WorldWideScience

Sample records for central solenoid magnet

  1. Progress in ATLAS central solenoid magnet

    CERN Document Server

    Yamamoto, A; Makida, Y; Tanaka, K; Haruyama, T; Yamaoka, H; Kondo, T; Mizumaki, S; Mine, S; Wada, K; Meguro, S; Sotoki, T; Kikuchi, K; ten Kate, H H J

    2000-01-01

    The ATLAS central solenoid magnet is being developed to provide a magnetic field of 2 Tesla in the central tracking volume of the ATLAS detector under construction at the CERN/LHC project. The solenoid coil design features high-strength aluminum stabilized superconductor to make the coil thinnest while maintaining its stability and the pure-aluminum strip technique for quench protection and safety. The solenoid coil is installed in a common cryostat with the LAr calorimeter in order to minimize the cryostat wall. A transparency of 0.66 radiation length is achieved with these integrated efforts. The progress in the solenoid coil fabrication is reported. (8 refs).

  2. Performance of a proximity cryogenic system for the ATLAS central solenoid magnet

    CERN Document Server

    Doi, Y; Makida, Y; Kondo, Y; Kawai, M; Aoki, K; Haruyama, T; Kondo, T; Mizumaki, S; Wachi, Y; Mine, S; Haug, F; Delruelle, N; Passardi, Giorgio; ten Kate, H H J

    2002-01-01

    The ATLAS central solenoid magnet has been designed and constructed as a collaborative work between KEK and CERN for the ATLAS experiment in the LHC project The solenoid provides an axial magnetic field of 2 Tesla at the center of the tracking volume of the ATLAS detector. The solenoid is installed in a common cryostat of a liquid-argon calorimeter in order to minimize the mass of the cryostat wall. The coil is cooled indirectly by using two-phase helium flow in a pair of serpentine cooling line. The cryogen is supplied by the ATLAS cryogenic plant, which also supplies helium to the Toroid magnet systems. The proximity cryogenic system for the solenoid has two major components: a control dewar and a valve unit In addition, a programmable logic controller, PLC, was prepared for the automatic operation and solenoid test in Japan. This paper describes the design of the proximity cryogenic system and results of the performance test. (7 refs).

  3. Design features of the solenoid magnets for the central cell of the MFTF-B

    International Nuclear Information System (INIS)

    The 14 superconducting solenoid magnets which form the central cell of the MFTF-B are being designed and fabricated by General Dynamics for the Lawrence Livermore National Laboratory. Each solenoid coil has a mean diameter of five meters and contains 600 turns of a proven conductor type. Structural loading resulting from credible fault events, cooldown and warmup requirements, and manufacturing processes consistent with other MFTF-B magnets have been considered in the selection of 304 LN as the structural material for the magnet. The solenoid magnets are connected by 24 intercoil beams and 20 solid struts which resist the longitudinal seismic and electromagnetic attractive forces and by 24 hanger/side supports which react magnet dead weight and seismic loads. A modular arrangement of two solenoid coils within a vacuum vessel segment allow for sequential checkout and installation

  4. Central Solenoid On-surface Test

    CERN Multimedia

    Ruber, R

    2004-01-01

    A full scale on-surface test of the central solenoid has been performed before its final installation in the ATLAS cavern starting in November. The successful integration of the central solenoid into the barrel cryostat, as reported in the March 2004 ATLAS eNews, was hardly finished when testing started. After a six-week period to cool down the LAr calorimeter, the solenoid underwent a similar procedure. Cooling it down to 4.6 Kelvin from room temperature took just over five and a half days. Cold and superconducting, it was time to validate the functionality of the control and safety systems. These systems were largely the same as the systems to be used in the final underground installation, and will be used not only for the solenoid and toroid magnets, but parts of it also for other LHC experiments. This solenoid test was the first occasion to test the system functionality in a real working environment. Several days were spent to fine tune the systems, especially the critical safety system, which turned out...

  5. First Operation of the Central Solenoid

    CERN Multimedia

    Ruber, R.

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. It was cooled down from the 17th to 23th May 2006, and the first kA was put into it the same evening as it was cold and superconductive. That makes our solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas. The Central Solenoid in its final position at the heart of ATLAS. The coil current (red line) and voltage (blue line) showing the operation at nominal current of 7.73 kA for a magnetic field of 2.0 T and the subsequent successful commissioning up to 8 kAT The cool down and powering of the solenoid was a major milestone for all control, cryogenic, power and vacuum systems and was achieved in perfect collaboration with the liquid argon detector with which it shares the Barrel Cryostat. Powering up to nominal current had to wait until the last week of July when the End-Cap Calorimeters were in closed position. The Tile Barrel and E...

  6. Central Solenoid Insert Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by

  7. Concept design of the CFETR central solenoid

    International Nuclear Information System (INIS)

    Highlights: • Main concept design work including coil's geometry, superconductor and support structure has been carried out. • The maximum magnetic field of CS coil is 11.9 T which is calculated by the coils’ operation current based on plasma equilibrium configuration. • The stray field in plasma area is less than 20 Gs under the CS coils’ operation currents designed for the plasma-heating phase. - Abstract: China Fusion Engineering Test Reactor (CFETR) superconducting tokamak is a national scientific research project of China with major and minor radius is 5.7 m and 1.6 m respectively. The magnetic field at the center of plasma with radius as R = 5.7 m is set to be 5.0 T. The major objective of the project is to build a fusion engineering tokamak reactor with fusion power in the range of 50–200 MW and should be self-sufficient by blanket. Six central solenoid coils of CFETR with same structure are made of Nb3Sn superconductor. Besides, the stray field in plasma area should be less than 20 Gs with the operation current of CS coils for plasma heating phase. The maximum magnetic field of CS coil is 11.9 T. It is calculated by the coils’ operation current based on plasma equilibrium configuration. The central solenoid needs to have enough stability margin under the condition of high magnetic field and strain. This paper discusses the design parameters, electromagnetic distribution, structure and stability analysis of the CS superconducting magnet for CFETR

  8. ITER central solenoid model coil impregnation optimization

    Science.gov (United States)

    Schutz, J. B.; Munshi, N. A.; Smith, K. B.

    The success of the vacuum-pressure impregnation of the International Thermonuclear Experimental Reactor central solenoid is critical to success of the magnet system. Analysis of fluid flow through a fabric bed is extremely complicated, and complete analytical solutions are not available, but semiempirical methods can be adapted to model these flows. Several of these models were evaluated to predict the impregnation characteristics of a liquid resin through a mat of reinforcing glass fabric, and an experiment was performed to validate these models. The effects of applied pressure differential, glass fibre volume fraction, resin viscosity and impregnation time were examined analytically. From the results of this optimization, it is apparent that use of elevated processing temperature resin systems offer significant advantages in large scale impregnation due to their lower viscosity and longer working life, and they may be essential for large scale impregnations.

  9. Insulating process for HT-7U central solenoid model coils

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the superconducting experiment condition.

  10. Completion of the ITER central solenoid model coils installation

    International Nuclear Information System (INIS)

    The short article details how dozens of problems, regarding the central solenoid model coils installation, were faced and successfully overcome one by one at JAERI-Naga. A black and white photograph shows K. Kwano, a staff member of the JAERI superconducting magnet laboratory, to be still inside the vacuum tank while the lid is already being brought down..

  11. MICE Spectrometer Solenoid Magnetic Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Leonova, M. [Fermilab

    2013-09-01

    The Muon Ionization Cooling Experiment (MICE) is designed to demonstrate ionization cooling in a muon beam. Its goal is to measure a 10% change in transverse emittance of a muon beam going through a prototype Neutrino Factory cooling channel section with an absolute measurement accuracy of 0.1%. To measure emittances, MICE uses two solenoidal spectrometers, with Solenoid magnets designed to have 4 T fields, uniform at 3 per mil level in the tracking volumes. Magnetic field measurements of the Spectrometer Solenoid magnet SS2, and analysis of coil parameters for input into magnet models will be discussed.

  12. CERN tests largest superconducting solenoid magnet

    CERN Multimedia

    2006-01-01

    "CERN's Compacts Muon Solenoid (CMS) - the world's largest superconducting solenoid magnet - has reached full field in testing. The instrument is part of the proton-proton Large Hadron Collider (LHC) project, located in a giant subterranean chamber at Cessy on the Franco-Swiss border." (1 page)

  13. Structure design of the central solenoid in JT-60SA

    International Nuclear Information System (INIS)

    The upgrade of JT-60U magnet system to superconducting coils (JT-60SA: JT-60 Super Advanced) has been decided by parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of a central solenoid (CS), equilibrium field(EF) coils, toroidal field(TF) coils. The central solenoid consists the four winding pack modules. In order to counteract the thermal contraction as well as the electric magnetic repulsion and attraction together with other forces generated in each module, it is necessary to apply pre-loading to the support structure of the solenoid and to pursue a structure which is capable of sustaining such loading. In the present report, the structural design of the supporting structure of the solenoid and the jackets of the modules is verified analytically, and the results indicate that the structural design satisfies the 'Codes for Fusion Facilities - Rules on Superconducting Magnet Structure -'. (author)

  14. The superconducting solenoid magnets for MICE

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  15. ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D

    2009-06-11

    An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.

  16. Successful mapping of the solenoid magnet

    CERN Multimedia

    Aleksa, M.

    The ATLAS solenoid coil is about 5.3m long, has a diameter of 2.5m and is designed to deliver a magnetic field of approximately 2T for the ATLAS inner detector. The superconducting solenoid coil has been integrated inside the LAr barrel cryostat and was installed at its final position inside the cavern in November 2005. This summer - after completion of the extended barrel calorimeters and before the installation of the inner detector - the end cap calorimeters (LAr end caps and Tile extended barrels) were moved for the first time into their final position in order to create conditions as close as possible to final for the solenoid tests and for mapping the field inside the solenoid bore. Design and construction of the mapping machine The requirement on the absolute precision of the field measurements are 0.05% on the field integrals seen by particles; if this is achieved the momentum error coming from insufficient knowledge of the magnetic field will be negligible compared to the error stemming from the inn...

  17. Biggest superconducting solenoid magnet in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ At 8:00am, Sept. 19, the magnetic field of supercon ducting nagnet at the BESⅢ, an upgrade of Beijing Spectrometer, reached 1.0T. The current intensity reached 3,368A, and the energy stored by the solenoid reached 10MJ. Tests showed that the designed requirements had been fully met, which constitutes an important milestone for the BEPC Upgrade now underway at the CAS Institute of High Energy Physic (IHEP).

  18. Design of permanent magnetic solenoids for REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Gehrke, Tim

    2013-10-15

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  19. Design of permanent magnetic solenoids for REGAE

    International Nuclear Information System (INIS)

    The Relativistic Electron Gun for Atomic Exploration (REGAE) is a small linear accelerator at DESY in Hamburg, which produces short, low emittance electron bunches. It is originally designed and built for ultrafast electron diffraction (UED) within the framework of the Center for Free-Electron Laser Science (CFEL). Additionally, two future experiments are planned at REGAE. First, an external injection experiment for Laser Wakefield Acceleration (LWA) will be performed in the framework of the LAOLA collaboration (LAboratory fOr Laser- and beam-driven plasma Acceleration). This experiment will provide a method for the reconstruction of the electric field distribution within a linear plasma wakefield. Second, a time resolving high energy Transmission Electron Microscope (TEM) will be implemented. Among others it is designed to allow for living cell imaging. Both experiments require strong focusing magnets inside the new target chamber at REGAE. Permanent magnetic solenoids (PMSs) can provide the needed focusing strength due to their enormous surface current density, while having compact dimensions at the same time. The present thesis deals with the design of such strong focusing PMSs. Since short and strong solenoids, as required for REGAE, exhibit a distinct non-linearity, the induced emittance growth is relatively large. This emittance growth is investigated and minimized for different set-ups with axially and radially magnetized annular magnets. Furthermore a magnetic shielding is developed. Together with a mechanical lifting system it assures that magnetic leakage fields do not disturb experiments, where the PMSs are removed from the beamline.

  20. Measurement of the ATLAS solenoid magnetic field

    CERN Document Server

    Aleksa, M; Giudici, P-A; Kehrli, A; Losasso, M; Pons, X; Sandaker, H; Miyagawa, P S; Snow, S W; Hart, J C; Chevalier, L

    2008-01-01

    ATLAS is a general purpose detector designed to explore a wide range of physics at the Large Hadron Collider. At the centre of ATLAS is a tracking detector in a 2 T solenoidal magnetic field. This paper describes the machine built to map the field, the data analysis methods, the final results, and their estimated uncertainties. The remotely controlled mapping machine used pneumatic motors with feedback from optical encoders to scan an array of Hall probes over the field volume and log data at more than 20 000 points in a few hours. The data were analysed, making full use of the physical constraints on the field and of our knowledge of the solenoid coil geometry. After a series of small corrections derived from the data itself, the resulting maps were fitted with a function obeying Maxwell's equations. The fit residuals had an r.m.s. less than 0.5 mT and the systematic error on the measurement of track sagitta due to the field uncertainty was estimated to be in the range 0.02 % to 0.12 % depending on the track...

  1. Design of new superconducting central solenoid of SST-1 tokamak

    International Nuclear Information System (INIS)

    The key role of the central solenoid (CS) magnet of a Tokamak is for gas breakdown, ramp up and maintaining of plasma current for longer duration. The magnetic flux change in CS along with other PF coils generates magnetic null and induces electric field in toroidal direction. The induced toroidal electric field accelerates the residual electrons which collide with the neutrals and an avalanche takes place which led to the net plasma in the vacuum vessel of a Tokamak. In order to maximize the CS volt-sec capability, the higher magnetic field with a greater magnetic flux linkage is necessary. In order to facilitate all these requirements of SST-1 a new superconducting CS has been designed for SST-1. The design of new central solenoid has two bases; first one is physics and second is smart engineering in limited bore diameter of ∼655 mm. The physics basis of the design includes volt-sec storage capacity of ∼0.8 volt-sec, magnetic field null around 0.2 m over major radius of 1.1 m and toroidal electric field of ∼0.3 volt/m.The engineering design of new CS consists of Nb3Sn cable in conduit conductor (CICC) of operating current of 14 kA @ 4.5 K at 6 T, consolidated winding pack, smart quench detection system, protection system, housing cryostat and conductor terminations and joint design. The winding pack consists of 576 numbers of turns distributed in four layers with 0.75 mm FRP tape soaked with cyanide Easter based epoxy resin turn insulation and 3 mm of ground insulation. The inter-layer low resistance (∼1 nΩ) at 14 kA @ 4.5 K terminal praying hand joints has been designed for making winding pack continuous. The total height of winding pack is 2500 mm. The stored energy of this winding pack is ∼3 MJ at 14 kA of operating current. The expected heat load at cryogenic temperature is ∼10 W per layer, which requires helium mass flow rate of 1.4 g/s at 1.4 bars @ 4.5 K. The typical diameter and height of housing cryostat are 650 mm and 2563 mm with 80 K

  2. Cryogenic tests of the g-2 superconducting solenoid magnet system

    International Nuclear Information System (INIS)

    The g-2 muon storage ring magnet system consists of four large superconducting solenoids that are up to 15.1 m in diameter. The g-2 superconducting solenoids and a superconducting inflector dipole will be cooled using forced two-phase helium in tubes. The forced two-phase helium cooling will be provided from the J-T circuit of a refrigerator that is capable of delivering 625 W at 4.5 K. The two-phase helium flows from the refrigerator J-T circuit through a heat exchanger in a storage dewar that acts as a phase separator for helium returning from the magnets. The use of a heat exchanger in the storage dewar reduces the pressure drop in the magnet flow circuit, eliminates most two phase flow oscillations, and it permits the magnets to operate at variable thermal loads using the liquid in the storage dewar as a buffer. The g-2 magnet cooling system will consist of three parallel two-phase helium flow circuits that provide cooling to the following components: (1) the four large superconducting solenoids, (2) the current interconnects between the solenoids and the solenoid gas cooled electrical leads, and (3) the inflector dipole and its gas cooled electrical leads. This report describes a cryogenic test of the two 15.1 meter diameter superconducting solenoids using two-phase helium from a dewar. The report describes the cool down procedure for the 3.5 ton outer solenoid magnet system using liquid nitrogen and two-phase helium. Low current operation of the outer solenoids is discussed

  3. Cryogenic tests of the g-2 superconducting solenoid magnet system

    International Nuclear Information System (INIS)

    The g-2 muon storage ring magnet system consists of four large superconducting solenoids that are up to 15.1 m in diameter. The g-2 superconducting solenoids and a superconducting inflector dipole will be cooled using forced two-phase helium in tubes. The forced two-phase helium cooling will be provided from the J-T circuit of a refrigerator that is capable of delivering 625 W at 4.5 K. The two-phase helium flows from the refrigerator J-T circuit through a heat exchanger in a storage dewar that acts as a phase separator for helium returning from the magnets. The use of a heat exchanger in the storage dewar reduces the pressure drop in the magnet flow circuit, eliminates most two phase flow oscillations, and it permits the magnets to operate at variable thermal loads using the liquid in the storage dewar as a buffer. The g-2 magnet cooling system will consist of three parallel two-phase helium flow circuits that provide cooling to the following components; (1) the four large superconducting solenoids, (2) the current interconnects between the solenoids and the solenoid gas cooled electrical leads, and (3) the inflector dipole and its gas cooled electrical leads. This report describes a cryogenic test of the two 15.1 meter diameter superconducting solenoids using two-phase helium from a dewar. The report describes the cool down procedure for the 3.5 ton outer solenoid magnet system using liquid nitrogen and two-phase helium. Low current operation of the outer solenoids is discussed

  4. AC loss calculation of central solenoid model coil

    International Nuclear Information System (INIS)

    The AC loss of Central Solenoid Model Coil of ITER is calculated in order to be able to determine the allowable excitation current shape in time with respect to the available cooling capacity at liquid helium temperature. In Part A the theory is summarized essential to present calculation. This covers a semianalytical integral formulation to calculate the magnetic field distribution in the cross-section of a coil and also 2D and 3D differential formulations for eddy current calculation of jackets and structural steel components, respectively. In Part B the conditions and results of calculation are described in detail. Losses are calculated separately in different components. Also the different types of losses are separated, and only one of the followings is considered in the same time; eddy current loss, ferromagnetic hysteresis loss, superconducting hysteresis loss, coupling loss. The followings are concluded. The coupling loss was found to be the largest 83% of the total AC loss supposing 50 msec characteristic time constant. Also significant amount of heat is generated in structural steels, cooling is required for stainless steel structural components. The loss of joints is not large, however concentrated, therefore joints should receive attention. Specially Lap-type joints are critical components. The eddy current and coupling power losses can be significantly decreased by increasing the ramp-up time since they are proportional to the square of flux change rate, while superconducting and ferromagnetic hysteresis power losses decrease linearly with decreasing flux change rate. Joule losses are produced in joints even after the energizing process of the magnet, when it is driven by a constant excitation current. This propose us to keep the time of full power operation short. (J.P.N.)

  5. The External Magnetic Field Created by the Superposition of Identical Parallel Finite Solenoids

    CERN Document Server

    Lim, Melody Xuan

    2015-01-01

    Using superposition and numerical approximations of a published analytical expression for the magnetic field generated by a finite solenoid, we show that the magnetic field external to parallel identical solenoids can be nearly uniform and substantial, even when the solenoids have lengths that are large compared to their radii. We study two arrangements of solenoids---a ring of parallel solenoids whose surfaces are tangent to a common cylindrical surface and to nearest neighbours, and a large finite hexagonal array of parallel solenoids---and summarize how the magnitude and uniformity of the resultant external field depend on the solenoid length and distances between solenoids. We also report some novel results about single solenoids, e.g., that the energy stored in the internal magnetic field exceeds the energy stored in the spatially infinite external magnetic field for even short solenoids. These results should be broadly interesting to undergraduates learning about electricity and magnetism as novel examp...

  6. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  7. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    International Nuclear Information System (INIS)

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  8. Resin Permeation Through Compressed Glass Insulation for Iter Central Solenoid

    Science.gov (United States)

    Reed, R.; Roundy, F.; Martovetsky, N.; Miller, J.; Mann, T.

    2010-04-01

    Concern has been expressed about the ability of the resin system to penetrate the compressed dry glass of the turn and layer insulation during vacuum-pressure impregnation of ITER Central Solenoid (CS) modules. The stacked pancake layers of each module result in compression loads up to 9×104 kg (100 tons) on the lowest layers of each segment. The objective of this program was to assess the effects of this compressive load on resin permeation under resin-transfer conditions and with materials identical to that expected to be used in actual coil fabrication [45-50 °C, vacuum of 133 Pa (1 torr), DGEBF/anhydride epoxy resin system, E-glass satin weave, applied pressure of 125 kPa]. The experimental conditions and materials are detailed and the permeation results presented in this paper.

  9. R108 view inside the solenoid magnet

    CERN Multimedia

    1977-01-01

    One can see the four sets of cylindrical drift chambers and, between the vacuum tubes, a small device for the detection of magnetic monopoles introduced as a "parasite" experiment by another Collaboration (R109, by Rome-CERN Collaboration)

  10. Effect of solenoidal magnetic field on drifting laser plasma

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kazumasa; Sekine, Megumi [Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Okamura, Masahiro [Brookhaven National Laboratory, Upton, NY 11973 (United States) and RIKEN, Wako-shi, Saitama 351-0198 (United States); Cushing, Eric [Pennsylvania State University, University Park, PA 16802 (United States); Jandovitz, Peter [Cornell University, Ithaca, NY 14853 (United States)

    2013-04-19

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  11. Effect of solenoidal magnetic field on drifting laser plasma

    Science.gov (United States)

    Takahashi, Kazumasa; Okamura, Masahiro; Sekine, Megumi; Cushing, Eric; Jandovitz, Peter

    2013-04-01

    An ion source for accelerators requires to provide a stable waveform with a certain pulse length appropriate to the application. The pulse length of laser ion source is easy to control because it is expected to be proportional to plasma drifting distance. However, current density decay is proportional to the cube of the drifting distance, so large current loss will occur under unconfined drift. We investigated the stability and current decay of a Nd:YAG laser generated copper plasma confined by a solenoidal field using a Faraday cup to measure the current waveform. It was found that the plasma was unstable at certain magnetic field strengths, so a baffle was introduced to limit the plasma diameter at injection and improve the stability. Magnetic field, solenoid length, and plasma diameter were varied in order to find the conditions that minimize current decay and maximize stability.

  12. Integration of RFQ beam coolers and solenoidal magnetic fields

    Science.gov (United States)

    Cavenago, M.; Romé, M.; Maggiore, M.; Porcellato, A. M.; Maero, G.; Chiurlotto, F.; Comunian, M.; Galatà, A.; Cavaliere, F.

    2016-02-01

    Electromagnetic traps are a flexible and powerful method of controlling particle beams, possibly of exotic nuclei, with cooling (of energy spread and transverse oscillations) provided by collisions with light gases as in the Radio Frequency Quadrupole Cooler (RFQC). A RFQC prototype can be placed inside the existing Eltrap solenoid, capable of providing a magnetic flux density component Bz up to 0.2 T, where z is the solenoid axis. Confinement in the transverse plane is provided both by Bz and the rf voltage Vrf (up to 1 kV at few MHz). Transport is provided by a static electric field Ez (order of 100 V/m), while gas collisions (say He at 1 Pa, to be maintained by differential pumping) provide cooling or heating depending on Vrf. The beamline design and the major parameters Vrf, Bz (which affect the beam transmission optimization) are here reported, with a brief description of the experimental setup.

  13. Structural analysis of a superconducting central solenoid for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) concept design uses superconducting coils to accomplish magnetic confinement. The central solenoid (CS) magnet is divided vertically into 8 equal segments which are powered independently. The eddy current heating from the pulsed operation is too high for a case type construction; therefore, a open-quotes no caseclose quotes design has been chosen. This open-quotes no caseclose quotes design uses the conductor conduit as the primary structure and the electrical insulation as a structural adhesive. This electrical insulation is the open-quotes weak linkclose quotes in the coil winding pack structure and needs to be modeled in detail. A global finite element model with smeared winding pack properties was used to study the CS magnet structural behavior. The structural analysis results and peak stresses will be presented

  14. Testing of ITER central solenoid coil insulation in an array

    International Nuclear Information System (INIS)

    A glass-polyimide insulation system has been proposed by the US team for use in the Central Solenoid (CS) coil of the international Thermonuclear Experimental Reactor (ITER) machine and it is planned to use this system in the CS model coil inner module. The turn insulation will consist of 2 layers of combined prepreg and Kapton. Each layer is 50% overlapped with a butt wrap of prepreg and an overwrap of S glass. The coil layers will be separated by a glass-resin composite and impregnated in a VPI process. Small scale tests on the various components of the insulation are complete. It is planned to fabricate and test the insulation in a 4 x 4 insulated CS conductor array which will include the layer insulation and be vacuum impregnated. The conductor array will be subjected to 20 thermal cycles and 100000 mechanical load cycles in a Liquid Nitrogen environment. These loads are similar to those seen in the CS coil design. The insulation will be electrically tested at several stages during mechanical testing. This paper will describe the array configuration, fabrication: process, instrumentation, testing configuration, and supporting analyses used in selecting the array and test configurations

  15. Progress of the ITER Central Solenoid Model Coil Program

    International Nuclear Information System (INIS)

    The world s largest pulsed superconducting coil was successfully tested by charging up to 13 T and 46 kA with a stored energy of 640 MJ. The ITER Central Solenoid (CS) Model Coil and CS Insert Coil were developed and fabricated through an international collaboration and their cool down and charging tests were successfully carried out by international test and operation teams. In pulsed charging tests, where the original goal was 0.4T/s up to 13T, the CS Model Coil and the CS Insert Coil achieved ramp rates of 0.6T/s and 1.2T/s up to 13T, respectively. In addition, the CS Insert Coil was charged and discharged 10,003 times in the 13-T background field of the CS Model Coil and no degradation of the operational temperature margin directly coming from this cyclic operation was observed. These test results fulfilled all the goals of CS Model Coil development by confirming the validity of the engineering design and demonstrating that we are now ready to construct the ITER coils with confidence. (author)

  16. Using Experiment and Computer Modeling to Determine the Off-Axis Magnetic Field of a Solenoid

    Science.gov (United States)

    Lietor-Santos, Juan Jose

    2014-01-01

    The study of the ideal solenoid is a common topic among introductory-based physics textbooks and a typical current arrangement in laboratory hands-on experiences where the magnetic field inside a solenoid is determined at different currents and at different distances from its center using a magnetic probe. It additionally provides a very simple…

  17. Development of power supply and programmer for superconducting solenoid magnet

    International Nuclear Information System (INIS)

    A current and voltage regulated (0-100A / 0-10V) switch mode power supply and its programmer have been designed and developed, to power the super conducting solenoid magnets used as a transverse focusing devices inside the superconducting LINAC module, and other offline superconducting magnet setups. The power supply and programmer are two independent units. The power supply is controlled by the programmer when it is used to power the superconducting magnet, but with other loads it can be used without the programmer. The programmer is designed as a special feed back loop element, which compensates the effect of large inductance and zero resistance of super conducting magnet to ensure oscillation free smooth operation. The programmer has special features like quench protection, magnet current ramp rate control and maximum limit settings of magnet current and voltage. The power supply alone (without programmer) can be used for other laboratory applications requiring regulated variable DC voltage and current source. These power supplies can be used in master-slave mode to get several kW of power. This set-up (supply and programmer) have both manual and computer control features. (author)

  18. Integration of RFQ beam coolers and solenoidal magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cavenago, M., E-mail: cavenago@lnl.infn.it; Maggiore, M.; Porcellato, A. M.; Chiurlotto, F.; Comunian, M.; Galatà, A. [INFN-LNL, viale dell’Universitá n.2, 35020 Legnaro (PD) (Italy); Romé, M.; Maero, G.; Cavaliere, F. [INFN-Sezione di Milano and Physics Department, University of Milano, Milano (Italy)

    2016-02-15

    Electromagnetic traps are a flexible and powerful method of controlling particle beams, possibly of exotic nuclei, with cooling (of energy spread and transverse oscillations) provided by collisions with light gases as in the Radio Frequency Quadrupole Cooler (RFQC). A RFQC prototype can be placed inside the existing Eltrap solenoid, capable of providing a magnetic flux density component B{sub z} up to 0.2 T, where z is the solenoid axis. Confinement in the transverse plane is provided both by B{sub z} and the rf voltage V{sub rf} (up to 1 kV at few MHz). Transport is provided by a static electric field E{sub z} (order of 100 V/m), while gas collisions (say He at 1 Pa, to be maintained by differential pumping) provide cooling or heating depending on V{sub rf}. The beamline design and the major parameters V{sub rf}, B{sub z} (which affect the beam transmission optimization) are here reported, with a brief description of the experimental setup.

  19. Design and Construction of Solenoid Magnetic Lens for Focusing Electron Beam from Thermionic Electron Gun

    International Nuclear Information System (INIS)

    Electron gun is an important part of an electron accelerator for producing electron beam to be irradiated on material. The electron gun of electron accelerator constructed at P3TM BATAN, is a thermionic electron gun, A solenoid magnetic lens had been designed and constructed for focusing electron beam extracted from the electron gun in such away that all of the electron beam enter the accelerating tube. Technical specification of the solenoid magnetic lens is given in this paper. Measurement of magnetic field generated by solenoid coil shows that the largest magnetic field is in the middle of the solenoid coil. The test using the thermionic electron gun shows the focusing effect on electron beam by the solenoid magnetic lens. The focus strength is maximum after the coil current reaches 9 A. (author)

  20. Extensive characterisation of advanced manufacturing solutions for the ITER Central Solenoid pre-compression system

    CERN Document Server

    Langeslag, S.A.E.; Libeyre, P.; Marcinek, D.J.; Zhang, Z.

    2015-01-01

    The ITER Central Solenoid (CS), positioned in the center of the ITER tokamak, will provide a magnetic field, contributing to the confinement of the plasma. The 13 m high CS consists of a vertical stack of 6 independently driven modules, dynamically activated. Resulting opposing currents can lead to high separation forces. A pre-compression structure is implemented to counteract these opposing forces, by realising a continuous 180 MN coil-to-coil contact loading. Preload is applied by mechanical fastening via 9 subunits, positioned along the coil stack, each consisting of 2 outer and 1 inner tie plate. The tie plates therefore need to feature outstanding mechanical behaviour in a large temperature range. High strength, Nitronic®-50 type F XM-19 austenitic stainless steel is selected as candidate material. The linearised stress distribution reaches approximately 250 MPa, leading to a required yield strength of 380 MPa at room temperature. Two different manufacturing methods are being studied for the procuremen...

  1. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Figure 1: Some members of the solenoid and liquid argon teams proudly pose in front of the barrel cryosat, complete with detector and magnet. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. Figure 2: The alignment survey by Dirk Mergelkuhl and Aude Wiart. (EST-SU) At the start of the New Year the solenoid was moved to the cryostat insertion stand. Figure 3: The solenoid on the insertion stand, with Akira Yamamoto the solenoid designer and project leader. Figure 4: Taka Kondo, ATLAS Japan spokesperson, and Shoichi Mizumaki, Toshiba project engineer for the ATLAS solenoid, celebrate the insertion. Aft...

  2. ATLAS solenoid operates underground

    CERN Multimedia

    2006-01-01

    A new phase for the ATLAS collaboration started with the first operation of a completed sub-system: the Central Solenoid. Teams monitoring the cooling and powering of the ATLAS solenoid in the control room. The solenoid was cooled down to 4.5 K from 17 to 23 May. The first current was established the same evening that the solenoid became cold and superconductive. 'This makes the ATLAS Central Solenoid the very first cold and superconducting magnet to be operated in the LHC underground areas!', said Takahiko Kondo, professor at KEK. Though the current was limited to 1 kA, the cool-down and powering of the solenoid was a major milestone for all of the control, cryogenic, power and vacuum systems-a milestone reached by the hard work and many long evenings invested by various teams from ATLAS, all of CERN's departments and several large and small companies. Since the Central Solenoid and the barrel liquid argon (LAr) calorimeter share the same cryostat vacuum vessel, this achievement was only possible in perfe...

  3. Behavior of moving plasma in solenoidal magnetic field in a laser ion source.

    Science.gov (United States)

    Ikeda, S; Takahashi, K; Okamura, M; Horioka, K

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons. PMID:26931973

  4. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Takahashi, K. [Department of Electrical Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2137 (Japan); Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States); Horioka, K. [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan)

    2016-02-15

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  5. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    Science.gov (United States)

    Ikeda, S.; Takahashi, K.; Okamura, M.; Horioka, K.

    2016-02-01

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons.

  6. Behavior of moving plasma in solenoidal magnetic field in a laser ion source

    International Nuclear Information System (INIS)

    In a laser ion source, a solenoidal magnetic field is useful to guide the plasma and to control the extracted beam current. However, the behavior of the plasma drifting in the magnetic field has not been well understood. Therefore, to investigate the behavior, we measured the plasma ion current and the total charge within a single pulse in the solenoid by changing the distance from the entrance of the solenoid to a detector. We observed that the decrease of the total charge along the distance became smaller as the magnetic field became larger and then the charge became almost constant with a certain magnetic flux density. The results indicate that the transverse spreading speed of the plasma decreased with increasing the field and the plasma was confined transversely with the magnetic flux density. We found that the reason of the confinement was not magnetization of ions but an influence induced by electrons

  7. Jefferson Lab CLAS12 Superconducting Solenoid magnet Requirements and Design Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Rajput-Ghoshal, Renuka [Jefferson Lab, Newport News, VA; Hogan, John P. [Jefferson Lab, Newport News, VA; Fair, Ruben J. [Jefferson Lab, Newport News, VA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA; Luongo, Cesar [Jefferson Lab, Newport News, VA; Elouadrhiri, Latifa [Jefferson Lab, Newport News, VA

    2014-12-01

    As part of the Jefferson Lab 12GeV accelerator upgrade project, one of the experimental halls (Hall B) requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. In this presentation the physics requirements for the 5 T solenoid magnet, design constraints, conductor decision, and cooling choice will be discussed. The various design iterations to meet the specification will also be discussed in this presentation.

  8. Design of wide flat-topped low transverse field solenoid magnet

    International Nuclear Information System (INIS)

    A wide flat-topped low transverse error field solenoid magnet design for linear induction accelerator is presented. The design features non-uniform winding to reduce field fluctuation due to the magnets' gap, and homogenizer rings within the solenoid to greatly reduce the effects of winding errors. Numerical modeling of several designs for 12 MeV linear induction accelerator (LIA) in China Academy of Engineering Physics has demonstrated that by using these two techniques the magnetic field fluctuations in the accelerator gap can be reduced by 70% and the transverse error field can be reduced by 96.5%. (authors)

  9. Rotation of the solenoid magnet of the CMS experiment before the insertion into its cryostat

    CERN Multimedia

    Patrice Loiez

    2005-01-01

    At one side of the 27 km ring of the future Large Hadron Collider (LHC), the 230 tonne solenoid magnet for the CMS experiment has been rotated through 90° prior to insertion into its cryostat - the jacket that will cool the magnet to 4.2 K (-269° C).

  10. Development of solenoids and combined function steering magnets for LEBT of proton linac

    International Nuclear Information System (INIS)

    Focusing solenoids and large aperture (184 mm) combined function steering magnets are required for Low Energy Beam Transport (LEBT) line for transporting the negative hydrogen ion beam from the Ion source to Radio Frequency Quadrupole (RFQ) of H-injector Linac at RRCAT. The integral field strength (≀f(Bz)2) of water cooled solenoids is (3.5 kG)2 x 30 cm and the integrated field strength (Bx.L and By.L) of steering magnets is 1500 G-cm. The technical challenges involved in development of these magnets are to satisfy the field quality requirements (spherical aberration coefficient, C1 < 30/m2 for solenoids and field uniformity < 1% for steering magnets) and install them with support systems in the limited space available in between the ion source and RFQ of the high Energy proton Linac. The magnets were designed using POISSON 2D and OPERA 3D codes. Two water cooled solenoids and two combined function steering magnets with support systems have been developed. The details of magnet development with their support systems and results of magnetic field measurement will be discussed in this paper. (author)

  11. Design and Construction of a Prototype Solenoid Coil for MICE Coupling Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Pan, Heng; Guo, XingLong; Xu, FengYu; Liu, XiaoKun; Wu, Hong; Zheng, ShiXian; Green, Michael A; Li, Derun; Virostek, Steve; Zisman, Michael

    2010-06-28

    A superconducting coupling solenoid mounted around four conventional RF cavities, which produces up to 2.6 T central magnetic field to keep the muons within the cavities, is to be used for the Muon Ionization Cooling Experiment (MICE). The coupling coil made from copper matrix NbTi conductors is the largest of three types of magnets in MICE both in terms of 1.5 m inner diameter and about 13MJ stored magnetic energy at full operation current of 210A. The stress induced inside the coil assembly during cool down and magnet charging is relatively high. In order to validate the design method and develop the coil winding technique with inside-wound SC splices required for the coupling coil, a prototype coil made from the same conductor and with the same diameter and thickness but only one-fourth long as the coupling coil was designed and fabricated by ICST. The prototype coil was designed to be charged to strain conditions that are equivalent or greater than would be encountered in the coupling coil. This paper presents detailed design of the prototype coil as well as developed coil winding skills. The analyses on stress in the coil assembly and quench process were carried out.

  12. Coherent states of non-relativistic electron in the magnetic-solenoid field

    International Nuclear Information System (INIS)

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  13. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  14. Performance measurements of a pilot superconducting solenoid model core for a wind tunnel magnetic suspension and balance system

    Science.gov (United States)

    Goodyer, M. J.; Britcher, C. P.

    1983-01-01

    The results of experimental demonstrations of a superconducting solenoid model core in the Southampton University Magnetic Suspension and Balance System are detailed. Technology and techniques relevant to large-scale wind tunnel MSBSs comprise the long term goals. The magnetic moment of solenoids, difficulties peculiar to superconducting solenoid cores, lift force and pitching moment, dynamic lift calibration, and helium boil-off measurements are discussed.

  15. Fabrication of a solenoid-type inductor with Fe-based soft magnetic core

    International Nuclear Information System (INIS)

    A solenoid-type inductor was fabricated by MEMS (Microelectromechanical systems) technique. The fabrication process uses UV-LIGA, dry etching, fine polishing, and electroplating technique to achieve high performance of the solenoid-type inductor. Fe-based soft magnetic thin film was sputtered as the magnetic core, and polyimide was used as the insulation materials. The inductor was in size of 4x4 mm with coil width of 20 μm and space of 35 μm. The inductance is 1.61 μH at a frequency of 5 MHz with the maximum quality factor of 1.42

  16. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments

    International Nuclear Information System (INIS)

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described

  17. Finite Element Analysis on the Pre-load Structures of the Central Solenoid for the HT-7U Device

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The central solenoid is an important part of the HT-7U device. In this paper, the computational analysis of the stress and the displacement on the pre-load structures of the central solenoid have been made by the finite element analysis system COSMOS/M2.0 under room and/or operating temperature. According to the analytical results, the clip aprons and compression plates are all satisfied with safety design criteria.

  18. Analysis of eddy current distributions in the CMS magnet yoke during the solenoid discharge

    CERN Document Server

    Klioukhine, Vyacheslav I; Curé, Benoî; Gaddi, Andrea; Gerwig, Hubert; Grillet, Jean Paul; Hervé, A; Loveless, Richard; Smith, Richard P; 10.1109/TNS.2005.850932

    2005-01-01

    Flux loops have been installed on selected segments of the magnetic flux return yoke of the 4 T superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN. Voltages induced in the loops during discharge of the solenoid will be sampled online during the entire discharge and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. Although the discharge of the solenoid is rather slow (190 s time constant), the influence of eddy currents induced in the yoke elements should be estimated. The calculation of eddy currents is performed with Vector Fields' program ELEKTRA. The results of the calculations are reported.

  19. Analysis of Eddy Current Distributions in the CMS Magnet Yoke During the Solenoid Discharge

    CERN Document Server

    Klyukhin, V I; Curé, B; Gaddi, A; Gerwig, H; Grillet, J P; Hervé, A; Loveless, R; Smith, R P

    2011-01-01

    Flux loops have been installed on selected segments of the magnetic flux return yoke of the 4 T superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN. Voltages induced in the loops during discharge of the solenoid will be sampled online during the entire discharge and integrated offline to provide a measurement of the initial magnetic flux density in steel at the maximum field to an accuracy of a few percent. Although the discharge of the solenoid is rather slow (190 s time constant), the influence of eddy currents induced in the yoke elements should be estimated. The calculation of eddy currents is performed with Vector Fields' program ELEKTRA. The results of the calculations are reported.

  20. The superconducting solenoid magnet system for the GEM detector at the SSC

    International Nuclear Information System (INIS)

    The design of the magnet for the GEM detector at the SSC is described. It is an 18m inner diameter, 30m long superconducting solenoid, with a magnetic field of 0.8 T. The basic solenoidal field is shaped by large ferromagnetic cones, to improve detector performance in the ends of the solenoid. Because of the system's large size and mass, field-fabrication on-site at the SSC is required. The challenges in this process, together with the large stored energy of the system, 2.5 GJ, have lead to novel design choices in several areas, including the conductor. The design of the conductor, cold mass, vacuum vessel, cold mass supports, thermal shields, forward field shapers, and auxiliary systems are described

  1. Cool-down, static heat load and warm-up performance of the central solenoid model coil and the central solenoid insert model coil

    International Nuclear Information System (INIS)

    In International Thermonuclear Experimental Reactor (ITER) Engineering Design Activities, the Central Solenoid model Coil (CSMC) and the CS Insert Coil (CSIC) have been fabricated, and installed into the ITER CSMS test facility at Naka Fusion Establishment, Japan Atomic Energy Research Institute (JAERI). The CSMS and CSIC conductors are applied to the cable-in-conduit conductors cooled by forced-flow supercritical helium (SHe) at 4.5 K. There are 48 parallel cooling channels for the CSMC, the CSIC and the structures. In the CSMC experiment, the cool-down and the warm-up were finished successfully. The cool-down time was within 480 hours. The steady head load without coil current was measured and evaluated. (author)

  2. Fabrication of the three-dimensional solenoid type micro magnetic sensor

    International Nuclear Information System (INIS)

    There has been a large demand for the realization of on-chip fluxgate magnetic sensors, with exciting and sensing control IC circuits. Based on UV lithography and other MEMS technology, a new three dimensional solenoid type micro magnetic sensor has been designed and fabricated to measure the components of magnetic induction vector in outer space. The fabricated micro sensor was integrated in IC circuits of MEMS satellite

  3. Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows

    CERN Document Server

    Federrath, Christoph; Schober, Jennifer; Banerjee, Robi; Klessen, Ralf S; Schleicher, Dominik R G; 10.1103/PhysRevLett.107.114504

    2011-01-01

    We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.

  4. CO2-laser--produced plasma columns in a solenoidal magnetic field

    International Nuclear Information System (INIS)

    A 1-GW CO2 laser pulse has been used to produce extended column breakdown of hydrogen at low pressure in a 20-cm-long solenoid. Magnetic fields of up to 110 kG were used to inhibit radial losses of the plasma column. A differential pumping scheme was devised to prevent formation of an opaque absorption wave travelling out of the solenoid back toward the focusing lens. Target burns give direct evidence for trapped laser beam propagation along the plasma column

  5. Effect of magnetic system errors on the transport processes in long solenoids

    International Nuclear Information System (INIS)

    The equilibrium of plasma and the transverse transport in the solenoidal cell of the axisymmetric open traps is investigated. The shape of magnetic surfaces in plasma with arbitrary large β ratio is found. The classification of possible regimes of nonclassical and resonant transport is given. The transport coefficients are evaluated and the magnetic field errors limitations providing guarantee that the transport is not greater then the classical one are pointed out

  6. Magnet system for a laser heated solenoid fusion reactor

    International Nuclear Information System (INIS)

    A hybrid magnet system is proposed that consists of a 2 m inside diameter 20 T continuous superconducting magnet surrounding a number of 4 cm bore, 20 T pulsed magnets. Each pulsed magnet encloses a plasma tube for the laser heated fusion reaction. A tritium breeder, heat exchanger, and neutron shield are located in the annular region between the pulsed magnets and the superconducting magnet. The overall length of the system is 1 kilometer. The pulsed magnets are operated in a reverse-forward current sequence so that the magnetic field in the plasma is first reduced to zero and then raised to 40 T. Novel design features are included in the pulsed magnets, pulsing circuits and the superconducting magnet. Of particular interest is the structural design which maintains practical stress levels for readily available materials in both magnets and enables operation of the superconductors in a strain-free condition. Estimated costs and comment on the advantages of the pressure support system are presented

  7. Quench detection of fast plasma events for the JT-60SA central solenoid

    International Nuclear Information System (INIS)

    Highlights: ► Pick-up coil method is used for the quench detection of JT-60SA magnet system. ► Disk-shaped pick-up coils are inserted in CS module to compensate inductive voltage. ► Applicability of pick-up coil is evaluated by two dimensional analysis. ► Pick-up coil is applicable whenever disruption, mini collapse and other plasma event. - Abstract: The JT-60 is planned to be modified to a full-superconducting tokamak referred to as the JT-60 Super Advanced (JT-60SA). The maximum temperature of the magnet during its quench might reach the temperature of higher than several hundreds Kelvin that will damage the superconducting magnet itself. The high precision quench detection system, therefore, is one of the key technologies in the superconducting magnet protection system. The pick-up coil method, which is using voltage taps to detect the normal voltage, is used for the quench detection of the JT-60SA superconducting magnet system. The disk-shaped pick-up coils are inserted in the central solenoid (CS) module to compensate the inductive voltage. In the previous study, the quench detection system requires a large number of pick-up coils. The reliability of quench detection system would be higher by simplifying the detection system such as reducing the number of pick-up coils. Simplifying the quench detection system is also important to reduce the total cost of the protection system. Hence the design method is improved by increasing optimizing parameters. The improved design method can reduce the number of pick-up coils without reducing the sensitivity of detection; consequently the protection system can be designed with higher reliability and lower cost. The applicability of the disk-shaped pick-up coil for quench detection system is evaluated by the two dimensional analysis. In the previous study, however, the analysis model only took into account the CS, EF (equilibrium field) coils and plasma. Therefore, applicability of the disk-shaped pick-up coil for

  8. Nuclear magnetic resonance at 310 MHz in a superconducting solenoid

    International Nuclear Information System (INIS)

    The realisation of an NMR spectrometer with a superconducting magnet is presented in the first section. The methods to attain the best possible homogeneity of the magnetic field and to minimize the error in the spectrometer are described. The second section is devoted to the study of elastomers and nitr-oxides free radicals. A shift of the transition temperature with the magnetic field appears for the elastomers. The increasing paramagnetic shift has allowed a complete study by NMR of piperidinic and pyrrolidinic nitroxide free radicals. (author)

  9. Photon Production From The Scattering of Axions Out of a Solenoidal Magnetic Field

    OpenAIRE

    Guendelman, Eduardo I.; Shilon, Idan; Cantatore, Giovanni; Zioutas, Konstantin

    2009-01-01

    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D delta-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. The calculated conversion probabilities for QCD inspire...

  10. Design, fabrication, and characterization of a solenoid system to generate magnetic field for an ECR proton source

    Indian Academy of Sciences (India)

    S K Jain; P A Naik; P R Hannurkar

    2010-08-01

    Solenoid coils with iron jacket (electromagnets) have been designed and developed for generation and confinement of the plasma produced by an electron cyclotron resonance source operating at 2450 MHz frequency. The magnetic field configurations designed using the solenoid coils are off-resonance, mirror, and flat, satisfying electron cyclotron resonance condition along the axis of the plasma chamber. 2D Poisson software was used for designing. Details of design, fabrication, and magnetic field mapping of the solenoid coils are presented in this paper.

  11. Progress on Design and Construction of a MuCool Coupling Solenoid Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Liu, Xiao Kun; Xu, FengYu; Li, S.; Pan, Heng; Wu, Hong; Guo, Xinglong; Zheng, ShiXian; Li, Derun; Virostek, Steve; Zisman, Mike; Green, M.A.

    2010-06-28

    The MuCool program undertaken by the US Neutrino Factory and Muon Collider Collaboration is to study the behavior of muon ionization cooling channel components. A single superconducting coupling solenoid magnet is necessary to pursue the research and development work on the performance of high gradient, large size RF cavities immersed in magnetic field, which is one of the main challenges in the practical realization of ionization cooling of muons. The MuCool coupling magnet is to be built using commercial copper based niobium titanium conductors and cooled by two cryo-coolers with each cooling capacity of 1.5 W at 4.2 K. The solenoid magnet will be powered by using a single 300A power supply through a single pair of binary leads that are designed to carry a maximum current of 210A. The magnet is to be passively protected by cold diodes and resistors across sections of the coil and by quench back from the 6061 Al mandrel in order to lower the quench voltage and the hot spot temperature. The magnet is currently under construction. This paper presents the updated design and fabrication progress on the MuCool coupling magnet.

  12. The Dimensions and Number of Turns for the Spectrometer Solenoids As-Built compared to the Original Magnet Design

    International Nuclear Information System (INIS)

    The two tracker solenoids for MICE [1]-[3] as-built are different from the original design proposed by Wang NMR [4]. The Wang NMR design is in turn different from the magnet design proposed in the original MICE tracker magnet specification [5]. The two tracker solenoids where fabricated with niobium titanium conductor supplied to LBNL by Luvata under a specification written by LBNL [6]. This report compares the as-built tracker solenoids to the original Wang NMR design [4]. The as-built solenoid coils are thicker by 5 to 8 percent than called for the original design. This means that the current center is moved outward from 0.2 to 0.5 percent. In both tracker magnets, the thickness of end coil 2 was increased by 2-layers over the original design [5]. Thus, the current center for end coil 2 was moved outward by 0.7 percent. The number of turns per layer was underestimated in the original design from 2 to 4 percent. As a result, the current in each of the five tracker solenoid coils must be increased. In turn, the two as built tracker solenoids are compared to each other. In the ways that matter, the two tracker solenoids are nearly identical to each other. The largest difference between the two magnets that matters is a 0.05 percent change in the current in the center coil of the three coil set that forms the spectrometer solenoid. Since this is the largest variation that matters, it can be concluded that coils M1, coils M2, and the spectrometer solenoid can be connected in series without affecting the beam dynamics of MICE. This includes the two tuned end coils as well. The position of the coils within the cryostats vacuum vessel appears to be acceptable

  13. Effect of High Solenoidal Magnetic Fields on Breakdown Voltages of High Vacuum 805 MHz Cavities

    CERN Document Server

    Moretti, A; Geer, S; Qian, Z

    2004-01-01

    The demonstration of muon ionization cooling by a large factor is necessary to demonstrate the feasilibility of a collider or neutrino factory. An important cooling experiment, MICE [1], has been proposed to demonstrate 10 % cooling which will validate the technology. Ionization cooling is accomplished by passing a high-emittance beam in a multi-Tesla solenoidal channel alternately through regions of low Z material and very high accelerating RF Cavities. To determine the effect of very large solenoidal magnetic fields on the generations of Dark current, X-Rays and breakdown Voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station, and a large bore 5 T solenoidal superconducting magnet containing a pill box type Cavity with thin removable window apertures allowing dark current studies and breakdown studies of different materials. The results of this study will be presented. The study has shown that the peak achievab...

  14. Analytical study of induced magnetic and thermal stress in superconducting solenoid

    International Nuclear Information System (INIS)

    VECC is in a process of developing an ISOL type of Rare Isotope Beam Facility. After RFQ and Drift Tube Linacs, superconducting QWRs will be employed to accelerate the beam up to 7 MeV/u energy. At present design work has been just initiated for the development of first cryomodule consisting of 4 numbers of superconducting QWR. A superconducting solenoid is planned to put in the middle of the 4 numbers of QWRs for the transverse focusing of the beam. After carrying out preliminary electromagnetic design of the solenoid for producing 9T magnetic field, mechanical design has also been started. Design of the bucking coil has also been carried out for the solenoid so that stray filed at a distance of 200 mm from the centre is less than 30 mT otherwise niobium made cavities of the QWR would have been quenched at underrated electric field gradient. Analytical stress analysis has been carried out to evaluate the stress induced due to magnetic pressure and thermal contraction. Analysis is still in progress to evaluate the necessity of requirement of banding to be carried out with material having higher thermal expansion coefficient so that contact of the extreme layer of the cable has been ensured. Alternative to the provision of availing banding, analysis is underway to take care of the situation by pre-stressing the cable itself during the winding of the coil. (author)

  15. Magnetic field, inductance of circular coil and solenoids

    International Nuclear Information System (INIS)

    The self-inductance of a current-carrying circular coil and the mutual inductances of the Helmholtz coils and coil-sole-noid systems have been measured and calculated theoretically. The experiments and the required equipment are suited to an undergraduate laboratory. The theoretical calculation involve the use of simple numerical integration methods for evaluating the magnetic field of the circular coil and the inductances. The calculated values agree with the measurements within the experimental error. The material presented can be proposed to the students as a laboratory project. (Author) 7 refs

  16. ATLAS's superconducting solenoid takes up position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid was moved to its final destination on 16 January. It has taken up position opposite the ATLAS liquid argon barrel cryostat, which will house the electromagnetic calorimeter. All that remains to do now is to slide it into the insulation vacuum, this will be done in the next few weeks. Built by Toshiba, under responsibility of KEK in Japan, the central solenoid is 2.4 metres in diameter, 5.3 metres long and weighs 5.5 tonnes. "It will provide an axial magnetic field of 2 Tesla that will deflect particles inside the inner detector," as Roger Ruber, on-site project coordinator, explains. The inner detector, which consists of three sub-detectors, will be installed inside the solenoid later. The solenoid during one of the transport operations. Securely attached to the overhead travelling crane, the solenoid is situated in front of the opening to the liquid argon calorimeter, it will be inserted soon.

  17. A unique 30 Tesla single-solenoid pulsed magnet instrument for x-ray studies

    Science.gov (United States)

    Islam, Zahirul; Capatina, Dana; Ruff, Jacob; Das, Ritesh; Nojiri, Hiroyuki; Narumi, Yasuo

    2011-03-01

    We present a dual-cryostat pulsed-magnet instrument at the Advanced Photon Source (APS) with unique capabilities. The dual-cryostat independently cools the solenoid (Tohoku design) using liquid nitrogen and the sample using a closed-cycle refrigerator, respectively. Liquid nitrogen (LN) cooling allows a repetition rate of seven minutes for peak fields of 30 Tesla. The system is unique in that the LN cryostat incorporates a double-funnel vacuum tube passing through the solenoid's bore preserving the entire angular range allowed by the magnet. This scheme is advantageous in that it allows the applied magnetic field to be parallel to the scattering plane complementing typical split-pair magnets with fields normal to the scattering plane. Performance of the coils along with preliminary x-ray diffraction and spectroscopic studies will be presented. Use of the APS is supported by the U. S. DOE, Office of Science, under Contract No. DE-AC02-06CH11357. The work was supported in part by ICC-IMR, Tohoku University.

