limited Liability Company, Taiyuan 030012, Shanxi (China); Xie, Yajuan [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi (China); Li, Jinping, E-mail: jpli211@hotmail.com [Research Institute of Special Chemicals, Taiyuan University of Technology, Shanxi, 030024 (China)

    2015-08-15

    Graphical abstract: The gas-sensing property of quantum dots is related to their sizes. SnO{sub 2} quantum dots (TQDs) were synthesized and the sizes were controlled by a simple strategy. The results show that controlling QDs size is efficient to detect low-concentration hazardous volatile compounds selectively. - Highlights: • SnO{sub 2} quantum dots with controllable size were synthesized by hydrothermal route. • The sizes of SnO{sub 2} quantum dots (TQDs) were controlled by a simple strategy. • The responses to volatile chemicals strongly depend on the size of quantum dots. • Small-size TQDs exhibit a good selectivity and response to triethylamine. • Controlling size is efficient to detect low-concentration toxic gases selectively. - Abstract: Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV–vis and Raman spectrometry. The as-synthesized SnO{sub 2} shows the characteristics of quantum dots and the narrowest size distribution is about 2–3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO{sub 2} quantum dots to detect low

  3. Biodistribution study of carbogenic dots in cells and in vivo for optical imaging

    International Nuclear Information System (INIS)

    Li Nan; Liang Xiaofei; Wang Lili; Li Zonghai; Li Peiyong; Zhu Yihua; Song Jing

    2012-01-01

    Blue fluorescent carbon dots (C-dots) were synthesized and evaluated for their cytotoxicity and also for their optical imaging performance. The results showed that the C-dots could enter into the Hela cells in 15 min incubation and the uptake increased rapidly from 15 min to 2 h. In cytotoxicity study, C-dots were biocompatible and nontoxic to three human cells including two cancer cells (Hela and SMCC-7721) and one normal cell (HEK 293) in concentrations up to 500 μg/mL. Since the endocytic interference factors, including NaN 3 , MβCD, sucrose, and low temperature, could not play an inhibitory effect on C-dots entering into cells, the direct nonendocytic pathway for C-dots was speculated. The C-dots showed encouraging cell-imaging applications in vitro and in vivo. They entered into cells without any further functionalization, and the fluorescence property of these particles can be used for fluorescence-based cell-imaging applications.

  4. ITT - Fonds d'activités du BRA : l'IPS | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cette subvention permettra à l'Institute of Policy Studies (IPS) du Sri Lanka, bénéficiaire de l'Initiative Think Tank, de réaliser des recherches de qualité, axées sur les politiques, sur la migration économique. La recherche sera centrée sur des questions soulevées par la National Human Resources and Employment Policy ...

  5. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging.

    Science.gov (United States)

    Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian

    2014-09-01

    The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications. Copyright © 2014. Published by Elsevier B.V.

  6. The Centre de l'Aube repository. The Public Information Center

    International Nuclear Information System (INIS)

    Fernique, J.C.

    1993-01-01

    The Centre de l'Aube repository, second French final disposal site for low activity short lived wastes, started operating in january 1992. Since the beginning of the Project public reception and information were among ANDRA's main concern. Open to public one year before disposal operations, the Public Information Center received many visitors coming as well from the regional as from national and international origin. The two years experience will be presented as well as the modifications of the information center taking into account ANDRA's evolution. (author)

  7. 3/2 or 5/2 for convective thermal transport?

    International Nuclear Information System (INIS)

    Duechs, D.F.

    1989-07-01

    To resolve frequent arguments on the form of the convective part of the thermal energy flux the relevant definitions and equations are compiled. The relative importance of the different terms involved is shown for Joint European Torus (JET) data. The choice of the ''adiabatic source terms'', p''centre dot''div v- ''->'' or v- ''->centre dot''grad p, decides the form of the convective heat flux. (author)

  8. DOT for patients with limited access to health care facilities in a hill district of eastern Nepal.

    Science.gov (United States)

    Wares, D F; Akhtar, M; Singh, S

    2001-08-01

    The hill district in Nepal, where access to health care facilities is difficult. To compare results before and after a decentralised directly observed treatment (DOT) intervention. Prospective study of patients registered in Dhankuta district, Nepal, 1996-1999. Patients received their intensive phase treatment under health worker supervision via one of three DOT options: 1) ambulatory from the peripheral government health facilities; 2) ambulatory from an international non-governmental organisation (INGO) TB clinic in district centre; or 3) resident in INGO TB hostel in district centre. Historical data from 1995-1996, with unsupervised short-course chemotherapy, were used for comparison. Of 307 new cases, respectively 126 (41%), 86 (28%) and 95 (31%) took their intensive phase treatment via options 1, 2 and 3. Smear conversion (at 2 months) and cure rates in new smear-positive pulmonary tuberculosis cases were respectively 81.6% (vs. 58.8% historical, P = 0.001) and 84.9% (vs. 76.7% historical, P = 0.03). Overall costs to the INGO provider fell by 7%, mainly as a result of staffing reductions in the INGO services made possible by rationalisation with government services during the intervention. By offering varied DOT delivery routes, including an in-patient option, satisfactory results are possible with DOT even in areas where access to health care facilities is difficult. Provision of in-patient care via an INGO TB hostel allowed a significant proportion of new cases (31%) to receive their intensive phase treatment who otherwise may have had difficulty accessing treatment, due either to the distance to the nearest health facility or to disease severity. Substitution of government hospital beds or local hotel beds for the INGO hostel beds may allow the model to be reproduced elsewhere in similar geographical conditions in Nepal, but further studies should be performed in a non-INGO supported district beforehand.

  9. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  10. On the formation of the L-centre in silicon during heat treatment in the temperature range 205-285 deg. C

    International Nuclear Information System (INIS)

    Mikelsen, M; Monakhov, E V; Avset, B S; Svensson, B G

    2006-01-01

    Annealing kinetics of electron-irradiation induced defects in n-type diffusion oxygenated float-zone silicon has been studied in the temperature-range 205-285 deg. C. Previous deep level transient spectroscopy (DLTS) reports have established that an observed shift in the positions of two peaks related to the divacancy (V 2 ), is due to the annealing of the divacancy and the formation of the divacancy-oxygen complex (V 2 O). In parallel to this transformation from V 2 to V 2 O, a new defect of unknown identity, the so-called L-centre, forms with a level located at 0.36 eV below the conduction band edge. The L-level has a first order formation-kinetics in the temperature region studied; at 245-285 deg. C the formation rate is very similar to the annealing rate of V 2 , while at lower temperatures the formation rate becomes lower with a relative difference by a factor two at 205 deg. C. The Arrhenius plot for the L-level formation rate is not a straight line, indicating that the formation is controlled by at least two different processes. Kinetic modelling shows that the experimental data can be reproduced by a sequence of defect dissociation and migration, where the former limits at low temperatures (activation energy ∼1.75 eV) and the latter at high temperatures (E a ∼1.0 eV). Based on these results and other findings, the identity of the L-centre is discussed

  11. T2L2 on JASON-2: First Evaluation of the Flying Model

    Science.gov (United States)

    2007-01-01

    Para, J.-M. Torre R&D Metrology CNRS/GEMINI Observatoire de la Côte d’Azur Caussol, France E-mail: philippe.guillemot@cnes.fr Abstract...Laser Link” experiment T2L2 [1], under development at OCA (Observatoire de la Côte d’Azur) and CNES (Centre National d’Etudes Spatiales), France, will be...Experimental Astronomy, 7, 191-207. [2] P. Fridelance and C. Veillet, 1995, “Operation and data analysis in the LASSO experiment,” Metrologia

  12. Transport through overlapping states in quantum dots and double dot molecules

    International Nuclear Information System (INIS)

    Berkovits, R.

    2006-01-01

    Full Text: We shall review the transport properties of interacting quantum dots with overlapping orbitals for which the orthodox Coulomb blockade picture no longer holds. We shall concentrate on he conductance through a serial double dot structure for which the inter-dot tunneling is stronger than the tunneling to the leads. When the dots are occupied by 1 or 3 electrons the usual Kondo peak is observed. For the case in which 2 electrons occupy the molecule a singlet is formed. Nevertheless, the conductance in that case has a constant non-zero value, and might even be equal to the maximum conductance of 2e 2 /h for certain values of the molecule parameters. We show that this is the result of the subtle interplay between the symmetric and anti-symmetric orbitals of the molecule caused by interactions and interference

  13. Unified storage systems for distributed Tier-2 centres

    International Nuclear Information System (INIS)

    Cowan, G A; Stewart, G A; Elwell, A

    2008-01-01

    The start of data taking at the Large Hadron Collider will herald a new era in data volumes and distributed processing in particle physics. Data volumes of hundreds of Terabytes will be shipped to Tier-2 centres for analysis by the LHC experiments using the Worldwide LHC Computing Grid (WLCG). In many countries Tier-2 centres are distributed between a number of institutes, e.g., the geographically spread Tier-2s of GridPP in the UK. This presents a number of challenges for experiments to utilise these centres efficaciously, as CPU and storage resources may be subdivided and exposed in smaller units than the experiment would ideally want to work with. In addition, unhelpful mismatches between storage and CPU at the individual centres may be seen, which make efficient exploitation of a Tier-2's resources difficult. One method of addressing this is to unify the storage across a distributed Tier-2, presenting the centres' aggregated storage as a single system. This greatly simplifies data management for the VO, which then can access a greater amount of data across the Tier-2. However, such an approach will lead to scenarios where analysis jobs on one site's batch system must access data hosted on another site. We investigate this situation using the Glasgow and Edinburgh clusters, which are part of the ScotGrid distributed Tier-2. In particular we look at how to mitigate the problems associated with 'distant' data access and discuss the security implications of having LAN access protocols traverse the WAN between centres

  14. Association of Affect with Vertical Position in L1 but not in L2 in Unbalanced Bilinguals

    Directory of Open Access Journals (Sweden)

    Degao eLi

    2015-05-01

    Full Text Available After judging the valence of the positive (e.g., happy and the negative words (e.g., sad, the participants’ response to the letter (q or p was faster and slower, respectively, when the letter appeared at the upper end than at the lower end of the screen in Meier & Robinson’ (2004 second experiment. To compare this metaphorical association of affect with vertical position in Chinese-English bilinguals’ first language (L1 and second language (L2 (language, we conducted four experiments in an affective priming task. The targets were one set of positive or negative words (valence, which were shown vertically above or below the centre of the screen (position. The primes, presented at the centre of the screen, were affective words that were semantically related to the targets, affective words that were not semantically related to the targets, affective icon-pictures, and neutral strings in experiment 1, 2, 3, and 4, respectively. In judging the targets’ valence, the participants showed different patterns of interactions between language, valence, and position in reaction times across the experiments. We concluded that metaphorical association between affect and vertical position works in L1 but not in L2 for unbalanced bilinguals.

  15. InAs/GaAs quantum dots for THz generation

    International Nuclear Information System (INIS)

    Daghestani, N.S.; Cataluna, M.A.; Berry, G.; Rose, M.J.; Ross, G.

    2012-01-01

    We report pulsed terahertz generation from InAs/GaAs quantum-dot based photoconductive devices. For 800 nm optical excitation, the dots act as recombination centres for carriers generated in the GaAs layers. Using photoreflective pump-probe measurements we demonstrate that the photogenerated carrier lifetime decreases when a lateral bias is applied. This can be attributed to an increase in the capture area of the dots when under bias. Two types of antenna metallization were investigated; non-Ohmic, and quasi-Ohmic contacts. Non-Ohmic antennae displayed resilience to Joule heating when operated at a field strength of 46 MV/m. The breakdown field of the devices was 48 MV/m, which is comparable to the breakdown field of bulk GaAs (∝50 MV/m). The maximum estimated infrared-to-THz conversion efficiency is ∝1x10 -5 . (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Combination of short-length TiO{sub 2} nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengguo [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shi, Chengwu, E-mail: shicw506@foxmail.com [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Junjun; Xiao, Guannan; Li, Long [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2017-07-15

    Graphical abstract: The TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm{sup −2} was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO{sub 2} nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO{sub 2} nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO{sub 2} nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm{sup −2} is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO{sub 2} nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion

  17. Determination of sparfloxacin with CdSe/CdS quantum dots as fluorescent probes

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Ming, E-mail: gxglzws@foxmail.com; Yan, Xiaoya; Xiong, Ling

    2015-01-15

    Water-soluble CdSe/CdS quantum dots (QDs) modified with thioglycolic acid (TGA) were synthesized. A novel method for determination of sparfloxacin (SPFX) has been developed based on quenching of the fluorescence of QDs at 556 nm wavelength. The optimum fluorescence intensity was found in 0.067 mol L{sup −1} KH{sub 2}PO{sub 4}–Na{sub 2}HPO{sub 4} buffer solution at pH 6.47 of 3.0×10{sup −5} mol L{sup −1} QDs. When the concentration of quantum dots is 3.0×10{sup −5} mol L{sup −1} the fluorescence quenching intensity of QDs is linearly proportional to the concentration of SPFX from 0.5 μg mL{sup −1} to 30 μg mL{sup −1}, with correlation coefficient R=0.9983. The detection limit for SPFX was 0.1391 μg mL{sup −1}. The method was used for determination of SPFX in tablets, and the results agreed with the claimed value. Trace amounts of SPFX in milk were also determined with the recovery of 95.3–106.8%. - Highlights: • Water-soluble CdSe/CdS quantum dots modified with thioglycolic acid were synthesized. • Determination of sparfloxacin was based on quenching of the fluorescence of QDs. • The detection limit for sparfloxacin was 0.1391 μg mL{sup −1}. • The method has been used successfully to determine SPFX in tablets and milk.

  18. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  19. Sandwich-dot enzyme-linked immunosorbent assay for the detection of canine distemper virus

    Science.gov (United States)

    Li, Zhi; Zhang, Yanlong; Wang, Huiguo; Jin, Jinhua; Li, Wenzhe

    2013-01-01

    A sandwich-dot enzyme-linked immunosorbent assay (dot ELISA) was developed for the detection of canine distemper virus (CDV). In 56 dogs suspected to have CD the rates of detection of CDV antigen in samples of blood lymphocytes and palpebral conjunctiva by dot ELISA and ELISA were, respectively, 91% (49/54) and 81% (44/54) for the lymphocyte samples and 88% (28/32) and 75% (24/32) for the conjunctival samples. The CDV detection limits were 10 ng/50 μL for dot ELISA and 40 ng/50 μL for ELISA. The reliability of dot ELISA relative to electron microscopy was 96% with 22 samples: all 21 samples in which CDV particles were observed by electron microscopy yielded positive results with dot ELISA; the single sample in which particles were not observed yielded false-positive results with dot ELISA. The results indicate that the dot ELISA developed can serve as a reliable rapid diagnostic test in suspected cases of CD and also be useful for epidemiologic surveillance of the disease. PMID:24124274

  20. The energy outlook in China-Minutes from the seminar organised by the Centre Geopolitique de l'Energie et des Matieres Premieres

    International Nuclear Information System (INIS)

    Keppler, J.H.; Meritet, S.

    2004-01-01

    As part of the seminars that are organised on a regular basis, the Centre de Geopolitique de l'Energie et des Matieres Premieres has devoted, on the 2. of June, a day to China, its energetics outlook and the resulting economic and geopolitical challenges. (authors)

  1. An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol

    International Nuclear Information System (INIS)

    Hao, Tongfan; Wei, Xiao; Nie, Yijing; Zhou, Zhiping; Xu, Yeqing; Yan, Yongsheng

    2016-01-01

    We on report an eco-friendly molecularly imprinted material based on carbon dots (C-dots) via a facile and efficient sol–gel polymerization for selective fluorescence detection of 4-nitrophenol (4-NP). The amino-modified C-dots were firstly synthesized by a hydrothermal process using citric acid as the carbon source and poly(ethyleneimine) as the surface modifier, and then after a sol–gel molecular imprinting process, the molecularly imprinted fluorescence material was obtained. The material (MIP-C-dots) showed strong fluorescence from C-dots and high selectivity due to the presence of a molecular imprint. After the detection conditions were optimized, the relative fluorescence intensity (F_0/F) of MIP-C-dots presented a good linearity with 4-NP concentrations in the linear range of 0.2 − 50 μmol L"-"1 with a detection limit (3σ/k) of 0.06 μmol L"-"1. In addition, the correlation coefficient was 0.9978 and the imprinting factor was 2.76. The method was applicable to the determination of trace 4-NP in Yangtze River water samples and good recoveries from 92.6–107.3 % were obtained. The present study provides a general strategy to fabricate materials based on C-dots with good fluorescence property for selective fluorescence detection of organic pollutants. (author)

  2. Comparative investigation of toxicity and bioaccumulation of Cd-based quantum dots and Cd salt in freshwater plant Lemna minor L.

    Science.gov (United States)

    Modlitbová, Pavlína; Novotný, Karel; Pořízka, Pavel; Klus, Jakub; Lubal, Přemysl; Zlámalová-Gargošová, Helena; Kaiser, Jozef

    2018-01-01

    The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl 2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50 168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl 2 . However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd 2+ ions dissolved from Cd-based QDs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor.

    Science.gov (United States)

    Gao, Xue; Tang, Guangchao; Su, Xingguang

    2012-01-01

    In this paper, we report a sensitive and selective method for detection of organophosphorus compounds (OPs) based on Mn:ZnSe d-dots-enzyme-hydrogen peroxide (H(2)O(2)) fluorescence quenching system. Acetylcholine esterase (AChE) can hydrolyze acetylcholine (ACh) to choline. Subsequently, choline oxidase (ChOx) oxidizes choline to generate H(2)O(2). The enzyme-generated H(2)O(2) can quench the fluorescence of Mn:ZnSe d-dots. When paraoxon are introduced in solution, it can interact with the active centers of AChE and decrease the enzyme activity. This leads to the decrease of the H(2)O(2) production and then the fluorescence quenching rate of Mn:ZnSe d-dots. Experimental results showed that the enzyme inhibition percentage of Mn:ZnSe d-dots-ChOx-AChE-ACh system was proportional to the logarithm of paraoxon in the range 4.84×10(-11) to 4.84×10(-6) mol/L with the detection limit (S/N=3) of 1.31×10(-11) mol/L. The proposed biosensor has been employed for quick determination of paraoxon in tap water and milk samples with satisfactory reproducibility and accuracy. This nano-biosensor was proved to be sensitive, rapid, simple and tolerance of most interfering substances. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. A simple and sensitive method for L-cysteine detection based on the fluorescence intensity increment of quantum dots

    International Nuclear Information System (INIS)

    Huang Shan; Xiao Qi; Li Ran; Guan Hongliang; Liu Jing; Liu Xiaorong; He Zhike; Liu Yi

    2009-01-01

    In this contribution, a simple and sensitive method for L-cysteine detection was established based on the increment of the fluorescence intensity of mercaptoacetic acid-capped CdSe/ZnS quantum dots (QDs) in aqueous solution. Meanwhile, the fluorescence characteristics and the optimal conditions were investigated in detail. Under the optimized conditions, the linear range of QDs fluorescence intensity versus the concentration of L-cysteine was 10-800 nmol L -1 , with a correlation coefficient (R) of 0.9969 and a limit of detection (3σ black) of 3.8 nmol L -1 . The relative standard deviation (R.S.D.) for 0.5 μmol L -1 L-cysteine was 1.1% (n = 5). There was no interference to coexisting foreign substances including common ions, carbohydrates, nucleotide acids and other 19 amino acids. The proposed method possessed the advantages of simplicity, rapidity and sensitivity. Synthetic amino acid samples, medicine sample together with human urine samples were analyzed by the methodology and the results were satisfying.

  5. F-centre luminescence in nanocrystalline CeO2

    International Nuclear Information System (INIS)

    Aškrabić, S; Dohčević-Mitrović, Z D; Araújo, V D; Ionita, G; De Lima, M M Jr; Cantarero, A

    2013-01-01

    Nanocrystalline CeO 2 powders were synthesized by two cost-effective methods: the self-propagating room temperature (SPRT) method and the precipitation method. Differently prepared samples exhibited different temperature-dependent photoluminescence (PL) in the ultraviolet and visible regions. The PL signals originated from different kinds of oxygen-deficient defect centres with or without trapped electrons (F 0 , F + or F ++ centres). The temperature-dependent PL spectra were measured using different excitation lines, below (457, 488 and 514 nm) or comparable (325 nm) to the ceria optical band gap energy, in order to investigate the positions of intragap localized defect states. Evidence for the presence of F + centres was supported by the signals observed in electron paramagnetic resonance (EPR) measurements. Based on PL and EPR measurements it was shown that F + centres dominate in the CeO 2 sample synthesized by the SPRT method, whereas F 0 centres are the major defects in the CeO 2 sample synthesized by the precipitation method. The luminescence from F ++ states, as shallow trap states, was registered in both samples. Energy level positions of these defect states in the ceria band gap were proposed. (paper)

  6. F-centre luminescence in nanocrystalline CeO2

    Science.gov (United States)

    Aškrabić, S.; Dohčević-Mitrović, Z. D.; Araújo, V. D.; Ionita, G.; de Lima, M. M., Jr.; Cantarero, A.

    2013-12-01

    Nanocrystalline CeO2 powders were synthesized by two cost-effective methods: the self-propagating room temperature (SPRT) method and the precipitation method. Differently prepared samples exhibited different temperature-dependent photoluminescence (PL) in the ultraviolet and visible regions. The PL signals originated from different kinds of oxygen-deficient defect centres with or without trapped electrons (F0, F+ or F++ centres). The temperature-dependent PL spectra were measured using different excitation lines, below (457, 488 and 514 nm) or comparable (325 nm) to the ceria optical band gap energy, in order to investigate the positions of intragap localized defect states. Evidence for the presence of F+ centres was supported by the signals observed in electron paramagnetic resonance (EPR) measurements. Based on PL and EPR measurements it was shown that F+ centres dominate in the CeO2 sample synthesized by the SPRT method, whereas F0 centres are the major defects in the CeO2 sample synthesized by the precipitation method. The luminescence from F++ states, as shallow trap states, was registered in both samples. Energy level positions of these defect states in the ceria band gap were proposed.

  7. Production of graphene quantum dots by ultrasound-assisted exfoliation in supercritical CO2/H2O medium.

    Science.gov (United States)

    Gao, Hanyang; Xue, Chen; Hu, Guoxin; Zhu, Kunxu

    2017-07-01

    In this research, three kinds of graphene quantum dots (GQDs)-pristine graphene quantum dots (PGQDs), expanded graphene quantum dots (EGQDs) and graphene oxide quantum dots (GOQDs)-were produced from natural graphite, expanded graphite, and oxide graphite respectively in an ultrasound-assisted supercritical CO 2 (scCO 2 )/H 2 O system. The effects of aqueous solution content ratio, system pressure, and ultrasonic power on the yields of different kinds of GQDs were investigated. According to these experiment results, the combination of the intense knocking force generated from high-pressure acoustic cavitation in a scCO 2 /H 2 O system and the superior penetration ability of scCO 2 was considered to be the key to the successful exfoliation of such tiny pieces from bulk graphite. An interesting result was found that, contrary to common experience, the yield of PGQDs from natural graphite was much higher than that of GOQDs from graphite oxide. Based on the experimental analysis, the larger interlayer resistance of natural graphite, which hindered the insertion of scCO 2 molecules, and the hydrophobic property of natural graphite surface, which made the planar more susceptible to the attack of ultrasonic collapsing bubbles, were deduced to be the two main reasons for this result. The differences in characteristics among the three kinds of GQDs were also studied and compared in this research. In our opinion, this low-cost and time-saving method may provide an alternative green route for the production of various kinds of GQDs, especially PGQDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optical and structural properties of carbon dots/TiO2 nanostructures prepared via DC arc discharge in liquid

    Science.gov (United States)

    Biazar, Nooshin; Poursalehi, Reza; Delavari, Hamid

    2018-01-01

    Synthesis and development of visible active catalysts is an important issue in photocatalytic applications of nanomaterials. TiO2 nanostructures coupled with carbon dots demonstrate a considerable photocatalytic activity in visible wavelengths. Extending optical absorption of a wide band gap semiconductor such as TiO2 with carbon dots is the origin of the visible activity of carbon dots modified semiconductor nanostructures. In addition, carbon dots exhibit high photostability, appropriate electron transport and chemical stability without considerable toxicity or environmental footprints. In this study, optical and structural properties of carbon dots/TiO2 nanostructures prepared via (direct current) DC arc discharge in liquid were investigated. Crystal structure, morphology and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. SEM images show formation of spherical nanoparticles with an average size of 27 nm. In comparison with pristine TiO2, optical transmission spectrum of carbon dots/TiO2 nanostructures demonstrates an absorption edge at longer wavelengths as well a high optical absorption in visible wavelengths which is significant for visible activity of nanostructures as a photocatalyst. Finally, these results can provide a flexible and versatile pathway for synthesis of carbon dots/oxide semiconductor nanostructures with an appropriate activity under visible light.

  9. Vectorization of DOT3.5 code

    International Nuclear Information System (INIS)

    Nonomiya, Iwao; Ishiguro, Misako; Tsutsui, Tsuneo

    1990-07-01

    In this report, we describe the vectorization of two-dimensional Sn-method radiation transport code DOT3.5. Vectorized codes are not only the NEA original version developed at ORNL but also the versions improved by JAERI: DOT3.5 FNS version for fusion neutronics analyses, DOT3.5 FER version for fusion reactor design, and ESPRIT module of RADHEAT-V4 code system for radiation shielding and radiation transport analyses. In DOT3.5, input/output processing time amounts to a great part of the elapsed time when a large number of energy groups and/or a large number of spatial mesh points are used in the calculated problem. Therefore, an improvement has been made for the speedup of input/output processing in the DOT3.5 FNS version, and DOT-DD (Double Differential cross section) code. The total speedup ratio of vectorized version to the original scalar one is 1.7∼1.9 for DOT3.5 NEA version, 2.22.3 fro DOT3.5 FNS version, 1.7 for DOT3.5 FER version, and 3.1∼4.4 for RADHEAT-V4, respectively. The elapsed times for improved DOT3.5 FNS version and DOT-DD are reduced to 50∼65% that of the original version by the input/output speedup. In this report, we describe summary of codes, the techniques used for the vectorization and input/output speedup, verification of computed results, and speedup effect. (author)

  10. Linear and nonlinear intraband optical properties of ZnO quantum dots embedded in SiO2 matrix

    Directory of Open Access Journals (Sweden)

    Deepti Maikhuri

    2012-03-01

    Full Text Available In this work we investigate some optical properties of semiconductor ZnO spherical quantum dot embedded in an amorphous SiO2 dielectric matrix. Using the framework of effective mass approximation, we have studied intraband S-P, and P-D transitions in a singly charged spherical ZnO quantum dot. The optical properties are investigated in terms of the linear and nonlinear photoabsorption coefficient, the change in refractive index, and the third order nonlinear susceptibility and oscillator strengths. Using the parabolic confinement potential of electron in the dot these parameters are studied with the variation of the dot size, and the energy and intensity of incident radiation. The photoionization cross sections are also obtained for the different dot radii from the initial ground state of the dot. It is found that dot size, confinement potential, and incident radiation intensity affects intraband optical properties of the dot significantly.

  11. Quantum Dot Sensitized Solar Cells Based on TiO2/AgInS2

    Science.gov (United States)

    Pawar, Sachin A.; Jeong, Jae Pil; Patil, Dipali S.; More, Vivek M.; Lee, Rochelle S.; Shin, Jae Cheol; Choi, Won Jun

    2018-05-01

    Quantum dot heterojunctions with type-II band alignment can efficiently separate photogenerated electron-hole pairs and, hence, are useful for solar cell studies. In this study, a quantum dot sensitized solar cell (QDSSC) made of TiO2/AgInS2 is achieved to boost the photoconversion efficiency for the TiO2-based system by varying the AgInS2 layer's thickness. The TiO2 nanorods array film is prepared by using a simple hydrothermal technique. The formation of a AgInS2 QD-sensitized TiO2-nanorod photoelectrode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The effect of the QD layer on the performance of the solar cell is studied by varying the SILAR cycles of the QD coating. The synthesized electrode materials are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy and solar cell performances. The results indicate that the nanocrystals have effectively covered the outer surfaces of the TiO2 nanorods. The interfacial structure of quantum dots (QDs)/TiO2 is also investigated, and the growth interface is verified. A careful comparison between TiO2/AgInS2 sensitized cells reveals that the trasfer of electrons and hole proceeds efficiently, the recombination is suppressed for the optimum thickness of the QD layer and light from the entire visible spectrum is utilised. Under AM 1.5G illumination, a high photocurrent of 1.36 mAcm-2 with an improved power conversion efficiency of 0.48% is obtained. The solar cell properties of our photoanodes suggest that the TiO2 nanorod array films co-sensitized by AgInS2 nanoclusters have potential applications in solar cells.

  12. Cold white light generation through the simultaneous emission from Ce{sup 3+}, Dy{sup 3+} and Mn{sup 2+} in 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, W. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Alvarez, E. [Departamento de Fisica, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000 (Mexico); Martinez-Martinez, R.; Yescas-Mendoza, E. [Instituto de Fisica y Matematicas, Universidad Tecnologica de la Mixteca, Carretera a Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca 69000 (Mexico); Camarillo, I. [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico); Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, Mexico, D.F. 09340 (Mexico)

    2012-08-15

    The photoluminescence of a CeCl{sub 3}, DyCl{sub 3} and MnCl{sub 2} doped aluminum oxide film deposited by ultrasonic spray pyrolysis was characterized by excitation, emission and decay time spectroscopy. A nonradiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} is observed upon UV excitation at 278 nm (peak emission wavelength of AlGaN-based LEDs). Such energy transfer leads to a simultaneous emission of these ions in the blue, green, yellow and red regions, resulting in white light emission with CIE1931 chromaticity coordinates, x=0.34 and y=0.23, which correspond to cold white light with a color temperature of 4900 K. - Highlights: Black-Right-Pointing-Pointer 90Al{sub 2}O{sub 3}{center_dot}2CeCl{sub 3}{center_dot}3DyCl{sub 3}{center_dot}5MnCl{sub 2} thin film (AOCDM) could be prepared by spray pyrolysis. Black-Right-Pointing-Pointer Non-radiative energy transfer from Ce{sup 3+} to Dy{sup 3+} and Mn{sup 2+} takes place in AOCDM. Black-Right-Pointing-Pointer AOCDM (pumped with 278 nm-UV light) can generate 4900 K cold white light.

  13. Synthesis of Bi_2S_3 quantum dots for sensitized solar cells by reverse SILAR

    International Nuclear Information System (INIS)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-01-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi_2S_3) (group V – Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7 eV.

  14. Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR

    Science.gov (United States)

    Singh, Navjot; Sharma, J.; Tripathi, S. K.

    2016-05-01

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.

  15. Radioluminescence properties of the CdSe/ZnS Quantum Dot nanocrystals with analysis of long-memory trends

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Valais, I.; Michail, C.; Bakas, A.; Fountzoula, C.; Cantzos, D.; Bhattacharyya, D.; Sianoudis, I.; Fountos, G.; Yannakopoulos, P.; Panayiotakis, G.; Kandarakis, I.

    2016-01-01

    This paper reports radioluminescence properties of the CdSe/ZnS quantum dots. Three quantum dot samples were prepared with concentrations 14.2 × 10"−"5 mg/mL, 21.3 × 10"−"5 mg/mL and 28.5 × 10"−"5 mg/mL, respectively. The ultraviolet induced emission spectra of CdSe/ZnS dots exhibited a peak at 550 nm ranging between 450 nm and 650 nm. Discrepancies observed between 250 nm and 450 nm were attributed to the solvent and cuvette. The absolute efficiency calculated from random fractional-Gaussian luminescence segments varied. Long-memory fractional-Brownian segments were also found. The quantum dot solution with concentration of 21.3 × 10"−"5 mg/mL exhibited the maximum absolute efficiency value at 90 kVp. The CdSe/ZnS dots have demonstrated potential for detection of X-rays in the medical imaging energy range. - Highlights: • Luminescence properties of CdSe/ZnS QDs under UV and X-ray irradiation. • Detrended fluctuation analysis used to identify long-memory trends in the signal. • QDs of high concentrations exhibited high absolute efficiency up to 80 kVp. • CdSe/ZnS showed potential for detection of X-rays in the medical imaging energies.

  16. Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine.

    Science.gov (United States)

    Wang, Lei; Tricard, Simon; Yue, Pengwei; Zhao, Jihua; Fang, Jian; Shen, Weiguo

    2016-03-15

    A novel polypyrrole (PPy) and graphene quantum dots (GQDs) @ Prussian Blue (PB) nanocomposite has been grafted on a graphite felt (GF) substrate (PPy/GQDs@PB/GF), and has been proven to be an efficient electrochemical sensor for the determination of l-cysteine (l-cys). GQDs, which were fabricated by carbonization of citric acid and adsorbed on GF surface ultrasonically, played an important role for promoting the synthesis process of PB via a spontaneous redox reaction between Fe(3+) and [Fe(CN)6](3-). The PPy film has been electro-polymerized to improve the electrochemical stability of the PPy/GQDs@PB/GF electrode. The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and electrochemical methods. It exhibited an excellent activity for the electrocatalytic oxidation of l-cys, with a detection sensitivity equal to 0.41 Amol(-1) L for a concentration range of 0.2-50 μmolL(-1), and equal to 0.15 Amol(-1) L for a concentration range of 50-1000 μmolL(-1). A low detection limit of 0.15 μmolL(-1), as well as a remarkable long-time stability and a negligible sensitivity to interfering analytes, were also ascertained. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Science.gov (United States)

    Shan, Qingsong; Li, Kuiying; Xue, Zhenjie; Lin, Yingying; Yin, Hua; Zhu, Ruiping

    2016-02-01

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core-shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core-shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core-shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10-8 to 2 × 10-3 s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space-charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  18. Fluorescent carbon dots: facile synthesis at room temperature and its application for Fe{sup 2+} sensing

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Sai Jin; Chu, Zhao Jun; Zuo, Jun; Zhao, Xiao Jing; Huang, Cheng Zhi [East China University of Technology, Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation (China); Zhang, Li, E-mail: zhangli8@ncu.edu.cn [Nanchang University, College of Chemistry (China)

    2017-02-15

    A new route for one-pot preparation of carbon dots (CDs) was developed at room temperature using PEG400 as both the carbon source and passitive agent. The new method possesses the advantages of facile, rapid, energy-saving, without any external stimulus and environment friendly. By changing the content of NaOH, the PEG400-CDs with blue-emitting, yellow-emitting, orange red-emitting and red-emitting were obtained, and the formation mechanism were carefully investigated. In addition, a sensitive fluorescence sensor were developed for Fe{sup 2+} detection based on PEG400-CDs since the fluorescence of PEG400-CDs could be enhanced by Fe{sup 2+}. It was found that there is a good linear relationship between the enhanced fluorescence and Fe{sup 2+} concentration in the range of 0.5 to 2.0 μmol·L{sup −1} with the detection limit of 6.0 × 10{sup −8} mol·L{sup −1}, and Fe{sup 2+} in water samples was also determined with high accuracy and repeatability.

  19. La cessió de sòl públic dotacional per a l'obertura de centres docents concertats: una nova manifestació de l'Estat garant

    Directory of Open Access Journals (Sweden)

    Juan José Guardia Hernández

    2015-12-01

    Full Text Available L'última reforma de la Llei orgànica d'educació acull una nova fórmula de suport a l'ensenyament privat sostingut amb fons públics a Espanya: la cessió de sòl públic per a la construcció i gestió de centres docents concertats. Aquesta operació sembla respondre a diverses tendències. En primer lloc, a la redistribució de tasques entre Estat i societat, per a una major racionalització del sector públic. En segon lloc, a una major tutela de la llibertat d'ensenyament reconegut a l'article 27 de la CE. Amb tot, aquesta evolució des de l'Estat prestacional a l'Estat garant requereix observar certes cauteles derivades de la naturalesa jurídica dels concerts escolars, en especial la igualtat de tracte en l'accés a aquests.

  20. Fabrication of blue luminescent MoS{sub 2} quantum dots by wet grinding assisted co-solvent sonication

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Junaid; Siddiqui, Ghayas Uddin [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Choi, Kyung Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju (Korea, Republic of); Jang, Yunseok [Department of Printed Electronics, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea (Korea, Republic of); Lee, Kangtaek [Department of Chemical and Biomolecular Engineering, Yonsei University (Korea, Republic of)

    2016-01-15

    Molybdenum disulfide (MoS{sub 2}) belongs to transition-metal dichalcogenides (TMDs) family and has vital position among 2D materials. Here, an efficient strategy for the synthesis of zero-dimensional MoS{sub 2} quantum dots (QDs) has been represented. This strategy consists of wet grinding of pristine MoS{sub 2} in N-methyl-2-pyrrolidone (NMP) followed by sonication in NMP and 1,2-dichlorobenzene (o-DCB). The efficacy of this approach to synthesize MoS{sub 2} QDs has been reported by analyzing the as synthesized MoS{sub 2} QDs by different characterization techniques such as high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectroscopy. The concentration (yield) of as synthesized MoS{sub 2} QDs was found to be 7 mg mL{sup −1}. Most of the MoS{sub 2} QDs were measured around 2–5 nm in size. The as synthesized MoS{sub 2} QDs showed distinct blue luminescence upon UV excitation. - Highlights: • Synthesis of MoS{sub 2} quantum dots. • Wet grinding of MoS{sub 2} flakes for 6 h in NMP. • Ultrasonication of MoS{sub 2} in NMP and DCB. • Particle size 2–5 nm and concentration 7 mg/ml. • MoS{sub 2} QDs showed blue luminescence.

  1. Thermodynamics of {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) from T=278.15 K to T=318.15 K, and representation with an extended ion-interaction (Pitzer) model

    Energy Technology Data Exchange (ETDEWEB)

    Rard, Joseph A. E-mail: rard1@llnl.gov; Clegg, Simon L.; Platford, Robert

    2003-06-01

    In 1968, R.F. Platford reported the results from extensive isopiestic vapor-pressure measurements for the {l_brace}zNaCl+(1-z)Na{sub 2}SO{sub 4}{r_brace}(aq) system at T=298.15 K, using NaCl(aq) as the isopiestic reference standard [R.F. Platford, J. Chem. Eng. Data 13 (1968) 46-48]. However, only derived quantities were reported, and the experimental isopiestic equilibrium molalities were not given. The complete set of original isopiestic molalities from that study is tabulated in the present report. In addition, published thermodynamic information for this system is reviewed and the isopiestic equilibrium molalities, electromotive force measurements for five different types of electrochemical cells, and enthalpies of mixing from these other studies are critically assessed and recalculated consistently. These combined results are used to evaluate at T=298.15 K the two mixing parameters of Pitzer's ion-interaction model, {sup S}{theta}(Cl,SO{sub 4})=(1.236{+-}0.032{sub 5}){center_dot}10{sup -2} kg{center_dot}mol{sup -1} and {psi}(Na,Cl,SO{sub 4})=(1.808{+-}0.086){center_dot}10{sup -3} kg{sup 2}{center_dot}mol{sup -2}, and their temperature derivatives {l_brace}{partial_derivative}{sup S}{theta}(Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=(2.474{+-}0.460){center_dot}10{sup -5} kg{center_dot}mol{sup -1}{center_dot}K{sup -1} and {l_brace}{partial_derivative}{psi}(Na,Cl,SO{sub 4})/{partial_derivative}T{r_brace}{sub p}=-(6.228{+-}0.186){center_dot}10{sup -5} kg{sup 2}{center_dot}mol{sup -2}{center_dot}K{sup -1}. Also reported are parameters for an extended ion-interaction model for Na{sub 2}SO{sub 4}(aq), valid from T=(273.15 to 323.15) K, that were required for this mixed electrolyte solution analysis.

  2. Création d'une académie nationale des télécentres aux Philippines ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ces dernières années, le mouvement des télécentres a pris de l'ampleur ... constituera un réseau de mentors, mènera des activités de marketing social et de ... efficaces jouent un rôle de premier plan dans le développement des pays du Sud.

  3. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng; Choi, Joshua J.; Stachnik, David; Bartnik, Adam C.; Hyun, Byung-Ryool; Malliaras, George G.; Hanrath, Tobias; Wise, Frank W.

    2012-01-01

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr '1 m '2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  4. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control.

    Science.gov (United States)

    Sun, Liangfeng; Choi, Joshua J; Stachnik, David; Bartnik, Adam C; Hyun, Byung-Ryool; Malliaras, George G; Hanrath, Tobias; Wise, Frank W

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr(-1) m(-2)) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH(2) groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.

  5. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control

    KAUST Repository

    Sun, Liangfeng

    2012-05-06

    Infrared light-emitting diodes are currently fabricated from direct-gap semiconductors using epitaxy, which makes them expensive and difficult to integrate with other materials. Light-emitting diodes based on colloidal semiconductor quantum dots, on the other hand, can be solution-processed at low cost, and can be directly integrated with silicon. However, so far, exciton dissociation and recombination have not been well controlled in these devices, and this has limited their performance. Here, by tuning the distance between adjacent PbS quantum dots, we fabricate thin-film quantum-dot light-emitting diodes that operate at infrared wavelengths with radiances (6.4 W sr \\'1 m \\'2) eight times higher and external quantum efficiencies (2.0%) two times higher than the highest values previously reported. The distance between adjacent dots is tuned over a range of 1.3 nm by varying the lengths of the linker molecules from three to eight CH 2 groups, which allows us to achieve the optimum balance between charge injection and radiative exciton recombination. The electroluminescent powers of the best devices are comparable to those produced by commercial InGaAsP light-emitting diodes. By varying the size of the quantum dots, we can tune the emission wavelengths between 800 and 1,850 nm.© 2012 Macmillan Publishers Limited.

  6. Gate-stack engineering for self-organized Ge-dot/SiO2/SiGe-shell MOS capacitors

    Directory of Open Access Journals (Sweden)

    Wei-Ting eLai

    2016-02-01

    Full Text Available We report the first-of-its-kind, self-organized gate-stack heterostructure of Ge-dot/SiO2/SiGe-shell on Si fabricated in a single step through the selective oxidation of a SiGe nano-patterned pillar over a Si3N4 buffer layer on a Si substrate. Process-controlled tunability of the Ge-dot size (7.5−90 nm, the SiO2 thickness (3−4 nm, and as well the SiGe-shell thickness (2−15 nm has been demonstrated, enabling a practically-achievable core building block for Ge-based metal-oxide-semiconductor (MOS devices. Detailed morphologies, structural, and electrical interfacial properties of the SiO2/Ge-dot and SiO2/SiGe interfaces were assessed using transmission electron microscopy, energy dispersive x-ray spectroscopy, and temperature-dependent high/low-frequency capacitance-voltage measurements. Notably, NiGe/SiO2/SiGe and Al/SiO2/Ge-dot/SiO2/SiGe MOS capacitors exhibit low interface trap densities of as low as 3-5x10^11 cm^-2·eV^-1 and fixed charge densities of 1-5x10^11 cm^-2, suggesting good-quality SiO2/SiGe-shell and SiO2/Ge-dot interfaces. In addition, the advantage of having single-crystalline Si1-xGex shell (x > 0.5 in a compressive stress state in our self-aligned gate-stack heterostructure has great promise for possible SiGe (or Ge MOS nanoelectronic and nanophotonic applications.

  7. The L2b real-time PCR targeting the pmpH gene of Chlamydia trachomatis used for the diagnosis of lymphogranuloma venereum is not specific to L2b strains.

    Science.gov (United States)

    Touati, A; Peuchant, O; Hénin, N; Bébéar, C; de Barbeyrac, B

    2016-06-01

    The French Reference Centre for chlamydiae uses two real-time PCRs targeting the pmpH gene of Chlamydia trachomatis to differentiate between L strains and variant L2b, responsible for a lymphogranuloma venereum outbreak in Europe. We compared the results obtained for 122 L2b C. trachomatis-positive specimens, using the two real-time PCRs, with the sequencing of the ompA gene. Only 91 specimens were confirmed as L2b. Our results demonstrate that the lymphogranuloma venereum outbreak is no longer dominated by the variant L2b, and that many L-positive specimens were misidentified as L2b with the method used, which raises the question of its specificity. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Plasmon-resonance-enhanced visible-light photocatalytic activity of Ag quantum dots/TiO2 microspheres for methyl orange degradation

    Science.gov (United States)

    Yu, Xin; Shang, Liwei; Wang, Dongjun; An, Li; Li, Zhonghua; Liu, Jiawen; Shen, Jun

    2018-06-01

    We successfully prepared Ag quantum dots modified TiO2 microspheres by facile solvothermal and calcination method. The as-prepared Ag quantum dots/TiO2 microspheres were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The Ag quantum dots/TiO2 photocatalyst showed excellent visible light absorption and efficient photocatalytic activity for methyl orange degradation. And the sample with the molar ratio of 0.05 (Ag to Ti) showed the best visible light photocatalytic activity for methyl orange degradation, mainly because of the surface plasmon resonance (SPR) effects of Ag quantum dots to generate electron and hole pairs for enhanced visible light photocatalysis. Finally, possible visible light photocatalytic mechanism of Ag quantum dots/TiO2 microspheres for methyl orange degradation was proposed in detail.