  18. D0 Solenoid Commissioning September 1998

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1998-10-12

    D-Zero installed a new 2 Tesla superconducting solenoid magnet into the central tracking region of the D-Zero detector. This report documents the cryogenic performance of the superconducting solenoid during its first cryogenic operation at Fermilab. By necessity, the liquid helium refrigerator was also operated. This was the second time the refrigerator plant has been operated. The refrigerator's performance is also documented herein.

  19. Simulation of adiabatic thermal beams in a periodic solenoidal magnetic focusing field

    OpenAIRE

    Barton, T. J.; Field, David M.; Lang, Kevin M.; Chen, C.

    2012-01-01

    Self-consistent particle-in-cell simulations are performed to verify earlier theoretical predictions of adiabatic thermal beams in a periodic solenoidal magnetic focusing field [ K. R. Samokhvalova, J. Zhou and C. Chen Phys. Plasmas 14 103102 (2007); J. Zhou, K. R. Samokhvalova and C. Chen Phys. Plasmas 15 023102 (2008)]. In particular, results are obtained for adiabatic thermal beams that do not rotate in the Larmor frame. For such beams, the theoretical predictions of the rms beam envelope,...

  20. Photon Production From The Scattering of Axions Out of a Solenoidal Magnetic Field

    CERN Document Server

    Guendelman, Eduardo I; Cantatore, Giovanni; Zioutas, Konstantin

    2009-01-01

    In this paper we calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a cylindrical step function and a 2D delta function, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the total number of events and the axion-photon conversion probability which could be expected in a reasonable experimental situation. The calculated conversion probabilities for QCD inspired axions are much larger than those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect.

  1. Mechanical properties of the ITER central solenoid model coil insulation under static and dynamic load after reactor irradiation

    International Nuclear Information System (INIS)

    The candidate insulation system for the central solenoid (CS) model coil of the International Thermonuclear Experimental Reactor (ITER) is CTD-112P, an epoxy with a two-dimensionally woven S-glass-fiber reinforcement. Because of the pulsed operation of ITER, both the static and the fatigue behavior of the material have to be assessed under the actual operating conditions, including the appropriate radiation environment at the magnet location. To obtain information on the radiation-induced material degradation, the material was irradiated at ambient and low temperatures to neutron fluences of 5 x 1022 m-2 (E > 0.1 MeV). After measurements of swelling and weight loss, all experiments were carried out at 77 K. Half of the 5 K irradiated samples were subjected to a warm-up cycle to room temperature before testing. Tensile and short-beam-shear tests characterize the material in tension and interlaminar shear. Stress-lifetime diagrams of tensile and double-lap-shear specimens were assessed under tension-tension fatigue load up to 106 cycles

  2. Final design of the Switching Network Units for the JT-60SA Central Solenoid

    International Nuclear Information System (INIS)

    This paper describes the approved detailed design of the four Switching Network Units (SNUs) of the superconducting Central Solenoid of JT-60SA, the satellite tokamak that will be built in Naka, Japan, in the framework of the “Broader Approach” cooperation agreement between Europe and Japan. The SNUs can interrupt a current of 20 kA DC in less than 1 ms in order to produce a voltage of 5 kV. Such performance is obtained by inserting an electronic static circuit breaker in parallel to an electromechanical contactor and by matching and coordinating their operations. Any undesired transient overvoltage is limited by an advanced snubber circuit optimized for this application. The SNU resistance values can be adapted to the specific operation scenario. In particular, after successful plasma breakdown, the SNU resistance can be reduced by a making switch. The design choices of the main SNU elements are justified by showing and discussing the performed calculations and simulations. In most cases, the developed design is expected to exceed the performances required by the JT-60SA project

  3. Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shao Qing; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of)

    2015-06-15

    Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone. Several models for ECR ion source were and will be constructed depending on their operating conditions. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

  4. Development of large high current density superconducting solenoid magnets for use in high energy physics experiments. [Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A.

    1977-05-01

    The development of a unique type of large superconducting solenoid magnet, characterized by very high current density windings and a two-phase helium tubular cooling system is described. The development of the magnet's conceptual design and the construction of two test solenoids are described. The successful test of the superconducting coil and its tubular cooling refrigeration system is presented. The safety, environmental and economic impacts of the test program on future developments in high energy physics are shown. Large solid angle particle detectors for colliding beam physics will analyze both charged and neutral particles. In many cases, these detectors will require neutral particles, such as gamma rays, to pass through the magnet coil with minimum interaction. The magnet coils must be as thin as possible. The use of superconducting windings allows one to minimize radiation thickness, while at the same time maximizing charged particle momentum resolution and saving substantial quantities of electrical energy. The results of the experimental measurements show that large high current density solenoid magnets can be made to operate at high stored energies. The superconducting magnet development described has a positive safety and environmental impact. The use of large high current density thin superconducting solenoids has been proposed in two high energy physics experiments to be conducted at the Stanford Linear Accelerator Center and Cornell University as a result of the successful experiments described.

  5. Plasma current start-up experiments without a central solenoid in the iron core STOR-M tokamak

    Science.gov (United States)

    Mitarai, O.; Tomney, G.; Rohollohi, A.; Lewis, E.; McColl, D.; Xiao, C.; Hirose, A.

    2015-06-01

    Reproducible plasma current start-up without a central solenoid (CS) has been demonstrated using the outer ohmic heating (OH) coils in the iron core STOR-M tokamak (Mitarai et al 2014 Fusion Eng. Des. 89 2467-71). Although the outer OH coil current saturates the iron core eventually, it has been demonstrated that the plasma current can be maintained during the iron core saturation phase. In this work, further studies have been conducted to investigate the effects of the turn number of the outer OH coils (N = 4 or N = 6) in the CS-less discharges and to evaluate the plasma stability with respect to the n-decay index of the vertical magnetic field. For the loose coupling of the iron core with N = 4 turns, the plasma current can be sustained after the additional third capacitor bank is applied near the iron core saturation phase, showing the slow transition from the unsaturated to the partially saturated phase. For the case of stronger coupling of N = 6 turns, the plasma current is increased at the same fast bank voltage, but the main discharge is shortened from 35 to 20 ms. As the magnetizing current is smaller due to stronger coupling between the OH coils and the plasma current, the transition from the unsaturated to the saturated phase is slightly difficult at present. The present experimental results suggest a feasible operation scenario in a future spherical tokamak (ST) at least using loose iron core coupling for smoother transition from the unsaturated to the saturated iron core phase. Thus, a reliable plasma current start-up by the outer OH coils and the current ramp-up to a steady state by additional heating power and vertical field coils could be considered as an operation scenario for future ST reactors with an iron core transformer.

  6. Use of an 'inter-linked' central solenoid for plasma current ramp-up in a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Use of an 'inter-linked' (IL) central solenoid (CS) in a tokamak fusion reactor is proposed for achieving a sufficient amount of the CS magnetic flux swing for the plasma current Ip ramp-up with keeping the reactor size reasonable. It is shown that a large amount of the flux swing by the IL-CS, compared to the conventional (C) CS, is expected for a tokamak fusion reactor with the fusion power Pfus = 2 GW and the major radius Rp < 8.0 m, and that the IL-CS can generate a marginal amount of the magnetic flux swing to ramp up Ip only by the inductive way for a tokamak reactor with Rp = 6.5 m while the C-CS cannot a sufficient amount of the flux swing for the Ip ramp-up. (author)

  7. Thermal Stability of Large Al-stabilized Superconducting Magnets Theoritical Analysis of CMS Solenoid.

    CERN Document Server

    Juster, F P

    1998-01-01

    The CMS detector magnet presently under design for the future Large Hadron Collider at CERN is an epoxy-impregnated structure, indirectly cooled by two-phase flow liquid helium. This magnet, based on aluminum-stabilized, mechanically reinforced conductor, is not cryostable : the heat generated by a thermal disturbance can be removed only by thermal diffusivity through the windings. In order to study the thermal stability of the magnet, we have developed numerical codes able to predict the thermal behaviour of an anisotropic and non-homogeneous medium against thermal perturbations due to friction or epoxy cracking. Our 3D finite element codes can calculate the propagation or the recovery of a normal zone in a superconducting magnet, taking into account the current diffusion effect, which strongly affects the heat generated by a transition in the case of large Al-stabilized conductors. Two different codes, CASTEM 2000 and HEATING are described in this paper. We present the results of the CMS Solenoid magnet sta...

  8. Inserting the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The huge superconducting solenoid for CMS is inserted into the cryostat barrel. CMS uses the world's largest thin solenoid, in terms of energy stored, and is 12 m long, with a diameter of 6 m and weighing 220 tonnes. When turned on the magnet will produce a field strength of 4 T using superconducting niobium-titanium material at 4.5 K.

  9. The CMS superconducting solenoid

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The huge solenoid that will generate the magnetic field for the CMS experiment at the LHC is shown stored in the assembly hall above the experimental cavern. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. It weighs 220 tonnes and will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field, storing enough energy to melt 18 tonnes of gold.

  10. Design and Construction of Test Coils for the MICE Coupling Solenoid Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Pan, Heng; Xu, F.Y.; Liu, XioaKun; Chen, AnBin; Li, LanKai; Gou, XingLong; Wu, Hong; Green, Michael; Li, Darun; Strauss, Bruce

    2008-08-08

    The superconducting coupling solenoid to be applied in the Muon Ionization Cooling Experiment (MICE) is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 102.5 mm at room temperature. The magnetic field up to 2.6 T at the magnet centerline is to keep the muons within the MICE RF cavities. Its self inductance is around 592 H and its magnet stored energy is about 13 MJ at a full current of 210 A for the worst operation case of the MICE channel. The stress induced inside the coil during cool down and charging is relatively high. Two test coils are to build and test in order to validate the design method and develop the fabrication technique required for the coupling coil winding, one is 350 mm inner diameter and full length same as the coupling coil, and the other is one-quarter length and 1.5 m diameter. The 1.5 m diameter coil will be charged to strain conditions that are greater than would be encountered in the coupling coil. This paper presents detailed design of the test coils as well as developed winding skills. The analyses on stress in coil assemblies, AC loss, and quench process are carried out.

  11. Photon production from the scattering of axions out of a solenoidal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo I.; Shilon, Idan [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Cantatore, Giovanni [Università and INFN Trieste, via Valerio 2, 34127 Trieste (Italy); Zioutas, Konstantin, E-mail: guendel@bgu.ac.il, E-mail: silon@bgu.ac.il, E-mail: cantatore@trieste.infn.it, E-mail: Konstantin.Zioutas@cern.ch [Physics Department, University of Patras, Rio, 26504 Patras (Greece)

    2010-06-01

    We calculate the total cross section for the production of photons from the scattering of axions by a strong inhomogeneous magnetic field in the form of a 2D δ-function, a cylindrical step function and a 2D Gaussian distribution, which can be approximately produced by a solenoidal current. The theoretical result is used to estimate the axion-photon conversion probability which could be expected in a reasonable experimental situation. Comparison between the 2D conversion probabilities for QCD inspired axions and those derived by applying the celebrated 1D calculation of the (inverse) coherent Primakoff effect is made using an averaging prescription procedure of the 1D case. We also consider scattering at a resonance E{sub axion} ∼ m{sub axion}, which corresponds to the scattering from a δ-function and gives the most enhanced results. Finally, we analyze the results of this work in the astrophysical extension to suggest a way in which they may be directed to a solution to some basic solar physics problems and, in particular, the coronal heating problem.

  12. ATLAS superconducting toroids and solenoid

    CERN Document Server

    ten Kate, H H J

    2005-01-01

    The ATLAS particle detector in the Large Hadron Collider at CERN features a hybrid system of four superconducting magnets: a Central Solenoid surrounded by 2 End-cap Toroids and a Barrel Toroid. The magnet system dimensions are 20 m in diameter and 26 m in length. With its 1.55 GJ stored energy in air, it actually is the largest superconducting magnet in the world. The construction of the magnets has started in 1998 and will end in 2006 with the completion of the installation underground. Currently, in October 2004, practically all magnet parts are manufactured and delivered to CERN for final integration. The first two out of 8 full size 25*5 m/sup 2/ size coils for the Barrel Toroid have been completed and tested while the other 6 are near to completion as well. The production of the so- called End-Cap Toroids is progressing well. The Central Solenoid is complete and ready for installation. The installation underground of the entire system including its services has commenced. In the paper the main features ...

  13. The Wisconsin Pegasus solenoid

    International Nuclear Information System (INIS)

    A 1.6 m long x 0.1m diameter coil has just been constructed by the NHMFL for the University of Wisconsin Pegasus Tokamak. It will form the central solenoid for the high plasma energy density fusion machine. The magnet consists of two layers of Glidcop conductor, reinforced with S2 glass, carbon fiber and steel. Normal operating parameters will be 14 T in a 58 mm bore with a number of pulses to 20 T+. Current densities will approach 1 kA/mm2 and the stored energy will be >2 MJ. The philosophy behind the design will be presented and details of the construction and testing will be shown. (orig.)

  14. LCLS Gun Solenoid Design Considerations

    International Nuclear Information System (INIS)

    The LCLS photocathode rf gun requires a solenoid immediately downstream for proper emittance compensation. Such a gun and solenoid have been operational at the SSRL Gun Test Facility (GTF) for over eight years. Based on magnetic measurements and operational experience with the GTF gun solenoid multiple modifications are suggested for the LCLS gun solenoid. The modifications include adding dipole and quadrupole correctors inside the solenoid, increasing the bore to accommodate the correctors, decreasing the mirror plate thickness to allow the solenoid to move closer to the cathode, cutouts in the mirror plate to allow greater optical clearance with grazing incidence cathode illumination, utilizing pancake coil mirror images to compensate the first and second integrals of the transverse fields and incorporating a bipolar power supply to allow for proper magnet standardization and quick polarity changes. This paper describes all these modifications plus the magnetic measurements and operational experience leading to the suggested modifications.

  15. Controlling Charge and Current Neutralization of an Ion Beam Pulse in a Background Plasma by Application of a Solenoidal Magnetic Field I: Weak Magnetic Field Limit

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D., Startsev, E. A., Sefkow, A. B., Davidson, R. C.

    2008-10-10

    Propagation of an intense charged particle beam pulse through a background plasma is a common problem in astrophysics and plasma applications. The plasma can effectively neutralize the charge and current of the beam pulse, and thus provides a convenient medium for beam transport. The application of a small solenoidal magnetic field can drastically change the self-magnetic and self- electric fields of the beam pulse, thus allowing effective control of the beam transport through the background plasma. An analytic model is developed to describe the self-magnetic field of a finite- length ion beam pulse propagating in a cold background plasma in a solenoidal magnetic field. The analytic studies show that the solenoidal magnetic field starts to infuence the self-electric and self-magnetic fields when ωce > ωpeβb, where ωce = eβ/mec is the electron gyrofrequency, ωpe is the electron plasma frequency, and βb = Vb/c is the ion beam velocity relative to the speed of light. This condition typically holds for relatively small magnetic fields (about 100G). Analytical formulas are derived for the effective radial force acting on the beam ions, which can be used to minimize beam pinching. The results of analytic theory have been verified by comparison with the simulation results obtained from two particle-in-cell codes, which show good agreement.

  16. Development of a magnetic field calculation program for air-core solenoids which can control the precision of a magnetic field

    International Nuclear Information System (INIS)

    A numerical method of magnetic field calculation for the air-core solenoid is presented in this paper. In application of the Biot- Savart law, the magnetic field induced from the source current can be obtained by a double integration ormula. The numerical method named composite Simpson's rule for the integration is applied to the program and the adaptive quadrature method is used to adjust the step size in the calculation according to the precision we need. When the target point is in the solenoid and the integrand's denominator may be zero in the process of calculation, the method still can provide an appropriate result. We have developed a program which calculates the magnetic field with at least 1 ppm precision and named it as rzBI() to implement this method. The method has been used in the design of an MRI magnet, and the result show it is very flexible and convenient.

  17. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, Joshua T. [Jefferson Lab, Newport News, VA; Biallas, George H. [Jefferson Lab, Newport News, VA; Brown, G.; Butler, David E. [Jefferson Lab, Newport News, VA; Carstens, Thomas J. [Jefferson Lab, Newport News, VA; Chudakov, Eugene A. [Jefferson Lab, Newport News, VA; Creel, Jonathan D. [Jefferson Lab, Newport News, VA; Egiyan, Hovanes [Jefferson Lab, Newport News, VA; Martin, F.; Qiang, Yi [Jefferson Lab, Newport News, VA; Smith, Elton S. [Jefferson Lab, Newport News, VA; Stevens, Mark A. [Jefferson Lab, Newport News, VA; Spiegel, Scot L. [Jefferson Lab, Newport News, VA; Whitlatch, Timothy E. [Jefferson Lab, Newport News, VA; Wolin, Elliott J. [Carnegie Mellon University , Pittsburgh, PA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  18. Pulsable superconducting 28 kJoules-solenoid

    International Nuclear Information System (INIS)

    The construction and test of a pulsable superconducting solenoid magnet ('PUSSY') is described. The magnet has a cold bore of 80 mm diameter, and it reached a central field of 4.75 T after little training in the first run. The field homogeneity is 0.1% in 30 mm dsv and 1% in 60 mm dsv. The pecularities of this solenoid are the fully insulated braid conductor, consisting of 32 multifilament wires with 206 NbTi filaments each, and the application of copper heat drains for the cooling of the magnet windings. The magnet reached a rate of field change of 2 T/s or 630 A/s without significant degradation with respect to dc operation. (orig.)

  19. Development of a single-shot pulsed power supply for a solenoid producing magnetic field to guide a pulsed electron beam

    International Nuclear Information System (INIS)

    Design and development of a single-shot pulsed power supply has been done for a solenoid producing magnetic field up to 1 Tesla. The magnetic field is used to guide a pulsed electron beam generated in a Marx generator. (author)

  20. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    International Nuclear Information System (INIS)

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  1. Cross section of the CMS solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.

  2. Inauguration of the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In early 2005 the final piece of the CMS solenoid magnet arrived, marked by this ceremony held in the CMS assembly hall at Cessy, France. The solenoid is made up of five pieces totaling 12.5 m in length and 6 m in diameter. Weighing 220 tonnes, it will produce a 4 T magnetic field, 100 000 times the strength of the Earth's magnetic field and store enough energy to melt 18 tonnes of gold.

  3. Laser heating and magnetic compression of plasma in a fast solenoid

    International Nuclear Information System (INIS)

    A low-β plasma column a few mm in diameter by 22 cm in length is heated by an axially directed CO2 laser to a high-β state in a fast rising solenoidal field. Successful heating depends on proper timing between the laser pulse and rising field. Typical conditions attained are a line energy density of 6 J/cm, T-barapprox. =40 eV, and n/sub e/approx. =3 x 1017e-/cm3, with conditions quite uniform along the length. The heating suppresses instabilities which appear under certain conditions in the non-laser-heated case

  4. Influence of external magnetic fields on critical currents of solenoids wound with anisotropic HTS tapes - theoretical analysis

    International Nuclear Information System (INIS)

    Theoretical analysis of the critical currents in solenoids wound with anisotropic superconductors was performed. The results of the numerical calculations indicate that applying the external magnetic field to the cylindrical coils which are made of anisotropic HTS tapes may lead to some increase in their critical current. Taking into account the angle dependence of the Jc(B) of short Bi(2223)Ag tape samples measured at 77 K we have shown how the external homogeneous magnetic field parallel to the axis of cylindrical symmetry influences the value of the coil's critical current. We also present the analysis of the influence of the external magnetic field on the change in position of weak turns in the winding. It is shown that determination of the magnet critical current represents mathematically the solution of a non-linear equation. The methods as well as the computer procedure enabling the evaluation of the coil's expected critical current and the location of the position of weak places in the winding are described. Further, the expressions that can be applied to the calculation of critical currents of the magnets, made of superconducting wires and tapes, whose Jc(B) characteristics are isotropic, were derived. The possibility of obtaining analytical solutions for simplified linear Jc(B) and for the general case of Be ≠ 0 is also discussed. (author)

  5. The response to high magnetic fields of the vacuum phototriodes for the Compact Muon Solenoid endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    The endcap electromagnetic calorimeter of the compact muon solenoid detects particles with the dense fast scintillator lead tungstate (PbWO4). Due to the low light yield of this scintillator, photodetectors with internal gain are required. Silicon avalanche photodiodes cannot be used in the endcap region due to the intense neutron flux. Following an extensive R and D programme, 26 mm diameter single-stage photomultipliers (vacuum phototriodes) have been chosen as the photodetector in the endcap region. The first 1400 production devices are currently being evaluated following recent tests of a pre-production batch of 500 tubes. Tubes passing our acceptance tests have responses, averaged over the angular acceptance of the endcap calorimeter, corresponding to the range 20-55 electrons/MeV deposited in PbWO4. These phototriodes operate, with a typical gain of 10, in magnetic fields up to 4 T

  6. ATLAS Solenoid Integration

    CERN Multimedia

    Ruber, R

    Last month the central solenoid was installed in the barrel cryostat, which it shares with the liquid argon calorimeter. Some two years ago the central solenoid arrived at CERN after being manufactured and tested in Japan. It was kept in storage until last October when it was finally moved to the barrel cryostat integration area. Here a position survey of the solenoid (with respect to the cryostat's inner warm vessel) was performed. At the start of the New Year the solenoid was moved to the cryostat insertion stand. After a test insertion on 6th February and a few weeks of preparation work it was finally inserted on 27th February. A couple of hectic 24-hours/7-day weeks followed in order to connect all services in the cryostat bulkhead. But last Monday, 15th March, both warm flanges of the cryostat could be closed. In another week's time we expect to finish the connection of the cryogenic cooling lines and the superconducting bus lines with the external services. Then the cool-down and test will commence... ...

  7. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    NARCIS (Netherlands)

    Erni, W.; Keshelashvili, I; Krusche, B.

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modificatio

  8. Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    CERN Document Server

    Erni, W; Krusche, B; Steinacher, M; Heng, Y; Liu, Z; Liu, H; Shen, X; Wang, O; Xu, H; Becker, J; Feldbauer, F; Heinsius, F -H; Held, T; Koch, H; Kopf, B; Pelizaeus, M; Schröder, T; Steinke, M; Wiedner, U; Zhong, J; Bianconi, A; Bragadireanu, M; Pantea, D; Tudorache, A; Tudorache, V; De Napoli, M; Giacoppo, F; Raciti, G; Rapisarda, E; Sfienti, C; Bialkowski, E; Budzanowski, A; Czech, B; Kistryn, M; Kliczewski, S; Kozela, A; Kulessa, P; Pysz, K; Schäfer, W; Siudak, R; Szczurek, A; zycki, W Czy; Domagala, M; Hawryluk, M; Lisowski, E; Lisowski, F; Wojnar, L; Gil, D; Hawranek, P; Kamys, B; Kistryn, St; Korcyl, K; Krzemien, W; Magiera, A; Moskal, P; Rudy, Z; Salabura, P; Smyrski, J; Wronska, A; Al-Turany, M; Augustin, I; Deppe, H; Flemming, H; Gerl, J; Goetzen, K; Hohler, R; Lehmann, D; Lewandowski, B; Lühning, J; Maas, F; Mishra, D; Orth, H; Peters, K; Saitô, T; Schepers, G; Schmidt, C J; Schmitt, L; Schwarz, C; Voss, B; Wieczorek, P; Wilms, A; Brinkmann, K -T; Freiesleben, H; Jaekel, R; Kliemt, R; Wuerschig, T; Zaunick, H -G; Abazov, V M; Alexeev, G; Arefev, A; Astakhov, V I; Barabanov, M Yu; Batyunya, B V; Davydov, Yu I; Dodokhov, V Kh; Efremov, A A; Fedunov, A G; Feshchenko, A A; Galoyan, A S; Grigorian, S; Karmokov, A; Koshurnikov, E K; Kudaev, V Ch; Lobanov, V I; Lobanov, Yu Yu; Makarov, A F; Malinina, L V; Malyshev, V L; Mustafaev, G A; Olshevski, A; Pasyuk, M A; Perevalova, E A; Piskun, A A; Pocheptsov, T A; Pontecorvo, G; Rodionov, V K; Rogov, Yu N; Salmin, R A; Samartsev, A G; Sapozhnikov, M G; Shabratova, A; Shabratova, G S; Skachkova, A N; Skachkov, N B; Strokovsky, E A; Suleimanov, M K; Teshev, R Sh; Tokmenin, V V; Uzhinsky, V V; Vodopyanov, A S; Zaporozhets, S A; Zhuravlev, N I; Zorin, A G; Branford, D; Föhl, K; Glazier, D; Watts, D; Woods, P; Eyrich, W; Lehmann, A; Teufel, A; Dobbs, S; Metreveli, Z; Seth, K; Tann, B; Tomaradze, A G; Bettoni, D; Carassiti, V; Cecchi, A; Dalpiaz, P; Fioravanti, E; Garzia, I; Negrini, M; Savri`e, M; Stancari, G; Dulach, B; Gianotti, P; Guaraldo, C; Lucherini, V; Pace, E; Bersani, A; Macri, M; Marinelli, M; Parodi, R F; Brodski, I; Döring, W; Drexler, P; Düren, M; Gagyi-Palffy, Z; Hayrapetyan, A; Kotulla, M; Kühn, W; Lange, S; Liu, M; Metag, V; Nanova, M; Novotny, R; Salz, C; Schneider, J; Schoenmeier, P; Schubert, R; Spataro, S; Stenzel, H; Strackbein, C; Thiel, M; Thoering, U; Yang, S; Clarkson, T; Cowie, E; Downie, E; Hill, G; Hoek, M; Ireland, D; Kaiser, R; Keri, T; Lehmann, I; Livingston, K; Lumsden, S; MacGregor, D; McKinnon, B; Murray, M; Protopopescu, D; Rosner, G; Seitz, B; Yang, G; Babai, M; Biegun, A K; Bubak, A; Guliyev, E; Jothi, V S; Kavatsyuk, M; Löhner, H; Messchendorp, J; Smit, H; van der Weele, J C; García, F; Riska, D -O; Büscher, M; Dosdall, R; Dzhygadlo, R; Gillitzer, A; Grunwald, D; Jha, V; Kemmerling, G; Kleines, H; Lehrach, A; Maier, R; Mertens, M; Ohm, H; Prasuhn, D; Randriamalala, T; Ritman, J; Roeder, M; Stockmanns, T; Wintz, P; Wüstner, P; Kisiel, J; Li, S; Li, Z; Sun, Z; Xu, H; Fissum, S; Hansen, K; Isaksson, L; Lundin, M; Schröder, B; Achenbach, P; Espi, M C Mora; Pochodzalla, J; Sanchez, S; Sanchez-Lorente, A; Dormenev, V I; Fedorov, A A; Korzhik, M V; Missevitch, O V; Balanutsa, V; Chernetsky, V; Demekhin, A; Dolgolenko, A; Fedorets, P; Gerasimov, A; Goryachev, V; Boukharov, A; Malyshev, O; Marishev, I; Semenov, A; Hoeppner, C; Ketzer, B; Konorov, I; Mann, A; Neubert, S; Paul, S; Weitzel, Q; Khoukaz, A; Rausmann, T; Täschner, A; Wessels, J; Varma, R; Baldin, E; Kotov, K; Peleganchuk, S; Tikhonov, Yu; Boucher, J; Hennino, T; Kunne, R; Ong, S; Pouthas, J; Ramstein, B; Rosier, P; Sudol, M; Van de Wiele, J; Zerguerras, T; Dmowski, K; Korzeniewski, R; Przemyslaw, D; Slowinski, B; Boca, G; Braghieri, A; Costanza, S; Fontana, A; Genova, P; Lavezzi, L; Montagna, P; Rotondi, A; Belikov, N I; Davidenko, A M; Derevshchikov, A A; Goncharenko, Yu M; Grishin, V N; Kachanov, V A; Konstantinov, D A; Kormilitsin, V A; Kravtsov, V I; Matulenko, Yu A; Melnik, Y M; Meshchanin, A P; Minaev, N G; Mochalov, V V; Morozov, D A; Nogach, L V; Nurushev, S B; Ryazantsev, A V; Semenov, P A; Soloviev, L F; Uzunian, A V; Vasilev, A N; Yakutin, A E; Baeck, T; Cederwall, B; Bargholtz, C; Geren, L; Tegnér, P E; Belostotskii, S; Gavrilov, G; Itzotov, A; Kiselev, A; Kravchenko, P; Manaenkov, S; Miklukho, O; Naryshkin, Yu; Veretennikov, D; Vikhrov, V; Zhadanov, A; Fava, L; Panzieri, D; Alberto, D; Amoroso, A; Botta, E; Bressani, T; Bufalino, S; Bussa, M P; Busso, L; De Mori, F; Destefanis, M; Ferrero, L; Grasso, A; Greco, M; Kugathasan, T; Maggiora, M; Marcello, S; Serbanut, G; Sosio, S; Bertini, R; Calvo, D; Coli, S; De Remigis, P; Feliciello, A; Filippi, A; Giraudo, G; Mazza, G; Rivetti, A; Szymanska, K; Tosello, F; Wheadon, R; Morra, O; Agnello, M; Iazzi, F; Szymanska, K; Birsa, R; Bradamante, F; Bressan, A; Martin, A

    2009-01-01

    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.

  9. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    International Nuclear Information System (INIS)

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface

  10. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Shunsuke, E-mail: shunsuke.ikeda@riken.jp; Sekine, Megumi [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan); Riken, Wako, Saitama (Japan); Romanelli, Mark [Cornell University, Ithaca, New York 14850 (United States); Cinquegrani, David [University of Michigan, Ann Arbor, Michigan 48109 (United States); Kumaki, Masafumi [Waseda University, Shinjuku, Tokyo (Japan); Fuwa, Yasuhiro [Kyoto University, Uji, Kyoto (Japan); Kanesue, Takeshi; Okamura, Masahiro [Brookhaven National Laboratory, Upton, New York 11973 (United States); Horioka, Kazuhiko [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2014-02-15

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  11. Investigation of effect of solenoid magnet on emittances of ion beam from laser ablation plasma

    Science.gov (United States)

    Ikeda, Shunsuke; Romanelli, Mark; Cinquegrani, David; Sekine, Megumi; Kumaki, Masafumi; Fuwa, Yasuhiro; Kanesue, Takeshi; Okamura, Masahiro; Horioka, Kazuhiko

    2014-02-01

    A magnetic field can increase an ion current of a laser ablation plasma and is expected to control the change of the plasma ion current. However, the magnetic field can also make some fluctuations of the plasma and the effect on the beam emittance and the emission surface is not clear. To investigate the effect of a magnetic field, we extracted the ion beams under three conditions where without magnetic field, with magnetic field, and without magnetic field with higher laser energy to measure the beam distribution in phase space. Then we compared the relations between the plasma ion current density into the extraction gap and the Twiss parameters with each condition. We observed the effect of the magnetic field on the emission surface.

  12. Quench analysis of 4-Tesla superconducting solenoid magnet using numerical methods

    International Nuclear Information System (INIS)

    Superconducting (SC) magnets are used in accelerators, high energy physics, material science studies, modalities such as MRI etc. 4 Tesla warm bore superconducting magnet is being constructed at BARC in . The superconducting magnet will be used for corrosion and Magneto hydro dynamic studies related to the development of Lead Lithium cooled ceramic breeder (LLCB) test blanket module. The complete magnet will be immersed in a liquid Helium bath at 4.2 K. The transition of SC magnet's operating point from superconducting state to normal conducting state is known as quench. During normal operation, the magnet will be storing 2.6 MJ of energy which needs to be dissipated rapidly in the form of heat energy at the time of quench. Uncontrolled quench is catastrophic in nature which may even lead to melt down of windings, punching holes through insulation etc. The possible reasons for quench are lack of stability (design mistakes), transients, conductor movement, resin cracking etc. A quench protection program is written in COMSOL Multiphysics along with nonlinear resistivity module implemented in PYTHON which attempts to estimate the quench parameters tor 4-Tesla SC Magnet. This paper discusses the intrinsic quench behavior along with quench parameters (thermal stability limit of SC magnet in terms of MQE, quench propagation velocity, inter layer voltages) of the SC magnet. (author)

  13. A Solenoid Capture System for Neutrino Production

    International Nuclear Information System (INIS)

    This paper describes the use of a high field solenoidal magnet to capture secondary pions from the production target. The captured pions subsequentially decay to produce the neutrino beam. A pion capture system using a high field solenoid magnet has been proposed for the muon collider. This technology would also be available for neutrino beam production. It will be shown that a high field solenoid would produce a larger flux of neutrinos with energy, Eν e, (bar ν)e flux contamination in the solenoid neutrino beam is only 0.15%

  14. Solenoidality of the Magnetic Induction Field and Conservation of the Total Momentum

    CERN Document Server

    Severini, Sergio

    2011-01-01

    The present scientific paper treats the case for which space interested by the electromagnetic field (e.m.) is completely vacuum except where the sources are located. By the way, we point out that the Maxwell's second equation is released from the definition of momentum density for the e.m. field, as this is the only equation that is not used in the formal introduction of Maxwell's stress tensor. For the first time in scientific literature, to the best of our knowledge, we demonstrate that the solenoidalily of magnetic induction field can be deduced from the conservation of total momentum due to the matter and field.

  15. Analysis of off-axis solenoid fields using the magnetic scalar potential: An application to a Zeeman-slower for cold atoms

    Science.gov (United States)

    Muniz, Sérgio R.; Bagnato, Vanderlei S.; Bhattacharya, M.

    2015-06-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here, we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution and is presented through practical examples, including a nonuniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the nontrivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce themes of current modern research.

  16. Dynamic magnetic shield for the CLAS12 central TOF detector photomultiplier tubes

    International Nuclear Information System (INIS)

    The Central Time-of-Flight detector for the Jefferson Laboratory 12-GeV upgrade is being designed with linear-focused photomultiplier tubes that require a robust magnetic shield against the CLAS12 main 5-T solenoid fringe fields of 100 mT (1 kG). Theoretical consideration of a ferromagnetic cylinder in an axial field has demonstrated that its shielding capability decreases with increasing length. This observation has been confirmed with finite element analysis using POISSON model software. Several shields composed of coaxial ferromagnetic cylinders have been studied. All difficulties caused by saturation effects were overcome with a novel dynamical shield, which utilizes a demagnetizing solenoid between the shielding cylinders. Basic dynamical shields for ordinary linear-focused 2-in. photomultiplier tubes were designed and tested both with models and experimental prototypes at different external field and demagnetizing current values. Our shield design reduces the 1 kG external axial field by a factor of 5000.

  17. The focusing properties of solenoid lenses

    International Nuclear Information System (INIS)

    Solenoids show inevitability their spherical aberration, which increases beam effective emittance. In this work the author make efforts to improve field quality in different ways. Calculations tell that increasing gap size of pole pieces or taping magnet poles can obviously reduce coefficient of spherical aberration. The equivalent parameters of solenoid lenses are calculated according to axial magnetic field pattern of lenses; they only relate to its geometry, independent of its magnetic field inductivity strength

  18. Report of the large solenoid detector group

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G.G.; Mori, S.; Pondrom, L.G.; Williams, H.H.; Barnett, B.; Barnes, V.; Cashmore, R.; Chiba, M.; DeSalvo, R.; Devlin, T.

    1987-09-01

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region.

  19. Report of the large solenoid detector group

    International Nuclear Information System (INIS)

    This report presents a conceptual design of a large solenoid for studying physics at the SSC. The parameters and nature of the detector have been chosen based on present estimates of what is required to allow the study of heavy quarks, supersymmetry, heavy Higgs particles, WW scattering at large invariant masses, new W and Z bosons, and very large momentum transfer parton-parton scattering. Simply stated, the goal is to obtain optimum detection and identification of electrons, muons, neutrinos, jets, W's and Z's over a large rapidity region. The primary region of interest extends over +-3 units of rapidity, although the calorimetry must extend to +-5.5 units if optimal missing energy resolution is to be obtained. A magnetic field was incorporated because of the importance of identifying the signs of the charges for both electrons and muons and because of the added possibility of identifying tau leptons and secondary vertices. In addition, the existence of a magnetic field may prove useful for studying new physics processes about which we currently have no knowledge. Since hermeticity of the calorimetry is extremely important, the entire central and endcap calorimeters were located inside the solenoid. This does not at the moment seem to produce significant problems (although many issues remain to be resolved) and in fact leads to a very effective muon detector in the central region

  20. Some options for the muon collider capture and decay solenoids

    International Nuclear Information System (INIS)

    This report discusses some of the problems associated with using solenoid magnets to capture the secondary particles that are created when an intense beam of 8 to 10 GeV protons interacts with the target at the center of the capture region. Hybrid capture solenoids with inductions of 28 T and a 22T are described. The first 14 to 15 T of the solenoid induction will be generated by a superconducting magnet. The remainder of the field will be generated by a Bitter type of water cooled solenoid. The capture solenoids include a transition section from the high field solenoid to a 7 T decay channel where pions and kaons that come off of the target decay into muons. A short 7 T solenoidal decay channel between the capture solenoid system and the phase rotation system is described. A concept for separation of negative and positive pions and kaons is briefly discussed

  1. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, Dorf A.; Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2010-02-02

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field [I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)] to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe . Here, ωce and ω pe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/ c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ω cr ce = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  2. Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field

    International Nuclear Information System (INIS)

    This paper extends studies of ion beam transport through a background plasma along a solenoidal magnetic field (I. Kaganovich et al., Phys. Plasmas 15, 103108 (2008)) to the important regime of moderate magnetic field strength satisfying ωce > 2βbωpe. Here, ωce and ωpe are the electron cyclotron frequency and electron plasma frequency, respectively, and βb = vb/c is the directed ion beam velocity normalized to the speed of light. The electromagnetic field perturbations excited by the ion beam pulse in this regime are calculated analytically, and verified by comparison with the numerical simulations. The degrees of beam charge neutralization and current neutralization are estimated, and the transverse component of the Lorentz force associated with the excited electromagnetic field is calculated. It is found that the plasma response to the ion beam pulse is significantly different depending on whether the value of the solenoidal magnetic field is below or above the threshold value specified by ωcecr = 2βbωpe, and corresponding to the resonant excitation of large-amplitude whistler waves. The use of intense whistler wave excitations for diagnostic purposes is also discussed.

  3. Plasma confinement apparatus using solenoidal and mirror coils

    International Nuclear Information System (INIS)

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  4. HB+ inserted into the CMS Solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2006-01-01

    The first half of the barrel hadron calorimeter (HB+) has been inserted into the superconducting solenoid of CMS, in preparation for the magnet test and cosmic challenge. The operation went smoothly, lasting a couple of days.

  5. Advances in laser solenoid fusion reactor design

    International Nuclear Information System (INIS)

    The laser solenoid is an alternate fusion concept based on a laser-heated magnetically-confined plasma column. The reactor concept has evolved in several systems studies over the last five years. We describe recent advances in the plasma physics and technology of laser-plasma coupling. The technology advances include progress on first walls, inner magnet design, confinement module design, and reactor maintenance. We also describe a new generation of laser solenoid fusion and fusion-fission reactor designs

  6. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  7. Note: High temperature pulsed solenoid valve.

    Science.gov (United States)

    Shen, Wei; Sulkes, Mark

    2010-01-01

    We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 degrees C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations. PMID:20113132

  8. The Results of Tests of the MICE Spectrometer Solenoids

    International Nuclear Information System (INIS)

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  9. Muscle Motion Solenoid Actuator

    Science.gov (United States)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  10. Superconducting solenoids for nuclear physics at Orsay

    International Nuclear Information System (INIS)

    Two systems using large superconducting solenoids are described. The first, SOLENO, is composed of two magnets (3T, 600 KJ each) and will replace a standard triplet of magnetic lenses; for the moment only the first magnet has gone into operation. The second system, a 5T solenoid, CRYEBIS II, is built in duplicate and will be used on heavy ion sources: one for our laboratory and the other one for the Research Institute of Physics/STOCKHOLM (Sweden). This system employs a superconducting switch to short-circuit the current on the magnet

  11. Solenoidal fusion system

    International Nuclear Information System (INIS)

    This invention discloses apparatus and methods to produce nuclear fusion utilizing fusible material in the form of high energy ion beams confined in magnetic fields. For example, beams of deuterons and tritons are injected in the same direction relative to the axis of a vacuum chamber. The ion beams are confined by the magnetic fields of long solenoids. The products of the fusion reactions, such as neutrons and alpha particles, escape to the wall surrounding the vacuum chamber, producing heat. The momentum of the deuterons is approximately equal to the momentum of the tritons, so that both types of ions follow the same path in the confining magnetic field. The velocity of the deuteron is sufficiently greater than the velocity of the triton so that overtaking collisions occur at a relative velocity which produces a high fusion reaction cross section. Electrons for space charge neutralization are obtained by ionization of residual gas in the vacuum chamber, and additionally from solid material (Irradiated with ultra-violet light or other energetic radiation) adjacent to the confinement region. For start-up operation, injected high-energy molecular ions can be dissociated by intense laser beam, producing trapping via change of charge state. When sufficiently intense deuteron and triton beams have been produced, the laser beam can be removed, and subsequent change of charge state can be achieved by collisions

  12. Refrigerator and Solenoid Run Summary August/September 1999

    International Nuclear Information System (INIS)

    The helium refrigerator was cooled down and operated for the third time since its installation. D-Zero's 2 Tesla superconducting solenoid was cooled down and operated for its second time since its installation into the D-Zero detector. This engineering note summarizes the cryogenic aspects of the test run and performance measurements made. The main purpose of this run was to do field mapping of the solenoid with different combinations of field polarity on the Solenoid and CF iron magnets. This was accomplished. A second purpose was to test the lower field joint repair that was done in January 1999. This field joint had a measurable voltage drop across the soldered bus splice. The repair was an undoing of the joint, extensive cleaning of the bus, and then welding the splice. The repair was successful, no voltage drop was measured and the magnet behaved nicely. A parasitic purpose was to get some operating time on the refrigerator, measure the refrigeration performance, and measure the heat leak in the VLPC lines mounted on the detector platform. Refrigerator performance was spot checked, and was found to be 60 watts (10%) less than generic operating curves. At this level of performance, the operating margin for the full solenoid and VLPC system will be 75 watts (15%) which is somewhat uncomfortable from an operational stand point. The VLPC lines were operated and heat leak numbers of around 40 watts was measured for each pipe section including the supply u-tubes to the detector, the bayonet can, valve box on the platform and the piping back to the refrigerator valve box. Another purpose of the test run was to test the compatibility of other detector components with the new central magnetic field environment. I do not know the results of these tests.

  13. Tolerance Studies of the Mu2e Solenoid System

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. L. [Fermilab; Ambrosio, G. [Fermilab; Buehler, M. [Fermilab; Coleman, R. [Fermilab; Evbota, D. [Fermilab; Feher, S. [Fermilab; Kashikhin, V. V. [Fermilab; Lamm, M. [Fermilab; Miller, J. [Boston U.; Moretti, G. [Fermilab; Ostojic, R. [CERN; Page, T. [Fermilab; Popp, J. [York Coll., N.Y.; Tartaglia, M. [Fermilab

    2014-01-01

    The muon-to-electron conversion experiment at Fermilab is designed to explore charged lepton flavor violation. It is composed of three large superconducting solenoids, namely, the production solenoid, the transport solenoid, and the detector solenoid. Each subsystem has a set of field requirements. Tolerance sensitivity studies of the magnet system were performed with the objective of demonstrating that the present magnet design meets all the field requirements. Systematic and random errors were considered on the position and alignment of the coils. The study helps to identify the critical sources of errors and which are translated to coil manufacturing and mechanical support tolerances.

  14. Survey of the laser-solenoid fusion reactor

    International Nuclear Information System (INIS)

    This report surveys the prospects for a laser-solenoid fusion reactor. A sample reactor and scaling laws are used to describe the concept's characteristics. Experimental results are reviewed, and the laser and magnet technologies that undergird the laser-solenoid concept are analyzed. Finally, a systems analysis of fusion power reactors is given, including a discussion of direct conversion and fusion-fission effects, to ascertain the system attributes of the laser-solenoid configuration

  15. Jets, magnetic fields and the central engine

    International Nuclear Information System (INIS)

    Reviewing recent observations of jets unconfined by external pressure, the author suggests that self-confinement may be common. This requires current-carrying jets with helical magnetic fields. Such beams occur in the laboratory, in lightning, and in the Crab Nebula, where currents are apparently carried over distances greater than a light year. Self-confined jets require a significant torodial magnetic field emerging from the nozzle. The author suggests that the parallel/azimuthal magnetic field ratio may be the crucial nozzle parameter, causing asymmetries. Helical field configurations have remarkable stability properties and can evolve naturally as synchrotron losses in the jet lead to minimizing Lorentz forces. Current-carrying jets may provide a valuable clue to the physics of the central source. (Auth.)

  16. Some applications of a new, simple, very high-field (0-12 tesla) super-conducting magnet-cryostat based on a niobium-titanium mini-solenoid

    International Nuclear Information System (INIS)

    High magnetic fields have been and continue to be important in Moessbauer spectroscopy, especially in the study of the H vs. T characteristics of magnetically ordered materials. In this work we describe a new, particularly simple high-field magnet cryostat system for which the rated field at T=4.2 K is 9.0 T at 37.58 amps operating current and which is found capable of significant enhancement to 11.7 T on pumping the magnet bath to ≅ 1.7 K. The field enhancement (≅ 30%) is to our knowledge the largest achieved to date for such a niobium-titanium solenoid, the previous high for NbTi being ≅ 20%. Somewhat smaller enhancement (≅ 9.5%) is found on similar pumping of Nb3Sn solenoids, i.e., 137 kG at 4.2 K to 150 kG at 1.9 K. Among the unique features of the present system are its small volume (leading to minimal stored energy and liquid helium loss during quench excursions) and its high field: current ratio ≅ 2.4 kG/amp versus < 1 kG/amp values of typical larger NbTi solenoids currently in use. This leads to lower helium consumption during charging cycles to persistent mode operation and is especially important to field enhancement via continued pumping along the vapor cooled leads in addition to directly on the magnet bath. (orig./BHO)

  17. Development and testing of high field, high current density solenoids and magnets, wound with stabilized filamentary Nb/sub 3/Sn cable and reacted after winding

    CERN Document Server

    Asner, Alfred M; Hagedorn, Dietrich; Niqueletto, Christian; Thomi, W

    1981-01-01

    The development and testing of a 2.6 cm inner diameter, high field and high current density solenoid, wound with a Cu-stabilized, fine filamentary Nb/sub 3/Sn cable, and reacted after winding, is described. At an overall current density in the winding of 352 A/mm /sup 2/, corresponding to the current density of 565 A/mm/sup 2/ in the non-insulated cable, a maximum field of B/sub m/=8.8 T had been obtained without any training. Based on this result, a 0.9 m-long, 10 cm-warm bore, beam line quadrupole magnet, wound with the same cable, is being assembled. The nominal parameters are: field gradient 74 T/m, maximum field in the winding B/sub m/=7.4 T at an overall current density in the winding of 300 A/mm/sup 2/. The specific technological and design aspects of this magnet, related to the 'wind and react' technique, such as the conductor insulation, coil winding technique, execution of connections etc., are discussed. (2 refs).

  18. High field laser heated solenoids

    International Nuclear Information System (INIS)

    A 10 kJ pulsed CO2 laser and 3.8 cm bore, 15 T, 8 μs rise time, 1-m long fast solenoid facility has been constructed to demonstrate the feasibility of using long wavelength lasers to heat magnetically confined plasmas. The most critical physics requirement is the necessity of creating and maintaining an on-axis electron density minimum to trap the axially directed laser beam. Satisfaction of this requirement has been demonstrated by heating 1.5 Torr deuterium fill plasmas in 2.7 cm bore plasma tubes to line energies of approximately 1 kJ/m. (Auth.)

  19. Laser-heated solenoid fusion

    International Nuclear Information System (INIS)

    Since the suggestion by Dawson, Hertzberg, and Kidder that high-energy CO2 lasers could be used to heat magnetically confined plasma columns to thermonuclear temperatures, a great deal of theoretical and experimental work has been performed. In this paper we first review the experiments on the basic laser-plasma interaction phenomena, in which lasers with energies up to 1 kJ have been used to produce plasmas at n/sub e/ greater than 1018 and T/sub e/ greater than 200 eV. The second part reviews fusion reactor studies based on the laser solenoid

  20. Endloss from a slender high-beta plasma column contained in a linear solenoid

    International Nuclear Information System (INIS)

    Linear high-beta devices are potential fusion reactors in which a long narrow plasma is contained laterally by a vacuum magnetic field of a straight pulsed solenoid and is allowed to stream freely out at the magnet ends. The plasma is composed of a stationary central region plasma, and streaming plasma regions at each end. The present analysis determines a confinement time based on the lifetime of the central stationary plasma. This lifetime is a hybrid related to the acoustic transit time and cross-field diffusion time and differs significantly from existing theories. Its relevance to future plasma experiments and fusion reactor studies is given. (U.K.)

  1. The Mice Focusing Solenoids and their Cooling System

    International Nuclear Information System (INIS)

    This report describes the focusing solenoid for the proposed Muon Ionization Cooling Experiment (MICE) [1]. The focusing solenoid consists of a pair of superconducting solenoids that are on a common bobbin. The two coils, which have separate leads, may be operated in the same polarity or at opposite polarity. This report discusses the superconducting magnet design and the cryostat design for the MICE focusing module. Also discussed is how this superconducting magnet can be integrated with a pair of small 4.2 K coolers

  2. Validation of Quench Simulation and Simulation of the TWIN Solenoid

    CERN Document Server

    Pots, Rosalinde Hendrika

    2015-01-01

    For the Future Circular Collider at CERN a multi-purpose detector is proposed. The 6T TWIN Solenoid, a very large magnet system with a stored energy of 53 GJ, is being designed. It is important to protect the magnet against quenches in the system. Therefore several existing quench protection systems are evaluated and simulations have be performed on quenches in the TWIN Solenoid. The simulations on quenches in the TWIN Solenoid have been performed with promising results; the hotspot temperatures do not exceed 120 K and layer to layer voltages stay below 500 V. Adding quench heaters to the system might improve the quench protection system further.

  3. Energy losses in the D0 β solenoid cryostat caused by current changes

    International Nuclear Information System (INIS)

    The proposed D0 β solenoid is a superconducting solenoid mounted inside an aluminum tube which supports the solenoid winding over it's full length. This aluminum support tube, also called bobbin, is therefore very tightly coupled to magnetic flux changes caused by solenoid current variations. These current changes in the solenoid, will cause answer currents to flow in the resistive bobbin wall and therefore cause heat losses. The insertion of an external dump resistor in the solenoid current loop reduces energy dissipation inside the cryostat during a quench and will shorten the discharge time constant. This note presents a simple electrical model for the coupled bobbin and solenoid and makes it easier to understand the circuit behavior and losses. Estimates for the maximum allowable rate of solenoid current changes, based on the maximum permissible rate of losses can be made using this model

  4. The DARHT-II-DC Final Focus Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A.C.

    2000-03-06

    The baseline DARHT2 external beam uses a pulsed solenoid final focus lens. The design of this lens was presented at TOS2 and has been considered as the final focus lens in all of the Livermore beamlines for DARHT2. In this note, we consider a new alternative DC final focus solenoid. A crude comparison between the parameters of these two designs is given in table 1. The small spot size required by the radiography and the small drift distance available between the last magnetic focusing element and the final focus solenoid imposed by the close proximity between the DARHT 2 building and the DARHT 1 axis, implies a short focal length solenoid. This in turn requires that the final focus solenoid mount inside the re-entrant cavity of the containment vessel in order to accommodate the 0.9 meter conjugate: figure 1. The ID of this cavity is 13.88 inches (35.25 cm).

  5.  Note: High temperature pulsed solenoid valve

    Science.gov (United States)

    Shen, Wei; Sulkes, Mark

    2010-01-01

    We have developed a high temperature pulsed solenoid valve with reliable long term operation to at least 400 °C. As in earlier published designs, a needle extension sealing a heated orifice is lifted via solenoid actuation; the solenoid is thermally isolated from the heated orifice region. In this new implementation, superior sealing and reliability were attained by choosing a solenoid that produces considerably larger lifting forces on the magnetically actuated plunger. It is this property that facilitates easily attainable sealing and reliability, albeit with some tradeoff in attainable gas pulse durations. The cost of the solenoid valve employed is quite low and the necessary machining quite simple. Our ultimate level of sealing was attained by making a simple modification to the polished seal at the needle tip. The same sealing tip modification could easily be applied to one of the earlier high T valve designs, which could improve the attainability and tightness of sealing for these implementations.

  6. ATLAS superconducting solenoid on-surface test

    CERN Document Server

    Ruber, Roger J M Y; Doi, Y; Haruyama, T; Haug, F; ten Kate, H H J; Kawai, M; Kondo, T; Kondo, Y; Makida, Y; Mizumaki, S; Olesen, G; Pavlov, O V; Pezzetti, M; Pirotte, O; Sbrissa, E; Yamamoto, A

    2005-01-01

    The ATLAS detector is presently under construction as one of the five LHC experiment set-ups. It relies on a sophisticated magnet system for the momentum measurement of charged particle tracks. The superconducting solenoid is at the center of the detector, the magnet system part nearest to the proton-proton collision point. It is designed for a 2 Tesla strong axial magnetic field at the collision point, while its thin-walled construction of 0.66 radiation lengths avoids degradation of energy measurements in the outer calorimeters. The solenoid and calorimeter have been integrated in their common cryostat, cooled down and tested on-surface. We review the on-surface set-up and report the performance test results.

  7. Development of high-strength and high-RRR aluminum-stabilized superconductor for the ATLAS thin solenoid

    CERN Document Server

    Wada, K; Sakamoto, H; Shimada, T; Nagasu, Y; Inoue, I H; Tsunoda, K; Endo, S; Yamamoto, A; Makida, Y; Tanaka, K; Doi, Y; Kondo, T

    2000-01-01

    The ATLAS central solenoid magnet is being constructed to provide a magnetic field of 2 Tesla in the central tracking part of the ATLAS detector at the LHC. Since the solenoid coil is placed in front of the liquid-argon electromagnetic calorimeter, the solenoid coil must be as thin (and transparent) as possible. The high-strength and high- RRR aluminum-stabilized superconductor is a key technology for the solenoid to be thinnest while keeping its stability. This has been developed with an alloy of 0.1 wt% nickel addition to 5N pure aluminum and with the subsequent mechanical cold working of 21% in area reduction. A yield strength of 110 MPa at 4.2 K has been realized keeping a residual resistivity ratio (RRR) of 590, after a heat treatment corresponding to coil curing at 130 degrees C for 15 hrs. This paper describes the optimization of the fabrication process and characteristics of the developed conductor. (8 refs).

  8. The Results of Recent MICE Superconducting Spectrometer Solenoid Test

    International Nuclear Information System (INIS)

    The MICE spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The MICE spectrometer solenoids may be the largest magnets that have been cooled using small two stage coolers. During the previous test of this magnet, the cooler first stage temperatures were too high. The causes of some of the extra first stage heat load has been identified and corrected. The rebuilt magnet had a single stage GM cooler in addition to the three pulse tube coolers. The added cooler reduces the temperature of the top of the HTS leads, the shield and of the first stage of the pulse tube coolers.

  9. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  10. Calibration of solenoid injectors for gasoline direct injection using the knock sensor; Kalibrierung von Magnet-Injektoren fuer Benzin-Direkteinspritzung mittels Klopfsensor

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Konrad; Back, Kristine; Jiqqir, Mehdi; Puente Leon, Fernando [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Industrielle Informationstechnik; Kiencke, Uwe

    2011-04-15

    Precise fuel metering is essential for lower exhaust emissions and increased fuel economy of modern combustion engines. This calls for compensating manufacturing dispersions of fuel injectors as well as maintaining a stable operating behavior during their entire lifetime. To meet this challenge, a method for calibrating solenoid injectors of gasoline direct injection engines has been developed at the Karlsruhe Institute of Technology (KIT). (orig.)

  11. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  12. Conceptual design of the CMS 4 tesla solenoid

    International Nuclear Information System (INIS)

    The detection of new physics signals at the highest luminosities available in proton-proton collisions at LHC requires identification and precise measurement of muons, photons and electrons. Toroidal and solenoidal fields were considered at the beginning of the design. For the CMS detector, the choice of a compact design led to the choice of a strong magnetic field. The most practical magnet that can generate a strong magnetic field is a solenoid. A long (about 13 m) superconducting solenoid of large radius generating a magnetic field of 4 T guarantees good momentum resolution. The magnetic flux is returned via a 1.8 m thick iron yoke of a weight of 12,000 tonnes. The magnetic stored energy is 2.52 GJ and the coil total weight is 500 tonnes. The coil main design features are indirect cooling, pure aluminum stabilization and mechanically reinforced conductor. It is a four layer winding, composed of 4 axial sections bolted together

  13. Motions of CMS Detector structures due to the magnetic field forces as observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    CERN Document Server

    Calderón, Alicia; González-Sánchez, F J; Martínez-Rivero, C; Matorras, Francisco; Rodrigo, Teresa; Martínez, P; Scodellaro, Luca; Sobrón, M; Vila, Ivan; Virto, A L; Alberdi, Javier; Arce, Pedro; Barcala, Jose Miguel; Calvo, Enrique; Ferrando, Antonio; Josa-Mutuberria, I; Molinero, Antonio; Navarrete, Jose Javier; Oller, Juan Carlos; Yuste, Ceferino

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  14. Conceptual design of a 20 Tesla pulsed solenoid for a laser solenoid fusion reactor

    International Nuclear Information System (INIS)

    Design considerations are described for a strip wound solenoid which is pulsed to 20 tesla while immersed in a 20 tesla bias field so as to achieve within the bore of the pulsed solenoid at net field sequence starting at 20 tesla and going first down to zero, then up to 40 tesla, and finally back to 20 tesla in a period of about 5 x 10-3 seconds. The important parameters of the solenoid, e.g., aperture, build, turns, stored and dissipated energy, field intensity and powering circuit, are given. A numerical example for a specific design is presented. Mechanical stresses in the solenoid and the subsequent choice of materials for coil construction are discussed. Although several possible design difficulties are not discussed in this preliminary report of a conceptual magnet design, such as uniformity of field, long-term stability of insulation under neutron bombardment and choice of structural materials of appropriate tensile strength and elasticity to withstand magnetic forces developed, these questions are addressed in detail in the complete design report and in part in reference one. Furthermore, the authors feel that the problems encountered in this conceptual design are surmountable and are not a hindrance to the construction of such a magnet system

  15. Start-up of spherical tokamak without a center solenoid

    International Nuclear Information System (INIS)

    For low-aspect tokamak reactors, spherical tokamak reactors, ST-type FESF/CTFs, it is essential to remove or minimize a central solenoid (CS). Even with the minimized CS, non-inductive start up of the plasma current is required. Rapid increase in the spontaneous plasma current at the final stage of current start-up drives ignition. At the initial stage, formation of plasma and magnetic surfaces are required. As non-inductive plasma start-up scenarios, ECH/ECCD, LHCD, HHFW, DC HELICITY injection, plasma merging and NBI have been studied. In the present article, the present status and future prospect of experimental and theoretical works on these subjects. (author)

  16. Solenoid-free plasma start-up in spherical tokamaks

    Science.gov (United States)

    Raman, R.; Shevchenko, V. F.

    2014-10-01

    The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.

  17. Solenoid-free plasma start-up in spherical tokamaks

    International Nuclear Information System (INIS)

    The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid. (topical review)

  18. Studies of magnetic shielding for phototubes

    Science.gov (United States)

    Denisov, S.; Dickey, J.; Dzierba, A.; Gohn, W.; Heinz, R.; Howell, D.; Mikels, M.; O'Neill, D.; Samoylenko, V.; Scott, E.; Smith, P.; Teige, S.

    2004-11-01

    Phototubes associated with a Cherenkov counter, with a wall of scintillation counters for time-of-flight measurements and with a wall of lead glass blocks of an electro-magnetic calorimeter will operate in the fringe field of a superconducting solenoid in the GlueX experiment. The solenoid will be operated with a central magnetic field of ≈ 2.5 T. The maximum fringe field in the vicinity of the phototubes will be approximately 150 G. Various techniques for magnetic shielding of phototubes were studied using a 1-m diameter Helmholtz coil arrangement operated with a maximum central field of 200 G. Results are presented.

  19. Studies of magnetic shielding for phototubes

    International Nuclear Information System (INIS)

    Phototubes associated with a Cherenkov counter, with a wall of scintillation counters for time-of-flight measurements and with a wall of lead glass blocks of an electro-magnetic calorimeter will operate in the fringe field of a superconducting solenoid in the GlueX experiment. The solenoid will be operated with a central magnetic field of ∼2.5T. The maximum fringe field in the vicinity of the phototubes will be approximately 150G. Various techniques for magnetic shielding of phototubes were studied using a 1-m diameter Helmholtz coil arrangement operated with a maximum central field of 200G. Results are presented

  20. Focusing solenoids for the MICE cooling channel

    International Nuclear Information System (INIS)

    This report describes a design for focusing solenoids for the low beta sections for the proposed Muon Ionization Cooling Experiment (MICE). There are three focusing solenoid pairs that will be around the muon absorbers for MICE. The two solenoid coils have an inside diameter of 510 mm, a length of 180 mm, and a thickness of 100 mm. A distance of 260 mm separates the two coils in the pair. The coils are designed to operate at opposite polarity, in order to create a gradient field in the low beta sections of the MICE cooling channel. As result, the force pushing the coil pair apart approaches 270 metric tons when the coils operate close to the short sample current for the superconductor. The forces between the coils will be carried by a support structure that is both on the inside and the outside the coils. During some modes of operation for MICE, the coils may operate at the same polarity, which means that the force between the coils pushes them together. The focusing magnet must be designed for both modes of operation. This support structure for the coils will be part of the focusing magnet quench protection system

  1. Magnet design technical report---ITER definition phase

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations

  2. Weak magnetic fields in central stars of planetary nebulae?

    CERN Document Server

    Steffen, M; Todt, H; Schöller, M; Hamann, W -R; Sandin, C; Schönberner, D

    2014-01-01

    It is not yet clear whether magnetic fields play an essential role in shaping planetary nebulae (PNe), or whether stellar rotation alone and/or a close binary companion can account for the variety of the observed nebular morphologies. In a quest for empirical evidence verifying or disproving the role of magnetic fields in shaping PNe, we follow up on previous attempts to measure the magnetic field in a representative sample of PN central stars. We obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of twelve bright central stars of PNe with different morphology, including two round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets are Wolf-Rayet type central stars. For the majority of the observed central stars, we do not find any significant evidence for the existence of surface magnetic fields. However, our measurements may indicate the presence of weak mean longitudinal magnetic fields of the order of 100 Gauss in the central star of the young elliptical pla...

  3. The south-central United States magnetic anomaly

    Science.gov (United States)

    Starich, P. J.; Hinze, W. J.; Braile, L. W.

    1985-01-01

    A positive magnetic anomaly, which dominates the MAGSAT scalar field over the south-central United States, results from the superposition of magnetic effects from several geologic sources and tectonic structures in the crust. The highly magnetic basement rocks of this region show good correlation with increased crustal thickness, above average crustal velocity and predominantly negative free-air gravity anomalies, all of which are useful constraints for modeling the magnetic sources. The positive anomaly is composed of two primary elements. The western-most segment is related to middle Proterozoic granite intrusions, rhyolite flows and interspersed metamorphic basement rocks in the Texas panhandle and eastern New Mexico. The anomaly and the magnetic crust are bounded to the west by the north-south striking Rio Grande Rift. The anomaly extends eastward over the Grenville age basement rocks of central Texas, and is terminated to the south and east by the buried extension of the Ouachita System. The northern segment of the anomaly extends eastward across Oklahoma and Arkansas to the Mississippi Embayment. It corresponds to a general positive magnetic region associated with the Wichita Mountains igneous complex in south-central Oklahoma and 1.2 to 1.5 Ga. felsic terrane to the north.

  4. 分磁环对高温SMES磁体交流损耗的影响研究%The effect of flux diverters on AC losses of HTS solenoid magnet

    Institute of Scientific and Technical Information of China (English)

    宋萌; 徐颖; 曹昆南; 王达达; 任丽; 何杰; 苏路顺; 王作帅; 孙黄迪

    2013-01-01

    高温SMES磁体的交流损耗是制约其投入实际应用的因素之一,交流损耗的大小与超导导线所承受的磁场位型关系紧密,加装分磁环是改变超导磁体磁场位型的手段之一,因此对交流损耗的抑制也有实际意义.文中对高温SMES螺线管磁体进行了有限元建模,阐述了分磁环对减小超导磁体交流损耗的原理,分别计算了超导磁体在加装分磁环与未装分磁环下交流损耗的大小、分布,分析了分磁环的降损率参数r随磁体电流的变化规律,并对提高分磁环降损率的关键问题进行了探讨.%The AC loss of HTS solenoid magnet is one of the factors that limits its practical application.The value of AC loss is closely associated with the magnet field type of superconducting wires bear,so as a means of changing the magnet field type,flux diverter would also share a practical significance in reducing AC loss.This article conducted the finite element modeling of HTS solenoid magnet,elaborated the principles in reducing the AC loss of superconducting magnet by flux diverters,calculated the magnitude and distribution of AC loss separately with flux diverters and without flux diverters,and the loss reduction rate r of flux diverters was analyzed.Along with the change of magnet current,the key problems to improve the loss reduction rate of flux diverters were discussed.

  5. Numerical modeling of the laser heated solenoid

    International Nuclear Information System (INIS)

    A numerical model of the interaction of laser radiation with the magnetically confined plasma in an infinitive solenoid was given. An approximate solution which includes the balance of total pressure instead of momentum equation was also developed. Thus, the time step in computing is not bounded by the characteristics given by the Alfven speed. This approximation approach makes the efficient computing of this problem possible. The results of the approximate solution agree very well with those of the exact solution. They have the same final steady state solution

  6. Nuclear magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    In this article a review is given of the use of magnetic resonance imaging for the central nervous system. An example of the screening of the population for multiple scelerosis is given. A good preliminary examination and the supply of relevant information to the person which performs the imaging is necessary. (R.B.). 9 figs.; 4 tabs

  7. Design for the magnetic field requirements of the tandem mirror experiment

    International Nuclear Information System (INIS)

    The tandem mirror magnetic geometry is described, followed by an analysis of the magnet set designed to meet the requirements of the TMX experiment. The final magnet line-up is composed of a baseball coil with two C coils for each plug, six solenoidal coils for the central cell, and two RC coils plus one octupole coil for each transition

  8. LPI: pulsed solenoid for positron focusing in LIL

    CERN Multimedia

    Photographic Service

    1993-01-01

    The solenoid for the initial focusing of the positrons emerging from the conversion target is mounted inside the vacuum, immediately after the target. Pulsed with a current of 6 kA for some 7 microseconds, it produces a longitudinal magnetic field of 1.5 T.

  9. Three dimensional multilayer solenoid microcoils inside silica glass

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Si, Jinhai; Hou, Xun

    2016-01-01

    Three dimensional (3D) solenoid microcoils could generate uniform magnetic field. Multilayer solenoid microcoils are highly pursued for strong magnetic field and high inductance in advanced magnetic microsystems. However, the fabrication of the 3D multilayer solenoid microcoils is still a challenging task. In this paper, 3D multilayer solenoid microcoils with uniform diameters and high aspect ratio were fabricated in silica glass. An alloy (Bi/In/Sn/Pb) with high melting point was chosen as the conductive metal to overcome the limitation of working temperature and improve the electrical property. The inductance of the three layers microcoils was measured, and the value is 77.71 nH at 100 kHz and 17.39 nH at 120 MHz. The quality factor was calculated, and it has a value of 5.02 at 120 MHz. This approach shows an improvement method to achieve complex 3D metal microstructures and electronic components, which could be widely integrated in advanced magnetic microsystems.

  10. Solenoid-free startup experiments in DIII-D

    Science.gov (United States)

    Leuer, J. A.; Cunningham, G.; Mueller, D.; Brooks, N. H.; Eidietis, N. W.; Humphreys, D. A.; Hyatt, A. W.; Jackson, G. L.; Lohr, J.; Politzer, P. A.; Pinsker, R. I.; Prater, R.; Taylor, P. L.; Walker, M. L.; Budny, R. V.; Gates, D. A.; Nagy, A.; Hahn, S.-H.; Oh, Y.-K.; Yoon, S.-W.; Yu, J. H.; Murakami, M.; Park, J. M.; Sontag, A. C.

    2011-06-01

    A series of DIII-D experiments was performed to investigate the potential for initiating plasma current using only poloidal field coils located outside the DIII-D central solenoid, i.e. 'solenoid-free'. Plasma current to 166 kA was achieved using 2-3 MW of electron cyclotron (EC) heating and was limited by coil and power supply constraints. Flux conversion to plasma current was similar to standard DIII-D startup with some degradation at higher plasma current associated with stray fields and vertical stability issues. In preliminary solenoid-free experiments, neutral beam (NB) current drive (CD) levels were small and attributed to reduced CD efficiency associated with low electron temperature produced by the low current, low confinement plasma. Lack of plasma radial position control also contributed to a reduction of NBCD. Similarly, ECCD was small owing to low plasma temperature and outside EC launch which is required in the solenoid-free scenario. Synergistic experiments were carried out using standard solenoid initiated plasmas in order to study noninductive CD in limited, Lmode plasmas, typical of that generated by solenoid-free startup. While substantial noninductive current can be driven, self-sustaining levels of noninductive current have not yet been achieved with our present six-source co-injection NB system combined with EC and fast wave systems. At low plasma current and high levels of localized EC heating, substantial MHD is generated and this was seen to severely limit plasma performance. Although further optimization is possible in the limited plasma regime, full noninductive, steady-state operation may require diverted plasma with H-mode quality confinement. Discharges obtained during the solenoid-free campaign are compared with results of previous DIII-D campaigns aimed at achieving a steady state, noninductive CD solution.

  11. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  12. Cryogenic testing of the TPC superconducting solenoid

    Science.gov (United States)

    Green, M. A.; Smits, R. G.; Taylor, J. D.; Vanslyke, V.; Barrera, F.; Petersen, H.; Rago, C. E.; Rinta, R. I.; Talaska, D.; Watt, R. D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin.

  13. Performance of a superconducting magnet system operated in the Super Omega Muon beam line at J-PARC

    International Nuclear Information System (INIS)

    A superconducting magnet system, which is composed of an 8 m long solenoid for transportation and 12 short solenoids for focusing, has been developed for Muon Science Establishment facility of J-PARC. The transport solenoid is composed of a 6 m straight section connected to a 45 degree curved section at each end. Muons of various momenta and of both electric charges are transported through the solenoid inner bore with an effective diameter of 0.3 m, where 2 T magnetic field is induced. There are 12 focusing solenoids with an effective bore diameter of 0.6 m and a length of 0.35 m arranged on a straight line at suitable intervals. The maximum central field of each focusing solenoid is 0.66 T. All solenoid coils are cooled by GM cryocoolers through their own conductions. The magnet system has been installed into the beam line in the summer of 2012, and its performance has been checked. Beam commissioning has been carried out since October 2012. During beam operation, temperature rise over 6 K in the transport solenoid due to a nuclear heating from the muon production target is observed at beam intensity of about 300 kW

  14. Design report for a cryostable 3m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed td study anti pp collisions at very high center of mass energies. The central detector for the CDF employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 4 m long and 3 m in diameter. To provide the desired Δp/sub T//p/sub T/ less than or equal to 15% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. This field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 106 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe a design for a cryostable superconducting solenoid intended to meet the requirements of the Fermilab ies TDF

  15. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  16. Phase space rotation with solenoids and quadrupoles

    International Nuclear Information System (INIS)

    A standard five-quadrupole phase-space rotation system is discussed and compared with a possible alternative - two superconducting solenoids which accomplish the same job in a different way. In some laboratories the solenoid system may be advantageous

  17. The ATLAS solenoid approaches its final position

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The ATLAS superconducting solenoid during one of the transport operations. Securely attached to the overhead crane, the solenoid is situated in front of the opening to the liquid-argon electromagnetic calorimeter, where it will soon be inserted.

  18. ATLAS Solenoid placed in its final position

    CERN Multimedia

    2004-01-01

    The ATLAS superconducting solenoid during one of the transport operations. Securely attached to the overhead crane, the solenoid is situated in front of the opening to the liquid-argon electromagnetic calorimeter, where it will soon be inserted.

  19. Construction and test of the 'Cello' thin-wall solenoid

    International Nuclear Information System (INIS)

    A large 'thin wall' superconducting solenoid has been constructed at Saclay and then mounted on a large detector 'Cello', which is one of the experiments installed on the e+e- colliding beam facility 'Petra' at Desy (Hamburg). The complete magnet system, in addition to this main solenoid, includes two compensating solenoids symmetrically located on each side of the main one, a thick 1000-tonne iron shielding intended as a hadron filter and a 300 Watt helium refrigerator feeding the three magnets in closed cycle. The two superconducting compensating coils have been designed and constructed at the ITP of Karlsruhe and are described in papers IC-12 and IC-13 of the present conference. The major requirement for the main solenoid was very light weight or 'transparency' to radiations. The amount of material allowed for the radial thickness of the complete magnet (including thermal shields and vacuum walls) had not to exceed half a radiation length, which is equivalent to 45 mm of aluminium

  20. Magnetic resonance imaging in central nervous system tuberculosis

    International Nuclear Information System (INIS)

    Tuberculosis (TB) in any form is a devastating disease, which in its most severe form involves the central nervous system (CNS), with a high mortality and morbidity. Early diagnosis of CNS TB is necessary for appropriate treatment to reduce this morbidity and mortality. Routine diagnostic techniques involve culture and immunological tests of the tissue and biofluids, which are time-consuming and may delay definitive management. Noninvasive imaging modalities such as computed tomography (CT) scan and magnetic resonance imaging (MRI) are routinely used in the diagnosis of neurotuberculosis, with MRI offering greater inherent sensitivity and specificity than CT scan. In addition to conventional MRI imaging, magnetization transfer imaging, diffusion imaging, and proton magnetic resonance spectroscopy techniques are also being evaluated for better tissue characterization in CNS TB. The current article reviews the role of various MRI techniques in the diagnosis and management of CNS TB

  1. The ALICE cavern and solenoid

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The ALICE experiment, one of the four major experiments of CERN's LHC project, will be housed in the cavern that once contained the L3 experiment at the LEP accelerator. The huge solenoid is the only remaining piece of the L3 experiment and will be used by ALICE.

  2. Superconducting magnets for mirror machines

    International Nuclear Information System (INIS)

    The simple mirror configuration, consisting of a long solenoid with increased field strength at the ends (magnetic mirrors), proved to be an unstable plasma container and was replaced by the minimum absolute value of B mirror configuration. The Yin-Yang minimum absolute value of B coil was chosen for the Mirror Fusion Test Facility (MFTF) experiment and recent conceptual designs of standard mirror reactors. For the multicell field-reversed mirror reactor concept we returned to the long solenoid configuration, augmented by normal copper mirror coils and Ioffe bars placed at the first wall radius to provide a shallow magnetic well for each field-reversed plasma layer. The central cell of the tandem mirror is also a long solenoid while the end plug cells require a minimum absolute value of B configuration

  3. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    International Nuclear Information System (INIS)

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs

  4. A new generation of superconducting solenoids for heavy-ion linac application

    International Nuclear Information System (INIS)

    The beam dynamics of superconducting (SC) heavy-ion linacs operating in the velocity range below 0.4c require a compact accelerating-focusing lattice. The use of SC solenoids together with SC RF resonators within a common cryostat can solve the real-estate problem. The solenoids must have low fringe fields to avoid magnetic-flux capture in the SC RF resonators. Also, incorporating dipole steering coils together with the SC solenoids in one magnet assembly can increase the compactness of the linac lattice. R and D work has been carried out to determine the feasibility of combining the three elements of high solenoid field, low fringe field, and integral dipole field, into one compact package. A 9-Tesla magnet has been initially designed and will be prototyped, with the goal of eventually developing 14-Tesla solenoids of similar design. The most important design issues are: (1) to minimize stray field in the RF cavity region using SC bucking coils and (2) to achieve adequate mechanical stability of the transverse dipole windings in the presence of forces produced by the solenoid/bucking coil assembly. The assembly, including terminals, switches, and protection circuit, are designed to fit inside a 25-cm diameter helium reservoir. The results of the preliminary design of the solenoid, including numerical simulations of the beam dynamics, are reported

  5. Thermal design of the Mu2e detector solenoid

    International Nuclear Information System (INIS)

    The reference design for a superconducting detector solenoid (DS) for the Mu2e experiment has been completed. In this study, the main functions of the DS are to provide a graded field in the region of the stopping target, which ranges from 2 to 1 T and a uniform precision magnetic field of 1 T in a volume large enough to house a tracker downstream of the stopping target. The inner diameter of the magnet cryostat is 1.9 m and the length is 10.9 m. The gradient section of the magnet is about 4 m long and the spectrometer section with a uniform magnetic field is about 6 m long. The inner cryostat wall supports the stopping target, tracker, calorimeter and other equipment installed in the DS. This warm bore volume is under vacuum during operation. It is sealed on one end by the muon beam stop, while it is open on the other end where it interfaces with the Transport Solenoid. The operating temperature of the magnetic coil is 4.7 K and is indirectly cooled with helium flowing in a thermosiphon cooling scheme. This paper describes the thermal design of the solenoid, including the design aspects of the thermosiphon for the coil cooling, forced flow cooling of the thermal shields with 2 phase LN2 (Liquid Nitrogen) and the transient studies of the cool down of the cold mass as well

  6. Design report for an indirectly cooled 3-m diameter superconducting solenoid for the Fermilab Collider Detector Facility

    International Nuclear Information System (INIS)

    The Fermilab Collider Detector Facility (CDF) is a large detector system designed to study anti pp collisions at very high center of mass energies. The central detector for the CDF shown employs a large axial magnetic field volume instrumented with a central tracking chamber composed of multiple layers of cylindrical drift chambers and a pair of intermediate tracking chambers. The purpose of this system is to determine the trajectories, sign of electric charge, and momenta of charged particles produced with polar angles between 10 and 170 degrees. The magnetic field volume required for tracking is approximately 3.5 m long an 3 m in diameter. To provide the desired δp/sub T/p/sub T/ less than or equal to 1.5% at 50 GeV/c using drift chambers with approx. 200μ resolution the field inside this volume should be 1.5 T. The field should be as uniform as is practical to simplify both track finding and the reconstruction of particle trajectories with the drift chambers. Such a field can be produced by a cylindrical current sheet solenoid with a uniform current density of 1.2 x 106 A/m (1200 A/mm) surrounded by an iron return yoke. For practical coils and return yokes, both central electromagnetic and central hadronic calorimetry must be located outside the coil of the magnet. This geometry requires that the coil and the cryostat be thin both in physical thickness and in radiation and absorption lengths. This dual requirement of high linear current density and minimal coil thickness can only be satisfied using superconducting technology. In this report we describe the design for an indirectly cooled superconducting solenoid to meet the requirements of the Fermilab CDF. The components of the magnet system are discussed in the following chapters, with a summary of parameters listed in Appendix A

  7. Quench anaylsis of MICE spectrometer superconducting solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Kashikhin, Vladimir; Bross, Alan; /Fermilab; Prestemon, Soren; / /LBL, Berkeley

    2011-09-01

    MICE superconducting spectrometer solenoids fabrication and tests are in progress now. First tests of the Spectrometer Solenoid discovered some issues which could be related to the chosen passive quench protection system. Both solenoids do not have heaters and quench propagation relied on the 'quench back' effect, cold diodes, and shunt resistors. The solenoids have very large inductances and stored energy which is 100% dissipated in the cold mass during a quench. This makes their protection a challenging task. The paper presents the quench analysis of these solenoids based on 3D FEA solution of coupled transient electromagnetic and thermal problems. The simulations used the Vector Fields QUENCH code. It is shown that in some quench scenarios, the quench propagation is relatively slow and some areas can be overheated. They describe ways of improving the solenoids quench protection in order to reduce the risk of possible failure.

  8. Fusion--fission neutronics calculations for the laser solenoid

    International Nuclear Information System (INIS)

    Neutron transport calculations are presented for several laser solenoid blanket configurations containing fast-fission lattices of uranium and thorium. The presence of a small-bore pulsed magnet and a small first-wall radius results in unique neutronics characteristics relative to other fusion concepts. Parametric calculations were completed to determine the effects of increasing the pulsed magnet thickness and of varying other key blanket parameters. Attractive fissile breeding rates could be achieved for blankets with a wide range of energy multiplication under the constraints of a tritium breeding ratio of about unity and a pulsed magnet thickness of about 3 cm

  9. Gravity and magnetic modeling of granitic bodies in Central Portugal

    Science.gov (United States)

    Machadinho, Ana; Figueiredo, Fernando; Pereira, Alcides

    2015-04-01

    A better understanding of the subsurface geometry of the granitic bodies in Central Portugal is the main goal of this work. The results are also relevant for the assessment of the geothermal potential of the same region. The study area is located in the Central Iberian Zone where the Beiras granite batholith outcrops. These variscan granitoids were emplaced into the "Complexo Xisto-Grauváquico" (CXG), a thick and monotonous megasequences of metapelites and metagreywackes. This metasedimentary sequence is affected by the Variscan deformation phases and a late Proterozoic to Cambrian age has been generally assumed for this rocks. The granitoids in the region are attributed to the magmatic activity associated to the post-collisional stages of the Variscan orogeny during the D3 stage. The granitic bodies in the study area are considered syn-D3 and late to post-D3. To achieve the goal of the research, magnetic and gravimetric surveys where performed in order to obtain the Bouguer and magnetic anomalies. All the standard corrections were applied to the gravimetric and magnetic data. Considering and integrating all the available geological data and physical proprieties (density and magnetic susceptibility) the mentioned potential fields were simultaneously modeled. In this way it was possible to characterize the subsurface geometry of the granitic bodies in the studied region. The modeling results show that the regional tectonic setting controls the geometry of the granitic bodies as well as the structure of the host CXG metasedimentary sequence. Through the modeling of the potential field the overall geometry, average and maximum depths of the granitic bodies in the study area was obtained. Some late to post-D3 plutons outcrop in spatial continuity and as they have similar ages, a common feeding zone is assumed as the most likely scenario. The sin-D3 pluton is more abrupt and vertical, suggesting the presence of a fault contact with the late-D3 pluton. According to the

  10. Central nervous system lymphoma: magnetic resonance imaging features at presentation

    Directory of Open Access Journals (Sweden)

    Ricardo Schwingel

    2012-02-01

    Full Text Available OBJECTIVE: This paper aimed at studying presentations of the central nervous system (CNS lymphoma using structural images obtained by magnetic resonance imaging (MRI. METHODS: The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. RESULTS: All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. CONCLUSION: Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  11. Solenoid and non-solenoid protein recognition using stationary wavelet packet transform

    OpenAIRE

    Vo, AN; Nguyen, Nha; Huang, Heng

    2010-01-01

    Motivation: Solenoid proteins are emerging as a protein class with properties intermediate between structured and intrinsically unstructured proteins. Containing repeating structural units, solenoid proteins are expected to share sequence similarities. However, in many cases, the sequence similarities are weak and non-detectable. Moreover, solenoids can be degenerated and widely vary in the number of units. So that it is difficult to detect them. Recently, several solenoid repeats detection m...

  12. First Generation Final Focusing Solenoid For NDCX-I

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, P. A.; Waldron, W.

    2011-11-09

    This report describes the prototype final focus solenoid (FFS-1G), or 1st generation FFS. In order to limit eddy currents, the solenoid winding consists of Litz wire wound on a non-conductive G-10 tube. For the same reason, the winding pack was inserted into an electrically insulating, but thermally conducting Polypropylene (Cool- Poly© D1202) housing and potted with highly viscous epoxy (to be able to wick the single strands of the Litz wire). The magnet is forced-air cooled through cooling channels. The magnet was designed for water cooling, but he cooling jacket cracked, and therefore cooling (beyond natural conduction and radiation) was exclusively by forced air. Though the design operating point was 8 Tesla, for the majority of running on NDCX-1 it operated up to about 5 Tesla. This was due mostly from limitations of voltage holding at the leads, where discharges at higher pulsed current damaged the leads. Generation 1 was replaced by the 2nd generation solenoid (FFS-2G) about a year later, which has operated reliably up to 8 Tesla, with a better lead design and utilizes water cooling. At this point, FFS-1G was used for plasma source R&D by LBNL and PPPL. The maximum field for those experiments was reduced to 3 Tesla due to continued difficulty with the leads and because higher field was not essential for those experiments. The pulser for the final focusing solenoid is a SCR-switched capacitor bank which produces a half-sine current waveform. The pulse width is ~800us and a charge voltage of 3kV drives ~20kA through the magnet producing ~8T field.

  13. Design of Magnetic Measurement System on SUNIST Spherical Tokamak

    Institute of Scientific and Technical Information of China (English)

    ZENG Long; LIU Jun; WANG Ping; ZHANG Lu; HE Yexi; GAO Zhe; WANG Wenhao; XIE Lifeng; TAN Yi; ZHANG Liang; XIE Huiqiao; PENG Lili

    2008-01-01

    A magnetic measurement system consisting of magnetic probes and flux loops for spherical tokamak SUNIST,is uniquely designed due to the strongly shaped plasma cross section and the narrow space near the central solenoid.Plasma equilibrium reconstruction with the current filament method is performed to determine the number and positions of the magnetic probes and flux loops,as well as their design precision required.

  14. The static and nonstatic electrical solenoids

    International Nuclear Information System (INIS)

    We propose the set of charge and current densities which realize static and nonstatic electrical solenoids. Their properties are discussed. The question on the physical meaning of the electromagnetic potentials outside the solenoids and their experimental verification remains to be opened. 19 refs.; 4 figs

  15. Wide flat-topped fow forizontal component field solenoid coil design

    International Nuclear Information System (INIS)

    This paper describes the application of non-uniform coil winding techniques and homogenizer rings technique in the design of solenoid coil. The two techniques can be used to reduce the magnetic field space fluctuations and shield horizontal magnetic field component, respectively. The solenoid coil design results for 12 MeV LIA in CAEP show that by using the two techniques the magnetic field fluctuations in the accelerator gap can be reduced by about 70% and the horizontal field component can be reduce to about 3.5%. (authors)

  16. Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Virostek, Steve P.; Green, Michael A; Li, Derun; Zisman, Michael S.; Wang, S.T.; Wahrer, R.; Taylor, Clyde; Lu, X.; Chen, J. Y.; Wang, Mimi; Juang, Tiki

    2008-08-02

    This report describes the MICE spectrometer solenoids as built. Each magnet consists of five superconducting coils. Two coils are used to tune the beam going from or to the MICE spectrometer from the rest of the MICE cooling channel. Three spectrometer coils (two end coils and a long center coil) are used to create a uniform 4 T field (to {+-}0.3 percent) over a length of 1.0 m within a diameter of 0.3 m. The three-coil spectrometer set is connected in series. The two end coils use small power supplies to tune the uniform field region where the scintillating fiber tracker is located. This paper will present the results of the preliminary testing of the first spectrometer solenoid.

  17. Preliminary Test Results for the MICE Spectrometer Superconducting Solenoids

    International Nuclear Information System (INIS)

    This report describes the MICE spectrometer solenoids as built. Each magnet consists of five superconducting coils. Two coils are used to tune the beam going from or to the MICE spectrometer from the rest of the MICE cooling channel. Three spectrometer coils (two end coils and a long center coil) are used to create a uniform 4 T field (to ±0.3 percent) over a length of 1.0 m within a diameter of 0.3 m. The three-coil spectrometer set is connected in series. The two end coils use small power supplies to tune the uniform field region where the scintillating fiber tracker is located. This paper will present the results of the preliminary testing of the first spectrometer solenoid

  18. Plasma shape control by pulsed solenoid on laser ion source

    International Nuclear Information System (INIS)

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS

  19. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  20. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  1. Impact of detector solenoid on the Compact Linear Collider luminosity performance

    CERN Document Server

    Levinsen, Yngve Inntjore; Tomas, Rogelio; Schulte, Daniel

    2014-01-01

    In order to obtain the necessary luminosity with a reasonable amount of beam power, the Compact Linear Collider (CLIC) design includes an unprecedented collision beam size of {\\sigma} = 1 nm vertically and {\\sigma} = 45 nm horizontally. Given the small and very flat beams, the luminosity can be significantly degraded from the impact of the experimental solenoid field in combination with a large crossing angle. Main effects include y-x'-coupling and increase of vertical dispersion. Additionally, Incoherent Synchrotron Radiation (ISR) from the orbit deflection created by the solenoid field, increases the beam emittance. A detailed study of the impact from a realistic solenoid field and the associated correction techniques for the CLIC Final Focus is presented. In particular, the impact of techniques to compensate the beam optics distortions due to the detector solenoid main field and its overlap with the final focus magnets are shown. The unrecoverable luminosity loss due to ISR has been evaluated, and found to...

  2. Confinement of laser plasma by solenoidal field for laser ion source

    International Nuclear Information System (INIS)

    A laser ion source can provide high current, highly charged ions with a simple structure. However, it was not easy to control the ion pulse width. To provide a longer ion beam pulse, the plasma drift length, which is the distance between laser target and extraction point, has to be extended and as a result the plasma is diluted severely. Previously, we applied a solenoid field to prevent reduction of ion density at the extraction point. Although a current enhancement by a solenoid field was observed, plasma behavior after a solenoid magnet was unclear because plasma behavior can be different from usual ion beam dynamics. We measured a transverse ion distribution along the beam axis to understand plasma motion in the presence of a solenoid field.

  3. Charged particle scattering on two infinite cylindrical solenoids

    International Nuclear Information System (INIS)

    Charged particle scattering on two infinitely parallel cylindrical solenoids with similar by value and inverse by the sign magnetic fields is considered. Scattering amplitude is calculated in the 1st Born and high energy approximations. In both cases the differential cross section is nonsingular and the integral one - finite. Specific examples demonstrating that in one and the same multi-connection space under nontrivial vector-potentials and unambigous wave functions Aharonov-Bohm (AB) effect can exist but it can be absent as well. It is shown that an alternative AB effect interpretation as scattering in magnetic field leakages meets sufficient difficulties

  4. Laser solenoid radiation test facility

    International Nuclear Information System (INIS)

    The Laser Solenoid Radiation Test Facility (LSRTF) is a concept based on a pulsed plasma source of neutrons, alpha particles, and bremsstrahlung and is characterized by a moderate radiation flux and a large test sample volume. The LSRTF is intermediate in its size, technology, and availability (1985-1990), and consequently has potential for bridging the gap between small present day accelerator-target sources and a large pulsed plasma engineering research facility in the 1990's. It also has important potential as a compact engineering test reactor for realistic operational testing of integrated subsystems for a linear fusion reactor. Its design, performance and operating characteristics are discussed in the present paper. The necessary development programs to bring such a facility into timely operation are also described. (Auth.)

  5. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, S., E-mail: ikeda.s.ae@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa 216-8502 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kumaki, M. [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0108 (Japan); Kanesue, T.; Okamura, M. [Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    2016-02-15

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  6. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL

  7. Effect of the solenoid in various conditions of the laser ion source at Brookhaven National Laboratory

    Science.gov (United States)

    Ikeda, S.; Kumaki, M.; Kanesue, T.; Okamura, M.

    2016-02-01

    In the laser ion source (LIS) at the Brookhaven National Laboratory (BNL), a solenoid is used to guide the laser ablation plasma and modulate the extracted beam current. Many types of ion species are guided. In some cases, the plasma plume is injected into the solenoid away from the solenoidal axis. To investigate the effects of the solenoid on the beam extracted from the plasma that has different properties, the beam current was measured in the setup of the LIS at the BNL. The beam current of Li, Al, Si, Fe, and Au increased when the magnetic field was applied. For most of the species the peak current and the total charge within a single beam pulse increased around 10 times with a magnetic field less than 100 G. In addition, for some species the rate of increase of the peak currents became smaller when the magnetic flux densities were larger than certain values depending on the species. In this case, the current waveforms were distorted. At the same magnetic field value, the field was more effective on lighter species than on heavier ones. When plasma was injected offset from the axis of the solenoid, peak current and total charge became half of those without offset. The experimental data are useful for the operation of the LIS at the BNL.