  9. Perceptual strategies of pigeons to detect a rotational centre--a hint for star compass learning?

    Directory of Open Access Journals (Sweden)

    Bianca Alert

    Full Text Available Birds can rely on a variety of cues for orientation during migration and homing. Celestial rotation provides the key information for the development of a functioning star and/or sun compass. This celestial compass seems to be the primary reference for calibrating the other orientation systems including the magnetic compass. Thus, detection of the celestial rotational axis is crucial for bird orientation. Here, we use operant conditioning to demonstrate that homing pigeons can principally learn to detect a rotational centre in a rotating dot pattern and we examine their behavioural response strategies in a series of experiments. Initially, most pigeons applied a strategy based on local stimulus information such as movement characteristics of single dots. One pigeon seemed to immediately ignore eccentric stationary dots. After special training, all pigeons could shift their attention to more global cues, which implies that pigeons can learn the concept of a rotational axis. In our experiments, the ability to precisely locate the rotational centre was strongly dependent on the rotational velocity of the dot pattern and it crashed at velocities that were still much faster than natural celestial rotation. We therefore suggest that the axis of the very slow, natural, celestial rotation could be perceived by birds through the movement itself, but that a time-delayed pattern comparison should also be considered as a very likely alternative strategy.

  10. Efficiency enhancement of solid-state PbS quantum dot-sensitized solar cells with Al2O3 barrier layer

    KAUST Repository

    Brennan, Thomas P.; Trejo, Orlando; Roelofs, Katherine E.; Xu, John; Prinz, Fritz B.; Bent, Stacey F.

    2013-01-01

    Atomic layer deposition (ALD) was used to grow both PbS quantum dots and Al2O3 barrier layers in a solid-state quantum dot-sensitized solar cell (QDSSC). Barrier layers grown prior to quantum dots resulted in a near-doubling of device efficiency (0.30% to 0.57%) whereas barrier layers grown after quantum dots did not improve efficiency, indicating the importance of quantum dots in recombination processes. © 2013 The Royal Society of Chemistry.

  11. Size-controlled synthesis of SnO2 quantum dots and their gas-sensing performance

    Science.gov (United States)

    Du, Jianping; Zhao, Ruihua; Xie, Yajuan; Li, Jinping

    2015-08-01

    Tin dioxide quantum dots (TQDs) with controllable size were synthesized by changing the amount of alkaline reagent in the hydrothermal process. The gas-sensing properties were investigated by operating chemoresistor type sensor. The morphology and structure were characterized by X-ray diffraction, scanning/transmission electron microscopy, UV-vis and Raman spectrometry. The as-synthesized SnO2 shows the characteristics of quantum dots and the narrowest size distribution is about 2-3 nm. The gas-sensing results indicate that the responses are strongly dependent on the size of quantum dots. TQDs with different sizes exhibit different sensitivities and selectivities to volatile toxic chemicals such as aldehyde, acetone, methanol, ethanol and amine. Especially, when the sensors are exposed to 100 ppm triethylamine (TEA), the sensing response value of TQDs with small size is two times higher than that of the large-size TQDs. The maximum response values of TQDs to 1 ppm and 100 ppm TEA are 15 and 153, respectively. The response time is 1 s and the recovery time is 47 s upon exposure to 1 ppm TEA. The results suggest that it is an effective method by regulating the size of SnO2 quantum dots to detect low-concentration hazardous volatile compounds.

  12. Reassessing the role of DotF in the Legionella pneumophila type IV secretion system.

    Directory of Open Access Journals (Sweden)

    Molly C Sutherland

    Full Text Available Legionella pneumophila, the causative agent of a severe pneumonia termed Legionnaires' Disease, survives and replicates within both protozoan hosts and human alveolar macrophages. Intracellular survival is dependent upon secretion of a plethora of protein effectors that function to form a replicative vacuole, evade the endocytic pathway and subvert host immune defenses. Export of these factors requires a type IV secretion system (T4SS called Dot/Icm that is composed of twenty-seven proteins. This report focuses on the DotF protein, which was previously postulated to have several different functions, one of which centered on binding Dot/Icm substrates. In this report, we examined if DotF functions as the T4SS inner membrane receptor for Dot/Icm substrates. Although we were able to recapitulate the previously published bacterial two-hybrid interaction between DotF and several substrates, the interaction was not dependent on the Dot/Icm substrates' signal sequences as predicted for a substrate:receptor interaction. In addition, binding did not require the cytoplasmic domain of DotF, which was anticipated to be involved in recognizing substrates in the cytoplasm. Finally, inactivation of dotF did not abolish intracellular growth of L. pneumophila or translocation of substrates, two phenotypes dependent on the T4SS receptor. These data strongly suggest that DotF does not act as the major receptor for Dot/Icm substrates and therefore likely performs an accessory function within the core-transmembrane subcomplex of the L. pneumophila Dot/Icm type IV secretion system.

  13. Magneto-exciton transitions in laterally coupled quantum dots

    Science.gov (United States)

    Barticevic, Zdenka; Pacheco, Monica; Duque, Carlos A.; Oliveira, Luiz E.

    2008-03-01

    We present a study of the electronic and optical properties of laterally coupled quantum dots. The excitonic spectra of this system under the effects of an external magnetic field applied perpendicular to the plane of the dots is obtained, with the potential of every individual dot taken as the superposition of a quantum well potential along the axial direction with a lateral parabolic confinement potential, and the coupled two- dot system then modeled by a superposition of the potentials of each dot, with their minima at different positions and truncated at the intersection plane. The wave functions and eigenvalues are obtained in the effective-mass approximation by using an extended variational approach in which the magneto- exciton states are simultaneously obtained [1]. The allowed magneto-exciton transitions are investigated by using circularly polarized radiation in the plane perpendicular to the magnetic field. We present results on the excitonic absorption coefficient as a function of the photon energy for different geometric quantum-dot confinement and magnetic-field values. Reference: [1] Z. Barticevic, M. Pacheco, C. A. Duque and L. E. Oliveira, Phys. Rev. B 68, 073312 (2003).

  14. Magnetofluorescent nanocomposites and quantum dots used for optimal application in magnetic fluorescence-linked immunoassay.

    Science.gov (United States)

    Tsai, H Y; Li, S Y; Fuh, C Bor

    2018-03-01

    Magnetofluorescent nanocomposites with optimal magnetic and fluorescent properties were prepared and characterized by combining magnetic nanoparticles (iron oxide@polymethyl methacrylate) with fluorescent nanoparticles (rhodamine 6G@mSiO 2 ). Experimental parameters were optimized to produce nanocomposites with high magnetic susceptibility and fluorescence intensity. The detection of a model biomarker (alpha-fetoprotein) was used to demonstrate the feasibility of applying the magnetofluorescent nanocomposites combined with quantum dots and using magnetic fluorescence-linked immunoassay. The magnetofluorescent nanocomposites enable efficient mixing, fast re-concentration, and nanoparticle quantization for optimal reactions. Biofunctional quantum dots were used to confirm the alpha-fetoprotein (AFP) content in sandwich immunoassay after mixing and washing. The analysis time was only one third that required in ELISA. The detection limit was 0.2 pg mL -1 , and the linear range was 0.68 pg mL -1 -6.8 ng mL -1 . This detection limit is lower, and the linear range is wider than those of ELISA and other methods. The measurements made using the proposed method differed by less than 13% from those obtained using ELISA for four AFP concentrations (0.03, 0.15, 0.75, and 3.75 ng mL -1 ). The proposed method has a considerable potential for biomarker detection in various analytical and biomedical applications. Graphical abstract Magnetofluorescent nanocomposites combined with fluorescent quantum dots were used in magnetic fluorescence-linked immunoassay.

  15. Thermal decomposition of Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O at reduced pressures

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, I.V.; Znamenkov, K.O.; Korenev, Yu.M.; Shlyakhtin, O.A

    2003-07-28

    Thermolysis of Cu(NO{sub 3}){sub 2}{center_dot}3H{sub 2}O is studied by means of XRD analysis in situ and mass spectral analysis of the gas phase at P=1/10 Pa at low heating rate. It is shown that stage I of the dehydration (40-80 deg. C) results in the consecutive appearance of crystalline Cu(NO{sub 3}){sub 2}{center_dot}2.5H{sub 2}O and Cu(NO{sub 3}){center_dot}H{sub 2}O. Anhydrous Cu(NO{sub 3}){sub 2} formed during further dehydration at 80-110 deg. C is moderately sublimed at 120-150 deg. C. Dehydration is accompanied by thermohydrolysis, leading to the appearance of Cu{sub 2}(OH){sub 3}NO{sub 3} and gaseous H{sub 2}O, HNO{sub 3}, NO{sub 2}, and H{sub 2}O. The higher pressure in the system, the larger amount of thermohydrolysis products is observed. The formation of the crystalline intermediate CuO{sub x}(NO{sub 3}){sub y} was observed by diffraction methods. Final product of thermolysis (CuO) is formed at 200-250 deg. C.

  16. TTI Phase 2 Institutional Support: Economic Policy Research Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    TTI Phase 2 Institutional Support: Economic Policy Research Centre ... the Economic Policy Research Centre's (EPRC) role as a credible public policy institution in ... IWRA/IDRC webinar on climate change and adaptive water management.

  17. Realization of electrically tunable single quantum dot nanocavities

    Energy Technology Data Exchange (ETDEWEB)

    Hofbauer, Felix Florian Georg

    2009-03-15

    We investigated the design, fabrication and optical investigation of electrically tunable single quantum dot-photonic crystal defect nanocavities operating in both the weak and strong coupling regimes of the light matter interaction. We demonstrate that the quantum confined Stark effect can be employed to quickly and reversibly switch the dot-cavity coupling, simply by varying a gate voltage. Our results show that exciton transitions from individual dots can be tuned by up to {proportional_to}4 meV relative to the nanocavity mode, before the emission quenches due to carrier tunneling escape from the dots. We directly probe spontaneous emission, irreversible polariton decay and the statistics of the emitted photons from a single-dot nanocavity in the weak and strong coupling regimes. New information is obtained on the nature of the dot-cavity coupling in the weak coupling regime and electrical control of zero dimensional polaritons is demonstrated for the first time. The structures investigated are p-i-n photodiodes consisting of an 180nm thick free-standing GaAs membrane into which a two dimensional photonic crystal is formed by etching a triangular lattice of air holes. Low mode volume nanocavities (V{sub mode}<1.6 ({lambda}/n){sup 3}) are realized by omitting 3 holes in a line to form L3 cavities and a single layer of InGaAs self-assembled quantum dots is embedded into the midpoint of the membrane. The nanocavities are electrically contacted via 35 nm thick p- and n-doped contact layers in the GaAs membrane. In the weak coupling regime, time resolved spectroscopy reveals a {proportional_to}7 x shortening of the spontaneous emission lifetime as the dot is tuned through the nanocavity mode, due to the Purcell effect. Upon strongly detuning the same quantum dot transition from the nanocavity mode we observe an additional {proportional_to}8 x lengthening of the spontaneous emission lifetime. These observations unequivocally highlight two regimes of dot

  18. Investigation of defects in electron-irradiated diamond of the type Ia by positron annihilation

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ositinskaya, T.D.; Mikhalenkov, V.S.; Chernyashevskij, A.V.; Shakhovtsov, V.I.; AN Ukrainskoj SSR, Kiev; AN Ukrainskoj SSR, Kiev

    1997-01-01

    To produce vacancy defects, type Ia diamond was irradiated with 3.5 MeV electrons at doses of 5 centre dot 10 16 , 2 centre dot 10 17 , 4 centre dot 10 17 , and 2 centre dot 10 18 e/cm -2 . After each dose, the specimen was investigated using positron annihilation (ACAR), optical spectroscopy in IR, visible regions, and EPR. From ACAR spectra, the S-parameters were found and positron trapping rates were determined. Their behaviour with increasing irradiation doses shows that, in type Ia diamond along with neutral vacancies V degree, deeper traps of positrons are formed, which are most likely vacancies in the negative charge state V - . Specific trapping rates of the V 0 and V - defects are found to be 1.3 centre dot 10 15 and 3.8 centre dot 10 15 s -1 , respectively; trapping cross sections for these defects are also estimated

  19. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    Science.gov (United States)

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  20. On the diameter of dot-critical graphs

    Directory of Open Access Journals (Sweden)

    Doost Ali Mojdeh

    2009-01-01

    Full Text Available A graph G is \\(k\\-dot-critical (totaly \\(k\\-dot-critical if \\(G\\ is dot-critical (totaly dot-critical and the domination number is \\(k\\. In the paper [T. Burtona, D. P. Sumner, Domination dot-critical graphs, Discrete Math, 306 (2006, 11-18] the following question is posed: What are the best bounds for the diameter of a \\(k\\-dot-critical graph and a totally \\(k\\-dot-critical graph \\(G\\ with no critical vertices for \\(k \\geq 4\\? We find the best bound for the diameter of a \\(k\\-dot-critical graph, where \\(k \\in\\{4,5,6\\}\\ and we give a family of \\(k\\-dot-critical graphs (with no critical vertices with sharp diameter \\(2k-3\\ for even \\(k \\geq 4\\.

  1. [Dot1 and Set2 Histone Methylases Control the Spontaneous and UV-Induced Mutagenesis Levels in the Saccharomyces cerevisiae Yeasts].

    Science.gov (United States)

    Kozhina, T N; Evstiukhina, T A; Peshekhonov, V T; Chernenkov, A Yu; Korolev, V G

    2016-03-01

    In the Saccharomyces cerevisiae yeasts, the DOT1 gene product provides methylation of lysine 79 (K79) of hi- stone H3 and the SET2 gene product provides the methylation of lysine 36 (K36) of the same histone. We determined that the dot1 and set2 mutants suppress the UV-induced mutagenesis to an equally high degree. The dot1 mutation demonstrated statistically higher sensitivity to the low doses of MMC than the wild type strain. The analysis of the interaction between the dot1 and rad52 mutations revealed a considerable level of spontaneous cell death in the double dot1 rad52 mutant. We observed strong suppression of the gamma-in- duced mutagenesis in the set2 mutant. We determined that the dot1 and set2 mutations decrease the sponta- neous mutagenesis rate in both single and d ouble mutants. The epistatic interaction between the dot1 and set2 mutations and almost similar sensitivity of the corresponding mutants to the different types of DNA damage allow one to conclude that both genes are involved in the control of the same DNA repair pathways, the ho- mologous-recombination-based and the postreplicative DNA repair.

  2. Chiral recognition of phenylglycinol enantiomers based on N-acetyl-L-cysteine capped CdTe quantum dots in the presence of Ag+

    Science.gov (United States)

    Guo, Yuan; Zeng, Xiaoqing; Yuan, Haiyan; Huang, Yunmei; Zhao, Yanmei; Wu, Huan; Yang, Jidong

    2017-08-01

    In this study, a novel method for chiral recognition of phenylglycinol (PG) enantiomers was proposed. Firstly, water-soluble N-acetyl-L-cysteine (NALC)-capped CdTe quantum dots (QDs) were synthesized and experiment showed that the fluorescence intensity of the reaction system slightly enhancement when added PG enantiomers to NALC-capped CdTe quantum dots (QDs), but the R-PG and S-PG could not be distinguished. Secondly, when there was Ag+ presence in the reaction system, the experiment result was extremely interesting, the PG enantiomers cloud make NALC-capped CdTe QDs produce different fluorescence signal, in which the fluorescence of S-PG + Ag+ + NALC-CdTe system was significantly enhanced, and the fluorescence of R-PG + Ag+ + NALC-CdTe system was markedly decreased. Thirdly, all the enhanced and decreased of the fluorescence intensity were directly proportional to the concentration of R-PG and S-PG in the linearly range 10- 5-10- 7 mol·L- 1, respectively. So, the new method for simultaneous determination of the PG enantiomers was built too. The experiment result of the method was satisfactory with the detection limit of PG can reached 10- 7 mol·L- 1 and the related coefficient of S-PG and R-PG are 0.995 and 0.980, respectively. The method was highly sensitive, selective and had wider detection range compared with other methods.

  3. Updating the Skating Multistage Aerobic Test and Correction for V[Combining Dot Above]O2max Prediction Using a New Skating Economy Index in Elite Youth Ice Hockey Players.

    Science.gov (United States)

    Allisse, Maxime; Bui, Hung Tien; Léger, Luc; Comtois, Alain-Steve; Leone, Mario

    2018-05-07

    Allisse, M, Bui, HT, Léger, L, Comtois, A-S, and Leone, M. Updating the skating multistage aerobic test and correction for V[Combining Dot Above]O2max prediction using a new skating economy index in elite youth ice hockey players. J Strength Cond Res XX(X): 000-000, 2018-A number of field tests, including the skating multistage aerobic test (SMAT), have been developed to predict V[Combining Dot Above]O2max in ice hockey players. The SMAT, like most field tests, assumes that participants who reach a given stage have the same oxygen uptake, which is not usually true. Thus, the objectives of this research are to update the V[Combining Dot Above]O2 values during the SMAT using a portable breath-by-breath metabolic analyzer and to propose a simple index of skating economy to improve the prediction of oxygen uptake. Twenty-six elite hockey players (age 15.8 ± 1.3 years) participated in this study. The oxygen uptake was assessed using a portable metabolic analyzer (K4b) during an on-ice maximal shuttle skate test. To develop an index of skating economy called the skating stride index (SSI), the number of skating strides was compiled for each stage of the test. The SMAT enabled the prediction of the V[Combining Dot Above]O2max (ml·kg·min) from the maximal velocity (m·s) and the SSI (skating strides·kg) using the following regression equation: V[Combining Dot Above]O2max = (14.94 × maximal velocity) + (3.68 × SSI) - 24.98 (r = 0.95, SEE = 1.92). This research allowed for the update of the oxygen uptake values of the SMAT and proposed a simple measure of skating efficiency for a more accurate evaluation of V[Combining Dot Above]O2max in elite youth hockey players. By comparing the highest and lowest observed SSI scores in our sample, it was noted that the V[Combining Dot Above]O2 values can vary by up to 5 ml·kg·min. Our results suggest that skating economy should be included in the prediction of V[Combining Dot Above]O2max to improve prediction accuracy.

  4. Leaving the street and reconstructing lives: impact of DOTS in empowering homeless people in Tokyo, Japan.

    Science.gov (United States)

    Kawatsu, L; Sato, N; Ngamvithayapong-Yanai, J; Ishikawa, N

    2013-07-01

    Since 2000, the Public Health Centre (PHC) in Shinjuku, an area of Tokyo with one of the largest homeless populations in Japan, has been implementing PHC-based DOTS treatment for homeless tuberculosis (TB) patients, with much epidemiological success. Anecdotal evidence indicates that homeless patients treated under DOTS have experienced various positive changes. However, this experience has not yet been systematically analysed. To explore the changes experienced by homeless TB patients, and to discuss the possible role of PHC-based DOTS treatment in effecting these changes. A qualitative study via in-depth interviews with 18 ex-homeless patients who completed DOTS-based treatment at Shinjuku City PHC. The data were analysed using the interpretive content analysis method. The various changes experienced by the participants were categorised into five sub-categories of empowerment, including improved mental health and interpersonal relationships. Some of these changes were attributable to the participants undergoing PHC-based DOTS, which, by addressing their various emotional needs, helped to trigger patient empowerment. Based on our findings, a model of empowerment using PHC-based DOTS was constructed. PHC-based DOTS not only successfully controlled TB, it also empowered homeless patients by addressing their emotional needs. The interpersonal skills of the nurses played a critical role in this process.

  5. Topology of Legionella pneumophila DotA: an inner membrane protein required for replication in macrophages.

    OpenAIRE

    Roy, C R; Isberg, R R

    1997-01-01

    The Legionella pneumophila dotA gene is required for intracellular growth of the bacterium in macrophages. In this study, a structure-function analysis of the DotA protein was conducted to elucidate the role of this protein in L. pneumophila pathogenesis. Translational fusions of dotA to the Escherichia coli phoA and lacZ genes indicated that DotA is an integral cytoplasmic membrane protein with eight membrane-spanning domains. DotA contains two large periplasmic domains of approximately 503 ...

  6. Photogenerated carriers transport behaviors in L-cysteine capped ZnSe core-shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Qingsong; Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Lin, Yingying; Yin, Hua; Zhu, Ruiping [State Key Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Qinhuangdao 066004 (China); Xue, Zhenjie [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-07

    The photoexcited carrier transport behavior of zinc selenide (ZnSe) quantum dots (QDs) with core–shell structure is studied because of their unique photoelectronic characteristics. The surface photovoltaic (SPV) properties of self-assembled ZnSe/ZnS/L-Cys core–shell QDs were probed via electric field induced surface photovoltage and transient photovoltage (TPV) measurements supplemented by Fourier transform infrared, laser Raman, absorption, and photoluminescence spectroscopies. The ZnSe QDs displayed p-type SPV characteristics with a broader stronger SPV response over the whole ultraviolet-to-near-infrared range compared with those of other core–shell QDs in the same group. The relationship between the SPV phase value of the QDs and external bias was revealed in their SPV phase spectrum. The wide transient photovoltage response region from 3.3 × 10{sup −8} to 2 × 10{sup −3} s was closely related to the long diffusion distance of photoexcited free charge carriers in the interfacial space–charge region of the QDs. The strong SPV response corresponding to the ZnSe core mainly originated from an obvious quantum tunneling effect in the QDs.

  7. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag_2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag_2Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H_8Si_8Al_8O_1_2 represents the zeolite cavity unit, and small clusters of (Ag_2Se)_n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  8. Nanocrystal quantum dots

    CERN Document Server

    Klimov, Victor I

    2010-01-01

    ""Soft"" Chemical Synthesis and Manipulation of Semiconductor Nanocrystals, J.A. Hollingsworth and V.I. Klimov Electronic Structure in Semiconductor Nanocrystals: Optical Experiment, D.J. NorrisFine Structure and Polarization Properties of Band-Edge Excitons in Semiconductor Nanocrystals, A.L. EfrosIntraband Spectroscopy and Dynamics of Colloidal Semiconductor Quantum Dots, P. Guyot-Sionnest, M. Shim, and C. WangMultiexciton Phenomena in Semiconductor Nanocrystals, V.I. KlimovOptical Dynamics in Single Semiconductor Quantum Do

  9. Costs and cost-effectiveness of different DOT strategies for the treatment of tuberculosis in Pakistan. Directly Observed Treatment.

    Science.gov (United States)

    Khan, M A; Walley, J D; Witter, S N; Imran, A; Safdar, N

    2002-06-01

    An economic study was conducted alongside a clinical trial at three sites in Pakistan to establish the costs and effectiveness of different strategies for implementing directly observed treatment (DOT) for tuberculosis. Patients were randomly allocated to one of three arms: DOTS with direct observation by health workers (at health centres or by community health workers); DOTS with direct observation by family members; and DOTS without direct observation. The clinical trial found no statistically significant difference in cure rate for the different arms. The economic study collected data on the full range of health service costs and patient costs of the different treatment arms. Data were also disaggregated by gender, rural and urban patients, by treatment site and by economic categories, to investigate the costs of the different strategies, their cost-effectiveness and the impact that they might have on patient compliance with treatment. The study found that direct observation by health centre-based health workers was the least cost-effective of the strategies tested (US dollars 310 per case cured). This is an interesting result, as this is the model recommended by the World Health Organization and International Union against Tuberculosis and Lung Disease. Attending health centres daily during the first 2 months generated high patient costs (direct and in terms of time lost), yet cure rates for this group fell below those of the non-observed group (58%, compared with 62%). One factor suggested by this study is that the high costs of attending may be deterring patients, and in particular, economically active patients who have most to lose from the time taken by direct observation. Without stronger evidence of benefits, it is hard to justify the costs to health services and patients that this type of direct observation imposes. The self-administered group came out as most cost-effective (164 dollars per case cured). The community health worker sub-group achieved the

  10. Development of 9Al2O3{center_dot}2B2O3 whiskers reinforced piston by squeeze casting. Manufacturing process and characteristics of whiskers preform; Squeeze cast ho ni yoru 9Al2O3{center_dot}2B2O3 whisker kyoka piston no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, T; Suzuki, M; Takahashi, M; Takada, I; Toda, M [Suzuki Motor Co. Ltd., Shizuoka (Japan)

    1997-10-01

    The properties of 9Al2O3 {center_dot} 2B2O3 whisker reinforced aluminum alloy is excellent compared with conventional material at elevated temperatures. 9Al2O3 {center_dot} 2B2O3 whisker reinforced aluminum alloy was applied to the piston head of two cycle engines. This piston was produced by a squeeze casting process with the granulated whiskers preform which was infiltrated by a molten aluminum alloy under high pressure. Since the permeability of the granulated whiskers preform is larger than that of the uniform preform in which whiskers are distributed randomly and uniformly, it became possible to suppress the preform deformation using the developed preform. 7 refs., 8 figs., 2 tabs.

  11. Signal void dots on T2-weighted brain MR images in patients with hypertensive intracerebral hemorrhage : Its nature and clinical significance

    International Nuclear Information System (INIS)

    Kim, Sang Joon; Yoo, Dong Soo; Kim, Seung Chul; Kim, Tae Hoon; Kim, Jae Seung; Kim, Jae Il

    1997-01-01

    To describe the signal void dots found on T2-weighted magnetic resonance (MR) images of the brain in hypertensive patients. Conventional T2-weighted MR images of 11 patients with hypertensive intracerebral hemorrhage (ICH), 14 with lacunar infarction and 11 comprising a normal control group aged over 60 were analyzed with regard to the presence, location, number and size of signal void dots. We also evaluated their relationship to hypertension. We performed time-of-flight or phase contrast MR angiography, gradient echo pulse sequences, or conventional cerebral angiography in some hypertensive ICH patients and compared them with corresponding T2-weighted images. Signal void dots were found in all patients with hypertensive ICH. Six of 14 patients with lacunar infarction showed these dots;all six suffered from hypertension. The dots were located in the thalami, pons and basal ganglia, and were measured as 1 to 4mm in diameter, mostly 2mm;they looked larger on gradient echo images. In the normal control group there were no signal void dots, and on MR or conventional angiography, no vascular ectasia was noted at the site corresponding to the signal void dots. Signal void dots were not considered to be part of the normal aging process, but appeared to be closely related to hypertension and ICH. The dots were thought to be due to the susceptibility effect of blood degradation product rather than to flow artifact or enlarged vessels. The thrombosed microaneurysm with or without surrounding microleakage of blood may explain the nature of signal void dots on T2-weighted images of hypertensive brain

  12. Carbon dots decorated vertical SnS_2 nanosheets for efficient photocatalytic oxygen evolution

    International Nuclear Information System (INIS)

    Cheng, Zhongzhou; Wang, Fengmei; Shifa, Tofik Ahmed; Liu, Kaili; Huang, Yun; Jiang, Chao; He, Jun; Liu, Quanlin

    2016-01-01

    Metal sulfides are highly desirable materials for photocatalytic water splitting because of their appropriate energy bands. However, the poor stability under light illumination in water hinders their wide applications. Here, two-dimensional SnS_2 nanosheets, along with carbon dots of the size around 10 nm, are uniformly grown on fluorine doped tin oxide glasses with a layer of nickel nanoparticles. Significantly, strong light absorption and enhanced photocurrent density are achieved after integration of SnS_2 nanosheets with carbon dots. Notably, the rate of oxygen evolution reached up to 1.1 mmol g"−"1 h"−"1 under simulated sunlight irradiation featuring a good stability.

  13. Synthesis of Bi{sub 2}S{sub 3} quantum dots for sensitized solar cells by reverse SILAR

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Navjot; Sharma, J. [University Institute of Emerging Areas in Science and Technology Centre for Nano Science and Technology, Panjab University, Chandigarh-160025 (India); Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [University Institute of Emerging Areas in Science and Technology Centre for Nano Science and Technology, Panjab University, Chandigarh-160025 (India); Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi{sub 2}S{sub 3}) (group V – Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7 eV.

  14. The quantum mechanical description of the dot-dot interaction in ionic colloids

    International Nuclear Information System (INIS)

    Morais, P.C.; Qu, Fanyao

    2007-01-01

    In this study the dot-dot interaction in ionic colloids is systematically investigated by self-consistently solving the coupled Schroedinger and Poisson equations in the frame of finite difference method (FDM). In a first approximation the interacting two-dot system (dimer) is described using the picture of two coupled quantum wells. It was found that the dot-dot interaction changes the colloid characteristic by changing the hopping coefficient (t) and consequently the nanodot surface charge density (σ). The hopping coefficient and the surface charge density were investigated as a function of the dot size and dot-dot distance

  15. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide.

    Science.gov (United States)

    Yuan, Jipei; Guo, Weiwei; Wang, Erkang

    2008-02-15

    In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

  16. Assurer l'accès aux soins de santé au Bangladesh | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    29 janv. 2018 ... Les activités relatives à la cybersanté et à la santé mobile ont été lancées à la fin des années 1990. Une étude de ces services qui a été menée par des chercheurs de l'International Centre for Diarrhoeal Disease Research du Bangladesh (ICDDR,B), avec le financement du CRDI, a permis de cibler plus ...

  17. A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.

    Science.gov (United States)

    Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L

    2016-05-01

    A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The CERN Data Centre readies for Run 2

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    While the world waits for Run 2 data with growing anticipation, the CERN Data Centre is battening down the hatches. Run 2 is set to see a significant increase in the amount of data produced by the LHC experiments, with more than one hundred additional petabytes expected over the next three years. How will CERN manage this flood of results? The Bulletin checks in with the IT Department to find out...   The CERN Data Centre: the heart of CERN's entire scientific, administrative, and computing infrastructure. With every second of run-time, gigabytes of data will come pouring into the CERN Data Centre to be stored, sorted and shared with physicists worldwide. To cope with this massive influx of Run 2 data, the CERN Data and Storage Services group focused on three areas: speed, capacity and reliability. First on the list, the group set out to increase the rate at which they could store data. "During Run 1, we were storing 1 gigabyte-per-second, with the occasional peak of 6 giga...

  19. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode

    International Nuclear Information System (INIS)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-01-01

    In this work Nb-doped anatase TiO 2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO 2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO 2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell. (paper)

  20. Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode.

    Science.gov (United States)

    Jiang, Lei; You, Ting; Deng, Wei-Qiao

    2013-10-18

    In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.

  1. There-dimensional porous carbon network encapsulated SnO2 quantum dots as anode materials for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Yang, Juan; Xi, Lihua; Tang, Jingjing; Chen, Feng; Wu, Lili; Zhou, Xiangyang

    2016-01-01

    SnO 2 quantum dots have attracted enormous interest, since they have been shown to effectively minimize the volume change stress, improve the anode kinetic and shorten the lithium ion migration distance when used as anode materials for lithium ion battery. In this work, we report a facile strategy to fabricate nanostructure with homogenous SnO 2 quantum dots anchored on three-dimensional (3D) nitrogen and sulfur dual-doped porous carbon (NSGC@SnO 2 ). Characterization results show that the obtained SnO 2 quantum dots have an average critical size of 3–5 nm and uniformly encapsulated in the porous of NSGC matrix. The as-designed nanostructure can effectively avoid the aggregation of SnO 2 quantum dots as well as accommodate the mechanical stress induced by the volume change of SnO 2 quantum dots and thus maintain the structure integrity of the electrode. As a result, the obtained NSGC@SnO 2 composite exhibits a specific reversible capacity as high as 1118 mAh g −1 at a current of 200 mA g −1 after 100 cycles along with a high coulombic efficiency of 98% and excellent rate capability.

  2. Quantum dots

    International Nuclear Information System (INIS)

    Kouwenhoven, L.; Marcus, C.

    1998-01-01

    Quantum dots are man-made ''droplets'' of charge that can contain anything from a single electron to a collection of several thousand. Their typical dimensions range from nanometres to a few microns, and their size, shape and interactions can be precisely controlled through the use of advanced nanofabrication technology. The physics of quantum dots shows many parallels with the behaviour of naturally occurring quantum systems in atomic and nuclear physics. Indeed, quantum dots exemplify an important trend in condensed-matter physics in which researchers study man-made objects rather than real atoms or nuclei. As in an atom, the energy levels in a quantum dot become quantized due to the confinement of electrons. With quantum dots, however, an experimentalist can scan through the entire periodic table by simply changing a voltage. In this article the authors describe how quantum dots make it possible to explore new physics in regimes that cannot otherwise be accessed in the laboratory. (UK)

  3. Enhanced Photoelectrochemical Response of Zn-Dotted Hematite

    Directory of Open Access Journals (Sweden)

    Saroj Kumari

    2007-01-01

    Full Text Available Photoelectrochemical response of thin films of α-Fe2O3, Zn doped α-Fe2O3, and Zn dots deposited on doped α-Fe2O3 prepared by spray pyrolysis has been studied. Samples of Zn dots were prepared using thermal evaporation method by evaporating Zn through a mesh having pore diameter of 0.7 mm. The presence of Zn-dotted islands on doped α-Fe2O3 surface exhibited significantly large photocurrent density as compared to other samples. An optimum thickness of Zn dots ∼230 Å is found to give enhanced photoresponse. The observed results are analyzed with the help of estimated values of resistivity, band gap, flatband potential, and donor density.

  4. Contribution to the study of several chemical hazards in the Centre d'Etudes Nucleaires of Fontenay-aux-Roses; Contribution a l'etude de quelques nuisances chimiques au centre d'etudes nucleaires de Fontenay-aux-Roses

    Energy Technology Data Exchange (ETDEWEB)

    Megemont, C; Grau, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-10-01

    From the checking of 2750 index cards of hazards, the study relates the distribution of the chemical hazards in the Centre d'Etudes Nucleaires of Fontenay-aux-Roses. Those concerning the greatest number of agents in the Centre are classified according to the categories corresponding to the different conditions of working. Thus, the most important are put forward. Then, the authors rapidly make a review of hazards which may have some special interest because they appear more specific of the nuclear energy or because they are the most frequently noted on the index cards of hazards. The case of the tributylphosphate is studied more precisely. (authors) [French] A partir de l'examen de 2750 fiches de nuisances, l'etude porte sur la repartition des nuisances chimiques au Centre d'Etudes Nucleaires de Fontenay-aux-Roses. Celles qui concernent le plus grand nombre d'agents du Centre sont classees selon les categories correspondant aux differentes conditions de travail. Les plus importantes d'entre elles sont ainsi mises en evidence. | Les auteurs passent ensuite en revue, rapidement, les nuisances qui peuvent presenter un interet particulier soit parce qu'elles semblent plus specifiques de l'Energie Nucleaire, soit parce qu'on les rencontre le plus frequemment sur les fiches de nuisances. Le cas du tributylphosphate est envisage de facon plus detaillee. (auteurs)

  5. PbS/Cd3P2 quantum heterojunction colloidal quantum dot solar cells

    International Nuclear Information System (INIS)

    Cao, Hefeng; Xu, Songman; Liu, Huan; Liu, Zeke; Zhu, Xiangxiang; Peng, Jun; Ma, Wanli; Hu, Long; Luo, Miao; Tang, Jiang

    2015-01-01

    Here, we demonstrated the quantum heterojunction colloidal quantum dot (CQD) solar cells employing the PbS CQDs/Cd 3 P 2 CQDs architecture in which both the p-type PbS and n-type Cd 3 P 2 CQD layers are quantum-tunable and solution-processed light absorbers. We synthesized well-crystallized and nearly monodispersed tetragonal Cd 3 P 2 CQDs and then engineered their energy band alignment with the p-type PbS by tuning the dot size and hence the bandgap to achieve efficient light absorbing and charge separation. We further optimized the device through the Ag-doping strategy of PbS CQDs that may leverage an expanded depletion region in the n-layer, which greatly enhances the photocurrent. The resulting devices showed an efficiency of 1.5%. (paper)

  6. Capped CuInS2 quantum dots for H2 evolution from water under visible light illumination

    International Nuclear Information System (INIS)

    Li, Tzung-Luen; Cai, Cheng-Da; Yeh, Te-Fu; Teng, Hsisheng

    2013-01-01

    Highlights: ► Dispersed CuInS 2 quantum dots showed remarkable photosynthetic activity using visible light. ► Photogenerated electrons in CuInS 2 were effective in H 2 production from aqueous solution. ► The bifunctional capping reagent effectively transported photogenerated electrons for reaction. ► Ru-loaded CuInS 2 quantum dots showed a quantum efficiency of 4.7% in H 2 evolution. ► Attaching CuInS 2 to TiO 2 with CdS passivation achieved a quantum efficiency of 41%. - Abstract: This study demonstrates H 2 evolution from water decomposition catalyzed by capped CuInS 2 quantum dots (QDs) that are highly dispersed in a polysulfide aqueous solution. The CuInS 2 QDs, which are obtained from solvothermal synthesis, have a size of 4.3 nm and a band gap of 1.97 eV. For photosynthetic H 2 evolution in the aqueous solution, the QDs are capped with a multidentate ligand (3-mercaptopropionic acid), which has a thiol end for attaching the QDs and a hydrophilic carboxylic end for dispersion in water. The capped QDs exhibit low activity in catalyzing H 2 evolution under visible illumination. After photodepositing 0.5 wt.% Ru, the capped QDs are active in producing H 2 with illumination. This demonstrates that the photogenerated electrons travel through the capping reagent to generate deposited Ru, which subsequently serves as an electron trap for H 2 evolution. A heterostructure formed by attaching the capped QDs on TiO 2 nanoparticles, followed by coating CdS with photodeposition, exhibits a high quantum efficiency of 41% for H 2 evolution from the polysulfide solution. These results demonstrate the potential for photosynthesis and phototherapy in biologic in vivo or microfluidic systems based on this capped QD material.

  7. Experimental and theoretical studies of d-dot

    International Nuclear Information System (INIS)

    Ishida, Takekazu; Fujii, Masaki; Abe, Taiji; Yamamoto, Masuo; Miki, Shigehito; Kawamata, Shuichi; Satoh, Kazuo; Yotsuya, Tsutomu; Kato, Masaru; Machida, Masahiko; Koyama, Tomio; Terashima, Takahito; Tsukui, Shigeki; Adachi, Motoaki

    2006-01-01

    We propose the idea of d-dot, where a d-wave superconducting dot is embedded in s-wave matrix. Spontaneous half vortices should appear in the four corners of the d-dot [M. Kato, M. Ako, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 352; M. Ako, M. Kato, M. Machida, T. Koyama, T. Ishida, Physica C 412-414 (2004) 544; M. Fujii, T. Abe, H. Yoshikawa, S. Miki, S. Kawamata, K. Satoh, T. Yotsuya, M. Kato, M. Machida, T. Koyama, T. Terashima, S. Tsukui, M. Adachi, T. Ishida, Physica C 426-431 (2005) 104]. Symmetric geometry and the fourfold symmetry of the d-dot would be suitable as a building block for constructing the novel physical systems. The phase dynamics of a closed 0-π junction, which can be realized in a small d x 2 -y 2 -dot, is mapped on a quantum two-level system when the system size is small enough. Using two-component Ginzburg-Landau equation, we study the physical properties of d-dots systematically. We prepare epitaxial YBa 2 Cu 3 O 7 (YBCO) films of thickness 100nm on SrTiO 3 substrates using a laser ablation apparatus. The d-dot is fabricated by a photolithography, electron beam lithography EB and an electron cyclotron resonance (ECR) etching, a focused ion beam microscope, and a lift-off technique. Local vortex profile is investigated using a SQUID microscope when d-dot is cooled in zero field

  8. Randomized study of initial treatment with radiationter dot MCNU or radiationter dot MCNUter dot interferon-. beta. for malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kiya, Katsuzo; Uozumi, Tohru; Kurisu, Kaoru (Hiroshima Univ. (Japan). School of Medicine) (and others)

    1990-02-01

    The efficacy of radiation{center dot}MCNU (MR group) or radiation{center dot}MCNU{center dot}interferon-{beta} (IMR group) for malignant glioma was studied by a randomized trial at numerous medical facilities. MR group was irradiated with 50{approx}60 Gy and intravenously injected with 2 mg/kg of MCNU on the initial day of irradiation and 6 weeks later. IMR group was also given intravenous administration of interferon-{beta} at the dose of 2x10{sup 6}IU/m{sup 2} for 5 serial-days every eight weeks. There was no difference in background between the two groups. The response rate in MR group and IMR group was 44.4% (4/9) and 30.0% (3/10), respectively, showing no significant difference. The resected tumor volume before the start of these regimens seemed to correlate the response to the treatment in both groups. The major toxicity was myelosuppression, especially using MCNU with interferon-{beta}. These results indicated that this combined therapy is effective for malignant glioma, and should be executed further trials and follow up study. (author).

  9. Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation.

    Science.gov (United States)

    Carey, Graham H; Levina, Larissa; Comin, Riccardo; Voznyy, Oleksandr; Sargent, Edward H

    2015-06-03

    Through a combination of chemical and mutual dot-to-dot surface passivation, high-quality colloidal quantum dot solids are fabricated. The joint passivation techniques lead to a record diffusion length for colloidal quantum dots of 230 ± 20 nm. The technique is applied to create thick photovoltaic devices that exhibit high current density without losing fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Multi-Excitonic Quantum Dot Molecules

    Science.gov (United States)

    Scheibner, M.; Stinaff, E. A.; Doty, M. F.; Ware, M. E.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    With the ability to create coupled pairs of quantum dots, the next step towards the realization of semiconductor based quantum information processing devices can be taken. However, so far little knowledge has been gained on these artificial molecules. Our photoluminescence experiments on single InAs/GaAs quantum dot molecules provide the systematics of coupled quantum dots by delineating the spectroscopic features of several key charge configurations in such quantum systems, including X, X^+,X^2+, XX, XX^+ (with X being the neutral exciton). We extract general rules which determine the formation of molecular states of coupled quantum dots. These include the fact that quantum dot molecules provide the possibility to realize various spin configurations and to switch the electron hole exchange interaction on and off by shifting charges inside the molecule. This knowledge will be valuable in developing implementations for quantum information processing.

  11. Photoresponse Enhancement in Monolayer ReS2 Phototransistor Decorated with CdSe-CdS-ZnS Quantum Dots.

    Science.gov (United States)

    Qin, Jing-Kai; Ren, Dan-Dan; Shao, Wen-Zhu; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Hu, PingAn; Zhen, Liang; Xu, Cheng-Yan

    2017-11-15

    ReS 2 films are considered as a promising candidate for optoelectronic applications due to their direct band gap character and optical/electrical anisotropy. However, the direct band gap in a narrow spectrum and the low absorption of atomically thin flakes weaken the prospect for light-harvesting applications. Here, we developed an efficient approach to enhance the performance of a ReS 2 -based phototransistor by coupling CdSe-CdS-ZnS core-shell quantum dots. Under 589 nm laser irradiation, the responsivity of the ReS 2 phototransistor decorated with quantum dots could be enhanced by more than 25 times (up to ∼654 A/W) and the rising and recovery time can be also reduced to 3.2 and 2.8 s, respectively. The excellent optoelectronic performance is originated from the coupling effect of quantum dots light absorber and cross-linker ligands 1,2-ethanedithiol. Photoexcited electron-hole pairs in quantum dots can separate and transfer efficiently due to the type-II band alignment and charge exchange process at the interface. Our work shows that the simple hybrid zero- and two-dimensional hybrid system can be employed for photodetection applications.

  12. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  13. Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO2 Photoanode In Situ

    Directory of Open Access Journals (Sweden)

    Quanxin Zhang

    2017-05-01

    Full Text Available Dye-sensitized solar cells (DSSCs are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs. Herein, we present a simple strategy of growing carbon quantum dots (CQDs onto TiO2 surfaces in situ. The CQDs/TiO2 hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.

  14. Crystal structure, hydrogen bonding, and sup 8 sup 1 Br NQR of low-temperature phase of 4-aminopyridinium tetrabromoantimonate (3)

    CERN Document Server

    Hashimoto, M; Fuess, H; Svoboda, I; Ehrenberg, H

    2003-01-01

    The crystal structure of the low-temperature phase (LTP) of the title compound was determined at 220 K (monoclinic, P2 sub 1 sub / sub c). The 4-aminopyridinium cations (4-NH sub 2 C sub 5 H sub 4 NH sup +) were found to be ordered in LTP, while being severely disordered in the room-temperature phase (monoclinic, C2/c). The tetrabromoantimonate anions (SbBr sub 4 sup -) were incorporated into the infinite polyanion chains of irregular SbBr sub 6 octahedra with two-edges sharing. The trans-Br-Sb-Br moiety in the SbBr sub 4 sup - anion was approximately symmetric differing from the asymmetric Br-Sb centre dot centre dot centre dot Br moiety found in LTP of pyridinium tetrabromoantimonate (3). The N-H moieties in both of the pyridine ring and the amino (-NH sub 2) group participate in the formation of N-H centre dot centre dot centre dot Br hydrogen bonds. It was shown that the sup 8 sup 1 Br NQR spectrum of LTP is closely related to the anion structure and the hydrogen bonds. The distinctive anion structures, a...

  15. Detection of DNA via the fluorescence quenching of Mn-doped ZnSe D-dots/doxorubicin/DNA ternary complexes system.

    Science.gov (United States)

    Gao, Xue; Niu, Lu; Su, Xingguang

    2012-01-01

    This manuscript reports a method for the detection of double-stranded DNA, based on Mn:ZnSe d-dots and intercalating agent doxorubicin (DOX). DOX can quench the photoluminescence (PL) of Mn:ZnSe d-dots through photoinduced electron transfer process, after binding with Mn:ZnSe d-dots. The addition of DNA can result in the formation of the Mn:ZnSe d-dots-DOX-DNA ternary complexes, the fluorescence of the Mn:ZnSe d-dots-DOX complexes would be further quenched by the addition of DNA, thus allowing the detection of DNA. The formation mechanism of the Mn:ZnSe d-dots-DOX-DNA ternary complexes was studied in detail in this paper. Under optimal conditions, the quenched fluorescence intensity of Mn:ZnSe d-dots-DOX system are perfectly described by Stern-Volmer equation with the concentration of hsDNA ranging from 0.006 μg mL(-1) to 6.4 μg mL(-1). The detection limit (S/N = 3) for hsDNA is 0.5 ng mL(-1). The proposed method was successfully applied to the detection of DNA in synthetic samples and the results were satisfactory.