  8. CMS - The Compact Muon Solenoid

    CERN Multimedia

    Frischauf, N; Bergauer, T; Waltenberger, W; Kratschmer, I; Treberer-treberspurg, W; Rahbaran, B; Andreeva, I; Innocente, V; Camporesi, T; Malgeri, L; Marchioro, A; Moneta, L; Weingarten, W; Rovere, M; Morovic, S; Castello, R; Lange, C G; Dorney, B L; Gundacker, S; Reis, T; Favre-felix, R J R; Zagozdzinska, A A; Cucciati, G; Novotny, P; Stakia, A; Caminada, L M; Hinzmann, A D; Pinna, D; Rauco, G; Zhang, S; Hu, T; Zhang, H; Wu, M; Li, C; Reithler, H K V; Philipps, B; Merschmeyer, M K; Heidemann, C A; Brodski, M; Mukherjee, S; Geenen, H; Kuessel, Y; Weingarten, S; Nehrkorn, A; Gallo, E; Schwanenberger, C; Kalogeropoulos, A; Walsh bastos rangel, R; Beernaert, K S; Connor, P; Lelek, A A; Wichmann, K H; Kovalchuk, N; Dreyer, T; Scharf, C; Quast, G; Dierlamm, A H; Barth, C; Mol, X; Kudella, S; Koehler, G M; Matorras, F; Calderon tazon, A; Garcia ferrero, J; Bercher, M J; Sirois, Y; Jo, M; Antropov, I; Callier, S; Depasse, P; Laktineh, I B; Grenier, G; Boudoul, G; Heath, G P; Brooke, J J; Hartley, D A; Beck, L M G; Quinton, S; Tomalin, I R; Harder, K; Francis, V B; Thea, A; Zhang, Z; Geralis, T; Loukas, D; Topsis giotis, I; Hernath, S T; Colaleo, A; Maggi, G P; Maggi, M; Loddo, F; Campanini, R; Cuffiani, M; D'antone, I; Grandi, C; Guiducci, L; Tosi, N; Gulmini, M; Longo, E; Meridiani, P; Gelli, S; Schizzi, A; Song, S; Rhee, J; Kim, Y; Cho, S; Ha, S; Kim, D H; Kim, G N; Md halid, M F B; Yusli, M N B; Dominik, W M; Bunkowski, K; Olszewski, M; Byszuk, A P; Rasteiro da silva, J C; Varela, J; Leong, Q; Sulimov, V; Vorobyev, A; Denisov, A; Murzin, V; Egorov, A; Ivanov, A; Lukyanenko, S; Mesyats, G; Postoev, V; Pashenkov, A; Solovey, A; Rubakov, V; Troitsky, S; Kirpichnikov, D; Lychkovskaya, N; Safronov, G; Fedotov, A; Toms, M; Barniakov, M; Olimov, K; Fazilov, M; Umaraliev, A; Dumanoglu, I; Bakirci, N M; Dozen, C; Demiroglu, Z S; Oglakci, M; Zeyrek, M; Yalvac, M; Ozkorucuklu, S; Chang, Y; Biery, K A; Dolgopolov, A; Gottschalk, E E; Maeshima, K; Heavey, A E; Kramer, T; Kwan, S W L; Taylor, L; Tkaczyk, S M; Mokhov, N; Marraffino, J M; Mrenna, S; Yarba, V; Banerjee, B; Elvira, V D; Gray, L A; Holzman, B; Dagenhart, W; Canepa, A; Dumitrescu, C L; Ryu, S C; Strobbe, N C; Adelman-mc carthy, J K; Contescu, A C; Andre, J O; Wu, J; Bucinskaite, I; Zhang, J; Karchin, P E; Thapa, P; Zaleski, S G; Dishaw, A L; Gran, J L; Wang, S; Patterson, A S; Zilizi, G; Raics, P P; Bhardwaj, A; Naimuddin, M; Smiljkovic, N; Stojanovic, M; Brandao malbouisson, H; De oliveira martins, C P; Tonelli manganote, E J; Medina jaime, M; Thiel, M; Narjanen, M T; Laurila, S H; Wu, X; Graehling, P; Buttignol, M A; Blekman, F; De bruyn, I H J; Lenzi, T; Zhang, F; Postiau, N J S; Leroux, P J; Van remortel, N; Janssen, X J; Di croce, D; Aleksandrov, A; Shopova, M F; Dogra, S M; Shinoda, A A; Sashala naik, A; Arce, P; Daniel, M; Navarrete marin, J J; Redondo fernandez, I; Guirao elias, A; Cela ruiz, J M; Lottin, J; Gras, P; Kircher, F; Levesy, B; Payn, A; Guilloux, F; Negro, G; Leloup, C; Pasztor, G; Bhatnagar, V; Maity, M; Bruzzi, M; Sciortino, S; Starodubtsev, O; Sciacca, C; Meola, S; Berruti, G M; Saccomanno, A; Esposito, M; Azzi, P; Conti, E; Lacaprara, S; Margoni, M; Rossin, R; Torre, P; Re, V; Zucca, S; Fano', L; Lucaroni, A; Bagliesi, G; Bellazzini, R; Giassi, A; Boccali, T; Arezzini, S; Rizzi, A; Minuti, M; Biino, C; Dattola, D; Rotondo, F; Ballestrero, A; Obertino, M M; Gomez ambrosio, R; Degano, A; Kiani, M B; Paterno, A; Magana villalba, R; Ramirez garcia, M; Reyes almanza, R; Gorski, M; Wrochna, G; Bluj, M J; Zarubin, A; Nozdrin, M; Ladygin, V; Malakhov, A; Golunov, A; Skrypnik, A; Sotnikov, A; Evdokimov, N; Lokhtin, I; Ershov, A; Shamardin, L; Platonova, M; Tyurin, N; Slabospitskii, S; Talov, V; Belikov, N; Ryazanov, A; Chao, Y; Tsai, J; Richardson, C A; Foord, A; Wood, D R; Orimoto, T J; Luckey, P D; Gomez ceballos retuerto, G; Jaditz, S H; Stephans, G S; Darlea, G L; Di matteo, L; Maier, B; Tatar, K; Trovato, M; Bhattacharya, S; Roberts, J B; Padley, P B; Adair, A H; Tu, Z; Northup, M E; Rorie, J T; Clarida, W J; Tiras, E; Khristenko, V; Cerizza, G; Pieri, M; Sharma, V A; Krutelyov, V; Saiz santos, M D; Klein, D S; Derdzinski, M; Murray, M J; Gray, J A; Minafra, N; Forthomme, L; Castle, J R; Bowen, J L S; Buterbaugh, K; Morrow, S I; Bunn, J; Newman, H; Spiropulu, M; Balcas, J; Lawhorn, J M; Thomas, S D; Panwalkar, S M; Kyriacou, S; Xie, Z; Laird, E M; Wimpenny, S J; Lacroix, F S; Yates, B R; Ackert, A K; Schiber, C C; Mesic, B; Kolosova, M; Wang, M; Snow, G R; Lundstedt, C; Johnston, D; Zvada, M; Weitzel, D J; Damgov, J V; Giammanco, A; David, P N Y; Cabrera jamoulle, J B; Beliy, N; Missiroli, M; Nash, J A; Evans, L; Nikitenko, A; Ryan, M J; Huffman, M A J; Styliaris, E; Evangelou, I; Sharan, M K; Roy, A; Rout, P K; Yu, G B; Oh, S; Kim, J; Sen, S; Boz evinay, M; Xiao, M; Jensen, F O; Mulholland, T D; Kumar, A; Jones, M; Roozbahani, B H; Neu, C C; Thacker, H B; Wolfe, E M; Jabeen, S; Gilmore, J; Winer, B L; Rush, C J; Luo, W; Alimena, J M; Ko, W; Lander, R; Shalhout, S Z; Broadley, W H; Shi, M; Shchutska, L; Low, J F; Mei, H; Alexander, J P; Chaves, J E; Zientek, M E; Conway, J V; Padilla fuentes, Y L; Florent, A H; Bravo, C B; Crotty, I M; Cook, J R; Wenman, D L; Ghabrous larrea, C; Gomber, B; Smith, N C; Long, K D; Roberts, J M; Hildreth, M D; Jessop, C P; Karmgard, D J; Ferbel, T; Zielinski, M; Cooper, S I; Jung, A; Fagot, A; Valchkova-georgieva, F K; Dimitrov, D S; Roumenin, T S; Zykunov, V; Podrasky, V; Branson, A B; Odeh, M; Soomro, K; Romaniuk, R; Teodorescu, L; Krofcheck, D; Anderson, N G; Bell, S T; Salazar ibarguen, H A; Kudinov, V; Onishchenko, S; Naujikas, R; Damarackas, M; Gimbutas, A; Lyubynskiy, V; Sobolev, O; Khan, M S; Adeel-ur-rehman, A; Hassan, Q U; Ali, I; Gulzar, M M; Kreuzer, P K; Robson, A J; Gadrat, S G; Ivanov, A; Mendis, D; Goh, J; Howard, A S; Da silva di calafiori, D R; Kasieczka, G; Zeinali, M; Behnamian, H; Fiorini, E; Moroni, L; Malvezzi, S; Park, I; Elkhateeb, E A A; Elmetenawee, W; Mohammed, Y; Aboamer, O; Tayel, E S A; Magradze, E; Oikashvili, B; Shingade, P; Shukla, R A; Banerjee, S; Kumar, S; Jashal, B K; Adam, W; Ero, J; Fabjan, C; Jeitler, M; Rad, N K; Konig, A; Auffray hillemanns, E; Charkiewicz, A; Fartoukh, S; Garcia de enterria adan, D; Girone, M; Glege, F; Lasseur, C; Loos, R; Mannelli, M; Meijers, F; Sciaba, A; Tsesmelis, E; Meschi, E; Ricci, D; Petrucciani, G; Daguin, J; Du pree, T A; Tosi, M; Kortelainen, M J; Karavakis, E; Lucchini, M T; Chaze, O; Ceresa, D; Van besien, B T L; Kilminster, B J; Ke, Z; Meng, X; Zhang, Y; Tao, J; Romeo, F; Spiezia, A; Cheng, L; Zhukov, V; Feld, L W; Gueth, A; Fischer, R; Kress, T H; Cherepanov, V; Hansen, K; Schoerner-sadenius, T M; Marfin, I; Keaveney, J M; Diez pardos, C; Roland, B; Muhl, C W; Asawatangtrakuldee, C; Vargas trevino, A D R; Poehlsen, J A; Vanelderen, L; Stober, F M H; Vormwald, B R; Lenz, T; Kripas, V; Gonzalez vazquez, D; Kurz, S T; Niemeyer, C; Rieger, J O; Shvetsov, I; Sieber, G; Haitz, D W; Fischer, M; Caspart, R; Sander, O; Ardila perez, L E; Ruiz jimeno, A; Fernandez garcia, M; Scodellaro, L; Gonzalez sanchez, J F; Curras rivera, E; Semeniouk, I; Cornat, R J N; Ochando, C; Regnard, S J; Bedjidian, M; Giraud, N A; Mathez, H; Zoccarato, Y D; Ianigro, J; Sabes, D; Galbit, G C; Flacher, H U; Petyt, D A; French, M J; Jones, L L; Belyaev, A; Ilic, J; Calligaris, L; Markou, A; Bencze, G L; Mishra, D K; Netrakanti, P K; Jha, V; Chudasama, R; Katta, S; Altieri, P R; Venditti, R; Braibant-giacomelli, S; Dallavalle, G; Fabbri, F; Codispoti, G; Caponero, M A; Berti, L; Dafinei, I; Organtini, G; Pettinacci, V; Preiato, F; Park, S K; Lee, K S; Kang, M; Park, H K; Lee, S; Pak, S I; Zolkapli, Z B; Czyrkowski, H; Konecki, M A; Walczak, M B; Brona, G K; Bargassa, P; Viegas guerreiro leonardo, N T; Vadruccio, D; Levchenko, P; Orishchin, E; Suvorov, V; Uvarov, L; Gruzinskii, N; Pristavka, A; Kozlov, V; Radovskaia, A; Solovey, A; Kolosov, V; Vlassov, E; Parygin, P; Rogozina, E; Roinishvili, V; Tumasyan, A; Topakli, H; Akin, I V; Oz, C; Gulmez, E; Jain, S; Bakken, J A; Fisk, I; Govi, G M; Lewis, J D; Shaw, T M; Bailleux, D; Stoynev, S E; Sexton-kennedy, E M; Huang, C; Lincoln, D W; Roser, R; Ito, A; Artieda romero, J P; Adams, M R; Apanasevich, L; Varelas, N; Sandoval gonzalez, I D; Hangal, D A; Yoo, J H; Ovcharova, A K; Bradmiller-feld, J W; Amin, N J; Miller, M P; Sharma, R K; Santoro, A; Lassila-perini, K M; Tuominiemi, J; Jarvinen, T T; Gross, L O; Le bihan, A; Fuks, B; Kieffer, E; Pansanel, J; Jansova, M; D'hondt, J; Daci, N; Van parijs, I M; Abuzeid hassan, S A; Soultanov, G; Vankov, I D; Konstantinov, P B; De souza santos, A; Arruda ramalho, L; Ingram, Q; Renker, D; Erdmann, W; Molinero vela, A; Fernandez bedoya, C; Chipaux, R; Hamel de monchenault, G; Mandjavidze, I; Rander, J; Ferri, F; Leroy, C L; Ghosh, S S; Machet, M; Felcini, M; Bhawandeep, B; Kaur, S; Saizu, M A; Civinini, C; Latino, G; Pelli, S; Laudati, A; Fienga, F; De nardo, G; Checchia, P; Ronchese, P; Vanini, S; Fantinel, S; Salvini, P; Gaioni, L; Fabris, L; Cecchi, C; Saha, A; Basti, A; Bettarini, S; Tonelli, G E; Androsov, K; Arneodo, M; Ruspa, M; Pacher, L; Rabadan trejo, R I; Golutvin, I; Zhiltsov, V; Melnichenko, I; Mjavia, D; Cheremukhin, A; Zubarev, E; Tikhonenko, E; Kalagin, V; Alexakhin, V; Mitsyn, V; Shulha, S; Vishnevskiy, A; Gavrilenko, M; Boos, E E; Obraztsov, S; Dubinin, M; Demiyanov, A; Dudko, L; Volkov, V; Azhgirey, I; Chikilev, O; Turchanovich, L; Hou, G W; Wang, M; Chang, P; Liu, Y; Kumar, A; Liau, J; Lazic, D; Lawson, P D; Zou, D; Nash, D; Sumorok, K C; Klute, M; Lee, Y; Iiyama, Y; Velicanu, D A; Mc ginn, C; Abercrombie, D R; Hahn, K A; Kubik, A M; Zabel, J R; Funk, G N; Southwick, D C; Riley, G V; Heideman, J N; Cittolin, S; Martin, T; Wilson, G W; Baringer, P S; Sanders, S J; Mcbrayer, W J; Engh, D J; Gurrola, A; Velkovska, J A; Melo, A M; Johnson, C N; Ni, H; Kcira, D; Hendricks, T W; Heindl, M D; Ferguson, T; Vogel, H; Mudholkar, T K; Elmer, P; Tully, C; Luo, J; Hanson, G; Kennedy, E; Shrinivas, A; Jandir, P S; Askew, A W; Kadija, K; Dimovasili, E; Attikis, A; Vasilas, I; Chen, G; Bockelman, B P; Kamalieddin, R; Barrefors, B P; Farleigh, B S; Akchurin, N; Demin, P; Jafari, A; Musich, M; Daubie, E; Pavlov, B A; Petkov, P S; Goranova, R; Hadzhiyski, D; Rand, D T; Magnan, A; Baber, M D J; Mastrolorenzo, L; Citron, M D; Laner ogilvy, C; Di maria, R; Dutta, S; Thakur, S; Lee, H; Atay, S; Kim, D W; You, C; Wagner, S R; Rappoccio, S R; Harrington, C I; Baden, A R; Ricci-tam, F; Kamon, T; Rathjens, D; Pernie, L; Larsen, D; Pellett, D E; Smith, J; Burns, D R; Acosta, D E; Field, R D; Kotov, K; Gleyzer, S; Wang, S; Smolenski, K W; Mc coll, N W; Dasu, S R; Lanaro, A; Feyzi, F; Gorski, T A; Maurisset, A; Buchanan, J J; Ruckstuhl, N M; Musienko, Y; Taroni, S; Kellams, N M; Meng, H; Tan, P; Lo, K H; Xie, W; Rott, C; Benedetti, D; Everett, A A; Schulte, J; Ryckbosch, D D E; Crucy, S; Cornelis, T G M; Cauwenbergh, S M D; Betev, B; Dimov, H; Raykov, P A; Uzunova, D G; Mihovski, K T; Makarenko, V; Yermak, D; Fontaine, J; Agram, J; Mcclatchey, R H; Palinkas, J; Bell, A J; Lujan, P J; Clyne, M N; Zavodchikov, S; Veelken, C; Kannike, K; Perrini, L; Skarupelov, V; Piibeleht, M; Chang, S; Kuchinski, P; Janulis, M; Tamosiunas, K; Bukauskas, L; Zhmurin, P; Kamal, A; Mubarak, M; Asghar, M I; Ahmad, N; Muhammad, S; Mansoor-ul-islam, S; Saddique, A; Janjua, S A; Waqas, M; Veckalns, V; Toda, S; Choi, Y K; Yu, I; Hwang, C; Yumiceva, F X; Starling, E R; Meinhard, M T; Becker, R J U; Grimm, O; Wallny, R S; Donega, M; Tavolaro, V R; Marionneau, M P; Eller, P D; Quittnat, M E; Meister, D; Casal larana, B; Paktinat mehdiabadi, S; Chenarani, S; Dini, P; Leporini, R; Dinardo, M; Hakkarainen, U T; Parashar, N; Malik, S; Ramirez vargas, J E; Chahal, G S; Noh, S; Uang, A J; Kim, J H; Lee, J S H; Liu, H; Assran, Y; Elgammal, S; Ellithi kamel, A Y; Ahmed, A; Nayak, A K; Kothekar, K K; Mahakud, B; Patil, M R; Hoch, M; Schieck, J R; Lucio alves, F L; Dimou, M; Gill, K A; Orsini, L; Petrilli, A; Rolandi, L; Sharma, A; Szoncso, F; Tsirou, A; Hudson, D A; Gutleber, J; Folch, R; Tropea, P; Cerminara, G; Vichoudis, P; Pardo, T; Sabba, H; Geisler-knunz, V K; Wardle, N; Kornmayer, A; Ngadiuba, J; Aarrestad, T K; Yang, M; He, K; Li, B; Huang, Q; Shaheen, S M; Pierschel, G; Knutzen, S; Esch, T; Louis, D; Nowack, A S; Beissel, F; Borras, K A; Mankel, R; Pitzl, D D; Kemp, Y; Meyer, A B; Gunnellini, P; Krucker, D B; Mittag, G; Sahin, M O; Burgmeier, A; Arndt, T M; Karacheban, O; Pflitsch, S K; Dominguez damiani, D; Kogler, R; Troendle, D C; Meyer, M; De boer, W; Weber, M M; Theel, A; Weiler, T; Mozer, M U; Wayand, S; Plagge, M; Roscher, F S; Beskidt, C R; Harrendorf, M A; Harbaum, T R; Schuh, T; El morabit, K; Marco, J; Rodrigo, T; Vila alvarez, I; Lopez garcia, A; Baffioni, S; Mathieu, A; Davignon, O A; Kurca, T; Mirabito, L; Verdier, P; Combaret, C; Newbold, D M; Smith, V; Metson, S; Ball, F A; Coughlan, J A; Torbet, M J; Harper, S J; Kyriakis, A; Barone, M; Horvath, D; Veszpremi, V; Topkar, A; Selvaggi-maggi, G; Nuzzo, S V; Romano, F; Marangelli, B; Spinoso, V; Caputo, C; Castro, A; Rovelli, T; Brigliadori, L; Chhibra, S S; Bianco, S; Farinon, S; Musenich, R; Ferro, F; Greco, M; Gozzelino, A; Paramatti, R; Vignati, M; Belforte, S; Hong, B; Roh, Y J; Choi, S Y; Lee, S; Son, D; Kong, D J; Kim, J E; Yang, Y C; Butanov, K; Komaragiri, J R; Mohamad idris, F B; Kotobi, A; Krolikowski, J; Pozniak, K T; Seixas, J C; Jain, A K; Lloret iglesias, L; Nemallapudi, M V; Shchipunov, L; Lebedev, V; Skorobogatov, V; Klimenko, K; Terkulov, A; Kirakosyan, M; Azarkin, M; Krasnikov, N; Stepanova, L; Gavrilov, V; Spiridonov, A; Semenov, S; Krokhotin, A; Rusinov, V; Chistov, R; Zhemchugov, E; Nishonov, M; Hmayakyan, G; Khachatryan, V; Ozdemir, K; Ozturk, S; Tali, B; Kangal, E E; Turkcapar, S; Zorbakir, I S; Aydin, A; Aliyev, T; Demir, D A; Sonmez, N; Candelise, V; Khurana, R; Liu, W; Apollinari, G; Osborne, I; Genser, K; Lammel, S; Whitmore, J; Mommsen, R; Badgett jr, W F; Atac, M; Joshi, U P; Vidal, R A; Giacchetti, L A; Merkel, P; Johnson, M E; Soha, A L; Tran, N V; Crawford, M; Tader, P; Rapsevicius, V; Hirschauer, J F; Voirin, E; Linacre, J T; Altunay cheung, M; Liu, T T; Mosquera morales, J F; Gerber, C E; Chen, X; Clarke, C J; Stuart, D D; Franco sevilla, M; Marsh, B J; Trocsanyi, Z L; Shivpuri, R K; Adzic, P; De almeida pacheco, M A; Matos figueiredo, D; De queiroz franco, A B; Bernardo valadao, R; Linden, T; Haerkoenen, J J; Tuovinen, E V; Kommeri, J A; Ripp-baudot, I L; Richer, M; Tromson, D C; Strom, D A; Vander velde, C; Luetic, J; Randle-conde, A S; Maerschalk, T J C; Van haevermaet, H J H; Romero abad, D; De paula bianchini, C; Muller cascadan, A; Kotlinski, B; Alcaraz maestre, J; Josa mutuberria, M I; Gonzalez lopez, O; Marin munoz, J; Puerta pelayo, J; Rodriguez vazquez, J J; Denegri, D; Jarry, P; Rosowsky, A; Kucher, I; Tsipolitis, G; Grunewald, M; Singh, J; Kalsi, A K; Chawla, R; Gupta, R; Parrini, G; Buontempo, S; Cavallo, N; Casolaro, P; Mazzucato, M; Verlato, M; Zumerle, G; Wulzer, A; Traldi, S; Bortolato, D; Vai, I; Braghieri, A; Biasini, M; Bilei, G M; Santocchia, A; Mariani, V; Bosi, F; Mariotti, C; Monaco, V; Accomando, E; Bartosik, N; Pinna angioni, G L; Boimska, B; Nawrocki, K; Yuldashev, B; Kamenev, A; Belotelov, I; Filozova, I; Bunin, P; Golovanov, G; Muravyeva, E; Gribushin, A; Kaminskiy, A; Volkov, P; Vorotnikov, G; Bityukov, S; Kryshkin, V; Petrov, V; Volkov, A; Troshin, S; Levin, A; Kalinin, A; Kulagin, N; Mandrik, P; Gao, Z; Lin, C; Kovalskyi, D; Demiragli, Z; Hsu, D G; Pollack, B L; Nussbaum, T; Michlin, B A; Fountain, M; Debbins, P A; Durgut, S; Tadel, M; White, A; Molina-perez, J A; Dost, J M; Boren, S S; Klein, A; Bhatti, A; Mesropian, C; Wilkinson, R; Xie, S; Agapitos, A; Marlow, D R; Jindal, P; Narain, M; Berry, E A; Strossman, W; Mavromanolakis, G; Nicolaou, C; Mao, Y; Claes, D R; Sill, A F; Libeiro, T; Lamichhane, K; Antunovic, Z; Piotrzkowski, K; De visscher, S; Bondu, O; Selvaggi, M; Dimitrov, A A; Albajar, C; Torga teixeira, R F; Iles, G M; Borg, J; Cripps, N A; Uchida, K; Penning, B; Fayer, S W; Wright, J C; Kokkas, P; Manthos, N; Loukas, N; Bhattacharya, S; Nandan, S; Singh, B; Yang, U K; Roskes, J; Nauenberg, U; Johnson, D; Kharchilava, A; Cox, B B; Hirosky, R J; Cummings, G E; Nguyen, V T; Skuja, A; Bard, R L; Mueller, R D; Saghir, M A; Flowers, S C; Wulsin, H W; Chertok, M B; Calderon de la barca sanchez, M; Gunion, J F; Vogt, R; Conway, R T; Gearhart, J W; Band, R E; Kukral, O; Korytov, A; Furic, I K; Fu, Y; Madorsky, A; Brinkerhoff, A W; Rinkevicius, A; Mirman, N E; Mcdermott, K P; Tao, Z; Bellis, M; Gronberg, J B; Hauser, J; Kubic, J; Greenler, L S; Caillol, C S; Woods, N; De jesus pardal vicente, M; Singovski, A; Wolf, M; Smith, G N; Reinsvold, A C; Sultana, M; Taus, R A; Henderson, C; Buccilli, A T; Kroeger, R S; Reidy, J J; Barnes, V E; Kress, M K; Xu, L; Mccartin, J W; Gul, M; Khvastunov, I; Georgiev, I G; Biselli, A; Martin, F; Cardoso lopes, R; Cuevas maestro, J F; Palencia cortezon, J E; Reucroft, S; Bheesette, S; Butler, A; Ivanov, A; Mizelkov, M; Kashpydai, O; Kim, J; Ribeiro cipriano, P M; Zemleris, V; Ali, A; Ahmed, U S; Awan, M I; Hussain, P S; Irshad, A; Bolton, T; Lee, J; Grab, C; Nessi-tedaldi, F; Musella, P; Bianchini, L; Vesterbacka, M L; Klijnsma, T; Khakzad, M; Arfaei, H; Bonesini, M; Ciriolo, V; Gomez moreno, B; Ruiz alvarez, J D; Linares garcia, L E; Bae, S; Hatakeyama, K; Mahmoud mohammed, M A; Radi, A; Aly, A; Masod, R; Ahmad, A; Mohammed, W M; Bahinipati, S; Kim, T J; Fang, W; Gao, X; Kemularia, O; Sharma, S; Rane, A P; Ayala amaya, E R; Madlener, T; Pol, M E; Alda junior, W L; Rodrigues simoes moreira, P; Kloukinas, K; Onnela, A T O; Passardi, G; Perez, E F; Postema, W J; Petagna, P; Gaddi, A; Vieira de castro ferreira da silva, P M; Gastal, M; Dabrowski, A E; Mersi, S; Drasal, Z; Bianco, M; Bachtis, M; Alandes pradillo, M; Di marco, E; Chen, Y; Kirschenmann, H; Kieseler, J; Murphy, S M; Bawej, T A; Roedne, L T; Hugo, G; Wang, Y; Liu, Z; Yue, X; Teng, C; Wang, Z; Liao, H; Zhang, X; Cheng, T; Chen, Y; Ahmad, M; Zhao, H; Qi, F; Li, B; Raupach, F; Tonutti, M P; Endres, M K; Radziej, M; Kargoll, B; Kunsken, A; Behrens, U; Henschel, H M; Kleinwort, C H; Dammann, D J; Van onsem, G P; Contreras campana, C J; Saxena, P; Kisler, D; Penno, M; Singh, A; Schleper, P; Schwandt, J; Usai, E; Tholen, H; Pantaleo, F; Marchesini, I; Hartmann, F; Muller, T; Mallows, S; Funke, D; Mildner, H; Baselga bacardit, M; Williamson, S D; Fink, S; Martinez rivero, C; Moya martin, D; Hidalgo villena, S; Chazin quero, B; Mine, P M G; Poilleux, P R; Salerno, R A; Lisniak, S; Caponetto, L; Pugnere, D Y; Giraud, Y A N; Sordini, V; Grimes, M A; Burns, D J P; Cieri, D; Hajdu, C; Dutta, D; Pant, L M; Chitra, S; Kumar, V; Sarin, P; Di florio, A; Giacomelli, P; Montanari, A; Siroli, G P; Robutti, E; Maron, G; Rovelli, C I; Della ricca, G; Oh, Y D; Park, W H; Kwon, K H; Choi, J; Kalinowski, A; Santos amaral, L C; Calpas, B C; Di francesco, A; Velichko, G; Smirnov, I; Kozlov, V; Vavilov, S; Kirianov, A; Sorokin, P; Dremin, I; Rusakov, S; Nechitaylo, V; Kovzelev, A; Toropin, A; Anisimov, A; Golubev, V; Barniakov, A; Gasanov, E; Eskut, E; Polatoz, A; Karaman, T; Zorbilmez, C; Bat, A; Aci, C; Oral, M; Bilin, B; Kaya, O; Lin, T; Abdoulline, S; Bauerdick, L; Denisov, D; Gingu, C; Green, D; Nahn, S C; Prokofiev, O E; Strait, J B; Los, S; Bowden, M; Demarteau, M; Tanenbaum, W M; Guo, Y; Dykstra, D W; Mason, D A; Chlebana, F; Cooper, W E; Anderson, J M K; Weber, H A; Christian, D C; Liu, S; Diaz cruz, J A; Wang, M; Berry, D R; Jung, K E; Siehl, K F; Poudyal, N; Kyre, S A; Suarez silva, I M; Mullin, S D; George, C; Szabo, Z; Malhotra, S; Milosevic, J; Rekovic, V; Prado da silva, W L; Martins mundim filho, L; Huertas guativa, L M; Karimaki, V J; Toor, S Z; Maazouzi, C; Van hove, P J; Hosselet, J; Baumann, R A; Chambit, E M; Goorens, R; Zenoni, F; Fasanella, G; Wang, Q; Vannerom, D; Antchev, G; Iaydjiev, P S; Mitev, G M; Amadio, G; Bertl, W; Langenegger, U; Kaestli, H C; Meier, B; Fernandez ramos, J P; Besancon, M; Fabbro, B; Ganjour, S; Locci, E; Zghiche, A; Gevin, O; Kumar, R; Sharma, S; Albergo, S; Tuve, C N; Tricomi, A; Meschini, M; Paoletti, S; Sguazzoni, G; Gori, V; Viliani, L; Di guida, S; Fabozzi, F; Merola, M; Carlin, R; Dal corso, F; Simonetto, F; Torassa, E; Borsato, E; Gonella, F; Dorigo, A; Lazzizzera, I; Montagna, P; Ratti, S P; Vitulo, P; Traversi, G; Magnani, A; Vacchi, C; De canio, F; Fallavollita, F; Leonardi, R; Spandre, G; Larsen, H; Peroni, C; Trapani, P P; Buarque franzosi, D; Tamponi, U; Ravera, F; Mejia guisao, J A; Zepeda fernandez, C H; Szleper, M; Zalewski, P D; Rybka, D K; Gorbunov, I; Perelygin, V; Zarubin, P; Kozlov, G; Semenov, R; Khvedelidze, A; Kodolova, O; Klyukhin, V; Snigirev, A; Kryukov, A; Ukhanov, M; Sobol, A; Bayshev, I; Akimenko, S; Lei, Y; Chang, Y; Kao, K; Lin, S; Fantasia, C; Gastler, D E; Trocino, D; Paus, C; Wyslouch, B; Knuteson, B O; Azzolini, V; Goncharov, M; Brandt, S; Kumar, A; Chen, Z; Liu, J; Chen, Z; Zhang, A; Nachtman, J M; Penzo, A; Akgun, U; Yi, K; Rahmat, R; Gandrajula, R P; Dilsiz, K; Letts, J; Holzner, A G; Wuerthwein, F K; Padhi, S; Tapia takaki, D J; Stringer, R W; Kropivnitskaya, A; Majumder, D; Al-bataineh, A A; Gabella, W E; Johns, W E; Mora, J G; Shi, Z; Ciesielski, R A; Bornheim, A; Litvine, V; Mott, A R; Bartz, E H; Doroshenko, J; Halkiadakis, E; Salur, S; Robles, J A; Gray, R C; Saka, H; Sheffield, D; Hughes, E J; Paulini, M G; Russ, J S; Jang, D W; Olsen, J D; Sands, W; Saluja, S; Cutts, D; Hadley, M H; Clare, R; Luthra, A P; Paneva, M I; Seto, R K; Mac intire, D A; Bouvier, E L; Tentindo, S; Wahl, H; Sudic, L; Chokheli, D; Micanovic, S; Razis, P; Mousa aysha, J O A; Ioannou, A; Pantelides, S; Qian, S; Li, W; Wang, S; Gonzalez suarez, R; Stieger, B B; Lee, S W; Gurpinar, E; Michotte de welle, D; De favereau de jeneret, J; Bakhshiansohi, H; Komm, M; Krintiras, G; Caudron, A; Zobec, J; Sabev, C; Batinkov, A I; Buchmueller, O; Zenz, S C; Pesaresi, M F; Dunne, P J; James, T O; Summers, S P; Modak, A; Ghosh, S; Seo, S H; Cankocak, K; Feng, L; Cumalat, J P; Leontsinis, S; Smith, J G; Iashvili, I; Gallo, S M; Alyari, M F; Parker, A M; Ledovskoy, A; Hung, P Q; Vaman, D; Goodell, J D; Gomez, J A; Ferraioli, C; Pakhotin, Y; Ulmer, K A; Tatarinov, A; Perloff, A S; Celik, A; Hill, C S; Puigh, D M; Francis, B P; Ji, W; Squires, M K; Thomson, J A; Brainerd, C; Tuli, S; Bourilkov, D; Mitselmakher, G; Yelton, J M; Carnes, A M; Patterson, J R; Kuznetsov, V Y; Tan, S M; Strohman, C R; Rebassoo, F O; Erhan, S; Valouev, V; Zelepukin, S; Carlsmith, D L; Lusin, S; Vuosalo, C O U; Ruggles, T H; Rusack, R; Kalafut, S T; Woodard, A E; Meng, F; Dev, N; Siddireddy, P; Melissinos, A J; Vishnevskiy, D; Cremaldi, L M; Oliveros tautiva, S J; Jones, T M; Wang, F; Zaganidis, N; Tytgat, M G; Verbeke, W L M; Fedorov, A; Korjik, M; Panov, V; Kovacs, Z; Ahmad, M K H; Arshad, B; Beni, N T; Gonzalez caballero, I; Pedraza morales, M I; Eysermans, J; Logatchev, O; Orlov, A; Tikhomirov, A; Kulikova, T; Tiko, A; Woo, J K; Lee, A; Nam, S K; Soric, I; Kaselis, R; Bilinskas, M J; Rupeika, E A; Padimanskas, M; Siddiqi, H M; Hussain, I; Qazi, S F; Ahmad, M; Makouski, M; Chakaberia, I; Mitchell, T B; Baarmand, M; Hohlmann, M; Dissertori, G; Dittmar, M; Mangano, B; Theofilatos, K; Mohr, N; Pandolfi, F; Micheli, F; Pata, J; Corrodi, S; Mohammadi najafabadi, M; Fahim, A; Menasce, D L; Pedrini, D; Malberti, M; Pigazzini, S; Linn, S L; Mesa, D; Tuuva, T; Casallas leon, J H; Roque romero, G A; Suwonjandee, N; Kim, H; Khalil ibrahim, S S; Mahrous mohamed kassem, A M; Elshamy, M S; Trojman, L; Fruhwirth, R; Majerotto, W; Mikulec, I; Rohringer, H; Strauss, J; Krammer, N; Hartl, C; Pree, E; Rebello teles, P; Ball, A; Elliott-peisert, A; Bialas, W; Brachet, S B; Gerwig, H; Lourenco, C; Mulders, M P; Vasey, F; Wilhelmsson, M; Dobson, M; Botta, C; Sauvan, J; Dunser, M F; De cosa, A; Hreus, T; Chen, G; Chen, H; Jiang, C; Li, L; Klein, K; Schulz, J; Preuten, M; Millet, P N; Erdweg, S; Pistone, C; Eckerlin, G; Jung, J; Mnich, J; Jansen, H; Wissing, C; Savitskyi, M; Lobanov, A; Eichhorn, T V; Harb, A; Botta, V; Martens, I; Eren, E; Reichelt, O; Schutze, P J; Schettler, H H; Marconi, D; Schumann, S; Kutzner, V G; Husemann, U; Giffels, M; Akbiyik, M; Friese, R M; Baur, S S; Faltermann, N; Kuhn, E; Balzer, M N; Schmitt, M; Tcherniakhovski, D; Fischer, F; Piedra gomez, J; Vilar cortabitarte, R; Munoz chavero, F; Trevisani, N; Boudry, V; Charlot, C P; Tran, T H; Renaud, B G; Thiant, F; Lethuillier, M M; Perries, S O; Shepherd-themistocleous, C H; Morrissey, Q; Brummitt, A J; Lahiff, A D; Bell, S J; Giakoumopoulou, V A; Kalamaris, A; Sikler, F; De palma, M; Fiore, L; Pompili, A; Marzocca, C; Errico, F; Cavallo, F R; Navarria, F; Rossi, A M; Torromeo, G; Masetti, G; Battilana, C; Fasanella, D; Virgilio, S; Cavallari, F; Montecchi, M; Santanastasio, F; Del re, D; Bulfon, C; Zanetti, A M; Casarsa, M; Han, D; Song, J; Ibrahim, Z A B; Nguyen, F; Faccioli, P; Gallinaro, M; Beirao da cruz e silva, C; Bondar, N; Kuznetsova, E; Levchuk, L; Andreev, V; Toropin, A; Dermenev, A; Karpikov, I; Epshteyn, V; Uliyanov, A; Polikarpov, S; Markin, O; Bilgili, E; Deniz, M; Cagil, A; Karapinar, G; Isildak, B; Yu, S; Banicz, K B; Cheung, H W K; Butler, J N; Quigg, D E; Hufnagel, D; Rakness, G L; Spalding, W J; Bhat, P; Kreis, B J; Jensen, H B; Chetluru, V; Rossman, P D; Albert, M; Hu, Z; Mishra, K; Vernieri, C; Larson, K E; Zejdl, P; Matulik, M; Fahim, F; Cremonesi, M; Doualot, N; Wu, Z; Geffert, P B; Dutta, V; Heller, R E; Choudhary, B C; Arora, S; Ranjeet, R; Devetak, D; Melo da costa, E; Da silveira, G G; Alves coelho, E; Belchior batista das chagas, E; Buss, N H; Luukka, P R; Tuominen, E M; Tigerstedt, U B S; Goerlach, U; Patois, Y; Collard, C; Mathieu, C; Lowette, S R J; Python, Q P; Moortgat, S; Vanlaer, P; De lentdecker, G W P; Marinov, A R; Rugovac, S; Leonard, A P G; Tavernier, F F; Beaumont, W; Van de klundert, M; Verguilov, V Z; Hadjiiska, R M; De moraes gregores, E; Iope, R L; Barcala riveira, M J; Hernandez calama, J M; Oller, J C; Flix molina, J; Navarro tobar, A; Sastre alvaro, J; Redondo ferrero, D D; Eerola, P A; Pekkanen, J T K; Bredy, P; Titov, M; Sipos, R; Bala, S; Dhingra, N; Kumari, P; Costa, S; Iorio, A O M; Meneguzzo, A T; Passaseo, M; Pegoraro, M; Montecassiano, F; Dorigo, T; Dall'osso, M; Silvestrin, L; Ratti, L; Magalotti, D; Ciocci, M A; Ligabue, F; Messineo, A; Palla, F; Raffaelli, F; Calzolari, F; Ciampa, A; Grippo, M T; Del duca, V; Demaria, N; Ferrero, M I; Mussa, R; Cartiglia, N; Mazza, G; Maina, E; Dellacasa, G; Covarelli, R; Sola, V; Monteil, E; Shchelina, K; Castilla-valdez, H; De la cruz burelo, E; Kazana, M; Gorbunov, N; Kosarev, I; Smirnov, V; Korenkov, V; Savina, M; Lanev, A; Semenyushkin, I; Kashunin, I; Krouglov, N; Markina, A; Bunichev, V; Zotov, N; Miagkov, I; Nazarova, E; Uzunyan, A; Riutin, R; Tsverava, N; Paganis, E; Chen, K; Lu, R; Psallidas, A; Gorodetzky, P P; Hazen, E S; Avetisyan, A; Massironi, A; Busza, W; Roland, C E; Apyan, A; Cali, I A; Marini, A C; Wang, T; Levin, A M; Schmitt, M H; Geurts, F; Ecklund, K M; Repond, J O; Schmidt, I; Norbeck, J E; George, N; Ingram, F D; Wetzel, J W; Ogul, H; Spanier, S M; Mrak tadel, A; Zevi della porta, G J; Maguire, C F; Janjam, R K; Chevtchenko, S; Zhu, R; Voicu, B R; Bendavid, J L; Mao, J; Stone, R L; Schnetzer, S R; Contreras-campana, E; Nash, K C; Kunnawalkam elayavalli, R; Laflotte, I; Weinberg, M G; Mc cracken, M E; Raval, A H; Cooperstein, S B; Landsberg, G; Kwok, K H M; Ellison, J A; Gary, J W; Burt, K F; Si, W; Hagopian, V; Hagopian, S L; Bertoldi, M; Santra, A; Brigljevic, V; Ptochos, F; Ather, M W; Yang, D; Li, Q; Attebury, G; Siado castaneda, J E; Dudero, P R; Lemaitre, V; Brochet, S; Magitteri, A; Caebergs, T P M; Litov, L B; Fernandez de troconiz, J; Moran, D A; Colling, D J; Davies, G J; Raymond, D M; Bainbridge, R J; Lewis, P; Rose, A W; Arnauth pela, J C; Bauer, D U; Elwood, A C; Shtipliyski, A M; Sotiropoulos, S; Papadopoulos, I; Triantis, F; Aslanoglou, X; Majumdar, N; Willemse, T; Lamsa, J; Blumenfeld, B J; Maksimovic, P; Gritsan, A; Fehling jr, D K; Cocoros, A A; Arnold, P; Sinthuprasith, T; Wang, Y; Tonwar, S C; Eno, S C; Mignerey, A L C; De mattia, M; Dalchenko, M; Maghrbi, Y; Huang, T; Sheharyar, A; Durkin, L S; Hart, A E; Liu, B; Wang, Z; Tos, K M; Long, M; Kim, B J; Das, S; Snowball, M A; Guo, Y; Ma, P; Ojika, D N; Reeder, D D; Smith, W; Surkov, A; Lazaridis, C; Mohapatra, A K; Perry, T M; Taylor, D N; Mans, J M; Kubota, Y; Frahm, E J; Chatterjee, R M; Ruchti, R; Baumbaugh, B; Mc cauley, T P; Planer, M D; Ivie, P A; Rupprecht, N C; Betchart, B A; Verzetti, M; Hindrichs, O H; Sanders, D; Summers, D; Perera, L; Miller, D H; Miyamoto, J; Folgueras gomez, S; Sun, J; Peng, C; Cimmino, A; Zahariev, R Z; Peynekov, M M; Liaquat, S; Khan, Z A; Massonnat, S; Czellar, S; Molnar, J; Szillasi, Z; Khan, A; Morton, A; Vizan garcia, J M; Chmelev, D; Smetannikov, V; Strumia, A; Hektor, A; Kadastik, M; Muentel, M; Godinovic, N; Butenas, I; Simelevicius, D; Alvi, O I; Hoorani, H U R; Shahzad, H; Shah, M A; Shoaib, M; Rao, M A S; Sidwell, R; Roettger, T J; Corkill, S; Lustermann, W; Pauss, F; Hits, D; Backhaus, M; Fischer, J; Masciovecchio, M; Heidegger, C; Perrin, G L; Naseri, M; Rapuano, F; Redaelli, N; Gennai, S; Carbone, L; Spiga, F; Markowitz, P E; Rodriguez, J L; Morelos pineda, A; Chaparro sierra, L F; Norberg, S R; Ryu, M S; Jeng, Y G; Ryu, G; Esteban lallana, M C; Trabelsi, A; Dittmann, J R; Pastika, N J; Vazquez valencia, E F; Ali, A S H; Elsayed, E; Esmail, W; Brochero cifuentes, J A; Janikashvili, M; Kapoor, A; Wickramage, N M; Hrubec, J; Wulz, C; Rabady, D S; Fichtinger, S K; Correa martins junior, M; Abbaneo, D; Bloch, P; Harvey, J; Janot, P; Racz, A; Roche, J; Ryjov, V; Sphicas, P; Treille, D; Wertelaers, P; Cure, B R; Veres, G; Fulcher, J R; Moortgat, F W; Bocci, A; Stoye, M; Giordano, D; Hegeman, J G; Hegner, B; Everaerts, P B B; Masetti, L; Martelli, A; Gallrapp, C; Cepeda hermida, M L; Riahi, H; Peruzzi, M; Orfanelli, S; Seidel, M; Merlin, J A; Robmann, P W; Salerno, D N; Galloni, C; Shi, J; Li, J; Zhao, J; Zhang, S; Pandoulas, D; Rauch, M P; Schael, S; Hoepfner, K; Weber, M K; Teyssier, D F; Thuer, S; Duchardt, D; Rieger, M; Albert, A; Muller, T; Sert, H; Lohmann, W F; Ntomari, E; Grohsjean, A J; Hauk, J; Wen, Y; Costanza, F; Ron alvarez, E; Seitz, C; Hampe, J; Bin anuar, A A; Stefaniuk, N; Blobel, V; Mattig, S; Haller, J; Sonneveld, J M; Rabbertz, K H; Gilbert, A J; Freund, B; Kassel, F R; Geerebaert, Y; Becheva, E L; Nguyen, M A; Strebler, T; Magniette, F B; Fay, J; Gascon-shotkin, S M; Ille, B; Viret, S; Courbon, B; Brown, R; Cockerill, D; Williams, T S; Markou, C; Anagnostou, G; Vesztergombi, G; Mohanty, A K; Creanza, D M; De robertis, G; Verwilligen, P O J; Calabria, C; Perrotta, A; Fanfani, A; Primavera, F; Toniolo, N; Badoer, S; Bellini, F; Marzocchi, B; Cossutti, F; La licata, C; Lee, J; Lee, K; Go, Y; Park, J; Kim, M S; Wan abdullah, W; Misiura, M; Toldaiev, O; Golovtcov, V; Oreshkin, V; Sosnov, D; Soroka, D; Gninenko, S; Pivovarov, G; Erofeeva, M; Pozdnyakov, I; Danilov, M; Tarkovskii, E; Chadeeva, M; Philippov, D; Onengut, G; Cerci, S; Vergili, M; Sever, R; Gamsizkan, H; Ocalan, K; Dogan, H; Kaya, M; Kuo, C; Chang, Y; Albrow, M G; Banerjee, S; Berryhill, J W; Chevenier, G; Freeman, J E; Green, C H; O'dell, V R; Wenzel, H; Lukhanin, G; Di luca, S; Pordes, R; Spiegel, L G; Deptuch, G W; Ratnikova, N; Paterno, M F; Burkett, K A; Jones, C D; Klima, B; Fagan, D; Hasegawa, S; Thompson, R; Gecse, Z; Liu, M; Pedro, K J; Jindariani, S; Mascheroni, M; Zimmerman, T; Skirvin, T M; Hofman, D J; Evdokimov, O; Trauger, H C; Milstene, C; Gouskos, L; Karancsi, J; Kumar, A; Garg, R B; Keshri, S; Nogima, H; Sznajder, A; Vilela pereira, A; Guldmyr, J H; Gele, D; Charles, L; Bonnin, C; Van lancker, L; De clercq, J T; Favart, L; Yang, Y; Seva, T; Yonamine, R; Genchev, V I; Galli mercadante, P; Tomei fernandez, T R; Ahuja, S; Ruiz vargas, J C; Rohe, T V; Colino, N; Ferrando, A; Garcia-abia, P; Calvo alamillo, E; Goy lopez, S; Delgado peris, A; Alvarez fernandez, A; Voutilainen, M A; Couderc, F; Aymar, R; Moudden, Y; Csanad, M; Potenza, R; D'alessandro, R; Landi, G; Russo, L; Paolucci, P; Voevodina, E; Bisello, D; Michelotto, M; Benettoni, M; Bellato, M A; Fanzago, F; De castro manzano, P; Riccardi, C M; Belli, G; Berzano, U; Gabusi, M; Mantovani, G; Menichelli, M; Passeri, D; Placidi, P; Manoni, E; Storchi, L; Braccini, P L; Dell'orso, R; Foa, L; Spagnolo, P; Venturi, A; Mazzoni, E; Moggi, A; Massa, M; Cirio, R; Romero, A; Staiano, A; Pastrone, N; Solano, A M; Argiro, S; Bellan, R; Traczyk, P W; Cotto, G; Finco, L; Duran osuna, M C; Ershov, Y; Zamyatin, N; Palchik, V; Afanasyev, S; Nikonov, E; Miller, M; Baranov, A; Petrushanko, S; Perfilov, M; Eyyubova, G; Baskakov, A; Kachanov, V; Korablev, A; Konstantinov, D; Bordanovskiy, A; Kepuladze, Z; Hsiung, Y B; Wu, S; Rankin, D S; Jacob, C J; Alverson, G; Hortiangtham, A; Roland, G M; Veverka, J; Innocenti, G M; Allen, B L; Baty, A A; Narayanan, S M; Hu, M; Bi, R; Gartung, P E; Sung, K K H; Mucia, N J; Gunter, T K; Bueghly, J D; Yepes stork, P P; Mestvirishvili, A; Miller, M J; Snyder, C M; Branson, J G; Wasserbaech, S R; Sfiligoi, I; Edwards-bruner, C R; Goulianos, K; Galvez, P D; Zhu, K; Lapadatescu, V; Somalwar, S V; Park, M; Gomez espinosa, T A; Walker, M H H; Kaplan, S M; Feld, D B; Vorobiev, I; Piroue, P; Wildish, A; Zuranski, A M; Mei, K; Knight iii, R R; Spencer, E; Hogan, J M; Garabedian, A E; Syarif, R; Hakala, J C; Olmedo negrete, M A; Ghiasi shirazi, S; Erodotou, E; Ye, Y; Ban, Y; Xue, Z; Xu, Z; Kravchenko, I; Keller, J D; Knowlton, D P; Wigmans, M E J; Volobouev, I; Peltola, T H T; Faulkner, J A; Kovac, M; Bruno, G L; Gregoire, G; Delaere, C; Mertens, A J N; Bodlak, M; Della negra, M J; Virdee, T S; Corpe, L D; Tziaferi, E; Karageorgos, V W; Fountas, K; Paradas, E; Flouris, G; Mukhopadhyay, S; Yoo, H D; Aerts, A; Eminizer, N C; Stenson, K M; Ford, W T; Johnson, A A; Green, M L; Godshalk, A P; Li, H; Kellogg, R; Jeng, G; Kunkle, J M; Baron, O; Feng, Y; Toufique, Y; Sehgal, V; Antonelli, L J; Breedon, R E; Cox, P T; Case, M E; Stolp, D; Mulhearn, M J; Gerhard, R M; Konigsberg, J; Thomas, L; Sperka, D M; Pratap ghanathe, N; Quach, D M; Li, T; Andreev, V; Herve, L A M; Klabbers, P R; Svetek, A; Ojalvo, I R; Hussain, U; Nourbakhsh, S; Turkewitz, J R; Evans, A C; Lannon, K P; Fedorov, S; Bodek, A; Demina, R; Khukhunaishvili, A; West, C A; Godang, R; Meier, M; Neumeister, N; Costantini, S; Yazgan, E; Zagurski, K B; Prosolovich, V; Zuyeuski, R; Kuhn, J; Szekely, G; Hobson, P R; Fernandez menendez, J; Butler, P; Barakat, N; Zaraket, H; Sakharov, V; Druzhkin, D; Lavrenov, P; Ahmed, I; Kim, T Y; Pac, M Y; Sculac, T; Gajdosik, T; Tamosiunas, K; Juodagalvis, A; Dudenas, V; Barannik, S; Bashir, A; Khan, F; Saeed, F; Asghar, S; Khan, M T; Ahmad, I; Ahmad, H; Maravin, Y; Mohammadi, A; Noonan, D C; Bhopatkar, V S; Djambazov, L; Faber, G; Perrozzi, L; Nageli, C; Dorfer, C; Zhu, D H; Spirig, Y A; Alishahiha, M; Ardalan, F; Mansouri, R; Eskandari tadavani, E; Ragazzi, S; Tabarelli de fatis, T; Govoni, P; Ghezzi, A; Brivio, F; Stringhini, G; Martinez, G R; Sevilla moreno, A C; Borzou, A; Smith, C J; Abdelalim, A A; Hassan, A F A; Aly lilo, E H; Swain, S K; Sahoo, N; Sahoo, D K; Carrera jarrin, E F; Chauhan, S; Mitra, S; Brondolin, E; Grossmann, J; Ambrogi, F; Hensel, C; Alves, G A; Baechler, J; Campi, D; Christiansen, J; De roeck, A; Gayde, J; Hansen, M; Kienzle, W; Reynaud, S; Schaefer, C; Schwick, C; Troska, J; Zeuner, W D; Osborne, J A; Moll, M; Franzoni, G; Kousouris, K; Tinoco mendes, A D; Milenovic, P; Harris, P C; Garai, Z; Triossi, A; Dupont, N A; Gulhan, D C; Daponte, V; Giuffredi, R; Otiougova, P; Zhu, G; Leggat, D A; Ostapchuk, A; Kiesel, M K; Lipinski, M; Wallraff, W; Meyer, A; Padeken, K O; Pook, T; Pooth, O; Behnke, O; Eckstein, D; Fischer, D J; Dolinska, G; Garay garcia, J; Klanner, R; Stadie, H; Perieanu, A; Hoffmann, M G; Nowatschin, D S; Abbas, S M; Schroeder, M; Lobelle pardo, P; Chwalek, T; Rocker, S; Printz, M; Gomez, G; Cabrillo bartolome, I J; Orviz fernandez, P; Busson, P; Dobrzynski, L; Fontaine, G R R; Granier de cassagnac, R; Paganini, P R J; Arleo, F P; Balagura, V; Chapon, E; Martin blanco, J; Ortona, G; Contardo, D C; Lumb, N; Baulieu, G; Pequegnot, A; Lagarde, F; Heath, H F; Kreczko, L; Clement, E J; Paramesvaran, S; Bell, K W; Moretti, S; Hill, J A; Durkin, T J; Daskalakis, G; Kataria, S K; Iaselli, G; Pugliese, G; My, S; Abbiendi, G; Taneja, S; Benussi, L; Fabbri, F; Calvelli, V; Frizziero, E; Barone, L M; De notaristefani, F; Rahatlou, S; D'imperio, G; Gobbo, B; Lim, I; Jo, Y; Gyun, D; Yusupov, H; Liew, C S; Zabolotny, W M; Vischia, P; Sobolev, S; Gavrikov, Y; Kozlov, I; Golubev, N; Andreev, Y; Tlisov, D; Zaytsev, V; Stepennov, A; Popova, E; Aushev, T; Shtol, D; Rurua, L; Sirunyan, A; Gokbulut, G; Kara, O; Damarseckin, S; Guler, A M; Ozpineci, A; Dag, H; Hayreter, A; Li, S; Gruenendahl, S; Yarba, J; Para, A; Ristori, L F; Ronzhin, A I; Rubinov, P M; Reichanadter, M A; Churin, I; Beretvas, A; Brown, W E; Muzaffar, S M; Lykken, J D; Gutsche, O; Baldin, B; Lopez perez, J A; Hesselroth, T; Uplegger, L A; Lei, C M; Wu, W; Derylo, G E; Ruschman, M K; Lipton, R J; Whitbeck, A J; Schmitt, R; Contreras pasuy, L C; Olsen, J T; Cavanaugh, R J; Betts, R R; Wang, H; Sturdy, J T; Gutierrez jr, A; Campagnari, C F; White, D T; Brewer, F D; Qu, H; Ranjan, K; Sharma, V; Lalwani, K; Md, H; Shah, A H; Fonseca de souza, S; De jesus damiao, D; Revoredo, E A; Chinellato, J A; Amadei marques da costa, C; Lampen, P T; Wendland, L A; Brom, J; Andrea, J; Tavernier, S; Van doninck, W K; Van mulders, P K A; Clerbaux, B; Karapostoli, G; Brun, H L; Grebenyuk, A; Dong, J; Rougny, R; Lauwers, J G E; Dimitrov, L; Rashevski, G D; Rodozov, M N; Padula, S; Bernardes, C A; Dias maciel, C; Deiters, K; Feichtinger, D; Wiederkehr, S A; Cerrada, M; Fouz iglesias, M; Senghi soares, M; Karadzhinova, A G; Faure, J; Pasquetto, E; Ferry, S C; Georgette, Z; Malcles, J; Filipovic, N; Lal, M K; Walia, G; Kaur, A; Giordano, F; Ciulli, V; Lenzi, P; Lanza, G; Dosselli, U; Gasparini, F; Zanetti, M; Pazzini, J; Nodari, B; Ressegotti, M; Azzurri, P; Carboni, A; Tenchini, R; Costa, M; Dughera, G; Ramirez sanchez, G; Frueboes, T M; Karjavine, V; Skachkov, N; Litvinenko, A; Petrosyan, A; Teryaev, O; Trofimov, V; Makankin, A; Golunov, A; Savrin, V; Korotkikh, V; Vardanyan, I; Lukina, O; Belyaev, A; Korneeva, N; Petukhov, V; Skvortsov, V; Efremov, V; Smirnov, N; Shiu, J; Chen, P; Rohlf, J; Sulak, L R; St john, J M; Morse, D M; Krajczar, K F; Mironov, C M; Niu, X; Wang, J; Charaf, O; Matveev, M; Eppley, G W; Guilbaud, M R J; Mccliment, E R; Ozok, F; Bilki, B; Zieser, A J; Rose, K J; Sani, M; Cerati, G B; Olivito, D J; Vartak, A; Wood, J G; Welke, C V; Hashemi, B T; Bean, A L; Wang, Q; Sheldon, P D; Tuo, S; Xu, Q; Roberts, J W; Pena herrera, C I; Anderson, D J; Lath, A; Jacques, P; Thomassen, P; Sun, M; Andrews, M B; Koay, S A; Svyatkovskiy, A; Heintz, U; Lee, J; Heilman, J A; Wei, H; Wang, L; Prosper, H B; Diamond, B F; Adams, J R; Bein, S L; Cai, J; Liu, S; Wang, D; Zhang, Z; Swanson, D; Thiltges, J F; Cowden, C S; Undleeb, S; Finger, M; Beuselinck, R; Hall, G; Tapper, A D; Malik, S A; Casasso, S; Haddad, Y; De wit, A M; Lane, R C; Panagiotou, A; Mallios, S; Dey, S; Mondal, K; Bhattacharya, R; Bhowmik, D; Libby, J F; Radburn-smith, B C; Park, J; Swartz, M L; Sarica, U; Borcherding, F O; Dolen, J W; Arenton, M W; Barria, P; Goadhouse, S D; Xia, F; Belloni, A; Bouhali, O; Castaneda hernandez, A M; Toback, D; Osipenkov, I L; Almes, G T; Walker, J W; Bylsma, B G; Lefeld, A J; Conway, J S; Tripathi, S M; Chauhan, S S; Mc lean, C A; Flores, C S; Avery, P R; Terentyev, N; Barashko, V; Ryd, A P E; Tucker, J M; Heltsley, B K; Wittich, P; Riley, D S; Skinnari, L A; Chu, J Y; Dittmer, S J; Poprocki, S; Ignatenko, M; Lindgren, M A; Saltzberg, D P; Peck, A N; Herve, A A M; Loveless, R; Palmonari, F; Savin, A; Herndon, M F; Mason, W P; Martirosyan, S; Sarangi, T R; Levine, A G; Grahl, J; Hansen, P D; Mueller, C N; Suh, I S; Hurtado anampa, K P; De barbaro, P J; Garcia-bellido alvarez de miranda, A A; Korjenevski, S K; Moolekamp, F E; Fallon, C T; Acosta castillo, J G; Gutay, L; Barker, A W; Gough, E; Benucci, L; Schoefbeck, R; Poyraz, D; Van driessche, W G M; Beniozef, I S; Krasteva, R L; Winn, D R; Munir, K; Shamdasani, J; Rao, A M; Fenyvesi, A C; Makovec, A; Munro, C G; Bernardino rodrigues, N A; Lokhovitskiy, A; Uribe estrada, C; Rebane, L; Racioppi, A; Kim, H; Kim, T; Puljak, I; Boyaryntsev, A; Saeed, M; Tanwir, S; Butt, U; Hussain, A; Nawaz, A; Khurshid, T; Khan, W A; Imran, M; Sultan, A; Saleem, R; Naeem, M; Kaadze, K; Saini, L K; Taylor, R D; Zhang, A; Roeser, U H; Starodumov, A; Baeni, L; Berger, P; Hashemi, M; Rezaei hosseinabadi, F; Mehrabpour, H; Paganoni, M; Farina, F M; Fiorendi, S; Joshi, Y R; Avila bernal, C A; Cabrera mora, A L; Gonzalez hernandez, C F; Stupak, J; Asavapibhop, B; U-ruekolan, S; Kim, G; Choi, M; Oropeza barrera, C; Aly, S; Sawy, F H; Elkomous mekhail, A E; El sawy, M; Tavkhelidze, D; Hegde, V; Bylinkin, A; Aziz, T; Sur, N; Sutar, B J; Sarkar, T; Ghete, V M; Dragicevic, M G; Matsushita, T; Brandstetter, J; Marques moraes, A; Molina insfran, J A; De brito cavalcanti, L; Aspell, P; Baillon, P; Barney, D; Delikaris, D; Honma, A; Pape, L; Sakulin, H; Macpherson, A L; Bangert, N; Guida, R; Petrova, P; De gruttola, M; Steggemann, J; Verweij, M; Da silva gomes, D; Guthoff, M; Ben mimoun bel hadj, F; Bonnaud, J Y R; Canelli, F M; Bai, J; Qiu, J; Bian, J; Cheng, Y; Wang, C; Kukulies, C; Erdmann, M; Hebbeker, T; Zantis, F; Scheuch, F; Fluegge, G; Erdogan, Y; Campbell, A J; Kasemann, M; Lange, W; Raspiareza, A; Melzer-pellmann, I; Aldaya martin, M; Lewendel, B; Schmidt, R S; Dooling, S K; Lipka, E; Grados luyando, J M; Shevchenko, R; Steinbrueck, G; Peiffer, T; Lapsien, T; Vanhoefer, A; Stover, M; Niedziela, M A; Simonis, H J; Katkov, I; Colombo, F; Amstutz, C; Marco de lucas, R J; Lopez virto, A M; Jaramillo echeverria, R W; Hennion, P; Chiron, A; Romanteau, T; Beaudette, F; Yilmaz, Y; Valiyavalappil kizhakkepura, A A; Grasseau, G J; Pigard, P; Cadamuro, L; Pierre-emile, T B; El mamouni, H; Gouzevitch, M; Goldstein, J; Cussans, D G; Seif el nasr, S A; Aggleton, R C; Smith, D; Ford, P J W; Olaiya, E O; Salisbury, J G; Paspalaki, G; Hidas, P; Kiss, T N; Zalan, P; Bartok, M; Shukla, P; Abbrescia, M; De filippis, N; Donvito, G; Radogna, R; Cristella, L; Miniello, G; Capiluppi, P; Marcellini, S; Odorici, F; Bonacorsi, D; Genta, C; Ferri, G; Saviano, G; Ferrini, M; Minutoli, S; Fabbricatore, P; Tosi, S; Diemoz, M; Baccaro, S; Bartoloni, A; Margaroli, F; Talamo, I G; Cipriani, M; Kim, J Y; Oh, G; Lim, J H; Lee, J; Md ali, M A B; Gani, A B; Cwiok, M; Doroba, K; Pyskir, A D; Martins galinhas, B E; Kim, V; Krivshich, A; Vorobyev, A; Ivanov, Y; Tarakanov, V; Lobodenko, A; Obikhod, T; Isayev, O; Kurov, O; Leonidov, A; Lvova, N; Kirsanov, M; Suvorova, O; Karneyeu, A; Demidov, S; Konoplyannikov, A; Popov, V; Pakhlov, P; Blinov, V; Skovpen, I; Chatrchyan, S; Grigorian, N; Kayis topaksu, A; Sunar cerci, D; Hos, I; Girgis chyla, S; Guler, Y; Kiminsu, U; Serin, M; Turan, I; Eryol, F; Pozdnyakov, A; Liu, Z; Doan, T H; Hanlon, J E; Mcbride, P L; Pal, I; Verzocchi, M; Garren, L; Oleynik, G; Harris, R M; Bolla, G; Kowalkowski, J B; Evans, D E; Vaandering, E W; Patrick, J F; Rechenmacher, R; Prosser, A G; Messer, T A; Tiradani, A R; Rivera, R A; Jayatilaka, B A; Todri, A; Ballesteros villamizar, D A; Tillman, J L; Harr, R F; Richman, J D; Bhandari, R; Priyanka, P; Dordevic, M; Cirkovic, P; Mora herrera, C; Rosa lopes zachi, A; De paula carvalho, W; Kinnunen, R L A; Lehti, S T; Maeenpaeae, T H; Bloch, D; Chabert, E C; Rudolf, N G; Devroede, O; Skovpen, K; Deroover, K; Moreels, L; Lontkovskyi, D; De wolf, E A; Van mechelen, P; Van spilbeeck, A B E; Georgiev, L S; Novaes, S F; Vaz da silva filho, M; Horisberger, R P; De la cruz, B; Willmott, C; Perez-calero yzquierdo, A M; Escalante del valle, A; Dejardin, M M; Bansal, S; Mehta, A; Barbagli, G; Focardi, E; Lista, L; Passeggio, G; Thyssen, F D M; Breglio, G; Bacchetta, N; Gasparini, U; Pantano, D; Sgaravatto, M; Ventura, S; Zotto, P; Candelori, A; Pozzobon, N; Boletti, A; Benato, L; Manghisoni, M; Ionica, M; Servoli, L; Postolache, V; Rossi, A; Ciangottini, D; Alunni solestizi, L; Castaldi, R; Verdini, P G; Fedi, G; Coscetti, S; Poulios, S; Maselli, S; Migliore, E; Amapane, N C; Lopez fernandez, R; Sanchez hernandez, A; Heredia de la cruz, I; Matveev, V; Kracikova, T; Shmatov, S; Vasilev, S; Kurenkov, A; Oleynik, D; Vasil'ev, T; Verkheev, A; Voytishin, N; Proskuryakov, A; Bogdanova, G; Latyshev, G; Bagaturia, I; Tsamalaidze, Z; Fiori, F; Zhao, Z; Arcaro, D J; Barberis, E; Teixeira de lima, R; Ralph, D K; Velasco, M M; Anastassov, A I; Odell, N J; Sevova, S; Li, W; Merlo, J; Onel, Y; Mermerkaya, H; Moeller, A R; Haytmyradov, M; Bugg, W M; Ragghianti, G C; Delannoy sotomayor, A G; Thapa, K; Yagil, A; Gerosa, R A; Kapustinsky, J S; Greene, S V; Zhang, L; Vlimant, J V; Mughal, A; Cury siqueira, S; Duarte, J M; Gershtein, Y; Arora, S R R; Lin, W X; Stickland, D P; Mc donald, K T; Pivarski, J M C; Medvedeva, T; Hebda, P; Rosenfield, M; Long, O R; Alvarez jr, G; Johnson, K F; Adams, T; Susa, T; Rykaczewski, H; Ge, Y; Liu, S; Li, J; Bloom, K A; Monroy montanez, J A; Kunori, S; Wang, Z; Favart, D; Maltoni, F; Quertenmont, L; Vidal marono, M; Francois, B A L; Delcourt, M; Markov, S I; Lyons, L; Seez, C; Vazquez acosta, M L; Richards, A J; Ferguson, W; Winterbottom, D; Saoulidou, N; Chatziangelou, M; Karathanasis, G; Jones, J A; Strologas, J; Katsoulis, P; Dutt, S; Roy chowdhury, S; Bhardwaj, R; Purohit, A; Behera, P K; Groote, J F; Untuc, B; Oztirpan, F O; Pak, N K; Osherson, M A; Luiggi lopez, E E; Krohn, M D; Tonjes, M B; Hadley, N J; Shin, Y H; Safonov, A; Eusebi, R; Rose, A K; Erbacher, R D; Pilot, J R; Klimenko, S; Matchev, K; Wang, J; Bortignon, P; Curry, D A; Carver, M R; Wilcox, S M; Sun, W M; Soffi, L; Lantz, S R; Wright, D; Cline, D; Cousins jr, R D; Yang, X; Schnaible, C J; Dasgupta, A; Bradley, D C; Duric, S; Monzat, D; Dodd, L M; Tikalsky, J L; Kapusta, J; Gilbert, W J; Lesko, Z J; Marinelli, N; Wayne, M R; Heering, A H; Galanti, M; Han, J Y; Duh, Y; Roy, A; Arabgol, M; Hacker, T J; Salva, S; Sigamani, M; Petrov, V; Barychevski, V; Drobychev, G; Lobko, A; Conte, E R E; Gattaz, O; Kasprowicz, G H; Kyberd, P; Cole, J E; Reid, I D; Berry, N; Lopez, J M; Benzon, A M; Pelagio, L; Walsh, M F; Carpinteyro bernardino, S; Postnov, A; Lelas, D; Vaitkus, J V; Jurciukonis, D; Bacevieius, G; Sulmanas, B; Ahmad, A; Ahmed, W; Jalil, S H; Saleem, R; Kahl, W E; Taylor, D R; Choi, Y I; Roy, T; Martinez ruiz del arbol, P; Hoss, J H; Schoenenberger, M A; Khateri, P; Safarzadeh samani, B; Etesami, S M; Kokabi, A; Pullia, A; Magni, S; Manzoni, R A; Brianza, L; Sanabria arenas, J C; Florez bustos, C A; Holguin coral, A; Mendez, H; Srimanobhas, N; Jaikar, A H; Arteche gonzalez, F J; Call, K R; Calderon monroy, M A; Bakhet, N; Aly mohamed mahmoud mohamed, R; Elkafrawy, T; Hammad, A H A; Abdelmaguid, A; Mal, P K; Yuan, L; Al kindi, A; Lomidze, I; Prangishvili, I; Adamov, G; Dube, S S; Dugad, S; Mohanty, G B; Bhowmik, S

    CMS is a general purpose proton-proton detector designed to run at the highest luminosity at the LHC. It is also well adapted for studies at the initially lower luminosities. The CMS Collaboration consists of over 1800 scientists and engineers from 151 institutes in 31 countries. The main design goals of CMS are: \\begin{enumerate} \\item a highly performant muon system, \\item the best possible electromagnetic calorimeter \\item high quality central tracking \\item hermetic calorimetry \\item a detector costing less than 475 MCHF. \\end{enumerate} All detector sub-systems have started construction. Engineering Design Reviews of parts of these sub-systems have been successfully carried-out. These are held prior to granting authorization for purchase. The schedule for the LHC machine and the experiments has been revised and CMS will be ready for first collisions now expected in April 2006. \\\\\\\\ ~~~~$\\bullet$ Magnet \\\\ The detector (see Figure) will be built around a long (13~m) and large bore ($\\phi$=5.9~m) high...

  9. Embedded Solenoid Transformer for Power Conversion

    DEFF Research Database (Denmark)

    2015-01-01

    A resonant power converter for operation in the radio frequency range, preferably in the VHF, comprises at least one PCB-embedded transformer. The transformer is configured for radio frequency operation and comprises a printed circuit board defining a horizontal plane, the printed circuit board...... comprising at least two horizontal conductive layers separated by an isolating layer, a first embedded solenoid forming a primary winding of the transformer and a second embedded solenoid being arranged parallel to the first solenoid and forming a secondary winding of the transformer, wherein the first and...

  10. Field measurements in the Fermilab electron cooling solenoid prototype

    CERN Document Server

    Crawford, A C

    2003-01-01

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10 sup - sup 4 rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R and D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated ...

  11. Magnetic fabric of ignimbrites : a case study from the central Anatolian volcanic province

    OpenAIRE

    Agro, A; Zanella, A; Le Pennec, Jean-Luc; Temel, A.

    2015-01-01

    The magnetic fabric of the Pliocene Kızılkaya ignimbrite in the Central Anatolian Volcanic Province has been investigated by anisotropy of magnetic susceptibility (AMS) and isothermal remanent magnetization (AIRM). Seven sections were sampled at various stratigraphic heights within the devitrified portion of the ignimbrite. The magnetic mineralogy is complex: titanomagnetite occurs as magmatic grains, and as inclusions in other phenocryst and glass shards; an oxidized phase and hema...

  12. Laser solenoid fusion--fission design

    International Nuclear Information System (INIS)

    The dependence of breeding performance on system engineering parameters is examined for laser solenoid fusion-fission reactors. Reactor performance is found to be relatively insensitive to most of the engineering parameters, and compact designs can be built based on reasonable technologies. Point designs are described for the prototype series of reactors (mid-term technologies) and for second generation systems (advanced technologies). It is concluded that the laser solenoid has a good probability of timely application to fuel breeding needs

  13. High magnetic field generation for laser-plasma experiments

    International Nuclear Information System (INIS)

    An electromagnetic solenoid was developed to study the effect of magnetic fields on electron thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system supplying 30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T is presented

  14. Magnetic resonance imaging of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Brant-Zawadzki, M.; Norman, D.

    1987-01-01

    This book presents the papers on technological advancement and diagnostic uses g magnetic resonance imaging. A comparative evaluation with computerized tomography is presented. Topics covered are imaging principles g magnetic resonance;instrumentation of magnetic resonance (MR);pathophysiology;quality and limitations g images;NMR imaging of brain and spinal cord;MR spectroscopy and its applications;neuroanatomy;Congenital malformations of brain and MR imaging;planning g MR imaging of spine and head and neck imaging.

  15. Containment of a diffuse ionized mass orbiting around a magnetized central body

    International Nuclear Information System (INIS)

    The containment of a diffused and ionized mass orbiting around a magnetized central body is studied and the condition equation is established. Some qualitative and quantitative applications to the planetary cosmogony problems are developed. (Auth.)

  16. An Investigation into the Electromagnetic Interactions between a Superconducting Torus and Solenoid for the Jefferson Lab 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rajput-Ghoshal, Renuka [JLAB; Ghoshal, Probir K. [JLAB; Fair, Ruben J. [JLAB; Hogan, John P. [JLAB; Kashy, David H. [JLAB

    2015-06-01

    The Jefferson Lab 12 GeV Upgrade in Hall B will need CLAS12 detector that requires two superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a Toroidal configuration (Torus) and the second is an actively shielded solenoidal magnet (Solenoid). Both the torus and solenoid are located in close proximity to one another and are surrounded by sensitive detectors. This paper investigates the electromagnetic interactions between the two systems during normal operation as well as during various fault scenarios as part of a Risk Assessment and Mitigation (RAM).

  17. Performance analysis of the TOPAZ thin superconducting solenoid

    International Nuclear Information System (INIS)

    The TOPAZ Thin Superconducting Solenoid was designed and manufactured for the high energy colliding particle detector TOPAZ currently being built for the TRISTAN project in the National Laboratory for High Energy Physics. This magnet is required to make its thickness as thin as possible to minimize the resolution deterioration of the detector. The following analyses and actual tests were carried out to guarantee the performance of the magnet: (1) Analysis of structure strength, (2) Analysis of heat performance, (3) Analysis of ''Quench'', (4) Strength test of ''GFRP'' support rod, (5) Thermal conduction test of GFRP support rod. The results of the analyses were well in agreement with the actual cooldown and excitation test of the magnet which was made after completion of the fabrication. Effectiveness and reliability of the analysis techniques were demonstrated. (author)

  18. Masses and magnetic moments of heavy flavour baryons in hyper central model

    Science.gov (United States)

    Patel, Bhavin; Raiyz, Ajay Kumar; Vinodkumar, P. C.

    2008-05-01

    We employ the hyper central approach to study the masses and magnetic moments of the baryons constituting single charm and beauty quark. The confinement potential is assumed in the hyper central co-ordinates of the coulomb plus power potential form.

  19. Masses and magnetic moments of heavy flavour baryons in hyper central model

    CERN Document Server

    Patel, Bhavin; Vinodkumar, P C

    2008-01-01

    We employ the hyper central approach to study the masses and magnetic moments of the baryons constituting single charm and beauty quark. The confinement potential is assumed in the hyper central co-ordinates of the coulomb plus power potential form.

  20. CMS central barrel yoke

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The CMS experiment at CERN will use a massive solenoid housed within this return yoke, which will weigh 12 500 tonnes when completed. Magnetic fields generated within this structure will reach levels greater than any other magnet of this kind and will store enough energy to melt 18 tonnes of gold. Within the yoke is positioned the external vacuum chamber into which the solenoid will be placed.

  1. Toroidal solenoids in the electromagnetic field and Aharonov-Casher effect

    International Nuclear Information System (INIS)

    The current toroidal configurations are found which generate gauge nonequivalent vector potentials and correspond to the same quantum scattering of charged particles. The equations for the motion of toroidal moment in the magnetic field are obtained. It is proved the existence of Aharonov-Casher effect for the toroidal solenoids. The relating experiments are proposed. 19 refs.; 7 figs

  2. TESTING OF FRAMED STRUCTURE PARTS OF COMPACT MUON SOLENOID BY NONDESTRUCTIVE METHOD

    Directory of Open Access Journals (Sweden)

    L. Larchenkov

    2014-09-01

    Full Text Available Suspension parts of a compact muon solenoid for Large Hadron Collider have been tested in the paper. The paper describes a steady-state and cyclic “tension-compression” load created by superconducting electromagnet with energy of 3 GJ and magnetic induction of 4 tesla. A nondestructive testing method has been applied in the paper.

  3. Laser heated solenoid as a neutron source facility

    International Nuclear Information System (INIS)

    Conceptual designs are presented for a radiation test facility based on a laser heated plasma confined in a straight solenoid. The thin plasma column, a few meters in length and less than a centimeter in diameter, serves as a line source of neutrons. Test samples are located within or just behind the plasma tube, at a radius of 1-2 cm from the axis. The plasma is heated by an axially-directed powerful long-wavelength laser beam. The plasma is confined radially in the intense magnetic field supplied by a pulsed solenoid surrounding the plasma tube. The facility is pulsed many times a second to achieve a high time-averaged neutron flux on the test samples. Based on component performance achievable in the near term (e.g., magnetic field, laser pulse energy) and assuming classical physical processes, it appears that average fluxes of 1013 to 1014 neutrons/cm2-sec can be achieved in such a device. The most severe technical problems in such a facility appear to be rapid pulsing design and lifetime of some electrical and laser components

  4. The superconducting strand for the CMS solenoid conductor

    CERN Document Server

    Curé, B; Campi, D; Goodrich, L F; Horváth, I L; Kircher, F; Liikamaa, R; Seppälä, J; Smith, R P; Teuho, J; Vieillard, L

    2002-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. Approximately 2000 km of superconducting strand is under procurement for the conductor of the CMS superconducting solenoid. Each strand length is required to be an integral multiple of 2.75 km. The strand is composed of copper- stabilized multifilamentary Nb-Ti with Nb barrier. Individual strands are identified by distinctive patterns of Nb-Ti filaments selected during stacking of the monofilaments. The statistics of piece length, measurements of I/sub c/, n-value, copper RRR, (Cu+Nb)/Nb-Ti ratio, as well as the results of independent cross checks of these quantities, are presented. A study was performed on the CMS strands to investigate the critical current degradation due to various heat treatments. The degradation versus annealing temperature and duration are reported. (4 refs).

  5. New technologies in the D0 central tracker upgrade

    International Nuclear Information System (INIS)

    The D0 collaboration has undertaken an aggressive upgrade of its central tracking system. The existing tracker will be completely removed and replaced by a two Tesla superconducting solenoidal magnet, an 837 000 channel silicon vertex system, and 80 000 channel scintillating fiber tracker, followed by a 7 680 channel central preshower detector and a 16 000 channel forward preshower detector. In this paper the author discusses all of the subsystems of the D0 central tracker upgrade, but will emphasize those aspects which involve new technology: radiation hard scintillating fiber, VLPC's and extruded scintillating strips

  6. The Engineering Design of the 1.5 m Diameter Solenoid for the MICE RFCC Modules

    OpenAIRE

    Wang, L; Green, M A; Xu, F Y; Wu, H; Li, L.K.; Gou, C.S.; Liu, C. S.; Han, G; Jia, L.X.; Li, D.; Prestemon, S. O.; Virostek, S.P.

    2008-01-01

    The RF coupling coil (RFCC) module of MICE is where muons that have been cooled within the MICE absorber focus (AFC) modules are re-accelerated to their original longitudinal momentum. The RFCC module consists of four 201.25 MHz RF cavities in a 1.4 meter diameter vacuum vessel. The muons are kept within the RF cavities by the magnetic field generated by a superconducting coupling solenoid that goes around the RF cavities. The coupling solenoid will be cooled using a pair of 4 K pulse tu...

  7. Magnetic-resonance velocity mapping of the central circulation

    DEFF Research Database (Denmark)

    Søndergaard, Lise

    1994-01-01

    flow profile during the cardiac cycle can be determined. This allows quantification of forward flow, regurgitant volume and regurgitant fraction in cases of heart-valve insufficiency. In valvular stenosis the transvalvular pressure gradient and valve area can be determined. Magnetic-resonance velocity......In magnetic-resonance (MR) velocity mapping there exists a linear relationship between the velocity and signal in each element of a tomographic image. The technique can be used for quantitative measurements of linear velocities (m s-1) and flow rates (1 min-1). By using cinematographic images the...

  8. Magnetic basement in the central Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, K.V.L; Ramana, M.V.; Ramprasad, T.; Desa, M.; Subrahmanyam, V.; Krishna, K.S.; Rao, M.M.M.

    . The N10-12 degrees W trending subsurface 85 degrees E Ridge buried under 2 to 3 km thick sediments is a prominent tectonic feature. Offshore basins characterised by deeper magnetic basement (approx. 9 km) and 100-200 km wide are present on either sides...

  9. Design and performance of fast ramping and modulation coil geometries in superconducting solenoids

    International Nuclear Information System (INIS)

    The design and manufacturer of fast ramping and modulation coil geometries using wire wound filamentary Nb/sub 3/Sn and NbTi standard conductors is discussed. Construction and performance details are presented for three different solenoid designs. First, a NbTi 120mm bore two section magnet with an inner section capable of generating an additional 1 Tesla field in 10 seconds with the outer section energized to 7 Tesla. Secondly, a 2 Tesla 45kmm bore NMR solenoid which can be energized to full field in 1.1 seconds. Thirdly, a Nb/sub 3/Sn modulation coil which can produce a modulation field of 50 milliTesla at frequencies up to 1 kHz within the bore of a 12 Tesla solenoid

  10. A feasibility study of a linear laser heated solenoid fusion reactor. Final report

    International Nuclear Information System (INIS)

    This report examines the feasibility of a laser heated solenoid as a fusion or fusion-fission reactor system. The objective of this study, was an assessment of the laser heated solenoid reactor concept in terms of its plasma physics, engineering design, and commercial feasibility. Within the study many pertinent reactor aspects were treated including: physics of the laser-plasma interaction; thermonuclear behavior of a slender plasma column; end-losses under reactor conditions; design of a modular first wall, a hybrid (both superconducting and normal) magnet, a large CO2 laser system; reactor blanket; electrical storage elements; neutronics; radiation damage, and tritium processing. Self-consistent reactor configurations were developed for both pure fusion and fusion-fission designs, with the latter designed both to produce power and/or fissile fuels for conventional fission reactors. Appendix A is a bibliography with commentary of theoretical and experimental studies that have been directed at the laser heated solenoid

  11. Manufacture and Test of a Small Ceramic-Insulated Nb$_{3}$Sn Split Solenoid

    CERN Document Server

    Bordini, B; Rossi, L; Tommasini, D

    2008-01-01

    A small split solenoid wound with high-Jc Nb3Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP®) strand, was built and tested at CERN in order to study the applicability of: 1) ceramic wet glass braid insulation without epoxy impregnation of the magnet; 2) a new heat treatment devised at CERN and particularly suitable for reacting RRP® Nb3Sn strands. This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 95 % of their short sample limits at the first quench; in split solenoid configuration the maximum field values in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due to self fi...

  12. Anisotropy magnetic susceptibility measurements of vulcanic rock from merapi mountain in central Java

    International Nuclear Information System (INIS)

    Anisotropy Magnetic susceptibility indicated a differences of Magnetic susceptibility value of a sample due to the direction or orientation of magnetic field on it. The 22 sample's were taken from lour area around Merapi mountain in central Java and their Anisotropy Magnetic susceptibility were measured by using MS2 Bartington. The 22 sample's shown a high susceptibility value about 8037.5 x 105. Eleven sample's have high anisotropy ( it's anisotropy degree about 16% ). The rest of the sample have an anisotropy degree less than 6% (sample's from pasar bubar, Kali Kuning, Kali Gendong, Kali Gendol Utara). This result give an indication that a part of the sample's can be used for paleomagnetic

  13. Conceptual fusion reactor designs based on the laser heat solenoid

    International Nuclear Information System (INIS)

    The feasibility of the laser heated solenoid (LHS) as an approach to fusion and fusion-fission commercial power generation has been examined. The LHS concept is based on magnetic confinement of a long slender plasma column which is partly heated by the axially directed beam from a powerful long wavelength laser. As a pure fusion concept, the LHS configurations studied so far are characterized by fairly difficult engineering constraints, particularly on the magnet, a large laser, and a marginally acceptable system energy balance. As a fusion-fission system, however, the LHS is capable of a very attractive energy balance, has much more relaxed engineering constraints, requires a relatively modest laser, and as such holds great potential as a power generator and fissile fuel breeding scheme

  14. On tame embeddings of solenoids into 3-space

    OpenAIRE

    Jiang, Boju; Wang, Shicheng; Zheng, Hao; Zhou, Qing

    2006-01-01

    Solenoids are ``inverse limits'' of the circle, and the classical knot theory is the theory of tame embeddings of the circle into the 3-space. We give some general study, including certain classification results, of tame embeddings of solenoids into the 3-space as the ``inverse limits'' of the tame embeddings of the circle. Some applications are discussed. In particular, there are ``tamely'' embedded solenoids $\\Sigma\\subset \\R^3$ which are strictly achiral. Since solenoids are non-planar, th...

  15. Clinical magnetic resonance spectroscopy of the central nervous system.

    Science.gov (United States)

    Ratai, Eva-Maria; Gilberto González, R

    2016-01-01

    Proton magnetic resonance spectroscopy (1H MRS) is a noninvasive imaging technique that can easily be added to the conventional magnetic resonance (MR) imaging sequences. Using MRS one can directly compare spectra from pathologic or abnormal tissue and normal tissue. Metabolic changes arising from pathology that can be visualized by MRS may not be apparent from anatomy that can be visualized by conventional MR imaging. In addition, metabolic changes may precede anatomic changes. Thus, MRS is used for diagnostics, to observe disease progression, monitor therapeutic treatments, and to understand the pathogenesis of diseases. MRS may have an important impact on patient management. The purpose of this chapter is to provide practical guidance in the clinical application of MRS of the brain. This chapter provides an overview of MRS-detectable metabolites and their significance. In addition some specific current clinical applications of MRS will be discussed, including brain tumors, inborn errors of metabolism, leukodystrophies, ischemia, epilepsy, and neurodegenerative diseases. The chapter concludes with technical considerations and challenges of clinical MRS. PMID:27432661

  16. Assessment of diagnostic methods for solenoid-operated valves

    International Nuclear Information System (INIS)

    Solenoid-operated valves (SOVs) were studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study was to identify, evaluate, and recommend methods for inspection, surveillance, monitoring, and maintenance of SOVs that can help ensure their operational readiness -- that is, their ability to perform required safety functions under all anticipated operating conditions, since failure of one of these small and relatively inexpensive devices could have serious consequences under certain circumstances. Intrusive techniques requiring the addition of magnetic or acoustic sensors or the application of special test signals were investigated briefly, but major emphasis was placed on the examination of condition-indicating techniques that can be applied with minimal cost and impact on plant operation. These include monitoring coil mean temperature remotely by means of coil dc resistance or ac impedance, determining valve plunger position by means of coil ac impedance, verifying unrestricted SOV plunger movement by measuring current and voltage at their critical bistable (pull-in and drop-out) values, and detecting the presence of shorted turns or insulation breakdown within the solenoid coil using interrupted-current test methods. Experimental results are presented that demonstrate the technical feasibility and praticality of the monitoring techniques assessed in the study, and recommendations for further work are provided

  17. Magnetic resonance imaging of sequelae of central pontine myelinolysis in chronic alcohol abusers

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, Akira; Kudo, Sho [Department of Radiology, Saga Medical School, 5-1-1 Nabeshima, 849-8501, Saga (Japan); Yuzuriha, Takefumi; Murakami, Masaru; Endoh, Koichi; Hiejima, Shigeto; Koga, Hiroshi [Center for Emotional and Behavional Disorders, Hizen National Hospital, 160 Mitsu, Higashisefuri, Kanzaki, 842-0192, Saga (Japan)

    2003-12-01

    Central pontine myelinolysis (CPM) is one of the serious neurological complications of alcoholism. This study evaluated magnetic resonance images of sequelae of CPM. Approximately 600 alcoholic patients were examined by a 1.0-T magnetic resonance imaging device, and 11 patients were retrospectively found to have a central pontine lesion, a presumed sequela of CPM. The lesions had various shapes and most were cavitary. In 3 of the 11 patients bilateral symmetrical oval lesions were faintly visible in the middle cerebellar peduncles. These middle cerebellar peduncular lesions were diagnosed as having Wallerian degeneration of the pontocerebellar tract secondary to CPM. (orig.)

  18. Magnet® Hospital Recognition Linked to Lower Central Line-Associated Bloodstream Infection Rates.

    Science.gov (United States)

    Barnes, Hilary; Rearden, Jessica; McHugh, Matthew D

    2016-04-01

    Central-line-associated bloodstream infections (CLABSI) are among the deadliest heathcare-associated infections, with an estimated 12-25% mortality rate. In 2014, the Centers for Medicare and Medicaid Services (CMS) began to penalize hospitals for poor performance with respect to selected hospital-acquired conditions, including CLABSI. A structural factor associated with high-quality nursing care and better patient outcomes is The Magnet Recognition Program®. The purpose of this study was to explore the relationship between Magnet status and hospital CLABSI rates. We used propensity score matching to match Magnet and non-Magnet hospitals with similar hospital characteristics. In a matched sample of 291 Magnet hospitals and 291 non-Magnet hospitals, logistic regression models were used to examine whether there was a link between Magnet status and CLABSI rates. Both before and after matching, Magnet hospital status was associated with better (lower than the national average) CLABSI rates (OR = 1.60, 95%CI: 1.10, 2.33 after matching). While established programs such as Magnet recognition are consistently correlated with high-quality nursing work environments and positive patient outcomes, additional research is needed to determine whether Magnet designation produces positive patient outcomes or rewards existing excellence. PMID:26809115

  19. Central swallowing in normal adults using functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Shasha Li; Cheng Luo; Chengqi He; Qiyong Gong; Dong Zhou

    2009-01-01

    BACKGROUND: While brain-imaging studies in healthy adults have indicated that multiple cortical regions are involved in swallowing, these functional imaging techniques have not been extensively applied to the complete understand neurophysiology of swallowing in China. A full understanding of normal swallowing neurophysiology is important for improving functional outcomes for dysphagia due to neurologic disorders or damage with increasing age. Thus the interpretations of the functional contributions of various brain areas in swallowing should be scientifically researched.OBJECTIVE: To identify the activation and characteristic of swallowing center in healthy adults using functional magnetic resonance imaging.DESIGN, TIME AND SETTING: An uncontrolled neuroimaging study was performed at the Outpatient Clinic, Department of Radiology, West China Hospital of Sichuan University between March and November 2008.PARTICIPANTS: Ten healthy right-handed volunteers, aged over 20 years with a mean age of (34.2 ±8.1) years, a range of 25-45 years and including five males and five females participated. A medical history was obtained from all potential subjects and all subjects were free of systemic diseases and neurological disorders.METHODS: The healthy volunteers were examined with event-related functional magnetic resonance imaging of blood oxygenation level-dependent while laryngeal swallow-related movements were recorded. Subjects were scanned during voluntary saliva swallowing and water bolus swallowing activation tasks. Data was processed using the General Linear Model. A voxel by voxel group comparison was performed using random effect analysis. Any cluster with a corrected P < 0.05 for spatial extent was considered significant.MAIN OUTCOME MEASURES: The cerebral cortical activation maps of voluntary swallowing of saliva and swallowing of water bolus in healthy adults were observed.RESULTS: A multifocal cortical representation of swallowing was in the precentral gyrus

  20. Technical specification for the 1.5 Tesla superconducting solenoid for the BaBar detector. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, T.G.; Bell, R. [Lawrence Livermore National Lab., CA (United States); Fabbricatore, P. [Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Giorgi, M.; Hitlin, D. [BABAR Collaboration (Italy)

    1997-03-07

    This document sets forth the specification of the BABAR superconducting solenoid and power supply which is being supplied to the BABAR collaboration by INSTITUTO NAZIONALE DI FISICA NUCLEARE (INFN). The solenoid will be installed in the BABAR detector which will be located at Interaction Region 2 (IR2) of the PEP II machine, a positron electron collider, presently under construction at the Stanford Linear Accelerator Center (SLAC) located in Menlo Park, California. The solenoid will become part of the BABAR detector which will be used in SLAC`s high energy physics program. Intense beams of electrons and positrons are made to collide inside the solenoid magnet. High field uniformity quality, precise mechanical alignment and long term stability are essential characteristics of the solenoid. INFN will set up a committee that will provide contractual and technical oversight throughout the design, fabrication and installation phases of the BABAR solenoid construction. That committee will be the final authority to resolve any differences between these specifications and the INFN supplied drawings, in addition to any differences between these specifications or the INFN supplied drawings and the proposals from the vendor. All submissions for approval to INFN whether for design changes, material approval, design submissions or others as required by this specification shall be acted upon INFN within two (2) weeks of receipt of the submissions. If no answer is given the vendor may assume approval and proceed.

  1. Magnetic and bathymetric investigations over the Vema Region of the Central Indian Ridge: Tectonic implications

    Digital Repository Service at National Institute of Oceanography (India)

    Drolia, R.K.; Ghose, I.; Subrahmanyam, A.S.; Rao, M.M.M.; Kessarkar, P.M.; Murthy, K.S.R.

    Magnetic and bathymetric data were collected along N50 degrees E profiles in the Vema Region (7-12 degrees S, 64-70 degrees E) across five ridge segments of the Central Indian Ridge (CIR). Anomalies up to A5 (10 Ma), identified by generating...

  2. Laser ion source with solenoid field

    International Nuclear Information System (INIS)

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator

  3. Laser ion source with solenoid field

    Science.gov (United States)

    Kanesue, Takeshi; Fuwa, Yasuhiro; Kondo, Kotaro; Okamura, Masahiro

    2014-11-01

    Pulse length extension of highly charged ion beam generated from a laser ion source is experimentally demonstrated. The laser ion source (LIS) has been recognized as one of the most powerful heavy ion source. However, it was difficult to provide long pulse beams. By applying a solenoid field (90 mT, 1 m) at plasma drifting section, a pulse length of carbon ion beam reached 3.2 μs which was 4.4 times longer than the width from a conventional LIS. The particle number of carbon ions accelerated by a radio frequency quadrupole linear accelerator was 1.2 × 1011, which was provided by a single 1 J Nd-YAG laser shot. A laser ion source with solenoid field could be used in a next generation heavy ion accelerator.

  4. Construction of compact FEM using solenoid-induced helical wiggler

    International Nuclear Information System (INIS)

    A prototype of compact Free-Electron Maser (FEM) has been designed for the operation in a usual small laboratory which does not have electric source capacity available enough. The electron energy is 60-120 keV. As it is lower, stronger guiding magnetic field is necessary in addition to wiggler field. To fulfil this condition a solenoid-induced helical wiggler is applied from the viewpoint of saving the electric power of restricted source capacity. The wiggler, for example, with the period of 12 mm creates the field of 92 G in the guiding field of 3.2 kG. The whole system of FEM has been just constructed in a small-scale laboratory. It is so small to occupy the area of 0.7x2.9 m2

  5. Development of Aluminum Stabilized Superconducting Cables for the Mu2e Detector Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Vito [Fermilab; Buehler, M. [Fermilab; Lamm, M. [Fermilab; Page, T. [Fermialb; Curreli, S. [INFN, Genoa; Fabbricatore, P. [INFN, Genoa; Musenich, R. [INFN, Genoa

    2015-10-16

    The Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream of the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.

  6. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  7. Tests of a large air-core superconducting solenoid as a nuclear-reaction-product spectrometer

    International Nuclear Information System (INIS)

    An air-core superconducting solenoid, with a diameter of 0.2 m and a length of 0.4 m, has been configured for use as a heavy-ion reaction-product spectrometer (E/A≤5 MeV/u) near θ = 0 0. The spectrometer has a large solid angle (10--35 msr) and properties suitable for time-of-flight measurements with flight paths approx. > 2 m. The performance of the spectrometer was established using α-particle sources and nuclear-reaction products from heavy-ion collisions. The characteristics of air-core magnets are compared to those of steel-yoke magnets. The simplicity and ease of operation of the air-core magnet, without significant problems from the (axial) fringe fields, suggests that larger air-core magnets with dΩ≥20 msr and capable of focusing ions with E/A≥30 MeV/u are feasible. Other applications of solenoids and combinations of solenoids with radial electric-field lenses (ELCO lenses) are also discussed, including designs which focus more than one charge state simultaneously

  8. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  9. Effects of a 60 Hz magnetic field on central cholinergic systems of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W. (Univ. of Washington, Seattle (United States))

    1993-03-15

    The authors studied the effects of an acute exposure to a 60 Hz magnetic field on sodium-dependent, high-affinity choline uptake in the brain of the rat. Decreases in uptake were observed in the frontal cortex and hippocampus after the animals were exposed to a magnetic field at flux densities [>=] 0.75 mT. These effects of the magnetic field were blocked by pretreating the animals with the narcotic antagonist naltrexone, but not by the peripheral opioid antagonist, naloxone methiodide. These data indicate that the magnetic-field-induced decreases in high-affinity choline uptake in the rat brain were mediated by endogenous opioids in the central nervous systems.

  10. Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.

    Science.gov (United States)

    Dolliver, D D; Ordonez, C A

    1999-06-01

    A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions. PMID:11969700

  11. Aberrations due to solenoid focusing of a multiply charged high-current ion beam

    CERN Document Server

    Grégoire, G; Lisi, N; Schnuriger, J C; Scrivens, R; Tambini, J

    2000-01-01

    At the output of a laser ion source, a high current of highly charged ions with a large range of charge states is available. The focusing of such a beam by magnetic elements causes a nonlinear space-charge field to develop which can induce large aberrations and emittance growth in the beam. Simulation of the beam from the CERN laser ion source will be presented for an ideal magnetic and electrostatic system using a radially symmetric model. In addition, the three dimensional software KOBRA3 is used for the simulation of the solenoid line. The results of these simulations will be compared with experiments performed on the CERN laser ion source with solenoids (resulting in a hollow beam) and a series of gridded electrostatic lenses. (5 refs).

  12. The interpretation of magnetic anomalies by 3D inversion: A case study from Central Iran

    Science.gov (United States)

    Tavakoli, M.; Nejati Kalateh, A.; Ghomi, S.

    2016-03-01

    The thick sedimentary units in Central Iran contain structures that form oil traps and are underlain by a basaltic layer which is amenable for study using its magnetic susceptibility. The study and modeling of such sedimentary structures provide valuable exploratory information. In this study, we locate and interpret an underground magnetic susceptibility interface using 3D non-linear inverse modeling of magnetic data to make a better judgment in the context of hydrocarbon existence. The 3D structure is reconstructed by making it equal to a number of side by side rectangular hexahedrons or prisms and calculating their thicknesses such that the bottoms of the prisms are corresponding to the magnetic susceptibility interface. By one of the most important mathematical tool in computational science, Taylor series, the non-linear problem changes to a linear problem near to initial model. In many inverse problems, we often need to invert large size matrices. To find the inverse of these matrices we use Singular Value Decomposition (SVD) method. The algorithm by an iterative method comparing model response with actual data will modify the initial guess of model parameters. The efficiency of the method and subprograms, programmed in MATLAB, has been shown by inverse modeling of free noise and noise-contaminated synthetic data. Finally, we inverted magnetic field data from Garmsar area in Central Iran which the results were acceptable.

  13. View through the CMS detector during the cooldown of the solenoid on February 2006

    CERN Multimedia

    Richard Breedon, UC Davis

    2006-01-01

    Image looking along the beam direction through CMS. One can see, from the inside out: the patch panels and cables for the Preshower and ECAL; the front of the endcap HCAL; some cathode strip chambers (CSCs) for detecting muons; the sealed solenoid (the first circular silver-coloured ring) currently being cooled to operating temperature and held by the central barrel yoke ring (red and orange); one of the other barrel yoke rings installed with many muon chambers (silver rectangular boxes).

  14. Regional gravity and magnetic studies over the continental margin of the Central West Coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.; KameshRaju, K.A.; Subrahmanyam, V.; Rao, D

    ) 10:31-36 Geo-Marine Letters © 1990 Springer-Verlag New York Inc y Regional Gravity and Magnetic Studies over the Continental Margin of the Central West Coast of India L. V. Subba Raju, K. A. Kamesh Raju, V. Subrahmanyam, and D. Gopala Rao National... Institute of Oceanography, Dona Paula, Goa 403 004, India Abstract Gravity studies over the continental margin of the central west coast of India show a sediment thickness of 2-3 km on the shelf associated with deeper hoest and graben structures, of 6 km...

  15. A comparative study of PPM and solenoid focusing in multibeam electron gun

    International Nuclear Information System (INIS)

    This paper represents the comparison of periodic permanent magnet (PPM) and solenoid focusing for dual anode multi-beam electron gun using OPERA3D code. The electron gun has been operated at 6 kV having 75 mA beam current with 0.45 mm beam waist radius. The design has an additional feature of cathode protection from ion bombardment with the application of extra ion barrier anode.

  16. Measuring the Magnetic Flux Density in the CMS Steel Yoke

    CERN Document Server

    Klyukhin, V I; Ball, A; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Mulders, M; Loveless, R

    2012-01-01

    The Compact Muon Solenoid (CMS) is a general purpose detector, designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with 6-m-diameter by 12.5-m-length free bore, enclosed inside a 10000-ton return yoke made of construction steel. The return yoke consists of five dodecagonal three-layered barrel wheels and four end-cap disks at each end comprised of steel blocks up to 620 mm thick, which serve as the absorber plates of the muon detection system. Accurate characterization of the magnetic field everywhere in the CMS detector is required. To measure the field in and around the steel, a system of 22 flux-loops and 82 3-D Hall sensors is installed on the return yoke blocks. Fast discharges of the solenoid (190 s time-constant) made during the CMS magnet surface commissioning test at the solenoid central fields of 2.64, 3.16, 3.68 and 4.01 T were used to induce voltages in the flux-loops. The voltages are measured on-line a...

  17. Physical Basis of Magnetic Resonance Spectroscopy and its Application to Central Nervous System Diseases

    Directory of Open Access Journals (Sweden)

    Nicolás Fayed

    2006-01-01

    Full Text Available Magnetic Resonance Spectroscopy is based on the chemical shift property of the atom nuclei when a magnetic field is applied. This technique offers invaluable information about living tissues with special contribution to the diagnosis and prognosis of the central nervous system diseases. Concentration of several metabolites can be assessed in a reproducible manner by means of modern clinical scanners. N-acetyl-aspartate is regarded as a neuronal marker and its levels reflect the neuronal density with significant decreases in degenerative disease such as Alzheimer's disease. Choline-compounds reflect the cell's membrane turnover and degradation. Myo-inositol has emerged as a glial marker with increases in degenerative diseases. The major usefulness of MRS has been reported in brain tumors, degenerative disorders, myelination defects and encephalopathies. In this review we report the physical basis and the contribution of MR spectroscopy to the diagnosis and prognosis of several diseases of the Central Nervous System.

  18. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain

    OpenAIRE

    Jeanmonod, D.; Werner, B.; Morel, A.; Michels, L; Zadicario, E; Schiff, G.; Martin, E.

    2012-01-01

    Object Recent technological developments open the field of therapeutic application of focused ultrasound to the brain through the intact cranium. The goal of this study was to apply the new transcranial magnetic resonance imaging-guided focused ultrasound (tcMRgFUS) technology to perform noninvasive central lateral thalamotomies (CLTs) as a treatment for chronic neuropathic pain. Methods In 12 patients suffering from chronic therapy-resistant neuropathic pain, tcMRgFUS CLT was propos...

  19. C.A.P. plasma physics summer school, Banff, June 1975. I. Experiments on laser-heated solenoids and pinches

    International Nuclear Information System (INIS)

    A review is given of experimental progress on the use of long wavelength lasers (CO2 or CO) to heat long, magnetically confined plasma columns to thermonuclear temperatures. Theoretical studies of the feasibility of the concept for controlled fusion power are reviewed. The laser-heated solenoid concept is reviewed in particular

  20. A detailed rock-magnetic and archeomagnetic study of lime-plasters from central Mexico

    Science.gov (United States)

    Soler-Arechalde, A. M.; Rodriguez, M.; Ramirez, O.; Gogichaishvili, A.; Caballero-Miranda, C.; Hueda-Tanabe, Y.; Urrutia-Fucugauchi, J.

    2003-04-01

    We carried out a reconnaissance rock-magnetic and archeomagnetic investigations of lime-plasters at some most important pre-Hispanic sites in Central Mexico. Both burned and unburned lime plasters (in total 30 samples) were analyzed from Teotihuacan, Tlatelolco, Santa Cruz Atizapan and Pañhu. The characteristic directions determined in this study are considered to be of primary origin. Thermomagnetic investigation show that the remanence is carried in most cases by magnetite or Ti-poor titanomagnetite. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic structure grains as responsible for remanent magnetization. Single-component, linear demagnetization plots were observed in most of cases. The mean site directions are consistent with the available reference master curve for Mesoamerica.

  1. Design and experimental results of the Nb3Sn double insert for an 18 tesla, 100 mm free bore solenoid

    International Nuclear Information System (INIS)

    A high field, large free bore (more than 100 mm at 4.2 K) solenoid for the LASA Lab of INFN-Milan is almost completed. The Nb3Sn insert, constituted by two coils independently supplied, is designed to provide a central field in excess of 18 tesla when immersed in the background field of 8 tesla when immersed in the background field of 8 tesla generated by a NbTi solenoid of 550 mm room temperature bore (this last solenoid already being in operation). The construction technique--W and R followed by vacuum impregnation--is described and the results of tests and measurements carried out on models wound with the real conductor (a NbSn/Cu Rutherford flat cable) are reported

  2. AC Loss Analysis on the Superconducting Coupling Magnet in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Wang, Li; Green, Michael; Li, LanKai; Xu, FengYu; Liu, XiaoKun; Jia, LinXinag

    2008-07-08

    A pair of coupling solenoids is used in MICE experiment to generate magnetic field which keeps the muons within the iris of thin RF cavity windows. The coupling solenoids have a 1.5-meter inner diameter and will produce 7.4 T peak magnetic field. Three types of AC losses in coupling solenoid are discussed. The affect of AC losses on the temperature distribution within the cold mass during charging and rapid discharging process is analyzed also. The analysis result will be further confirmed by the experiment of the prototype solenoid for coupling solenoid, which will be designed, fabricated and tested at ICST.

  3. Origin of 1015–1016 G magnetic fields in the central engine of gamma ray bursts

    International Nuclear Information System (INIS)

    Various authors have suggested that the gamma-ray burst (GRB) central engine is a rapidly rotating, strongly magnetized, ( ∼ 1015–1016 G) compact object. The strong magnetic field can accelerate and collimate the relativistic flow and the rotation of the compact object can be the energy source of the GRB. The major problem in this scenario is the difficulty of finding an astrophysical mechanism for obtaining such intense fields. Whereas, in principle, a neutron star could maintain such strong fields, it is difficult to justify a scenario for their creation. If the compact object is a black hole, the problem is more difficult since, according to general relativity it has ''no hair'' (i.e., no magnetic field). Schuster, Blackett, Pauli, and others have suggested that a rotating neutral body can create a magnetic field by non-minimal gravitational-electromagnetic coupling (NMGEC). The Schuster-Blackett form of NMGEC was obtained from the Mikhail and Wanas's tetrad theory of gravitation (MW). We call the general theory NMGEC-MW. We investigate here the possible origin of the intense magnetic fields ∼ 1015–1016 G in GRBs by NMGEC-MW. Whereas these fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC-MW. It not only explains the origin of the ∼ 1015–1016 G fields when the compact object is a neutron star, but also when it is a black hole

  4. Experimental studies of helical solenoid model based on YBCO tape-bridge joints

    Energy Technology Data Exchange (ETDEWEB)

    Yu, M.; Lombardo, V.; Turrioni, D.; Zlobin, A.V.; /Fermilab; Flangan, G.; /MUONS Inc., Batavia; Lopes, M.L.; /Fermilab; Johnson, R.P.; /Fermilab

    2011-06-01

    Helical solenoids that provide solenoid, helical dipole and helical gradient field components are designed for a helical cooling channel (HCC) proposed for cooling of muon beams in a muon collider. The high temperature superconductor (HTS), 12 mm wide and 0.1 mm thick YBCO tape, is used as the conductor for the highest-field section of HCC due to certain advantages, such as its electrical and mechanical properties. To study and address the design, and technological and performance issues related to magnets based on YBCO tapes, a short helical solenoid model based on double-pancake coils was designed, fabricated and tested at Fermilab. Splicing joints were made with Sn-Pb solder as the power leads and the connection between coils, which is the most critical element in the magnet that can limit the performance significantly. This paper summarizes the test results of YBCO tape and double-pancake coils in liquid nitrogen and liquid helium, and then focuses on the study of YBCO splices, including the soldering temperatures and pressures, and splice bending test.

  5. On the Suitability of a Solenoid Horn for the ESS Neutrino Superbeam

    CERN Document Server

    Olvegård, Maja; Ruber, R; Ziemann, R; Koutchouk, J -P

    2015-01-01

    The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H- operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs ...

  6. Beam Dynamics Based Design of Solenoid Channel for TAC Proton Linac

    CERN Document Server

    Kisoglu, H F

    2014-01-01

    Today a linear particle accelerator (linac), in which electric and magnetic fields are of vital importance, is one of the popular energy generation sources like Accelerator Driven System (ADS). A multipurpose, including primarily ADS, proton linac with energy of ~2 GeV is planned to constitute within the Turkish Accelerator Center (TAC) project collaborated by more than 10 Turkish universities. A Low Energy Beam Transport (LEBT) channel with two solenoids is a subcomponent of this linac. It transports the proton beam ejected by an ion source, and matches it with the Radio Frequency Quadrupole (RFQ) that is an important part of the linac. The LEBT channel would be consisted of two focusing solenoids and some diagnostic elements such as faraday cup, BC transformers, etc. This paper includes a beam dynamical design and optimization study of LEBT channel for TAC proton linac done by using a beam dynamics simulation code PATH MANAGER and comparing of the simulation results with the theoretical expectations.

  7. Value of computed tomography and magnetic resonance imaging in diagnosis of central nervous system

    International Nuclear Information System (INIS)

    Systemic sclerosis is an autoimmune connective tissue disease characterized by vascular abnormalities and fibrotic changes in skin and internal organs. The aim of the study was to investigate involvement of the central nervous system in systemic sclerosis and the value of computed tomography (CT) and magnetic resonance imaging (MRI) in evaluation of central nervous system involvement in systemic sclerosis. 26 patients with neuropsychiatric symptoms in the course of systemic sclerosis were investigated for central nervous system abnormalities by computed tomography (CT) and magnetic resonance imaging (MRI). Among these 26 symptomatic patients lesions in brain MRI and CT examinations were present in 54% and in 50% patients respectively. Most common findings (in 46% of all patients), were symptoms of cortical and subcortical atrophy, seen in both, MRI and CT. Single and multiple focal lesions, predominantly in the white matter, were detected by MRI significantly more frequently as compared to CT (62% and 15% patients respectively). These data indicate that brain involvement is common in patients with severe systemic sclerosis. MRI shows significantly higher than CT sensitivity in detection focal brain lesions in these patients. (author)

  8. Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis.

    Science.gov (United States)

    Chen, Qiang; Lin, Gui-Miao; Wu, Nan; Tang, Sheng-Wei; Zheng, Zhi-Jia; Lin, Marie Chia-Mi; Xu, Gai-Xia; Liu, Hao; Deng, Yue-Yue; Zhang, Xiao-Yun; Chen, Si-Ping; Wang, Xiao-Mei; Niu, Han-Ben

    2016-05-01

    Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity. Bioelectromagnetics. Bioelectromagnetics. 37:244-255, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061713

  9. Update on monitoring of magnetic and electromagnetic tectonic signals in Central Italy

    Directory of Open Access Journals (Sweden)

    P. Palangio

    2007-06-01

    Full Text Available A network of three absolute magnetometer stations and the geomagnetic observatory of L’Aquila (42°23N, 13°19E monitors possible seismo- or tectonomagnetic effects in Central Italy, using L’Aquila Observatory as a reference for differentiation. A system of two VLF search coil wide-band antennas, working in two different frequency bands, at the L’Aquila Observatory, monitors possible electromagnetic effects related to seismic events occurring in Central Italy. Absolute magnetic field observations and VLF signals have been collected for several years. In particular the tectono-magnetic network started its operations in 1989. In this paper we report on the time variation of above mentioned data for the most recent years 2002 and 2003, also in connection with older measurements time series; we also report on seismic activity recorded in this area by the national seismic network. In the above mentioned time interval, no strong earthquake activity was recorded, and at the same time no clear evidence for magnetic or electromagnetic signals related to seismic events was found.

  10. The magnetic field for the ZEUS central detector - analysis and correction of the field measurement

    International Nuclear Information System (INIS)

    The magnetic field in the central tracking region of the ZEUS-detector - a facility to investigate highly energetic electron-proton-collisions at the HERA-collider at DESY Hamburg - is generated by a superconducting coil and reaches 18 kG (1.8 T). Some of the tracking devices particularly the drift chambers in the proton forward and rear direction (FTD1-3 and RTD) are not fully contained within the coil and therefore situated in a highly inhomogeneous magnetic field: The radial component Br is up to 6.6 kG, maximum gradients are found to be 300 G/cm for δBr/δr. Evaluating the space drifttime relation necessitates a detailed knowledge of the magnetic field. To reach this goal we analysed the field measurements and corrected them for systematic errors. The corrected data were compared with the field calculations (TOSCA-maps). Measurements and calculations are confirmed by studying consistency with Maxwell's equations. The accuracy reached is better than 100 G throughout the forward and central drift chambers (FTD1-3, CTD) and better than 150 G in the RTD. (orig.)

  11. Nano-solenoid: helicoid carbon-boron nitride hetero-nanotube

    Science.gov (United States)

    Zhang, Zi-Yue; Miao, Chunyang; Guo, Wanlin

    2013-11-01

    As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano-solenoid can generate a uniform and tremendous magnetic field of more than 1 tesla, closing to that generated by the main magnet of medical nuclear magnetic resonance. Moreover, the magnitude of magnetic field can be easily modulated by bias voltage, providing great promise for a nano-inductor to realize electromagnetic conversion at the nanoscale.As a fundamental element of a nanoscale passive circuit, a nano-inductor is proposed based on a hetero-nanotube consisting of a spiral carbon strip and a spiral boron nitride strip. It is shown by density functional theory associated with nonequilibrium Green function calculations that the nanotube exhibits attractive transport properties tunable by tube chirality, diameter, component proportion and connection manner between the two strips, with excellent `OFF' state performance and high current on the order of 10-100 μA. All the hetero-nanotubes show negative differential resistance. The transmission peaks of current are absolutely derived from the helicoid carbon strips or C-BN boundaries, giving rise to a spiral current analogous with an energized nano-solenoid. According to Ampere's Law, the energized nano-solenoid

  12. Solenoid coil for mouse-model MRI with a clinical 3-Tesla imager: body imaging

    OpenAIRE

    Hidalgo, S. S.; D. Jirak; S.E. Solis; Rodríguez, A.O.

    2009-01-01

    A solenoid coil was built for magnetic resonance imaging of the mice. A coil prototype composed of 5 turns, with a length of 4 cm and 2.5 cm radius was developed to acquire (whole) body mouse magnetic resonance images at 130 MHz and an insertable gradient coil set. Coil performance was measured using the Q factor for both the loaded and unloaded cases were 161.67 and 178.03, respectively. These Q factors compare very well with those values reported in the literature. The images were acquired ...

  13. Initial plasma start-up using partial solenoid coils in Versatile Experiment Spherical Torus (VEST)

    International Nuclear Information System (INIS)

    Highlights: ► Initial plasma start-up experiments using unique partial solenoid coils are conducted in VEST. ► Ohmic discharges with ECH pre-ionization have been performed with pre-programed start-up scenario. ► A plasma current of around 0.4 kA has been achieved by using partial solenoid coils at Bt = 0.1 T. ► Modified start-up scenario with upgraded power supplies will be pursued for higher plasma currents. -- Abstract: Initial plasma start-up experiments based on ohmic discharge using partial solenoid coils located at both vertical ends of a center stack have been carried out in Versatile Experiment Spherical Torus (VEST) at Seoul National University. Ohmic discharges with the help of microwave pre-ionization have been performed according to the pre-programed start-up scenario which was experimentally verified by a series of vacuum field measurements using an internal magnetic probe array. A plasma current of around 0.4 kA has been achieved by ohmic discharge using partial solenoid coils, under the toroidal magnetic field of 0.1 T. The vacuum field calculation and fast camera image have revealed that the small plasma current even with significant amount of loop voltage up to 9.7 V is attributed to the imbalance of poloidal field for equilibrium. Modification of the start-up scenario and upgrade of power supplies are proposed to be carried out in order to achieve higher plasma current in the future experiments

  14. GPR and Magnetic Modeling on an Archaeological Site in Central Mexico

    Science.gov (United States)

    Chavez, R. E.; Argote, D. L.; Camara, M. E.; Cifuentes, G.; Lopez, P.

    2007-05-01

    A geophysical study was carried out in an archaeological site called Los Teteles de Ocotitla, which means `bunch of rocks'. The area is located within the central portion of the Sierra de Ocotitla, towards the northeast of La Malinche volcano, in the municipality of Altzayanca, State of Tlaxcala. This site is conformed of several artificial terraces with evidence of human occupation, probably from the Teotihuacan or Tenanyecac phase. At first the presence of several hills, which are the remains of small pyramids can be seen. Also, some exposed walls and floors can be appreciated. The geophysical work included magnetic (vertical field) and GPR observations in five terraces. The magnetic data depicted a series of dipolar anomalies probably related to walls, and stairways. A report from a previous archaeological excavation carried out almost 30 years ago on an upper terrace, mentioned the discovery of an ancient burial. The tomb was a room (3x2x2 m3) to a depth of 1 m, where corpse remains were found, along other archaeological artifacts. Magnetic and GPR profiles were observed in this area to define geophysical signatures of the mentioned ancient structure, to later compare with anomalies obtained in other terraces. Two interesting anomalies were observed in two lower terraces that compared well with the signatures obtained. The magnetic anomalies were modeled employing a 3D inverse approach, assuming that the Earth is conformed of a series of magnetic dipoles. The final result produced a magnetic block of 5x3x3 m3 to a depth of 1.5 m, approximately. The GPR anomalies helped to constrain the initial geometry of the archaeological structure.

  15. Magnetic anomalies across Bastar craton and Pranhita–Godavari basin in south of central India

    Indian Academy of Sciences (India)

    I V Radhakrishna Murthy; S Bangaru Babu

    2009-02-01

    Aeromagnetic anomalies over Bastar craton and Pranhita –Godavari (P –G)basin in the south of central India could be attributed to NW –SE striking mafic intrusives in both the areas at variable depths.Such intrusions can be explained considering the collision of the Bastar and Dharwar cratons by the end of the Archaean and the development of tensile regimes that followed in the Paleoproterozoic,facilitating intrusions of mafic dykes into the continental crust.The P –G basin area,being a zone of crustal weakness along the contact of the Bastar and Dharwar cratons, also experienced extensional tectonics.The inferred remanent magnetization of these dykes dips upwards and it is such that the dykes are oriented towards the east of the magnetic north at the time of their formation compared to their present NW –SE strike.Assuming that there was no imprint of magnetization of a later date,it is concluded that the Indian plate was located in the southern hemisphere,either independently or as part of a supercontinent,for some span of time during Paleoproterozoic and was involved in complex path of movement and rotation subsequently. The paper presents a case study of the utility of aeromagnetic anomalies in qualitatively deducing the palaeopositions of the landmasses from the interpreted remanent magnetism of buried intrusive bodies.

  16. Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields

    Science.gov (United States)

    Kovář, Jiří; Slaný, Petr; Cremaschini, Claudio; Stuchlík, Zdeněk; Karas, Vladimír; Trova, Audrey

    2016-06-01

    We study electrically charged perfect fluid toroidal structures encircling a spherically symmetric gravitating object with Schwarzschild spacetime geometry and endowed with a dipole magnetic field. The work represents a direct continuation of our previous general-relativistic studies of electrically charged fluid in the approximation of zero conductivity, which formed tori around a Reissner-Nordström black hole or a Schwarzschild black hole equipped with a test electric charge and immersed in an asymptotically uniform magnetic field. After a general introduction of the zero-conductivity charged fluid model, we discuss a variety of possible topologies of the toroidal fluid configurations. Along with the charged equatorial tori forming interesting coupled configurations, we demonstrate the existence of the off-equatorial tori, for which the dipole type of magnetic field seems to be necessary. We focus on orbiting structures with constant specific angular momentum and on those in permanent rigid rotation. We stress that the general analytical treatment developed in our previous works is enriched here by the integrated form of the pressure equations. To put our work into an astrophysical context, we identify the central object with an idealization of a nonrotating magnetic neutron star. Constraining ranges of its parameters and also parameters of the circling fluid, we discuss a possible relevance of the studied toroidal structures, presenting along with their topology also pressure, density, temperature and charge profiles.

  17. Nuclear magnetic resonance imaging of the central nervous system; A good use of the possibilities. Kernspinresonantie-tomografie van het centrale zenuwstelsel; Een goed gebruik van de mogelijkheden

    Energy Technology Data Exchange (ETDEWEB)

    Knaap, M.S. van der (Rijksuniversiteit Utrecht (Netherlands). Academisch Ziekenhuis); Valk, J. (Vrije Universiteit, Amsterdam (Netherlands). Afdeling Radiodiagnostiek en Neuroradiologie)

    1989-12-09

    In this article a review is given of the use of magnetic resonance imaging for the central nervous system. An example of the screening of the population for multiple scelerosis is given. A good preliminary examination and the supply of relevant information to the person which performs the imaging is necessary. (R.B.). 9 figs.; 4 tabs.

  18. Test operations of the VENUS superconducting magnet at KEK

    International Nuclear Information System (INIS)

    The superconducting magnet of the VENUS detector was successfully operated with a central field of 0.75 T. A cryogenic system kept the coil temperature to below 4.5 K. When a coil quench was induced by built-in heaters, the stored energy of 11.7 MJ was safely extracted from the magnet to the outside dump resistor. The iron structure of the magnet yoke supported the magnetic force of about 230 t wit a maximum elastic deformation of 0.4 mm. The maximum leakage field at the location of the barrel electromagnetic calorimeter was 33 G. The magnetic field was mapped in the solenoid bore by an NMR probe and by three-dimensional Hall probes with an accuracy of order 10-4. The field was confirmed to be uniform within 0.3% deviation in the spaital region of a central drift chamber. (orig.)

  19. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  20. Conceptual design report for the Solenoidal Tracker at RHIC

    International Nuclear Information System (INIS)

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of Δp/p ∼ 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,Δp/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets

  1. The LHC Compact Muon Solenoid experiment Detector Control System

    International Nuclear Information System (INIS)

    The Compact Muon Solenoid (CMS) experiment at CERN is a multi-purpose experiment designed to exploit the physics of proton-proton collisions at the Large Hadron Collider collision energy (14TeV at centre of mass) over the full range of expected luminosities (up to 1034cm−2s−1). The CMS detector control system (DCS) ensures a safe, correct and efficient operation of the detector so that high quality physics data can be recorded. The system is also required to operate the detector with a small crew of experts who can take care of the maintenance of its software and hardware infrastructure. The subsystems size sum up to more than a million parameters that need to be supervised by the DCS. A cluster of roughly 100 servers is used to provide the required processing resources. A scalable approach has been chosen factorizing the DCS system as much as possible. CMS DCS has made clear a division between its computing resources and functionality by creating a computing framework allowing plugging in of functional components. DCS components are developed by the subsystems expert groups while the computing infrastructure is developed centrally. To ensure the correct operation of the detector, DCS organizes the communication between the accelerator and the experiment systems making sure that the detector is in a safe state during hazardous situations and is fully operational when stable conditions are present. This paper describes the current status of the CMS DCS focusing on operational aspects and the role of DCS in this communication.

  2. Assessment of diagnostic methods for solenoid-operated valves

    International Nuclear Information System (INIS)

    Solenoid-operated valves (SOVS) were studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study was to identify, evaluate, and recommend methods for inspection, surveillance, monitoring, and maintenance of SOVs that can help ensure their operational readiness-that is, their ability to perform required safety functions under all anticipated operating conditions, since failure of one of these small and relatively inexpensive devices could have serious consequences under certain circumstances. An earlier (Phase 1) NPAR program study described SOV failure modes and causes and identified measurable parameters thought to be linked to the progression of ever-present degradation mechanisms that may ultimately result in functional failure of the valve. Using this earlier work as a guide, the present (Phase II) study focused on devising and then demonstrating the effectiveness of techniques and equipment with which to measure performance parameters that show promise for detecting the presence and trending the progress of such degradations before they reach a critical stage. Intrusive techniques requiring the addition of magnetic or acoustic sensors or the application of special test signals were investigated briefly, but major emphasis was placed on the examination of condition-indicating techniques that can be applied with minimal cost and impact on plant operation. Experimental results are presented that demonstrate the technical feasibility and practicality of the monitoring techniques assessed in the study, and recommendations for further work are provided

  3. The EVA trigger: Transverse momentum selection in a solenoid

    International Nuclear Information System (INIS)

    A custom CMOS LSI and ECL PAL-based trigger system for a particle physics experiment is presented. The EVA apparatus at Brookhaven National Laboratory is designed to observe large angle scattering near the kinematic limit of pT for hadron-proton scattering with cross sections in the picobarn range and interaction rates of 100 MHz. The trigger selects events with high pT tracks in a solenoidal straw tube tracking magnetic spectrometer in three stages. An ECL PAL scintillation hodoscope pretrigger and timing mask is followed by pT reconstruction from three superlayers of straw tube drift chambers using custom CMOS LSI integrated circuits. The higher level CMOS trigger system is implemented on custom modules and functions at secondary trigger rates in excess of 1 MHz. A Motorola MC68000 microprocessor resides on each module and uses global information on the event to provide a third trigger level. The modules are interfaced to VMEbus, controlled by a single board VME computer. ((orig.))