  16. Influence of Quantum Dot Concentration on Carrier Transport in ZnO:TiO2 Nano-Hybrid Photoanodes for Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Francis S. Maloney

    2016-10-01

    Full Text Available Zinc oxide nanowire and titanium dioxide nanoparticle (ZnO:TiO2 NW/NP hybrid films were utilized as the photoanode layer in quantum dot-sensitized solar cells (QDSSCs. CdSe quantum dots (QDs with a ZnS passivation layer were deposited on the ZnO:TiO2 NW/NP layer as a photosensitizer by successive ion layer adsorption and reaction (SILAR. Cells were fabricated using a solid-state polymer electrolyte and intensity-modulated photovoltage and photocurrent spectroscopy (IMVS/PS was carried out to study the electron transport properties of the cell. Increasing the SILAR coating number enhanced the total charge collection efficiency of the cell. The electron transport time constant and diffusion length were found to decrease as more QD layers were added.

  17. Nucleation temperature-controlled synthesis and in vitro toxicity evaluation of L-cysteine-capped Mn:ZnS quantum dots for intracellular imaging.

    Science.gov (United States)

    Pandey, Vivek; Pandey, Gajanan; Tripathi, Vinay Kumar; Yadav, Sapna; Mudiam, Mohana Krishna Reddy

    2016-03-01

    Quantum dots (QDs), one of the fastest developing and most exciting fluorescent materials, have attracted increasing interest in bioimaging and biomedical applications. The long-term stability and emission in the visible region of QDs have proved their applicability as a significant fluorophore in cell labelling. In this study, an attempt has been made to explore the efficacy of L-cysteine as a capping agent for Mn-doped ZnS QD for intracellular imaging. A room temperature nucleation strategy was adopted to prepare non-toxic, water-dispersible and biocompatible Mn:ZnS QDs. Aqueous and room temperature QDs with L-cysteine as a capping agent were found to be non-toxic even at a concentration of 1500 µg/mL and have wide applications in intracellular imaging. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The formation of scientists and technicians at the 'Centre d'Etudes Nucleaires' at Saclay; Formation des scientifiques et des techniciens au Centre d'Etudes Nucleaires de Saclay

    Energy Technology Data Exchange (ETDEWEB)

    Debiesse, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    The considerable needs in research workers and scientists which are asked by the nuclear energy obliged the Commissariat a l'Energie atomique to deal with a particular effort to increase the quantitative and qualitative formation of scientists. Most various ways have been used. 1- A National Institute of Nuclear Sciences and Nuclear Techniques was created, by a joint decree of the Prime Minister and the Minister for National Education (june 18, 1957). This Institute of Higher Teaching (250 students) indulges in the following matters: atomic engineering, quantum mechanics, theory and technic of particle accelerators, special metallurgy, radiobiology, thermic and mechanics of fluids. 2- An associated centre of the 'Conservatoire National des Arts et Metiers' waeated (200 students) for technical assistants, drawers, etc. 3- In contribution with both electronic industry and Ministry of Work, the Centre d'Etudes Nucleaires contributes to an accelerated formation of technical assistants into Professional Centres. Conclusion: Training of scientists and research workers is one of the most important activities of the Centre d'Etudes Nucleaires de Saclay. Without losing its technical efficiency, it has supplied and varied means adapted to the various purposes that we shall reach. (author)Fren. [French] Les besoins considerables actuels et previsibles en chercheurs et scientifiques necessites par l'avevement de l'energie nucleaire imposaient au Commissariat a I'Energie atomique un effort particulier pour augmenter la formation quantitative et qualitative des scientifiques. Les moyens les plus divers ont ete mis en oeuvre: 1- Creation de l'Institut National des Sciences et Techniques Nucleaires par decret de la Presidence du Conseil et de l'Education Nationale en date du 18.6.57. Cet Institut d'Enseignement Superieur (250 etudiants) donne des cours en: genie atomique, mecanique quantique, theorie et technique des Accelerateurs de particules, metallurgie speciale, radiobiologie

  19. Spectroscopic characteristics of carbon dots (C-dots) derived from carbon fibers and conversion to sulfur-bridged C-dots nanosheets.

    Science.gov (United States)

    Vinci, John C; Ferrer, Ivonne M; Guterry, Nathan W; Colón, Verónica M; Destino, Joel F; Bright, Frank V; Colón, Luis A

    2015-09-01

    We synthesized sub-10 nm carbon nanoparticles (CNPs) consistent with photoluminescent carbon dots (C-dots) from carbon fiber starting material. The production of different C-dots fractions was monitored over seven days. During the course of the reaction, one fraction of C-dots species with relatively high photoluminescence was short-lived, emerging during the first hour of reaction but disappearing after one day of reaction. Isolation of this species during the first hour of the reaction was crucial to obtaining higher-luminescent C-dots species. When the reaction proceeded for one week, the appearance of larger nanostructures was observed over time, with lateral dimensions approaching 200 nm. The experimental evidence suggests that these larger species are formed from small C-dot nanoparticles bridged together by sulfur-based moieties between the C-dot edge groups, as if the C-dots polymerized by cross-linking the edge groups through sulfur bridges. Their size can be tailored by controlling the reaction time. Our results highlight the variety of CNP products, from sub-10 nm C-dots to ~200 nm sulfur-containing carbon nanostructures, that can be produced over time during the oxidation reaction of the graphenic starting material. Our work provides a clear understanding of when to stop the oxidation reaction during the top-down production of C-dots to obtain highly photoluminescent species or a target average particle size.

  20. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    Science.gov (United States)

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  1. Résultats de recherche | Page 13 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... SCIENTIFIQUE ET TECHNIQUE 10 Apply POLITIQUE SCIENTIFIQUE ET ... Phase 2 de l'Initiative canadienne d'immunisation internationale (CIII-2) en Haïti ... Consolidation de centres de recherche sur la reconstruction en Haïti ... au sujet des terres est l'un des grands obstacles à la signature d'accords de paix.

  2. Fluorescent probes for "off-on" highly sensitive detection of Hg²⁺ and L-cysteine based on nitrogen-doped carbon dots.

    Science.gov (United States)

    Zhang, Yi; Cui, Peipei; Zhang, Feng; Feng, Xiaoting; Wang, Yaling; Yang, Yongzhen; Liu, Xuguang

    2016-05-15

    Fluorescent nitrogen-doped carbon dots (NCDs) were synthesized by a facile, and low-cost one-step hydrothermal strategy using citric acid as carbon source and ammonia solution as nitrogen source for the first time. The obtained NCDs show stable blue fluorescence with a high quantum yield of 35.4%, along with the fluorescence lifetime of ca. 6.75 ns. Most importantly, Hg(2+) can completely quench the fluorescence of NCDs as a result of the formation of a non-fluorescent stable NCDs-Hg(2+) complex. Static fluorescence quenching towards Hg(2+) is proved by the Stern-Volmer equation, ultraviolet-visible absorption spectra, temperature dependent quenching and fluorescence lifetime measurements. Subsequently, the fluorescence of the NCDs-Hg(2+) system is completely recovered with the addition L-cysteine (L-Cys) owing to the dissociation of NCDs-Hg(2+) complex to form a more stable Hg(2+)-L-Cys complex by Hg(2+)-S bonding. Therefore, such NCDs can be used as an effective fluorescent "turn-off" probe for rapid, rather highly selective and sensitive detection of Hg(2+), with a limit of detection (LOD) as low as 1.48 nM and a linear detection range of 0-10 μM. Interestingly, NCDs-Hg(2+) system can be conveniently employed as a fluorescent "turn-on" sensor for highly selective and sensitive detection of L-Cys with a low LOD of 0.79 nM and a wide linear detection range of 0-50 μM. Further, the sensitivity of NCDs to Hg(2+) is preserved in tap water with a LOD of 1.65 nM and a linear detection range of 0-10 μM. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Silicon quantum dots: surface matters

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, K.; Gregorkiewicz, T.; Kůsová, Kateřina

    2014-01-01

    Roč. 26, č. 17 (2014), 1-28 ISSN 0953-8984 R&D Projects: GA ČR GPP204/12/P235 Institutional support: RVO:68378271 Keywords : silicon quantum dots * quantum dot * surface chemistry * quantum confinement Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.346, year: 2014

  4. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells

    Science.gov (United States)

    Yang, Peizhi; Tang, Qunwei; Ji, Chenming; Wang, Haobo

    2015-12-01

    Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In2S3) quantum dot-sensitized titanium dioxide (TiO2) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In2S3 sensitized TiO2 photoanode, a liquid polysulfide electrolyte, and a Co0.85Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  5. Politique sociale en Afrique de l'Ouest et du Centre | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Initiative Think tank - Fondation Hewlett. Le CRDI et la Fondation William et Flora Hewlett unissent leurs efforts dans le cadre d'une nouvelle initiative destinée à renforcer les groupes de réflexion et centres de recherche sur les... Voir davantageInitiative Think tank - Fondation Hewlett ...

  6. Quantum dot-linked immunosorbent assay (QLISA) using orientation-directed antibodies.

    Science.gov (United States)

    Suzuki, Miho; Udaka, Hikari; Fukuda, Takeshi

    2017-09-05

    An approach similar to the enzyme-linked immunosorbent assay (ELISA), with the advantage of saving time and effort but exhibiting high performance, was developed using orientation-directed half-part antibodies immobilized on CdSe/ZnS quantum dots. ELISA is a widely accepted assay used to detect the presence of a target substance. However, it takes time to quantify the target with specificity and sensitivity owing to signal amplification. In this study, CdSe/ZnS quantum dots are introduced as bright and photobleaching-tolerant fluorescent materials. Since hydrophilic surface coating of quantum dots rendered biocompatibility and functional groups for chemical reactions, the quantum dots were modified with half-sized antibodies after partial reduction. The half-sized antibody could be bound to a quantum dot through a unique thiol site to properly display the recognition domain for the core process of ELISA, which is an antigen-antibody interaction. The reducing conditions were investigated to generate efficient conjugates of quantum dots and half-sized antibodies. This was applied to IL-6 detection, as the quantification of IL-6 is significant owing to its close relationships with various biomedical phenomena that cause different diseases. An ELISA-like assay with CdSe/ZnS quantum dot institution (QLISA; Quantum dot-linked immunosorbent assay) was developed to detect 0.05ng/mL IL-6, which makes it sufficiently sensitive as an immunosorbent assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Compact and highly stable quantum dots through optimized aqueous phase transfer

    Science.gov (United States)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  8. The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Porse, B T; Leviev, I; Mankin, A S

    1998-01-01

    A newly identified class of highly thiostrepton-resistant mutants of the archaeon Halobacterium halobium carry a missense mutation at codon 18 within the gene encoding ribosomal protein L11. In the mutant proteins, a proline, conserved in archaea and bacteria, is converted to either serine...... technique, demonstrated that a general tightening of the C-terminal domain occurred on rRNA binding, while thiostrepton produced a footprint centred on tyrosine 62 at the junction of the N and C-terminal domains of protein L11 complexed to rRNA. The intensity of this protein footprint was strongly reduced...

  9. Directeur, administration des subventions (h/f) | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Diriger l'élaboration de politiques régissant l'administration de projets du Centre ... Tenir à jour un aperçu stratégique des activités de projet du Centre afin d'en .... Gérer le recrutement du personnel de l'administration des subventions dans ...

  10. Photoinduced electric dipole in CuCl quantum dots

    International Nuclear Information System (INIS)

    Masumoto, Yasuaki; Naruse, Fumitaka; Kanno, Atsushi

    2003-01-01

    Electromodulated absorption spectra of CuCl quantum dots modulated at twice the modulation frequency of electric field, 2f, show prominent structure around persistently burned hole. It grows in proportion to square of the electric field in the same manner as the 2f component of electromodulated absorption spectra of the dots without the laser exposure. Even the f component of electromodulated signal was observed around the burned hole position. These observations are explained by considering electric dipole formed in hole burned and photoionized quantum dots. Photoionization not only produces persistent spectral hole burning but also the local built-in electric field and photoinduced dipole moment in quantum dots. The dipole moment is estimated to be about 5 debye for 3.2-nm-radius quantum dots. The dipole moments are randomly oriented but 1% anisotropy is deduced from the electromodulated signal at f

  11. Cell characteristics of FePt nano-dot memories with a high-k Al2O3 blocking oxide

    International Nuclear Information System (INIS)

    Lee, Gae Hun; Lee, Jung Min; Yang, Hyung Jun; Song, Yun Heub; Bea, Ji Cheol; Tanaka, Testsu

    2012-01-01

    The cell characteristics of an alloy FePt nano-dot (ND) charge trapping memory with a high-k dielectric as a blocking oxide was investigated. Adoption of a high-k Al 2 O 3 material as a blocking oxide for the metal nano-dot memory provided a superior scaling of the operation voltage compared to silicon oxide under a similar gate leakage level. For the 40-nm-thick high-k (Al 2 O 3 ) blocking oxide, we confirmed an operation voltage reduction of ∼7 V under the same memory window on for silicon dioxide. Also, this device showed a large memory window of 7.8 V and a low leakage current under 10 -10 A in an area of Φ 0.25 mm. From these results, the use of a dielectric (Al 2 O 3 ) as a blocking oxide for a metal nano-dot device is essential, and a metal nano-dot memory with a high-k dielectric will be one of the candidates for a high-density non-volatile memory device.

  12. Synthesis of CdSe quantum dots for quantum dot sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Neetu, E-mail: singh.neetu1985@gmail.com; Kapoor, Avinashi [Department of Electronic Science, University of Delhi South Campus, New Delhi-110 021 (India); Kumar, Vinod [Department of Physics, University of the Free State, Bloemfontein, ZA9300 (South Africa); Mehra, R. M. [School of Engineering and Technology, Sharda University, Greater Noida-201 306, U.P. (India)

    2014-04-24

    CdSe Quantum Dots (QDs) of size 0.85 nm were synthesized using chemical route. ZnO based Quantum Dot Sensitized Solar Cell (QDSSC) was fabricated using CdSe QDs as sensitizer. The Pre-synthesized QDs were found to be successfully adsorbed on front ZnO electrode and had potential to replace organic dyes in Dye Sensitized Solar Cells (DSSCs). The efficiency of QDSSC was obtained to be 2.06 % at AM 1.5.

  13. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  14. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads.

    Science.gov (United States)

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-10-21

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe(2+) and Fe(3+) on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe(3+). Although both Fe(2+) and Fe(3+) could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe(2+) and Fe(3+). The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe(3+) (60 μmol L(-1)), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe(2+) (60 μmol L(-1)). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe(3+) was reduced to Fe(2+) by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe(2+) to Fe(3+). As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L(-1), with a detection limit (3σ) of 1.25 μmol L(-1) The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.

  15. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  16. Carbon dots decorated vertical SnS{sub 2} nanosheets for efficient photocatalytic oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Zhongzhou [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); Wang, Fengmei; Shifa, Tofik Ahmed; Liu, Kaili; Huang, Yun; Jiang, Chao; He, Jun, E-mail: hej@nanoctr.cn [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China); CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190 (China); Liu, Quanlin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-01

    Metal sulfides are highly desirable materials for photocatalytic water splitting because of their appropriate energy bands. However, the poor stability under light illumination in water hinders their wide applications. Here, two-dimensional SnS{sub 2} nanosheets, along with carbon dots of the size around 10 nm, are uniformly grown on fluorine doped tin oxide glasses with a layer of nickel nanoparticles. Significantly, strong light absorption and enhanced photocurrent density are achieved after integration of SnS{sub 2} nanosheets with carbon dots. Notably, the rate of oxygen evolution reached up to 1.1 mmol g{sup −1} h{sup −1} under simulated sunlight irradiation featuring a good stability.

  17. Cu2 + modulated nitrogen-doped grapheme quantum dots as a turn-off/on fluorescence sensor for the selective detection of histidine in biological fluid

    Science.gov (United States)

    Wang, Zhiyu; Fan, ZheFeng

    2018-01-01

    A highly sensitive sensor for detection of histidine (His) based on the nitrogen-doped graphene quantum dots (N-GQDs)-Cu2 + system has been designed. The N-GQDs were synthesized by one-step hydrothermal approach according to previous report. The fluorescence of N-GQDs can be effectively quenched by Cu2 + due to the binding between Cu2 + and functional groups on the surface of N-GQDs. The high affinity of His to Cu2 + enables Cu2 + to be dissociated from the surface of N-GQDs and recovering the fluorescence. The sensor displayed a sensitive response to His in the concentration range of 0-35 μmol L- 1, with a detection limit of 72.2 nmol L- 1. The proposed method is successfully applied to detect His in samples with a recovery range of 96-102%.

  18. A study on socio-demographic profile and feasibility of DOTS provider registered under RNTCP in Varanasi district Uttar Pradesh

    Directory of Open Access Journals (Sweden)

    Mohd. Afzalul Haque

    2014-03-01

    Full Text Available Introduction: Tuberculosis is a major chronic disorder affecting the larger population more than any other disease in the country. DOTS was introduced in India in 1993 as part of the Revised National Tuberculosis Programme (RNTCP following a review of India’s National Tuberculosis Programme (NTP a year earlier (1 .Patient satisfaction is an important parameter for assessing the quality of patient care services. There is need to assess the health care provider regarding the consumer satisfaction as often as possible, this paper summarizes our experience about role of DOTS provider in the management of TB patient in rural population of Varanasi districts Utter Pradesh. Objective: (1 To assess the perception of registered tuberculosis patients regarding DOTS provider for the treatment of tuberculosis. (2 To assess the accessibility, acceptability & availability of community DOTS provider. Design: A longitudinal study. Setting: Three microscopic centre of Cholapur Tuberculosis unit of Varanasi districts. Methods: Registered patients were interviewed twice: once in the beginning and another at the completion of the treatment or after the permanent discontinuation of the treatment. Patients were interviewed for their socio-demographic profiles, opinion about DOTS and its providers. Side effects experienced and action taken etc. Data was collected on a semi-structured, pre-tested questionnaire. DOTS providers were interviewed and treatment cards analyzed for any interruption of treatment and action taken. Data was collected from 1st June 2004 to 31th June 2005 till the completion of the regimen. Results: Majority of DOTS providers were young males (82.7% of 26 years to 40 years, while the representation of females was only 5 (17.3%. Almost more than 80% of the patients started their treatment within 1-10 days. For majority of cases (83% the distance of DOTS provider from patient’s house was within 1 km. Mean time spent to go to DOTS provider was 27.2

  19. Carbon-Dot and Quantum-Dot-Coated Dual-Emission Core-Satellite Silica Nanoparticles for Ratiometric Intracellular Cu(2+) Imaging.

    Science.gov (United States)

    Zou, Chenchen; Foda, Mohamed Frahat; Tan, Xuecai; Shao, Kang; Wu, Long; Lu, Zhicheng; Bahlol, Hagar Shendy; Han, Heyou

    2016-07-19

    Copper (Cu(2+)) is physiologically essential, but excessive Cu(2+) may cause potential risk to plants and animals due to the bioaccumulative properties. Hence, sensitive recognition is crucial to avoid overintake of Cu(2+), and visual recognition is more favored for practical application. In this work, a dual-emission ratiometric fluorescent nanoprobe was developed possessing the required intensity ratio, which can facilitate the sensitive identification of Cu(2+) by the naked eye. The probe hybridizes two fluorescence nanodots (quantum dots (QDs) and carbon dots (CDs)). Although both of them can be viable fluorescence probes for metal ion detection, rarely research has coupled this two different kinds of fluorescence material in one nanosensor to fabricate a selectively ratiometric fluorescence probe for intracellular imaging. The red emitting CdTe/CdS QDs were capped around the silica microsphere to serve as the response signal label, and the blue-emitting CDs, which is insensitive to the analyte, were covalently attached to the QDs surface to act as the reference signal. This core-satellite hybrid sphere not only improves the stability and brightness of QDs significantly but also decreases the cytotoxicity toward HeLa cells tremendously. Moreover, the Cu(2+) could quench the QDs emission effectively but have no ability for reduction of the CDs emission. Accordingly, a simple, efficient, and precise method for tracing Cu(2+) was proposed. The increase of Cu(2+) concentration in the series of 0-3 × 10(-6) M was in accordance with linearly decrease of the F650/F425 ratio. As for practical application, this nanosensor was utilized to the ratiometric fluorescence imaging of copper ions in HeLa cells.

  20. Short term inhalation toxicity of a liquid aerosol of glutaraldehyde-coated CdS/Cd(OH)2 core shell quantum dots in rats.

    Science.gov (United States)

    Ma-Hock, L; Farias, P M A; Hofmann, T; Andrade, A C D S; Silva, J N; Arnaud, T M S; Wohlleben, W; Strauss, V; Treumann, S; Chaves, C R; Gröters, S; Landsiedel, R; van Ravenzwaay, B

    2014-02-10

    Quantum dots exhibit extraordinary optical and mechanical properties, and the number of their applications is increasing. In order to investigate a possible effect of coating on the inhalation toxicity of previously tested non-coated CdS/Cd(OH)2 quantum dots and translocation of these very small particles from the lungs, rats were exposed to coated quantum dots or CdCl2 aerosol (since Cd(2+) was present as impurity), 6h/d for 5 consecutive days. Cd content was determined in organs and excreta after the end of exposure and three weeks thereafter. Toxicity was determined by examination of broncho-alveolar lavage fluid and microscopic evaluation of the entire respiratory tract. There was no evidence for translocation of particles from the respiratory tract. Evidence of a minimal inflammatory process was observed by examination of broncho-alveolar lavage fluid. Microscopically, minimal to mild epithelial alteration was seen in the larynx. The effects observed with coated quantum dots, non-coated quantum dots and CdCl2 were comparable, indicating that quantum dots elicited no significant effects beyond the toxicity of the Cd(2+) ion itself. Compared to other compounds with larger particle size tested at similarly low concentrations, quantum dots caused much less pronounced toxicological effects. Therefore, the present data show that small particle sizes with corresponding high surfaces are not the only factor triggering the toxic response or translocation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  2. Ultrasensitive electrochemiluminescent immunoassay for morphine using a gold electrode modified with CdS quantum dots, polyamidoamine, and gold nanoparticles

    International Nuclear Information System (INIS)

    Fei, Wenjuan; Chen, Feifei; Sun, Li; Li, Qianhua; Wu, Ying; Yang, Jianping

    2014-01-01

    We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng•mL −1 , with a detection limit as low as 67 pg•mL −1 . The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays. (author)

  3. ZnSe passivation layer for the efficiency enhancement of CuInS2 quantum dots sensitized solar cells

    International Nuclear Information System (INIS)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing; Kovalev, Valery; Chen, Wen

    2014-01-01

    Highlights: • ZnSe is employed as passivation layer in CuInS 2 quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS 2 based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS 2 quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS 2 quantum dot sensitized TiO 2 photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS 2 quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS 2 based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer

  4. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    Energy Technology Data Exchange (ETDEWEB)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); Ibral, Asmaa [Equipe d’Optique et Electronique du Solide, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); Laboratoire d’Instrumentation, Mesure et Contrôle, Département de Physique, Faculté des Sciences, Université Chouaïb Doukkali, B. P. 20 El Jadida Principale, El Jadida (Morocco); El Khamkhami, Jamal [Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences, Université Abdelmalek Essaadi, B.P. 2121 M’Hannech II, 93030 Tétouan (Morocco); and others

    2016-09-15

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  5. Energies and wave functions of an off-centre donor in hemispherical quantum dot: Two-dimensional finite difference approach and ritz variational principle

    International Nuclear Information System (INIS)

    Nakra Mohajer, Soukaina; El Harouny, El Hassan; Ibral, Asmaa; El Khamkhami, Jamal

    2016-01-01

    Eigenvalues equation solutions of a hydrogen-like donor impurity, confined in a hemispherical quantum dot deposited on a wetting layer and capped by an insulating matrix, are determined in the framework of the effective mass approximation. Conduction band alignments at interfaces between quantum dot and surrounding materials are described by infinite height barriers. Ground and excited states energies and wave functions are determined analytically and via one-dimensional finite difference approach in case of an on-center donor. Donor impurity is then moved from center to pole of hemispherical quantum dot and eigenvalues equation is solved via Ritz variational principle, using a trial wave function where Coulomb attraction between electron and ionized donor is taken into account, and by two-dimensional finite difference approach. Numerical codes developed enable access to variations of donor total energy, binding energy, Coulomb correlation parameter, spatial extension and radial probability density with respect to hemisphere radius and impurity position inside the quantum dot.

  6. India | Page 52 | IDRC - International Development Research Centre

    International Development Research Centre (IDRC) Digital Library (Canada)

    Language French. Read more about Startup : Philippine Community eCentres Network. Language English. Read more about Mise sur pied d'un réseau philippin de télécentres communautaires. Language French. Read more about Compétences, gouvernance et nanotechnologies : pleins feux sur l'Inde. Language French.

  7. Enhancement-mode two-channel triple quantum dot from an undoped Si/Si0.8Ge0.2 quantum well hetero-structure.

    Energy Technology Data Exchange (ETDEWEB)

    Studenikin, S. A.; Gaudreau, L.; Kataoka, K.; Austing, D. G.; Lu, Tzu-Ming; Luhman, Dwight; Bethke, Donald Thomas; Wanke, Michael; Lilly, Michael; Carroll, Malcolm S.; Sachrajda, A. S.

    2017-12-01

    We demonstrate coupled triple dot operation and charge sensing capability for the recently introduced quantum dot technology employing undoped Si/Si0.8Ge0.2 hetero-structures which also incorporate a single metal-gate layer to simplify fabrication [T. M. Lu et al., Appl. Phys. Lett. 109, 093102 (2016)]. Si/SiGe hetero-structures with a Ge concentration of 20% rather than the more usual 30% typically encountered offer higher electron mobility. The devices consist of two in-plane parallel electron channels that host a double dot in one channel and a single dot in the other channel. In a device where the channels are sufficiently close a triple dot in a triangular configuration is induced leading to regions in the charge stability diagram where three addition lines of different slope approach each other and anti-cross. In a device where the channels are further apart the single dot charge-senses the double dot with relative change of ~2% in the sensor current. We also highlight temporal drifting and metastability of the Coulomb oscillations. These effects are induced if the temperature environment of the device is not kept constant and arise from non-equilibrium charge redistribution and subsequent slow recovery.

  8. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.

    Science.gov (United States)

    Borisova, Tatiana; Nazarova, Anastasia; Dekaliuk, Mariia; Krisanova, Natalia; Pozdnyakova, Natalia; Borysov, Arsenii; Sivko, Roman; Demchenko, Alexander P

    2015-02-01

    Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals. Almost complete suppression of exocytotic release of the neurotransmitters was caused by C-dots at a concentration of 800 μg/ml. Fluorescent and neuromodulatory features combined in C-dots create base for their potential usage for labeling and visualization of key processes in nerve terminals, and also in theranostics. In addition, natural presence of carbon-containing nanoparticles in the human food chain and in the air may provoke the development of neurologic consequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.

    Science.gov (United States)

    Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan

    2018-02-21

    The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.

  10. A structure development in electron-irradiated type Ia diamond

    International Nuclear Information System (INIS)

    Novikov, N.V.; Ositinskaya, T.D.; Tkach, V.N.

    1998-01-01

    A type Ia diamond crystal with nitrogen impurity in different forms was irradiated by 3.5 MeV electrons with increasing doses 5 centre dot 10 16 , 2 centre dot 10 17 , 4 centre dot 10 17 , 2 centre dot 10 18 e/cm 2 and investigated before and after each dose by positron annihilation, EPR, and optical spectroscopy. After irradiation with the highest dose, the effect of development of a visible defective structure of the crystal is revealed. A description of this effect and data of EPR and IR-measurements depending on irradiation doses are presented. First results of cathodoluminescence (CL) studies in the form CL-topograms and CL-spectra for difference zones of the crystal are also given

  11. Enhancement effect of CdTe quantum dots-IgG bioconjugates on chemiluminescence of luminol-H2O2 system

    International Nuclear Information System (INIS)

    Kanwal, Shamsa; Traore, Zoumana; Zhao Chunfang; Su Xingguang

    2010-01-01

    In this paper we developed an entirely new and highly sensitive luminol-H 2 O 2 flow injection chemiluminescence system using the enhancement effect of CdTe quantum dots-IgG bioconjugates. Immunoglobulin G (IgG) as a kind of bio-molecule was conjugated to different sized CdTe semiconductor quantum dots (QDs). Using PL spectra and CL intensity profiles, it was found that chemiluminescence resonance energy transfer (CRET) was possibly occurring between CdTe-IgG bioconjugate and luminol. Under optimum conditions, increase of IgG concentration in CdTe-IgG bioconjugate resulted enhancing effect on CL intensity of luminol-H 2 O 2 system. Moreover quenching effects on CL intensity by addition of different proteases can construct turn off biosensor for these proteases with low detection limits and wide linear range. Furthermore, the effects of various organic and inorganic species on CdTe-IgG bioconjugates enhanced luminol-H 2 O 2 CL system were also studied in this paper.

  12. dot-app: a Graphviz-Cytoscape conversion plug-in [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Braxton Fitts

    2016-10-01

    Full Text Available dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (*.dot, *.gv files, also known as DOT files due to the *.dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including GraphViz, Gephi, neato, smyrna, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes and advanced analysis and formatting, they do not offer all of the styling options that DOT-based applications (particularly GraphViz do. dot-app enables the interchange of networks between Cytoscape and DOT-based applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

  13. Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: a novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay

    International Nuclear Information System (INIS)

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Zhang, Fuyuan; Liu, Jingmin; Zheng, Wenjie; Wang, Shuo

    2017-01-01

    Highlights: • Electrochemiluminescent MoS 2 -GQDs nanocomposite was fabricated for the first time. • MoS 2 -GQDs hybrid nanocomposite was used as ECL sensing platform. • Molecularly imprinted ECL sensor was fabricated for the determination of MCPA. • MoS 2 -GQDs nanocomposite may advance the developments of ECL sensor. - Abstract: The ECL properties and application of a novel luminescent material molybdenum disulfide-graphene quantum dots (MoS 2 -GQDs) hybrid nanocomposite was reported for the first time. The hybridization of MoS 2 and GQDs endowed nanocomposite with structural and compositional advantages for boosting the ECL performance of GQDs. Impressively, the ECL could be remarkable enhanced using MoS 2 -GQDs hybrid nanocomposite, which was ∼13, ∼185 and ∼596-folds larger than the ECL intensity of GQDs, MoS 2 modified electrodes and bare electrode, respectively. Subsequently, as a sensing platform, the MoS 2 -GQDs hybrid nanocomposite was applied to fabricate molecularly imprinted electrochemiluminescence sensor for the ultrasensitive and selective determination of 2-methyl-4-chlorophenoxyacetic acid. Under optimal conditions, the detection limit of the prepared sensor was 5.5 pmol L −1 (S/N = 3) within a linear concentration range of 10 pmol L −1 –0.1 μmol L −1 . The developped sensor exhibited high sensitivity, good selectivity, reproducibility and stability, suggesting the potential for detecting pesticides and veterinary drugs at trace levels in food safety and environmental control.

  14. The nonlinear optical properties of a magneto-exciton in a strained Ga0.2In0.8As/GaAs quantum dot

    International Nuclear Information System (INIS)

    Kumar, N. R. Senthil; Peter, A. John; Yoo Chang Kyoo

    2013-01-01

    The magnetic field-dependent heavy hole excitonic states in a strained Ga 0.2 In 0.8 As/GaAs quantum dot are investigated by taking into account the anisotropy, non-parabolicity of the conduction band, and the geometrical confinement. The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured. The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field. The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied. The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga 0.2 In 0.8 As/GaAs quantum dot. Heavy hole excitonic absorption spectra, the changes in refractive index, and the third-order susceptibility of third-order harmonic generation are investigated in the Ga 0.2 In 0.8 As/GaAs quantum dot. The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells.

    Science.gov (United States)

    Zhang, Chenguang; Liu, Shaowen; Liu, Xingwei; Deng, Fei; Xiong, Yan; Tsai, Fang-Chang

    2018-03-01

    A photoelectric conversion efficiency (PCE) of 4.9% was obtained under 100 mW cm -2 illumination by quantum-dot-sensitized solar cells (QDSSCs) using a CdS/Mn : CdSe sensitizer. CdS quantum dots (QDs) were deposited on a TiO 2 mesoporous oxide film by successive ionic layer absorption and reaction. Mn 2+ doping into CdSe QDs is an innovative and simple method-chemical bath co-deposition, that is, mixing the Mn ion source with CdSe precursor solution for Mn : CdSe QD deposition. Compared with the CdS/CdSe sensitizer without Mn 2+ incorporation, the PCE was increased from 3.4% to 4.9%. The effects of Mn 2+ doping on the chemical, physical and photovoltaic properties of the QDSSCs were investigated by energy dispersive spectrometry, absorption spectroscopy, photocurrent density-voltage characteristics and electrochemical impedance spectroscopy. Mn-doped CdSe QDs in QDSSCs can obtain superior light absorption, faster electron transport and slower charge recombination than CdSe QDs.

  16. dot-app: a Graphviz-Cytoscape conversion plug-in [version 2; referees: 3 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Braxton Fitts

    2017-07-01

    Full Text Available dot-app is a Cytoscape 3 app that allows Cytoscape to import and export Graphviz (.dot, .gv files, also known as DOT files due to the .dot extension and their conformance to the DOT language syntax. The DOT format was originally created in the early 2000s to represent graph topologies, layouts and formatting. DOT-encoded files are produced and consumed by a number of open-source graph applications, including Graphviz, Gephi, Tulip, and others. While DOT-based graph applications are popular, they emphasize general graph layout and styling over the topological and semantic analysis functions available in domain-focused applications such as Cytoscape. While domain-focused applications have easy access to large networks (10,000 to 100,000 nodes and advanced analysis and formatting, they do not have as many styling options as the Graphviz software suite. dot-app enables the interchange of networks between Cytoscape and DOT-compatible applications so that users can benefit from the features of both. dot-app was first deployed to the Cytoscape App Store in August 2015, has since registered more than 1,200 downloads, and has been highly rated by more than 20 users.

  17. The Aube plant. 2003 status; Centre de l'Aube. Bilan 2003. Centre de stockage de dechets de faible et moyenne activite

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    This brochure summarizes one year of exploitation of the Aube storage center for low- and medium-level radioactive wastes. The status shows a more important activity in 2003 with respect to 2002 with higher volumes of stored wastes, more analyses performed and more visitors. Content: 1 - 2003 key data (transport and receipt of wastes, storage and processing, environment monitoring); 2 - highlights: exploitation, security/safety; 3 - centre life: environment safety, prevention and monitoring, maintenance and recent works, economic impact, communication; 4 - evolution of the centre. (J.S.)

  18. Valley qubit in a gated MoS2 monolayer quantum dot

    Science.gov (United States)

    Pawłowski, J.; Żebrowski, D.; Bednarek, S.

    2018-04-01

    The aim of the presented research is to design a nanodevice, based on a MoS2 monolayer, performing operations on a well-defined valley qubit. We show how to confine an electron in a gate-induced quantum dot within the monolayer, and to perform the not operation on its valley degree of freedom. The operations are carried out all electrically via modulation of the confinement potential by oscillating voltages applied to the local gates. Such quantum dot structure is modeled realistically. Through these simulations we investigate the possibility of realization of a valley qubit in analogy with a realization of the spin qubit. We accurately model the potential inside the nanodevice accounting for proper boundary conditions on the gates and space-dependent materials permittivity by solving the generalized Poisson's equation. The time evolution of the system is supported by realistic self-consistent Poisson-Schrödinger tight-binding calculations. The tight-binding calculations are further confirmed by simulations within the effective continuum model.

  19. Study of InGaN/GaN quantum dot systems by TEM techniques and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Kashtiban, R J; Bangert, U; Harvey, A J; Sherliker, B; Halsall, M P

    2010-01-01

    InGaN/GaN multilayer quantum dot structures produced by MOCVD techniques on c-plane sapphire were studied by transmission electron microscopy (TEM) and photoluminescence (PL) techniques. Indium fluctuations ranging from 1-4 nm were observed with both energy filtered TEM (EFTEM) and high angle annular dark field (HAADF) scanning TEM. The existence of V-shaped defects with nucleation centres at the termination of threading dislocation were observed in HAADF images. There was also evidence of the formation of large quantum dots at low densities from lattice HRTEM images. This was further confirmed by PL measurements through the observation of a single sharp line at low power with the typical saturation behaviour at higher power excitation.

  20. A thermoluminescence study of Z2-centres in terbium-doped NaCl crystals

    International Nuclear Information System (INIS)

    Reddy, K.N.; Ahmed, I.M.; Pandaraiah, N.; Rao, U.V.S.; Babu, V.H.

    1983-01-01

    Thermoluminescence (TL), optical absorption are used to correlate thermal annealing of Z 2 -centres with TL peak occurring around 110 0 C in terbium-doped NaCl crystals. The TL glow peak occurring around 190 0 C is attributed to the thermal annealing of F-centres. The thermal activation parameters are calculated for both Z 2 - and F-centre peaks. (author)

  1. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    Directory of Open Access Journals (Sweden)

    Donald K. L. Chan

    2014-05-01

    Full Text Available TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, thermogravimetric analysis (TGA and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  2. Annealing Effect on Photovoltaic Performance of CdSe Quantum-Dots-Sensitized TiO2 Nanorod Solar Cells

    Directory of Open Access Journals (Sweden)

    Yitan Li

    2012-01-01

    Full Text Available Large area rutile TiO2 nanorod arrays were grown on F:SnO2 (FTO conductive glass using a hydrothermal method at low temperature. CdSe quantum dots (QDs were deposited onto single-crystalline TiO2 nanorod arrays by a chemical bath deposition (CBD method to make a photoelectrode. The solar cell was assembled using a CdSe-TiO2 nanostructure as the photoanode and polysulfide solution as the electrolyte. The annealing effect on optical and photovoltaic properties of CdSe quantum-dots-sensitized TiO2 nanorod solar cells was studied systematically. A significant change of the morphology and a regular red shift of band gap of CdSe nanoparticles were observed after annealing treatment. At the same time, an improved photovoltaic performance was obtained for quantum-dots-sensitized solar cell using the annealed CdSe-TiO2 nanostructure electrode. The power conversion efficiency improved from 0.59% to 1.45% as a consequence of the annealing effect. This improvement can be explained by considering the changes in the morphology, the crystalline quality, and the optical properties caused by annealing treatment.

  3. Soft X-ray excited colour-centre luminescence and XANES studies of calcium oxide

    International Nuclear Information System (INIS)

    Ko, J.Y.P.; Heigl, F.; Yiu, Y.M.; Zhou, X.-T.; Regier, T.; Blyth, R.I.R.; Sham, T.-K.

    2007-01-01

    In this study, we show that colour centres can be produced by irradiating calcium oxide with soft X-rays from a synchrotron radiation source. Using the X-ray excited optical Iuminescence (XEOL) technique, two colour centres, F-centre, and F + -centre can be identified. These colour centres emit photons at characteristic wavelengths. In addition, by performing time-resolved XEOL (TRXEOL), we are able to reveal timing and decay characteristics of the colour centres. We also present X-ray absorption near-edge structure (XANES) spectra collected across oxygen K-edge, calcium L 3,2 -edge, and calcium K-edge. Experimental results are compared with density functional theory (DFT) calculations. (author)

  4. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  5. Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields

    Science.gov (United States)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-09-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.

  6. Interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields

    International Nuclear Information System (INIS)

    Hawrylak, P.; Sheng, W.; Cheng, S.-J.

    2004-01-01

    Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and excitonic quantum Hall droplets at a filling factor υ = 2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons. (author)

  7. Surface plasmon inhibited photo-luminescence activation in CdSe/ZnS core-shell quantum dots

    Czech Academy of Sciences Publication Activity Database

    Chen, J.; Žídek, Karel; Abdellah, M.; Al-Marri, M.J.; Zheng, K.; Pullerits, T.

    2016-01-01

    Roč. 28, č. 25 (2016), č. článku 254001. ISSN 0953-8984 Institutional support: RVO:61389021 Keywords : surface plasmon * gold nanorods * quantum dots * energy transfer * photoactivation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.649, year: 2016 http://dx.doi.org/10.1088/0953-8984/28/25/254001

  8. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Zad, Azam Iraji; Molaei, Mehdi

    2014-01-01

    TiO 2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (V oc = 497 mV, J sc = 11.32 mA/cm 2 , FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Water-Soluble N-Acetyl-L-cysteine-Capped CdTe Quantum Dots Application for Hg(II Detection

    Directory of Open Access Journals (Sweden)

    Tianming Yang

    2013-01-01

    Full Text Available A simple, rapid, and specific method for Hg(II detection has been proposed based on the fluorescence change of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs. The presence of Hg(II ions could quench the fluorescence of QDs at 565 nm and meanwhile produce new peak in 700–860 nm wavelength range. The linear response range is 20–430 nM with the detection limit at 8.0 nM Hg(II. It was found that the position of the new peak was irrelevant to the size of QDs. Furthermore, the mechanism of the quenching of QDs fluorescence by Hg(II and the appearance of new peak in near-infrared area were also discussed and deduced through ultraviolet absorption spectrum, fluorescence spectrum, and X-ray photoelectron spectrum.

  10. Direct-Bandgap InAs Quantum-Dots Have Long-Range Electron--Hole Exchange Whereas Indirect Gap Si Dots Have Short-Range Exchange

    International Nuclear Information System (INIS)

    Juo, J.W.; Franceschetti, A.; Zunger, A.

    2009-01-01

    Excitons in quantum dots manifest a lower-energy spin-forbidden 'dark' state below a spin-allowed 'bright' state; this splitting originates from electron-hole (e-h) exchange interactions, which are strongly enhanced by quantum confinement. The e-h exchange interaction may have both a short-range and a long-range component. Calculating numerically the e-h exchange energies from atomistic pseudopotential wave functions, we show here that in direct-gap quantum dots (such as InAs) the e-h exchange interaction is dominated by the long-range component, whereas in indirect-gap quantum dots (such as Si) only the short-range component survives. As a result, the exciton dark/bright splitting scales as 1/R 2 in InAs dots and 1/R 3 in Si dots, where R is the quantum-dot radius.

  11. [Analytic study of dot blotting for the detection of anti-Jo-1, anti-M2, anti-ribosomes and anti-LKM].

    Science.gov (United States)

    Huguet, S; Sghiri, R; Ballot, E; Johanet, C

    2004-01-01

    The Cyto-Dot 4 HM043 kit commercialised by BMD, has replaced the Cyto-Dot HM010 kit that allowed three auto-antibodies detection (anti-Jo-1, anti-M2 and anti-ribosomal protein). Detection of anti-LKM1 auto-antibody was added. These four auto-antibodies have in common only the intracytoplasmic localisation of their respective antigen. The aim of our study was to evaluate this new kit using 104 sera and to compare our results with reference techniques (indirect immunofluorescence IF for anti-M2, anti-ribosomal protein and anti-LKM1, double immunodiffusion ID for anti-Jo-1 and anti-LKM1, western blotting WB for anti-M2) and with Cyto-Dot HM010. The one hundred and four sera were divided into five groups: Group I (n = 12) with anti-Jo-1 detected by ID; Group II (n = 28) with 26 anti-M2 positive by IF and WB, 2 anti-M2 positive only by WB; Group III (n = 10) with anti-ribosomal protein detected by IF 5 of which precipitated by ID; Group IV (n = 32) with anti-LKM1 by IF and ID divided into 18 AIH2 and 14 HCV; Group V (n = 22) consisting of 14 healthy individuals and 8 patients with hypergammaglobulinemia. Results of this study are similar to those of Cyto-Dot HM010 for the three auto-antibodies already in use. Cyto-Dot 4 is a very good anti-LKM1 confirmation method as it is ID. Copyright John Libbey Eurotext 2003.

  12. Spin storage in quantum dot ensembles and single quantum dots

    International Nuclear Information System (INIS)

    Heiss, Dominik

    2009-01-01

    electron spin lifetimes. The longest measured value is T 1 h =270 μs at B=1.5 T and T=8 K. Based on this spin detection technique in small ensembles, electron spin resonance experiments with the goal to study coherence properties were attempted. After optical charge generation and storage, a spin-conditional absorption of a circularly polarized light pulse tuned to the singly charged quantum dot s-shell absorption converts the spin information of the resident electron to charge information. Subsequently, time-gated photoluminescence directly reveals the charge state of the quantum dot (1e, 2e) and, therefore, the spin orientation of the resident electron. Schottky diode devices suitable for this single dot spin readout scheme were fabricated and characterized with time-gated photoluminescence. The electric field regimes applicable for reset, optical charging and reliable charge storage were identified. Furthermore, the fidelity of charge readout was investigated as a function of excitation wavelength, applied electric field and optical excitation power. Additional measurements using resonant excitation showed that a single quantum dot can be selectively charged with a single electron via optical excitation in its p-shell. The tunneling escape of this optically initialized electron has been determined, proving the feasibility of reliable charge detection in time-resolved measurements. Extrapolated to reasonable storage fields F=20 kV/cm the tunneling time of the electron exceeds seconds. The electron spin relaxation in a single quantum dot has been determined as a function of temperature at B=12 T. (orig.)

  13. Spin storage in quantum dot ensembles and single quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Dominik

    2009-10-15

    } in the microsecond range, therefore, comparable with electron spin lifetimes. The longest measured value is T{sub 1}{sup h} =270 {mu}s at B=1.5 T and T=8 K. Based on this spin detection technique in small ensembles, electron spin resonance experiments with the goal to study coherence properties were attempted. After optical charge generation and storage, a spin-conditional absorption of a circularly polarized light pulse tuned to the singly charged quantum dot s-shell absorption converts the spin information of the resident electron to charge information. Subsequently, time-gated photoluminescence directly reveals the charge state of the quantum dot (1e, 2e) and, therefore, the spin orientation of the resident electron. Schottky diode devices suitable for this single dot spin readout scheme were fabricated and characterized with time-gated photoluminescence. The electric field regimes applicable for reset, optical charging and reliable charge storage were identified. Furthermore, the fidelity of charge readout was investigated as a function of excitation wavelength, applied electric field and optical excitation power. Additional measurements using resonant excitation showed that a single quantum dot can be selectively charged with a single electron via optical excitation in its p-shell. The tunneling escape of this optically initialized electron has been determined, proving the feasibility of reliable charge detection in time-resolved measurements. Extrapolated to reasonable storage fields F=20 kV/cm the tunneling time of the electron exceeds seconds. The electron spin relaxation in a single quantum dot has been determined as a function of temperature at B=12 T. (orig.)

  14. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  15. ZnSe passivation layer for the efficiency enhancement of CuInS{sub 2} quantum dots sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Zhuoyin; Liu, Yueli; Zhao, Yinghan; Chen, Keqiang; Cheng, Yuqing [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Kovalev, Valery [Department of Mechanics and Mathematics, Moscow State University named after M.V. Lomonosov, Leninskie Gory 1, 119992 Moscow (Russian Federation); Chen, Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2014-02-25

    Highlights: • ZnSe is employed as passivation layer in CuInS{sub 2} quantum dots sensitized solar cells. • Slight red-shift has been occurred in UV–vis absorption spectra with ZnSe coating. • CuInS{sub 2} based solar cells coated by ZnSe have better efficiency than that of ZnS. • Higher rate of charge transport can be produced after coating with ZnSe. -- Abstract: The effect of ZnSe passivation layer is investigated in the CuInS{sub 2} quantum dot sensitized solar cells, which is used to improve the photovoltaic performance. The CuInS{sub 2} quantum dot sensitized TiO{sub 2} photo-anodes are prepared by assembly linking technique, and then deposited by the ZnSe passivation layer using the successive ionic layer absorption and reaction technique. The optical absorption edge and photoluminescence peak have slightly red-shifted after the passivation layer coating. Under solar light illumination, the ZnSe passivation layer based CuInS{sub 2} quantum dot sensitized solar cells have the higher photovoltaic efficiency of 0.95% and incident photon conversion efficiency response than that of pure CuInS{sub 2} based solar cells and ZnS passivation layer based solar cells, as the electron injection rate becomes faster after coating with ZnSe passivation layer.

  16. Studies of quantum dots in the quantum Hall regime

    Science.gov (United States)

    Goldmann, Eyal

    We present two studies of quantum dots in the quantum Hall regime. In the first study, presented in Chapter 3, we investigate the edge reconstruction phenomenon believed to occur when the quantum dot filling fraction is n≲1 . Our approach involves the examination of large dots (≤40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction. In the second study, presented in Chapter 4, we investigate quantum dots in the fractional quantum Hall regime using a Hartree formulation of composite fermion theory. We find that under appropriate conditions, the chemical potential of the dots oscillates periodically with B due to the transfer of composite fermions between quasi-Landau bands. This effect is analogous the addition spectrum oscillations which occur in quantum dots in the integer quantum Hall regime. Period f0 oscillations are found in sharply confined dots with filling factors nu = 2/5 and nu = 2/3. Period 3 f0 oscillations are found in a parabolically confined nu = 2/5 dot. More generally, we argue that the oscillation period of dots with band pinning should vary continuously with B, whereas the period of dots without band pinning is f0 .

  17. Optical and structural properties of ensembles of colloidal Ag2S quantum dots in gelatin

    International Nuclear Information System (INIS)

    Ovchinnikov, O. V.; Smirnov, M. S.; Shapiro, B. I.; Shatskikh, T. S.; Perepelitsa, A. S.; Korolev, N. V.

    2015-01-01

    The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag 2 S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag 2 S quantum dots is explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes

  18. Hubble's View of Little Blue Dots

    Science.gov (United States)

    Kohler, Susanna

    2018-02-01

    with masses spanning 105.8107.4solar masses, specific star formation rates of 10-7.4, and redshifts of 0.5 z 5.4.Exploring these little blue dots, the Elmegreens find that the galaxies sizes tend to be just a few hundred light-years across. They are gas-dominated; gas currently outweighs stars in these galaxies by perhaps a factor of five. Impressively, based on the incredibly high specific star formation rates observed in these little blue dots, they appear to have formed all of their stars in the last 1% of the age of the universe for them.An Origin for Globulars?Log-log plot of star formation rate vs. mass for the three main groups of little blue dots (red, green, and blue markers), a fourth group of candidates with different properties (brown markers), and previously discovered local blueberry galaxies. The three main groups of little blue dots appear to be low-mass analogs of blueberries. [Elmegreen Elmegreen 2017]Intriguingly, this rapid star formation might be the key to answering a long-standing question: where do globular clusters come from? The Elmegreens propose that little blue dots might actually be an explanation for the origin of these orbiting, spherical, low-metallicity clusters of stars.The authors demonstrate that, if the current star formation rates observed in little blue dots were to persist for another 50 Myr before feedback or gas exhaustion halted star production, the little blue dots could form enough stars to create clusters of roughly a million solar masses which is large enough to explain the globular clusters we observe today.If little blue dots indeed rapidly produced such star clusters in the past, the clusters could later be absorbed into the halos of todays spiral and elliptical galaxies, appearing to us as the low-metallicity globular clusters that orbit large galaxies today.CitationDebra Meloy Elmegreen and Bruce G. Elmegreen 2017 ApJL 851 L44. doi:10.3847/2041-8213/aaa0ce

  19. Transport in quantum dots

    International Nuclear Information System (INIS)

    Deus, Fernanda; Continetino, Mucio

    2011-01-01

    Full text. In this work we study the time dependent transport in interacting quantum dot. This is a zero-dimensional nano structure system which has quantized electronic states. In our purpose, we are interested in studying such system in a Coulomb blockade regime where a mean-field treatment of the electronic correlations are appropriate. The quantum dot is described by an Anderson type of Hamiltonian where the hybridization term arises from the contact with the leads. We consider a time dependence of both the energy of the localized state in the quantum dot and of the hybridization-like term. These time dependent parameters, under certain conditions, induce a current in the quantum dot even in the absence of difference on the chemical potential of the leads. The approach to this non-equilibrium problem requires the use of a Keldysh formalism. We calculate the non- equilibrium Green's functions and obtain results for the average (equilibrium term) and the non-equilibrium values of the electronic occupation number in the dot. we consider the possibility of a magnetic solution, with different values for the average up and down spins in the quantum dot. Our results allow to obtain, for instance, the tunneling current through the dot. The magnetic nature of the dot, for a certain range of parameters should give rise also to an induced spin current through the dot

  20. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation.

    Science.gov (United States)

    Fu, Xiao; Ilanchezhiyan, P; Mohan Kumar, G; Cho, Hak Dong; Zhang, Lei; Chan, A Sattar; Lee, Dong J; Panin, Gennady N; Kang, Tae Won

    2017-02-02

    4H-SnS 2 layered crystals synthesized by a hydrothermal method were used to obtain via liquid phase exfoliation quantum dots (QDs), consisting of a single layer (SLQDs) or multiple layers (MLQDs). Systematic downshift of the peaks in the Raman spectra of crystals with a decrease in size was observed. The bandgap of layered QDs, estimated by UV-visible absorption spectroscopy and the tunneling current measurements using graphene probes, increases from 2.25 eV to 3.50 eV with decreasing size. 2-4 nm SLQDs, which are transparent in the visible region, show selective absorption and photosensitivity at wavelengths in the ultraviolet region of the spectrum while larger MLQDs (5-90 nm) exhibit a broad band absorption in the visible spectral region and the photoresponse under white light. The results show that the layered quantum dots obtained by liquid phase exfoliation exhibit well-controlled and regulated bandgap absorption in a wide tunable wavelength range. These novel layered quantum dots prepared using an inexpensive method of exfoliation and deposition from solution onto various substrates at room temperature can be used to create highly efficient visible-blind ultraviolet photodetectors and multiple bandgap solar cells.

  1. Quantum Dot-Based Luminescent Oxygen Channeling Assay for Potential Application in Homogeneous Bioassays.

    Science.gov (United States)

    Zhuang, Si-Hui; Guo, Xin-Xin; Wu, Ying-Song; Chen, Zhen-Hua; Chen, Yao; Ren, Zhi-Qi; Liu, Tian-Cai

    2016-01-01

    The unique photoproperties of quantum dots are promising for potential application in bioassays. In the present study, quantum dots were applied to a luminescent oxygen channeling assay. The reaction system developed in this study was based on interaction of biotin with streptavidin. Carboxyl-modified polystyrene microspheres doped with quantum dots were biotinylated and used as acceptors. Photosensitizer-doped carboxyl-modified polystyrene microspheres were conjugated with streptavidin and used as donors. The results indicated that the singlet oxygen that was released from the donor beads diffused into the acceptor beads. The acceptor beads were then exited via thioxene, and were subsequently fluoresced. To avoid generating false positives, a high concentration (0.01 mg/mL) of quantum dots is required for application in homogeneous immunoassays. Compared to a conventional luminescent oxygen channeling assay, this quantum dots-based technique requires less time, and would be easier to automate and miniaturize because it requires no washing to remove excess labels.

  2. Polymer dots grafted TiO2 nanohybrids as high performance visible light photocatalysts.

    Science.gov (United States)

    Li, Gen; Wang, Feng; Liu, Peng; Chen, Zheming; Lei, Ping; Xu, Zhongshan; Li, Zengxi; Ding, Yanfen; Zhang, Shimin; Yang, Mingshu

    2018-04-01

    As a new member of carbon dots (CDs), Polymer dots (PDs) prepared by hydrothermal treatment of polymers, usually consist of the carbon core and the connected partially degraded polymer chains. This type of CDs might possess aqueous solubility, non-toxicity, excellent stability against photo-bleaching and high visible light activity. In this research, PDs were prepared by a moderate hydrothermal treatment of polyvinyl alcohol, and PDs grafted TiO 2 (PDs-TiO 2 ) nanohybrids with TiOC bonds were prepared by a facile in-situ hydrothermal treatment of PDs and Ti (SO 4 ) 2 . Under visible light irradiation, the PDs-TiO 2 demonstrate excellent photocatalytic activity for methyl orange degradation, and the photocatalytic rate constant of PDs-TiO 2 is 3.6 and 9.5 times higher than that of pure TiO 2 and commercial P25, respectively. In addition, the PDs-TiO 2 exhibit good recycle stability under UV-Vis light irradiation. The interfacial TiOC bonds and the π-conjugated structures in PDs-TiO 2 can act as the pathways to quickly transfer the excited electrons between PDs and TiO 2 , therefore contribute to the excellent photocatalytic activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  4. Eco-friendly intracellular biosynthesis of CdS quantum dots without changing Escherichia coli's antibiotic resistance.

    Science.gov (United States)

    Yan, Zheng-Yu; Du, Qing-Qing; Qian, Jing; Wan, Dong-Yu; Wu, Sheng-Mei

    2017-01-01

    In the paper, a green and efficient biosynthetical technique was reported for preparing cadmium sulfide (CdS) quantum dots, in which Escherichia coli (E. coli) was chosen as a biomatrix. Fluorescence emission spectra and fluorescent microscopic photographs revealed that as-produced CdS quantum dots had an optimum fluorescence emission peak located at 470nm and emitted a blue-green fluorescence under ultraviolet excitation. After extracted from bacterial cells and located the nanocrystals' foci in vivo, the CdS quantum dots showed a uniform size distribution by transmission electron microscope. Through the systematical investigation of the biosynthetic conditions, including culture medium replacement, input time point of cadmium source, working concentrations of raw inorganic ions, and co-cultured time spans of bacteria and metal ions in the bio-manufacture, the results revealed that CdS quantum dots with the strongest fluorescence emission were successfully prepared when E. coli cells were in stationary phase, with the replacement of culture medium and following the incubation with 1.0×10 -3 mol/L cadmium source for 2 days. Results of antimicrobial susceptibility testing indicated that the sensitivities to eight types of antibiotics of E. coli were barely changed before and after CdS quantum dots were prepared in the mild temperature environment, though a slight fall of antibiotic resistance could be observed, suggesting hinted the proposed technique of producing quantum dots is a promising environmentally low-risk protocol. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of γ-irradiation on the lattice parameter and colour centre concentration in pure Ca2+, Sr2+ and Eu2+ doped KCl crystals

    International Nuclear Information System (INIS)

    Damm, J.Z.; Stepien-Damm, J.

    1980-01-01

    The changes of lattice parameter and colour centre concentration are examined in KCl crystals (both pure and Me 2+ -doped) irradiated by γ-rays at room temperature. For the pure crystals the relative volume change vs. F-centre concentration plot reveals the presence of two stages, one ascribed to the introduction of colour centre pairs (or F centres only) and other to the generation of new dislocations (or new dislocations with trapped-hole centres). In Me 2+ doped crystals the lattice expansion bears a complex character (in the initial irradiation stage a transient maximum appears). Additional anomaly appears in Eu 2+ KCl in the high-dose range where in spite of a distinct F-centre concentration drop a marked raise of the lattice parameter is observed. (author)

  6. Energy transfer in aggregated CuInS2/ZnS core-shell quantum dots deposited as solid films

    International Nuclear Information System (INIS)

    Gardelis, S; Georgiadou, D; Travlos, A; Nassiopoulou, A G; Fakis, M; Droseros, N

    2017-01-01

    We report on the morphology and optical properties of CuInS 2 /ZnS core-shell quantum dots in solid films by means of AFM, SEM, HRTEM, steady state and time-resolved photoluminescence (PL) spectroscopy. The amount of aggregation of the CuInS 2 /ZnS QDs was controlled by changing the preparation conditions of the films. A red-shift of the PL spectrum of CuInS 2 /ZnS core-shell quantum dots, deposited as solid films on silicon substrates, is observed upon increasing the amount of aggregation. The presence of larger aggregates was found to lead to a larger PL red-shift. Besides, as the degree of aggregation increased, the PL decay became slower. We attribute the observed PL red-shift to energy transfer from the smaller to the larger dots within the aggregates, with the emission being realized via a long decay recombination mechanism (100–200 ns), the origin of which is discussed. (paper)

  7. Ethiopia : tous les projets | Page 3 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le gouvernement de l'Éthiopie utilise de plus en plus les résultats de recherche dans l'élaboration de ses politiques et un nombre croissant de professionnels axés sur la recherche sont chargés des politiques. Date de début : 2 juillet 2009. End Date: 28 octobre 2014. Sujet: RESEARCH CENTRES, RESEARCH ...

  8. Resonant shallow donor magnetopolaron effect in a GaAs/AlGaAs quantum dot in high magnetic fields

    International Nuclear Information System (INIS)

    Zhu Kadi.

    1993-11-01

    Resonant shallow donor magnetopolaron effect in a GaAs/AlGaAs quantum dot in high magnetic fields is investigated by the variational treatment. It is shown that both the cyclotron resonant frequency ω * c+ due to the 1s-p+ hydrogenic transition and the cyclotron resonant frequency ω * c- due to the 1s-p - hydrogenic transition increase with the decrease of the dot size. The cyclotron resonant frequency ω * c+ is always larger than the bulk LO-phonon frequency ω LO , while the cyclotron resonant frequency ω * c- is lower than ω LO for larger quantum dots (l 0 > 2.0.r 0 , r 0 is the polaron radius). The results also show that the Coulomb interaction effect on the resonant frequencies is significant. (author). 26 refs, 3 figs

  9. Novel Synthesis of Slightly Fluorinated Graphene Quantum Dots with Luminescent and Paramagnetic Properties through Thermal Cutting of Fluorinated Graphene

    Science.gov (United States)

    Feng, Qian; Xiao, Wenqing; Zheng, Yongping; Lin, Yuda; Li, Jiaxin; Ye, Qingying; Huang, Zhigao

    2018-01-01

    A novel approach has been developed to synthesize slightly fluorinated graphene quantum dots (GQDs-F) through thermal cutting of highly fluorinated graphene. The fluorinated graphene with substantial structure defects is fragile and is readily attacked. The direct evaporation of abundant CFn (n = 2, 3) groups near structure defects lead to the loss of adjacent skelton C atoms, and the fluorinated graphene can be thermally cut into GQDs-F with a relatively uniform nanosize in pyrolysis at 810 K. The GQDs-F with a low F/C atomic ratio of ca. 0.03 exhibit excitation wavelength-dependent properties with multicolor photoluminescence (PL) from blue to green. At the same time, F adatoms that are most likely located at the edges of GQDs-F have a high efficiency of introducing paramagnetic centres, and GQDs-F show a strong paramagnetism because of sp3-type defects and magnetic zigzag edges. The graphene quantum dots with such multimodal capabilities should have great applied value in material science. PMID:29316730

  10. Ultra-large scale synthesis of high electrochemical performance SnO{sub 2} quantum dots within 5 min at room temperature following a growth self-termination mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Hongtao, E-mail: htcui@ytu.edu.cn; Xue, Junying; Ren, Wanzhong; Wang, Minmin

    2015-10-05

    Highlights: • SnO{sub 2} quantum dots were prepared at an ultra-large scale at room temperature within 5 min. • The grinding of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine produces quantum dots. • The reactions were self-terminated through the rapid consumption of water. • The obtained SnO{sub 2} quantum dots own high electrochemical performance. - Abstract: SnO{sub 2} quantum dots are prepared at an ultra-large scale by a productive synthetic procedure without using any organic ligand. The grinding of solid mixture of SnCl{sub 2}⋅2H{sub 2}O and ammonium persulphate with morpholine in a mortar at room temperature produces 1.2 nm SnO{sub 2} quantum dots within 5 min. The formation of SnO{sub 2} is initiated by the reaction between tin ions and hydroxyl groups generated from hydrolysis of morpholine in the released hydrate water from SnCl{sub 2}⋅2H{sub 2}O. It is considered that as water is rapidly consumed by the hydrolysis reaction of morpholine, the growth process of particles is self-terminated immediately after their transitory period of nucleation and growth. As a result of simple procedure and high toleration to scaling up of preparation, at least 50 g of SnO{sub 2} quantum dots can be produced in one batch in our laboratory. The as prepared quantum dots present high electrochemical performance due to the effective faradaic reaction and the alternative trapping of electrons and holes.

  11. Biocompatibility of quantum dots (CdSe/ZnS ) in human amniotic membrane-derived mesenchymal stem cells in vitro.

    Science.gov (United States)

    Wang, Gongping; Zeng, Guangwei; Wang, Caie; Wang, Huasheng; Yang, Bo; Guan, Fangxia; Li, Dongpeng; Feng, Xiaoshan

    2015-06-01

    Amniotic membrane-derived mesenchymal stem cells (hAM-dMSCs) are a potential source of mesenchymal stem cells which could be used to repair skin damage. The use of mesenchymal stem cells to repair skin damage requires safe, effective and biocompatible agents to evaluate the effectiveness of the result. Quantum dots (QDs) composed of CdSe/ZnS are semiconductor nanocrystals with broad excitation and narrow emission spectra, which have been considered as a new chemical and fluorescent substance for non-invasively labeling different cells in vitro and in vivo. This study investigated the cytotoxic effects of QDs on hAM-dMSCs at different times following labeling. Using 0.75, 1.5 and 3.0 μL between quantum dots, labeled human amniotic mesenchymal stem cells were collected on days 1, 2 and 4 and observed morphological changes, performed an MTT cell growth assay and flow cytometry for mesenchymal stem cells molecular markers. Quantum dot concentration 0.75 μg/mL labeled under a fluorescence microscope, cell morphology was observed, The MTT assay showed cells in the proliferative phase. Flow cytometry expression CD29, CD31, CD34, CD44, CD90, CD105 and CD106. Within a certain range of concentrations between quantum dots labeled human amniotic mesenchymal stem cells has good biocompatibility.

  12. New colour centres in KCl:(Tl+ + Ca2+) and KCl:(Tl+ + Sr2+) crystals

    International Nuclear Information System (INIS)

    Ioan, A.; Topa, V.; Giurgea, M.

    1978-01-01

    Electrolytic colouring under unusual conditions (low temperature and high voltage) gives rise to the appearance of three new absorption bands peaking at 3.2, 2.5, and 1.7 eV and at 2.8, 2.1, and 1.5 eV in KCl:(Tl + + Ca 2+ ) and in KCl:(Tl + + Sr 2+ ) single crystals, respectively. The modifications of the absorption spectra of the coloured crystals induced by the application of a reversed electric field at the colouring temperature or by heat treatment are investigated. It is likely that the colour centre responsible for the new absorption bands is an aggregate centre which, besides an Tl - -complex, contains also at least an Ca(Sr) ion, a trapped electron, and an anionic vacancy. (author)

  13. DotLens smartphone microscopy for biological and biomedical applications (Conference Presentation)

    Science.gov (United States)

    Sung, Yu-Lung; Zhao, Fusheng; Shih, Wei-Chuan

    2017-02-01

    Recent advances in inkjet-printed optics have created a new class of lens fabrication technique. Lenses with a tunable geometry, magnification, and focal length can be fabricated by dispensing controlled amounts of liquid polymer onto a heated surface. This fabrication technique is highly cost-effective, and can achieve optically smooth surface finish. Dubbed DotLens, a single of which weighs less than 50 mg and occupies a volume less than 50 μL. DotLens can be attached onto any smartphone camera akin to a contact lens, and enable smartphones to obtain image resolution as fine as 1 µm. The surface curvature modifies the optical path of light to the image sensor, and enables the camera to focus as close as 2 mm. This enables microscopic imaging on a smartphone without any additional attachments, and has shown great potential in mobile point-of-care diagnostic systems, particularly for histology of tissue sections and cytology of blood cells. DotLens Smartphone Microscopy represents an innovative approach fundamentally different from other smartphone microscopes. In this paper, we describe the application and performance of DotLens smartphone microscopy in biological and biomedical research. In particular, we show recent results from images collected from pathology tissue slides with cancer features. In addition, we show performance in cytological analysis of blood smear. This tool has empowered Citizen Science investigators to collect microscopic images from various interesting objects.

  14. Résultats de recherche | Page 173 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cette recherche s'inscrit dans le contexte d'une superposition de deux faits ... de technologies de l'information et de la communication (TIC), ou télécentre, dans ... Le Centro de Tecnologia e Sociedade (CTS - centre pour la technologie et la ...

  15. DOT's CAFE rulemaking analysis.

    Science.gov (United States)

    2013-02-13

    Presentation discusses what DOT needs to consider in setting CAFE standards. How DOT's use of the CAFE Compliance and Effects Modeling System helps to analyze potential CAFE Standards. How DOT might approach the next round of CAFE standards for model...

  16. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    OpenAIRE

    Yudi Darma

    2008-01-01

    Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter) have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD) on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of ...

  17. Quasi-zero-dimensional cobalt-doped CeO2 dots on Pd catalysts for alcohol electro-oxidation with enhanced poisoning-tolerance.

    Science.gov (United States)

    Tan, Qiang; Zhu, Haiyan; Guo, Shengwu; Chen, Yuanzhen; Jiang, Tao; Shu, Chengyong; Chong, Shaokun; Hultman, Benjamin; Liu, Yongning; Wu, Gang

    2017-08-31

    Deactivation of an anode catalyst resulting from the poisoning of CO ad -like intermediates is one of the major problems for methanol and ethanol electro-oxidation reactions (MOR & EOR), and remains a grand challenge towards achieving high performance for direct alcohol fuel cells (DAFCs). Herein, we report a new approach for the preparation of ultrafine cobalt-doped CeO 2 dots (Co-CeO 2 , d = 3.6 nm), which can be an effective anti-poisoning promoter for Pd catalysts towards MOR and EOR in alkaline media. Compared to Pd/CeO 2 and pure Pd, the hybrid Pd/Co-CeO 2 nanocomposite catalyst exhibited a much enhanced activity and remarkable anti-poisoning ability for both MOR and EOR. The nanocomposite catalyst showed much higher mass activity (4×) than a state-of-the-art PtRu catalyst. The promotional mechanism was elucidated using extensive characterization and density-functional theory (DFT). A bifunctional effect of the Co-CeO 2 dots was discovered to be due to (i) an enhanced electronic interaction between Co-CeO 2 and Pd dots and (ii) the increased oxygen storage capacity of Co-CeO 2 dots to facilitate the oxidation of CO ad . Therefore, the Pd/Co-CeO 2 nanocomposite appears to be a promising catalyst for advanced DAFCs with low cost and high performance.

  18. Safety assessment and environmental monitoring of Centre de l'Aube, France

    International Nuclear Information System (INIS)

    Chevrier, G.

    1993-01-01

    The new low-level waste disposal 'Centre de l'Aube', in operation since January 1992, has been characterized in term of environment and activity since the very first stages of the siting process, eight years ago. The media in which such systematic monitoring is made are divided in to two categories: inside the facility, and outside the facility. Inside the facility, controls are made on surface running water, on infiltrated water collected in the monitoring galleries network, on underground water, on water treatment facility releases, and on storm-basin water. Also monitored are the sediments and mud from storm-basin and underground galleries, as well as atmospheric dust and radioactivity level at various places. Outside the facility, controls are made on water from the rivers and from water table, as well as on vegetation and milk. The actual figures are published by Andra on a three months basis and are widely distributed directly or through the Local Information Commission

  19. CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion

    International Nuclear Information System (INIS)

    Adegoke, Oluwasesan; Hosten, Eric; McCleland, Cedric; Nyokong, Tebello

    2012-01-01

    Graphical abstract: A bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) showed a high selectivity and sensitivity for the determination of bromide ion using fluorescence recovery. Highlights: ► Water soluble CdTe quantum dots interact with tetramethylpiperidine-N-oxide. ► Quantum dots fluorescence is quenched by the radical. ► In the presence of bromide ions the fluorescence is restored. ► The sensor is more selective to bromine ions than other common ions. - Abstract: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 μM. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.

  20. Simulation of quantum dots size and spacing effect for intermediate band solar cell application based on InAs quantum dots arrangement in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hendra, P. I. B., E-mail: ib.hendra@gmail.com; Rahayu, F., E-mail: ib.hendra@gmail.com; Darma, Y., E-mail: ib.hendra@gmail.com [Physical Vapor Deposition Laboratory, Physics of Material Electronics Research, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Intermediate band solar cell (IBSC) has become a promising technology in increasing solar cell efficiency. In this work we compare absorption coefficient profile between InAs quantum dots with GaAs bulk. We calculate the efficiency of GaAs bulk and GaAs doped with 2, 5, and 10 nm InAs quantum dot. Effective distances in quantum dot arrangement based on electron tunneling consideration were also calculated. We presented a simple calculation method with low computing power demand. Results showed that arrangement of quantum dot InAs in GaAs can increase solar cell efficiency from 23.9 % initially up to 60.4%. The effective distance between two quantum dots was found 2 nm in order to give adequate distance to prevent electron tunneling and wave functions overlap.

  1. A strategy of combining SILAR with solvothermal process for In2S3 sensitized quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang, Peizhi; Tang, Qunwei; Ji, Chenming; Wang, Haobo

    2015-01-01

    Graphical abstract: - Highlights: • In 2 S 3 sensitized TiO 2 anode is prepared by combining SILAR with solvothermal process. • The deposition cycle in SILAR process has an impact on cell performances. • A promising conversion efficiency of 1.39% is obtained for the optimal device. • The cell performances are markedly increased compared with SILAR technique. - Abstract: Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In 2 S 3 ) quantum dot-sensitized titanium dioxide (TiO 2 ) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In 2 S 3 sensitized TiO 2 photoanode, a liquid polysulfide electrolyte, and a Co 0.85 Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  2. Short-wavelength InAlGaAs/AlGaAs quantum dot superluminescent diodes

    Science.gov (United States)

    Liang, De-Chun; An, Qi; Jin, Peng; Li, Xin-Kun; Wei, Heng; Wu, Ju; Wang, Zhan-Guo

    2011-10-01

    This paper reports the fabrication of J-shaped bent-waveguide superluminescent diodes utilizing an InAlGaAs/AlGaAs quantum dot active region. The emission spectrum of the device is centred at 884 nm with a full width at half maximum of 37 nm and an output power of 18 mW. By incorporating an Al composition into the quantum dot active region, short-wavelength superluminescent diode devices can be obtained. An intersection was found for the light power-injection current curves measured from the straight-waveguide facet and the bent-waveguide facet, respectively. The result is attributed to the conjunct effects of the gain and the additional loss of the bent waveguide. A numerical simulation is performed to verify the qualitative explanation. It is shown that bent waveguide loss is an important factor that affects the output power of J-shaped superluminescent diode devices.

  3. Two optically active molybdenum disulfide quantum dots as tetracycline sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuosen; Lin, Jintai [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Gao, Jinwei [Institute for Advanced Materials, Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, 510006 (China)

    2016-08-01

    In this work, we use the hydrothermal method to develop two luminescent MoS{sub 2} quantum dots (QDs) from L-cysteine and glutathione as sulfur precursors. The special blue emissions give rise to an instantaneous determination of tetracycline (TC) through the quenching of its luminescence. The accessibility of the optical materials and recognition mechanism have been extensively studied. This strategy demonstrated that MoS{sub 2} could act as a new platform for anchoring bioactive species or particular functional moieties. - Highlights: • MoS{sub 2} nanostructures with water solubility have been fabricated. • Blue emission has been achieved. • It displays selective detection to tetracyclines in water.

  4. Thioglycolic acid-capped CuInS2/ZnS quantum dots as fluorescent probe for cobalt ion detection

    International Nuclear Information System (INIS)

    Zi, Lili; Huang, Yu; Yan, Zhengyu; Liao, Shenghua

    2014-01-01

    A novel sensing fluorescent probe based on the fluorescence quenching of the thioglycolic acid-capped CuInS 2 /ZnS quantum dots (CuInS 2 /ZnS/TGA QDs) was established for cobalt ions detection. The fluorescence quenching of CuInS 2 /ZnS/TGA QDs was due to the increasing surface deficiency and the inner-filter effect, which were attributed to the reaction between Co 2+ and sulfur bonds on the surface of QDs. The quenching curve could be fitted by a typical Stern–Volmer-type equation, with a linear relationship between the quenching efficiency and the concentration of cobalt ions in the range of 0.3012–90.36 μmol L −1 . And the detection limit (S/N=3) for Co 2+ was 0.16 μmol L −1 . Therefore, the established probe provided a simple, rapid, cheap and sensitive method for Co 2+ detection. In a word, this method can be used to detect Co 2+ in the environment. -- Highlights: • The CuInS2/ZnS QDs were used for the first time as a fluorescent probe for Co 2+ detection. • The dramatic color change could be observed when Co 2+ was added into the QDs solution. • The quenching of QDs was due to the increasing surface deficiency and the inner-filter effect. • This rapid, cheap and sensitive method was applied to the detection of Co 2+ in simulated water

  5. Fabrication of quantum-dot devices in graphene

    Directory of Open Access Journals (Sweden)

    Satoshi Moriyama, Yoshifumi Morita, Eiichiro Watanabe, Daiju Tsuya, Shinya Uji, Maki Shimizu and Koji Ishibashi

    2010-01-01

    Full Text Available We describe our recent experimental results on the fabrication of quantum-dot devices in a graphene-based two-dimensional system. Graphene samples were prepared by micromechanical cleavage of graphite crystals on a SiO2/Si substrate. We performed micro-Raman spectroscopy measurements to determine the number of layers of graphene flakes during the device fabrication process. By applying a nanofabrication process to the identified graphene flakes, we prepared a double-quantum-dot device structure comprising two lateral quantum dots coupled in series. Measurements of low-temperature electrical transport show the device to be a series-coupled double-dot system with varied interdot tunnel coupling, the strength of which changes continuously and non-monotonically as a function of gate voltage.

  6. Defect induced photoluminescence in MoS2 quantum dots and effect of Eu3+/Tb3+ co-doping towards efficient white light emission

    Science.gov (United States)

    Haldar, Dhrubaa; Ghosh, Arnab; Bose, Saptasree; Mondal, Supriya; Ghorai, Uttam Kumar; Saha, Shyamal K.

    2018-05-01

    Intensive research has been carried out on optical properties of MoS2 quantum dots for versatile applications in photo catalytic, sensing and optoelectronic devices. However, white light generation from MoS2 quantum dots particularly using doping effect is relatively unexplored. Herein we report successful synthesis of Europium (Eu)/Terbium (Tb) co-doped MoS2 quantum dots to achieve white light for potential applications in optoelectronic devices. The dopant ions are introduced into the host lattice to retain the emission colors to cover the entire range of visible light of solar spectrum. Perfect white light (CIE = 0.31, 0.33) with high intensity (quantum yield = 28.29%) is achieved in these rare earth elements co-doped quantum dot system. A new peak is observed in the NIR region which is attributed to the defects present in MoS2 quantum dots. Temperature dependent study has been carried out to understand the origin of this new peak in the NIR region. It is seen that the 'S' defects in the QDs cause the appearance of this peak which shows a blue shift at higher temperature.

  7. Soutien organisationnel de la phase 2 de l'ITT : Centre for the Study ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ce projet aidera le CSDS à renforcer la qualité de ses recherches, son rendement organisationnel et son interaction avec la sphère des politiques. Bâtir l'expérience et l'influence. Grâce à ce soutien financier, au cours des quatre prochaines années et demie, le CSDS devrait : - contribuer à l'amélioration de la qualité de la ...

  8. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots.

    Science.gov (United States)

    Lu, Xiaomei; Zhang, Jinyi; Xie, Ya-Ni; Zhang, Xinfeng; Jiang, Xiaoming; Hou, Xiandeng; Wu, Peng

    2018-02-20

    Thallium (Tl) is an extremely toxic heavy metal and exists in very low concentrations in the environment, but its sensing is largely underexplored as compared to its neighboring elements in the periodic table (especially mercury and lead). In this work, we developed a ratiometric phosphorescent nanoprobe for thallium detection based on Mn-doped ZnSe quantum dots (QDs) and water-soluble carbon dots (C-dots). Upon excitation with 360 nm, Mn-doped ZnSe QDs and C-dots can emit long-lived and spectrally resolved phosphorescence at 580 and 440 nm, respectively. In the presence of thallium, the phosphorescence emission from Mn-doped ZnSe QDs could be selectively quenched, while that from C-dots retained unchanged. Therefore, a ratiometric phosphorescent probe was thus developed, which can eliminate the potential influence from both background fluorescence and other analyte-independent external environment factors. Several other heavy metal ions caused interferences to thallium detection but could be efficiently masked with EDTA. The proposed method offered a detection limit of 1 μg/L, which is among the most sensitive probes ever reported. Successful application of this method for thallium detection in biological serum as well as in environmental water and soil samples was demonstrated.

  9. Supramolecular assemblies in [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O complex – Structural, spectroscopic, magnetic and thermal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowska, Agnieszka, E-mail: agnieszka.wojciechowska@pwr.edu.pl [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland); Kochel, Andrzej [Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wrocław (Poland); Duczmal, Marek [Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspiańskiego 27, 50-370, Wrocław (Poland)

    2016-10-01

    The reaction of L-arginine and oxalate ions with copper(II) salts yields a new complex with formula of [Cu(L-Arg){sub 2}(H{sub 2}O)]·C{sub 2}O{sub 4}·6H{sub 2}O (1) (where L-Arg = L-arginine). Single crystals of 1 were synthesized by crystallization from aqueous solution. The complex properties were characterized by X-ray diffraction, spectroscopy (FT-IR, FT-Raman, NIR-Vis-UV and EPR) as well as thermal and magnetic methods. The square pyramidal (SP) geometry around Cu(II) ions in [Cu(L-Arg){sub 2}(H{sub 2}O)]{sup 2+} cation complex is formed by two cis-chelated L-arginine zwitterions and a water molecule coordinated in the apex of square pyramid. The trigonality distortion of SP geometry is relatively small, τ = 0.0087. The solid state EPR spectrum showed broad hyperfine splitting with g{sub ⊥} = 2.061 at 77 K. The copper centres distanced at 7.558(5) Å are joined in a single zig-zag structure via a chain based on the combination of Cu−O(5)−H(29)⋯O(2)−C1−O1−Cu hydrogen bonds along the b axis (d (O2⋯O5) = 2.812 Å). Taking into account the structural features, the magnetic susceptibility data were best-fitted, giving the exchange parameter J = −0.16 cm{sup −1}. Complex 1 is thermally stable up to 66 °C, where it was observed to lose the crystallization water molecules with an 11.7% mass loss (calc. 11.5%). - Highlights: • Crystal and molecular structure of [Cu(L-Arg){sub 2}(H{sub 2}O)]C{sub 2}O{sub 4}·6H{sub 2}O crystals have been studied. • The magnetic interactions of Cu(II) centres are assisted by the formation of single zig-zag chain. • Role of oxalate ions in completed relatively small square pyramid distortion is described. • The cis-fashioned L-arginine created the stronger ligand field than trans-configuration.

  10. Permethylated-β-Cyclodextrin Capped CdTe Quantum Dot and its Sensitive Fluorescence Analysis of Malachite Green.

    Science.gov (United States)

    Cao, Yujuan; Wei, Jiongling; Wu, Wei; Wang, Song; Hu, Xiaogang; Yu, Ying

    2015-09-01

    In the present work, the CdTe quantum dots were covalently conjugated with permethylated-β-cyclodextrin (OMe-β-CD) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as cross-linking reagent. The obtained functional quantum dots (OMe-β-CD/QDs) showed highly luminescent, water solubility and photostability as well as good inclusion ability to malachite green. A sensitive fluorescence method was developed for the analysis of malachite green in different samples. The good linearity was 2.0 × 10(-7)-1.0 × 10(-5) mol/L and the limit of detect was 1.7 × 10(-8) mol/L. The recoveries for three environmental water samples were 92.0-108.2 % with relative standard deviation (RSD) of 0.24-1.87 %, while the recovery for the fish sample was 94.3 % with RSD of 1.04 %. The results showed that the present method was sensitive and convenient to determine malachite green in complex samples. Graphical Abstract The analytical mechanism of OMe-β-CD/QDs and its linear response to MG.

  11. PREFACE: Quantum Dot 2010

    Science.gov (United States)

    Taylor, Robert A.

    2010-09-01

    These conference proceedings contain the written papers of the contributions presented at Quantum Dot 2010 (QD2010). The conference was held in Nottingham, UK, on 26-30 April 2010. The conference addressed topics in research on: 1. Epitaxial quantum dots (including self-assembled and interface structures, dots defined by electrostatic gates etc): optical properties and electron transport quantum coherence effects spin phenomena optics of dots in cavities interaction with surface plasmons in metal/semiconductor structures opto-electronics applications 2. Novel QD structures: fabrication and physics of graphene dots, dots in nano-wires etc 3. Colloidal quantum dots: growth (shape control and hybrid nanocrystals such as metal/semiconductor, magnetic/semiconductor) assembly and surface functionalisation optical properties and spin dynamics electrical and magnetic properties applications (light emitting devices and solar cells, biological and medical applications, data storage, assemblers) The Editors Acknowledgements Conference Organising Committee: Maurice Skolnick (Chair) Alexander Tartakovskii (Programme Chair) Pavlos Lagoudakis (Programme Chair) Max Migliorato (Conference Secretary) Paola Borri (Publicity) Robert Taylor (Proceedings) Manus Hayne (Treasurer) Ray Murray (Sponsorship) Mohamed Henini (Local Organiser) International Advisory Committee: Yasuhiko Arakawa (Tokyo University, Japan) Manfred Bayer (Dortmund University, Germany) Sergey Gaponenko (Stepanov Institute of Physics, Minsk, Belarus) Pawel Hawrylak (NRC, Ottawa, Canada) Fritz Henneberger (Institute for Physics, Berlin, Germany) Atac Imamoglu (ETH, Zurich, Switzerland) Paul Koenraad (TU Eindhoven, Nethehrlands) Guglielmo Lanzani (Politecnico di Milano, Italy) Jungil Lee (Korea Institute of Science and Technology, Korea) Henri Mariette (CNRS-CEA, Grenoble, France) Lu Jeu Sham (San Diego, USA) Andrew Shields (Toshiba Research Europe, Cambridge, UK) Yoshihisa Yamamoto (Stanford University, USA) Artur

  12. Fingerprints of transversal and longitudinal coupling between induced open quantum dots in the longitudinal magneto-conductance through anti-dot lattices

    International Nuclear Information System (INIS)

    Ujevic, Sebastian; Mendoza, Michel

    2011-01-01

    Full text. We propose numerical simulations of longitudinal magneto conductance through a finite anti dot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magneto conductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magneto conductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the anti dot lattice. A relationship is observed between the distribution of anti dots and the formed conductance bands, allowing a systematic follow-up of the bands as a function of the applied magnetic field and quantum point contact width. We observed a high conductance intensity (between n- and (n + 1)-quantum of conductance, n = 1; 2...) in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the anti dots potential and the quantum point contact width. A new continuous channel (not expected) is induced by the variation of the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field

  13. Bico 2: second national intercomparison campaign of WBC centres working in Italy; Bico 2: la seconda campagna MIDIA di interconfronto dei WBC operanti in Italia

    Energy Technology Data Exchange (ETDEWEB)

    Castellani, C.M.; Battisti, P.; Tarroni, G. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    During the period November 1994 - May 1995 the coordinating group of WBC centres working in Italy organised the 2. national intercalibration and intercomparison campaign. A BOMAB phantom was used filled with four radionuclides gel solution with gamma energy emissions ranging between 100 keV and 2 MeV. 17 out of 21 Italian WBC centres took part in the campaign. Through the intercalibration, organised according to internationally accepted methodologies, each WBC centre could check its own calibration procedures. many intermediate data, collected for the methodologies and measurement procedures intercomparison, permitted analyses and comparison of uncertainly causes in a WBC measurement of the internal contamination. A proposal of MDA definition and assessment procedure resulted from the intercomparison campaign. [Italiano] Il Coordinamento dei Centri WBC operanti in Italia ha organizzato la seconda campagna di intercalibrazione ed interconfronto nazionale basata sulle misure di un fantoccio BOMAB riempito con una soluzione radioattiva gelificata contenente 4 radionuclidi con emissioni gamma nell`intervallo energetico compreso fra 100 keV e 2 MeV. Alla campagna, che si e` svolta fra novembre 1994 e maggio 1995, hanno partecipato 17 dei 21 Centri WBC censiti in Italia. L`intercalibrazione e` stata organizzata secondo criteri ormai consolidati in campo internazionale ed ha permesso ad ognuno dei partecipanti di verificare le proprie procedure di calibrazione. Per l`interconfronto delle procedure e dei metodi di misura impiegati e` stata raccolta una serie di dati intermedi che hanno consentito di analizzare e confrontare le fonti di incertezza insite nella misura di contaminazione interna nell`uomo tramite WBC. Cio` ha infine reso possibile una proposta di definizione e di procedura di determinazione del valore della minima attivita` rivelabile (MDA) in accordo con le piu` recenti tendenze in campo internazionale.

  14. Heat transport modeling of the dot spectroscopy platform on NIF

    Science.gov (United States)

    Farmer, W. A.; Jones, O. S.; Barrios, M. A.; Strozzi, D. J.; Koning, J. M.; Kerbel, G. D.; Hinkel, D. E.; Moody, J. D.; Suter, L. J.; Liedahl, D. A.; Lemos, N.; Eder, D. C.; Kauffman, R. L.; Landen, O. L.; Moore, A. S.; Schneider, M. B.

    2018-04-01

    Electron heat transport within an inertial-fusion hohlraum plasma is difficult to model due to the complex interaction of kinetic plasma effects, magnetic fields, laser-plasma interactions, and microturbulence. Here, simulations using the radiation-hydrodynamic code, HYDRA, are compared to hohlraum plasma experiments which contain a Manganese-Cobalt tracer dot (Barrios et al 2016 Phys. Plasmas 23 056307). The dot is placed either on the capsule or on a film midway between the capsule and the laser-entrance hole. From spectroscopic measurements, electron temperature and position of the dot are inferred. Simulations are performed with ad hoc flux limiters of f = 0.15 and f = 0.03 (with electron heat flux, q, limited to fnT 3/2/m 1/2), and two more physical means of flux limitation: the magnetohydrodynamics and nonlocal packages. The nonlocal model agrees best with the temperature of the dot-on-film and dot-on-capsule. The hohlraum produced x-ray flux is over-predicted by roughly ˜11% for the f = 0.03 model and the remaining models by ˜16%. The simulated trajectories of the dot-on-capsule are slightly ahead of the experimental trajectory for all but the f = 0.03 model. The simulated dot-on-film position disagrees with the experimental measurement for all transport models. In the MHD simulation of the dot-on-film, the dot is strongly perturbative, though the simulation predicts a peak dot-on-film temperature 2-3 keV higher than the measurement. This suggests a deficiency in the MHD modeling possibly due to the neglect of the Righi-Leduc term or interpenetrating flows of multiple ion species which would reduce the strength of the self-generated fields.

  15. Phonon impact on optical control schemes of quantum dots: Role of quantum dot geometry and symmetry

    Science.gov (United States)

    Lüker, S.; Kuhn, T.; Reiter, D. E.

    2017-12-01

    Phonons strongly influence the optical control of semiconductor quantum dots. When modeling the electron-phonon interaction in several theoretical approaches, the quantum dot geometry is approximated by a spherical structure, though typical self-assembled quantum dots are strongly lens-shaped. By explicitly comparing simulations of a spherical and a lens-shaped dot using a well-established correlation expansion approach, we show that, indeed, lens-shaped dots can be exactly mapped to a spherical geometry when studying the phonon influence on the electronic system. We also give a recipe to reproduce spectral densities from more involved dots by rather simple spherical models. On the other hand, breaking the spherical symmetry has a pronounced impact on the spatiotemporal properties of the phonon dynamics. As an example we show that for a lens-shaped quantum dot, the phonon emission is strongly concentrated along the direction of the smallest axis of the dot, which is important for the use of phonons for the communication between different dots.