  4. Inservice diagnostic methods for solenoid-operated valves

    International Nuclear Information System (INIS)

    Solenoid-operated valves (SOVs) were studied at Oak Ridge National Laboratory as part of the USNRC Nuclear Plant Aging Research (NPAR) Program. The primary objective of the study was to identify, evaluate, and recommend methods for inspection, surveillance, monitoring, and maintenance of SOVs that can help ensure their operational readiness-that is, their ability to perform required safety functions under all anticipated operating conditions, since failure of one of these small and relatively inexpensive devices could have serious consequences under certain circumstances. An earlier (Phase 1) NPAR program study described SOV failure modes and causes and had identified measurable parameters thought to be linked to the progression of everpresent degradation mechanisms that may ultimately result in functional failure of the valve. Using this earlier work as a guide, the present (Phase 11) study focused on devising and then demonstrating the effectiveness of techniques and equipment with which to measure performance parameters that show promise for detecting the presence and trending the progress of such degradations before they reach a critical stage. Intrusive techniques requiring the addition of magnetic or acoustic sensors or the application of special test signals were investigated briefly, but major emphasis was placed on the examination of condition-indicating techniques that can be applied with minimal cost and impact on plant operation. Experimental results are presented that demonstrate the technical feasibility and practicality of the monitoring techniques assessed in the study, and recommendations for further work are provided

  5. A new muon-pion collection and transport system design using superconducting solenoids based on CSNS

    CERN Document Server

    Xiao, Ran; Xu, Wenzhen; Ni, Xiaojie; Pan, Ziwen; Ye, Bangjiao

    2015-01-01

    A new muon and pion capture system was proposed at the under-conduction China Spallation Neutron Source (CSNS). Using about 4 % of the pulsed proton beam (1.6 GeV, 4 kW and 1 Hz) of CSNS to bombard a cylindrical graphite target inside a superconducting solenoid both surface muons and pions can be acquired. The acceptance of this novel capture system - a graphite target wrapped up by a superconducting solenoid - is larger than the normal muon beam lines using quadrupoles at one side of the separated muon target. The muon and pion production at different capture magnetic fields was calculated by Geant4, the bending angle of the capture solenoid with respect to the proton beam was also optimized in simulation to achieve more muons and pions and to reduce proton dosages to following beam elements. According to the layout of the muon experimental area reserved at the CSNS project, a preliminary muon beam line was designed with multi-propose muon spin rotation areas(surface, decay and low-energy muons). Finally, hi...

  6. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  7. An investigation of electromagnetic rig-generated strong magnetic fields

    OpenAIRE

    Ekreem, Nasser B.

    2009-01-01

    In this thesis, two alternative solenoid designs are presented: 'Air-core' coil design and 'C-shape' coil design. The coils were designed to be capable of generating strong and static magnetic fields in various samples of magnetic materials. In the case of the first design, the sample would be placed in the central air space. In the second design, the sample would be placed in part of the 'jaws' of the 'C' shape. It was intended that the rig would be used to measure the magnetostriction strai...

  8. A conduction-cooled, 680-mm-long warm bore, 3-T Nb3Sn solenoid for a Cerenkov free electron laser

    OpenAIRE

    Wessel, W.A.J.; Ouden, den, W.; Krooshoop, H.J.G.; Kate, ten, Herman H.J.; Wieland, J; Slot, van der, J.

    1999-01-01

    A compact, cryocooler cooled Nb3Sn superconducting magnet system for a Cerenkov free electron laser has been designed, fabricated and tested. The magnet is positioned directly behind the electron gun of the laser system. The solenoidal field compresses and guides a tube-shaped 100 A, 500 kV electron beam. A two-stage GM cryocooler, equipped with a first generation ErNi5 regenerator, cools the epoxy impregnated solenoid down to the operating temperature of about 7.5 K. This leaves a conservati...

  9. Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab

    2015-01-01

    The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids

  10. The electromagnetic calorimeter for the solenoidal tracker at RHIC

    International Nuclear Information System (INIS)

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding

  11. The Compact Muon Solenoid Detector Control System

    CERN Document Server

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  12. Analysis of temperature field of direct action solenoid valve

    International Nuclear Information System (INIS)

    Background: Hydraulic Control Rod Drive Technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology Tsinghua University owns HCRDT's independent intellectual property rights. Purpose: Integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. The performance of the coil affects the service behavior of the solenoid valve, so the thermal performance of the coil is researched. Methods: The temperature field of the coil of the direct action solenoid valve was analyzed using the ANSYS software with various currents, the results of which were validated by experiments. Results: The result shows that the temperature of the coil of the solenoid valve increases with the current increasing firstly. Second, the temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. Third, the coefficient of thermal conductivity of the coil is obtained. Fourth, the highest temperature of the coil is under the limiting temperature. Furthermore, the comparison of the temperature of the coil achieved by calculation with the one achieved by experiment under different condition shows that the calculation results are rational if the experiment errors are considered. Conclusions: The results can be provided for the parameter design of the solenoid valve. (authors)

  13. Rock magnetic properties of the Arunta Block, Central Australia, and their implication for the interpretation of long-wavelength magnetic anomalies

    Science.gov (United States)

    Kelso, Paul R.; Banerjee, Subir K.; Teyssier, Christian

    1993-01-01

    Rock magnetic and petrologic studies of a suite of deep crustal rocks from the Arunta Block of Central Australia reveal that the granulite grade rocks are in general much more magnetic than the amphibolite grade samples irrespective of bulk rock composition. The dominant magnetic mineral in all samples is relatively pure magnetite as determined from thermomagnetic and electron microprobe analysis. The bulk magnetic properties are typical of pseudosingle-domain to multidomain size material. The samples from our study have very large remanences compared to previous crustal magnetic studies, with the granulites having a median natural remanent magnetization of 4.1 A/m and Koenigsberger ratio of 7.2. These remanences are relatively resistant to the thermal demagnetization, with nearly 50 percent of the magnetization remaining after 400 C demagnetization. Thus remanence may contribute significantly to the observed magnetic anomalies, including long-wavelength magnetic anomalies, the source of which resides at depth and therefore at elevated temperature, where a thermoviscous remanant magnetization along the present-day field is likely to dominate.

  14. Spherical aberration from trajectories in real and hard-edge solenoid fields

    Indian Academy of Sciences (India)

    BISWAS B

    2016-06-01

    For analytical, real and hard-edge solenoidal axial magnetic fields, the low-energy electron trajectories are obtained using the third-order paraxial ray equation. Using the particle trajectories, it is shown that the spherical aberration in the hard-edge model is high and it increases monotonously with hard edginess, although the focal length converges, in agreement with a recentfield and spherical aberration model. The model paved the way for a hard-edge approximation that gives correct focal length and spherical aberration, which is verified here by the trajectory method. In essence, we show that exact hard-edge fields give infinite spherical aberrations.

  15. Transporting laser-accelerated protons by a pulsed solenoid to a CH- DTL

    International Nuclear Information System (INIS)

    This study demonstrates the transporting and focusing of laser-accelerated protons at energies of ten to several tens of MeV, by a pulsed magnetic solenoid with a field gradient up to 18 T. The unique features of the protons distribution like extremely small emittances and high yield of the order of 1013 protons per shot, make them attractive for study. With respect to transit energies further acceleration by matching into rf linac seems adequate. The bunch injection into a proposed CH- structure is under investigation at IAP Frankfurt. Options and simulation tools are presented.

  16. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis

    DEFF Research Database (Denmark)

    Møller, S; Søndergaard, L; Møgelvang, J;

    1995-01-01

    ), and end-systolic volumes (RVSV and LVSV) determined by magnetic resonance imaging (MRI). RVDV (122 vs. control 166 mL, P < .02), RVSV (41 vs. 80 mL, P < .02) and right atrial volume (47 vs. 64 mL, P < .05) were significantly reduced in the patients. In contrast, LVDV (134 vs. 129 mL, NS), LVSV (54 vs...... the cardiac output (CO) multiplied by the central circulation time, was significantly decreased (1.47 vs. 1.81 L, P < .05). The noncentral blood volume (4.43 vs. 3.64 L, P < .02), plasma volume (4.05 vs. 3.27 L, P < .02), and CO (7.11 vs. control 5.22 L/min, P < .01) were significantly increased in...

  17. Decreased right heart blood volume determined by magnetic resonance imaging: evidence of central underfilling in cirrhosis

    DEFF Research Database (Denmark)

    Møller, Søren; Søndergaard, Lise; Møgelvang, J; Henriksen, O; Henriksen, Jens Henrik

    1995-01-01

    ), and end-systolic volumes (RVSV and LVSV) determined by magnetic resonance imaging (MRI). RVDV (122 vs. control 166 mL, P < .02), RVSV (41 vs. 80 mL, P < .02) and right atrial volume (47 vs. 64 mL, P < .05) were significantly reduced in the patients. In contrast, LVDV (134 vs. 129 mL, NS), LVSV (54 vs...... the cardiac output (CO) multiplied by the central circulation time, was significantly decreased (1.47 vs. 1.81 L, P <.05). The noncentral blood volume (4.43 vs. 3.64 L, P < .02), plasma volume (4.05 vs. 3.27 L, P < .02), and CO (7.11 vs. control 5.22 L/min, P < .01) were significantly increased in the...

  18. Examination of magnetic resonance soundings in the Central Platter River Basin for ground water model enhancements

    Science.gov (United States)

    Abraham, J. D.; Kress, W. H.; Cannia, J. C.; Steele, G. V.; Smith, B. D.; Woodward, D.

    2008-12-01

    In 2007, the USGS in cooperation with the Central Platte Natural Resources District, central Nebraska, initiated a four year study to test the usefulness of magnetic resonance rounding (MRS) to gather information on aquifer characteristics. Magnetic resonance sounding is a ground surface applied tool which has the potential to measure hydraulic conductivity at depth using noninvasive means. This in turn will provide a low cost alternative to traditional aquifer tests. MRS also will allow for collection of large data sets of aquifer properties during short periods of time. The work is under way in Dawson County near Lexington, Nebraska to characterize the hydrogeology of the Quaternary-age alluvial and underlying Tertiary-age Ogallala Group aquifers that occur within the Platte River Valley. This county was selected because it lies in an area of Nebraska that has major groundwater- surface water management issues which have stimulated the development of regional and local groundwater models. Data used to evaluate the MRS during this study were derived from traditional constant discharge aquifer tests, borehole flow meter tests, lithologic descriptions, borehole geophysics, and time-domain electromagnetic soundings. This study presents methods and interpretation of MRS. The MRS-derived hydraulic conductivity data will be compared to hydraulic conductivity data from two separate constant discharge pumping tests of the alluvium and Ogallala Group aquifers at Site 72 The MRS-derived hydraulic conductivity data will also be compared to conductivity estimates based on data from a borehole flow meter test. This information can potentially be incorporated into groundwater models of the area to provide improved data sets of aquifer characteristics. The research will document an integrated MRS, surface geophysical, borehole geophysical, borehole flow meter and aquifer test approach in which the hydrostratigraphy of the Platte River alluvial aquifer and Ogallala aquifer can be

  19. A design of novel type superconducting magnet for super-high field functional magnetic resonance imaging by using the harmonic analysis method of magnetic vector potentials

    Science.gov (United States)

    Zu, Dong-Lin; Guo, Hua; Song, Xiao-Yu; Bao, Shang-Lian

    2002-10-01

    The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4×6 layers of superconducting wires is designed. The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/B0 in the single-solenoid magnet is 30% lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.

  20. Curved planar reformation images for identification of the central sulcus of affected hemispheres. Comparison with functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    The aim of the present study was to evaluate the curved planar reformation (CPR) for identification of the central sulcus on affected hemispheres. Thirty four patients with an intracranial lesion adjacent to the central sulcus underwent functional magnetic resonance imaging (fMRI). fMRI was performed with a 3.0 Tesla scanner during repetitive opening and closing of each hand. The central sulcus was defined as the nearest sulcus to the highest activation spots. Three-dimensional magnetic resonance imaging date sets were processed using the CPR method to create brain surface reformatted images. We evaluated five anatomical features widely used for clinical identification of the central sulcus: 1, termination of the superior frontal sulcus in the precentral sulcus; 2, the intraparietal sulcus joining the postcentral sulcus; 3, the precentral gyros thicker than the postcentral gyrus; 4, inverted omega-shape of the precentral gyrus; and 5, the central sulcus as an isolated sulcus. fMRI and CPR coincided in defining the central sulcus in 34 hemispheres of patients. Applicability of each of the five signs was 61.8, 73.5, 58.8, 50.0 and 67.6%, respectively. The present study indicates that the CPR method successfully defined the central sulcus in most patients with brain tumors. For identification of the central sulcus, the CPR method will be recommended. (author)

  1. Magnetic Signatures and Curie Surface Trend Across an Arc-Continent Collision Zone: An Example from Central Philippines

    Science.gov (United States)

    Manalo, Pearlyn C.; Dimalanta, Carla B.; Ramos, Noelynna T.; Faustino-Eslava, Decibel V.; Queaño, Karlo L.; Yumul, Graciano P.

    2016-01-01

    Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc-continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc-continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust-mantle interface.

  2. Magnetic Signatures and Curie Surface Trend Across an Arc-Continent Collision Zone: An Example from Central Philippines

    Science.gov (United States)

    Manalo, Pearlyn C.; Dimalanta, Carla B.; Ramos, Noelynna T.; Faustino-Eslava, Decibel V.; Queaño, Karlo L.; Yumul, Graciano P.

    2016-05-01

    Ground and aeromagnetic data are combined to characterize the onshore and offshore magnetic properties of the central Philippines, whose tectonic setting is complicated by opposing subduction zones, large-scale strike-slip faulting and arc-continent collision. The striking difference between the magnetic signatures of the islands with established continental affinity and those of the islands belonging to the island arc terrane is observed. Negative magnetic anomalies are registered over the continental terrane, while positive magnetic anomalies are observed over the Philippine Mobile Belt. Several linear features in the magnetic anomaly map coincide with the trace of the Philippine Fault and its splays. Power spectral analysis of the magnetic data reveals that the Curie depth across the central Philippines varies. The deepest point of the magnetic crust is beneath Mindoro Island at 32 km. The Curie surface shallows toward the east: the Curie surface is 21 km deep between the islands of Sibuyan and Masbate, and 18 km deep at the junction of Buruanga Peninsula and Panay Island. The shallowest Curie surface (18 km) coincides with the boundary of the arc-continent collision, signifying the obduction of mantle rocks over the continental basement. Comparison of the calculated Curie depth with recent crustal thickness models reveals the same eastwards thinning trend and range of depths. The coincidence of the magnetic boundary and the density boundary may support the existence of a compositional boundary that reflects the crust-mantle interface.

  3. Electrical characterization of S/C conductor for the CMS solenoid

    CERN Document Server

    Fabbricatore, P; Farinon, S; Greco, Michela; Kircher, F; Musenich, R

    2005-01-01

    The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. The coil is wound from 20 high purity aluminum-stabilized NbTi conductors with a total length of 45 km. The main peculiarity of the CMS magnet among other existing thin detector solenoids is its sandwich-type aluminum-stabilized superconductor. This special feature was chosen in order to have a mechanically self-supporting winding structure. We measured the critical current of all the 21 finished conductors in fields up to 6 T using the Ma.Ri.S.A. test facility at INFN-Genova. We compare these results with the critical current of single strands measured by CEA- Saclay, extracted from the conductor after the co-extrusion. A comparison among the measurements provides information about the possible critical current degradation and assures an accurate quality control of the conductor pr...

  4. Constructing a 4-TESLA Large Thin Solenoid at the Limit of what can BE Safely Operated

    Science.gov (United States)

    Hervé, A.

    The 4-tesla, 6 m free bore CMS solenoid has been successfully tested, operated and mapped at CERN during the autumn of 2006 in a surface hall and fully recommissioned in the underground experimental area in the autumn of 2008. The conceptual design started in 1990, the R&D studies in 1993, and the construction was approved in 1997. At the time the main parameters of this project were considered beyond what was thought possible as, in particular, the total stored magnetic energy reaches 2.6 GJ for a specific magnetic energy density exceeding 11 kJ/kg of cold mass. During this period, the international design and construction team had to make several important technical choices, particularly mechanical ones, to maximize the chances of reaching the nominal induction of 4 T. These design choices are explained and critically reviewed in the light of what is presently known to determine if better solutions would be possible today for constructing a new large high-field thin solenoid for a future detector magnet.

  5. Design and fabrication of a 30 T superconducting solenoid using overpressure processed Bi2212 round wire

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [Muons, Inc., Batavia, IL (United States); Johnson, Rolland [Muons, Inc., Batavia, IL (United States)

    2016-02-18

    High field superconducting magnets are used in particle colliders, fusion energy devices, and spectrometers for medical imaging and advanced materials research. Magnets capable of generating fields of 20-30 T are needed by future accelerator facilities. A 20-30 T magnet will require the use of high-temperature superconductors (HTS) and therefore the challenges of high field HTS magnet development need to be addressed. Superconducting Bi2Sr2CaCu2Ox (Bi2212) conductors fabricated by the oxide-powder-in-tube (OPIT) technique have demonstrated the capability to carry large critical current density of 105 A/cm2 at 4.2 K and in magnetic fields up to 45 T. Available in round wire multi-filamentary form, Bi2212 may allow fabrication of 20-50 T superconducting magnets. Until recently the performance of Bi2212 has been limited by challenges in realizing high current densities (Jc ) in long lengths. This problem now is solved by the National High Magnetic Field Lab using an overpressure (OP) processing technique, which uses external pressure to process the conductor. OP processing also helps remove the ceramic leakage that results when Bi-2212 liquid leaks out from the sheath material and reacts with insulation, coil forms, and flanges. Significant advances have also been achieved in developing novel insulation materials (TiO2 coating) and Ag-Al sheath materials that have higher mechanical strengths than Ag-0.2wt.% Mg, developing heat treatment approaches to broadening the maximum process temperature window, and developing high-strength, mechanical reinforced Bi-2212 cables. In the Phase I work, we leveraged these new opportunities to prototype overpressure processed solenoids and test them in background fields of up to 14 T. Additionally a design of a fully superconducting 30 T solenoid was produced. This work in conjunction with the future path outlined in the Phase II proposal would

  6. Structural analysis of the central Columbia Plateau utilizing radar, digital topography, and magnetic data bases

    International Nuclear Information System (INIS)

    Interest in the Hanford site (Washington) as a nuclear production, power, and waste disposal site has led to generation of a vast quantity of geophysical and remote sensing data sets of the central Columbia Plateau. To data, these various studies, including at least 13 independent magnetic linear and image lineament studies, have not been adequately correlated. Therefore, these studies provide a unique opportunity to compare and contrast the viability of the different geophysical and remote sensing techniques. The geology of the central Columbia Plateau is characterized by subdued topography and limited outcrop, with most of the exposure concentrated in localized folded/faulted mountains (the Yakima folds) and along river canyons. In order to efficiently compare lineament data bases, we have written an automated computer routine that correlated lineaments that are within a user specified distance of each other. The angle between their trends has to be less than an input maximum separation angle. If more than two lineament maps exist for the area, the analyst may also specify the minimum number of times each structure must be seen. The lineament correlation routine was applied to data bases of all aeromagnetic linears as well as lineaments seen on radar and a digital elevation model DEM image. Geologic structures align with a set of three-dimensional planar structures identified with our Geologic Spatial Analysis (GSA) system. The GSA analysis is based upon computer automated detection of valley bottoms as defined by a DEM

  7. Anatomic and Functional Evaluation of Central Lymphatics With Noninvasive Magnetic Resonance Lymphangiography.

    Science.gov (United States)

    Kim, Eun Young; Hwang, Hye Sun; Lee, Ho Yun; Cho, Jong Ho; Kim, Hong Kwan; Lee, Kyung Soo; Shim, Young Mog; Zo, Jaeil

    2016-03-01

    Accurate assessment of the lymphatic system has been limited due to the lack of optimal diagnostic methods. Recently, we adopted noncontrast magnetic resonance (MR) lymphangiography to evaluate the central lymphatic channel. We aimed to investigate the feasibility and the clinical usefulness of noninvasive MR lymphangiography for determining lymphatic disease.Ten patients (age range 42-72 years) with suspected chylothorax (n = 7) or lymphangioma (n = 3) who underwent MR lymphangiography were included in this prospective study. The thoracic duct was evaluated using coronal and axial images of heavily T2-weighted sequences, and reconstructed maximum intensity projection. Two radiologists documented visualization of the thoracic duct from the level of the diaphragm to the thoracic duct outlet, and also an area of dispersion around the chyloma or direct continuity between the thoracic duct and mediastinal cystic mass.The entire thoracic duct was successfully delineated in all patients. Lymphangiographic findings played a critical role in identifying leakage sites in cases of postoperative chylothorax, and contributed to differential diagnosis and confirmation of continuity with the thoracic duct in cases of lymphangioma, and also in diagnosing Gorham disease, which is a rare disorder. In patients who underwent surgery, intraoperative findings were matched with lymphangiographic imaging findings.Nonenhanced MR lymphangiography is a safe and effective method for imaging the central lymphatic system, and can contribute to differential diagnosis and appropriate preoperative evaluation of pathologic lymphatic problems. PMID:27015184

  8. The LASS [Larger Aperture Superconducting Solenoid] spectrometer

    International Nuclear Information System (INIS)

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K+ and K- interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K-p interactions during 1977 and 1978, which is also described briefly

  9. Interpretation of magnetic data of the Laachach gossan (central Jebilets, Morocco: mining implications

    Directory of Open Access Journals (Sweden)

    Jaffal, M.

    2010-12-01

    Full Text Available In the hercynian massif of Central Jebilets (Morocco, outcrop a large number of gossans which sometimes top economical orebodies (Kettara, Draa Sfar, etc.. The present study is devoted to the interpretation of magnetic data covering one of these iron hats, located near of the Laachach village, at about thirty kilometres north-westward of Marrakech. The magnetic map of Laachach highlights several anomalies which coincide with the outcrop of the gossan. Detailed analysis of reduced to the pole data allows us to conclude that these anomalies may be due to submeridian magnetic structures cut by a set of dextral transverse faults. These structures are generally dipping westward but they can be locally sub vertical. The Euler deconvolution of the magnetic data gives moderately deeping solutions (22 to 254 m. The quantitative interpretation of the two principal magnetic anomalies highlighted in the study area lead to better characterising of the deep structure of the Laachach magnetic bodies, that may correspond to massive sulphide occurrences, according to the geological and mining context of the study area. The two modelled bodies constitute priority recognition targets for any mining exploration program to be car ried out on the Laachach site.

    [fr] Le massif hercynien des Jebilets centrales (Maroc est caractérisé par l’affleurement de nombreux chapeaux de fer dont certains coiffent des amas sulfurés de grande importance économique (Kettara, Draa Sfar, etc.. Le présent travail porte sur l’interprétation de données magnétiques couvrant l’un de ces chapeaux de fer qui se situe près du village de Laachach à une trentaine de kilomètres au Nord- Ouest de Marrakech. La carte magnétique du secteur étudié met en évidence plusieurs anomalies qui coïncident avec l’affleurement du chapeau de fer. Après réduction au pôle des données, l’analyse détaillée de ces anomalies permet de conclure que celles-ci seraient dues à des

  10. Interpretation of magnetic data of the Laachach gossan (central Jebilets, Morocco): mining implications; Interpretation des donnees magnetiques du chapeau de fer de Laachach (Jebilets centrales, Maroc): Implications minieres

    Energy Technology Data Exchange (ETDEWEB)

    Jaffal, M.; El Goumi, N; Hibti, M.; Adama Dairou, A.; Kchikach, A.; Manar, A.

    2010-07-01

    In the hercynian massif of Central Jebilets (Morocco), outcrop a large number of gossans which sometimes top economical orebodies (Kettara, Draa Sfar, etc.). The present study is devoted to the interpretation of magnetic data covering one of these iron hats, located near of the Laachach village, at about thirty kilometres north-westward of Marrakech. The magnetic map of Laachach highlights several anomalies which coincide with the outcrop of the gossan. Detailed analysis of reduced to the pole data allow us to conclude that these anomalies may be due to submeridian magnetic structures cut by a set of dextral transverse faults. These structures are generally dipping westward but they can be locally subvertical. The Euler deconvolution of the magnetic data gives moderately deeping solutions (22 to 254 m). The quantitative interpretation of the two principal magnetic anomalies highlighted in the study area lead to better characterising of the deep structure of the Laachach magnetic bodies, that may correspond to massive sulphide occurrences, according to the geological and mining context of the study area. The two modelled bodies constitute priority recognition targets for any mining exploration program to be carried out on the Laachach site. (Author).

  11. Superconducting magnet systems for the ANL EPR design

    International Nuclear Information System (INIS)

    The magnet systems for the current Argonne experimental power reactor (EPR) design build on the earlier designs but incorporate a number of improvements. The toroidal field (TF) coil system consists of 16 coils of the constant tension shape, with NbTi, copper, and stainless steel as superconductor, stabilizer, and support material respectively. They are designed for 10 T operation at 3.7 K or 9 T operation at 4.2 K. Two changes from earlier designs permit a saving in material requirements. The coils are wound with the conductor in precompression and the support material in pretension so that when the coils are energized, the stainless steel experiences a stress of 60,000 psi while the copper stress does not exceed 15,000 psi. Both the copper and NbTi are graded, with higher current densities where magnetic and radiation effects are smaller. The ohmic heating (OH) coil system consists of a central solenoid plus ten other coils, all located outside the TF coils for ease of maintenance. The NbTi-copper coils are cryostable and operate at 4.2 K. The solenoid is segmented, with rings of insulation between segments to transfer the centering force from the TF coils to an insulating cylinder inside the OH solenoid. Locating the OH solenoid inside the support cylinder plus raising the central field to 8 T, enables the OH system to develop more volt-seconds than the earlier designs, even though the plasma major radius is smaller. The superconducting equilibrium field coils, also outside the TF coils, provide the field pattern required for a D-shaped plasma

  12. A quantitative investigation of the effect of a close-fitting superconducting shield on the coil factor of a solenoid

    DEFF Research Database (Denmark)

    Aarøe, Morten; Monaco, R.; Koshelet, V.; Mygind, Jesper

    2009-01-01

    Superconducting shields are commonly used to suppress external magnetic interference. We show, that an error of almost an order of magnitude can occur in the coil factor in realistic configurations of the solenoid and the shield. The reason is that the coil factor is determined by not only the ge...... inserting a thin sheet of high-permeability material, and the result is numerically tested....

  13. A 4.7 tesla meter solenoid for a partial Siberian Snake

    International Nuclear Information System (INIS)

    The authors describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9,500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993

  14. A 4.7 tesla metre solenoid for a partial Siberian snake

    International Nuclear Information System (INIS)

    We describe the engineering design of a 4.7 T-m solenoid magnet which will be installed at the Brookhaven National Laboratory AGS for a partial Siberian Snake Experiment which is an interlaboratory collaboration. The magnet has an overall length of 2.5 m, a clear bore of 15 cm and operates at a peak field of 2 T. It is pulsed at 3 second intervals with a peak current of 9500 A dc driven from a 150 V power supply. The construction uses conventional hollow copper coils but the return flux yokes are made from 1/8 inch plates bolted together. On assembly the flux yokes and endplates are clamped tightly to the coil to prevent any movement during the current pulse. The fabrication experience and test data will be presented. The magnet was installed in the summer of 1993. (author). 3 refs., 1 tab., 1 fig

  15. The Role of Quench-back in the Passive Quench Protection of Long Solenoids with Coil Sub-division

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Guo, XingLong; Wang, Li; Pan, Heng; Wu, Hong

    2009-10-19

    This paper describes how a passive quench protection system can be applied to long superconducting solenoid magnets. When a solenoid coil is long compared to its thickness, the magnet quench process will be dominated by the time needed for uench propagation along the magnet length. Quench-back will permit a long magnet to quench more rapidly in a passive way. Quenchback from a conductive (low resistivity) mandrel is essential for spreading the quench along the length of a magnet. The andrel must be inductively coupled to the magnet circuit that is being quenched. Current induced in the mandrel by di/dt in the magnet produces heat in the mandrel, which in turn causes the superconducting coil wound on the mandrel to quench. Sub-divisions often employed to reduce the voltages to ground within the coil. This paper explores when it is possible for quench-back to be employed for passive quench protection. The role of sub-division of the coil is discussed for long magnets.

  16. Conceptual design report for the Solenoidal Tracker at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  17. Experimental study of a laser-heated solenoid

    International Nuclear Information System (INIS)

    An experimental investigation was made of the interaction of an intense CO2 laser beam with a column of initially uv-ionized hydrogen immersed in a steady magnetic field of up to 100 kG. Under the intense laser radiation, the gas becomes ionized and heated to temperatures as high as 150 eV (1.6 x 1060K). The primary purpose of the investigation was to determine the properties of the dense, hot plasma formed in this manner. Time and space resolved measurements of the plasma electron density were made using holographic interferometry along the axis and Mach--Zehnder interferometry across the column. The temperature was determined by measuring the decay rate of a line from CV in the quartz uv. These measurements were supplemented by streak photography to provide data on the development of the luminosity of the plasma column, radially and axially, as a function of time. From these various diagnostic techniques, it was possible to determine that a density minimum is formed on-axis within a few tens of nanoseconds after initiation of the laser pulse. This effectively produces a light pipe which traps the beam, and suggests that long columns can be formed by laser irradiation. The beam energy was efficiently absorbed and plasma loss rates appeared to be those expected from classical MHD modelling. While a completely unambiguous answer as to the mode of laser discharge propagation occurring in the experiment was not obtained, the bulk of the evidence suggests a ''bleaching wave'' rather than a laser driven detonator. In summary, the experiment was successful in demonstrating the creation of dense, slender columns by laser breakdown, in support of the ''laser-heated solenoid'' fusion concept

  18. Origin of magnetic highs at ultramafic hosted hydrothermal systems: Insights from the Yokoniwa site of Central Indian Ridge

    Science.gov (United States)

    Fujii, Masakazu; Okino, Kyoko; Sato, Taichi; Sato, Hiroshi; Nakamura, Kentaro

    2016-05-01

    High-resolution vector magnetic measurements were performed on an inactive ultramafic-hosted hydrothermal vent field, called Yokoniwa Hydrothermal Field (YHF), using a deep-sea manned submersible Shinkai6500 and an autonomous underwater vehicle r2D4. The YHF has developed at a non-transform offset massif of the Central Indian Ridge. Dead chimneys were widely observed around the YHF along with a very weak venting of low-temperature fluids so that hydrothermal activity of the YHF was almost finished. The distribution of crustal magnetization from the magnetic anomaly revealed that the YHF is associated with enhanced magnetization, as seen at the ultramafic-hosted Rainbow and Ashadze-1 hydrothermal sites of the Mid-Atlantic Ridge. The results of rock magnetic analysis on seafloor rock samples (including basalt, dolerite, gabbro, serpentinized peridotite, and hydrothermal sulfide) showed that only highly serpentinized peridotite carries high magnetic susceptibility and that the natural remanent magnetization intensity can explain the high magnetization of Yokoniwa. These observations reflect abundant and strongly magnetized magnetite grains within the highly serpentinized peridotite. Comparisons with the Rainbow and Ashadze-1 suggest that in ultramafic-hosted hydrothermal systems, strongly magnetized magnetite and pyrrhotite form during the progression of hydrothermal alteration of peridotite. After the completion of serpentinization and production of hydrogen, pyrrhotites convert into pyrite or nonmagnetic iron sulfides, which considerably reduces their levels of magnetization. Our results revealed origins of the magnetic high and the development of subsurface chemical processes in ultramafic-hosted hydrothermal systems. Furthermore, the results highlight the use of near-seafloor magnetic field measurements as a powerful tool for detecting and characterizing seafloor hydrothermal systems.

  19. Electron gun for a multiple beam klystron with magnetic compression of the electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ives, R. Lawrence; Tran, Hien T; Bui, Thuc; Attarian, Adam; Tallis, William; David, John; Forstall, Virginia; Andujar, Cynthia; Blach, Noah T; Brown, David B; Gadson, Sean E; Kiley, Erin M; Read, Michael

    2013-10-01

    A multi-beam electron gun provides a plurality N of cathode assemblies comprising a cathode, anode, and focus electrode, each cathode assembly having a local cathode axis and also a central cathode point defined by the intersection of the local cathode axis with the emitting surface of the cathode. Each cathode is arranged with its central point positioned in a plane orthogonal to a device central axis, with each cathode central point an equal distance from the device axis and with an included angle of 360/N between each cathode central point. The local axis of each cathode has a cathode divergence angle with respect to the central axis which is set such that the diverging magnetic field from a solenoidal coil is less than 5 degrees with respect to the projection of the local cathode axis onto a cathode reference plane formed by the device axis and the central cathode point, and the local axis of each cathode is also set such that the angle formed between the cathode reference plane and the local cathode axis results in minimum spiraling in the path of the electron beams in a homogenous magnetic field region of the solenoidal field generator.

  20. A Magnetic Set-Up to Help Teach Newton's Laws

    Science.gov (United States)

    Panijpan, Bhinyo; Sujarittham, Thanida; Arayathanitkul, Kwan; Tanamatayarat, Jintawat; Nopparatjamjomras, Suchai

    2009-01-01

    A set-up comprising a magnetic disc, a solenoid and a mechanical balance was used to teach first-year physics students Newton's third law with the help of a free body diagram. The image of a floating magnet immobilized by the solenoid's repulsive force should help dispel a common misconception of students as regards the first law: that stationary…

  1. Parametric resonance induced chaos in magnetic damped driven pendulum

    Science.gov (United States)

    Khomeriki, Giorgi

    2016-07-01

    A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments.

  2. D0 Silicon Upgrade: Pipe Sizing for Solenoid / VLPC Cryogenic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, Russ; Sakla, Steve; /Fermilab

    1995-02-20

    The addition of a solenoid magnet and VLPC detectors are two of a number of upgrades which will occur at the D-Zero detector in the near future. Both of these upgrades will require cryogenic services for their operation. The purpose of this engineering note is to document the pipe/tube size choices made for these cryogenic services. This was done by calculating the required flow rates to cool down the magnet and VLPC's over a reasonable length of time and to determine the required piping sizes for a given allowable pressure drop. The pressure drops for steady state conditions also are addressed. The cool down requirements drove the pipe size decision. The raw engineering calculations that were done for this project are included as an appendix to this note. The body of this document discusses the methods and results of the calculations. As a quick summary, Figures 1 and 2 show the size selections. Tables 1 and 2 give a more detailed size and description of each section of Solenoid and VLPC transfer line.

  3. ATLAS magnet common cryogenic, vacuum, electrical and control systems

    CERN Document Server

    Miele, P; Delruelle, N; Geich-Gimbel, C; Haug, F; Olesen, G; Pengo, R; Sbrissa, E; Tyrvainen, H; ten Kate, H H J

    2004-01-01

    The superconducting Magnet System for the ATLAS detector at the LHC at CERN comprises a Barrel Toroid, two End Cap Toroids and a Central Solenoid with overall dimensions of 20 m diameter by 26 m length and a stored energy of 1.6 GJ. Common proximity cryogenic and electrical systems for the toroids are implemented. The Cryogenic System provides the cooling power for the 3 toroid magnets considered as a single cold mass (600 tons) and for the CS. The 21 kA toroid and the 8 kA solenoid electrical circuits comprise both a switch-mode power supply, two circuit breakers, water cooled bus bars, He cooled current leads and the diode resistor ramp-down unit. The Vacuum System consists of a group of primary rotary pumps and sets of high vacuum diffusion pumps connected to each individual cryostat. The Magnet Safety System guarantees the magnet protection and human safety through slow and fast dump treatment. The Magnet Control System ensures control, regulation and monitoring of the operation of the magnets. The update...

  4. Central magnetic cooling and refrigeration machines (chiller) and their assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egolf, P. W.; Gonin, C. [University of Applied Sciences of Western Switzerland, HEIG-VD, Yverdon-les Bains (Switzerland); Kitanovski, A. [University of Ljubljana, Ljubljana (Slovenia)

    2010-03-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a feasibility study made concerning magnetic cooling and refrigeration machines. This report presents a comprehensive thermodynamic and economic analysis of applications of rotary magnetic chillers. The study deals with magnetic chillers based on permanent magnets and superconducting magnets, respectively. The numerical design of permanent magnet assemblies with different magnetic flux densities is discussed. The authors note that superconducting magnetic chillers are feasible only in large-scale applications with over 1 MW of cooling power. This report describes new ideas for magnetic refrigeration technologies, which go beyond the state of the art. They show potential for a substantial reduction of costs and further improvements in efficiency. Rotary magnetic liquid chillers with 'wavy' structures and using micro tubes are discussed, as are superconducting magnetic chillers and future magneto-caloric technologies.

  5. Dispersion in a bent-solenoid channel with symmetric focusing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chun-xi [Argonne National Lab. (ANL), Argonne, IL (United States)

    2001-08-21

    Longitudinal ionization cooling of a muon beam is essential for muon colliders and will be useful for neutrino factories. Bent-solenoid channels with symmetric focusing has been considered for beam focusing and for generating the required dispersion in the ``emittance exchange'' scheme of longitudinal cooling. In this paper, we derive the Hamiltonian that governs the linear beam dynamics of a bent-solenoid channel, solve the single-particle dynamics, and give equations for determining the lattice functions, in particular, the dispersion functions.

  6. New diagnostic possibilities for solenoid valves. Neue Diagnosemoeglichkeiten fuer Magnetventile

    Energy Technology Data Exchange (ETDEWEB)

    Kluever, G. (Herion-Werke KG, Fellbach (Germany))

    1993-05-01

    A diagnostic device, which distinguishes itself by its simple control and operation, has been developed for the early detection of damage in solenoid valves. This device provides all the information which is important for early detection of damage in a VDU representation. Deviations from the specified design power balance of the solenoid valves are detected by comparison of repeat measurements with master diagrams, whilst the calibration curves are superimposed on the monitor. Measurement data input and management are supported by a menu-controlled programme. (orig.)

  7. Operating experience feedback report - Solenoid-operated valve problems

    International Nuclear Information System (INIS)

    This report highlights significant operating events involving observed or potential common-mode failures of solenoid-operated valves (SOVs) in US plants. These events resulted in degradation or malfunction of multiple trains of safety systems as well as of multiple safety systems. On the basis of the evaluation of these events, the Office for Analysis and Evaluation of Operational Data (AEOD) of the US Nuclear Regulatory Commission (NRC) concludes that the problems with solenoid-operated valves are an important issue that needs additional NRC and industry attention. This report also provides AEOD's recommendations for actions to reduce the occurrence of SOV common-mode failures. 115 refs., 7 figs., 2 tabs

  8. Design study of the FER (fusion experimental reactor) superconducting magnet system

    International Nuclear Information System (INIS)

    The preliminary design study of the superconducting magnet system for the Fusion Experimental Reactor (FER) [1] is in progress at the Japan Atomic Energy Research Institute (JAERI). This paper describes the technical specifications and the design concepts of the 12-T toroidal field (TF) coil system, the 12-T central solenoid (CS) coil system, and the 7-T equilibrium field (EF) coil system, all of which satisfy the technical requirements of the superconducting magnet system of the FER. 8 refs., 6 figs., 4 tabs

  9. Fetal magnetic resonance imaging in prenatal diagnosis of central nervous system abnormalities

    International Nuclear Information System (INIS)

    The diagnostic value of fetal magnetic resonance imaging (MRI), performed in 42 pregnant women whose fetuses had structural abnormalities of the central nervous system identified with transabdominal ultrasonography from 1995 through 2002, was analyzed retrospectively. Half-Fourier acquisition single-shot turbo spin-echo (HASTE) T2-weighted imaging clearly delineated the cerebrospinal fluid (CSF) space and the malformed brain and spinal cord and provided valuable information for the diagnosis of structural abnormalities related to the CSF space, such as spina bifida with Chiari type II malformation (7 cases), colpocephaly with agenesis of the corpus callosum (7 cases), holoprosencephaly (6 cases), porencephaly (2 cases), lissencephaly with hydrocephalus (2 cases), and middle fossa arachnoid cyst (1 case). However, some difficulty was encountered in the diagnosis of rare pathologic conditions that were not related to the CSF space, such as epignathus, multiple arteriovenous fistulae, trapped suboccipital meningocele, and Turner syndrome. We conclude that HASTE T2-weighted imaging, which provides useful diagnostic images in a reasonable time, is a useful adjunct to ultrasonography to confirm or exclude certain abnormalities related to the CSF space. (author)

  10. Fetal central nervous system anomalies: comparison of magnetic resonance imaging and ultrasonography for diagnosis

    Institute of Scientific and Technical Information of China (English)

    WANG Guang-bin; QU Lei; LI Hui-hua; SHAN Rui-qin; MA Yu-xiang; SHI Hao; CHEN Li-guang; LIU Wen; QIU Xiu-ling; WEI Yu-long; GUO Li

    2006-01-01

    Background Evaluation of fetal central nervous system (CNS) agenesis by ultrasonography (US) is frequentlylimited, but magnetic resonance imaging (MRI) has its own advantages and is gaining popularity in displayingsuspected fetal anomalies. The purpose of this study was to explore the value of MRI in detecting fetal CNSagenesis.Methods Thirty-four women (aged from 22 to 35 years, average 27 years) with complicated pregnancies (16-39 weeks of gestation, average 30 weeks) were examined with a 1.5 T superconductive MR unit within 24 hoursafter ultrasonography. Half-Fourier acquisition single-shot turbo spin-echo (HASTE) T2-weighted imaging (T2WI)sequence were performed in all patients, and fast low angle shot (FLASH) T1-weighted imaging (T1WI) sequencewere applied sequentially in seven of them. Comparison of the results was made between the MRI and USfindings as well as autopsy or postnatal follow-up MRI findings.Results The gyrus, sulcus, corpus callosum, thalamus, cerebellum, brainstem, and spinal cord of fetus wereshown more clearly on T2-weighted MR images than on T1-weighted MR images. MRI corrected the diagnosis ofUS in 10 cases (10/34, 29.41%) and the diagnosis was missed only in 1 case (1/34, 2.94%).Conclusion MRI has advantages to US in detecting fetal CNS anomalies and is a supplement to US incomplicated pregnancies.

  11. Central polar cap convection response to short duration southward Interplanetary Magnetic Field

    Directory of Open Access Journals (Sweden)

    P. T. Jayachandran

    Full Text Available Central polar cap convection changes associated with southward turnings of the Interplanetary Magnetic Field (IMF are studied using a chain of Canadian Advanced Digital Ionosondes (CADI in the northern polar cap. A study of 32 short duration (~1 h southward IMF transition events found a three stage response: (1 initial response to a southward transition is near simultaneous for the entire polar cap; (2 the peak of the convection speed (attributed to the maximum merging electric field propagates poleward from the ionospheric footprint of the merging region; and (3 if the change in IMF is rapid enough, then a step in convection appears to start at the cusp and then propagates antisunward over the polar cap with the velocity of the maximum convection. On the nightside, a substorm onset is observed at about the time when the step increase in convection (associated with the rapid transition of IMF arrives at the polar cap boundary.

    Key words: Ionosphere (plasma convection; polar ionosphere - Magnetospheric physics (solar wind - magnetosphere interaction

  12. Analysis of systemic lupus erythematosus (SLE) involving the central nervous system by magnetic resonance imaging (MRI)

    International Nuclear Information System (INIS)

    Involvement of the central nervous system (CNS) commonly occurs in systemic lupus erythematosus (SLE). But definitive diagnosis remains difficult even with computed tomography (CT). In this study, we used the recently developed technique, magnetic resonance imaging (MRI) for CNS lupus and compared it with CT scans. CT was performed with a General Electric 8800 CT/T scanner. MRI was performed using a Mitsubishi Electric MMI-150 S. Ten patients with CNS lupus were divided into 3 groups. Group I included 4 cases with neurological manifestations alone. All lesions seen on CT were also detected by MRI, with greater clarity and extent. Furthermore, MRI depicted several microinfarcts in white matter without symptoms. Group II included 5 cases with psychiatric features alone. MRI detected a thalamic microinfarct in only one case while CT showed no abnormality in all cases. Group III included 1 case with both neurological and psychiatric symptoms. MRI demonstrated a small infarct of midbrain corresponding with neurological symptoms, more clearly than CT. Therefore MRI demonstrates the degree of brain involvement in SLE more accurately than CT. (author)

  13. Magnetic resonance imaging: early detection of central nervous system involvement in acquired immunodeficiency syndrome (AIDS)

    International Nuclear Information System (INIS)

    Central Nervous System (CNS) involvement, whether primary by the Human Immunodeficiency Virus - HIV - itself, or secondary (toxoplasmosis or lymphoma) is remarkably frequent in AIDS, in 40 to 70% of cases, depending upon the author. In order to study the natural history of this illness, a cohort of 25 asymptomatic seropositive patients have been established. Every 6 months these patients undergo biological and clinical examinations, as well as Magnetic Resonance brain scans. After two examinations at a 6 month's interval, the first results are reported. Out of these 25 cases, 9 present anomalies: One patient with diffuse cerebral atrophy and 8 others with high signal intensity areas on T2 weighted sequences, like those of the Multiple Sclerosis. No relationship could be demonstrated between the existence of these lesions and various criteria such as age, sex, risk factors and T4 cells count. The nature of these lesions is not lear. They certainly indicate early involvement of the CNS after primary infection by the HIV virus. They may either represent scars of the primary infection or early alterations announcing developing encephalopathy

  14. Clinical use of intravenous gadolinium-DTPA in magnetic resonance imaging of the central nervous system

    International Nuclear Information System (INIS)

    Following extensive pharmacological and animal studies clinical trials with intravenous gadolinium-DTPA (Gd-DTPA) were begun at the end of 1983. During 1984 one group in Berlin and another in London conducted clinical trials. During 1985 Gd-DTPA was released more widely and now over 20 groups in Europe and four in the United States are involved in clinical evaluation programmes. Gd-DTPA is the first parenteral magnetic contrast agent available for clinical use and the results of these clinical trials have been followed with considerable interest. In general terms the clinical results with Gd-DTPA parallel those seen with iodinated contrast agents used in X-ray computed tomography (CT) but there are important differences, particularly in relation to the use of pulse sequences and effects due to increased concentration of Gd-DTPA. In this chapter the mode of action of Gd-DTPA is reviewed and the clinical results in the central nervous system are summarised

  15. Thermal analysis of the cold mass of the 2T solenoid for the PANDA detector at FAIR

    Science.gov (United States)

    Rolando, G.; ten Kate, H. H. J.; Dudarev, A.; Pais Da Silva, H.; Vodopyanov, A.; Schmitt, L.

    2015-12-01

    The superconducting solenoid of the PANDA experiment at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Germany) is designed to provide a magnetic field of 2 T over a length of about 4 m in a bore of 1.9 m. To allow a warm target feed pipe oriented transversely to the solenoid axis and penetrating through the cryostat and solenoid cold mass, the magnet is split into 3 inter-connected coils fitted in a common support cylinder. During normal operation, cooling of the cold mass to the working temperature of 4.5 K will be achieved through the circulation by natural convection of two-phase helium in cooling pipes attached to the Al-alloy support cylinder. Pure aluminium strips acting as heat drains and glued to the inner surface of the three coils and thermally bonded to the cooling pipes allow minimizing the temperature gradient across the 6-layers coils. In this paper the thermal design of the cold mass during normal operation and current ramps up and down is validated using an analytical approximation and numerical simulation.

  16. Thermal analysis of the cold mass of the 2T solenoid for the PANDA detector at FAIR

    CERN Document Server

    Rolando, G; Dudarev, A; Pais Da Silva, H; Vodopyanov, A; Schmitt, L

    2015-01-01

    The superconducting solenoid of the PANDA experiment at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt (Germany) is designed to provide a magnetic field of 2 T over a length of about 4 m in a bore of 1.9 m. To allow a warm target feed pipe oriented transversely to the solenoid axis and penetrating through the cryostat and solenoid cold mass, the magnet is split into 3 inter-connected coils fitted in a common support cylinder. During normal operation, cooling of the cold mass to the working temperature of 4.5 K will be achieved through the circulation by natural convection of two-phase helium in cooling pipes attached to the Al-alloy support cylinder. Pure aluminium strips acting as heat drains and glued to the inner surface of the three coils and thermally bonded to the cooling pipes allow minimizing the temperature gradient across the 6-layers coils. In this paper the thermal design of the cold mass during normal operation and current ramps up and down is validated using an analytical appro...

  17. Aharonov–Bohm effect in resonances for scattering by three solenoids

    OpenAIRE

    Tamura, Hideo

    2015-01-01

    We study how the Aharonov–Bohm effect is reflected in the location of quantum resonances for scattering by three solenoids at large separation. We also discuss what happens in the case of four solenoids.

  18. Endloss from a slender high beta plasma column contained in a linear solenoid

    International Nuclear Information System (INIS)

    A model is presented to simulate endloss from a high beta plasma contained laterally in a straight solenoid. For slender plasma columns, the plasma lifetime depends on both the acoustic transit time (time for a sound wave to traverse one-half of the plasma length), and the characteristic radial diffusion time (diffusion of plasma across the magnetic field). In the limit of strong diffusion (which occurs for narrow high beta plasma columns), the plasma lifetime equals the hybrid lifetime which is proportional to the geometric mean of the acoustic and diffusion times. This predicted behavior stands in marked contrast with conventional endloss theories which have confinement time proportional to acoustic time alone. It is also shown that the endloss process may be accelerated considerably if the ratio of plasma radius to magnet radius is not small, due to inverse mirroring effects in the streaming plasma

  19. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  20. Transition in magnetic fabric types in progressively deformed, fine-grained sedimentary rocks of Central Armorica (Brittany, France)

    Science.gov (United States)

    Haerinck, Tom; Hirt, Ann M.; Debacker, Timothy N.; Sintubin, Manuel

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) of progressively deformed, fine-grained sedimentary rocks is determined for different tectonometamorphic settings in Central Armorica (Brittany, France). Low-temperature AMS and high-field torque magnetometry on a representative selection of samples indicate that the magnetic fabric is dominantly paramagnetic and the ferromagnetic (s.l.) contribution can be neglected. The AMS documents a progressive transition of intermediate fabrics to tectonic fabrics and increasingly stronger developed tectonic fabrics. An integrated magnetic-mineralogical approach is performed in order to assess whether we can use this evolution as a quantitative indicator for the intensity of cleavage development in Central Armorica. During the magnetic fabric transition, the maximum susceptibility axis (K1) remains stationary oriented parallel to the bedding - cleavage intersection, whereas the minimum susceptibility axis (K3) orientation distribution changes from a moderate girdle distribution in the intermediate fabric types, to a strongly clustered distribution parallel to the cleavage pole for the tectonic fabric types. A Woodcock two-axis ratio plot is used to evaluate this change in K3 distribution. This shows a regional pattern with intermediate fabrics in the southern part of Central Armorica and tectonic fabrics in the northern part of Central Armorica. Quantitative analysis of the observed magnetic fabrics shows that the fabric transition described above is accompanied by an evolution from prolate susceptibility ellipsoids with a relatively low degree of anisotropy to oblate ellipsoid with an increasingly higher degree of anisotropy. In a graph of the shape parameter T against the corrected degree of anisotropy PJ, this evolution has a hockey-stick shaped pattern with the vertical branch reflecting the actual transition from intermediate to tectonic fabric type and the horizontal branch reflecting progressively stronger developed

  1. Force-free magnetic system for a tokamak with superstrong magnetic field

    International Nuclear Information System (INIS)

    Principles of construction of the ''force-free'' magnetic system and optimization of solenoid mechanical operation are chosen according to criteria of material strength, exclusion of interturn slipping and gap opening. It is shown that induction of 20 T may be achieved in the solenoid with large torr radius (0.70-73 m)

  2. Magnetic ripple correction in tandem mirrors by ferromagnetic inserts

    International Nuclear Information System (INIS)

    Magnetic ripple of 1% or more caused by discrete solenoid coils in the central cells of tandem mirrors may severely affect the MHD stability. The ripple amplitude can be reduced by an order of magnitude by ferromagnetic annuli inserted within the coils at the regions of ripple maxima. The inserts need not affect the accessibility, coil diameter, or capital cost, since large quantities of steel are required within the coils for the neutron blanket and shield. Design of the ripple correction is simplified and linearized by the cylindrical geometry and by the saturation of the ferromagnetic steel

  3. United States research and development effort on ITER magnet tasks

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, Nicolai N., E-mail: martovetskyn@ornl.gov [Lawrence Livermore National Laboratory, on Assignment to Oak Ridge National Laboratory, U.S. ITER Project Office, ORNL, 1055 Commerce Park, Oak Ridge 37831 (United States); Reiersen, Wayne T. [Princeton Plasma Physics Laboratory, on Assignment to Oak Ridge National Laboratory, U.S. ITER Project Office (United States)

    2011-10-15

    The paper presents the status of research and development (R and D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.

  4. Design of 9 tesla superconducting solenoid for VECC RIB facility

    International Nuclear Information System (INIS)

    An ISOL post-accelerator type of RIB facility is being developed at our centre. The post acceleration scheme of a Radio Frequency Quadrupole (RFQ) followed by five IH LINAC cavities will provide energy of about 1.05 MeV/u. For further accelerating up to 2 MeV/u Superconducting Quarter Wave Resonators (SCQWR) will be used. The radial defocusing of the beam bunch during the acceleration using SCQWRs will be taken care of by a Superconducting Solenoid (SCS) within the same cryostat. In this report the electromagnetic design of an SCS will be discussed. A 9 T SCS having effective length of 340 mm has been designed with the special requirement that the fringing field should fall sharply to a value less than 100 mT at the surfaces of the adjacent superconducting cavities. The designed solenoid comprise of two co-axial split solenoid conductors surrounded by iron shields and a pair of bucking coils. Optimizations have been carried out for the total current sharing of the main coils and the bucking coils as well as for the relative orientation and dimension of each component of the solenoid. (author)

  5. Matching by solenoids in space charge dominated LEBTs

    Institute of Scientific and Technical Information of China (English)

    LI Jin-Hai; TANG Jing-Yu; OUYANG Hua-Fu

    2009-01-01

    The betatron matching of a rotationally asymmetric beam in space charge dominated low-energy beam transports (LEBTs) where solenoids are used for the transverse matching has been studied.For better understanding, the coupling elements of a beam matrix are interpreted in special forms that are products of a term defined by the Larmor rotation angle and another by the difference between the beam matrix elements in the two transverse planes.The coupling form originally derived from the rotationally symmetric field in solenoids still holds when taking into account the rotationally asymmetric space charge forces that are due to the unequal emittance in the two transverse planes.It is shown in this paper that when an LEBT mainly comprising solenoids transports a beam having unequal emittance in the two transverse planes and the linear space charge force is taken into account, the initial Twiss parameters can be modified to obtain the minimum and equal emittance at the LEBT exit.The TRACE3D calculations also prove the principle.However, when quadrupoles that are also rotationally asymmetric are involved in between solenoids, the coupling between the two transverse planes becomes more complicated and the emittance increase is usually unavoidable.A matching example using the CSNS (China Spallation Neutron Source) LEBT conditions is also presented.