  16. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia

    International Nuclear Information System (INIS)

    Pandey, Indu; Jha, Shashank Shekhar

    2015-01-01

    Highlights: • Pencil graphite electrode was non-covalently functionalized by C-dots. • Electrochemically synthesized ferrocene-sulfonic acid doped PANI film was used as chiral recognition element. • Electrochemical chiral sensing of L-ascorbic acid and D-ascorbic acid was carried out. • L-ascorbic acid determination was done in aqueous, biological and pharmaceutical samples at nM level. - Abstract: A simple and novel method is proposed for chiral separation of L-ascorbic acid and D-ascorbic acid in human cerebrospinal fluids and blood plasma samples. Electro-polymerized molecularly imprinted poly-aniline ferrocenesulfonic acid-C-dots modified pencil graphite electrodes was successfully applied for separation and quantification of D-/L-ascorbic acid in aqueous and some biological samples. Parameters, important to control the performance of the electrochemical sensor were investigated and optimized, including the effects of pH, monomer- template ratios, electropolymerization cycles and scan rates. The molecularly imprinted film exhibited a high chiral selectivity and sensitivity towards D-ascorbic acid and L-ascorbic acid respectively. The surface morphologies and electrochemical properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry, chrono-amperometry and electrochemical impedance spectroscopy. L-ascorbic acid selective sensor shows excellent selectivity towards the L-ascorbic acid in comparison to D- ascorbic acid vice versa for D- ascorbic acid selective sensor. Under optimal conditions the linear range of the calibration curve for L- ascorbic acid and D- ascorbic acid was 6.0–165.0 nM and 6.0–155.0 nM, with the detection limit of 0.001 nM and 0.002 nM. Chiral detection of L-ascorbic acid was successfully carried out in pharmaceuticals and human plasma samples (pregnant women and non pregnant women) via proposed sensor with good selectivity and sensitivity.

  17. Optical and structural properties of ensembles of colloidal Ag{sub 2}S quantum dots in gelatin

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, O. V., E-mail: Ovchinnikov-O-V@rambler.ru; Smirnov, M. S. [Voronezh State University (Russian Federation); Shapiro, B. I. [Moscow State University of Fine Chemical Technologies (Russian Federation); Shatskikh, T. S.; Perepelitsa, A. S.; Korolev, N. V. [Voronezh State University (Russian Federation)

    2015-03-15

    The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots is explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes.

  18. Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruihua; Li, Haitao; Kong, Weiqian; Liu, Juan [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Tong, Cuiyan, E-mail: tongcy959@nenu.edu.cn [Chemisty Department, Northeast Normal University, Changchun 130024 (China); Zhang, Xing [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123 (China)

    2013-07-15

    Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright blue photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.

  19. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.; Hile, S. J.; Asshoff, P.; Simmons, M. Y.; Rogge, S. [Centre for Quantum Computation and Communication Technology, University of New South Wales, Sydney 2052 New South Wales (Australia); Gonzalez-Zalba, M. F. [Hitachi Cambridge Laboratory, J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Vinet, M. [Université Grenoble-Alpes and CEA, LETI, MINATEC, 38000 Grenoble (France)

    2016-04-11

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  20. Glycidyl methacrylate-co-N-vinyl-2-pyrrolidone coated polypropylene strips: Synthesis, characterization and standardization for dot-enzyme linked immunosorbent assay

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Charu; Tomar, Lomas [Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016 (India); Singh, Harpal [Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016 (India)], E-mail: tyagicharu11@rediffmail.com

    2009-01-26

    Glycidyl methacrylate and N-vinyl-2-pyrrolidone (GMA-co-NVP) copolymers with various GMA:NVP ratios were synthesized by solution polymerization technique in toluene using 2,2'-azobisisobutyronitrile (AIBN) as free radical initiator and dip coated onto polypropylene strips. The copolymer composition in polymeric coatings was confirmed by proton NMR spectroscopy. Various techniques like FTIR, SEM and contact angle were used for surface characterization of the polymer coatings. These polymer coated strips were evaluated and standardized for their application in dot-ELISA in two steps. In first step, specificity, sensitivity and reproducibility of the assay on developed polymer coated strips was evaluated through a model system using rabbit anti-goat IgG, goat anti-rabbit IgG and goat anti-rabbit IgG HRP (horseradish peroxidase)-conjugate. Polymer coating with GMA-NVP mol% ratio of 78:22 was able to detect rabbit anti-goat IgG antibody at a concentration as low as 2 ng mL{sup -1} with 1% BSA as blocking agent using antispecies IgG peroxidase conjugate diluted 1500 times. In the second step, the sensitivity and specificity of the developed system was established with human blood and finally used to identify the source of mosquito blood meal which is an important parameter in epidemiological studies, particularly in determining the role of mosquito in malaria transmission. The time duration of standardized assay with developed polymer coated strips was cut down to one hour compared to the 3-4 h required in usual dot-ELISA.

  1. InP quantum dots embedded in GaP: Optical properties and carrier dynamics

    International Nuclear Information System (INIS)

    Hatami, F.; Masselink, W.T.; Schrottke, L.; Tomm, J.W.; Talalaev, V.; Kristukat, C.; Goni, A.R.

    2003-01-01

    The optical emission and dynamics of carriers in Stranski-Krastanow self-organized InP quantum dots embedded in a GaP matrix are studied. InP deposited on GaP (001) using gas-source molecular-beam epitaxy forms quantum dots for InP coverage greater than 1.8 monolayers. Strong photoluminescence from the quantum dots is observed up to room temperature at about 2 eV; photoluminescence from the two-dimensional InP wetting layer is measured at about 2.2 eV. Modeling based on the 'model-solid theory' indicates that the band alignment for the InP quantum dots is direct and type I. Furthermore, low-temperature time-resolved photoluminescence measurements indicate that the carrier lifetime in the quantum dots is about 2 ns, typical for type-I quantum dots. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP quantum dots at normal pressure with the GaP X states lying about 30 meV higher than the Γ states in the InP quantum dots, but indicate that they become type II under hydrostatic pressures of about 1.2 GPa

  2. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric, E-mail: brillas@ub.ed [Laboratori d' Electroquimica dels Materials i del Medi Ambient, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)

    2010-02-15

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na{sub 2}SO{sub 4} of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H{sub 2}O{sub 2} (AO-H{sub 2}O{sub 2}), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H{sub 2}O{sub 2} from O{sub 2} reduction. In EF, PEF and SPEF, hydroxyl radical (centre dotOH) is formed from Fenton's reaction between added catalytic Fe{sup 2+} and generated H{sub 2}O{sub 2}. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with centre dotOH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since centre dotOH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H{sub 2}O{sub 2} with BDD yields the poorest mineralization because pollutants are only removed with centre dotOH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of centre dotOH at its surface. Enrofloxacin

  3. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection.

    Science.gov (United States)

    Adegoke, Oluwasesan; Forbes, Patricia B C

    2016-01-01

    Environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), become widely distributed in the environment after emission from a range of sources, and they have potential biological effects, including toxicity and carcinogenity. In this work, we have demonstrated the analytical potential of a covalently linked L-cysteine-capped CdSeTe/ZnSe/ZnS core/shell/shell quantum dot (QD)-graphene oxide (GO) nanocomposite fluorescence probe to detect PAH compounds in aqueous solution. Water-soluble L-cysteine-capped CdSeTe/ZnSe/ZnS QDs were synthesized for the first time and were covalently bonded to GO. The fluorescence of the QD-GO nanocomposite was enhanced relative to the unconjugated QDs. Various techniques including TEM, SEM, HRSEM, XRD, Raman, FT-IR, UV/vis and fluorescence spectrophotometry were employed to characterize both the QDs and the QD-GO nanocomposite. Four commonly found priority PAH analytes namely; phenanthrene (Phe), anthracene (Ant), pyrene (Py) and naphthalene (Naph), were tested and it was found that each of the PAH analytes enhanced the fluorescence of the QD-GO probe. Phe was selected for further studies as the PL enhancement was significantly greater for this PAH. A limit of detection (LOD) of 0.19 µg/L was obtained for Phe under optimum conditions, whilst the LOD of Ant, Py and Naph were estimated to be ~0.26 µg/L. The fluorescence detection mechanism is proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 76 FR 35508 - Alabama Southern Railroad, L.L.C.-Temporary Trackage Rights Exemption-Norfolk Southern Railway...

    Science.gov (United States)

    2011-06-17

    ... Railroad, L.L.C.--Temporary Trackage Rights Exemption--Norfolk Southern Railway Company Norfolk Southern... grant nonexclusive overhead temporary trackage rights to Alabama Southern Railroad, L.L.C. (ABS) over a... http://www.stb.dot.gov . Decided: June 13, 2011. By the Board. Rachel D. Campbell, Director, Office of...

  5. Développement | Page 8 | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'ONG s'associe à d'autres organismes afin de renforcer, à l'échelon communautaire, les capacités en matière de développement durable, au moyen de la ... Canada's Centre for International Governance Innovation and Indonesia's Centre for Strategic and International Studies organized the Indonesia-Canada Bilateral ...

  6. Bico 2: second national intercomparison campaign of WBC centres working in Italy

    International Nuclear Information System (INIS)

    Castellani, C.M.; Battisti, P.; Tarroni, G.

    1998-01-01

    During the period November 1994 - May 1995 the coordinating group of WBC centres working in Italy organised the 2. national intercalibration and intercomparison campaign. A BOMAB phantom was used filled with four radionuclides gel solution with gamma energy emissions ranging between 100 keV and 2 MeV. 17 out of 21 Italian WBC centres took part in the campaign. Through the intercalibration, organised according to internationally accepted methodologies, each WBC centre could check its own calibration procedures. many intermediate data, collected for the methodologies and measurement procedures intercomparison, permitted analyses and comparison of uncertainly causes in a WBC measurement of the internal contamination. A proposal of MDA definition and assessment procedure resulted from the intercomparison campaign [it

  7. High luminescent L-cysteine capped CdTe quantum dots prepared at different reaction times

    Science.gov (United States)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    This paper reports a facile synthesis route of high luminescent L-cysteine capped CdTe quantum dots (QDs). The effect of reaction time on the growth mechanism, optical and physical properties of the CdTe QDs was investigated in order to find the suitability of them towards optical and medical applications. The representative high-resolution transmission microscopy (HRTEM) analysis showed that the as-obtained CdTe QDs appeared as spherical particles with excellent monodispersity. The images exhibited clear lattice fringes which are indicative of good crystallinity. The X-ray diffraction (XRD) pattern displayed polycrystalline nature of the QDs which correspond well to zinc blende phase of bulk CdTe. The crystallite sizes calculated from the Scherrer equation were less than 10 nm for different reaction times which were in close agreement with the values estimated from HRTEM. An increase in reaction time improved crystallinity of the sample as explained by highest peak intensity of the XRD supported by the photoluminescence emission spectra which showed high intensity at a longer growth time. It was observed that for prolonged growth time the emission bands were red shifted from about 517-557 nm for 5-180 min of reaction time due to increase in particle sizes. Ultraviolet and visible analysis displayed well-resolved absorption bands which were red shifted upon an increase in reaction time. There was an inverse relation between the band gap and reaction time. Optical band gap decreases from 3.98 to 2.59 eV with the increase in reaction time from 15 to 180 min.

  8. Polarization anisotropy of the emission from type-II quantum dots

    Czech Academy of Sciences Publication Activity Database

    Klenovský, P.; Hemzal, D.; Steindl, P.; Zíková, Markéta; Křápek, V.; Humlíček, J.

    2015-01-01

    Roč. 92, č. 24 (2015), 1-5, č. článku 241302. ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : quantum dot * type II heterostructure * polarization anisotropy * III-V semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  9. L2 Working Memory Capacity and L2 Reading Skill.

    Science.gov (United States)

    Harrington, Mike; Sawyer, Mark

    1992-01-01

    Examines the sensitivity of second-language (L2) working memory (ability to store and process information simultaneously) to differences in reading skills among advanced L2 learners. Subjects with larger L2 working memory capacities scored higher on measures of L2 reading skills, but no correlation was found between reading and passive short-term…

  10. Next steps towards a Climate Innovation Centre in Ghana. Discussion Paper

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Wuertenberger, L.; Akon-Yamga, G.

    2011-03-01

    A climate innovation centre is an institution aimed at enabling development through catalysing climate technology research, development, market creation and policy. This discussion paper discusses the possibilities, considerations and next steps for a Climate Innovation Centre (CIC) in Ghana based on new insights within the government of Ghana, a mapping of climate innovation in Ghana, new developments in the international climate negotiations and other multilateral processes, and analysis conducted by ECN. The conclusion is that a Climate Innovation Centre can fill significant gaps in climate resilient development in Ghana. It seems important that a Ghana CIC does not become yet another institution that focuses on basic research in the area of climate change. Rather, it should connect the dots of the Ghanaian climate innovation system and act as a knowledge facilitator, also for the private sector. Various models of climate innovation centres exist. Before choices are made for a model or a combination of models for Ghana, it is recommended to allow for a broad stakeholder process. The World Bank's infoDev programme could be a model for such a process. Such stakeholder engagement should be aligned with other policymaking processes on adaptation and low-carbon development, as well as related policy arenas, such as agriculture, transport, waste and energy.

  11. Next steps towards a Climate Innovation Centre in Ghana. Discussion Paper

    Energy Technology Data Exchange (ETDEWEB)

    De Coninck, H.C.; Wuertenberger, L. [ECN Policy Studies, Petten (Netherlands); Akon-Yamga, G. [Science and Technology Policy Research Institute STEPRI, Accra (Guinea)

    2011-03-15

    A climate innovation centre is an institution aimed at enabling development through catalysing climate technology research, development, market creation and policy. This discussion paper discusses the possibilities, considerations and next steps for a Climate Innovation Centre (CIC) in Ghana based on new insights within the government of Ghana, a mapping of climate innovation in Ghana, new developments in the international climate negotiations and other multilateral processes, and analysis conducted by ECN. The conclusion is that a Climate Innovation Centre can fill significant gaps in climate resilient development in Ghana. It seems important that a Ghana CIC does not become yet another institution that focuses on basic research in the area of climate change. Rather, it should connect the dots of the Ghanaian climate innovation system and act as a knowledge facilitator, also for the private sector. Various models of climate innovation centres exist. Before choices are made for a model or a combination of models for Ghana, it is recommended to allow for a broad stakeholder process. The World Bank's infoDev programme could be a model for such a process. Such stakeholder engagement should be aligned with other policymaking processes on adaptation and low-carbon development, as well as related policy arenas, such as agriculture, transport, waste and energy.

  12. CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion

    Energy Technology Data Exchange (ETDEWEB)

    Adegoke, Oluwasesan [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa); Hosten, Eric; McCleland, Cedric [Department of Chemistry, Nelson Mandela Metropolitan University (South Campus), Port Elizabeth 6031 (South Africa); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa)

    2012-04-06

    Graphical abstract: A bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) showed a high selectivity and sensitivity for the determination of bromide ion using fluorescence recovery. Highlights: Black-Right-Pointing-Pointer Water soluble CdTe quantum dots interact with tetramethylpiperidine-N-oxide. Black-Right-Pointing-Pointer Quantum dots fluorescence is quenched by the radical. Black-Right-Pointing-Pointer In the presence of bromide ions the fluorescence is restored. Black-Right-Pointing-Pointer The sensor is more selective to bromine ions than other common ions. - Abstract: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 {mu}M. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.

  13. High-performance cobalt carbonate hydroxide nano-dot/NiCo(CO3)(OH)2 electrode for asymmetric supercapacitors

    Science.gov (United States)

    Lee, Damin; Xia, Qi Xun; Yun, Je Moon; Kim, Kwang Ho

    2018-03-01

    Binder-free mesoporous NiCo(CO3)(OH)2 nanowire arrays were grown using a facile hydrothermal technique. The Co2(CO3)(OH)2 in NiCo(CO3)(OH)2 nanowire arrays was well-decorated as nano-dot scale (a few nanometer). In addition, increasing cobalt content in nickel compound matrix, NiCo(CO3)(OH)2 nanowire arrays were separately uniformly grown without agglomeration on Ni foam, providing a high specific surface area to help electrolyte access and ion transfer. The enticing composition and morphology of the NiCo(CO3)(OH)2 nanowire exhibit a superior specific capacity of 1288.2 mAh g-1 at a current density of 3 A g-1 and excellent cycling stability with the capacity retention of 80.7% after 10,000 cycles. Furthermore, an asymmetric supercapacitor composed of the NiCo(CO3)(OH)2 composite as a positive electrode and the graphene as a negative electrode presented a high energy density of 35.5 W h kg-1 at a power density of 2555.6 W kg-1 and satisfactory cycling stability with 71.3% capacity retention after 10,000 cycles. The great combination of the active nano-dot Co2(CO3)(OH)2 and the individually grown NiCo(CO3)(OH)2 nanowires made it a promising electrode material for asymmetric supercapacitors. A well-developed nanoarchitecture of the nano-dot Co2(CO3)(OH)2 decorated NiCo(CO3)(OH)2 composite could pave the way for an excellent electrode design for high-performance supercapacitors.

  14. Fluorescent nanocellulosic hydrogels based on graphene quantum dots for sensing laccase

    International Nuclear Information System (INIS)

    Ruiz-Palomero, Celia; Benítez-Martínez, Sandra; Soriano, M. Laura; Valcárcel, Miguel

    2017-01-01

    A novel low-cost fluorimetric platform based on sulfur, nitrogen-codoped graphene quantum dots immersed into nanocellulosic hydrogels is designed and applied in detecting the laccase enzyme. Although most of methods for detecting laccase are based on their catalytic activity, which is strongly dependent on environmental parameters, we report a sensitive and selective method based on the fluorescence response of hydrogels containing graphene quantum dots (GQDs) acting as luminophore towards laccase. The easily-prepared gel matrix not only improves the fluorescence signal of GQDs by avoiding their self-quenching but also stabilizes their fluorescence signal and improves their sensitivity towards laccase. Noncovalent interactions between the sensor and the analyte are believed to be causing this significant quenching without peak-shifts of GQD fluorescence via energy transfer. The selective extraction of laccase was proved in different shampoos as complex matrices achieving a detection limit of 0.048 U mL −1 and recoveries of 86.2–94.1%. As the unusual properties of nanocellulose and GQDs, the fluorescent sensor is simple, eco-friendly and cost-efficient. This straightforward strategy is able to detect and stabilize laccase, being an added-value for storage and recycling enzymes. - Highlights: • Fluorescent hydrogels were constructed by combining nanocellulose and graphene quantum dots. • The resulting hydrogels exhibited fluorescence quenching in presence of laccase. • Equilibrium in the optical signal of S,N-graphene quantum dots in presence of laccase was achieved faster within hydrogels. • The proposed method to determine laccase using fluorescent hydrogels was successfully applied in shampoo.

  15. Coherent transport through interacting quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Hiltscher, Bastian

    2012-10-05

    the linear-conductance regime. The second work deals with the ratio of coherent processes in transport through quantum dots. To this end, a quantum dot is embedded in one of the arms of an Aharonov-Bohm interferometer. In former theoretical as well as experimental works it has been observed that an important source of decoherence are cotunneling processes that flip the dot's spin. In order to elucidate the role of spin in more detail, we assume one of the leads to be ferromagnetic and the other one to be normal. The main motivations of our work are the two questions: (1) What fraction of the total current through a single-level quantum dot weakly coupled to the electrodes is coherent? (2) How and under which circumstances can this fraction be extracted from a current measurement in an Aharonov-Bohm setup? The measurable quantity in such an experiment is the magnetic-flux dependent ratio of the total current. It turns out that the answers of the two questions strongly depend on the dot level position, the polarization of the ferromagnet, and the transport direction. Especially the flux-dependent and the coherent ratios are not necessarily the same. The main motivation of the third work is to identify crossed Andreev reflection in quantum dots, that is, a Cooper pair splits into two single electrons, which are transferred into different quantum dots in one coherent process. We consider a setup, where two quantum dots are tunnel coupled to the same superconductor and each dot is additionally coupled to a normal conductor. In previous works a bias voltage has been applied between the superconductor and the normal conductors. Then, three processes sustain transport. Beside crossed Andreev reflection also local Andreev reflection, where both electrons of the Cooper pair tunnel into the same dot, and single-particle tunneling occur. This complicates the identification of crossed Andreev reflection. Therefore, we propose the transport mechanism of adiabatic pumping in

  16. Coherent transport through interacting quantum dots

    International Nuclear Information System (INIS)

    Hiltscher, Bastian

    2012-01-01

    the linear-conductance regime. The second work deals with the ratio of coherent processes in transport through quantum dots. To this end, a quantum dot is embedded in one of the arms of an Aharonov-Bohm interferometer. In former theoretical as well as experimental works it has been observed that an important source of decoherence are cotunneling processes that flip the dot's spin. In order to elucidate the role of spin in more detail, we assume one of the leads to be ferromagnetic and the other one to be normal. The main motivations of our work are the two questions: (1) What fraction of the total current through a single-level quantum dot weakly coupled to the electrodes is coherent? (2) How and under which circumstances can this fraction be extracted from a current measurement in an Aharonov-Bohm setup? The measurable quantity in such an experiment is the magnetic-flux dependent ratio of the total current. It turns out that the answers of the two questions strongly depend on the dot level position, the polarization of the ferromagnet, and the transport direction. Especially the flux-dependent and the coherent ratios are not necessarily the same. The main motivation of the third work is to identify crossed Andreev reflection in quantum dots, that is, a Cooper pair splits into two single electrons, which are transferred into different quantum dots in one coherent process. We consider a setup, where two quantum dots are tunnel coupled to the same superconductor and each dot is additionally coupled to a normal conductor. In previous works a bias voltage has been applied between the superconductor and the normal conductors. Then, three processes sustain transport. Beside crossed Andreev reflection also local Andreev reflection, where both electrons of the Cooper pair tunnel into the same dot, and single-particle tunneling occur. This complicates the identification of crossed Andreev reflection. Therefore, we propose the transport mechanism of adiabatic pumping in the

  17. Aqueous synthesis of highly luminescent glutathione-capped Mn{sup 2+}-doped ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Kolmykov, Oleksii [Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France); Coulon, Joël [Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME), UMR 7564, CNRS, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000 Nancy (France); Lalevée, Jacques [Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361, CNRS, 15 rue Jean Starcky, 68093 Mulhouse (France); Alem, Halima; Medjahdi, Ghouti [Université de Lorraine, Institut Jean Lamour (IJL), UMR 7198, CNRS, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Schneider, Raphaël, E-mail: raphael.schneider@univ-lorraine.fr [Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

    2014-11-01

    In this paper, an aqueous-based route has been developed to prepare highly luminescent glutathione (GSH)-capped Mn-doped ZnS quantum dots (QDs). The dots obtained have an average diameter of 4.3 nm and exhibit the Mn{sup 2+}-related orange luminescence with very low surface defect density. The highest photoluminescence was observed for a Mn{sup 2+} to Zn{sup 2+} molar ratio of 3%. Consecutive overcoating of the Mn:ZnS@GSH QDs by a ZnS shell was done, and the core/shell structured QDs exhibit a PL quantum yield of 23%. Transmission electron microscopy, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy, UV–visible spectroscopy and spectrofluorometry have been used to characterize the crystal structure, the doping status, and the optical properties of the doped-QDs. Our systematic investigation shows that Mn:ZnS/ZnS@GSH QDs are highly promising fluorescent labels in biological applications.

  18. Automated determination of Rifamycins making use of MPA–CdTe quantum dots

    International Nuclear Information System (INIS)

    Jimenez-López, J.; Molina-García, L.; Rodrigues, S.S.M.; Santos, J.L.M.; Ortega-Barrales, P.; Ruiz-Medina, A.

    2016-01-01

    Rifamycins are a group of antibiotics particularly effective against mycobacteria and they are used for the treatment of important diseases and disorders such as tuberculosis, cancer, hepatic encephalopathy or intestinal infections. Taking into account the great clinical potential of these drugs it is important to develop a rapid, simple and reliable strategy for its quality control. This paper presents an automated quantum dots-based analytical method making use of a multicommutated flow system and the quenching effect that rifampicin and rifaximin, two important Rifamycin derivatives, have on the fluorescence of water-soluble mercaptopropionic acid-capped CdTe quantum dots. Under the optimized conditions, the relationship between the fluorescence intensity of the quantum dots and rifampicin or rifaximin concentrations were linear in the range of 5–80 and 3–40 µg mL −1 , with a detection limit of 1.5 and 1.0 µg mL −1 , respectively. Relative standard deviations (RSD) lower than 3% were observed in all cases. A sample throughput of 70 determinations per hour and good recoveries were also achieved. The proposed method was satisfactorily applied to the determination of rifamycins in pharmaceutical formulations and human urine.

  19. Automated determination of Rifamycins making use of MPA–CdTe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-López, J.; Molina-García, L. [Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus de las Lagunillas, E-23071 Jaén (Spain); Rodrigues, S.S.M.; Santos, J.L.M. [REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy of Porto University, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Ortega-Barrales, P. [Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus de las Lagunillas, E-23071 Jaén (Spain); Ruiz-Medina, A., E-mail: anruiz@ujaen.es [Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus de las Lagunillas, E-23071 Jaén (Spain)

    2016-07-15

    Rifamycins are a group of antibiotics particularly effective against mycobacteria and they are used for the treatment of important diseases and disorders such as tuberculosis, cancer, hepatic encephalopathy or intestinal infections. Taking into account the great clinical potential of these drugs it is important to develop a rapid, simple and reliable strategy for its quality control. This paper presents an automated quantum dots-based analytical method making use of a multicommutated flow system and the quenching effect that rifampicin and rifaximin, two important Rifamycin derivatives, have on the fluorescence of water-soluble mercaptopropionic acid-capped CdTe quantum dots. Under the optimized conditions, the relationship between the fluorescence intensity of the quantum dots and rifampicin or rifaximin concentrations were linear in the range of 5–80 and 3–40 µg mL{sup −1}, with a detection limit of 1.5 and 1.0 µg mL{sup −1}, respectively. Relative standard deviations (RSD) lower than 3% were observed in all cases. A sample throughput of 70 determinations per hour and good recoveries were also achieved. The proposed method was satisfactorily applied to the determination of rifamycins in pharmaceutical formulations and human urine.

  20. Landauer current and mutual information in a bosonic quantum dot

    Science.gov (United States)

    Shashikant Sable, Hrushikesh; Singh Bhakuni, Devendra; Sharma, Auditya

    2018-02-01

    We study the quantum transport of bosons through a quantum dot coupled to two macroscopic heat baths L and R, held at fixed temperatures TL and TR respectively. We manage to cast the particle as well as the heat current into the Landauer form. Following the correlation matrix approach, we compute the time-dependent mutual information of the dot with the baths. We find that mutual information goes logarithmically as the number of bosons, and at low temperatures, it is possible to set up the parameters in such a way that in steady-state, the mutual information goes quadratically as a function of current.

  1. The interaction between d-dot's

    International Nuclear Information System (INIS)

    Hirayama, Masaki; Machida, Masahiko; Koyama, Tomio; Ishida, Takekazu; Kato, Masaru

    2005-01-01

    We investigated the interaction between two square d-dot's. The d-dot is the nano-scaled superconducting composite structure that is made of a d-wave superconducting dot embedded in the s-wave superconducting matrix. In the numerical calculation, using the finite element method, we solved the two-components Ginzburg-Landau equation self-consistently. We obtained two kinds of solutions, which can be considered as ferromagnetic and antiferromagnetic configurations, when two d-dot's are separated parallel and diagonally. Also we discuss the applicability of d-dot's as an artificial spin system where the interactions can be controlled by the fabrication

  2. An Evaluation of Treatment Outcomes in a Cohort of Clients on the DOTS Strategy, 2012-2016.

    Science.gov (United States)

    Tetteh, Ato Kwamena; Agyarko, Edward; Otchere, Joseph; Bimi, Langbong; Ayi, Irene

    2018-01-01

    We present, for the first time, an evaluation of treatment outcomes in a cohort at a TB referral centre in the Central Region of Ghana. Of the 213 clients placed on DOTS, 59.2% (126/213) were sputum smear-positive. An overall cure rate of 90.2% (51.6% cured + 37.6% completed) and a death rate of 8.5% (18/213) were estimated. Of the number of clients who died, 5.7% (12/213) were males ( χ 2 = 2.891, p = 0.699; LR = 3.004, p = 0.699). Deaths were only recorded among clients who were > 19 years old ( χ 2 = 40.319, p = 0.099; LR = 41.244, p = 0.083). Also, 0.9% (2/213) was lost to follow-up, while 1.4% (3/213) had treatment failure. In total, 13.6% (7.0%, 15/213 males, and 6.6%, 14/213 females) of clients who were placed on DOTS were HIV seropositive. Ages of 40-49 years had the highest number, 13/213 (6.1%), infected with HIV, though the difference among the remaining age groups was not statistically significant ( χ 2 = 9.621, p = 0.142). Furthermore, 7.0% (15/213) had TB/HIV coinfection. Out of them, 9 were cured and 5 died at home, while 1 had treatment failure. Tuberculosis/HIV infection prevention advocacy and interventions that address sociodemographic determinants of unfavourable treatment outcomes are urgently required to augment national efforts towards control.

  3. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides.

    Science.gov (United States)

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi; Liu, Shaoqin

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time-saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5-100 μg L(-1) under the optimized conditions with the limit of detection (LOD) of 10 μg L(-1). The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis

    Science.gov (United States)

    Zhao, Fenfen; Rong, Yuefei; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2018-03-01

    MoS2 quantum dots (QDs) that are 5 nm in size were deposited on the surface of ultrathin TiO2 nanotubes (TNTs) with 5 nm wall thickness by using an improved hydrothermal method to form a MoS2 QDs@TNT visible-light photocatalyst. The ultrathin TNTs with high percentage of photocatalytic reactive facets were fabricated by the commercially available TiO2 nanoparticles (P25) through an improved hydrothermal method, and the MoS2 QDs were acquired by using a surfactant-assisted technique. The novel MoS2 QDs@TNT photocatalysts showed excellent photocatalytic activity with a decolorization rate of 92% or approximately 3.5 times more than that of pure TNTs for the high initial concentration of methylene blue solution (20 mg l-1) within 40 min under visible-light irradiation. MoS2 as the co-catalysts favored the broadening of TNTs into the visible-light absorption scope. The quantum confinement and edge effects of the MoS2 QDs and the heterojunction formed between the MoS2 QDs and TNTs efficiently extended the lifetime of photoinduced charges, impeded the recombination of photoexcited electron-hole pairs, and improved the visible-light-driven high-efficiency photocatalysis.

  5. MBE-grown Si and Si1−xGex quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device

    International Nuclear Information System (INIS)

    Manna, S; Aluguri, R; Katiyar, A; Ray, S K; Das, S; Laha, A; Osten, H J

    2013-01-01

    Si and Si 1−x Ge x quantum dots embedded within epitaxial Gd 2 O 3 grown by molecular beam epitaxy have been studied for application in floating gate memory devices. The effect of interface traps and the role of quantum dots on the memory properties have been studied using frequency-dependent capacitance–voltage and conductance–voltage measurements. Multilayer quantum dot memory comprising four and five layers of Si quantum dots exhibits a superior memory window to that of single-layer quantum dot memory devices. It has also been observed that single-layer Si 1−x Ge x quantum dots show better memory characteristics than single-layer Si quantum dots. (paper)

  6. Blood-derived small Dot cells reduce scar in wound healing

    International Nuclear Information System (INIS)

    Kong, Wuyi; Li Shaowei; Longaker, Michael T.; Lorenz, H. Peter

    2008-01-01

    Wounds in fetal skin heal without scar, however the mechanism is unknown. We identified a novel group of E-cadherin positive cells in the blood of fetal and adult mice and named them 'Dot cells'. The percentage of Dot cells in E16.5 fetal mice blood is more than twenty times higher compared to adult blood. Dot cells also express integrin β1, CD184, CD34, CD13 low and Sca1 low , but not CD45, CD44, and CD117. Dot cells have a tiny dot shape between 1 and 7 μm diameters with fast proliferation in vitro. Most of the Dot cells remain positive for E-cadherin and integrin β1 after one month in culture. Transplantation of Dot cells to adult mice heals skin wounds with less scar due to reduced smooth muscle actin and collagen expression in the repair tissue. Tracking GFP-positive Dot cells demonstrates that Dot cells migrate to wounds and differentiate into dermal cells, which also express strongly to FGF-2, and later lose their GFP expression. Our results indicate that Dot cells are a group of previously unidentified cells that have strong wound healing effect. The mechanism of scarless wound healing in fetal skin is due to the presence of a large number of Dot cells

  7. Entretien avec Venàncio Massingue | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    3 févr. 2011 ... Il en a vite été détourné par le directeur du centre d'informatique de l'université, ... Le gouvernement de mon pays adopte des plans quinquennaux ... il nous fallait une définition du télécentre adaptée à notre situation, non à ...

  8. Multifunctional quantum dots and liposome complexes in drug delivery.

    Science.gov (United States)

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  9. Multifunctional quantum dots and liposome complexes in drug delivery

    Science.gov (United States)

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  10. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  11. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution of...

  12. PM 2.5 and NO 2 assessment in 21 European study centres of ECRHS II: annual means and seasonal differences

    Science.gov (United States)

    Hazenkamp-von Arx, Marianne E.; Götschi, Thomas; Ackermann-Liebrich, Ursula; Bono, Roberto; Burney, Peter; Cyrys, Josef; Jarvis, Deborah; Lillienberg, Linnea; Luczynska, Christina; Maldonado, Jose A.; Jaén, Angeles; de Marco, Roberto; Mi, Yahong; Modig, Lars; Bayer-Oglesby, Lucy; Payo, Felix; Soon, Argo; Sunyer, Jordi; Villani, Simona; Weyler, Joost; Künzli, Nino

    The follow-up of cohorts of adults from more than 20 European centres of the former ECRHS I (1989-1992) investigates long-term effects of exposure to ambient air pollution on respiratory health, in particular asthma and change of pulmonary function. Since PM 2.5 is not routinely monitored in Europe, we measured PM 2.5 concentrations in 21 participating centres to estimate 'background' exposure in these cities. Winter (November-February), summer (May-August) and annual mean (all months) values of PM 2.5 were determined from measuring periods between June 2000 and November 2001. Sampling was conducted for 7 days per month for a year. Annual and winter mean concentrations of PM 2.5 vary substantially being lowest in Iceland and highest in centres in Northern Italy. Annual mean concentrations ranged from 3.7 to 44.9 μg m -3, winter mean concentrations from 4.8 to 69.2 μg m -3, and summer mean concentrations from 3.3 to 23.1 μg m -3. Seasonal variability occurred but did not follow the same pattern across all centres. Therefore, ranking of centres varied from summer to winter. Simultaneously, NO 2 concentrations were measured using passive sampling tubes. Annual mean NO 2 concentrations range from 4.9 to 72.1 μg m -3 with similar seasonal variations across centres and constant ranking of centres between seasons. The correlation between annual NO 2 and PM 2.5 concentrations is fair (Spearman correlation coefficient rs=0.75), but when considered as monthly means the correlation is far less consistent and varies substantially between centres. The range of PM 2.5 mass concentrations obtained in ECRHS II is larger than in other current cohort studies on long-term effects of air pollution. This substantial variation in PM 2.5 exposure will improve statistical power in future multi-level health analyses and to some degree may compensate for the lack of information on within-city variability. Seasonal means may be used to indicate potential differences in the toxicity

  13. Synthesis of quantum dots

    Science.gov (United States)

    McDaniel, Hunter

    2017-10-17

    Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.

  14. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission

    Science.gov (United States)

    Sun, Xiangcheng; Brückner, Christian; Lei, Yu

    2015-10-01

    Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications.Very brief microwave heating of aniline, ethylene diamine, and phosphoric acid in water at ambient pressure generated nitrogen and phosphorus co-doped carbon dots (N,P-CDs) that exhibit bright dual blue (centred at 450 nm; 51% quantum yield) and green (centred at 510 nm, 38% quantum yield) fluorescence emission bands. The N,P-CDs were characterized using TEM, XRD, XPS, IR, UV-vis, and fluorescence spectroscopy, demonstrating their partially crystalline carbon, partially amorphous structures, and the incorporation of O, N, and P into the carbogenic scaffold. The N,P-CDs demonstrated excitation-dependent and nearly pH-independent emission properties. The unique dual emission properties lay the foundation for the use of N,P-CDs in ratiometric sensing applications. Electronic supplementary information (ESI) available: Detailed experimental section, XRD, FTIR, explosive sensing and the applications results. See DOI: 10.1039/c5nr05549k

  15. Organic-inorganic hybrid carbon dots for cell imaging

    Science.gov (United States)

    Liu, Huan; Zhang, Hongwen; Li, Jiayu; Tang, Yuying; Cao, Yu; Jiang, Yan

    2018-04-01

    In this paper, nitrogen-doped carbon dots (CDs) had been synthesized directly by one-step ultrasonic treatment under mild conditions. During the functionalization process, Octa-aminopropyl polyhedral oligomeric silsesquioxane hydrochloride salt (OA-POSS) was used as stabilizing and passivation agent, which lead to self-assembling of CDs in aqueous medium solution. OA-POSS was obtained via hydrolytic condensation of γ-aminopropyl triethoxy silane (APTES). The average size of CDs prepared was approximately 3.3 nm with distribution between 2.5 nm and 4.5 nm. The prepared organic-inorganic hybrid carbon dots have several characteristics such as photoluminescence emission wavelength, efficient cellular uptake, and good biocompatibility. The results indicate that OA-POSS can maintain the fluorescence properties of the carbon dots effectively, and reduced cytotoxicity provides the possibility for biomedical applications. More than 89% of the Hela cells were viable when incubated with 2 mg ml‑1 or lesser organic-inorganic hybrid carbon dots. Thus, it provides a potential for multicolor imaging with HeLa cells.

  16. Preparation of carbon quantum dots based high photostability luminescent membranes.

    Science.gov (United States)

    Zhao, Jinxing; Liu, Cui; Li, Yunchuan; Liang, Jiyuan; Liu, Jiyan; Qian, Tonghui; Ding, Jianjun; Cao, Yuan-Cheng

    2017-06-01

    Urethane acrylate (UA) was used to prepare carbon quantum dots (C-dots) luminescent membranes and the resultants were examined with FT-IR, mechanical strength, scanning electron microscope (SEM) and quantum yields (QYs). FT-IR results showed the polyurethane acrylate (PUA) prepolymer -C = C-vibration at 1101 cm -1 disappeared but there was strong vibration at1687cm -1 which was contributed from the-C = O groups in cross-linking PUA. Mechanical strength results showed that the different quantity of C-dots loadings and UV-curing time affect the strength. SEM observations on the cross-sections of the membranes are uniform and have no structural defects, which prove that the C-dots are compatible with the water-soluble PUA resin. The C-dot loading was increased from 0 to 1 g, the maximum tensile stress was nearly 2.67 MPa, but the tensile strain was decreased from 23.4% to 15.1% and 7.2% respectively. QYs results showed that the C-dots in the membrane were stable after 120 h continuous irradiation. Therefore, the C-dots photoluminescent film is the promising material for the flexible devices in the future applications. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Quantum Dots: Theory

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2009-11-10

    This review covers the description of the methodologies typically used for the calculation of the electronic structure of self-assembled and colloidal quantum dots. These are illustrated by the results of their application to a selected set of physical effects in quantum dots.

  18. Analysis on nonlinear optical properties of Cd (Zn) Se quantum dots synthesized using three different stabilizing agents

    Science.gov (United States)

    J, Joy Sebastian Prakash; G, Vinitha; Ramachandran, Murugesan; Rajamanickam, Karunanithi

    2017-10-01

    Three different stabilizing agents, namely, L-cysteine, Thioglycolic acid and cysteamine hydrochloride were used to synthesize Cd(Zn)Se quantum dots (QDs). It was characterized using UV-vis spectroscopy, x-ray diffraction (XRD) and transmission electron microscopy (TEM). The non-linear optical properties (non-linear absorption and non-linear refraction) of synthesized Cd(Zn)Se quantum dots were studied with z-scan technique using diode pumped continuous wavelaser system at a wavelength of 532 nm. Our (organic) synthesized quantum dots showed optical properties similar to the inorganic materials reported elsewhere.

  19. Quantum Dot Photonics

    Science.gov (United States)

    Kinnischtzke, Laura A.

    We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.

  20. 49 CFR 40.13 - How do DOT drug and alcohol tests relate to non-DOT tests?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do DOT drug and alcohol tests relate to non... TRANSPORTATION WORKPLACE DRUG AND ALCOHOL TESTING PROGRAMS Employer Responsibilities § 40.13 How do DOT drug and... non-DOT drug and alcohol testing programs. This prohibition includes the use of the DOT forms with...

  1. Lutter contre la pollution de l'air à Mexico | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    appui du Centre de recherches pour le développement international (CRDI) du Canada ... Le Secrétariat coordonne le projet en collaboration avec le Centre national de la ... Bien que ce type d'initiative conjointe soit nouvelle, ajoute Muñoz, elle ...

  2. Managing a tier-2 computer centre with a private cloud infrastructure

    International Nuclear Information System (INIS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-01-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI

  3. DotFETs: MOSFETs strained by a Single SiGE dot in a Low-Temperature ELA Technology

    OpenAIRE

    Biasotto, C.

    2011-01-01

    The work presented in this thesis was performed in the context of the European Sixth Framework Program FP6 project “Disposable Dot Field Effect Transistor for High Speed Si Integrated Circuits”, referred to as the D-DotFET project. The project had the goal of realizing strain-enhanced mobility in CMOS transistors by transferring strain from a self-assembled germanium dot to the channel of a transistor fabricated above the dot. The initial idea was to dispose of the Ge dot underneath the chann...

  4. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    Science.gov (United States)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  5. Production of three-dimensional quantum dot lattice of Ge/Si core-shell quantum dots and Si/Ge layers in an alumina glass matrix.

    Science.gov (United States)

    Buljan, M; Radić, N; Sancho-Paramon, J; Janicki, V; Grenzer, J; Bogdanović-Radović, I; Siketić, Z; Ivanda, M; Utrobičić, A; Hübner, R; Weidauer, R; Valeš, V; Endres, J; Car, T; Jerčinović, M; Roško, J; Bernstorff, S; Holy, V

    2015-02-13

    We report on the formation of Ge/Si quantum dots with core/shell structure that are arranged in a three-dimensional body centered tetragonal quantum dot lattice in an amorphous alumina matrix. The material is prepared by magnetron sputtering deposition of Al2O3/Ge/Si multilayer. The inversion of Ge and Si in the deposition sequence results in the formation of thin Si/Ge layers instead of the dots. Both materials show an atomically sharp interface between the Ge and Si parts of the dots and layers. They have an amorphous internal structure that can be crystallized by an annealing treatment. The light absorption properties of these complex materials are significantly different compared to films that form quantum dot lattices of the pure Ge, Si or a solid solution of GeSi. They show a strong narrow absorption peak that characterizes a type II confinement in accordance with theoretical predictions. The prepared materials are promising for application in quantum dot solar cells.

  6. Hyperdense dots mimicking microcalcifications : Mammographic findings

    International Nuclear Information System (INIS)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo

    1996-01-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy

  7. Hyperdense dots mimicking microcalcifications : Mammographic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Park, Jeong Mi; Goo, Hyun Woo; Bang, Sun Woo [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    1996-12-01

    To differentiate fine hyperdense dots mimicking microcalcifications from true microcalcifications on mammography. Mammograms showing hyperdense dots in ten patients (mean age, 59 years) were evaluated. Two radiologists were asked to differentiate with the naked eye the hyperdense dots seen on ten mammograms and proven microcalcifications seen on ten mammograms. Densitometry was also performed for all lesions and the contrast index was calculated. The shape and distribution of the hyperdense dots were evaluated and enquires were made regarding any history of breast disease and corresponding treatment. Biopsies were performed for two patients with hyperdense dots. Two radiologists made correct diagnoses in 19/20 cases(95%). The contrast index was 0.10-0.88 (mean 0.58) for hyperdense dots and 0.02-0.45 (mean 0.17) for true microcalcifications. The hyperdense dots were finer and homogeneously rounder than the microcalcifications. Distribution of the hyperdense dots was more superficial in subcutaneous fat (seven cases) and subareolar area (six cases). All ten patients with hyperdense dots had history of mastitis and abscesses and had been treated by open drainage (six cases) and/or folk remedy (four cases). In eight patients, herb patches had been attached. Biopsies of hyperdense dots did not show any microcalcification or evidence of malignancy. These hyperdense dots were seen mainly in older patients. Their characteristic density, shape, distribution and clinical history makes differential diagnosis from true microcalcifications easy and could reduce unnecessary diagnostic procedures such as surgical biopsy.

  8. Philippines : tous les projets | Page 4 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Région: Central Asia, Far East Asia, South Asia, Philippines, Taiwan, Hong Kong, Singapore. Financement total : CA$ 29,200.00. Mise sur pied d'un réseau philippin de télécentres communautaires. Projet. Plus de 300 télécentres communautaires mènent actuellement leurs activités au sein d'administrations locales partout ...

  9. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  10. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  11. From DOT to Dotty

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    - Module types are interfaces, which can be abstracted. In this talk Martin will present DOT, a particularly simple calculus that can express systems following these principles. DOT has been developed as the foundation of the next version of Scala. He will also report on dotty, a new Scala compiler that implements the constructs of DOT in its core data structures and that uses the lessons learned to drive Scala’s evolution.

  12. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    Science.gov (United States)

    2015-12-15

    SECURITY CLASSIFICATION OF: This program conducted experimental and theoretical research aimed at developing an optically driven quantum dot quantum ...computer, where, the qubit is the spin of the electron trapped in a self-assembled quantum dot in InAs. Optical manipulation using the trion state...reports. In this reporting period, we discovered the nuclear spin quieting first discovered in 2008 is present in vertically coupled quantum dots but

  13. An Evaluation of Treatment Outcomes in a Cohort of Clients on the DOTS Strategy, 2012–2016

    Directory of Open Access Journals (Sweden)

    Ato Kwamena Tetteh

    2018-01-01

    Full Text Available We present, for the first time, an evaluation of treatment outcomes in a cohort at a TB referral centre in the Central Region of Ghana. Of the 213 clients placed on DOTS, 59.2% (126/213 were sputum smear-positive. An overall cure rate of 90.2% (51.6% cured + 37.6% completed and a death rate of 8.5% (18/213 were estimated. Of the number of clients who died, 5.7% (12/213 were males (χ2 = 2.891, p=0.699; LR = 3.004, p=0.699. Deaths were only recorded among clients who were > 19 years old (χ2 = 40.319, p=0.099; LR = 41.244, p=0.083. Also, 0.9% (2/213 was lost to follow-up, while 1.4% (3/213 had treatment failure. In total, 13.6% (7.0%, 15/213 males, and 6.6%, 14/213 females of clients who were placed on DOTS were HIV seropositive. Ages of 40–49 years had the highest number, 13/213 (6.1%, infected with HIV, though the difference among the remaining age groups was not statistically significant (χ2 = 9.621, p=0.142. Furthermore, 7.0% (15/213 had TB/HIV coinfection. Out of them, 9 were cured and 5 died at home, while 1 had treatment failure. Tuberculosis/HIV infection prevention advocacy and interventions that address sociodemographic determinants of unfavourable treatment outcomes are urgently required to augment national efforts towards control.

  14. From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size

    International Nuclear Information System (INIS)

    Carlotti, G; Madami, M; Gubbiotti, G; Tacchi, S; Hartmann, F; Emmerling, M; Kamp, M; Worschech, L

    2014-01-01

    Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators. (paper)

  15. From micro- to nanomagnetic dots: evolution of the eigenmode spectrum on reducing the lateral size

    Science.gov (United States)

    Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Hartmann, F.; Emmerling, M.; Kamp, M.; Worschech, L.

    2014-07-01

    Brillouin light scattering experiments and micromagnetic simulations have been exploited to investigate the spectrum of thermally excited magnetic eigenmodes in 10 nm-thick elliptical Permalloy dots, when the longer axis D is scaled down from about 1000 to 100 nm. It is shown that for D larger than about 200 nm the characteristics of the spin-wave eigenmodes are dominated by dipolar energy, while for D in the range of about 100 to 200 nm exchange energy effects cause qualitative and quantitative differences in the spin-wave spectrum. In this ‘mesoscopic’ regime, the usual classification scheme, involving one fundamental mode with large average magnetization and many other modes collected in families with specific symmetries, no longer holds. Rather, one finds the simultaneous presence of two modes with ‘fundamental’ character, i.e. with a significant and comparable value of the average dynamical magnetization: the former is at larger frequency and has its maximum amplitude at the dot's centre, while the latter occurs at lower frequency and is localized at the dot's edges. Interestingly, the maximum intensity swaps from the higher frequency mode to the lower frequency one, just when the dot size is reduced from about 200 to 100 nm. This is relevant in view of the exploitation of nanodots for the design of nanomagnetic devices with lateral dimensions in the above interval, such as memory cells, logic gates, reading heads and spin-torque oscillators.

  16. Quantification of Humic Substances in Natural Water Using Nitrogen-Doped Carbon Dots.

    Science.gov (United States)

    Guan, Yan-Fang; Huang, Bao-Cheng; Qian, Chen; Yu, Han-Qing

    2017-12-19

    Dissolved organic matter (DOM) is ubiquitous in aqueous environments and plays a significant role in pollutant mitigation, transformation and organic geochemical circulation. DOM is also capable of forming carcinogenic byproducts in the disinfection treatment processes of drinking water. Thus, efficient methods for DOM quantification are highly desired. In this work, a novel sensor for rapid and selective detection of humic substances (HS), a key component of DOM, based on fluorescence quenching of nitrogen-doped carbon quantum dots was developed. The experimental results show that the HS detection range could be broadened to 100 mg/L with a detection limit of 0.2 mg/L. Moreover, the detection was effective within a wide pH range of 3.0 to 12.0, and the interferences of ions on the HS measurement were negligible. A good detection result for real surface water samples further validated the feasibility of the developed detection method. Furthermore, a nonradiation electron transfer mechanism for quenching the nitrogen-doped carbon-dots fluorescence by HS was elucidated. In addition, we prepared a test paper and proved its effectiveness. This work provides a new efficient method for the HS quantification than the frequently used modified Lowry method in terms of sensitivity and detection range.

  17. Transcending binary logic by gating three coupled quantum dots.

    Science.gov (United States)

    Klein, Michael; Rogge, S; Remacle, F; Levine, R D

    2007-09-01

    Physical considerations supported by numerical solution of the quantum dynamics including electron repulsion show that three weakly coupled quantum dots can robustly execute a complete set of logic gates for computing using three valued inputs and outputs. Input is coded as gating (up, unchanged, or down) of the terminal dots. A nanosecond time scale switching of the gate voltage requires careful numerical propagation of the dynamics. Readout is the charge (0, 1, or 2 electrons) on the central dot.

  18. Electron Spin Coherence Times in Si/SiGe Quantum Dots

    Science.gov (United States)

    Jock, R. M.; He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.

    2014-03-01

    Single electron spin states in silicon have shown a great deal of promise as qubits due to their long spin relaxation (T1) and coherence (T2) times. Recent results exhibit a T2 of 250 us for electrons confined in Si/SiGe quantum dots at 350 mK. These experiments used conventional X-band (10 GHz) pulsed Electron Spin Resonance on a large area (3.5 mm x 20 mm), dual-gated, undoped Si/SiGe heterostructure quantum dots. These dots are induced in a natural Si quantum well by e-beam defined gates having a lithographic radius of 150 nm and pitch of 700 nm. The relatively large size of these dots led to closely spaced energy levels and long T2's could only be measured at sub-Kelvin temperatures. At 2K confined electrons displayed a 3 us T2, which is comparable to that of 2D electrons at that temperature. Decreasing the quantum dot size increases the electron confinement and reduces the effects of valley-splitting and spin-orbit coupling on the electron spin coherence times. We will report results on dots with 80 nm lithographic radii and a 375 nm pitch. This device displays an extended electron coherence time of 30 us at 2K, suggesting tighter confinement of electrons. Further measurements at lower temperatures are in progress. This work was supported in part by NSF through the Materials World Network program (DMR-1107606) and the Princeton MRSEC (DMR-0819860), and in part by the U.S. Army Research Office (W911NF-13-1-0179).

  19. Résultats de recherche | Page 113 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    . Lancé conjointement par l'Agence canadienne de développement international (ACDI) et le CRDI, le Fonds canadien de recherche sur la sécurité alimentaire internationale (FCRSAI) est doté 61 654 707 CAD (ACDI : 50 000 000 CAD; CRDI ...

  20. EPR study of Gd sup 3 sup + centres in Tl sub 2 ZnF sub 4 crystals

    CERN Document Server

    Arakawa, M; Ebisu, H; Takeuchi, H

    2003-01-01

    EPR measurements have been made at room temperature on Tl sub 2 ZnF sub 4 crystals doped with Gd sup 3 sup + and co-doped with Gd sup 3 sup + and Li sup +. For crystals doped only with Gd sup 3 sup + , a spectrum with tetragonal symmetry (A centre) is observed. For co-doped crystals new spectra with tetragonal (B centre) and monoclinic (C centre) symmetries are observed in place of the spectrum of the A centre. The A centre is identified as the substitutional Gd sup 3 sup + ion at a Zn sup 2 sup + site in six-fold coordination without any local charge compensation in its immediate neighbourhood. On the basis of spin Hamiltonian separation analysis, the separated parameter b sub 2 sub a sub ( sub 1 sub ) for the C centre has a value close to the b sub 2 sup 0 parameter for the B centre. The B and C centres in co-doped crystals are ascribed to a Gd sup 3 sup + ion substituted for a Tl sup + site in nine-fold coordination, where the divalent excess positive charge on Gd sup 3 sup + is compensated by a Li sup + i...

  1. Stark shifting two-electron quantum dot

    International Nuclear Information System (INIS)

    Dineykhan, M.; Zhaugasheva, S.A.; Duysebaeva, K.S.

    2003-01-01

    Advances in modern technology make it possible to create semiconducting nano-structures (quantum dot) in which a finite number of electrons are 'captured' in a bounded volume. A quantum dot is associated with a quantum well formed at the interface, between two finite-size semiconductors owing to different positions of the forbidden gaps on the energy scale in these semiconductors. The possibility of monitoring and controlling the properties of quantum dots attracts considerable attention to these objects, as a new elemental basis for future generations of computers. The quantum-mechanical effects and image potential play a significant role in the description of the formation mechanism quantum dot, and determined the confinement potential in a two-electron quantum dot only for the spherical symmetric case. In the present talk, we considered the formation dynamics of two-electron quantum dot with violation of spherical symmetry. So, we have standard Stark potential. The energy spectrum two-electron quantum dot were calculated. Usually Stark interactions determined the tunneling phenomena between quantum dots

  2. The effluent problem in a plutonium production centre; Probleme des effluents d'un centre de production de plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Galley, R; Cantel, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The first part of the report is devoted to generalities: the geographical situation of the Marcoule Centre, the sources of radio-active effluent, methods of treating this effluent. In the second part the authors gives a detailed description of the various installations in the Radio-active Effluent Treatment Station at the Marcoule Centre, and outline the conditions governing the rejection of treated effluent into the Rhone. A few lines are given to comparisons between the results obtained from the use of these installations up till may 1959 and the expected results published by the same authors at the Brussels Conference (1956). In conclusion the authors lay down some of the essential principles, applicable to the study of new installations. (author) [French] La premiere partie du rapport est consacree a quelques generalites: situation geographique du Centre de Marcoule, provenance des effluents radioactifs, methodes de traitement de ces effluents. Dans la seconde partie, les auteurs presentent une description detaillee des diverses installations de la Station de Traitement des Effluents radioactifs du Centre de Marcoule et precisent les conditions de rejet dans le Rhone des effluents radioactifs traites. Quelques lignes sont consacrees aux comparaisons entre les resultats de l'exploitation des installations jusqu'en mai 1959 et les previsions publiees par les memes auteurs a l'occasion de la Conference de Bruxelles (1956). En conclusion, les auteurs donnent quelques principes essentiels, applicables a l'etude de nouvelles installations. (auteur)

  3. Inkjet-assisted layer-by-layer printing of quantum dot/enzyme microarrays for highly sensitive detection of organophosphorous pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi [State Key Laboratory of Urban Water Resource and Environment, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080 (China); Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin 150080 (China); Liu, Shaoqin, E-mail: shaoqinliu@hit.edu.cn [Micro- and Nanotechnology Research Center, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-15

    We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time–saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5–100 μg L{sup −1} under the optimized conditions with the limit of detection (LOD) of 10 μg L{sup −1}. The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). - Graphical abstract: A fluorimetric assay for high-throughput screening of organophosphorous pesticides was developed based on the CdTe QDs/AChE microarrays via inkjet-assisted LbL printing techniques. - Highlights: • The large scale microarrays of CdTe QDs and AChE were fabricated by facile inkjet-assisted LbL printing technique. • The QDs/AChE microscopic dot arrays could be used quantitatively and rapidly for the sensitively visual detection of OPs. • A detection limit of 10 μg L{sup −1} was achieved, much lower than levels specified by standard tests and other colorimetric detection methods. • The low cost, short processing time, sufficient sensitivity, good stability and ease of use make it for a facile platform for on-site screening.

  4. Hydrogenic impurity in double quantum dots

    International Nuclear Information System (INIS)

    Wang, X.F.

    2007-01-01

    The ground state binding energy and the average interparticle distances for a hydrogenic impurity in double quantum dots with Gaussian confinement potential are studied by the variational method. The probability density of the electron is calculated, too. The dependence of the binding energy on the impurity position is investigated for GaAs quantum dots. The result shows that the binding energy has a minimum as a function of the distance between the two quantum dots when the impurity is located at the center of one quantum dot or at the center of the edge of one quantum dot. When the impurity is located at the center of the two dots, the binding energy decreases monotonically

  5. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes

    International Nuclear Information System (INIS)

    Tang Chunran; Su Zhonghua; Lin Baogang; Huang Haowen; Zeng Yunlong; Li Shuang; Huang He; Wang Yajing; Li Chunxiang; Shen Guoli; Yu Ruqin

    2010-01-01

    We have developed a novel method for the determination of iodate based on the carboxymethyl cellulose-capped CdS quantum dots (QDs). Factors affecting the iodate detection were investigated, and the optimum conditions were determined. Under the optimum conditions, the relative fluorescence intensity of CdS quantum dots was linearly proportional to IO 3 - over a concentration range from 1.0 x 10 -8 to 1.0 x 10 -5 mol L -1 with a correlation coefficient of 0.9987 and a detection limit of 6.0 nmol L -1 . Iodide, being oxidized by bromine to form iodate, was detected indirectly. The method was successfully applied to the determination of iodate and total amount of iodine in table salt samples. The related mechanism was also discussed.

  6. Quick synthesis of 2-propanol derived fluorescent carbon dots for bioimaging applications

    Science.gov (United States)

    Angamuthu, Raja; Palanisamy, Priya; Vasudevan, Vasanthakumar; Nagarajan, Sedhu; Rajendran, Ramesh; Vairamuthu, Raj

    2018-04-01

    Herein, for the first time, we present a one-pot ingenious preparative method for fluorescent carbon dots from 2-propanol (2P-CDs) without external treatments. Structure, morphology, chemical composition and fluorescence properties of the 2P-CDs were examined. These results confirm that the as-synthesized 2P-CDs are amorphous, monodispersed, spherical and the average particle size is 2.5 ± 0.7 nm. Most importantly, excitation-dependent emission properties were observed, which suggest that these 2P-CDs may be used in multicolor bioimaging applications. When incubated with HeLa cells, the 2P-CDs exhibit low cytotoxicity, and positive biocompatibility. Confocal microscopy image shows the uptake of 2P-CDs by HeLa cells and the application of probable biomarker is demonstrated.

  7. Heparin conjugated quantum dots for in vitro imaging applications.

    Science.gov (United States)

    Maguire, Ciaran Manus; Mahfoud, Omar Kazem; Rakovich, Tatsiana; Gerard, Valerie Anne; Prina-Mello, Adriele; Gun'ko, Yurii; Volkov, Yuri

    2014-11-01

    In this work heparin-gelatine multi-layered cadmium telluride quantum dots (QDgel/hep) were synthesised using a novel 'one-pot' method. The QDs produced were characterised using various spectroscopic and physiochemical techniques. Suitable QDs were then selected and compared to thioglycolic acid stabilised quantum dots (QDTGA) and gelatine coated quantum dots (QDgel) for utilisation in in vitro imaging experiments on live and fixed permeabilised THP-1, A549 and Caco-2 cell lines. Exposure of live THP-1 cells to QDgel/hep resulted in localisation of the QDs to the nucleus of the cells. QDgel/hep show affinity for the nuclear compartment of fixed permeabilised THP-1 and A549 cells but remain confined to cytoplasm of fixed permeabilised Caco-2 cells. It is postulated that heparin binding to the CD11b receptor facilitates the internalisation of the QDs into the nucleus of THP-1 cells. In addition, the heparin layer may reduce the unfavourable thrombogenic nature of quantum dots observed in vivo. In this study, heparin conjugated quantum dots were found to have superior imaging properties compared to its native counterparts. The authors postulate that heparin binding to the CD11b receptor facilitates QD internalization to the nucleus, and the heparin layer may reduce the in vivo thrombogenic properties of quantum dots. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. The french low-level waste disposal site 'Centre de l'Aube'. A ten years process, from geological concept to waste deliveries

    International Nuclear Information System (INIS)

    Fernique, J.C.

    1993-01-01

    The 'Centre de la Manche', first French low-level waste disposal site opened in 1969 and will enter the institutional control period around 1994. A creation process for a new disposal was initiated in 1981 when ANDRA prepared a general radioactive waste management Program and presented it to the High Council for Nuclear Safety and Information. After acceptance of the Program, a national site screening was made, based on a conceptual geological model designed from the experience. In 1984, the Minister of Industry announced the pre-selection of 3 counties out of the inventory for preliminary studies that allowed to select l' Aube as a potential site for the new French disposal 'Centre de l'Aube'. The different steps of the process and procedure that brought to the acceptance of the first packages in January 1992 is presented in the paper, as well as the experience recently gained since that date. This additional know-how and expertise is made available by Andra through agreements already existing with various Countries like, among others, Spain, the United States, and Mexico

  9. Coal as an abundant source of graphene quantum dots

    Science.gov (United States)

    Ye, Ruquan; Xiang, Changsheng; Lin, Jian; Peng, Zhiwei; Huang, Kewei; Yan, Zheng; Cook, Nathan P.; Samuel, Errol L. G.; Hwang, Chih-Chau; Ruan, Gedeng; Ceriotti, Gabriel; Raji, Abdul-Rahman O.; Martí, Angel A.; Tour, James M.

    2013-12-01

    Coal is the most abundant and readily combustible energy resource being used worldwide. However, its structural characteristic creates a perception that coal is only useful for producing energy via burning. Here we report a facile approach to synthesize tunable graphene quantum dots from various types of coal, and establish that the unique coal structure has an advantage over pure sp2-carbon allotropes for producing quantum dots. The crystalline carbon within the coal structure is easier to oxidatively displace than when pure sp2-carbon structures are used, resulting in nanometre-sized graphene quantum dots with amorphous carbon addends on the edges. The synthesized graphene quantum dots, produced in up to 20% isolated yield from coal, are soluble and fluorescent in aqueous solution, providing promise for applications in areas such as bioimaging, biomedicine, photovoltaics and optoelectronics, in addition to being inexpensive additives for structural composites.

  10. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia.

    Science.gov (United States)

    Ghédir, Houda; Ibala-Romdhane, Samira; Okutman, Ozlem; Viot, Géraldine; Saad, Ali; Viville, Stéphane

    2016-01-01

    The purpose of this study was to analyze DPY19L2 sequence variants to investigate the mechanism leading to the entire DPY19L2 deletion in a large cohort of infertile globozoospermic patients. An improved analysis of the DPY19L2 deletion breakpoints (BPs) allowed us to identify two BPs located in a small 1 kb region and to more precisely localize the BPs reported previously. Three genes [spermatogenesis associated 16 (SPATA16), protein interacting with PRKCA (PICK1) and DPY19L2] were previously correlated with globozoospermia, but a homozygous deletion of the entire DPY19L2 was identified as the most frequent alteration causing this phenotype. In addition, several point mutations in this gene were reported. In previous work, we have identified nine BPs for the DPY19L2 deletion clustered in two hotspot regions, while others reported a total of five BPs. We screened for the DPY19L2 deletion and for mutations in the DPY19L2, SPATA16 and PICK1 genes in a cohort of 21 Tunisian globozoospermic patients. In order to characterize the DPY19L2 deletion BPs, we sequenced a 2 kb fragment on low copy repeat (LCR) 1 and LCR2 in Tunisian fertile controls to distinguish between single-nucleotide polymorphisms (SNPs) and LCR-specific markers. Molecular analyses performed on 18 genetically independent individuals showed that 11 (61.1%) were homozygous for the DPY19L2 deletion, 2 (11.1%) were homozygous for the non-synonymous mutation (p.R298C) in exon 8, 1 patient (5.6%) was homozygous for a new splice-site mutation at the junction exon-intron 16 [c.1579_1580+4delAGGTAAinsTCAT] and no DPY19L2, SPATA16 or PICK1 mutations were identified for 4 patients (22.2%). By defining 15 specific LCR markers, we characterized 2 BPs for the DPY19L2 deletion in 11 patients showing the homozygous deletion. Using 20 non-LCR-specific SNPs, we identified 8 distinct haplotypes. A limitation of this study is the small number of patients owing to the rarity of this form of male infertility. Our data showed

  11. Vibrational spectroscopic and theoretical study of 3,5-dimethyl-1-thiocarboxamide pyrazole (L) and the complexes Co2L2Cl4, Cu2L2Cl4 and Cu2L2Br2

    International Nuclear Information System (INIS)

    Nemcsok, Denes; Kovacs, Attila; Szecsenyi, Katalin Meszaros; Leovac, Vukadin M.

    2006-01-01

    In the present paper we report a joint experimental and theoretical study of 3,5-dimethyl-1-thiocarboxamide pyrazole (L) and its complexes Co 2 L 2 Cl 4 , Cu 2 L 2 Cl 4 and Cu 2 L 2 Br 2 . DFT computations were used to model the structural and bonding properties of the title compounds as well as to derive a reliable force field for the normal coordinate analysis of L. The computations indicated the importance of hydrogen bonding interactions in stabilising the global minimum structures on the potential energy surfaces. In contrast to the S-bridged binuclear Cu 2 L 2 Br 2 complex found in the crystal, our computations predicted the formation of (CuLBr) 2 dimers in the isolated state stabilized by very strong (53 kJ/mol) N-H...Br hydrogen bonding interactions. On the basis of FT-IR and FT-Raman experiments and the DFT-derived scaled quantum mechanical force field we carried out a complete normal coordinate analysis of L. The FT-IR spectra of the three complexes were interpreted using the present assignment of L, literature data and computed results

  12. Enhanced interfacial contact between PbS and TiO2 layers in quantum dot solar cells using 2D-arrayed TiO2 hemisphere nanostructures

    Science.gov (United States)

    Lee, Wonseok; Ryu, Ilhwan; Lee, Haein; Yim, Sanggyu

    2018-02-01

    Two-dimensionally (2D) arrayed hemispherical nanostructures of TiO2 thin films were successfully fabricated using a simple procedure of spin-coating or dip-coating TiO2 nanoparticles onto 2D close-packed polystyrene (PS) nanospheres, followed by PS extraction. The nanostructured TiO2 film was then used as an n-type layer in a lead sulfide (PbS) colloidal quantum dot solar cell. The TiO2 nanostructure could provide significantly increased contacts with subsequently deposited PbS quantum dot layer. In addition, the periodically arrayed nanostructure could enhance optical absorption of the cell by redirecting the path of the incident light and increasing the path length passing though the active layer. As a result, the power conversion efficiency (PCE) reached 5.13%, which is approximately a 1.7-fold increase over that of the control cell without nanostructuring, 3.02%. This PCE enhancement can mainly be attributed to the increase of the short-circuit current density from 19.6 mA/cm2 to 30.6 mA/cm2, whereas the open-circuit voltage and fill factor values did not vary significantly.

  13. Emission switching in carbon dots coated CdTe quantum dots driving by pH dependent hetero-interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Xiao; Wang, Hao; Yi, Qinghua; Wang, Yun; Cong, Shan; Zhao, Jie; Sun, Yinghui; Zou, Guifu, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Qian, Zhicheng [School of Electronic and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Huang, Jianwen; Xiong, Jie, E-mail: zouguifu@suda.edu.cn, E-mail: jiexiong@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Luo, Hongmei [Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003 (United States)

    2015-11-16

    Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefits the future development of optoelectronic nanodevices with new functionalities.

  14. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties.

    Science.gov (United States)

    De, Bibekananda; Gupta, Kuldeep; Mandal, Manabendra; Karak, Niranjan

    2015-11-01

    The present work demonstrated a transparent thermosetting nanocomposite with antimicrobial and photoluminescence attributes. The nanocomposites are fabricated by incorporation of different wt.% (1, 2 and 3) of a biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid (MITH-NH) in the hyperbranched epoxy matrix. MITH-NH is obtained by immobilization of 2-methyl-4-isothiazolin-3-one hydrochloride (MITH) at room temperature using sonication on OMMT-carbon dot reduced Cu2O nanohybid. The nanohybrid is prepared by reduction of cupric acetate using carbon dot as the reducing agent in the presence of OMMT at 70°C. The significant improvements in tensile strength (~2 fold), elongation at break (3 fold), toughness (4 fold) and initial thermal degradation temperature (30°C) of the pristine hyperbranched epoxy system are achieved by incorporation of 3wt.% of MITH-NH in it. The nanocomposites exhibit strong antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae and Pseudomonas aeruginosa bacteria and Candida albicans, a fungus. The nanocomposite also shows significant activity against biofilm formation compared to the pristine thermoset. Further, the nanocomposite films emit different colors on exposure of different wavelengths of UV light. The properties of these nanocomposites are also compared with the same nanohybrid without OMMT. Copyright © 2015. Published by Elsevier B.V.

  15. Partial pseudospin polarization, latticetronics and Fano resonances in quantum dots based in graphene ribbons: a conductance spectroscopy

    Science.gov (United States)

    López, Luis I. A.; Champi, Ana; Ujevic, Sebastian; Mendoza, Michel

    2015-11-01

    In this work we study, as a function of the height V and width L b of the potential barriers, the transport of Dirac quasi-particles through quantum dots in graphene ribbons. We observed, as we increase V, a partial polarization ( PP) of the pseudospin due to the participation of the hyperbolic bands. This generates polarizations in the sub-lattices A or B outside the dot regions for single, coupled, and open dots. Thus for energies around the Dirac point, the conductance G at both sides of the dot shows a latticetronics of conductances G A and G B as a function of V and L b . This fact can be used as a PP spectroscopy which associates hole-type waves with the latticetronics. A periodic enhancement of PP is obtained with the increase of V in dots formed by barriers that completely occupy the nanoribbon width. For this case, a direct correspondence between G( V) and PP( V) exists. On the other hand, for the open dots, the PP( V) and the G( V) show a complex behavior that exhibit higher intensities when compared to the previous case. In the Dirac limit we have no backscattering signs, however when we move slightly away from this limit the first signs of confinement appear in the PP( V) (it freezes in a given sub-lattice). In the last case the backscattering fingerprints are obtained directly from the conductance (splittings). The open quantum dots are very sensible to their opening w d and this generates Fano line-shapes of difficult interpretation around the Dirac point. The PP spectroscopy used here allows us to understand the influence of w d in the relativistic analogues and to associate electron-type waves with the observed Fano line-shapes.

  16. Thioglycolic acid-capped CuInS{sub 2}/ZnS quantum dots as fluorescent probe for cobalt ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Zi, Lili; Huang, Yu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 4 Tongjia Lane, Gulou District, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009 (China); Yan, Zhengyu, E-mail: yanzhengyujiang@126.com [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 4 Tongjia Lane, Gulou District, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009 (China); Liao, Shenghua, E-mail: liaoshenghuacpu@hotmail.com [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 4 Tongjia Lane, Gulou District, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009 (China)

    2014-04-15

    A novel sensing fluorescent probe based on the fluorescence quenching of the thioglycolic acid-capped CuInS{sub 2}/ZnS quantum dots (CuInS{sub 2}/ZnS/TGA QDs) was established for cobalt ions detection. The fluorescence quenching of CuInS{sub 2}/ZnS/TGA QDs was due to the increasing surface deficiency and the inner-filter effect, which were attributed to the reaction between Co{sup 2+} and sulfur bonds on the surface of QDs. The quenching curve could be fitted by a typical Stern–Volmer-type equation, with a linear relationship between the quenching efficiency and the concentration of cobalt ions in the range of 0.3012–90.36 μmol L{sup −1}. And the detection limit (S/N=3) for Co{sup 2+} was 0.16 μmol L{sup −1}. Therefore, the established probe provided a simple, rapid, cheap and sensitive method for Co{sup 2+} detection. In a word, this method can be used to detect Co{sup 2+} in the environment. -- Highlights: • The CuInS2/ZnS QDs were used for the first time as a fluorescent probe for Co{sup 2+} detection. • The dramatic color change could be observed when Co{sup 2+} was added into the QDs solution. • The quenching of QDs was due to the increasing surface deficiency and the inner-filter effect. • This rapid, cheap and sensitive method was applied to the detection of Co{sup 2+} in simulated water.

  17. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria

    International Nuclear Information System (INIS)

    Andrade, Patricia F.; Durán, Nelson; Nakazato, Gerson

    2017-01-01

    It is known the presence of carbon dots (CDs) in carbohydrate based foods. CDs extracted from coffee grounds and instant coffee was also published. CDs from soluble coffee revealed an average size of 4.4 nm. CDs were well-dispersed in water, fluorescent and we have characterized by XPS, XRD analysis, fluorescence and by FTIR spectra. The MIC value by serial micro-dilution assays for CDs on S. aureus ATCC 25923 was 250 μg/mL and E. coli ATCC 25922 >1000 ug/mL. For silver nanoparticles biogenically synthesized was 6.7 μg/mL. Following the checkerboard assay with combining ½ MIC values of the MICs of 125 μg/mL of carbon dots and 3.4 μg/mL of silver nanoparticles, following the fractionated inhibitory concentration (FIC) index methodology, on S. aureus gave a fractionated inhibitory concentration (FIC) value of 1.0, meaning additive interaction. In general, the unfunctionalized CDs showed to be inefficient as antibacterial compounds, however the CDs extracted from Coffee powder and together silver nanoparticles appeared interesting as antibacterial association. (paper)

  18. 75 FR 7152 - Stillwater Central Railroad, Inc.-Lease and Operation Exemption-Hollis & Eastern Railroad L.L.C.

    Science.gov (United States)

    2010-02-17

    ...] Stillwater Central Railroad, Inc.--Lease and Operation Exemption--Hollis & Eastern Railroad L.L.C. Stillwater... & Eastern Railroad L.L.C. (H&E), 14 miles of H&E's rail line between milepost 0.0 at Duke, OK and milepost... available on our Web site at http://www.stb.dot.gov . Decided: By the Board, Rachel D. Campbell, Director...

  19. Development and implementation of a novel assay for L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) in cell lysates: L-2-HGDH deficiency in 15 patients with L-2-hydroxyglutaric aciduria

    DEFF Research Database (Denmark)

    Kranendijk, M; Salomons, G S; Gibson, K M

    2009-01-01

    L-2-hydroxyglutaric aciduria (L-2-HGA) is a rare inherited autosomal recessive neurometabolic disorder caused by mutations in the gene encoding L-2-hydroxyglutarate dehydrogenase. An assay to evaluate L-2-hydroxyglutarate dehydrogenase (L-2-HGDH) activity in fibroblast, lymphoblast and/or lymphoc...

  20. Résultats de recherche | Page 81 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Gestion et valorisation des déchets ménagers et amélioration des conditions de vie en milieu urbain et périurbain en Afrique de l'Ouest et du Centre : deuxième ... Dynamiques et rôles économique et social du secteur informel des TIC en Afrique de l'Ouest et du Centre : cas du Burkina Faso, du Cameroun et du Sénégal; ...

  1. Kenya | CRDI - Centre de recherches pour le développement ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le Kenya est depuis longtemps le centre économique de l'Afrique de l'Est. Cependant, malgré des progrès économiques considérables au cours de la dernière décennie, la pauvreté et des inégalités persistent. Le bureau du CRDI à Nairobi est le point central des efforts du Centre en Afrique subsaharienne et il supervise ...

  2. Synthesis and applications of crack-free SiO2 monolith containing CdSe/ZnS quantum dots as passive lighting sources.

    Science.gov (United States)

    Yi, Dong Kee

    2008-09-01

    A reverse microemulsion technique has been used to synthesize quantum dot nanocomposites within a SiO2 surface coating. With this approach, the unique optical properties of the CdSe/ZnS quantum dots were preserved. CdSe/ZnS/SiO2 nanoparticles were homogeneously distributed in a tetramethyl orthosilicate ethanol solution and gelation process was initiated within a 10 min, and was left over night at room temperature and dried fully to achieve a solid SiO, monolith. The resulting monolith was transparent and fluorescent under ultraviolet (UV) lamp. Moreover the monolith produced was crack-free. Further studies on the photo stability of the monolith were performed using a high power UV LED device. Remarkably, quantum dots in the SiO, monolith showed better photo stability compared with those dispersed in a polymer matrix.

  3. [Spectral Analysis of CdZnSe Ternary Quantum Dots Sensitized TiO2 Tubes and Its Application in Visible-Light Photocatalysis].

    Science.gov (United States)

    Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong

    2015-11-01

    photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd₀.₅ Zn₀.₅ Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd₀.₅ Zn₀.₅ Se ternary quantum dots, respectively.

  4. On the geochemistry of 'Chernobyl' Cs-137 and Sr-90 in the Black Sea

    International Nuclear Information System (INIS)

    Batrakov, G.F.; Chudinovskikh, T.V.; Zemlyanoi, A.D.; Eremeev, V.N.

    1998-01-01

    The following correlations for Cs 137 and Sr 90 were found. For Cs-137, the relation of its concentration in suspended matter to that in the dissolved component is 2.4 centre dot 10 5 in the Dnieper waters and 0.0037 centre dot 10 5 in the North-West shelf waters; for Sr-90 - 0.44 centre dot 10 3 and 2.8 centre dot 10 3 , respectively. The relation of the concentration of dissolved Cs-137 in the sea and in the Dnieper waters is 4.3, and for Sr-90 - 0.25. It is evident that these basic correlations for Cs-137 are close to those for stable cesium. These correlations for Sr-90 differ very much from those for stable strontium. So, the situation formed for the last time in the boundary area 'the Dnieper river - the North-Western Black Sea' is close to the balanced one for Cs-137, while it is very far from that for Sr-90

  5. Physics colloquium: Electron counting in quantum dots in and out of equilibrium

    CERN Multimedia

    Geneva University

    2011-01-01

    GENEVA UNIVERSITY Ecole de physique Département de physique nucléaire et corspusculaire 24, quai Ernest-Ansermet 1211 Genève 4 Tél.: (022) 379 62 73 Fax: (022) 379 69 92olé   Lundi 31 octobre 2011 17h00 - Ecole de Physique, Auditoire Stueckelberg PHYSICS COLLOQUIUM « Electron counting in quantum dots in and out of equilibrium » Prof. Klaus Ensslin Solid State Physics Laboratory, ETH Zurich, 8093 Zurich, Switzerland   Electron transport through quantum dots is governed by Coulomb blockade. Using a nearby quantum point contact the time-dependent charge flow through quantum dots can be monitored on the basis of single electrons. This way electron transport has been investigated in equilibrium as well as out of equilibrium. Recently it has become possible to experimentally verify the fluctuation theorem. The talk will also address electron counting experiments in grapheme. Une verrée ...

  6. Diagnosis of TIA (DOT) score--design and validation of a new clinical diagnostic tool for transient ischaemic attack.

    Science.gov (United States)

    Dutta, Dipankar

    2016-02-09

    The diagnosis of Transient Ischaemic Attack (TIA) can be difficult and 50-60% of patients seen in TIA clinics turn out to be mimics. Many of these mimics have high ABCD2 scores and fill urgent TIA clinic slots inappropriately. A TIA diagnostic tool may help non-specialists make the diagnosis with greater accuracy and improve TIA clinic triage. The only available diagnostic score (Dawson et al) is limited in scope and not widely used. The Diagnosis of TIA (DOT) Score is a new and internally validated web and mobile app based diagnostic tool which encompasses both brain and retinal TIA. The score was derived retrospectively from a single centre TIA clinic database using stepwise logistic regression by backwards elimination to find the best model. An optimum cutpoint was obtained for the score. The derivation and validation cohorts were separate samples drawn from the years 2010/12 and 2013 respectively. Receiver Operating Characteristic (ROC) curves and area under the curve (AUC) were calculated and the diagnostic accuracy of DOT was compared to the Dawson score. A web and smartphone calculator were designed subsequently. The derivation cohort had 879 patients and the validation cohort 525. The final model had seventeen predictors and had an AUC of 0.91 (95% CI: 0.89-0.93). When tested on the validation cohort, the AUC for DOTS was 0.89 (0.86-0.92) while that of the Dawson score was 0.77 (0.73-0.81). The sensitivity and specificity of the DOT score were 89% (CI: 84%-93%) and 76% (70%-81%) respectively while those of the Dawson score were 83% (78%-88%) and 51% (45%-57%). Other diagnostic accuracy measures (DOT vs. Dawson) include positive predictive values (75% vs. 58%), negative predictive values (89% vs. 79%), positive likelihood ratios (3.67 vs. 1.70) and negative likelihood ratios (0.15 vs. 0.32). The DOT score shows promise as a diagnostic tool for TIA and requires independent external validation before it can be widely used. It could potentially improve the

  7. Sensitizing effects of ZnO quantum dots on red-emitting Pr3+-doped SiO2 phosphor

    CSIR Research Space (South Africa)

    Mbule, PS

    2012-05-01

    Full Text Available In this study, red cathodoluminescence (CL) ( emission=614 nm) was observed from Pr3+ ions in a glassy (amorphous) SiO2 host. This emission was enhanced considerably when ZnO quantum dots (QDs) were incorporated in the SiO2:Pr3+ suggesting...

  8. Dicke states in multiple quantum dots

    Science.gov (United States)

    Sitek, Anna; Manolescu, Andrei

    2013-10-01

    We present a theoretical study of the collective optical effects which can occur in groups of three and four quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are, however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In the steady state the individual populations of each dot may have permanent oscillations with frequencies given by the energy separation between the subradiant eigenstates.

  9. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    International Nuclear Information System (INIS)

    Isnaeni,; Yulianto, Nursidik; Suliyanti, Maria Margaretha

    2016-01-01

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  10. Photoluminescence of patterned CdSe quantum dot for anti-counterfeiting label on paper

    Energy Technology Data Exchange (ETDEWEB)

    Isnaeni,, E-mail: isnaeni@lipi.go.id; Yulianto, Nursidik; Suliyanti, Maria Margaretha [Research Center for Physics, Indonesian Institute of Sciences, Building 442, Kawasan Puspiptek, South Tangerang,Banten 15314 Indonesia (Indonesia)

    2016-03-11

    We successfully developed a method utilizing colloidal CdSe nanocrystalline quantum dot for anti-counterfeiting label on a piece of glossy paper. We deposited numbers and lines patterns of toluene soluble CdSe quantum dot using rubber stamper on a glossy paper. The width of line pattern was about 1-2 mm with 1-2 mm separation between lines. It required less than one minute for deposited CdSe quantum dot on glossy paper to dry and become invisible by naked eyes. However, patterned quantum dot become visible using long-pass filter glasses upon excitation of UV lamp or blue laser. We characterized photoluminescence of line patterns of quantum dot, and we found that emission boundaries of line patterns were clearly observed. The error of line size and shape were mainly due to defect of the original stamper. The emission peak wavelength of CdSe quantum dot was 629 nm. The emission spectrum of deposited quantum dot has full width at half maximum (FWHM) of 30-40 nm. The spectra similarity between deposited quantum dot and the original quantum dot in solution proved that our stamping method can be simply applied on glossy paper without changing basic optical property of the quantum dot. Further development of this technique is potential for anti-counterfeiting label on very important documents or objects.

  11. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide.

    Science.gov (United States)

    Arvand, Majid; Mirroshandel, Aazam A

    2017-10-15

    With the advantages of excellent optical properties and biocompatibility, single-strand DNA-functionalized quantum dots have been widely applied in biosensing and bioimaging. A new aptasensor with easy operation, high sensitivity, and high selectivity was developed by immobilizing the aptamer on water soluble l-cysteine capped ZnS quantum dots (QDs). Graphene oxide (GO) sheets are mixed with the aptamer-QDs. Consequently, the aptamer-conjugated QDs bind to the GO sheets to form a GO/aptamer-QDs ensemble. This aptasensor enables the energy transfer based on a fluorescence resonance energy transfer (FRET) from the QDs to the GO sheets, quenching the fluorescence of QDs. The GO/aptamer-QDs ensemble assay acts as a "turn-on'' fluorescent sensor for edifenphos (EDI) detection. When GO was replaced by EDI, the fluorescence of QDs was restored and its intensity was proportional to the EDI concentration. This GO-based aptasensor under the optimum conditions exhibited excellent analytical performance for EDI determination, ranging from 5×10 -4 to 6×10 -3 mg L -1 with the detection limit of 1.3×10 -4 mgL -1 . Furthermore, the designed aptasensor exhibited excellent selectivity toward EDI compared to other pesticides and herbicides with similar structures such as diazinon, heptachlor, endrin, dieldrin, butachlor and chlordane. Good reproducibility and precision (RSD =3.9%, n =10) of the assay indicates the high potential of the aptasensor for quantitative trace analysis of EDI. Moreover, the results demonstrate the applicability of the aptasensor for monitoring EDI fungicide in spiked real samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Computer-automated tuning of semiconductor double quantum dots into the single-electron regime

    Energy Technology Data Exchange (ETDEWEB)

    Baart, T. A.; Vandersypen, L. M. K. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Eendebak, P. T. [QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft (Netherlands); Netherlands Organisation for Applied Scientific Research (TNO), P.O. Box 155, 2600 AD Delft (Netherlands); Reichl, C.; Wegscheider, W. [Solid State Physics Laboratory, ETH Zürich, 8093 Zürich (Switzerland)

    2016-05-23

    We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.

  13. Photovoltaic and Impedance Spectroscopy Study of Screen-Printed TiO2 Based CdS Quantum Dot Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    M. Atif

    2015-01-01

    Full Text Available Cadmium sulphide (CdS quantum dot sensitized solar cells (QDSSCs based on screen-printed TiO2 were assembled using a screen-printing technique. The CdS quantum dots (QDs were grown by using the Successive Ionic Layer Adsorption and Reaction (SILAR method. The optical properties were studied by UV-Vis absorbance spectroscopy. Photovoltaic characteristics and impedance spectroscopic measurements of CdS QDSSCs were carried out under air mass 1.5 illuminations. The experimental results of capacitance against voltage indicate a trend from positive to negative capacitance because of the injection of electrons from the Fluorine doped tin oxide (FTO electrode into TiO2.

  14. Optimal and Local Connectivity Between Neuron and Synapse Array in the Quantum Dot/Silicon Brain

    Science.gov (United States)

    Duong, Tuan A.; Assad, Christopher; Thakoor, Anikumar P.

    2010-01-01

    This innovation is used to connect between synapse and neuron arrays using nanowire in quantum dot and metal in CMOS (complementary metal oxide semiconductor) technology to enable the density of a brain-like connection in hardware. The hardware implementation combines three technologies: 1. Quantum dot and nanowire-based compact synaptic cell (50x50 sq nm) with inherently low parasitic capacitance (hence, low dynamic power approx.l0(exp -11) watts/synapse), 2. Neuron and learning circuits implemented in 50-nm CMOS technology, to be integrated with quantum dot and nanowire synapse, and 3. 3D stacking approach to achieve the overall numbers of high density O(10(exp 12)) synapses and O(10(exp 8)) neurons in the overall system. In a 1-sq cm of quantum dot layer sitting on a 50-nm CMOS layer, innovators were able to pack a 10(exp 6)-neuron and 10(exp 10)-synapse array; however, the constraint for the connection scheme is that each neuron will receive a non-identical 10(exp 4)-synapse set, including itself, via its efficacy of the connection. This is not a fully connected system where the 100x100 synapse array only has a 100-input data bus and 100-output data bus. Due to the data bus sharing, it poses a great challenge to have a complete connected system, and its constraint within the quantum dot and silicon wafer layer. For an effective connection scheme, there are three conditions to be met: 1. Local connection. 2. The nanowire should be connected locally, not globally from which it helps to maximize the data flow by sharing the same wire space location. 3. Each synapse can have an alternate summation line if needed (this option is doable based on the simple mask creation). The 10(exp 3)x10(exp 3)-neuron array was partitioned into a 10-block, 10(exp 2)x10(exp 3)-neuron array. This building block can be completely mapped within itself (10,000 synapses to a neuron).

  15. Optimization of Si–C reaction temperature and Ge thickness in C-mediated Ge dot formation

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuhki, E-mail: yu-ki@ecei.tohoku.ac.jp; Itoh, Yuhki; Kawashima, Tomoyuki; Washio, Katsuyoshi

    2016-03-01

    To form Ge dots on a Si substrate, the effect of thermal reaction temperature of sub-monolayer C with Si (100) was investigated and the deposited Ge thickness was optimized. The samples were prepared by solid-source molecular beam epitaxy with an electron-beam gun for C sublimation and a Knudsen cell for Ge evaporation. C of 0.25 ML was deposited on Si (100) at a substrate temperature of 200 °C, followed by a high-temperature treatment at the reaction temperature (T{sub R}) of 650–1000 °C to create Si–C bonds. Ge equivalent to 2 to 5 nm thick was subsequently deposited at 550 °C. Small and dense dots were obtained for T{sub R} = 750 °C but the dot density decreased and the dot diameter varied widely in the case of lower and higher T{sub R}. A dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge deposition equivalent to 3 to 5 nm thick and a standard deviation of dot diameter was the lowest of 10 nm for 5 nm thick Ge. These results mean that C-mediated Ge dot formation was strongly influenced not only by the c(4 × 4) reconstruction condition through the Si–C reaction but also the relationship between the Ge deposition thickness and the exposed Si (100)-(2 × 1) surface area. - Highlights: • The effect of Si–C reaction temperature on Ge dot formation was investigated. • Small and dense dots were obtained for T{sub R} = 750 °C. • The dot density of about 2 × 10{sup 10} cm{sup −2} was achieved for Ge = 3 to 5 nm. • The standard deviation of dot diameter was the lowest of 10 nm at Ge = 5 nm.