  6. Thrust kinematics deduced by primary and secondary magnetizations in the Internal Sierras (Central Pyrenees, Spain)

    Science.gov (United States)

    Oliva, B.; Pueyo, E.

    2003-04-01

    The Central Southern Pyrenees are composed (from N to S) by the Axial Zone (made by several basement-involved nappes; (Gavarnie and Guarga), the Internal Sierras (IS) fold and thrust belt (Larra and Monte Perdido units), the Jaca piggyback basin (turbiditic and molassic) and the External Sierras. Several paleomagnetic studies have been carried out during the last decades in all units except for the IS. Different amounts of rotation were reported, usually from primary directions. This work shows paleomagnetic results derived from recent investigations in the IS. 78 sites were sampled in different thrust sheets in the Larra and Monte Perdido units. Sites were collected in Upper Cretaceous rocks; all of them were homogeneously distributed along the range strike. A N-S section through the Eocene turbiditic basin was also done (9 sites) to link our results to previous data. Stepwise thermal demagnetization every 25-50^oC was performed to unravel the NRM components. Magnetic mineralogy essays (IRM, IST and low temperature) confirm magnetite as the major magnetic carrier. Two paleomagnetic components can be distinguished; A) an intermediate direction unblocking from 350^o to 450^oC and B) a high temperature component (from 500^o -575^oC). The B component displays two polarities and a positive fold and reverse tests whereas the A component shows only reverse polarity and a pervasive negative fold test. The A component has been also found in the Eocene transect. Two major clues help to constrain the remagnetization age; on one hand the deformation age (Early-Middle Eocene in the Larra and Monte Perdido units) and, on the other hand, the age of the turbiditic rocks (Middle Eocene). Therefore the remagnetization process took place by the end of the IS thrust system configuration or in a later period. Since the rotation detected by the A and B components are similar, the rotation age can be constrained as younger than the remagnetization. All these deductions have important

  7. Role of magnetic resonance venography in assessment of intra-thoracic central veins in hemodialysis

    Directory of Open Access Journals (Sweden)

    Mahmoud Abdel Latif

    2015-12-01

    Conclusion: MRV is a highly sensitive technique in the diagnosis of patency and steno-occlusive disease of intrathoracic central veins and may be used as an alternative to DSV for the abnormalities of central veins in hemodialysis patients.

  8. The Role of Quench-back in the Passive Quench Protection of Uncoupled Solenoids in Series with and without Coil Sub-division

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xing Long; Green, Michael A; Wang, Li; Wu, Hong; Pan, Heng

    2010-10-15

    This paper is the final paper in a series of papers that discusses passive quench protection for high inductance solenoid magnets. This report describes how passive quench protection system may be applied to superconducting magnets that are connected in series but not inductively coupled. Previous papers have discussed the role of magnet sub-division and quench back from a conductive mandrel in reducing the hot-spot temperature and the peak coil voltages to ground. When magnets are connected in series, quench-back from a conductive mandrel can cause other magnets in a string to quench even without inductive coupling between magnets. The magnet mandrels must be well coupled to the magnet circuit that is being quenched. When magnet circuit sub-division is employed to reduce the voltages-to-ground within magnets, the resistance across the subdivision becomes the most important factor in the successful quenching of the magnet string.

  9. Relationship between chemical composition and magnetic susceptibility in sediment cores from Central Indian Ocean Basin

    Indian Academy of Sciences (India)

    J N Pattan; G Parthiban; V K Banakar; A Tomer; M Kulkarni

    2008-04-01

    Three sediment cores in a north–south transect (3°N to 13°S) from different sediment types of the Central Indian Ocean Basin (CIOB) are studied to understand the possible relationship between magnetic susceptibility () and Al, Fe, Ti and Mn concentrations. The calcareous ooze core exhibit lowest (12.32 × 10-7m3 kg−1), Al (2.84%), Fe (1.63%) and Ti (0.14%), terrigenous clay core with moderate (29.9 × 10-7 m3 kg−1) but highest Al (6.84%), Fe (5.20%) and Ti (0.44%), and siliceous ooze core with highest (38.06 × 10-7 m3 kg−1) but moderate Al (4.49%), Fe (2.80%) and Ti (0.19%) contents. The distribution of and detrital proxy elements (Al, Fe, and Ti) are identical in both calcareous and siliceous ooze. Interestingly, in terrigenous core, the behaviour of is identical to only Ti content but not with Al and Fe suggesting possibility of Al and Fe having a non-detrital source. The occurrence of phillipsite in terrigenous clay is evident by the Al-K scatter plot where trend line intersects K axis at more than 50% of total K suggesting excess K in the form of phillipsite. Therefore, the presence of phillipsite might be responsible for negative correlation between and Al ( = −0.52). In siliceous ooze the strong positive correlations among , Alexc and Feexc suggest the presence of authigenic Fe-rich smectite. High Mn content (0.5%) probably in the form of manganese micronodules is also contributing to in both calcareous and siliceous ooze but not in the terrigenous core where mean Mn content (0.1%) is similar to crustal abundance. Thus, systematically records the terrigenous variation in both the biogenic sediments but in terrigenous clay it indirectly suggests the presence of authigenic minerals.

  10. Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation

    Directory of Open Access Journals (Sweden)

    Carmen Infante‑Duarte

    2013-03-01

    Full Text Available Neuroinflammation during multiple sclerosis involves immune cell infiltration and disruption of the BBB (blood–brain barrier. Both processes can be visualized by MRI (magnetic resonance imaging, in multiple sclerosis patients and in the animal model EAE (experimental autoimmune encephalomyelitis. We previously showed that VSOPs (very small superparamagnetic iron oxide particles reveal CNS (central nervous system lesions in EAE which are not detectable by conventional contrast agents in MRI. We hypothesized that VSOP may help detect early, subtle inflammatory events that would otherwise remain imperceptible. To investigate the capacity of VSOP to reveal early events in CNS inflammation, we induced EAE in SJL mice using encephalitogenic T-cells, and administered VSOP prior to onset of clinical symptoms. In parallel, we administered VSOP to mice at peak disease, and to unmanipulated controls. We examined the distribution of VSOP in the CNS by MRI and histology. Prior to disease onset, in asymptomatic mice, VSOP accumulated in the choroid plexus and in spinal cord meninges in the absence of overt inflammation. However, VSOP was undetectable in the CNS of non-immunized control mice. At peak disease, VSOP was broadly distributed; we observed particles in perivascular inflammatory lesions with apparently preserved glia limitans. Moreover, at peak disease, VSOP was prominent in the choroid plexus and was seen in elongated endothelial structures, co-localized with phagocytes, and diffusely disseminated in the parenchyma, suggesting multiple entry mechanisms of VSOP into the CNS. Thus, using VSOP we were able to discriminate between inflammatory events occurring in established EAE and, importantly, we identified CNS alterations that appear to precede immune cell infiltration and clinical onset.

  11. Symmetrical central tegmental tract (CTT) hyperintense lesions on magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shoko; Hayakawa, Katsumi; Yamamoto, Akira [Kyoto City Hospital, Department of Radiology, Kyoto (Japan); Aida, Noriko [Kanagawa Children' s Medical Center, Department of Radiology, Kyoto (Japan); Okano, Souzo; Matsushita, Hiroko [Kyoto City Hospital, Department of Pediatrics, Kyoto (Japan); Kanda, Toyoko; Yamori, Yuriko; Yoshida, Naoko; Hirota, Haruyo [St. Joseph Hospital for Handicapped Children, Department of Pediatric Neurology, Kyoto (Japan)

    2009-02-15

    The central tegmental tract (CTT) is mainly the extrapyramidal tract connecting between the red nucleus and the inferior olivary nucleus. There are only a few case reports describing CTT abnormalities on magnetic resonance imaging (MRI) in children. Our purpose was to evaluate the frequency of CTT lesions and their characteristics on MRI, and to correlate the MR imaging findings with clinical features. We reviewed retrospectively the MR images of 392 children (215 boys and 177 girls) ranging in age from 1 to 6 years. To evaluate symmetrical CTT hyperintense lesions, we defined a CTT lesion as an area of bilateral symmetrical hyperintensity in the tegmentum pontis on both T2-weighted images and diffusion-weighted images in more than two slices. We measured the ADC (apparent diffusion coefficient) values of symmetrical CTT hyperintensity, and compared them with those of children without CTT abnormality. CTT lesions were detected in 20 (5.1%) of the 392 children. The mean ADC value for these 20 children was significantly lower than that of the normal CTT (p<0.001). On MR imaging, other than CTT lesions, associated parenchymal lesion included: none (n=6); other abnormalities, including periventricular leukomalacia (n=3); thin corpus callosum (n=3); ventricular dilatation (n=2); encephalopathy (n=2). Clinically, cerebral palsy was the most frequent clinical diagnosis (n=6), accounting for 30%, which was significantly more frequent than the prevalence of cerebral palsy among children without CTT lesions (13%) (n<0.05). CTT lesions were detected in 5.1% of all the children examined. Cerebral palsy was the most frequent clinical diagnosis. (orig.)

  12. Symmetrical central tegmental tract (CTT) hyperintense lesions on magnetic resonance imaging in children

    International Nuclear Information System (INIS)

    The central tegmental tract (CTT) is mainly the extrapyramidal tract connecting between the red nucleus and the inferior olivary nucleus. There are only a few case reports describing CTT abnormalities on magnetic resonance imaging (MRI) in children. Our purpose was to evaluate the frequency of CTT lesions and their characteristics on MRI, and to correlate the MR imaging findings with clinical features. We reviewed retrospectively the MR images of 392 children (215 boys and 177 girls) ranging in age from 1 to 6 years. To evaluate symmetrical CTT hyperintense lesions, we defined a CTT lesion as an area of bilateral symmetrical hyperintensity in the tegmentum pontis on both T2-weighted images and diffusion-weighted images in more than two slices. We measured the ADC (apparent diffusion coefficient) values of symmetrical CTT hyperintensity, and compared them with those of children without CTT abnormality. CTT lesions were detected in 20 (5.1%) of the 392 children. The mean ADC value for these 20 children was significantly lower than that of the normal CTT (p<0.001). On MR imaging, other than CTT lesions, associated parenchymal lesion included: none (n=6); other abnormalities, including periventricular leukomalacia (n=3); thin corpus callosum (n=3); ventricular dilatation (n=2); encephalopathy (n=2). Clinically, cerebral palsy was the most frequent clinical diagnosis (n=6), accounting for 30%, which was significantly more frequent than the prevalence of cerebral palsy among children without CTT lesions (13%) (n<0.05). CTT lesions were detected in 5.1% of all the children examined. Cerebral palsy was the most frequent clinical diagnosis. (orig.)

  13. Ion beam transport and focus for LMF using an achromatic solenoidal lens system

    International Nuclear Information System (INIS)

    The light ion LMF (Laboratory Microfusion Facility) requires an ion beam transport length for bunching and standoff to be about four meters from the diode to the target. The baseline LMF transport scheme uses an achromatic two lens system consisting of the diode (a self-field lens) and a solenoidal lens. Charge and current neutralization are provided by a background gas. A detailed analysis of this system is presented here. The effects of additional magnetic fields are examined, including those produced by non-zero net currents, applied B effects near the diode, and diamagnetic effects in the solenoidal lens. Instabilities are analyzed including the filamentation instability, the two-stream instability (beam ions, plasma electrons), the plasma two-stream instability (plasma electrons, plasma ions), and the ion acoustic instability. Scattering in the foil and gas are shown to be negligible. Gas breakdown processes are analyzed in detail, including ion impact ionization, electron avalanching, and ohmic heating. Special diode requirements are examined, including voltage accuracy, energy spread, and aiming tolerances. The neutral gas and gas pressure are chosen to satisfy several constraints, one being that the net current must be small, and another being that the filamentation instability should be avoided. With the present choice of 1 Torr He, it is concluded that the complete achromatic lens system appears to be viable, simple, and efficient transport and focusing system for LMF

  14. Process for the fabrication of hollow core solenoidal microcoils in borosilicate glass

    International Nuclear Information System (INIS)

    We report the fabrication of solenoidal microcoils with hollow core embedded within two 100 µm thick borosilicate glass wafers. The main process steps are the reactive ion etching of borosilicate glass, anodic wafer bonding, copper metal organic chemical vapor deposition (Cu MOCVD) and electroless galvanization. Our motivation stems from the need for a reliable, precise fabrication method of microcoils for high-resolution magnetic resonance imaging (MRI). For reduced loss at high-frequency operation, glass, with a lower dielectric constant as compared to silicon, was chosen as a substrate material. Simultaneously, this offers MRI sample observation owing to its optical transparency. Further essential parameters for the coil design were the need for small coil dimensions, a high filling factor (region of interest within the coil occupied by the sample/overall coil volume), and low-loss electrical connectability to external devices. In an attempt to achieve those requirements, the reported process demonstrates the combination of front- and backside borosilicate glass RIE of small dimensional features (down to 10 µm wall thickness) with subsequent conformal metallization of the 3D solenoidal coil by means of Cu MOCV and electroless galvanization

  15. Involvement of the central nervous system in chronic inflammatory demyelinating polyneuropathy: a clinical, electrophysiological and magnetic resonance imaging study.

    OpenAIRE

    Ormerod, I E; Waddy, H M; Kermode, A G; Murray, N M; Thomas, P K

    1990-01-01

    In a consecutive series of 30 patients with chronic inflammatory demyelinating polyneuropathy (CIDP) minor clinical evidence of CNS involvement was found in five. Cranial magnetic resonance imaging (MRI) was performed in 28 and revealed abnormalities consistent with demyelination in nine patients aged less than 50 years and abnormalities in five aged 50 years or over. Measurements of central motor conduction time (CMCT) were obtained in 18 and showed unilateral or bilateral abnormalities in s...

  16. Magnetic and Electromagnetic signals related to tectonic activity: updates and new analyses on measurements in Central Italy

    OpenAIRE

    D. Di Mauro; S. Lepidi; A. Meloni; Palangio, P.

    2005-01-01

    Tectonomagnetic field observations from absolute magnetic field levels have been collected in Central Italy since 1989 by means of a network of four absolute magnetometer stations, including the geomagnetic observatory of L'Aquila (42°23 N, 13°19 E) used as reference for differentiation; also electromagnetic variations from VLF signals have been recorded in the last years by means of VLF search coil wide-band antennas. Many reports proved the occurrence of electromagnetic effects clearly rel...

  17. Diagnostic reliability of magnetic resonance imaging for central nervous system syndromes in systemic lupus erythematosus: a prospective cohort study

    OpenAIRE

    Nishimura Katsuji; Kanno Tokiko; Soejima Makoto; Fukasawa Chikako; Kawaguchi Yasushi; Harigai Masayoshi; Katsumata Yasuhiro; Yamada Takayuki; Yamanaka Hisashi; Hara Masako

    2010-01-01

    Abstract Background Previous studies of magnetic resonance imaging (MRI) as a diagnostic tool for central nervous system (CNS) syndromes in systemic lupus erythematosus (SLE) contained several limitations such as study design, number of enrolled patients, and definition of CNS syndromes. We overcame these problems and statistically evaluated the diagnostic values of abnormal MRI signals and their chronological changes in CNS syndromes of SLE. Methods We prospectively studied 191 patients with...

  18. Construction of a stable and homogeneous magnetic field at 10 milligauss for neutron electric dipole moment measurements: preparatory phase

    Energy Technology Data Exchange (ETDEWEB)

    Gravador, E.; Yoshiki, Hajime; Feizeng, H. [Ibaraki Univ., Mito (Japan)

    1996-08-01

    A superthermal UCN edm measuring machine is currently under construction at KEK. It utilizes a magnetically shielded superconducting solenoid at liquid helium temperature to generate a stable and homogeneous magnetic field at 10 milligauss. The design of the magnetic shield and solenoid and preliminary evaluation of shielding effectiveness is presented. (author)

  19. Effects of central metal on electronic structure, magnetic properties, infrared and Raman spectra of double-decker phthalocyanine

    Science.gov (United States)

    Suzuki, Atsushi; Oku, Takeo

    2016-09-01

    The effects of the central metal in double-decker metal phthalocyanine on the electronic structure, magnetic properties, and infrared and Raman spectra of the complex were investigated. Electron density distributions were delocalized on the phthalocyanine rings. The narrow energy gap and infrared peaks observed in the ultra-violet-visible-near infrared spectra of the systems were attributed to phthalocyanine ring-ring interactions the between overlapping π-orbitals on each ring. The chemical shift behavior of the phthalocyanine rings was separated by the deformation of their structure owing to nuclear magnetic interaction of the nuclear quadrupole interaction as determined by the electronic field gradient and asymmetric parameters. The magnetic parameters of principle g-tensors were dependent on the perturbation of the crystal field by the hybridization of the d-spin in the central metal conjugated with nitrogen ligands. In the case of the vanadyl system, the IR vibration modes were shifted by the soft vibration mode for resolving the symmetrical structure. Inactive Raman vibration modes arose from no-polarization on the phthalocyanine rings. Double-decker metal phthalocyanines have great advantages for the control of the magnetic mechanism for quantum spin entanglement in the relaxation process.

  20. Revisiting a historic human brain with magnetic resonance imaging – the first description of a divided central sulcus

    Directory of Open Access Journals (Sweden)

    Renate eSchweizer

    2014-05-01

    Full Text Available In 1860 and 1862, the German physiologist Wagner published two studies, in which he compared the cortical surfaces of brain specimens. This provided the first account of a rare anatomical variation – bridges across the central sulci in both hemispheres connecting the forward and backward facing central convolutions in one of the brains. The serendipitous rediscovery of the preserved historic brain specimen in the collections at Göttingen University, being mistaken as the brain of the mathematician C.F. Gauss, allowed us to further investigate the morphology of the bridges Wagner had described with magnetic resonance imaging (MRI. On the historic lithograph, current photographs and MRI surface reconstructions of the brain, a connection across the central sulcus can only be seen in the left hemisphere. In the right hemisphere, contrary to the description of Wagner, a connecting structure is only present across the postcentral sulcus. MRI reveals that the left-hemispheric bridge extends into the depth of the sulcus, forming a transverse connection between the two opposing gyri. This rare anatomical variation, generally not associated with neurological symptoms, would nowadays be categorized as a divided central sulcus. The left-hemispheric connection seen across the postcentral sulcus, represents the very common case of a segmented postcentral sulcus. MRI further disclosed a connection across the right-hemispheric central sulcus, which terminates just below the surface of the brain and is therefore not depicted on the historical lithography. This explains the apparent inconsistency between the bilateral description of bridges across the central sulci and the unilateral appearance on the brain surface. The results are discussed based on the detailed knowledge of anatomists of the late 19th century, who already recognized the divided central sulcus as an extreme variation of a deep convolution within the central sulcus.

  1. The large superconducting solenoids for the g-2 muon storage ring

    International Nuclear Information System (INIS)

    The g-2 muon storage ring at Brookhaven National Laboratory consists of four large superconducting solenoids. The two outer solenoids, which are 15.1 meters in diameter, share a common cryostat. The two inner solenoids, which are 13.4 meters in diameter, are in separate cryostats. The two 24 turn inner solenoids are operated at an opposite polarity from the two 24 turn outer solenoids. This generates a dipole field between the inner and outer solenoids. The flux between the solenoids is returned through a C shaped iron return yoke that also shapes the dipole field. The integrated field around the 14 meter diameter storage ring must be good to about 1 part in one million over the 90 mm dia. circular cross section where the muons are stored, averaged over the azimuth. When the four solenoids carry their 5300 A design current, the field in the 18 centimeter gap between the poles is 1.45 T. When the solenoid operates at its design current 5.5 MJ is stored between the poles. The solenoids were wound on site at Brookhaven National Laboratory. The cryostats were built around the solenoid windings which are indirectly cooled using two-phase helium

  2. New ALPHA-2 magnet

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    On 21 June, members of the ALPHA collaboration celebrated the handover of the first solenoid designed for the ALPHA-2 experiment. The magnet has since been successfully installed and is working well.   Khalid Mansoor, Sumera Yamin and Jeffrey Hangst in front of the new ALPHA-2 solenoid. “This was the first of three identical solenoids that will be installed between now and September, as the rest of the ALPHA-2 device is installed and commissioned,” explains ALPHA spokesperson Jeffrey Hangst. “These magnets are designed to allow us to transfer particles - antiprotons, electrons and positrons - between various parts of the new ALPHA-2 device by controlling the transverse size of the particle bunch that is being transferred.” Sumera Yamin and Khalid Mansoor, two Pakistani scientists from the National Centre for Physics in Islamabad, came to CERN in February specifically to design and manufacture these magnets. “We had the chance to work on act...

  3. Laser beam propagation in a long solenoid

    International Nuclear Information System (INIS)

    An analysis of the propagation of a laser beam in a cylindrical magnetically confined plasma with parabolic density profile is presented. The normal modes which are self-trapped are given. It is found that the largest mode that can be trapped by the plasma is given by 1/2 (R02/w2 -- 1) where R0 is the radius of the plasma column and w is the fundamental mode width. It is found that all the trapped modes in a finite plasma can easily propagate distances of the order of one kilometer. An exact solution for the amplitude of the electric field for an incident gaussian beam was obtained. The solution exhibits alternate focusing and defocusing of the beam. The effect of this on the plasma heating is discussed. (U.S.)

  4. Crustal Thermal Properties of the Central Pontides (Northern Turkey) Deduced from Spectral Analysis of Magnetic Data

    OpenAIRE

    MADEN, NAFİZ

    2009-01-01

    The Pontides can be divided tectonically into three main sectors: Eastern, Central, and Western Pontides. Each of these represents an amalgamated tectonic mosaic consisting of remnants of oceanic, continental, and island arc segments. The Eastern and the Western Pontides meet in the Central Pontides, where they are structurally mixed and form a tectonic knot. The Central Pontides of northern Turkey is one of the best exposed segments of the southern margin of Eurasia adjacent to the Tethys Oc...

  5. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Science.gov (United States)

    Baik, S. K.; Ha, D. W.; Kwon, J. M.; Lee, Y. J.; Ko, R. K.

    2013-01-01

    HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station.

  6. Magnetic Resonance Findings of Primary Central Nervous System T-Cell Lymphoma in Immunocompetent Patients

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E.Y.; Kim, S.S. [Samsung Medical Center, Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of). Dept. of Radiology

    2005-04-01

    Purpose: To describe the MR findings of primary central nervous system T-cell lymphoma (T-PCNSL) in immunocompetent patients. Material and Methods: Seven patients with pathologically proven T-PCNSL were included in our study. The number, location, shape, enhancement pattern, and signal intensity of the tumors were determined. Diffusion-weighted images (DWI) and perfusion-weighted images (PWI) were obtained in four and two patients, respectively. Apparent diffusion coefficients (ADCs) were generated, and regions of interest were defined in each lesion. Results: Four patients with T-PCNSL had a single mass, while the others had multiple lesions (four, three, and two lesions, respectively). All seven cases of T-PCNSL had a supratentorial location: 12 in the subcortical area and 1 in the thalamus. No leptomeningeal involvement was noted. All tumors showed iso- to low T1 and iso- to slightly high T2 signal intensity to the adjacent gray matter. Rim enhancement was seen in 5 of the 7 patients (71.4%), while heterogeneous and homogeneous enhancement was seen in each of two. On DWI and ADC maps, the enhancing lesions showed slight hyperintensity in three patients (mean ADC ratio, 0.92{+-}0.06) and iso-intensity in the other (ADC ratio, 1.02{+-}0.05). Cystic areas consistent with necrosis were noted in three patients. High-signal intensity area in the cortex was noted on T1-weighted images in three patients, suggesting hemorrhage. In two patients, the same signal intensity area was noted within the mass. The two masses on the relative cerebral blood volume (rCBV) map demonstrated either similar or slightly higher signal intensity than that of the contralateral white matter. The rCBV ratios of these two masses were 1.27{+-}0.16 and 1.35{+-}0.2, respectively. Conclusion: T-PCNSLs show a predilection for a subcortical location, a relatively high incidence of cortical or intratumoral hemorrhage, rim enhancement, or cystic areas consistent with necrosis on magnetic resonance

  7. Shielded ADR Magnets For Space Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phase II program will concentrate on manufacturing of qualified low-current, light-weight, 10K ADR magnets for space application. Shielded ADR solenoidal...

  8. Transverse emittance measurement at REGAE via a solenoid scan

    Energy Technology Data Exchange (ETDEWEB)

    Hachmann, Max

    2012-12-15

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  9. The Design and Construction of the MICE Spectrometer Solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bert; Wahrer, Bob; Taylor, Clyde; Xu, L.; Chen, J. Y.; Wang, M.; Juang, Tiki; Zisman, Michael S.; Virostek, Steve P.; Green, Michael A.

    2008-08-02

    The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field. The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers.

  10. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  11. Transverse emittance measurement at REGAE via a solenoid scan

    International Nuclear Information System (INIS)

    The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required. A quantity to rate the beam quality is the beam emittance. In the course of this thesis transverse emittance measurements by a solenoid scan could be realized and beyond that an improved theoretical description of a solenoid was successful. The foundation of emittance measurements are constituted by theoretical models which describe the envelope of a beam. Two different models were derived. The first is an often used model to determine the transverse beam emittance without considering space charge effects. More interesting and challenging was the development of an envelope model taking space charge effects into account. It is introduced and cross checked with measurements and simulations.

  12. Magnetic anomalies over fracture zones in the central North Atlantic Ocean

    NARCIS (Netherlands)

    Twigt, W.

    1980-01-01

    The offset of a fracture zone leads to a configuration in which a strip of oceanic crust of one age will be juxtaposed axially to a strip of another age. Consequently, the polarity of the magnetic layer may be different on either side of the fracture zone. Next to this magnetic contrast the fracture

  13. Accuracy of magnetic energy computations

    CERN Document Server

    Valori, G; Pariat, E; Masson, S

    2013-01-01

    For magnetically driven events, the magnetic energy of the system is the prime energy reservoir that fuels the dynamical evolution. In the solar context, the free energy is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. A trustworthy estimation of the magnetic energy is therefore needed in three-dimensional models of the solar atmosphere, eg in coronal fields reconstructions or numerical simulations. The expression of the energy of a system as the sum of its potential energy and its free energy (Thomson's theorem) is strictly valid when the magnetic field is exactly solenoidal. For numerical realizations on a discrete grid, this property may be only approximately fulfilled. We show that the imperfect solenoidality induces terms in the energy that can lead to misinterpreting the amount of free energy present in a magnetic configuration. We consider a decomposition of the energy in solenoidal and nonsolenoidal parts which allows the unambiguous estimation...

  14. The silicon sensors for the Inner Tracker of the Compact Muon Solenoid experiment

    CERN Document Server

    Krammer, Manfred

    2004-01-01

    The Inner Tracker of the Compact Muon Solenoid (CMS) experiment, at present under construction, will consist of more than 24000 silicon strip sensors arranged in 10 central concentric layers and 2 multiplied by 9 discs at both ends. The total sensitive silicon area will be about 200 m**2. The silicon sensors are produced in various thicknesses and geometries. Each sensor has 512 or 768 implanted strips which will allow the measurement of the position of traversing high-energy charged particles. This paper gives a short overview of the CMS tracker system. Subsequently, the design of the silicon sensors is explained with special emphasis on the radiation hardness and on the high-voltage stability of the sensors. Two companies share the production of these sensors. The quality of the sensors is extensively checked by several laboratories associated with CMS. Important electrical parameters are measured on the sensors themselves. In addition, dedicated test structures designed by CMS allow the monitoring of many ...

  15. D-zero rototrack: first stage of D-zero 2 Tesla solenoid field mapping device

    International Nuclear Information System (INIS)

    A simple and portable field mapping device was developed at Fermilab and successfully used to test the D0 2 Tesla solenoid at Toshiba Works in Japan. A description of the mechanical structure, electric driving and control system, and software of the field mapping device is given. Four Hall probe elements of Group3 Digital Gaussmeters are mounted on the radial extension arm of a carriage, which is mounted on a central rotating beam. The system gives two dimensional motions (axial and rotational) to the Hall probes. To make the system compact and portable, we used a laptop computer with PCMCIA cards. For the control system we used commercially available software LabVIEW and Motion Toolbox, and for the data analysis we used Microsoft Excel

  16. Refurbishment and Testing of the 1970's Era LASS Solenoid Coils for JLab's Hall D

    Energy Technology Data Exchange (ETDEWEB)

    Anumagalla, Ravi; Biallas, George; Brindza, Paul; Carstens, Thomas; Creel, Jonathan; Egiyan, Hovanes; Martin, Floyd; Qiang, Yi; Spiegel, Scot; Stevens, Mark; Wissmann, Mark

    2012-07-01

    JLab refurbished the LASS1, 1.85 m bore Solenoid, consisting of four superconducting coils to act as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The coils, built in 1971 at Stanford Linier Accelerator Center and used a second time at the MEGA Experiment at Los Alamos, had electrical shorts and leaks to the insulating vacuum along with deteriorated superinsulation & instrumentation. Root cause diagnosis of the problems and the repair methods are described along with the measures used to qualify the vessels and piping within the Laboratory's Pressure Safety Program (mandated by 10CFR851). The extraordinary refrigerator operational methods used to utilize the obsolete cryogenic apparatus gathered for the off-line, single coil tests are described.

  17. Magnetic microphases in chrome-spinels from alpine-type ultramafic rocks, Central Urals

    Science.gov (United States)

    Sherendo, T. A.; Mitrofanov, V. Ya.; Martyshko, P. S.; Vazhenin, V. A.; Pamyatnykh, L. A.; Alekseev, A. V.

    2014-05-01

    The ore and accessory chrome-spinels from metamorphosed dunites of the Cr-bearing Klyuchevskoi alpine-type ultramafic massif are studied. As a result of use of thermomagnetic analysis in the range of 4-900 K, magnetic resonance spectroscopy, and magnetic-force microscopy, secondary magnetic Fe3+-enriched microphases chaotically distributed in the primary nonmagnetic mineral were revealed for the first time in accessory chrome-spinels. It was established that the metamorphosed accessory chrome-spinels produce the magnetic properties of the host rocks and the primary nonmagnetic chrome-spinels forming ore bodies remains almost unaltered. This originates the contrast of magnetic properties between the ore body and host rocks and provides the geomagnetic anomaly in the ore-hosting zone.

  18. Worcester 1 Inch Solenoid Actuated Gas Operated SCHe System Valves

    Energy Technology Data Exchange (ETDEWEB)

    MISKA, C.R.

    2000-11-13

    1 inch gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated.

  19. Electron Beam Size Measurements in a Cooling Solenoid

    CERN Document Server

    Kroc, Thomas K; Burov, Alexey; Seletsky, Sergey; Shemyakin, Alexander V

    2005-01-01

    The Fermilab Electron Cooling Project requires a straight trajectory and constant beam size to provide effective cooling of the antiprotons in the Recycler. A measurement system was developed using movable appertures and steering bumps to measure the beam size in a 20 m long, nearly continuous, solenoid. This paper discusses the required beam parameters, the implimentation of the measurement system and results for our application.

  20. Development of magnets for agricultural radiation processing facility at RRCAT

    International Nuclear Information System (INIS)

    A 10 MeV, 5 kW electron Linac based Agricultural Radiation Processing Facility is being set-up near DABH Vegetable and Fruit Market, Indore. In this paper the design and development of a set of solenoid and scanning magnets required for the Linac is presented. The solenoid magnets include small aperture (22 mm diameter) beam collimator magnet and other water cooled solenoid magnets of peak fields of 1200 Gauss and 500 Gauss to be placed around the Linac assembly between the RF couplers to improve beam transmission. The beam collimator magnet has been designed for an axial peak magnetic field of 410 Gauss and will be placed after the electron gun and before the Linac. The scanning magnet has been designed for maximum field strength of 436 Gauss for wider scanning of the electron beam. The cross-section of all the solenoid magnets were determined by computing the field distribution with the 2D magneto static POISSON code and 3D calculations were performed using OPERA 3D Code. The forces between the water cooled solenoids are also estimated since all the solenoid magnets are placed near to each other around the Linac assembly structure. The water cooled solenoids were made from hollow copper conductors and shielded around them with low carbon steel sheets. The magnet cores of collimators were manufactured from low carbon steel and coils from enameled copper wires. The scanning magnet core cross-section is of C-type, fabricated from 0.5 mm silicon steel laminations and coils from enameled copper wires. All the wound magnet coils were epoxy resin impregnated under vacuum and assembled with magnet cores. The magnetic field measurements of all the magnets were carried out using Hall probe. After field measurements, all the magnetic elements have been installed in the Linac assembly. The details of magnetic design, magnet development and the magnetic measurements will be discussed in this paper. (author)

  1. Solar-diurnal variation, the magnetic equator and the central line of an electrojet according to geomagnetic observations in Viet-Nam

    International Nuclear Information System (INIS)

    The positions of the magnetic equator of the central line of equatorial electrojet to the Earth surface are determined by the geomagnetic data in Viet Nam. It is shown that the electrojet central line shifts during a day within the limits of approximately +- 20 rv from its position in the local afternoom. The zone of electrojet effect in the magnetic field is established - it covers the band within the limits of 500 rv from the equator

  2. Increasing the resolution and the signal-to-noise ratio of magnetic resonance sounding data using a central loop configuration

    Science.gov (United States)

    Behroozmand, Ahmad A.; Auken, Esben; Fiandaca, Gianluca; Rejkjaer, Simon

    2016-04-01

    Surface nuclear magnetic resonance technique, also called magnetic resonance sounding (MRS), is an emerging geophysical method that can detect the presence and spatial variations of the subsurface water content directly. In this paper, we introduce the MRS central loop geometry, in which the receiver loop is smaller than the transmitter loop and placed in its centre. In addition, using a shielded receiver coil we show how this configuration greatly increases signal-to-noise ratio and improves the resolution of the subsurface layers compared to the typically used coincident loop configuration. We compare sensitivity kernels for different loop configurations and describe advantages of the MRS central loop geometry in terms of superior behaviour of the sensitivity function, increased sensitivity values, reduced noise level of the shielded receiver coil, improved resolution matrix and reduced instrument dead time. With no extra time and effort in the field, central-loop MRS makes it possible to reduce measurement time and to measure data in areas with high anthropogenic noise. The results of our field example agree well with the complementary data, namely airborne electromagnetics, borehole data, and the hydrologic model of the area.

  3. Self-consistent analysis of alpha-particle heating of a fast-solenoid plasma

    International Nuclear Information System (INIS)

    A numerical technique has been developed to analyse the dynamics of a linear, magnetically confined plasma column and its associated fusion-produced alpha-particles in a self consistent manner. The thermonuclear background plasma is considered as a radially non-uniform, axially symmetric magnetofluid in pressure equilibrium with the surrounding axial magnetic field. A multi-group technique is utilized to examine the alphas as a collection of particles distributed among a continuous spectrum of confined orbits. The technique is shown to be an effective one for observing the interaction between super-thermal particles with large orbit sizes and a stable plasma of comparable size. The use of a distribution function in an adiabatic-invariant representation results in an enormous increase in the time scale which can be treated. This enables analysis of the entire duty cycle of a laser solenoid plasma in reasonable computation times. An analysis of a fast solenoid plasma is described, where the initial plasma radius and temperature are varied parametrically. A plasma column of radius 7mm, temperature 6keV, and β=0.95 will reach an ion temperature of 10keV, corresponding to a fusion energy gain of 8, after 3ms. A range of maximum gain occurs for initial temperatures of 5 to 7keV, with larger radius plasmas more favoured by the cooler limits. The effect of increasing the alpha-particle-electron energy transfer rate by a moderate amount to account for anomalous effects is to increase the plasma temperature at longer times, as long as this energy transfer is well-coupled to the electron-ion energy transfer. Increasing the rate at which plasma transport processes occur (''anomalous transport'') always results in lower fusion yield, because of rapid plasma diffusion. (author)

  4. Magnetic and geochemical characterization of Andosols developed on basalts in the Massif Central, France

    Science.gov (United States)

    Grison, Hana; Petrovsky, Eduard; Stejskalova, Sarka; Kapicka, Ales

    2015-05-01

    Identification of Andosols is primarily based upon the content of their colloidal constituents—clay and metal-humus complexes—and on the determining of andic properties. This needs time and cost-consuming geochemical analyses. Our primary aim of this study is to describe the magnetic and geochemical properties of soils rich in iron oxides derived from strongly magnetic volcanic basement (in this case Andosols). Secondary aim is to explore links between magnetic and chemical parameters of andic soils with respect to genesis factors: parent material age, precipitation, and thickness of the soil profile. Six pedons of andic properties, developed on basaltic lavas, were analyzed down to parent rock by a set of magnetic and geochemical methods. Magnetic data of soil and rock samples reflect the type, concentration, and particle-size distribution of ferrimagnetic minerals. Geochemical data include soil reaction (pH in H2O), cation exchange capacity, organic carbon, and different forms of extractable iron and aluminum content. Our results suggest the following: (1) magnetic measurements of low-field mass-specific magnetic susceptibility can be a reliable indicator for estimating andic properties, and in combination with thermomagnetic curves may be suitable for discriminating between alu-andic and sil-andic subtypes. (2) In the studied Andosols, strong relationships were found between (a) magnetic grain-size parameters, precipitation, and exchangeable bases; (b) concentration of ferrimagnetic particles and degree of crystallization of free iron; and (c) parameters reflecting changes in magneto-mineralogy and soil genesis (parent material age + soil depth).

  5. Evolution of magnetotelluric, total magnetic field, and VLF field parameters in Central Italy: relations to local seismic activity

    Directory of Open Access Journals (Sweden)

    T. Ernst

    2001-06-01

    Full Text Available Magnetotelluric data were collected at Collemeluccio (41.72°N, 14.37°E in Central Italy from summer 1991 to spring 1998. Analyzed by means of tensor decomposition on the geoelectric potential and robust estimation on the geomagnetic field, this set of data allowed the investigation of the electric properties at different time-periods. The variation of some indicators, related to the phenomenon of electromagnetic induction, is presented here in its time evolution and compared to local and regional seismic activity. Tectonomagnetic field observations from absolute magnetic field level in Central Italy were also made on data simultaneously recorded at four magnetometer stations, using L'Aquila Geomagnetic Observatory as a reference for differentiation. Recent results gathered from a system of two VLF search coil wide-band antennas, installed in the L'Aquila Observatory, are also discussed in relation to local seismic activity.

  6. Magnet News

    CERN Multimedia

    Foussat, A; Ruber, R

    Central Solenoid Test The Central Solenoid (CS) and its associated Proximity Cryogenic System have been designed by KEK in collaboration with CERN. Following construction and extensive tests at the Toshiba manufacturing site in Yokohama, Japan, the equipment has been shipped to CERN. The CS is now being prepared for the integration in a common cryostat with the LAr calorimeter, after which a full on-surface test has to be completed before final installation 100m underground in the ATLAS cavern. For this purpose a provisional set-up for the re- commissioning of the final Proximity Cryogenics, the connecting Chimney and the Central Solenoid has been established. During the month of May the Proximity Cryogenics and Chimney with superconducting bus lines have been tested (figure1). The equipment was cooled down to 4.5K and a current of 9000 amperes was applied to the chimney. This is almost 20% above the nominal operational current of 7400 amperes. A number of tests and simulations have been successfully perf...

  7. A Steady State Tokamak Operation by Use of Magnetic Monopoles

    OpenAIRE

    Narihara, K.

    1991-01-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which the magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficie...

  8. Calculations on the STAR conventional magnet design

    International Nuclear Information System (INIS)

    A thin superconducting solenoid magnet was originally planned for the STAR detector, as described in the Conceptual Design Report. The electromagnetic calorimeter (EMC) was to be mounted outside the magnet coil and inside the magnet flux return in the form of iron bars. This design had relatively little coupling of the requirements for the magnet and the EMC. After the CDR was written, it was decided to use a conventional solenoidal magnet with copper or aluminum coils instead, primarily on the basis of construction costs. The large thickness of coil material was expected to seriously degrade the calorimeter performance, so the coil was moved outside the EMC. In the process, the magnet and EMC designs became much more closely coupled. This note documents a variety of calculations related to this coupling, as well as some of the reasons for certain design parameters of both the electromagnetic calorimeter and the conventional solenoidal magnet

  9. The levitation characteristics of the magnetic substances using trapped HTS bulk annuli with various magnetic field distributions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.B., E-mail: kim@ec.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Ikegami, T.; Matsunaga, J.; Fujii, Y. [Graduate School of Natural Science and Technology, Okayama University, 3-1-1, Tsushima-Naka, Kita-ku, Okayama 700-8530 (Japan); Onodera, H. [Japan Science and Technology Agency–Core Research for Evolutional Science and Technology (JST–CREST), Tokyo 102-0076 (Japan)

    2013-11-15

    Highlights: •The spherical solenoid magnet can make a various magnetic field distributions. •We generated a large magnetic gradient at inner space of HTS bulks. •The levitation height of samples was improved by the reapplied field method. •The levitation height depends on the variation rate of magnetic field gradient. -- Abstract: We have been investigating the levitation system without any mechanical contact which is composed of a field-cooled ring-shaped high temperature superconducting (HTS) bulks [1]. In this proposed levitation system, the trapped magnetic field distributions of stacked HTS bulk are very important. In this paper, the spherical solenoid magnet composed of seven solenoid coils with different inner and outer diameters was designed and fabricated as a new magnetic source. The fabricated spherical solenoid magnet can easily make a homogeneous and various magnetic field distributions in inner space of stacked HTS bulk annuli by controlling the emerging currents of each coil. By using this spherical solenoid magnet, we tried to make a large magnetic field gradient in inner space of HTS bulk annuli, and it is very important on the levitation of magnetic substances. In order to improve the levitation properties of magnetic substances with various sizes, the external fields were reapplied to the initially trapped HTS bulk magnets. We could generate a large magnetic field gradient along the axial direction in inner space of HTS bulk annuli, and obtain the improved levitation height of samples by the proposed reapplied field method.

  10. Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    OpenAIRE

    Muniz, Sérgio R.; Bhattacharya, M.; Bagnato, Vanderlei S.

    2010-01-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite so...

  11. Design of a centralized control system for a plasma machine with superconducting helical magnets

    International Nuclear Information System (INIS)

    A centralized control system necessary for experimental fusion machines is discussed. A two-layered configuration where a number of complete local systems are controlled by a central computer, is appropriate as control system for the Large Helical Device. All the local systems can be uniformly operated with global cooperation by a few operators through general-purpose consoles as the central computer. Fast control, which cannot be supported by the uniform control, is aided by a precise but pre-programmable timing generator and an interlock for emergency response. Special safety requirements during a coil quench are studied under the condition that the enormous stored energy must be released in a short time after the quench. (orig.)

  12. RADIAL ANGULAR MOMENTUM TRANSFER AND MAGNETIC BARRIER FOR SHORT-TYPE GAMMA-RAY-BURST CENTRAL ENGINE ACTIVITY

    International Nuclear Information System (INIS)

    Soft extended emission (EE) following initial hard spikes up to 100 s was observed with Swift/BAT for about half of known short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of black-hole-neutron-star merger models, we study the roles of radial angular momentum transfer in the disk and the magnetic barrier around the black hole in the activity of SGRB central engines. We show that radial angular momentum transfer may significantly prolong the lifetime of the accretion process, which may be divided into multiple episodes by the magnetic barrier. Our numerical calculations based on models of neutrino-dominated accretion flows suggest that disk mass is critical for producing the observed EE. In the case of the mass being ∼0.8 M ☉, our model can reproduce the observed timescale and luminosity of both the main and the EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE within about one order of magnitude and the timescale is shorter than 20 s if the disk mass is ∼0.2 M ☉. Swift/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component could be a probe for the merger process and disk formation for compact star mergers.

  13. Effects of Slip Planes on Stresses in MICE Coupling Solenoid Coil Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Pan, Heng; Wu, Hong; Guo, XingLong; Cheng, Y.; Green, Michael A

    2010-06-28

    The MICE superconducting coupling solenoid magnet is made from copper matrix Nb-Ti conductors with inner radius of 750 mm, length of 285 mm and thickness of 110.4 mm at room temperature. The coil is to be wound on a mandrel made of aluminum. The peak magnetic field on the conductor is about 7.3 T when fully charged at 210 A. High magnetic field and large size make the stress inside the coupling coil assembly relatively high during cool down and full energizing. The shear stress between coil winding and aluminum casing may cause premature quench. To avoid quench potential induced by stress, slip planes were designed for the coil assembly. In this paper, FE models with and without slip planes for it have been developed to simulate the stresses during the process including winding, cooling down and charging. The stress distribution in the coil assembly with and without slip planes was investigated. The results show that slip planes with low friction coefficients can improve the stress condition in the coil, especially reduce the shear stress largely so that improve the stability.

  14. Detection circuit of solenoid valve operation and control rod drive mechanism utilizing the circuit

    International Nuclear Information System (INIS)

    Object: To detect the operation of a plunger and detect opening and closing operations of a solenoid valve driving device due to change in impedance of a coil for driving the solenoid valve to judge normality and abnormality of the solenoid valve, thereby increasing reliance and safety of drive and control apparatus of control rods. Structure: An arrangement comprises a drive and operation detector section wherein the operation of a solenoid driving device for controlling power supply to a coil for driving the solenoid valve to control opening and closing of the solenoid valve, and a plunger operation detector section for detecting change in impedance of the drive coil to detect that the plunger of the solenoid valve is either in the opening direction or closing direction, whereby a predetermined low voltage such as not to activate the solenoid valve even when the solenoid valve is open or closed is applied to detect a current flowing into the coil at that time, thus detecting an operating state of the plunger. (Yoshino, Y.)

  15. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  16. Multibeam bathymetric, gravity and magnetic studies over 79 degrees E fracture zone, central Indian basin

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Ramprasad, T.; Kodagali, V.N.; Nair, R.R.

    stages of FZ evolution. Gravity and magnetic data were analyzed together with the bathymetric data. The observed free-air gravity across the 79 drgrees E FZ is modeled in terms of the lithospheric thickness, taking into consideration the thermal evolution...

  17. Magnetic anomalies across the southern Central Indian Ridge: evidence for a new transform fault

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.; Krishna, K.S.; SubbaRaju, L.V.; Rao, D.G.

    and 2 km deeper than its flanks whereas in the south the relief is less than 1 km. The axis of the median valley is 650 A.K. C~.cat:v et at. displaced by approximately 50 km between the profiles SK 20.1 and 20-2. The magnetic anomaly data displayed...

  18. Realisation of a β spectrometer solenoidal and a double β spectrometer at coincidence

    International Nuclear Information System (INIS)

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of β spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports αK / αL and it is especially efficient for the accurate energy levels of the γ rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the β and γ emission is rather little lower to 4π steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations βγ and e-γ. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e-e-, e-β of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e-e-, e-β. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: 76As (26 h), 122Sb (2,8 j), 124Sb (60 j), 125Sb (2,7 years). (M.B.)

  19. Heavy ion physics at LHC with the Compact Muon Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Bedjidian, M.; Contardo, D.; Haroutunian, R. [Universite Claude Bernard Lyon 1, Villeurbanne (France)] [and others

    1995-07-15

    The Compact Muon Solenoid (CMS), is one of the two detectors proposed to achieve the primary goal of the LHC: the discovery of the Higgs boson(s). For this purpose, the detector is optimized for the precise measurement of muons, photons, electrons and jets. It is a clear motivation to investigate its ability to measure the hard processes probing the formation of a Quark Gluon Plasma (QGP) in ion collisions. It is the case of the heavy quark bound states, long predicted to be suppressed in a QGP. In CMS they can be detected, via their muonic decay according to the principle adopted for the p-p physics.

  20. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine, E-mail: c.vittoria@neu.edu

    2015-11-01

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10{sup −4} G/Vm{sup −1}. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~10{sup 6}) improvements in sensitivity and tunability.

  1. Magnetoelectric excitations in hexaferrites utilizing solenoid coil for sensing applications

    International Nuclear Information System (INIS)

    We have developed techniques for H- and E-field sensors utilizing single phase magnetoelectric hexaferrite materials in the frequency range of 100 Hz to 10 MHz. Novel excitation method incorporating solenoid coils and single and multi-capacitor banks were developed and tested for sensor detections. For H-field sensing we obtained sensitivity of about 3000 V/mG and for E-field sensing the sensitivity was 10−4 G/Vm−1. Tunability of about 0.1% was achieved for tunable inductor applications. However, the proposed designs lend themselves to significant (~106) improvements in sensitivity and tunability

  2. Applications of a 6.5T Superconducting Solenoidal Separator

    Directory of Open Access Journals (Sweden)

    Williams E.

    2012-10-01

    Full Text Available A 6.5 Tesla superconducting gas-filled solenoid (SOLITAIRE has been developed at the Heavy Ion Accelerator Facility at the ANU as a reaction product separator. Key features of the device allowing its application for precise measurement of heavy ion fusion cross sections are described. The physical separation of beam particles and the high efficiency (~80% transport of heavy ion fusion products open up applications in nuclear structure physics, and in materials science. Finally, the developments to allow its application to providing beams of light radioactive isotopes (SOLEROO are described.

  3. Paleomagnetic and Anisotropy of Magnetic Susceptibility (AMS analyses of the Plio-Pleistocene extensional Todi basin, Central Italy

    Directory of Open Access Journals (Sweden)

    L. Alfonsi

    1997-06-01

    Full Text Available In the last few years paleomagnetic investigations within the Apennine chain have revealed that the area is characterized by a complex pattern of deformation, not linkable to a simple and homogeneous process. In order to estimate the amount, sense and timing of vertical axis rotations within the Central Apennines, Neogene continental basins have been investigated for paleomagnetic studies. The paleomagnetic results obtained in the Plio-Pleistocene Todi basin showed that the Upper Pliocene-Lower Pleistocene evolution, associated with major dip-slip tectonics, has not involved vertical axis rotation since that time. The Anisotropy of Magnetic Susceptibility analysis (AMS, carried out on the same samples treated for paleomagnetic determination, revealed the presence of two groups of specimens characterized by different magnetic lineation directions. One direction trends NE-SW and is parallel to the orientation of the regional extension stress typical of the area. This direction is observed throughout the northern basin. The other, restricted to the southern basin, trends N-S and shows no links with the tectonic, hydrological-sedimentary conditions of the area. The results of the AMS analysis will be presented and discussed in the light of the rock magnetic results and the tectonic framework of the area.

  4. Comparing superconducting and permanent magnets for magnetic refrigeration

    Science.gov (United States)

    Bjørk, R.; Nielsen, K. K.; Bahl, C. R. H.; Smith, A.; Wulff, A. C.

    2016-05-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoid with a permanent magnet (PM) Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 /m2 and a price of the permanent magnet of 100 /kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  5. Anisotropies of anhysteretic remanence and magnetic susceptibility of marly clays from Central Italy

    Directory of Open Access Journals (Sweden)

    L. Sagnotti

    1994-06-01

    Full Text Available Marly clays from an Upper Pliocene unit at Valle Ricca (Rorne were investigated for their Anisotropy of Anhysteretic Remanence (AAR and Anisotropy of Magnetic Susceptibility (AMS. The study of AAR was accomplished for the first time in ltaly, developing a suitable laboratory technique and adapting a standard statistical procedure. The comparison between anhysteretic remanence and magnetic susceptibility anisotropies discriminates the fabric of the ferromagnetic fraction from that of the paramagnetic matrix of the rock. The separation of fabric components was applied to distinguish subsequent geological processes that affected the total rock fabric. The results indicate that the clayey units are particularly suitable for the empirical investigation of fabric to strain relationship in weakly deformed rocks.

  6. Central modulators of human pain: Effects of oxytocin, exam stress, breathing exercises and transcranial magnetic stimulation

    OpenAIRE

    Zunhammer, Matthias

    2014-01-01

    The available means to control human pain are insufficient, novel mechanisms of pain modulation must be explored and understood. This cumulative dissertation comprises four studies, which explored potential means to modulate pain in the central nervous system. An overview on the current understanding of pain, its basic mechanisms, and its known modulators is provided. Study 1 tested if a high intranasal dose of the neuro-hypophyseal hormone oxytocin affected perception and processing of therm...

  7. Magnetic levitation of condensed hydrogen

    Science.gov (United States)

    Paine, C. G.; Seidel, G. M.

    1991-01-01

    Liquid and solid molecular hydrogen has been levitated using a pair of small superconducting solenoids. The hydrogen samples, up to 3 mm in dimension, were trapped in a magnetic potential having either a discrete minimum or a minimum in the form of a ring 1 cm in diameter. The hydrogen could be moved about in the magnetic trap by applying an electric field.

  8. Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran

    Science.gov (United States)

    Karimi, Rezvan; Ayoubi, Shamsollah; Jalalian, Ahmad; Sheikh-Hosseini, Ahmad Reza; Afyuni, Majid

    2011-05-01

    Recently methods dealing with magnetometry have been proposed as a proper proxy for assessing the heavy metal pollution of soils. A total of 113 topsoil samples were collected from public parks and green strips along the rim of roads with high-density traffic within the city of Isfahan, central Iran. The magnetic susceptibility (χ) of the collected soil samples was measured at both low and high frequency (χlf and χhf) using the Bartington MS2 dual frequency sensor. As, Cd, Cr, Ba, Cu, Mn, Pb, Zn, Sr and V concentrations were measured in the all collected soil samples. Significant correlations were found between Zn and Cu (0.85) and between Zn and Pb (0.84). The χfd value of urban topsoil varied from 0.45% to 7.7%. Low mean value of χfd indicated that the magnetic properties of the samples are predominately contributed by multi-domain grains, rather than by super-paramagnetic particles. Lead, Cu, Zn, and Ba showed positive significant correlations with magnetic susceptibility, but As, Sr, Cd, Mn, Cr and V, had no significant correlation with the magnetic susceptibility. There was a significant correlation between pollution load index (PLI) and χlf. PLI was computed to evaluate the soil environmental quality of selected heavy metals. Moreover, the results of multiple regression analysis between χlf and heavy metal concentrations indicated the LnPb, V and LnCu could explain approximately 54% of the total variability of χlf in the study area. These results indicate the potential of the magnetometric methods to evaluate the heavy metal pollution of soils.