  16. Formation and properties of selected quantum dots in maize amylopectin matrix

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Karen, E-mail: rrchacza@cyf-kr.edu.pl [Department of Chemistry and Physics, Agricultural University, Balicka Street 122, 30 149 Krakow (Poland); Khachatryan, Gohar; Fiedorowicz, Maciej [Department of Chemistry and Physics, Agricultural University, Balicka Street 122, 30 149 Krakow (Poland); Tomasik, Piotr [Krakow College of Health Promotion, Krowoderska Street 73, 31 158 Krakow (Poland)

    2014-09-01

    Highlights: • Synthesis of quantum dots in aqueous gel of amylopectin. • Generation of quantum dots in non-ionic polysaccharide. • Preparation of CdS, Ga{sub 2}S{sub 3} and ZnS quantum dots of the size below 10 nm. • The amylopectin matrix is not suitable for generation of CaS and Cs{sub 2}S quantum dots. - Abstract: CdS, ZnS, Ga{sub 2}S{sub 3}, CaS and Cs{sub 2}S quantum dots (QDs) were generated in the amylopectin (Ap) matrix. They all emitted a light between 460 (ZnS) and 475 (CdS) nm. Sizes of Ga{sub 2}S{sub 3} and CdS QDs were 7–9 nm and 5–7 nm, respectively. Single ZnS QDs had 6–7 nm but they readily aggregated. The CaS and Cs{sub 2}S appeared mainly as 30–100 nm aggregates. There were no significant interactions between QDs and the Ap matrix. Presented method appeared unsuitable for the generation of CaS and Cs{sub 2}S QDs as they as well as their substrates [Ca(NO{sub 3}){sub 2}] hydrolyzed. Calcium compounds formed complexes with Ap and alkaline solution from CsOH could produce cesium salts of Ap as well as cause oxidation of Ap.

  17. Analysis of LOFT loss-of-coolant experiments L2-2, L2-3, and L3-0

    International Nuclear Information System (INIS)

    Leach, L.P.; Linebarger, J.H.

    1979-01-01

    A summary of results from Loss-of-Coolant Experiments (LOCE) L2-2, L2-3, and L3-0, conducted in the Loss-of-Fluid Test (LOFT) facility, and conclusions from posttest analyses of the experimental data are presented. LOCEs L2-2 and L2-3 were nuclear large break experiments and were dominated by a core-wide fuel rod cladding rewet, which limited the maximum fuel temperature. Analytical models only conservatively predicted the measured fuel rod temperatures and will require improvements to provide best estimate predictions in this area. Analysis of a large commercial pressurized water reactor (PWR) indicates that the cladding rewet observed in LOFT is also likely to occur in a large PWR, and that, therefore, safety analysis calculations of large loss-of-coolant accidents (LOCA) are more conservative than previously thought. LOCE L3-0 was an isothermal small break (top of pressurizer) experiment and illustrated that the pressurizer fills after the primary system fluid saturates someplace other than the pressurizer itself, that the indicated pressurizer level is higher than the actual level, and that additional model development and assessment work is necessary in order to predict small LOCAs as accurately as large LOCAs

  18. Models of mass segregation at the Galactic Centre

    International Nuclear Information System (INIS)

    Freitag, Marc; Amaro-Seoane, Pau; Kalogera, Vassiliki

    2006-01-01

    We study the process of mass segregation through 2-body relaxation in galactic nuclei with a central massive black hole (MBH). This study has bearing on a variety of astrophysical questions, from the distribution of X-ray binaries at the Galactic centre, to tidal disruptions of main- sequence and giant stars, to inspirals of compact objects into the MBH, an important category of events for the future space borne gravitational wave interferometer LISA. In relatively small galactic nuclei, typical hosts of MBHs with masses in the range 10 4 - 10 7 M o-dot , the relaxation induces the formation of a steep density cusp around the MBH and strong mass segregation. Using a spherical stellar dynamical Monte-Carlo code, we simulate the long-term relaxational evolution of galactic nucleus models with a spectrum of stellar masses. Our focus is the concentration of stellar black holes to the immediate vicinity of the MBH. Special attention is given to models developed to match the conditions in the Milky Way nucleus

  19. Novel {beta}-cyclodextrin modified CdTe quantum dots as fluorescence nanosensor for acetylsalicylic acid and metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Algarra, M. [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Campos, B.B.; Aguiar, F.R.; Rodriguez-Borges, J.E. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 169-007 Porto (Portugal); Esteves da Silva, J.C.G., E-mail: jcsilva@fc.up.pt [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 169-007 Porto (Portugal)

    2012-05-01

    {beta}-Cyclodextrin was modified with 11-[(ethoxycarbonyl)thio]undecanoic acid and used as a capping agent, together with mercaptosuccinic acid, to prepare water-stable CdTe quantum dots. The water soluble quantum dot obtained displays fluorescence with a maximum emission at 425 nm (under excitation at 300 nm) with lifetimes of 0.53, 4.8, 181, and 44.1 ns, respectively. The S-{beta}CD-MSA-CdTe can act as a nanoprobe that is due to the affinity of the cyclodextrin moiety for selected substances such as acetylsalicylic acid (ASA) and its metabolites as foreign species. The fluorescence of the S-{beta}CD-MSA-CdTe is enhanced on addition of ASA. Linear calibration plots are observed with ASA in concentrations between 0 and 1 mg/l, with a limit of detection at 8.5 Multiplication-Sign 10{sup -9} mol/l (1.5 ng/ml) and a precision as relative standard deviation of 1% (0.05 mg/l). The interference effect of certain compounds as ascorbic acid and its main metabolites such as salicylic, gentisic and salicyluric acid upon the obtained procedure was studied. Highlights: Black-Right-Pointing-Pointer Nanosensors constituted by CdTe quantum dots capped with modified cyclodextrin. Black-Right-Pointing-Pointer This nanomaterial shows fluorescence properties compatible with a semiconductor quantum dot. Black-Right-Pointing-Pointer The nanosensor shows fluorescence enhancement when inclusion complexes are formed with acetylsalicylic acid. Black-Right-Pointing-Pointer This nanomaterial has nanosensor potential taking into consideration the formation stability of the inclusion complex.

  20. Insights into the effect of N-acetyl-L-cysteine-capped CdTe quantum dots on the structure and activity of human serum albumin by spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Haoyu; Yang, Xudan; Li, Meng; Han, Songlin; Liu, Yingxue [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China); Tan, Xuejie [School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong Province 250353 (China); Liu, Chunguang, E-mail: chunguangliu2013@sdu.edu.cn [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China); Liu, Rutao [School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100 (China)

    2015-11-15

    Quantum dots (QDs) are a kind of nanostructured semiconductor crystals with the size range of 1–10 nm. Their unique photophysical properties and potential toxicity to human health have aroused wide concern of scientists and general public. However, the interaction mechanism of QDs on human serum albumin (HSA, the vital protein in human blood) from both structural and functional perspectives is rarely reported. In the present work, effects of N-acetyl-L-cysteine-capped CdTe quantum dots with fluorescence emission peak at 612 nm (QDs-612) on the conformation and function of HSA were investigated by spectroscopic methods, molecular docking study and esterase activity assay. The hydrophobic interaction between HSA and QDs-612 was spontaneous with the binding constants calculated to be 6.85×10{sup 5} L mol{sup −1} (298 K) and 8.89×10{sup 5} L mol{sup −1} (308 K). The binding of QDs-612 to HSA induced the static quenching of fluorescence and the changes of secondary structure and microenvironment of Tyr-411 residue, which resulted in serious decrease on the hydrolysis of substrate p-nitrophenylacetate in esterase activity assay of HSA. This work confirms the possibility on direct interaction of QDs-612 with HSA and obtains a possible mechanism of relationship between conformation and function of HSA. - Highlights: • The interaction between CdTe QDs (QDs-612) and HSA is spontaneous. • The predominant force of the binding is hydrophobic interaction. • The interaction changes the secondary structure of HSA. • Tyr-411 residue of HSA expose to a hydrophilic environment. • The esterase activity of HSA decreases by adding QDs-612.

  1. Dot gain compensation in the blue noise mask

    Science.gov (United States)

    Yao, Meng; Parker, Kevin J.

    1995-04-01

    Frequency modulated (FM) halftoning or 'stochastic screening,' has attracted a great deal of attention in the printing industry in recent years. It has several advantages over conventional halftoning. But one serious problem that arises in FM halftoning is dot gain. One approach to stochastic screening uses a specially constructed halftone screen, the blue noise mask (BNM), to produce an unstructured and visually appealing pattern of halftone dots at any gray level. In this paper, we will present methods to correct dot gain with the BNM. Dot gain is related to the area-to-perimeter ration of printed spots. We can exploit this feature in different ways. At a medium level, a B>NM pattern will have 'connected' as well as 'isolated' dots. Normally, as we build down BNM patterns to lower levels, a specific number of white dots will be replace by black dots. Since connected white dots are more likely to be picked than isolated white dots, this will results in substantial dot gain because of the increasing number of isolated white dots. We show that it is possible to constrain the process of constructing a BNM such that isolated dots are preferentially removes, thus significantly reducing dot gain in a BNM.

  2. Crystal structure of l-leucyl-l-isoleucine 2,2,2-trifluoroethanol monosolvate

    Directory of Open Access Journals (Sweden)

    Carl Henrik Görbitz

    2016-05-01

    Full Text Available Hydrophobic dipeptides with either l-Leu or l-Phe constitute a rather heterogeneous group of crystal structures. Some form materials with large water-filled channels, but there is also a pronounced tendency to incorporate organic solvent molecules, which then act as acceptors for one of the three H atoms of the charged N-terminal amino group. l-Leu-l-Ile has uniquely been obtained as two distinct hydrates, but has so far failed to co-crystallize with a simple alcohol. The present structure of C12H24N2O3·CF3CH2OH, which crystallizes with two dipeptide and two solvent molecules in the asymmetric unit, demonstrates that when 2,2,2-trifluoroethanol is used as a solvent, its high capacity as a hydrogen-bond donor leads to formation of an alcohol solvate.

  3. A strategy of combining SILAR with solvothermal process for In{sub 2}S{sub 3} sensitized quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Peizhi, E-mail: pzhyang@hotmail.com [Key Laboratory of Advanced Technique & Preparation for Renewable Energy Materials, Ministry of Education, Yunnan Normal University, Kunming 650500 (China); Tang, Qunwei, E-mail: tangqunwei@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Ji, Chenming; Wang, Haobo [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2015-12-01

    Graphical abstract: - Highlights: • In{sub 2}S{sub 3} sensitized TiO{sub 2} anode is prepared by combining SILAR with solvothermal process. • The deposition cycle in SILAR process has an impact on cell performances. • A promising conversion efficiency of 1.39% is obtained for the optimal device. • The cell performances are markedly increased compared with SILAR technique. - Abstract: Pursuit of an efficient strategy for quantum dot-sensitized photoanode has been a persistent objective for enhancing photovoltaic performances of quantum dot-sensitized solar cell (QDSC). We present here the fabrication of the indium sulfide (In{sub 2}S{sub 3}) quantum dot-sensitized titanium dioxide (TiO{sub 2}) photoanode by combining successive ionic layer adsorption and reaction (SILAR) with solvothermal processes. The resultant QDSC consists of an In{sub 2}S{sub 3} sensitized TiO{sub 2} photoanode, a liquid polysulfide electrolyte, and a Co{sub 0.85}Se counter electrode. The optimized QDSC with photoanode prepared with the help of a SILAR method at 20 deposition cycles and solvothermal method yields a maximum power conversion efficiency of 1.39%.

  4. Quantum dot doped solid polymer electrolyte for device application

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pramod K.; Kim, Kang Wook; Rhee, Hee-Woo [Department of Chemical and Biomolecular Engineering, Sogang University, Mapo-Gu, Seoul 121-742 (Korea)

    2009-06-15

    ZnS capped CdSe quantum dots embedded in PEO:KI:I{sub 2} polymer electrolyte matrix have been synthesized and characterized for dye sensitized solar cell (DSSC) application. The complex impedance spectroscopy shows enhance in ionic conductivity ({sigma}) due to charges provide by quantum dots (QD) while AFM affirm the uniform distribution of QD into polymer electrolyte matrix. Cyclic voltammetry revealed the possible interaction between polymer electrolyte, QD and iodide/iodine. The photovoltaic performances of the DSSC containing quantum dots doped polymer electrolyte was also found to improve. (author)

  5. Study of a Quantum Dot in an Excited State

    Science.gov (United States)

    Slamet, Marlina; Sahni, Viraht

    We have studied the first excited singlet state of a quantum dot via quantal density functional theory (QDFT). The quantum dot is represented by a 2D Hooke's atom in an external magnetostatic field. The QDFT mapping is from an excited singlet state of this interacting system to one of noninteracting fermions in a singlet ground state. The results of the study will be compared to (a) the corresponding mapping from a ground state of the quantum dot and (b) to the similar mapping from an excited singlet state of the 3D Hooke's atom.

  6. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    International Nuclear Information System (INIS)

    Park, Y.; Hirose, Y.; Fukumura, T.; Hasegawa, T.; Nakao, S.; Xu, J.

    2014-01-01

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w Bi ) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ F  = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L ϕ ) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w Bi and t smaller than λ F showed low dimensional electronic behavior at low temperatures where L ϕ (T) exceed w Bi or t

  7. Electron correlations in quantum dots

    International Nuclear Information System (INIS)

    Tipton, Denver Leonard John

    2001-01-01

    Quantum dot structures confine electrons in a small region of space. Some properties of semiconductor quantum dots, such as the discrete energy levels and shell filling effects visible in addition spectra, have analogies to those of atoms and indeed dots are sometimes referred to as 'artificial atoms'. However, atoms and dots show some fundamental differences due to electron correlations. For real atoms, the kinetic energy of electrons dominates over their mutual Coulomb repulsion energy and for this reason the independent electron approximation works well. For quantum dots the confining potential may be shallower than that of real atoms leading to lower electron densities and a dominance of mutual Coulomb repulsion over kinetic energy. In this strongly correlated regime the independent electron picture leads to qualitatively incorrect results. This thesis concentrates on few-electron quantum dots in the strongly correlated regime both for quasi-one-dimensional and two-dimensional dots in a square confining potential. In this so-called 'Wigner' regime the ground-state electronic charge density is localised near positions of classical electrostatic minima and the interacting electronic spectrum consists of well separated spin multiplets. In the strongly correlated regime the structure of low-energy multiplets is explained by mapping onto lattice models with extended-Hubbard and Heisenberg effective Hamiltonians. The parameters for these effective models are calculated within a Hartree approximation and are shown to reproduce well the exact results obtained by numerical diagonalisation of the full interacting Hamiltonian. Comparison is made between square dots and quantum rings with full rotational symmetry. In the very low-density regime, direct diagonalisation becomes impractical due to excessive computer time for convergence. In this regime a numerical renormalisation group method is applied to one-dimensional dots, enabling effective spin-interactions to be

  8. Pharmacoeconomic assessment of type 2 diabetes mellitus care on the base of Endocrinology Research Centre, Moscow

    Directory of Open Access Journals (Sweden)

    Ivan Ivanovich Dedov

    2012-09-01

    Full Text Available Aims. To assess the development of medical care and pharmacological treatment at Endocrine Research Centre (ERC, Moscow, forthe period of 2010-2011 years.Materials and Methods. We analyzed files of 100 patients with type 2 diabetes mellitus (T2DM, who underwent hospitalization to ERCafter January 1, 2010. Key parameters were assessed by means of a study chart, applied for every patient file. Mean values, medians,fractions and confidence intervals (CI were calculated for studied parameters. Various methods of parametric and non-parametricstatistics were used for comparison of acquired values. Results. Files of 100 patients with T2DM, hospitalized to Endocrinology Research Centre, were analyzed to obtain clinical characteristicsand evaluate initial (prior to hospitalization and optimized (after hospitalization therapeutic schemes, as well as spendingpatterns. Mean patient age exceeded 63 years, mean duration period of T2DM was greater than 14.4 years. 86% of patients weredecompensated for glycemic metabolism. 8% were diagnosed with less than 3 diabetes complications, 66% were found to have from 3to 6 complications. Almost all studied cases (98% featured elevated blood pressure, 63% - diabetic retinopathy on different stages,59% - IHD, 51% - cataract, 49% - CKD. Lower limb angiopathy was found in 30% of cases, diabetic foot syndrome - in 15%.2 patients lost their vision due to diabetic complications and 3 patients experienced lower limb amputation. Arterial hypertension wascompensated in 14 cases from total of 98.Correction of therapy decreased fraction of patients on oral hypoglycemic agents and intermediate acting insulin (NPH, while prescriptionfrequency of short acting insulin and rapid acting human insulin analogues (as well as long acting analogues showed oppositetrend. Optimization of therapy also included prescription of hypolipidemic drugs for majority of patients, as well as various agents forcorrection of coagulation abnormalities

  9. Cadmium sulfide quantum dots induce oxidative stress and behavioral impairments in the marine clam Scrobicularia plana.

    Science.gov (United States)

    Buffet, Pierre-Emmanuel; Zalouk-Vergnoux, Aurore; Poirier, Laurence; Lopes, Christelle; Risso-de-Faverney, Christine; Guibbolini, Marielle; Gilliland, Douglas; Perrein-Ettajani, Hanane; Valsami-Jones, Eugenia; Mouneyrac, Catherine

    2015-07-01

    Cadmium sulfide (CdS) quantum dots have a number of current applications in electronics and solar cells and significant future potential in medicine. The aim of the present study was to examine the toxic effects of CdS quantum dots on the marine clam Scrobicularia plana exposed for 14 d to these nanomaterials (10 µg Cd L(-1) ) in natural seawater and to compare them with soluble Cd. Measurement of labile Cd released from CdS quantum dots showed that 52% of CdS quantum dots remained in the nanoparticulate form. Clams accumulated the same levels of Cd regardless of the form in which it was delivered (soluble Cd vs CdS quantum dots). However, significant changes in biochemical responses were observed in clams exposed to CdS quantum dots compared with soluble Cd. Increased activities of catalase and glutathione-S-transferase were significantly higher in clams exposed in seawater to Cd as the nanoparticulate versus the soluble form, suggesting a specific nano effect. The behavior of S. plana in sediment showed impairments of foot movements only in the case of exposure to CdS quantum dots. The results show that oxidative stress and behavior biomarkers are sensitive predictors of CdS quantum dots toxicity in S. plana. Such responses, appearing well before changes might occur at the population level, demonstrate the usefulness of this model species and type of biomarker in the assessment of nanoparticle contamination in estuarine ecosystems. © 2015 SETAC.

  10. Magnon-driven quantum dot refrigerators

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan, E-mail: jcchen@xmu.edu.cn

    2015-12-18

    Highlights: • A three-terminal quantum dot refrigerator is proposed. • The effects of magnetic field, applied voltage, and polarization are considered. • The region that the system can work as a refrigerator is determined. • Two different magnon-driven quantum dot refrigerators are compared. - Abstract: A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  11. 78 FR 48868 - Proposed Cercla Administrative Cost Recovery Settlement; MassDOT, MassDOT Route 1 Right-of-Way...

    Science.gov (United States)

    2013-08-12

    ... Settlement; MassDOT, MassDOT Route 1 Right-of-Way Site, Chelsea, MA AGENCY: Environmental Protection Agency... (``CERCLA''), 42 U.S.C. 9622(h)(1), concerning the MassDOT Route 1 Right-of-Way Site in Chelsea... (OES04-3), Boston, MA 02109-3912 (Telephone No. 617-918-1886) and should refer to: In re: MassDOT Route 1...

  12. Foire aux questions — AIPRP | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Centre de recherches pour le développement international. CP 8500 150, rue Kent Ottawa (Ontario) K1G 3H9. Nota. Des frais de 5 $ payables au Centre de recherches pour le développement international sont exigés avant que le traitement de votre demande en vertu de la Loi sur l'accès à l'information puisse commencer.

  13. Molecular Evolution of the dotA Gene in Legionella pneumophila

    OpenAIRE

    Ko, Kwan Soo; Hong, Seong Karp; Lee, Hae Kyung; Park, Mi-Yeoun; Kook, Yoon-Hoh

    2003-01-01

    The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences ...

  14. Grammar Correction in the Writing Centre: Expectations and Experiences of Monolingual and Multilingual Writers

    Science.gov (United States)

    Eckstein, Grant

    2016-01-01

    Although most writing centres maintain policies against providing grammar correction during writing tutorials, it is undeniable that students expect some level of grammar intervention there. Just how much students expect and receive is a matter of speculation. This article examines the grammar-correction issue by reporting on a survey of L1, L2,…

  15. Facile synthesis of carbon dots with superior sensing ability

    Science.gov (United States)

    Jin, Lin; Li, Jingguo; Liu, Liyun; Wang, Zhenling; Zhang, Xingcai

    2018-04-01

    Carbon dots (CDs) have various applications in biomedical and environmental field, such as bio-imaging, bio-sensing and heavy metal detection. In this study, a novel class of CDs were synthesized using a one-step hydrothermal method. The fabricated CDs displayed stable photoluminescence, good water solubility, and photo stability. Moreover, the functional groups (carboxylic acid moieties and hydroxyls) on the surface of the obtained CDs enable it with superior sensing ability (e.g., very low detectable concentration for Pb2+: 5 nmol/L). With superior detection sensitivity, excellent fluorescent properties and facile fabrication method, the as-obtained CDs can find practical applications as cost-effective and sensitive chemo-sensors in water and food safety field.

  16. FRET-based modified graphene quantum dots for direct trypsin quantification in urine

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Chung-Yan; Li, Qinghua [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Zhang, Jiali; Li, Zhongping [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Dong, Chuan [Research Center of Environmental Science and Engineering, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Lee, Albert Wai-Ming; Chan, Wing-Hong [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); Li, Hung-Wing, E-mail: hwli@hkbu.edu.hk [Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong)

    2016-04-21

    A versatile nanoprobe was developed for trypsin quantification with fluorescence resonance energy transfer (FRET). Here, fluorescence graphene quantum dot is utilized as a donor while a well-designed coumarin derivative, CMR2, as an acceptor. Moreover, bovine serum albumin (BSA), as a protein model, is not only served as a linker for the FRET pair, but also a fluorescence enhancer of the quantum dots and CMR2. In the presence of trypsin, the FRET system would be destroyed when the BSA is digested by trypsin. Thus, the emission peak of the donor is regenerated and the ratio of emission peak of donor/emission peak of acceptor increased. By the ratiometric measurement of these two emission peaks, trypsin content could be determined. The detection limit of trypsin was found to be 0.7 μg/mL, which is 0.008-fold of the average trypsin level in acute pancreatitis patient's urine suggesting a high potential for fast and low cost clinical screening. - Highlights: • A FRET-based biosensor was developed for direct quantification of trypsin. • Fast and sensitive screening of pancreatic disease was facilitated. • The direct quantification of trypsin in urine samples was demonstrated.

  17. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu

    2017-03-13

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  18. Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission

    KAUST Repository

    Yang, Zhenyu; Voznyy, Oleksandr; Walters, Grant; Fan, James Z.; Liu, Min; Kinge, Sachin; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Quantum-dot-in-perovskite solids are excellent candidates for infrared light-emitting applications. The first generation of dot-in-perovskite light-emitting diodes (LEDs) has shown bright infrared electroluminescence with tunable emission wavelength; however, their performance has been limited by degradation of the active layer at practical operating voltages. This arises from the instability of the three-dimensional (3D) organolead halide perovskite matrix. Herein we report the first dot-in-perovskite solids that employ two-dimensional (2D) perovskites as the matrix. 2D perovskite passivation is achieved via an in situ alkylammonium/alkylamine substitution carried out during the quantum dot (QD) ligand exchange process. This single-step film preparation process enables deposition of the QD/perovskite active layers with thicknesses of 40 nm, over seven times thinner than the first-generation dot-in-perovskite thin films that relied on a multistep synthesis. The dot-in-perovskite film roughness improved from 31 nm for the first-generation films to 3 nm for films as a result of this new approach. The best devices exhibit external quantum efficiency peaks exceeding 2% and radiances of ∼1 W sr–1 m–2, with an improved breakdown voltage up to 7.5 V. Compared to first-generation dot-in-perovskites, this new process reduces materials consumptions 10-fold and represents a promising step toward manufacturable devices.

  19. DOT 3.5-E (DOT 3.5-E/JEF-1) analysis of the PCA-Replica (H2O/FE) shielding benchmark for the LWR-PV damage prediction

    International Nuclear Information System (INIS)

    Pescarini, M.

    1991-01-01

    The results of a DOT 3.5-E/JEF-1 validation on the (H2O/Fr) PCA-REPLICA (UKAEA-Winfith) low-flux shielding benchmark are presented. The PCA-REPLICA experiments reproduces the excore radial geometry of a PWR and is closely related to LWR safety since it is dedicated to test the accuracy of the calculated neutron exposure parameters (fast fluence and iron displacement rates) in a pressure vessel simulator. The NJOY/THEMIS data processing system is employed to obtain the neutron damage-energy cross sections for the JEF-1 iron file. The SN 1-D ANISN code is used to collapse cross sections from the VITAMIN-J (175 n) shielding library, based on the JEF-1 data, to a 28 group working library for 2-D calculations. A 3-D-equivalent synthesis (X,Y,Z) of 2-D and 1-D DOT 3.5-E SN calculations in a plane geometry, gives the integral and spectral results for comparison with the respective experimental data. The underprediction of the in-vessel dosimeter experimental activities depends probably on an overestimation of the iron inelastic scattering cross section of the JEF-1 file

  20. Biocompatible Quantum Dots for Biological Applications

    Science.gov (United States)

    Rosenthal, Sandra J.; Chang, Jerry C.; Kovtun, Oleg; McBride, James R.; Tomlinson, Ian D.

    2011-01-01

    Semiconductor quantum dots are quickly becoming a critical diagnostic tool for discerning cellular function at the molecular level. Their high brightness, long-lasting, sizetunable, and narrow luminescence set them apart from conventional fluorescence dyes. Quantum dots are being developed for a variety of biologically oriented applications, including fluorescent assays for drug discovery, disease detection, single protein tracking, and intracellular reporting. This review introduces the science behind quantum dots and describes how they are made biologically compatible. Several applications are also included, illustrating strategies toward target specificity, and are followed by a discussion on the limitations of quantum dot approaches. The article is concluded with a look at the future direction of quantum dots. PMID:21276935

  1. Hydrogen bonding between the QB site ubisemiquinone and Ser-L223 in the bacterial reaction centre – a combined spectroscopic and computational perspective^

    OpenAIRE

    Martin, Erik; Baldansuren, Amgalanbaatar; Lin, Tzu-Jen; Samoilova, Rimma I.; Wraight, Colin A.; Dikanov, Sergei A.; O’Malley, Patrick J.

    2012-01-01

    In the QB site of the Rba. sphaeroides photosynthetic reaction centre the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM and HYSCORE spectroscopic differences between the mutant L223SA and the wild type sample (WT) are negligible, indic...

  2. Quantum measurement of coherent tunneling between quantum dots

    International Nuclear Information System (INIS)

    Wiseman, H. M.; Utami, Dian Wahyu; Sun, He Bi; Milburn, G. J.; Kane, B. E.; Dzurak, A.; Clark, R. G.

    2001-01-01

    We describe the conditional and unconditional dynamics of two coupled quantum dots when one dot is subjected to a measurement of its occupation number by coupling it to a third readout dot via the Coulomb interaction. The readout dot is coupled to source and drain leads under weak bias, and a tunnel current flows through a single bound state when energetically allowed. The occupation of the quantum dot near the readout dot shifts the bound state of the readout dot from a low conducting state to a high conducting state. The measurement is made by continuously monitoring the tunnel current through the readout dot. We show that there is a difference between the time scale for the measurement-induced decoherence between the localized states of the dots, and the time scale on which the system becomes localized due to the measurement

  3. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor.

    Science.gov (United States)

    Chen, Xu; Sun, Xueke; Xu, Wen; Pan, Gencai; Zhou, Donglei; Zhu, Jinyang; Wang, He; Bai, Xue; Dong, Biao; Song, Hongwei

    2018-01-18

    Intracellular pH sensing is of importance and can be used as an indicator for monitoring the evolution of various diseases and the health of cells. Here, we developed a new class of surface-functionalized MXene quantum dots (QDs), Ti 3 C 2 , by the sonication cutting and hydrothermal approach and further explored their intracellular pH sensing. The functionalized Ti 3 C 2 QDs exhibit bright excitation-dependent blue photoluminescence (PL) originating from the size effect and surface defects. Meanwhile, Ti 3 C 2 QDs demonstrate a high PL response induced by the deprotonation of the surface defects. Furthermore, combining the highly pH sensitive Ti 3 C 2 QDs with the pH insensitive [Ru(dpp) 3 ]Cl 2 , we developed a ratiometric pH sensor to quantitatively monitor the intracellular pH values. These novel MXene quantum dots can serve as a promising platform for developing practical fluorescent nanosensors.

  4. Crawlers, Footers and Runners : Language ideological attribution to adult language learners in a Dutch as an L2 classroom

    NARCIS (Netherlands)

    Spotti, Max

    2017-01-01

    This paper deals with a volunteer teacher teaching Dutch as an L2 to asylum seekers at a Red Cross asylum seeker centre in West Flanders, Belgium. More precisely, it investigates the practical professional knowledge of this volunteer teacher, taking a peek into her meta-pragmatic judgements about

  5. User and group storage management the CMS CERN T2 centre

    Science.gov (United States)

    Cerminara, G.; Franzoni, G.; Pfeiffer, A.

    2015-12-01

    A wide range of detector commissioning, calibration and data analysis tasks is carried out by CMS using dedicated storage resources available at the CMS CERN Tier-2 centre. Relying on the functionalities of the EOS disk-only storage technology, the optimal exploitation of the CMS user/group resources has required the introduction of policies for data access management, data protection, cleanup campaigns based on access pattern, and long term tape archival. The resource management has been organised around the definition of working groups and the delegation to an identified responsible of each group composition. In this paper we illustrate the user/group storage management, and the development and operational experience at the CMS CERN Tier-2 centre in the 2012-2015 period.

  6. User and group storage management the CMS CERN T2 centre

    CERN Document Server

    Cerminara, G; Pfeiffer, A

    2015-01-01

    A wide range of detector commissioning, calibration and data analysis tasks is carried out by CMS using dedicated storage resources available at the CMS CERN Tier-2 centre. Relying on the functionalities of the EOS disk-only storage technology, the optimal exploitation of the CMS user/group resources has required the introduction of policies for data access management, data protection, cleanup campaigns based on access pattern, and long term tape archival. The resource management has been organised around the definition of working groups and the delegation to an identified responsible of each group composition. In this paper we illustrate the user/group storage management, and the development and operational experience at the CMS CERN Tier-2 centre in the 2012-2015 period.

  7. Metamorphic quantum dots: Quite different nanostructures

    International Nuclear Information System (INIS)

    Seravalli, L.; Frigeri, P.; Nasi, L.; Trevisi, G.; Bocchi, C.

    2010-01-01

    In this work, we present a study of InAs quantum dots deposited on InGaAs metamorphic buffers by molecular beam epitaxy. By comparing morphological, structural, and optical properties of such nanostructures with those of InAs/GaAs quantum dot ones, we were able to evidence characteristics that are typical of metamorphic InAs/InGaAs structures. The more relevant are: the cross-hatched InGaAs surface overgrown by dots, the change in critical coverages for island nucleation and ripening, the nucleation of new defects in the capping layers, and the redshift in the emission energy. The discussion on experimental results allowed us to conclude that metamorphic InAs/InGaAs quantum dots are rather different nanostructures, where attention must be put to some issues not present in InAs/GaAs structures, namely, buffer-related defects, surface morphology, different dislocation mobility, and stacking fault energies. On the other hand, we show that metamorphic quantum dot nanostructures can provide new possibilities of tailoring various properties, such as dot positioning and emission energy, that could be very useful for innovative dot-based devices.

  8. Templated self-assembly of SiGe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Dais, Christian

    2009-08-19

    This PhD thesis reports on the fabrication and characterization of exact aligned SiGe quantum dot structures. In general, SiGe quantum dots which nucleate via the Stranski-Krastanov growth mode exhibit broad size dispersion and nucleate randomly on the surface. However, to tap the full potential of SiGe quantum dots it is necessary to control the positioning and size of the dots on a nanometer length, e.g. for electronically addressing of individual dots. This can be realized by so-called templated self-assembly, which combines top-down lithography with bottom-up selfassembly. In this process the lithographically defined pits serve as pre-defined nucleation points for the epitaxially grown quantum dots. In this thesis, extreme ultraviolet interference lithography at a wavelength of e=13.4 nm is employed for prepatterning of the Si substrates. This technique allows the precise and fast fabrication of high-resolution templates with a high degree of reproducibility. The subsequent epitaxial deposition is either performed by molecular beam epitaxy or low-pressure chemical vapour deposition. It is shown that the dot nucleation on pre-patterned substrates depends strongly on the lithography parameters, e.g. size and periodicity of the pits, as well as on the epitaxy parameters, e.g. growth temperature or material coverage. The interrelations are carefully analyzed by means of scanning force microscopy, transmission electron microscopy and X-ray diffraction measurements. Provided that correct template and overgrowth parameters are chosen, perfectly aligned and uniform SiGe quantum dot arrays of different period, size as well as symmetry are created. In particular, the quantum dot arrays with the so far smallest period (35 nm) and smallest size dispersion are fabricated in this thesis. Furthermore, the strain fields of the underlying quantum dots allow the fabrication of vertically aligned quantum dot stacks. Combining lateral and vertical dot alignment results in three

  9. Gain dynamics of quantum dot devices for dual-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Kolarczik, M.; Owschimikow, N.; Woggon, U. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-06-30

    Ground state gain dynamics of In(Ga)As-quantum dot excited state lasers are investigated via single-color ultrafast pump-probe spectroscopy below and above lasing threshold. Two-color pump-probe experiments are used to localize lasing and non-lasing quantum dots within the inhomogeneously broadened ground state. Single-color results yield similar gain recovery rates of the ground state for lasing and non-lasing quantum dots decreasing from 6 ps to 2 ps with increasing injection current. We find that ground state gain dynamics are influenced solely by the injection current and unaffected by laser operation of the excited state. This independence is promising for dual-state operation schemes in quantum dot based optoelectronic devices.

  10. Photoluminescence of carbon dots from mesoporous silica

    Science.gov (United States)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  11. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    Science.gov (United States)

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  12. Quantum dots: Rethinking the electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, Dimple [Department of Physics, S. S. Jain Subodh PG College, Jaipur, Rajasthan Pin-302004 (India)

    2016-05-06

    In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate band setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.

  13. Carbon Quantum Dot Surface-Engineered VO2 Interwoven Nanowires: A Flexible Cathode Material for Lithium and Sodium Ion Batteries.

    Science.gov (United States)

    Balogun, Muhammad-Sadeeq; Luo, Yang; Lyu, Feiyi; Wang, Fuxin; Yang, Hao; Li, Haibo; Liang, Chaolun; Huang, Miao; Huang, Yongchao; Tong, Yexiang

    2016-04-20

    The use of electrode materials in their powdery form requires binders and conductive additives for the fabrication of the cells, which leads to unsatisfactory energy storage performance. Recently, a new strategy to design flexible, binder-, and additive-free three-dimensional electrodes with nanoscale surface engineering has been exploited in boosting the storage performance of electrode materials. In this paper, we design a new type of free-standing carbon quantum dot coated VO2 interwoven nanowires through a simple fabrication process and demonstrate its potential to be used as cathode material for lithium and sodium ion batteries. The versatile carbon quantum dots that are vastly flexible for surface engineering serve the function of protecting the nanowire surface and play an important role in the diffusion of electrons. Also, the three-dimensional carbon cloth coated with VO2 interwoven nanowires assisted in the diffusion of ions through the inner and the outer surface. With this unique architecture, the carbon quantum dot nanosurface engineered VO2 electrode exhibited capacities of 420 and 328 mAh g(-1) at current density rate of 0.3 C for lithium and sodium storage, respectively. This work serves as a milestone for the potential replacement of lithium ion batteries and next generation postbatteries.

  14. CdS-Cd(OH)2 core shell quantum dots functionalized with Concanavalin A lectin for recognition of mammary tumors

    International Nuclear Information System (INIS)

    Santos, Beate S.; Farias, Patricia M.A. de; Menezes, Frederico D. de; Ferreira, Ricardo C. de; Junior, Severino A.; Figueiredo, Regina C.B.Q.; de Carvalho, Luiz B. Jr.; Beltrao, Eduardo I.C.

    2006-01-01

    We report the use of CdS/Cd(OH) 2 quantum dots functionalized with glutaraldehyde and conjugated to concanavalin-A (Con-A) lectin to investigate cell alterations regarding carbohydrate profile in human mammary tissues diagnosed as fibroadenoma (benigne tumor). The Con-A lectin is a biomolecule which binds specifically to glucose/mannose residues present in the cellular membrane. These bioconjugated-particles were incubated with tissue sections of normal and to Fibroadenoma, a benign type of mammary tumor. The tissue sections were deparafinized, hydrated in graded alcohol and treated with a solution of Evans Blue in order to avoid autofluorescence. The fluorescence intensity of QD-Con-A stained tissues showed different patterns which reflect the carbohydrate expression of glucose/mannose in fibroadenoma when compared to the detection of the normal carbohydrate expression. The pattern of inespecific labeling of the tissues with glutharaldehyde functionalized CdS/Cd(OH) 2 quantum dots is compared to the targeting driven by the Con-A lectin. The preliminary findings reported here support the use of CdS/Cd(OH) 2 quantum dots as specific probes of cellular alterations possibiliting their use in diagnostics. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. SnO2 quantum dots with rapid butane detection at lower ppm-level

    Science.gov (United States)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  16. Results from a 2 x CO2 simulation with the Canadian Climate Centre general circulation model

    International Nuclear Information System (INIS)

    Boer, G.J.

    1990-01-01

    The Canadian Climate Centre's general circulation model (GCM), GCMII, was used to simulate a doubling of atmospheric carbon dioxide concentration. The experiment was a standard greenhouse gas climate change study, using a three-dimensional atmospheric circulation model coupled to a simple 'slab' ocean and a thermodynamic ice model. This standard experiment retains the sophistication and generality of an atmospheric GCM, is straightforward in its use of simplified ocean and ice models, is comparatively economical of computer time, and permits comparison of results from different models. Features of the second generation GCMII include: higher resolution at T32L10 with a transform grid of 3.75 x 3.75 degree; full diurnal and annual cycles; ocean and sea ice treatment involving specification of ocean transports; modified treatment of land surface processes and hydrology; a parameterization of cloud optical feedback; and a retention of the special application data sets of surface parameters for North America and Europe. Results of the simulation were a globally averaged surface temperature increase of 3.5 degree C; a precipitation and evaporation increase of 3%; an average decrease in soil moisture of 6.6%; a decrease in cloud cover of 2.2%; a 66% decrease in mass of sea ice; and marked changes in other quantities in the polar region. 2 refs., 2 figs., 2 tabs

  17. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    Science.gov (United States)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  18. The electronic properties of semiconductor quantum dots

    International Nuclear Information System (INIS)

    Barker, J.A.

    2000-10-01

    This work is an investigation into the electronic behaviour of semiconductor quantum dots, particularly self-assembled quantum dot arrays. Processor-efficient models are developed to describe the electronic structure of dots, deriving analytic formulae for the strain tensor, piezoelectric distribution and diffusion- induced evolution of the confinement potential, for dots of arbitrary initial shape and composition profile. These models are then applied to experimental data. Transitions due to individual quantum dots have a narrow linewidth as a result of their discrete density of states. By contrast, quantum dot arrays exhibit inhomogeneous broadening which is generally attributed to size variations between the individual dots in the ensemble. Interpreting the results of double resonance spectroscopy, it is seen that variation in the indium composition of the nominally InAs dots is also present. This result also explains the otherwise confusing relationship between the spread in the ground-state and excited-state transition energies. Careful analysis shows that, in addition to the variations in size and composition, some other as yet unidentified broadening mechanism must also be present. The influence of rapid thermal annealing on dot electronic structure is also considered, finding that the experimentally observed blue-shift and narrowing of the photoluminescence linewidth may both be explained in terms of normal In/Ga interdiffusion. InAs/GaAs self-assembled quantum dots are commonly assumed to have a pyramidal geometry, so that we would expect the energy separation of the ground-state electron and hole levels in the dot to be largest at a positive applied field. This should also be the case for any dot of uniform composition whose shape tapers inwards from base to top, counter to the results of experimental Stark-shift spectroscopy which show a peak transition energy at a negative applied field. It is demonstrated that this inversion of the ground state

  19. Properties of POPC/POPE supported lipid bilayers modified with hydrophobic quantum dots on polyelectrolyte cushions.

    Science.gov (United States)

    Kolasinska-Sojka, Marta; Wlodek, Magdalena; Szuwarzynski, Michal; Kereiche, Sami; Kovacik, Lubomir; Warszynski, Piotr

    2017-10-01

    The formation and properties of supported lipid bilayers (SLB) containing hydrophobic nanoparticles (NP) was studied in relation to underlying cushion obtained from selected polyelectrolyte multilayers. Lipid vesicles were formed from zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and negatively charged 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) in phosphate buffer (PBS). As hydrophobic nanoparticles - quantum dots (QD) with size of 3.8nm (emission wavelength of 420nm) were used. Polyelectrolyte multilayers (PEM) were constructed by the sequential, i.e., layer-by-layer (LbL) adsorption of alternately charged polyelectrolytes from their solutions. Liposomes and Liposome-QDs complexes were studied with Transmission Cryo-Electron Microscopy (Cryo-TEM) to verify the quality of vesicles and the position of QD within lipid bilayer. Deposition of liposomes and liposomes with quantum dots on polyelectrolyte films was studied in situ using quartz crystal microbalance with dissipation (QCM-D) technique. The fluorescence emission spectra were analyzed for both: suspension of liposomes with nanoparticles and for supported lipid bilayers containing QD on PEM. It was demonstrated that quantum dots are located in the hydrophobic part of lipid bilayer. Moreover, we proved that such QD-modified liposomes formed supported lipid bilayers and their final structure depended on the type of underlying cushion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter

    OpenAIRE

    Nagai, Hiroki; Roy, Craig R.

    2001-01-01

    Legionella pneumophila requires the dot/icm genes to create an organelle inside eukaryotic host cells that will support bacterial replication. The dot/icm genes are predicted to encode a type IV-related secretion apparatus. However, no proteins have been identified that require the dot/icm genes for secretion. In this study we show that the DotA protein, which was previously found to be a polytopic membrane protein, is secreted by the Dot/Icm transporter into culture supernatants. Secreted Do...

  1. MtDNA COI-COII marker and drone congregation area: an efficient method to establish and monitor honeybee (Apis mellifera L.) conservation centres.

    Science.gov (United States)

    Bertrand, Bénédicte; Alburaki, Mohamed; Legout, Hélène; Moulin, Sibyle; Mougel, Florence; Garnery, Lionel

    2015-05-01

    Honeybee subspecies have been affected by human activities in Europe over the past few decades. One such example is the importation of nonlocal subspecies of bees which has had an adverse impact on the geographical repartition and subsequently on the genetic diversity of the black honeybee Apis mellifera mellifera. To restore the original diversity of this local honeybee subspecies, different conservation centres were set up in Europe. In this study, we established a black honeybee conservation centre Conservatoire de l'Abeille Noire d'Ile de France (CANIF) in the region of Ile-de-France, France. CANIF's honeybee colonies were intensively studied over a 3-year period. This study included a drone congregation area (DCA) located in the conservation centre. MtDNA COI-COII marker was used to evaluate the genetic diversity of CANIF's honeybee populations and the drones found and collected from the DCA. The same marker (mtDNA) was used to estimate the interactions and the haplotype frequency between CANIF's honeybee populations and 10 surrounding honeybee apiaries located outside of the CANIF. Our results indicate that the colonies of the conservation centre and the drones of the DCA show similar stable profiles compared to the surrounding populations with lower level of introgression. The mtDNA marker used on both DCA and colonies of the conservation centre seems to be an efficient approach to monitor and maintain the genetic diversity of the protected honeybee populations. © 2014 John Wiley & Sons Ltd.

  2. Use of Lidocaine Patches for Neuropathic Pain in a Comprehensive Cancer Centre

    Directory of Open Access Journals (Sweden)

    Julia Ann Fleming

    2009-01-01

    Full Text Available BACKGROUND: There are few reports of the use of the lidocaine 5% patch (L5%P for neuropathic pain (NP in the cancer patient. Within a comprehensive cancer centre, L5%P has been prescribed by the Pain and Palliative Care Service (Peter McCallum Cancer Centre, East Melbourne, Victoria, Australia for selected patients with NP since 2001.

  3. Design of quaternary logic circuit using quantum dot gate-quantum dot channel FET (QDG-QDCFET)

    Science.gov (United States)

    Karmakar, Supriya

    2014-10-01

    This paper presents the implementation of quaternary logic circuits based on quantum dot gate-quantum dot channel field effect transistor (QDG-QDCFET). The super lattice structure in the quantum dot channel region of QDG-QDCFET and the electron tunnelling from inversion channel to the quantum dot layer in the gate region of a QDG-QDCFET change the threshold voltage of this device which produces two intermediate states between its ON and OFF states. This property of QDG-QDCFET is used to implement multi-valued logic for future multi-valued logic circuit. This paper presents the design of basic quaternary logic operation such as inverter, AND and OR operation based on QDG-QDCFET.

  4. Comprehensive identification of protein substrates of the Dot/Icm type IV transporter of Legionella pneumophila.

    Directory of Open Access Journals (Sweden)

    Wenhan Zhu

    2011-03-01

    Full Text Available A large number of proteins transferred by the Legionella pneumophila Dot/Icm system have been identified by various strategies. With no exceptions, these strategies are based on one or more characteristics associated with the tested proteins. Given the high level of diversity exhibited by the identified proteins, it is possible that some substrates have been missed in these screenings. In this study, we took a systematic method to survey the L. pneumophila genome by testing hypothetical orfs larger than 300 base pairs for Dot/Icm-dependent translocation. 798 of the 832 analyzed orfs were successfully fused to the carboxyl end of β-lactamase. The transfer of the fusions into mammalian cells was determined using the β-lactamase reporter substrate CCF4-AM. These efforts led to the identification of 164 proteins positive in translocation. Among these, 70 proteins are novel substrates of the Dot/Icm system. These results brought the total number of experimentally confirmed Dot/Icm substrates to 275. Sequence analysis of the C-termini of these identified proteins revealed that Lpg2844, which contains few features known to be important for Dot/Icm-dependent protein transfer can be translocated at a high efficiency. Thus, our efforts have identified a large number of novel substrates of the Dot/Icm system and have revealed the diverse features recognizable by this protein transporter.

  5. Facilitated preparation of bioconjugatable zwitterionic quantum dots using dual-lipid encapsulation.

    Science.gov (United States)

    Shrake, Robert; Demillo, Violeta G; Ahmadiantehrani, Mojtaba; Zhu, Xiaoshan; Publicover, Nelson G; Hunter, Kenneth W

    2015-01-01

    Zwitterionic quantum dots prepared through incorporated zwitterionic ligands on quantum dot surfaces, are being paid significant attention in biomedical applications because of their excellent colloidal stability across a wide pH and ionic strength range, antifouling surface, good biocompatibility, etc. In this work, we report a dual-lipid encapsulation approach to prepare bioconjugatable zwitterionic quantum dots using amidosulfobetaine-16 lipids, dipalmitoyl-sn-glycero-3-phosphoethanolamine lipids with functional head groups, and CuInS2/ZnS quantum dots in a tetrahydrofuran/methanol/water solvent system with sonication. Amidosulfobetaine-16 is a zwitterionic lipid and dipalmitoyl-sn-glycero-3-phosphoethanolamine, with its functional head, provides bioconjugation capability. Under sonication, tetrahydrofuran/methanol containing amidosulfobetaine-16, dipalmitoyl-sn-glycero-3-phosphoethanolamine, and hydrophobic quantum dots are dispersed in water to form droplets. Highly water-soluble tetrahydrofuran/methanol in droplets is further displaced by water, which induces the lipid self-assembling on hydrophobic surface of quantum dots and thus forms water soluble zwitterionic quantum dots. The prepared zwitterionic quantum dots maintain colloidal stability in aqueous solutions with high salinity and over a wide pH range. They are also able to be conjugated with biomolecules for bioassay with minimal nonspecific binding. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Trace amounts of Cu{sup 2+} ions influence ROS production and cytotoxicity of ZnO quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Hatem [CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy (France); Laboratoire de Biosurveillance de l' Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); Merlin, Christophe [CNRS and Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME), CNRS UMR 7564, 15 Avenue du Charmois, 54500 Vandoeuvre-lès-Nancy (France); Dezanet, Clément [CNRS and Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), CNRS UMR 7274, 1 rue Grandville, 54001 Nancy (France); Balan, Lavinia [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR 7361, 15 rue Jean Starcky, 68093 Mulhouse (France); Medjahdi, Ghouti [CNRS and Université de Lorraine, Institut Jean Lamour (IJL), UMR CNRS 7198, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Ben-Attia, Mossadok [Laboratoire de Biosurveillance de l' Environnement, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Jarzouna, Bizerte (Tunisia); and others

    2016-03-05

    Highlights: • Chemisorbed Cu{sup 2+} ions on ZnO QDs enhance ROS production. • A mechanism combining excited electrons and holes and Fenton reactions is proposed. • ZnO@APTMS/Cu QDs were found to be the most deleterious to E. coli cells. - Abstract: 3-Aminopropyltrimethoxysilane (APTMS) was used as ligand to prepare ZnO@APTMS, Cu{sup 2+}-doped ZnO (ZnO:Cu@APTMS) and ZnO quantum dots (QDs) with chemisorbed Cu{sup 2+} ions at their surface (ZnO@APTMS/Cu). The dots have a diameter of ca. 5 nm and their crystalline and phase purities and composition were established by X-ray diffraction, transmission electron microscopy, UV-visible and fluorescence spectroscopies and by X-ray photoelectron spectroscopy. The effect of Cu{sup 2+} location on the ability of the QDs to generate reactive oxygen species (ROS) under light irradiation was investigated. Results obtained demonstrate that all dots are able to produce ROS (·OH, O{sub 2}·{sup −}, H{sub 2}O{sub 2} and {sup 1}O{sub 2}) and that ZnO@APTMS/Cu QDs generate more ·OH and O{sub 2}·{sup −} radicals and H{sub 2}O{sub 2} than ZnO@APTMS and ZnO:Cu@APTMS QDs probably via mechanisms associating photo-induced charge carriers and Fenton reactions. In cytotoxicity experiments conducted in the dark or under light exposure, ZnO@APTMS/Cu QDs appeared slightly more deleterious to Escherichia coli cells than the two other QDs, therefore pointing out the importance of the presence of Cu{sup 2+} ions at the periphery of the nanocrystals. On the other hand, with the lack of photo-induced toxicity, it can be inferred that ROS production cannot explain the cytotoxicity associated to the QDs. Our study demonstrates that both the production of ROS from ZnO QDs and their toxicity may be enhanced by chemisorbed Cu{sup 2+} ions, which could be useful for medical or photocatalytic applications.

  7. Indonesia : tous les projets | Page 3 | CRDI - Centre de recherches ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Centre de recherches pour le développement international Gouvernement du Canada ... Technologies omniprésentes et accès au savoir (A2K) ... en réseau transforme les modes d'accès à l'information partout dans le monde. ... Modernisation des marchés agroalimentaires - inclusion des petits exploitants aux marchés ...

  8. Novel tandem structure employing mesh-structured Cu2S counter electrode for enhanced performance of quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang, Yue-Yong; Zhang, Quan-Xin; Wang, Tian-Zi; Zhu, Li-Feng; Huang, Xiao-Ming; Zhang, Yi-Duo; Hu, Xing; Li, Dong-Mei; Luo, Yan-Hong; Meng, Qing-Bo

    2013-01-01

    Highlights: ► This is the first report on practical tandem structures for quantum dot-sensitized solar cells (QDSCs). ► Mesh-structured Cu 2 S counter electrode exhibits high catalytic activity and good transmittance. ► Influence of photoanode thickness on tandem QDSCs has been systematically studied. ► Tandem QDSCs shows higher photocurrent and efficiency as against the single-photoanode cell. ► This structure can achieve higher efficiency with different QD sensitizers for complementary spectral responses. -- Abstract: A practical tandem structure with a semitransparent mesh-structured Cu 2 S counter electrode sandwiched between two TiO 2 photoelectrodes has been designed for quantum dot-sensitized solar cells (QDSCs). The mesh-structured Cu 2 S counter electrode exhibits high catalytic activity for polysulfide electrolyte. CdS/CdSe quantum dot-sensitized TiO 2 films have been applied as both top and bottom photoelectrodes to testify the effectiveness of the tandem structure. The influence of the TiO 2 film thickness on the performance of the tandem cell has been systematically studied. The optimized tandem QDSC shows an improved photocurrent and 12-percent increase of efficiency over the top cell with a 4.7 μm thick top cell and an 11.0 μm thick bottom cell, presenting a new effective approach towards highly efficient QDSCs

  9. Spin-Relaxation Anisotropy in a GaAs Quantum Dot

    NARCIS (Netherlands)

    Scarlino, P.; Kawakami, E.; Stano, P.; Shafiei, M.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.

    2014-01-01

    We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1/2 ground state has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit

  10. Assembling tin dioxide quantum dots to graphene nanosheets by a facile ultrasonic route.

    Science.gov (United States)

    Chen, Chen; Wang, Lijun; Liu, Yanyu; Chen, Zhiwen; Pan, Dengyu; Li, Zhen; Jiao, Zheng; Hu, Pengfei; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L; Wu, Minghong

    2013-03-26

    Nanocomposites have significant potential in the development of advanced materials for numerous applications. Tin dioxide (SnO2) is a functional material with wide-ranging prospects because of its high electronic mobility and wide band gap. Graphene as the basic plane of graphite is a single atomic layer two-dimensional sp(2) hybridized carbon material. Both have excellent physical and chemical properties. Here, SnO2 quantum dots/graphene composites have been successfully fabricated by a facile ultrasonic method. The experimental investigations indicated that the graphene was exfoliated and decorated with SnO2 quantum dots, which was dispersed uniformly on both sides of the graphene. The size distribution of SnO2 quantum dots was estimated to be ranging from 4 to 6 nm and their average size was calculated to be about 4.8 ± 0.2 nm. This facile ultrasonic route demonstrated that the loading of SnO2 quantum dots was an effective way to prevent graphene nanosheets from being restacked during the reduction. During the calcination process, the graphene nanosheets distributed between SnO2 nanoparticles have also prevented the agglomeration of SnO2 nanoparticles, which were beneficial to the formation of SnO2 quantum dots.

  11. 49 CFR 178.348 - Specification DOT 412; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 412; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.348 Specification DOT 412; cargo tank motor vehicle. ...

  12. 49 CFR 178.347 - Specification DOT 407; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 407; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.347 Specification DOT 407; cargo tank motor vehicle. ...

  13. 49 CFR 178.346 - Specification DOT 406; cargo tank motor vehicle.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification DOT 406; cargo tank motor vehicle... SPECIFICATIONS FOR PACKAGINGS Specifications for Containers for Motor Vehicle Transportation § 178.346 Specification DOT 406; cargo tank motor vehicle. ...

  14. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    International Nuclear Information System (INIS)

    Depondt, Ph.; Levy, J.-C.S.

    2011-01-01

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  15. Draft project management update to the Iowa DOT Project Development Manual : tech transfer summary.

    Science.gov (United States)

    2016-08-01

    The Iowa DOT applied and was selected to receive User Incentive : funding from the U.S. DOT Federal Highway Administration (FHWA) : for the SHRP 2 R10 Implementation Assistance Program. Through the : program, the Iowa DOT plans to utilize the results...

  16. Quantum confinement effect in Bi anti-dot thin films with tailored pore wall widths and thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y., E-mail: youngok@chem.s.u-tokyo.ac.jp [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Hirose, Y.; Fukumura, T.; Hasegawa, T. [Department of Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Nakao, S. [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); CREST, JST, Bunkyo, Tokyo 113-0033 (Japan); Xu, J. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2014-01-13

    We investigated quantum confinement effects in Bi anti-dot thin films grown on anodized aluminium oxide templates. The pore wall widths (w{sub Bi}) and thickness (t) of the films were tailored to have values longer or shorter than Fermi wavelength of Bi (λ{sub F} = ∼40 nm). Magnetoresistance measurements revealed a well-defined weak antilocalization effect below 10 K. Coherence lengths (L{sub ϕ}) as functions of temperature were derived from the magnetoresistance vs field curves by assuming the Hikami-Larkin-Nagaoka model. The anti-dot thin film with w{sub Bi} and t smaller than λ{sub F} showed low dimensional electronic behavior at low temperatures where L{sub ϕ}(T) exceed w{sub Bi} or t.

  17. Semiconductor quantum-dot lasers and amplifiers

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Borri, Paola; Ledentsov, N. N.

    2002-01-01

    -power surface emitting VCSELs. We investigated the ultrafast dynamics of quantum-dot semiconductor optical amplifiers. The dephasing time at room temperature of the ground-state transition in semiconductor quantum dots is around 250 fs in an unbiased amplifier, decreasing to below 50 fs when the amplifier...... is biased to positive net gain. We have further measured gain recovery times in quantum dot amplifiers that are significantly lower than in bulk and quantum-well semiconductor optical amplifiers. This is promising for future demonstration of quantum dot devices with high modulation bandwidth...

  18. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [Nanjing University of Posts and Telecommunications, Nanjing 210003 (China); National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wu, Yangqing; Xu, Jun; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructure and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2016-11-30

    Highlights: • CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated. • PL intensity of the quantum dots films was enhanced due to Au nanorods. • Internal quantum efficiency increased due to localized surface plasmon resonance. • The lifetimes of quantum dots films decreased after interaction with Au nano-rods. - Abstract: CdTe/CdS quantum dots/Au nano-rods nano-composite films were fabricated on planar Si substrates. The optical properties of all samples were investigated and the corresponding simulations were studied. It was found that the photoluminescence intensity of the CdTe/CdS quantum dots films was enhanced about 9-fold after the incorporation of Au nano-rods, the internal quantum efficiency increased from 24.3% to 35.2% due to the localized surface plasmon resonance. The time-resolved luminescence decay curves showed that the lifetimes of CdTe/CdS quantum dots films decreased to 2.8 ns after interaction with Au nano-rods. The results of finite-difference time-domain simulation indicated that Au nano-rods induced the localization of electric field, which enhanced the PL intensity of quantum dots films in the vicinity of Au nano-rods.

  19. Microwave-assisted synthesis of highly luminescent N- and S-co-doped carbon dots as a ratiometric fluorescent probe for levofloxacin.

    Science.gov (United States)

    Li, Huiyu; Xu, Yuan; Ding, Jie; Zhao, Li; Zhou, Tianyu; Ding, Hong; Chen, Yanhua; Ding, Lan

    2018-01-10

    Uniform N- and S-co-doped carbon dots (NSCDs) with fluorescence quantum yields of up to 64% were synthesized via a one-step microwave-assisted method. Ammonium citrate and L-cysteine act as precursors, and synthesis is completed in 2.5 min using a 750 W microwave oven to give a 62% yield. The NSCDs show bright blue fluorescence (with excitation/emission peaks at 353/426 nm) and have narrow size distribution. On exposure to levofloxacin (LEV), the emission maximum shifts to 499 nm. This effect was used to design ratiometric (2-wavelength) assays for LEV. The fluorometric method (based on measurement of the fluorescence intensity ratio at 499 and 426 nm) has a detection limit of 5.1 μg·L -1 (3σ/k) and a linear range that extends from 0.01 to 70 mg·L -1 . The method was applied to the determination of LEV in three kinds of spiked water samples and has recoveries in the range from 98.6 to 106.8%. The fluorescent probe described here is highly selective and sensitive. Graphical Abstract Highly luminescent N- and S-co-doped carbon dots were synthesized using AC (ammonium citrate) and Cys (L-cysteine) by microwave-assisted method, and were applied to the visual and ratiometric fluorescence determination of LEV (levofloxacin).

  20. A Design-Based introduction to learning centres

    Directory of Open Access Journals (Sweden)

    Anne Kristine Petersen

    2016-05-01

    Full Text Available In the last decades, outskirt areas in Denmark have suffered from depopulation and economic decline, a development that has led to a centralised education system where higher education institutions are vested in a central body in urban areas rather than in rural communities. University College Zealand has initiated a research project in collaboration with three municipalities in the region of Zealand and partners from the Nordic countries, which investigates the potential of municipal learning centres as a means to solve educational challenges in outskirt areas. A municipal learning centre is a physical location owned by a municipality, which offers (asynchronous courses through digital couplings to higher education institutions. The paper presents research findings showing that the development of an ecosystem based on collaboration between municipalities, higher education institutions and private and public businesses is pivotal for achieving a sustainable model for online education in rural areas. Furthermore, the paper presents a series of thinking technologies in the form of models and categories, which can be used as tools for establishing learning centres and designing learning activities for learning centres. --- Kommuner placeret i yderområder i Danmark har i de seneste årtier oplevet affolkning og økonomisk nedgang, og denne udvikling har medvirket til et centraliseret uddannelsessystem, hvor videregående uddannelsesinstitutioner flyttes fra yderområder til større byer. University College Sjælland har igangsat et forskningsprojekt i samarbejde med tre kommuner i Region Sjælland og partnere fra de nordiske lande, som har til formål at undersøge hvorvidt uddannelseskonceptet kommunale læringscentre kan medvirke til at løse uddannelsesudfordringer i landets yderområder. Et kommunalt læringscenter er en fysisk lokation som ejes af en kommune, som gennem læringscenteret kan give borgere mulighed for at tage et kursus eller en

  1. Group-III vacancy induced InxGa1-xAs quantum dot interdiffusion

    International Nuclear Information System (INIS)

    Djie, H. S.; Wang, D.-N.; Ooi, B. S.; Hwang, J. C. M.; Gunawan, O.

    2006-01-01

    The impact of group-III vacancy diffusion, generated during dielectric cap induced intermixing, on the energy state transition and the inhomogeneity reduction in the InGaAs/GaAs quantum-dot structure is investigated. We use a three-dimensional quantum-dot diffusion model and photoluminescence data to determine the thermal and the interdiffusion properties of the quantum dot. The band gap energy variation related to the dot uniformity is found to be dominantly affected by the height fluctuation. A group-III vacancies migration energy H m for InGaAs quantum dots of 1.7 eV was deduced. This result is similar to the value obtained from the bulk and GaAs/AlGaAs quantum-well materials confirming the role of SiO 2 capping enhanced group-III vacancy induced interdiffusion in the InGaAs quantum dots

  2. Electromagnetic-field dependence of the internal excited state of the polaron and the qubit in quantum dot with thickness

    Science.gov (United States)

    Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu

    2017-06-01

    The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.

  3. Influence of hydrostatic pressure on nuclear radiation detector's properties based on semiconductor alloy CdZnTe

    International Nuclear Information System (INIS)

    Kutnij, V.E.; Kutnij, D.V.; Rybka, A.V.; Nakonechnyj, D.V.; Babun, A.V.

    2003-01-01

    The influence of hydrostatic pressure on properties of CdZnTe semiconductor detectors (Cd-50,Zn-2,Te-48 mas.%, 5 centre dot 5 centre dot 2 mm) was investigated. Were considered different types of hydrostatic treatment at 100 MPa, second hydrostatic treatment at 100 MPa and 200 MPa. Hydrostatic pressure influence on detectors electric resistance, J-V characteristics and spectrometric parameters was determined

  4. African Institute for Mathematical Sciences | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le succès que connaît l'AIMS-NEI a motivé le Department for International Development du Royaume-Uni à engager dans l'initiative une somme équivalant à 29 millions CAD sur cinq ans en 2012. Cette somme, administrée par le CRDI, a servi à l'établissement de trois autres centres et à l'octroi de fonds regroupés aux ...

  5. One-pot synthesis of stable water soluble Mn:ZnSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hao; Gao Xue; Liu Siyu; Su Xingguang, E-mail: suxg@jlu.edu.cn [College of Chemistry, Jilin University, Department of Analytical Chemistry (China)

    2013-06-15

    In this paper, Mn:ZnSe/ZnS core/shell-doped quantum dots (d-dots) with 3-mercaptopropionic acid as the stabilizer are successfully synthesized through a simple one-pot synthesis procedure in aqueous solution. The average diameter of Mn:ZnSe/ZnS core/shell d-dots is about 2.9 nm, which is lager than that of Mn:ZnSe cores (about 1.9 nm). The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell quantum dots have been characterized by UV-Vis and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photostability against UV irradiation and chemical stability against H{sub 2}O{sub 2} etching have been studied, and the results showed that the prepared Mn:ZnSe/ZnS core/shell d-dots are more stable than CdTe quantum dots prepared in aqueous solution. Finally, the resulting core/shell quantum dots are used as fluorescent label in human osteoblast-like HepG2 cell imaging.

  6. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael, E-mail: Michael.Kaniber@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany and Nanosystems Initiative Munich, Schellingstraße 4, 80799 München (Germany)

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  7. Coordonnateur du bureau d'assistance | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Résumé des fonctions. En tant que membre de l'équipe du Bureau d'assistance au sein de la Section du service à la clientèle (SSC), le coordonnateur du Bureau d'assistance offre au personnel du Centre et aux autres utilisateurs reconnus des installations TI du Centre un soutien de première ligne en matière d'utilisation ...

  8. Transport properties of a Kondo dot with a larger side-coupled noninteracting quantum dot

    International Nuclear Information System (INIS)

    Liu, Y S; Fan, X H; Xia, Y J; Yang, X F

    2008-01-01

    We investigate theoretically linear and nonlinear quantum transport through a smaller quantum dot in a Kondo regime connected to two leads in the presence of a larger side-coupled noninteracting quantum dot, without tunneling coupling to the leads. To do this we employ the slave boson mean field theory with the help of the Keldysh Green's function at zero temperature. The numerical results show that the Kondo conductance peak may develop multiple resonance peaks and multiple zero points in the conductance spectrum owing to constructive and destructive quantum interference effects when the energy levels of the large side-coupled noninteracting dot are located in the vicinity of the Fermi level in the leads. As the coupling strength between two quantum dots increases, the tunneling current through the quantum device as a function of gate voltage applied across the two leads is suppressed. The spin-dependent transport properties of two parallel coupled quantum dots connected to two ferromagnetic leads are also investigated. The numerical results show that, for the parallel configuration, the spin current or linear spin differential conductance are enhanced when the polarization strength in the two leads is increased

  9. Un outil destiné aux centres antipoison sauve des vies | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    27 oct. 2010 ... P.K. Abeytunga, vice-président du Centre canadien d'hygiène et de sécurité au travail (CCHST), explique que l'on a constitué une énorme base de données à partir de données fiables provenant de l'Organisation mondiale de la santé ( OMS ) et d'autres sources, qu'on a mise à la disposition de centres ...

  10. Initiative Think tank | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    L'ITT est le fruit d'un partenariat regroupant cinq bailleurs de fonds. Lancée en 2008, l'ITT est administrée par le Centre de Recherches pour le Développement International (CRDI), un organisme canadien.

  11. Tuberculosis deaths averted by implementation of the DOTS strategy in Kazakhstan.

    Science.gov (United States)

    Favorov, M; Belilovsky, E; Aitmagambetova, I; Ismailov, S; White, M E; Chorba, T

    2010-12-01

    Kazakhstan began implementing the DOTS strategy for tuberculosis (TB) in 1998. Data were analyzed 1) to determine if changes in TB mortality rate (MR) and case fatality rate (CFR) in Kazakhstan for 1998-2003 differed from those of Uzbekistan and four adjacent Russian Federation (RF) oblasts that had not yet implemented DOTS, and 2) to estimate the number of deaths averted in Kazakhstan as a result of DOTS. Observed MRs were calculated, and predicted MRs for Kazakhstan were approximated by linear regression based on average slope of MRs from 1998 through 2003 in adjacent non-DOTS-implementing territories. Deaths averted were calculated by comparing predicted MRs to actual MRs by converting rate differences to numbers of deaths. TB MRs in Kazakhstan decreased markedly, but remained stable or increased in the neighboring territories. CFRs decreased markedly in Kazakhstan and marginally in Uzbekistan, and increased in the neighboring RF oblasts. From 1998 to 2004, DOTS appears to have helped avert approximately 17,800 deaths in Kazakhstan. DOTS has contributed markedly to a decrease in TB mortality in Kazakhstan. In settings where mortality data are relatively complete, deaths averted can be another indicator of DOTS effectiveness.

  12. Characterization of L-cysteine capped CdTe quantum dots and application to test Cu(II) deficiency in biological samples from critically ill patients

    Energy Technology Data Exchange (ETDEWEB)

    Sáez, Laura; Molina, Jorge; Florea, Daniela I.; Planells, Elena M. [Institute of Nutrition and Food Technology and Department of Physiology, Faculty of Pharmacy, Campus Cartuja, University of Granada, E-18071 Granada (Spain); Cabeza, M. Carmen [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada (Spain); Quintero, Bartolomé, E-mail: bqosso@ugr.es [Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada (Spain)

    2013-06-27

    Graphical abstract: -- Highlights: •We examinate stability of L-cysteine capped CdTe QD. •Factors influence QD fluorescence response are controlled. •Application in copper deficiency analysis is made. •We report comparison with other techniques. -- Abstract: The catalytic activity of copper ion gives, from the physiological point of view, a central role in many biological processes. Variations in the composition and location of cellular copper have been addressed given their physiological and pathological consequences. In this paper L-cysteine capped CdTe quantum dots is used for the fluorimetric determination of Cu(II) in biological samples from healthy individuals and patients admitted to the Intensive Care Units (ICU). An acceptable homogeneity in the CdTe QDs size has been obtained with an average value of 3 nm. No significant alterations in the spectral properties were observed for 2 months when stored in vacutainers at 6 °C and a concentration of approximately 2 μM. Data from oxidative stress markers such superoxide dismutase, total antioxidant capacity and DNA damage can be correlated with a Cu(II) deficiency for the ICU patients as measured by flame-atomic absorption spectroscopy (FAAS) and inductively coupled plasma source mass spectrometry (ICP-MS). Aqueous solutions 0.3 μM of L-cysteine capped CdTe QDs in MOPS buffer (6 mM, pH 7.4) used at 21 °C in the range 15–60 min after preparation of the sample for the measurements of fluorescence gives contents in Cu(II) for erythrocytes in good agreement with those obtained in FAAS and ICP-MS but the comparative ease of use makes the fluorimetric technique more suitable than the other two techniques for routine analysis.

  13. Sol-Gel Chemistry for Carbon Dots.

    Science.gov (United States)

    Malfatti, Luca; Innocenzi, Plinio

    2018-03-14

    Carbon dots are an emerging class of carbon-based nanostructures produced by low-cost raw materials which exhibit a widely-tunable photoluminescence and a high quantum yield. The potential of these nanomaterials as a substitute of semiconductor quantum dots in optoelectronics and biomedicine is very high, however they need a customized chemistry to be integrated in host-guest systems or functionalized in core-shell structures. This review is focused on recent advances of the sol-gel chemistry applied to the C-dots technology. The surface modification, the fine tailoring of the chemical composition and the embedding into a complex nanostructured material are the main targets of combining sol-gel processing with C-dots chemistry. In addition, the synergistic effect of the sol-gel precursor combined with the C-dots contribute to modify the intrinsic chemo-physical properties of the dots, empowering the emission efficiency or enabling the tuning of the photoluminescence over a wide range of the visible spectrum. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Large quantum dots with small oscillator strength

    DEFF Research Database (Denmark)

    Stobbe, Søren; Schlereth, T.W.; Höfling, S.

    2010-01-01

    We have measured the oscillator strength and quantum efficiency of excitons confined in large InGaAs quantum dots by recording the spontaneous emission decay rate while systematically varying the distance between the quantum dots and a semiconductor-air interface. The size of the quantum dots...... is measured by in-plane transmission electron microscopy and we find average in-plane diameters of 40 nm. We have calculated the oscillator strength of excitons of that size assuming a quantum-dot confinement given by a parabolic in-plane potential and a hard-wall vertical potential and predict a very large...... intermixing inside the quantum dots....

  15. Platelike WO3 sensitized with CdS quantum dots heterostructures for photoelectrochemical dynamic sensing of H2O2 based on enzymatic etching.

    Science.gov (United States)

    Wang, Yanhu; Gao, Chaomin; Ge, Shenguang; Yu, Jinghua; Yan, Mei

    2016-11-15

    A platelike tungsten trioxide (WO3) sensitized with CdS quantum dots (QDs) heterojunction is developed for solar-driven, real-time, and selective photoelectrochemical (PEC) sensing of H2O2 in the living cells. The structure is synthesized by hydrothermally growing platelike WO3 on fluorine doped tin oxide (FTO) and subsequently sensitized with CdS QDs. The as-prepared WO3-CdS QDs heterojunction achieve significant photocurrent enhancement, which is remarkably beneficial for light absorption and charge carrier separation. Based on the enzymatic etching of CdS QDs enables the activation of quenching the charge transfer efficiency, thus leading to sensitive PEC recording of H2O2 level in buffer and cellular environments. The results indicated that the proposed method will pave the way for the development of excellent PEC sensing platform with the quantum dot sensitization. This study could also provide a new train of thought on designing of self-operating photoanode in PEC sensing, promoting the application of semiconductor nanomaterials in photoelectrochemistry. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Tuning direct bandgap GeSn/Ge quantum dots' interband and intraband useful emission wavelength: Towards CMOS compatible infrared optical devices

    Science.gov (United States)

    Baira, Mourad; Salem, Bassem; Madhar, Niyaz Ahamad; Ilahi, Bouraoui

    2018-05-01

    In this work, interband and intraband optical transitions from direct bandgap strained GeSn/Ge quantum dots are numerically tuned by evaluating the confined energies for heavy holes and electrons in D- and L-valley. The practically exploitable emission wavelength ranges for efficient use in light emission and sensing should fulfill specific criteria imposing the electrons confined states in D-valley to be sufficiently below those in L-valley. This study shows that GeSn quantum dots offer promising opportunity towards high efficient group IV based infrared optical devices operating in the mid-IR and far-IR wavelength regions.

  17. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  18. Initiative internationale des chaires de recherche | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Initiative de recherche de sept ans dotée d'un budget de 8 millions de dollars canadiens. L'Initiative internationale des chaires de recherche a pour but de jumeler d'éminents chercheurs d'universités du Canada avec des homologues de pays en développement afin de relever quelques-uns des plus grands défis auxquels ...

  19. Soutien organisationnel de la phase 2 de l'ITT - Centre for Poverty ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Il vise à améliorer leur capacité à produire des recherches rigoureuses, susceptibles à la fois d'éclairer et d'influencer les politiques. Durant la deuxième phase de l'ITT (2014-2019), on subventionnera 43 institutions en vue de les aider à consolider leur rôle d'acteurs du développement crédibles dans leur pays et, dans ...

  20. Co-registration of fluorescence diffuse optical tomography (fDOT) with positron emission tomography (PET) and development of multi-angle fDOT

    International Nuclear Information System (INIS)

    Tong, X.

    2012-01-01

    This thesis concerns the image processing of fluorescence diffuse optical tomography (fDOT), following two axes: fDOT image co-registration with PET (positron emission tomography) image and improvement of fDOT image reconstructions using mirrors to collect additional projections. It is presented in two parts:In the first part, an automatic method to co-register the fDOT images with PET images has been developed to correlate all the information from each modality. This co-registration method is based on automatic detection of fiducial markers (FM) present in both modalities. The particularity of this method is the use of optical surface image obtained in fDOT imaging system, which serves to identify the Z position of FM in optical images. We tested this method on a model of mice bearing tumor xenografts of MEN2A cancer cells that mimic a human medullary thyroid carcinoma, after a double injection of radiotracer [ 18 F] 2-fluoro-2-Deoxy-D-glucose (FDG) for PET imaging and optical fluorescent infrared tracer Sentidye. With the accuracy of our method, we can demonstrate that the signal of Sentidye is present both in the tumor and surrounding vessels.The fDOT reconstruction image quality is degraded along the Z axis due to a limited number of projections for reconstruction. In the second part, the work is oriented towards a new method of fDOT image reconstruction with a new multi-angle data acquisition system in placing two mirrors on each side of the animal. This work was conducted in collaboration with the CS Department of University College London (UCL), a partner of the European project FMT-XCT. TOAST software developed by this team was used as source code for the reconstruction algorithm, and was modified to adapt to the concerned problem. After several tests on the adjustment of program parameters, we applied this method on a phantom that simulating the biological tissue and on mice. The results showed an improvement in the reconstructed image of a semi

  1. Thermally oxidized formation of new Ge dots over as-grown Ge dots in the Si capping layer

    International Nuclear Information System (INIS)

    Nie Tianxiao; Lin Jinhui; Shao Yuanmin; Wu Yueqin; Yang Xinju; Fan Yongliang; Jiang Zuimin; Chen Zhigang; Zou Jin

    2011-01-01

    A Si-capped Ge quantum dot sample was self-assembly grown via Stranski-Krastanov mode in a molecular beam epitaxy system with the Si capping layer deposited at 300 deg. C. After annealing the sample in an oxygen atmosphere at 1000 deg. C, a structure, namely two layers of quantum dots, was formed with the newly formed Ge-rich quantum dots embedded in the oxidized matrix with the position accurately located upon the as-grown quantum dots. It has been found that the formation of such nanostructures strongly depends upon the growth temperature and oxygen atmosphere. A growth mechanism was proposed to explain the formation of the nanostructure based on the Ge diffusion from the as-grown quantum dots, Ge segregation from the growing oxide, and subsequent migration/agglomeration.

  2. Investigation of the morphology and electrical characteristics of FeSi2 quantum dots on silicon

    International Nuclear Information System (INIS)

    Dozsa, L.; Molnar, G.; Horvath, Zs.J.; Toth, A.L.; Gyulai, J.; Raineri, V.; Giannazzo, F.

    2004-01-01

    β-FeSi 2 quantum dots (QD) were grown by evaporating 2, 4 and 7 nm Fe onto Si(1 0 0) wafers and in situ annealed at 600 deg. C for 10 min. QDs were grown also by reactive deposition epitaxy (RDE) evaporating 2 nm Fe onto a 600 deg. C Si substrate and annealed further for 5 min. MIS structures were prepared by evaporating SiO x over the QDs and Al dots on the oxide. The SEM investigations show the density of the QDs is about 10 10 cm -2 in the 2 and 4 nm Fe samples, and it increases to about 3x10 11 cm -2 in the 7 nm Fe sample. The nanoscope investigation shows well resolved QDs only in the 7 nm Fe samples, but their density and size do not allow individual characterization of the QDs by scanning capacitance microscopic measurements. In the RDE samples the QDs are small and irregular, indicating the need for thicker Fe layer. Capacitance-voltage (C-V) measurements show point defects generated by silicidation which compensate the silicon doping (2x10 15 cm -3 ) in about 1 μm depth. C-V results show that in the RDE samples less point defect are generated, their concentration is lower than doping of the Si wafers. The electrical characteristics of MIS structures show that the room temperature deposited iron degrades the I-V characteristics, and induces leakage

  3. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  4. Characterization of electronic charged states of P-doped Si quantum dots using AFM/Kelvin probe

    International Nuclear Information System (INIS)

    Makihara, Katsunori; Xu, Jun; Ikeda, Mitsuhisa; Murakami, Hideki; Higashi, Seiichiro; Miyazaki, Seiichi

    2006-01-01

    Phosphorous doping to Si quantum dots was performed by a pulse injection of 1% PH 3 diluted with He during the dot formation on thermally grown SiO 2 from thermal decomposition of pure SiH 4 , and electron charging to and discharging from P-doped Si dots were studied to characterize their electronic charged states using a Kelvin probe technique in atomic force microscopy (AFM). The potential change corresponding to the extraction of one electron from each of the P-doped Si dots was observed after applying a tip bias as low as + 0.2 V while for undoped Si dots, with almost the same size as P-doped Si dots, almost the same amount of the potential change was detectable only when the tip bias was increased to ∼ 1 V. It is likely that, for P-doped Si dots, the electron extraction from the conduction band occurs and results in a positively charged state with ionized P donor

  5. Optical Signatures of Coupled Quantum Dots

    Science.gov (United States)

    Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Ponomarev, I. V.; Korenev, V. L.; Ware, M. E.; Doty, M. F.; Reinecke, T. L.; Gammon, D.

    2006-02-01

    An asymmetric pair of coupled InAs quantum dots is tuned into resonance by applying an electric field so that a single hole forms a coherent molecular wave function. The optical spectrum shows a rich pattern of level anticrossings and crossings that can be understood as a superposition of charge and spin configurations of the two dots. Coulomb interactions shift the molecular resonance of the optically excited state (charged exciton) with respect to the ground state (single charge), enabling light-induced coupling of the quantum dots. This result demonstrates the possibility of optically coupling quantum dots for application in quantum information processing.

  6. Un nouveau centre de recherche soutient les efforts d'adaptation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    9 juil. 2014 ... Mohamed Abdrabo est le directeur général de l'Alexandria Research Centre for Adaptation to Climate Change (ARCA), un nouveau centre de recherche qui soutient les politiques d'adaptation adoptées par le gouvernement égyptien au regard du delta du Nil.

  7. Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots

    Science.gov (United States)

    Holtkemper, M.; Reiter, D. E.; Kuhn, T.

    2018-02-01

    Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.

  8. Quantum dot-polymer conjugates for stable luminescent displays.

    Science.gov (United States)

    Ghimire, Sushant; Sivadas, Anjaly; Yuyama, Ken-Ichi; Takano, Yuta; Francis, Raju; Biju, Vasudevanpillai

    2018-05-23

    The broad absorption of light in the UV-Vis-NIR region and the size-based tunable photoluminescence color of semiconductor quantum dots make these tiny crystals one of the most attractive antennae in solar cells and phosphors in electrooptical devices. One of the primary requirements for such real-world applications of quantum dots is their stable and uniform distribution in optically transparent matrices. In this work, we prepare transparent thin films of polymer-quantum dot conjugates, where CdSe/ZnS quantum dots are uniformly distributed at high densities in a chitosan-polystyrene copolymer (CS-g-PS) matrix. Here, quantum dots in an aqueous solution are conjugated to the copolymer by a phase transfer reaction. With the stable conjugation of quantum dots to the copolymer, we prevent undesired phase separation between the two and aggregation of quantum dots. Furthermore, the conjugate allows us to prepare transparent thin films in which quantum dots are uniformly distributed at high densities. The CS-g-PS copolymer helps us in not only preserving the photoluminescence properties of quantum dots in the film but also rendering excellent photostability to quantum dots at the ensemble and single particle levels, making the conjugate a promising material for photoluminescence-based devices.

  9. Real-time observation of FIB-created dots and ripples on GaAs

    International Nuclear Information System (INIS)

    Rose, F; Fujita, H; Kawakatsu, H

    2008-01-01

    We report a phenomenological study of Ga dots and ripples created by a focused ion beam (FIB) on the GaAs(001) surface. Real-time observation of dot diffusion and ripple formation was made possible by recording FIB movies. In the case of FIB irradiation with a 40 nA current of Ga + ions accelerated under 40 kV with an incidence angle of θ = 30 0 , increasing ion dose gives rise to three different regimes. In Regime 1, dots with lateral sizes in the range 50-460 nm are formed. Dots diffuse under continuous sputtering. In Regime 2, dots self-assemble into Bradley and Harper (BH) type ripples with a pseudo-period of λ = 1150 ± 25 nm. In Regime 3, ripples are eroded and the surface topology evolves into microplanes. In the case of normal incidence, FIB sputtering leads only to the formation of dots, without surface rippling

  10. Résultats de recherche | Page 3 | CRDI - Centre de recherches pour ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Le CRDI administre l'apport de 20 millions de dollars du gouvernement du Canada à l'expansion du réseau de centre AIMS, l'objectif de l'initiative Next Einstein de l'Institut Africain des Sciences ... Entre chercheurs et entrepreneurs - pour la recherche et la promotion de l'entrepreneuriat en Afrique francophone.

  11. A novel POSS-coated quantum dot for biological application

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2012-08-01

    Full Text Available Sarwat B Rizvi,1 Lara Yildirimer,1 Shirin Ghaderi,1 Bala Ramesh,1 Alexander M Seifalian,1,2 Mo Keshtgar1,21UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, United Kingdom; 2Royal Free Hampstead NHS Trust Hospital, London, United KingdomAbstract: Quantum dots (QDs are fluorescent semiconductor nanocrystals that have the potential for major advancements in the field of nanomedicine through their unique photophysical properties. They can potentially be used as fluorescent probes for various biomedical imaging applications, including cancer localization, detection of micrometastasis, image guided surgery, and targeted drug delivery. Their main limitation is toxicity, which requires a biologically compatible surface coating to shield the toxic core from the surrounding environment. However, this leads to an increase in QD size that may lead to problems of excretion and systemic sequestration. We describe a one pot synthesis, characterization, and in vitro cytotoxicity of a novel polyhedral oligomeric silsesquioxane (POSS-coated CdTe-cored QD using mercaptosuccinic acid (MSA and D-cysteine as stabilizing agents. Characterization was performed using transmission electron microscopy Fourier transform infrared spectroscopy, and photoluminescence studies. POSS-coated QDs demonstrated high colloidal stability and enhanced photostability on high degrees of ultraviolet (UV excitation compared to QDs coated with MSA and D-cysteine alone (P value < 0.05. In vitro toxicity studies showed that both POSS and MSA-QDs were significantly less toxic than ionized salts of Cd+2 and Te-2. Confocal microscopy confirmed high brightness of POSS-QDs in cells at both 1 and 24 hours, indicating that these QDs are rapidly taken up by cells and remain photostable in a biological environment. We therefore conclude that a POSS coating confers biological compatibility, photostability, and colloidal

  12. Biosynthesis of luminescent quantum dots in an earthworm

    Science.gov (United States)

    Stürzenbaum, S. R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J.-S.; Taniguchi, S.; Dailey, L.-A.; Khanbeigi, R. Ahmad; Rosca, E. V.; Thanou, M.; Suhling, K.; Zayats, A. V.; Green, M.

    2013-01-01

    The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co3O4) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm's metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl2 and Na2TeO3 salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

  13. Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells

    Science.gov (United States)

    Rangel-Mendez, Jose R.; Matos, Juan; Cházaro-Ruiz, Luis F.; González-Castillo, Ana C.; Barrios-Yáñez, Guillermo

    2018-03-01

    The microwave-assisted solvothermal synthesis of C-doped TiO2 and ZnO hybrid materials was performed. Saccharose, titanium isopropoxide and zinc acetate were used as organic and inorganic sources for the synthesis. The influence of temperature and reaction time on the textural and optoelectronic properties of the hybrid materials was verified. Carbon quantum-dots of TiO2 and ZnO nanostructured spheres were obtained in a second pot by controlled calcination steps of the precursor hybrid materials. A carefully characterization by adsorption-desorption N2 isotherms, XRD, XPS, SEM, UV-vis/DR and electro- and photo-electrochemistry properties of the carbon quantum-dots TiO2 and ZnO spheres was performed. The photoelectrochemical activity of TiO2-C and ZnO-C films proved to be dependent on the conditions of synthesis. It was found a red-shift in the energy band gap of the semiconductors with values of 3.02 eV and 3.13 eV for the TiO2-C and ZnO-C, respectively, clearly lower than those on bare semiconductors, which is associated with the C-doping effect. From the photo-electrochemistry characterization of C-doped TiO2 and ZnO films can be concluded that the present materials have potential applications as photoelectrodes for quantum-dots sensitized solar cells.

  14. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    International Nuclear Information System (INIS)

    Xie, Ruishi; Zhang, Xingquan; Liu, Haifeng

    2014-01-01

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  15. Ligand-assisted fabrication, structure, and luminescence properties of Fe:ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ruishi, E-mail: rxie@foxmail.com; Zhang, Xingquan; Liu, Haifeng

    2014-03-15

    Highlights: • A green route is developed for synthesis of water-soluble and fluorescent Fe:ZnSe quantum dots. • Tunable luminescence intensity can be realized with different ligand-to-Zn molar ratios. • The obtained quantum dots are in the so-called “quantum confinement regime”. -- Abstract: Here, we report a synthetic route for highly emissive Fe:ZnSe quantum dots in aqueous media using the mercaptoacetic acid ligand as stabilizing agent. The structural, morphological, componential, and optical properties of the resulting quantum dots were explored by the X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence and UV–visible absorption spectroscopies. The average crystallite size was calculated to be about ca., 4.0 nm using the Scherrer equation, which correlates well with the value obtained from the transmission electron microscopy analysis. The obtained water-soluble Fe:ZnSe quantum dots in the so-called “quantum confinement regime” are spherical shaped, possess the cubic sphalerite crystal structure, and exhibit tunable luminescence properties. The presence of mercaptoacetic acid on the surface of Fe:ZnSe quantum dots was confirmed by the Fourier transform infrared spectroscopy measurements. As the ligand/Zn molar ratio increases from 1.3 to 2.8, there is little shift in the absorption peak of the Fe:ZnSe sample, indicating that the particle size of the obtained quantum dots is not changed during the synthetic process. The photoluminescence quantum yield of the as-prepared water-soluble Fe:ZnSe quantum dots can be up to 39%. The molar ratio of ligand-to-Zn plays a crucial role in determining the final luminescence properties of the resulting quantum dots, and the maximum PL intensity appears as the ligand-to-Zn molar ratio is 2.2. In addition, the underlying mechanism for

  16. Andreev molecules in semiconductor nanowire double quantum dots.

    Science.gov (United States)

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  17. Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots

    Science.gov (United States)

    Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang

    2016-04-01

    We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.

  18. Quantum optics with single quantum dot devices

    International Nuclear Information System (INIS)

    Zwiller, Valery; Aichele, Thomas; Benson, Oliver

    2004-01-01

    A single radiative transition in a single-quantum emitter results in the emission of a single photon. Single quantum dots are single-quantum emitters with all the requirements to generate single photons at visible and near-infrared wavelengths. It is also possible to generate more than single photons with single quantum dots. In this paper we show that single quantum dots can be used to generate non-classical states of light, from single photons to photon triplets. Advanced solid state structures can be fabricated with single quantum dots as their active region. We also show results obtained on devices based on single quantum dots

  19. Strain-tunable quantum dot devices

    International Nuclear Information System (INIS)

    Rastelli, A.; Trotta, R.; Zallo, E.; Atkinson, P.; Magerl, E.; Ding, F.; Plumhof, J.D.; Kumar, S.; Doerr, K.; Schmidt, O.G.

    2011-01-01

    We introduce a new class of quantum dot-based devices, in which the semiconductor structures are integrated on top of piezoelectric actuators. This combination allows on one hand to study in detail the effects produced by variable strains (up to about 0.2%) on the excitonic emission of single quantum dots and on the other to manipulate their electronic- and optical properties to achieve specific requirements. In fact, by combining strain with electric fields we are able to obtain (i) independent control of emission energy and charge-state of a QD, (II) wavelength-tunable single-QD light-emitting diodes and (III) frequency-stabilized sources of single photons at predefined wavelengths. Possible future extensions and applications of this technology will be discussed.

  20. Visible-Light-Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian; Richards, Jeffrey Todd

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. The development of a visible-light responsive (VLR) TiO2-based catalyst would eliminate the concerns over mercury contamination. Further, VLR development would allow for the use of ambient visible solar radiation or highly efficient LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts. Those VLR catalysts that are commercially available do not have adequate catalytic activity, in the visible region, to make them competitive with those operating under UV irradiation. This study was initiated to develop more effective VLR catalysts through a novel method in which quantum dots (QD) consisting of narrow band gap semiconductors (e.g., CdS, CdSe, PbS, ZnSe, etc.) are coupled to TiO2 via two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems and served as model contaminants for this research. Synthesized catalysts were compared in terms of