  9. Increased membrane turnover in the brain in cutaneous anthrax without central nervous system disorder: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Bayindir, Yasar; Firat, Ahmet K; Kayabas, Uner; Alkan, Alpay; Yetkin, Funda; Karakas, Hakki M; Yologlu, Saim

    2012-07-01

    Cutaneous anthrax, caused by Bacillus anthracis contacting the skin, is the most common form of human anthrax. Recent studies implicate the presence of additional, possibly toxin-related subtle changes, even in patients without neurological or radiological findings. In this study, the presence of subtle changes in cutaneous anthrax was investigated at the metabolite level using magnetic resonance spectroscopy. Study subjects were consisted of 10 patients with cutaneous anthrax without co-morbid disease and/or neurological findings, and 13 healthy controls. There were no statistical differences in age and gender between two groups. The diagnosis of cutaneous anthrax was based on medical history, presence of a typical cutaneous lesion, large gram positive bacilli on gram staining and/or positive culture for B. anthracis from cutaneous samples. Brain magnetic resonance imaging examination consisted of conventional imaging and single-voxel magnetic resonance spectroscopy. Magnetic resonance spectroscopy was performed by using point-resolved spectroscopy sequence (TR: 2000ms, TE: 136ms, 128 averages). Voxels of 20mm×20mm×20mm were placed in normal-appearing parietal white matter to detect metabolite levels. Cerebral metabolite peaks were measured in normal appearing parietal white matter. N-acetyl aspartate/creatine and choline/creatine ratios were calculated using standard analytical procedures. Patients and controls were not statistically different regarding parietal white matter N-acetyl aspartate/creatine ratios (p=0.902), a finding that implicates the conservation of neuronal and axonal integrity and neuronal functions. However, choline/creatine ratios were significantly higher in patient groups (p=0.001), a finding implicating an increased membrane turnover. In conclusion, these two findings point to a possibly anthrax toxins-related subtle inflammatory reaction of the central nervous system at the cellular level. PMID:22543072

  10. Rock magnetic and geochemical proxies for iron mineral diagenesis in a tropical lake: Lago Verde, Los Tuxtlas, East Central Mexico

    Science.gov (United States)

    Ortega, Beatriz; Caballero, Margarita; Lozano, Socorro; Vilaclara, Gloria; Rodríguez, Alejandro

    2006-10-01

    Magnetic and non-magnetic mineral analyses were conducted on a lacustrine sequence from Lago Verde in the tropical coast along the Gulf of Mexico that covers the last 2000 years. The site witnessed the transformation of the environment since the early Olmec societies until forest clearance in the last century. Through these analyses we investigated the processes that affected the magnetic mineralogy in order to construct a model of past environmental changes, and compare this model with the archeological record and inferred climatic changes in the northern hemisphere of tropical America. Volcanic activity has played a major influence on sediment magnetic properties, as a purveyor of Ti-magnetites/Ti-maghemites, and as a factor of instability in the environment. Anoxic reductive conditions are evident in most of Lago Verde's sedimentary record. Direct observations of magnetic minerals and ratios of geochemical (Fe, Ti), and ferrimagnetic ( χf) and paramagnetic ( χp) susceptibility ( χ) data, are used as parameters for magnetite dissolution ( χp/ χ, Fe/ χf), and precipitation ( χf/Ti) of magnetic minerals. Intense volcanic activity and anoxia are recorded before A.D. 20, leading to the formation of framboidal pyrite. Increased erosion, higher evaporation rates, lower lake levels, anoxia and reductive diagenesis in non-sulphidic conditions are inferred for laminated sediments between A.D. 20-850. This deposit matches the period of historical crisis and multiyear droughts that contributed to the collapse of the Maya civilization. Dissolution of magnetite, a high organic content and framboidal pyrite point to anoxic, sulphidic conditions and higher lake levels after A.D. 850. Higher lake levels in Lago Verde broadly coincide with the increased precipitation documented during the Medieval Warm Period (A.D. 950-1350) in the northern tropical and subtropical regions of the American continent. For the Little Ice Age (A.D. 1400-1800), the relatively moist conditions

  11. Design of the superconducting magnet system for the SuperKEKB interaction region

    International Nuclear Information System (INIS)

    The design of the superconducting magnet system for the SuperKEKB interaction region has been developed. The magnet system consists of 8 main quadrupoles, 40 correctors and 4 compensation solenoids. Focusing beams in the interaction region is designed to be performed by the quadrupole doublets on the beam lines. The compensation solenoids integrally cancel the Belle-II solenoid field. As part of the R and D of the main quadrupoles, the QC1E prototype magnet was constructed and cold tested at 4K. The magnet showed the good superconducting characteristics. (author)

  12. Fetal magnetic resonance imaging of the central nervous system: a pictorial essay

    International Nuclear Information System (INIS)

    Prenatal ultrasonography is the primary screening modality for the evaluation of fetal pathology. Ultrafast fetal MRI is a recent development that examines the fetus in utero. The short acquisition times (as short as 400 ms/slice) allow to picture freeze the fetus without the need for fetal sedation. The high spatial resolution, good contrast-to-noise ratio, and the multiplanar capabilities are especially advantageous in pathologies of the fetal central nervous system (CNS). Fetal MRI currently serves as a second-line imaging tool for complex fetal cerebral malformations and pathologies. Fetal ventriculomegaly, lesions within the posterior fossa, and abnormalities in cerebral myelination, migration, and sulcation are particularly well identified. (orig.)

  13. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers.

    Science.gov (United States)

    Kaushik, Ajeet; Jayant, Rahul D; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan

    2016-01-01

    Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning. PMID:27143580

  14. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers

    Science.gov (United States)

    Kaushik, Ajeet; Jayant, Rahul D.; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan

    2016-01-01

    Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affect hepatic, kidney and neurobehavioral functioning. PMID:27143580

  15. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers

    OpenAIRE

    Kaushik, Ajeet; Jayant, Rahul D.; Nikkhah-Moshaie, Roozbeh; Bhardwaj, Vinay; Roy, Upal; Huang, Zaohua; Ruiz, Ariel; Yndart, Adriana; Atluri, Venkata; El-Hage, Nazira; Khalili, Kamel; Nair, Madhavan

    2016-01-01

    Least component-based delivery of drug-tagged-nanocarriers across blood-brain-barriers (BBB) will allow site-specific and on-demand release of therapeutics to prevent CNS diseases. We developed a non-invasive magnetically guided delivery of magneto-electric nanocarriers (MENCs), ~20 nm, 10 mg/kg, across BBB in C57Bl/J mice. Delivered MENCs were uniformly distributed inside the brain, and were non-toxic to brain and other major organs, such as kidney, lung, liver, and spleen, and did not affec...

  16. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  17. Magnetic resonance imaging of miliary tuberculosis of the central nervous system in children with tuberculous meningitis

    International Nuclear Information System (INIS)

    Tuberculous meningitis (TBM) is closely associated with miliary tuberculosis and a pathogenetic relationship is suspected, although it has been proposed that the two processes are unrelated. To describe miliary tuberculosis of the central nervous system (CNS) on MRI in children with TBM. A retrospective descriptive study of 32 paediatric TBM patients referred for MRI. The presence of miliary nodules in the CNS was recorded. Lesions were categorized according to their distribution, enhancement pattern, size and signal characteristics. A miliary distribution of nodules was present in 88% of patients. All patients with a miliary distribution had leptomeningeal nodules and 18% of these patients had deep parenchymal nodules in addition. At least one tuberculoma with central T2 hypointensity was identified in 39% of patients. The high prevalence of miliary leptomeningeal nodules in the CNS of children with TBM is significant because it points to a pathogenetic relationship that has long been suspected on epidemiological grounds. Our findings challenge the concept that miliary tuberculosis is only an incidental finding in TBM patients and suggest that it plays an integral part in the pathogenesis. (orig.)

  18. Magnetic resonance imaging of miliary tuberculosis of the central nervous system in children with tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Rensburg, Pieter; Andronikou, Savvas; Pienaar, Manana [University of Stellenbosch, Department of Radiology, Faculty of Health Sciences, Tygerberg (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Faculty of Health Sciences, Tygerberg (South Africa)

    2008-12-15

    Tuberculous meningitis (TBM) is closely associated with miliary tuberculosis and a pathogenetic relationship is suspected, although it has been proposed that the two processes are unrelated. To describe miliary tuberculosis of the central nervous system (CNS) on MRI in children with TBM. A retrospective descriptive study of 32 paediatric TBM patients referred for MRI. The presence of miliary nodules in the CNS was recorded. Lesions were categorized according to their distribution, enhancement pattern, size and signal characteristics. A miliary distribution of nodules was present in 88% of patients. All patients with a miliary distribution had leptomeningeal nodules and 18% of these patients had deep parenchymal nodules in addition. At least one tuberculoma with central T2 hypointensity was identified in 39% of patients. The high prevalence of miliary leptomeningeal nodules in the CNS of children with TBM is significant because it points to a pathogenetic relationship that has long been suspected on epidemiological grounds. Our findings challenge the concept that miliary tuberculosis is only an incidental finding in TBM patients and suggest that it plays an integral part in the pathogenesis. (orig.)

  19. Magnetic resonance features of primary central nervous system lymphoma in the immunocompetent patient: a pictorial essay

    International Nuclear Information System (INIS)

    Primary central nervous system lymphoma (PCNSL) is an uncommon but important variant of non-Hodgkin lymphoma and represents up to 6% of all primary central nervous system (CNS) malignancies. Recognition of this entity by radiologist on MRI may avoid unnecessary neurosurgical resection and redirect to biopsy. The pretreatment MRI of patients with biopsy proven PCNSL from the last 5 years at our institution was reviewed. Selected examples were used to construct a pictorial essay to illustrate some of the typical and atypical MR features of PCNSL. MRI of other CNS conditions with imaging similarities to PCNSL was included to demonstrate possible mimics. The typical features of PCNSL lymphoma are intra-axial homogenous single or multiple contrast enhancing lesions, with marked surrounding oedema and restricted diffusion, usually contacting a cerebrospinal fluid (CSF) surface. Necrosis, peripheral enhancement, haemorrhage or calcification are unusual and other diagnoses should be considered if any of these features are present. Potential mimics include high grade glioma, infarcts, metastatic disease, demyelination, abscess and secondary lymphoma. Careful assessment of the MR features and correlation with the clinical findings should enable the radiologists to raise the possibility of PCNSL and minimise the risk of unnecessary resection.

  20. The stability test of natural remanent magnetization (NRM) vulcanic rock of merapi mountain in central Java

    International Nuclear Information System (INIS)

    An assessment has been done on magnetic properties of the rock from the area around the top of Merapi Mountain. The research conducted In form of stability test of Natural Remanent Magnetization (NRM), Which 16 specimens that used in that test were taken from Pasar Bubar, Kali Gendol and Kali Gendong Alternating Field Demagnetization Methods applied on measurement of intensity and direction of NRM and demagnetization process. The result shown that the rock from Pasar Bubar had mean intensity of 2255486 mA/meter with a range of declination 32.80 -650 and inclination -37.40 -3.90, Kali Gendol had mean intensity of 2469.387 mA/meter with range of declination of 356.10-110 and inclination of -490 --0.10, and Kali Gendong had mean Intensity of 4139.062 mA/meter with range of declination of 62.10 -12540 and inclination of -0.80 -3520. The stability test is determined from intensity curve, stereo net Plot. Zijderveld diagram and Maximum Angular Deviation (MAD) According the result, the specimen from kali gendol were the most stable and qualifield for further used on paleomagnetic study

  1. Solenoid-free toroidal plasma start-up concept utilizing only the outer poloidal field coils

    International Nuclear Information System (INIS)

    Full text: Eventual elimination of in-board ohmic heating solenoid is required for the spherical torus (ST) reactors and it is considered to be highly desirable for advanced tokamak reactors. A fundamental challenge for using only the outer poloidal field coils for the start-up purpose is the difficulty of creating a sufficiently high quality field null region while retaining significant poloidal flux needed for subsequent current ramp up. Here, we show through both static and dynamic calculations that a carefully chosen proper set of outer poloidal field coils can indeed offer a promising prospect of creating a good quality 'multi-pole' field null while retaining sufficient poloidal flux, in particular, satisfying the 'Lloyd' criteria for the inductive plasma start-up. For a single turn TF system envisioned for ST-based CTF and power plant, the poloidal magnetic flux stored in the TF inner leg can provide additional significant flux. This concept can be readily extended to future devices for a multi-MA level start-up current due to the relatively simple physics principles and a favorable scaling with device size and toroidal magnetic field. (author)

  2. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  3. Simple analysis of off-axis solenoid fields using the scalar magnetostatic potential: application to a Zeeman-slower for cold atoms

    CERN Document Server

    Muniz, Sérgio R; Bagnato, Vanderlei S

    2010-01-01

    In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.

  4. Constraining the magma flow record based on magmatic and magnetic data in La Gloria Pluton, central Chile

    Science.gov (United States)

    Gutierrez, F. J.; Payacán, I.; Gelman, S. E.; Bachmann, O.; Creative Physical Petrology Team

    2013-05-01

    The magmatic origin of the anisotropy of magnetic susceptibility (AMS) is examined in comparison with magmatic anisotropy data in a small, shallow, silicic magma reservoir in the upper crust. La Gloria Pluton (LGP) is a 10 Ma granodiorite/quartz monzonite of about 250 km3 located in the southern Andes, central Chile. LGP represents a particularly simple case of a silicic intrusion that was assembled in only a few pulses and cooled over a short time interval. Hornblende, biotite and minor magnetite are ubiquitous mafic phases. The AMS tensor indicates that magnetic fabric has an oblate shape (i.e. magnetic foliation is higher than magnetic lineation). Lineations are weak (values up to 1.05), have a N-NW trend with a nearly horizontal dip and are interpreted to represent axisymmetric convection parallel to the main pluton elongation. Foliations are more pronounced (values up to 1.14), having NW trends and dips that vary gradually from vertical at the walls, to horizontal at the center and near the roof of the chamber. We selected 12 samples from AMS sites to obtain petrographic data (well-distributed throughout the pluton, containing samples from the walls, the center and the roof of LGP), and then, determine the magmatic fabric (anisotropy, lineation, foliation). We made 3 oriented thin sections per sample oriented with the AMS. Magmatic anisotropy data were obtained by measuring mineral length, width and orientation in photomicrographs of the three main planes of the AMS tensor, producing 3-D mineral data which were collected for plagioclase and amphibole + bitotite independently. For each site, a Bingham distribution with 95% of confidence is used to determine the mean mineral orientations and their angle difference with the AMS axes. Magmatic anisotropy tensor and rotations with respect to the AMS tensor are determined using both eigenvalues and minimization algorithms. Preliminary results indicate that crystals are coherently oriented in both mineral groups, and

  5. A possible correlation between maxima of the far ultraviolet solar irradiance and central meridian passages of solar magnetic sector boundaries

    Science.gov (United States)

    Heath, D. F.; Wilcox, J. M.

    1974-01-01

    A description is given of the relationship observed between enhancements in the far ultraviolet solar irradiance and the position of the solar magnetic sector boundaries. The ultraviolet observations were made with the monitor of ultraviolet solar energy (MUSE) experiments which were launched aboard Nimbus 3 in April 1969 and Nimbus 4 April 1970. A comparison between the positions of solar magnetic sector boundaries and ultraviolet enchancements of the sun seems to show, at least during the year of 1969, that the ultraviolet maxima tend to occur near the times when a solar sector boundary is near the central meridian. An estimate of the magnitude of the variable ultraviolet solar energy input into the atmosphere resulting from the rotation of active solar longitudes is that for wavelengths less that 175 nm and down to H Lyman alpha it exceeds the annual variation whereas at longer wavelengths it is less. The total observed peak to peak variation in the ultraviolet irradiance from 120 to 300 nm over a solar rotation is typically at least 230 ergs/sq cm sec.

  6. Large TileCal magnetic field simulation

    International Nuclear Information System (INIS)

    The ATLAS magnetic field map has been estimated in the presence of the hadron tile calorimeter. This is an important issue in order to quantify the needs for individual PMT shielding, the effect on the scintillator light yield and its implications on the calibration. The field source is based on a central solenoid and 8 superconducting air-core toroidal coils. The maximum induction value in the scintillating tiles does not exceed 6 mT. When an iron plate is used to close the open drawer window the field inside the PMT near to the extended barrel edge does not exceed 0.6 mT. Estimation of ponder motive force distribution, acting on individual units of the system was performed. VF electromagnetic software OPERA-TOSCA and CERN POISCR code were used for the field simulation of the system. 10 refs., 4 figs

  7. Fusion--fission hybrid reactors based on the laser solenoid

    International Nuclear Information System (INIS)

    Fusion-fission reactors, based on the laser solenoid concept, can be much smaller in scale than their pure fusion counterparts, with moderate first-wall loading and rapid breeding capabilities (1 to 3 tonnes/yr), and can be designed successfully on the basis of classical plasma transport properties and free-streaming end-loss. Preliminary design information is presented for such systems, including the first wall, pulse coil, blanket, superconductors, laser optics, and power supplies, accounting for the desired reactor performance and other physics and engineering constraints. Self-consistent point designs for first and second generation reactors are discussed which illustrate the reactor size, performance, component parameters, and the level of technological development required

  8. A Sensorless Method for Detecting Spool Position in Solenoid Actuators

    Directory of Open Access Journals (Sweden)

    I. Dülk

    2013-06-01

    Full Text Available A method is developed to estimate the position of the moving part in a solenoid actuator. We superpose a sinusoidal component onto the base duty ratio of the drive PWM (Pulse Width Modulation, thus, a scan signal is generated which is used to first identify, then to “measure” the system during actuation. A model of the actuator device is derived from experimental analyses and the effects of e.g. scan signal frequency and supply voltage are studied. External force disturbances, which may be present in flow control applications, are also considered and an algorithm is provided for its compensation in position estimation, thus, force estimation is realized as well. The hardware requirements are low which makes the presented method suitable for cost effective embedded applications. Experimental results are also provided.

  9. Study of cosmics data tracks at Compact Muon Solenoid detector

    Energy Technology Data Exchange (ETDEWEB)

    Heracleous, Natalie; Perieanu, Adrian [RWTH-Aachen, I. Physikalisches Institut Ib (Germany)

    2009-07-01

    An analysis of data taken in a Cosmic Run At Four Tesla (CRAFT) with the the Compact Muon Solenoid (CMS) detector at the Large Hadron Collider will be presented. In this study, cosmic muons and their track components are analyzed. In CMS, the muon particle candidate can have an Inner and an Outer track component. The Inner track is reconstructed within the Tracker, while the Outer track in the Muon system. The Muon System provides muon identification and precise muon momentum resolution over a wide range. CRAFT data contain a large number of events with such reconstructed muons, O(10{sup 6}). Issues related to matching of the two muon track components are studied. Spectrum of transversal momentum and direction of high energetic muons are also presented.

  10. A study on the design and performance evaluation technology of fieldbus pneumatic solenoid valve/sensor system

    International Nuclear Information System (INIS)

    For pneumatic system control, we need a data transmission system with high speed and high reliability or information interchange between main computer and solenoid valves and I/O devices. This paper presents a set of design techniques for a data communication system that is mainly used for pneumatic system control. For this purpose, we first designed hardware modules for an interface between central control module and local node that handles the operation of solenoid valves. In addition we developed a communication protocol for construction of RS-485 based multidrop network, and this protocol is basically designed with a kind of polling technique. Finally we evaluated performance of the developed system. The field test results show that, even under high noise environment, the data transmission of 375Kbps rate is possible up to 1,000m without using repeater. In addition, the system developed in this research is proved to be used easily for extension of a communication network because of its module structure

  11. An integrated rock-magnetic and geochemical approach to loess/paleosol sequences from Bohemia and Moravia (Czech Republic): Implications for the Upper Pleistocene paleoenvironment in central Europe

    Czech Academy of Sciences Publication Activity Database

    Hošek, J.; Hambach, U.; Lisá, Lenka; Matys Grygar, Tomáš; Horáček, I.; Meszner, S.; Knésl, I.

    2015-01-01

    Roč. 418, 15 January (2015), s. 344-358. ISSN 0031-0182 Institutional support: RVO:67985831 ; RVO:61388980 Keywords : loess/paleosols sequences * rock-magnetism * geochemical proxies * Upper Pleistocene * paleoclimate * Central Europe Subject RIV: DB - Geology ; Mineralogy; DD - Geochemistry (UACH-T) Impact factor: 2.339, year: 2014

  12. Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam

    International Nuclear Information System (INIS)

    Highlights: • Superconducting curved transport solenoid. • Muon charge selection by superimposed dipole field. • World strongest pulsed muon source. -- Abstract: At the J-PARC Muon Science Facility (MUSE) the Super-Omega muon beamline is now under construction in the experimental hall No. 2 of the Materials and Life Science Facility building. Muons up to 45 MeV/c will be extracted with a large acceptance solid angle to produce the world highest intensity pulsed muon beam. This beamline comprises three parts, a normal-conducting capture solenoid, a superconducting curved transport solenoid and an axial focusing solenoid. Since only solenoids are used, both surface μ+ and cloud μ− are extracted simultaneously. To accommodate future experiments that would only require either μ+ or μ− beam, two dipole coils located on the straight section of the curved solenoid provide the muon charge selection by directing one of the beam onto the solenoid inner-wall. The design parameters, the construction status and the initial beam commissioning are reported

  13. Superconducting curved transport solenoid with dipole coils for charge selection of the muon beam

    Energy Technology Data Exchange (ETDEWEB)

    Strasser, P., E-mail: patrick.strasser@kek.jp [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Ikedo, Y.; Miyake, Y.; Shimomura, K.; Kawamura, N.; Nishiyama, K.; Makimura, S.; Fujimori, H.; Koda, A.; Nakamura, J.; Nagatomo, T. [Muon Science Laboratory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Adachi, T. [Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Pant, A.D. [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ogitsu, T. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Makida, Y.; Yoshida, M. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sasaki, K. [Cryogenic Science Center, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Okamura, T. [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); J-PARC Center, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); and others

    2013-12-15

    Highlights: • Superconducting curved transport solenoid. • Muon charge selection by superimposed dipole field. • World strongest pulsed muon source. -- Abstract: At the J-PARC Muon Science Facility (MUSE) the Super-Omega muon beamline is now under construction in the experimental hall No. 2 of the Materials and Life Science Facility building. Muons up to 45 MeV/c will be extracted with a large acceptance solid angle to produce the world highest intensity pulsed muon beam. This beamline comprises three parts, a normal-conducting capture solenoid, a superconducting curved transport solenoid and an axial focusing solenoid. Since only solenoids are used, both surface μ{sup +} and cloud μ{sup −} are extracted simultaneously. To accommodate future experiments that would only require either μ{sup +} or μ{sup −} beam, two dipole coils located on the straight section of the curved solenoid provide the muon charge selection by directing one of the beam onto the solenoid inner-wall. The design parameters, the construction status and the initial beam commissioning are reported.

  14. Analysis of the electromagnetic field of direct action solenoid valve%直动电磁阀磁场特性分析

    Institute of Scientific and Technical Information of China (English)

    刘潜峰; 薄涵亮; 秦本科

    2009-01-01

    The Hydraulic Control Rod Drive Technology (HCRDT) is a newly invented patent of the Institute of Nuclear and New Energy Technology, Tsinghua University with HCRDT's independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the abnormal conditions occurring in the operation of the Control Rod Hydraulic Drive System, the electromagnetic field of the direct action solenoid valve is analyzed using the ANSYS software. The result shows that the incorrect use of the magnetic material causes the change of magnetic circuit and the reverse of the magnetic force direction in some conditions, which leads to the malfunction of the solenoid valve and the Control Rod Hydraulic Drive System. Further more, the design of the direct action solenoid valve can be optimized by the analysis of electromagnetic field.%控制棒水压驱动技术是清华大学核能与新能源技术研究院具有自主知识产权的一项新型发明专利技术.组合阀属于该项技术的关键部件,组合阀是由三个直动电磁阀组成,电磁阀的性能直接影响组合阀的性能,从而影响控制棒水压驱动技术的运行性能.本文就控制棒水压驱动系统运行过程中所出现的异常工况,运用ANSYS电磁场分析软件,对其直动电磁阀的多种运行工况进行了电磁场特性分析.分析结果表明:导磁材料的不当使用形成磁路的改变,引起某些工况下磁力反向,使电磁阀在特定情况下出现故障,进而造成控制棒水压驱动系统异常;通过电磁场特性分析可以进一步优化直动电磁阀的设计.

  15. Technical specification of a tokamak poloidalfield-coil-system (ZEPHYR) with special consideration of the central (OH) coil within a magnetic field of extremely high value (27 T)

    International Nuclear Information System (INIS)

    The plant conditions giving the poloidal magnetic field required bring about extremly high loads and stresses within the coils, especially within the central OH transformer coil. The maximum magnetic field of nearly 27 T arises if the central OH coil is excited with a current of 9.1 KA/cm2. The pulsating load of the coils intended with pulses of 10 s duration produces a rise in temperature of Δ T > 120 K meaning that the start temperature has to be less than 80 K. The time between the current pulses used for cooling down the coils to their start temperature should be passed within a limit of 0.5 h. The report gives a detailed statement of the central OH coil and a proposal for manufacturing and working it. (orig./AH)

  16. Measurement of the centrality dependence of the charged particle pseudorapidity distribution in lead-lead collisions at √(sNN)=2.76 TeV with the ATLAS detector

    International Nuclear Information System (INIS)

    The ATLAS experiment at the LHC has measured the centrality dependence of charged particle pseudorapidity distributions over |η|NN)=2.76 TeV. In order to include particles with transverse momentum as low as 30 MeV, the data were recorded with the central solenoid magnet off. Charged particles were reconstructed with two algorithms (2-point “tracklets” and full tracks) using information from the pixel detector only. The lead-lead collision centrality was characterized by the total transverse energy in the forward calorimeter in the range 3.2ch/dη, and the average charged particle multiplicity in the pseudorapidity interval |η|NN) results. The shape of the dNch/dη distribution is found to be independent of centrality within the systematic uncertainties of the measurement.

  17. LIL-W: Positron conversion target and solenoid (pictures 01 and 04).

    CERN Multimedia

    Laurent Guiraud

    1997-01-01

    In the direction of the beam, from right to left: a steering dipole (DHZ.25); the arm, at 45 deg, of a wire scanner which measures beam size; the conversion target, housed in the small tank with a window, where positrons are produced; immediately afterwards, invisible inside the vacuum chamber, is a pulsed solenoid to focus the emerging positrons; finally, a large solenoid, consisting of 3 pancakes, further focuses the positrons. Towards the left, the linac LIL-W, its accelerating structure hidden under a continuous outer solenoid mantle.

  18. A double pole-gap design for low spherical aberration in thin solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Sona, E-mail: sona@rrcat.gov.in; Biswas, Bhaskar

    2015-10-21

    We here report a new design of a double air-slot or pole-gap type, axially thin, shielded solenoid with lower spherical aberration than conventional single pole-gap type solenoids. The net on-axis field from two optimally distanced pole gaps reduces the spherical aberration. The working principle of the model is also given by a pair of coaxial, in-air, identical current loops which can have lower spherical aberration than a single current loop. The new design is useful to achieve low spherical aberration in axially thin shielded solenoids.

  19. A double pole-gap design for low spherical aberration in thin solenoids

    International Nuclear Information System (INIS)

    We here report a new design of a double air-slot or pole-gap type, axially thin, shielded solenoid with lower spherical aberration than conventional single pole-gap type solenoids. The net on-axis field from two optimally distanced pole gaps reduces the spherical aberration. The working principle of the model is also given by a pair of coaxial, in-air, identical current loops which can have lower spherical aberration than a single current loop. The new design is useful to achieve low spherical aberration in axially thin shielded solenoids

  20. The silicon sensors for the Inner Tracker of the Compact Muon Solenoid experiment

    Science.gov (United States)

    Krammer, Manfred; CMS Tracker Collaboration

    2004-09-01

    The Inner Tracker of the Compact Muon Solenoid (CMS) experiment, at present under construction, will consist of more than 24 000 silicon strip sensors arranged in 10 central concentric layers and 2×9 discs at both ends. The total sensitive silicon area will be about 200 m2. The silicon sensors are produced in various thicknesses and geometries. Each sensor has 512 or 768 implanted strips which will allow the measurement of the position of traversing high-energy charged particles. This paper gives a short overview of the CMS tracker system. Subsequently, the design of the silicon sensors is explained with special emphasis on the radiation hardness and on the high-voltage stability of the sensors. Two companies share the production of these sensors. The quality of the sensors is extensively checked by several laboratories associated with CMS. Important electrical parameters are measured on the sensors themselves. In addition, dedicated test structures designed by CMS allow the monitoring of many parameters sensitive to the production process. By August 2003 about 5000 sensors were delivered and a large fraction of these sensors and test structures was measured.

  1. First Cryogenic Testing of the ATLAS Superconducting Prototype Magnets

    CERN Document Server

    Delruelle, N; Haug, F; Mayri, C; Orlic, J P; Passardi, Giorgio; Pirotte, O; ten Kate, H H J

    2002-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroids and the barrel toroid made of eight coils (BT) symmetrically placed around the central axis of the detector. All these magnets will be individually tested in an experimental area prior to their final installation in the underground cavern of the LHC collider. A dedicated cryogenic test facility has been designed and built for this purpose. It mainly consists of a 1'200 W at 4.5 K refrigerator, a 10 kW liquid nitrogen pre-cooling unit, a cryostat housing liquid helium centrifugal pumps, a distribution valve box and transfer lines. Prior to the start of the series tests of the BT magnets, two model coils are used at this facility. The first one, the so-called B00 of comparatively small size, contains the three different types of superconductors used for the ATLAS magnets which are wound on a cylindrical mandrel. The second magnet, the B0, is a reduced model of basically identical design concept as the...

  2. Magnetic and Electromagnetic signals related to tectonic activity: updates and new analyses on measurements in Central Italy

    Directory of Open Access Journals (Sweden)

    D. Di Mauro

    2005-01-01

    Full Text Available Tectonomagnetic field observations from absolute magnetic field levels have been collected in Central Italy since 1989 by means of a network of four absolute magnetometer stations, including the geomagnetic observatory of L'Aquila (42°23 N, 13°19 E used as reference for differentiation; also electromagnetic variations from VLF signals have been recorded in the last years by means of VLF search coil wide-band antennas. Many reports proved the occurrence of electromagnetic effects clearly related to tectonic events (seismic and volcanic activity in active areas of our planet. In this paper we show the variation of some electromagnetic parameters which could be related to local and regional seismic activity for the most recent years 2002 and 2003. We also report the seismic activity recorded in this area by the Italian seismic national network. Some tentative analysis (in the wavelets and statistical approach on the historical and recent dataset allow a better characterization of electromagnetic properties of the study area, at different temporal and spatial scales.

  3. Diagnostic reliability of magnetic resonance imaging for central nervous system syndromes in systemic lupus erythematosus: a prospective cohort study

    Directory of Open Access Journals (Sweden)

    Nishimura Katsuji

    2010-01-01

    Full Text Available Abstract Background Previous studies of magnetic resonance imaging (MRI as a diagnostic tool for central nervous system (CNS syndromes in systemic lupus erythematosus (SLE contained several limitations such as study design, number of enrolled patients, and definition of CNS syndromes. We overcame these problems and statistically evaluated the diagnostic values of abnormal MRI signals and their chronological changes in CNS syndromes of SLE. Methods We prospectively studied 191 patients with SLE, comparing those with (n = 57 and without (n = 134 CNS syndrome. CNS syndromes were characterized using the American College of Rheumatology case definitions. Results Any abnormal MRI signals were more frequently observed in subjects in the CNS group (n = 25 than in the non-CNS group (n = 32 [relative risk (RR, 1.7; 95% confidence interval (CI, 1.1-2.7; p = 0.016] and the positive and negative predictive values for the diagnosis of CNS syndrome were 42% and 76%, respectively. Large abnormal MRI signals (ø ≥ 10 mm were seen only in the CNS group (n = 7; RR, 3.7; CI, 2.9-4.7; p = 0.0002, whereas small abnormal MRI signals (ø p = 0.029, whereas small signals did not (p = 1.000. Conclusions Abnormal MRI signals, which showed statistical associations with CNS syndrome, had insufficient diagnostic values. A large MRI signal was, however, useful as a diagnostic and surrogate marker for CNS syndrome of SLE, although it was less common.

  4. Central pontine myelinolysis in a chronic alcoholic: A clinical and brain magnetic resonance imaging follow-up

    Directory of Open Access Journals (Sweden)

    Dujmović Irena

    2013-01-01

    Full Text Available Introduction. Central pontine myelinolysis (CPM is a noninflammatory, demyelinating lesion usually localised in the basis pontis. Chronic alcoholism is frequently associated with this condition which may have a variable clinical outcome. Until now, brain magnetic resonance imaging (MRI follow-up in alcoholic CPM cases after alcohol withdrawal has been rarely described. Case report. We reported a 30- year-old male with a 12-year history of alcohol abuse, who presented with inability to stand and walk, nausea, vomiting and somnolence. Neurological examination revealed: impared fixation on lateral gaze, dysarthria, mild spastic quadriparesis, truncal and extremity ataxia, sock-like hypesthesia and moderate decrease in vibration sense in legs. Brain MRI showed a trident-shaped non-enhancing pontine lesion highly suggestive of CPM. After an eight-month alcoholfree follow-up period, the patient’s clinical status significantly improved, while the extent of MRI pontine lesion was merely slightly reduced. Conclusion. The presented case demonstrates that CPM in chronic alcoholics may have a benign clinical course after alcohol withdrawal, which is not necessarily associated with the reduction of lesions on brain MRI. [Projekat Ministarstva nauke Republike Srbije, br. 175031

  5. Design and analysis of direct action solenoid valve based on computational intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qianfeng, E-mail: liuqianfeng@gmail.co [Institute of Nuclear and New Energy Technology, Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Beijing 100084 (China); Bo Hanliang; Qin Benke [Institute of Nuclear and New Energy Technology, Tsinghua University, Key Laboratory of Advanced Reactor Engineering and Safety of the Ministry of Education, Beijing 100084 (China)

    2010-10-15

    Control Rod Hydraulic Drive Mechanism (CRHDM) is a newly invented patent of the Institute of Nuclear and New Energy Technology Tsinghua University which owns CRHDM's independent intellectual property rights while the integrated valve made up of three direct action solenoid valves is the key part of this mechanism. Therefore, the performance of the solenoid valve affects the integrated valve and the CRHDM directly. In this paper, we present a method to design the parameters of the direct action solenoid valve based on orthogonal experiment design, back propagation (BP) neural network and particle swarm optimization (PSO). The result proves that the method is feasible and accurate to design the parameters in order to obtain the biggest electromagnetic force. Besides, the result also shows that it is the current which influences the electromagnetic force of the direct action solenoid valve most.

  6. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 1012 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  7. Design and analysis of direct action solenoid valve based on computational intelligence

    International Nuclear Information System (INIS)

    Control Rod Hydraulic Drive Mechanism (CRHDM) is a newly invented patent of the Institute of Nuclear and New Energy Technology Tsinghua University which owns CRHDM's independent intellectual property rights while the integrated valve made up of three direct action solenoid valves is the key part of this mechanism. Therefore, the performance of the solenoid valve affects the integrated valve and the CRHDM directly. In this paper, we present a method to design the parameters of the direct action solenoid valve based on orthogonal experiment design, back propagation (BP) neural network and particle swarm optimization (PSO). The result proves that the method is feasible and accurate to design the parameters in order to obtain the biggest electromagnetic force. Besides, the result also shows that it is the current which influences the electromagnetic force of the direct action solenoid valve most.

  8. Proceedings of the international workshop on solenoidal detectors for the SSC

    International Nuclear Information System (INIS)

    This issue is the collection of the papers presented at the International Workshop on solenoidal detectors for the Superconducting Super Collider (SSC). The 48 of the presented papers are indexed individually. (J.P.N.)

  9. Performance of solenoids vs. quadrupoles in focusing and energy selection of laser accelerated protons

    OpenAIRE

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications - for example in particle therapie or short-pulse radiographic diagnostics - requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. The scaling shows that above a few MeV a solenoid needs to be pulsed or super-conducting, whereas the quadrupoles can remai...

  10. Laser beam-plasma coupling in laser solenoid plasmas

    International Nuclear Information System (INIS)

    A model has been constructed to analyze the gross beam-plasma interaction in a laser solenoid plasma. The model includes a simple solution for a slab plasma response to a given laser beam, and a solution for axial beam size variations in response to arbitrary axial plasma structure. The two solutions are combined to determine the coupled behavior. Trapping of the focused laser beam where it enters the plasma is a significant problem, but can be achieved by a minimum level of imbedded field in the plasma. If the beam is trapped, it first focuses and then defocuses near the front of the bleaching wave (front of the laser heated plasma). In order to avoid divergence of the beam near the front, it is essential to have a pre-formed favorable density profile in the plasma. Such a condition is probably achieved automatically in the early stages of plasma heating. Several techniques are discussed which can be used to avert unfavorable refractive behavior (catastrophic self-focusing and defocusing)

  11. Fusion reactor development scenarios for the laser solenoid concept

    International Nuclear Information System (INIS)

    A program is described which overcomes some size problems by utilizing the fusion-fission hybrid or symbiotic technology to produce fuel for the installed LWR capacity, eliminating reliance on early fusion reactors for base load power, and taking advantage of the reduced technological demands of the fusion-fission hybrid to allow earlier introduction of these systems. The use of the fusion-fission hybrid to breed fuel for the LWR economy not only takes advantage of a very effective breeder, but also combines the technological development of the breeder and fusion power into a single, more cost effective program. Once a fusion hybrid breeder economy is established, the advent of pure fusion power will involve a much smaller, relatively risk-free technological development. The proposed program is demonstrated by a series of conceptual designs using the laser solenoid fusion concept as an example. It will be shown that the fusion-fission hybrid power plant is a project whose engineering requirements appear quite reachable at the present time and that with better knowledge of the physics and technology, smaller fusion power plants which have very attractive characteristics for the utility industry should be possible at a later time

  12. Design of a tracking system for a solenoidal detector

    International Nuclear Information System (INIS)

    The goals of a tracking system for the SSC are to provide momentum measurement and a fast trigger for charged particles with pT above a few GeV/c and |η| ≤ 2.5. In addition, the tracking system should provide a precise vertex measurement in order to identify long-lived tracks, for example, from B decays, and detect separated vertices from multiple p-p interactions. Since the tracking system is only a part of the complete detector, it must provide these functions in an economical manner. The tracking system must operate in the high-rate environment of the SSC at and above the design luminosity. The design of an integrated tracking system for a solenoidal detector will be presented. The tracking system consists of a silicon pixel and microstrip detector at smaller radii from the beam collision point and wire chambers at larger radii. The tracking system provides momentum measurements and a fast trigger for all charged particles with pT above a few GeV/c and for |η| ≤ 2.5. Research and development issues will be discussed

  13. Compressive vs Solenoidal Turbulence and Violent Disc Instability

    Science.gov (United States)

    Mandelker, Nir; Dekel, Avishai; Inoue, Shigeki; Ceverino, Daniel; Primack, Joel

    2015-08-01

    High redshift star-forming galaxies (SFGs) exhibit star-formation rates (SFR) 20-100 times higher than local SFGs. This increased SFR is due to much higher gas fractions and surface densities prevalent in high redshift SFG. Such high gas fractions cause the disc to become violently unstable and undergo a phase of violent disc instability (VDI). During the VDI phase, there is rapid inflow of gas towards the galactic centre with inflow times comparable to the disc orbital time, which can lead to a compact "blue nugget". In addition, giant ~kpc scale star-forming clumps are formed, the most massive of which survive dtellar feedback and migrate towards the centre, where they coalesce in the growing bulge. While the existence of giant clumps is commonly associated with Toomre instability, high resolution cosmological simulations of galaxy formation show that active clump formation occurs even in regions where the Toomre Q parameter is well above the threshold for stability. The simulations suggest instead a non-linear instability, where frequent minor mergers and intense inflow by cold streams increase the compressive mode of turbulence relative to the solenoidal mode. We find this can induce clump formation even in regions that should be stable according to linear Toomre theory. Thus we show that mergers, smooth accretion from the cosmic web and VDI all go hand in hand in driving galaxy evolution at high redshift.

  14. Automating the 2G magnetometer for single-solenoid alternating field demagnetization

    International Nuclear Information System (INIS)

    Complete text of publication follows. We have automated a 2G Enterprises superconducting magnetometer to measure and demagnetize standard paleomagnetic samples. After loading a sample and setting the desired demagnetization steps, the operation is performed automatically. All three axes are measured in both directions multiple times. A single solenoid performs three-axis static demagnetization by rotating the specimen 120 degrees about an oblique axis to each orthogonal position, eliminating potential errors resulting from differences between the fields generated when using two orthogonal coils with different geometry. Each sample is handled only once, minimizing angular alignment errors. For natural remament magnetizations greater than 10-3 A/m, high quality AF demagnetization results can be obtained. 10-to-20-step demagnetization takes between 20 and 70 minutes, depending on the sample's moment. 160-step demagnetizations have been run overnight. This automated system is complemented by a custom program that controls all system elements. In addition, the controlling software includes tools for 1) sample parameter input and instant results recalculation upon parameter adjustment, 2) real time results visualization, 3) integrated sun compass correction software, and 4) several demagnetization routines optimized for different magnitudes of magnetization. The software uses a very general and flexible, XML-based file structure capable of storing an entire field study in one hierarchical file format, with levels for locality, site, sample, and demagnetization step. It serves as an electronic field notebook for recording many more parameters and comments than those strictly needed to measure the direction of the core. For more information, please see http://es.ucsc.edu/~emorris/cryoslug.

  15. A detailed paleomagnetic and rock-magnetic investigation of the Matuyama-Bruhnes geomagnetic reversal recorded in tephra-paleosol sequence of Tlaxcala(Central Mexico

    Directory of Open Access Journals (Sweden)

    Ana Maria Soler-Arechalde

    2015-04-01

    Full Text Available Geomagnetic reversals are global phenomena, for about 50 years the paleomagnetists attempted to acquire as many detailed records as possible using the magnetic memory of sediments and lava flows. Yet, transitional field behavior remains poorly characterized largely because of sporadic aspect of volcanic eruptions. In some specific cases, paleosols such as those developed from alluvial or aeolian sediments, may also record the variations of the Geomagnetic Field across the polarity changes. Here, we report a detailed paleomagnetic and rock-magnetic investigation on some radiometrically dated chromic luvisols located in Central Mexico carrying detrital or chemical remanent magnetization. The research was developed in order i to demonstrate the primary origin of the magnetic remanence and ii to show that paleosoils are good candidates to provide a high resolution record of the behavior of geomagnetic field during reversals. The lower part of the paleosoil sequence shows a clearly defined reverse polarity magnetization followed by geomagnetically unstable transitional field and ended by normal polarity remanence. Our AMS and rock magnetic data suggest that magnetization is acquired during the initial stage of soil formation in context of active volcanic activity since magnetic fabric is essentially sedimentary and reverse and normal polarity paleodirections are almost antipodal. Titanomagnetites are identified as main magnetic carriers of rock-magnetic measurements including thermomagnetics and hysteresis cycles. We propose that the transition recorded in this study correspond to the B-M boundary, considering the K-Ar datings available at the sequence bottom and that the chromic luvisols are potentially good recorders of the paleosecular variation. The identification of the B-M boundary within the studied sequence has fundamental significance for improving the chronological scale of Tlaxcala paleosol-sedimentary sequence and its correlation with the

  16. A detailed paleomagnetic and rock-magnetic investigation of the Matuyama-Bruhnes geomagnetic reversal recorded in tephra-paleosol sequence of Tlaxcala(Central Mexico)

    Science.gov (United States)

    Soler-Arechalde, Ana; Goguitchaichvili, Avtandyl; Carrancho, Ángel; Sedov, Sergey; Caballero-Miranda, Cecilia; Ortega, Beatriz; Solís, Berenice; Morales Contreras, Juan; Urrutia-Fucugauchi, Jaime; Bautista, Francisco

    2015-04-01

    Geomagnetic reversals are global phenomena, for about 50 years the paleomagnetists attempted to acquire as many detailed records as possible using the magnetic memory of sediments and lava flows. Yet, transitional field behavior remains poorly characterized largely because of sporadic aspect of volcanic eruptions. In some specific cases, paleosols such as those developed from alluvial or aeolian sediments, may also record the variations of the Geomagnetic Field across the polarity changes. Here, we report a detailed paleomagnetic and rock-magnetic investigation on some radiometrically dated chromic luvisols located in Central Mexico carrying detrital or chemical remanent magnetization. The research was developed in order i) to demonstrate the primary origin of the magnetic remanence and ii) to show that paleosoils are good candidates to provide a high resolution record of the behavior of geomagnetic field during reversals. The lower part of the paleosoil sequence shows a clearly defined reverse polarity magnetization followed by geomagnetically unstable transitional field and ended by normal polarity remanence. Our AMS and rock magnetic data suggest that magnetization is acquired during the initial stage of soil formation in context of active volcanic activity since magnetic fabric is essentially sedimentary and reverse and normal polarity paleodirections are almost antipodal. Titanomagnetites are identified as main magnetic carriers of rock-magnetic measurements including thermomagnetics and hysteresis cycles. We propose that the transition recorded in this study correspond to the B-M boundary, considering the K-Ar datings available at the sequence bottom and that the chromic luvisols are potentially good recorders of the paleosecular variation. The identification of the B-M boundary within the studied sequence has fundamental significance for improving the chronological scale of Tlaxcala paleosol-sedimentary sequence and its correlation with the global proxies.

  17. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  18. Abnormal degree centrality in Alzheimer's disease patients with depression: A resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Guo, Zhongwei; Liu, Xiaozheng; Hou, Hongtao; Wei, Fuquan; Liu, Jian; Chen, Xingli

    2016-06-15

    Depression is common in Alzheimer's disease (AD) and occurs in AD patients with a prevalence of up to 40%. It reduces cognitive function and increases the burden on caregivers. Currently, there are very few medications that are useful for treating depression in AD patients. Therefore, understanding the brain abnormalities in AD patients with depression (D-AD) is crucial for developing effective interventions. The aim of this study was to investigate the intrinsic dysconnectivity pattern of whole-brain functional networks at the voxel level in D-AD patients based on degree centrality (DC) as measured by resting-state functional magnetic resonance imaging (R-fMRI). Our study included 32 AD patients. All patients were evaluated using the Neuropsychiatric Inventory and Hamilton Depression Rating Scale and further divided into two groups: 15 D-AD patients and 17 non-depressed AD (nD-AD) patients. R-fMRI datasets were acquired from these D-AD and nD-AD patients. First, we performed a DC analysis to identify voxels that showed altered whole brain functional connectivity (FC) with other voxels. We then further investigated FC using the abnormal DC regions to examine in more detail the connectivity patterns of the identified DC changes. D-AD patients had lower DC values in the right middle frontal, precentral, and postcentral gyrus than nD-AD patients. Seed-based analysis revealed decreased connectivity between the precentral and postcentral gyrus to the supplementary motor area and middle cingulum. FC also decreased in the right middle frontal, precentral, and postcentral gyrus. Thus, AD patients with depression fit a 'network dysfunction model' distinct from major depressive disorder and AD. PMID:27079332

  19. Magnetic force on a magnetic particle within a high gradient magnetic separator

    Energy Technology Data Exchange (ETDEWEB)

    Baik, S.K., E-mail: skbaik@keri.re.kr [Korea Electrotechnology Research Institute, Seongju-dong 28-1, Changwon (Korea, Republic of); Ha, D.W.; Kwon, J.M.; Lee, Y.J.; Ko, R.K. [Korea Electrotechnology Research Institute, Seongju-dong 28-1, Changwon (Korea, Republic of)

    2013-01-15

    Highlights: ► Magnetic field and the gradient decide magnetic force on a particle in HGMS (High Gradient Magnetic Separation). ► We calculated the field and the gradient of a superconducting HGMS system by finite element method. ► We could calculate magnetic force on a particle consisting of major impurities in the condenser water of a thermal power station. -- Abstract: HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station.

  20. Magnetic force on a magnetic particle within a high gradient magnetic separator

    International Nuclear Information System (INIS)

    Highlights: ► Magnetic field and the gradient decide magnetic force on a particle in HGMS (High Gradient Magnetic Separation). ► We calculated the field and the gradient of a superconducting HGMS system by finite element method. ► We could calculate magnetic force on a particle consisting of major impurities in the condenser water of a thermal power station. -- Abstract: HGMS (High Gradient Magnetic Separator) uses matrix to make high magnetic field gradient so that ferro- or para-magnetic particles can be attracted to them by high magnetic force. The magnetic force generated by the field gradient is several thousand times larger than that by background magnetic field alone. So the HGMS shows excellent performance compared with other magnetic separators. These matrixes are usually composed of stainless steel wires having high magnetization characteristics. This paper deals with superconducting HGMS which is aimed for purifying waste water by using stainless steel matrix. Background magnetic field up to 6 T is generated by a superconducting solenoid and the stainless steel matrixes are arranged inside of the solenoid. Based on magnetic field calculated by FEM (Finite Element Method), we could calculate magnetic force acting on a magnetic particle such as hematite and maghemite consisting of major impurities in the condenser water of a thermal power station

  1. Investigation of Central Pb-Pb Interactions at Energies of 160 GeV/Nucleon with the Help of the Emulsion Magnetic Chamber

    CERN Multimedia

    2002-01-01

    % EMU15 \\\\ \\\\ The aim of this experiment is to investigate high energy heavy ion central collisions by the use of emulsion magnetic chamber with high spatial resolution. The emulsion chamber consists of 50~emulsion layers 50~microns thick each coated on 25~microns mylar base. A thin lead target plate 300~microns thick is installed immediately in front of the first emulsion layer. It is placed in the transverse magnetic field B~$\\sim$~2~Tesla and is to be installed perpendicularly to Pb nucleus beam. This set-up enables to measure full 3-momenta and charge signs of secondary particles. \\\\ \\\\Specific goal is to carry out detailed analysis of individual events with super high multiplicity of secondaries. These data are to be used for investigation of properties of super hot/dense matter, in particular to look for and analyze possible manifestations of quark-gluon plasma in central Pb-Pb collisions at energies of 160~GeV/nucleon.

  2. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10-3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  3. Superconducting (radiation hardened) magnets for mirror fusion devices

    International Nuclear Information System (INIS)

    Superconducting magnets for mirror fusion have evolved considerably since the Baseball II magnet in 1970. Recently, the Mirror Fusion Test Facility (MFTF-B) yin-yang has been tested to a full field of 7.7 T with radial dimensions representative of a full scale reactor. Now the emphasis has turned to the manufacture of very high field solenoids (choke coils) that are placed between the tandem mirror central cell and the yin-yang anchor-plug set. For MFTF-B the choke coil field reaches 12 T, while in future devices like the MFTF-Upgrade, Fusion Power Demonstration and Mirror Advanced Reactor Study (MARS) reactor the fields are doubled. Besides developing high fields, the magnets must be radiation hardened. Otherwise, thick neutron shields increase the magnet size to an unacceptable weight and cost. Neutron fluences in superconducting magnets must be increased by an order of magnitude or more. Insulators must withstand 1010 to 1011 rads, while magnet stability must be retained after the copper has been exposed to fluence above 1019 neutrons/cm2

  4. Consegnata al Cern l'ultima componente del magnete di Cms

    CERN Multimedia

    2005-01-01

    It's the greatest superconducting solenoid in the world, which will be able to create a magnetic field 100 000 times more powerful than the terrestrial one. It will be used to search the Higgs Boson (1 page)

  5. Central sensibility of human cases with different body mass during oral glucose tolerance test using functional magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Because of the limitation of technique, there are few researches on regulating function of central hypothalamus by metabolism, especially the researches on real-time function.OBJECTIVE: To evaluate the response of hypothalamus to oral glucose tolerance test (OGTT) in different body-weighted subjects by using functional magnetic resonance imaging (fMRI) so as to investigate the relationship between the sensitivity of hypothalamus in glycoregulation and disturbance of carbohydrate metabolism.DESIGN: Paired design.SETTING: Department of Radiology and Beijing Geriatrics Institute, Beijing Hospital, National Public Health Bureau.PARTICIPANTS: A total of twenty healthy volunteers were selected from Beijing Geriatrics Institute,National Public Health Bureau, including 10 subjects with obesity (5 males and 5 females; body mass >28.0 kg/m2) and 10 subjects with normal body mass (5 males and 5 females; body mass from 18.5 to 23.9 kg/m2). All subjects gave written informed consent before participating in the study.METHODS: fMRI study was performed on GE 1.5 T Signa Twinspeed Infinity with Excite. Each volunteer was ingested of glucose during the fMRI scan. T2* images were acquired using a single-shot gradient echo (EPI) technique. The parameters of EPI included: TR 3 000 ms, TE 40 ms, Flip angle 90 ° , field of view (FOV) 24 cm × 24 cm, thickness 5 mm, gap 0 mm, matrix 64 × 64, number of excitation 1. All 10 subjects with normal body mass underwent a repeat fMRI scan after consuming an equivalent amount of water without glucose on a separate day. The procedure for the fMRI scan with water intake was the same as for glucose ingestion. fMRI data were processed with Intensity Averaging Method.MAIN OUTCOME MEASURES: The central response of hypothalamus and feedback orientation during OGTT in different body-weighted subjects.RESULTS: An acute transient decrease of fMRI intensity in posterior inferior and anterior inferior of hypothalamus was observed in all

  6. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.O.; Barney, M.; Byrd, D.; Christensen, R.W.; Dransfield, G.; Elder, M.; Gamble, M.; Crastataro, C.; Hanlon, J.; Jones, D.C. [and others

    1995-02-01

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0{degrees}C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0{degrees}C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length.

  7. Silicon subsystem mechanical engineering work for the solenoidal detector collaboration

    International Nuclear Information System (INIS)

    The silicon tracking system (STS) for the Solenoidal Detector Collaboration (SDC) represented an order of magnitude increase in size over any silicon system that had been previously built or even planned. In order to meet its performance requirements, it could not simply be a linear scaling of earlier systems, but instead required completely new concepts. The small size of the early systems made it possible to simply move the support hardware and services largely outside the active volume of the system. For a system five meters long, that simply is not an option. The design of the STS for the SDC experiment was the result of numerous compromises between the capabilities required to do the physics and the limitations imposed by cost, material properties, and silicon strip detector characteristics. From the point of view of the physics, the silicon system should start as close to the interaction point as possible. In addition, the detectors should measure the position of particles passing through them with no errors, and should not deflect or interact with the particles in any way. However, cost, radiation damage, and other factors limiting detector performance dictated, other, more realistic values. Radiation damage limited the inner radius of the silicon detectors to about 9 cm, whereas cost limited the outer radius of the detectors to about 50 cm. Cost also limits the half length of the system to about 250 cm. To control the effects of radiation damage on the detectors required operating the system at a temperature of 0 degrees C or below, and maintaining that temperature throughout life of the system. To summarize, the physics and properties of the silicon strip detectors requires that the detectors be operated at or below 0 degrees C, be positioned very accurately during assembly and remain positionally stable throughout their operation, and that all materials used be radiation hard and have a large thickness for one radiation length

  8. Cost-performance evaluation of the use of a 10 T central solenoid in INTOR

    International Nuclear Information System (INIS)

    The change from a nominal 8 T to a nominal 10 T system has a second-order effect on both the volt-second capability of the poloidal field system and the costs associated with it. By contrast, there is a first-order increase in the burn time, under the reference scenario. This has to be tempered in two directions. On the one hand, the value of the machine mission may be a slow function of burn time (i.e., doubling the burn time does not double the value of the experiment). On the other hand, the risk associated with losing all of the burn time due to a relatively small change in the plasma impurity level must be substantially reduced with the buffer of an additional 17 V-s. Since the effect on the overall machine cost must be third-order, the 10 T option appears to be favored

  9. Laser heated solenoid proof-of-concept experiment (PCX) facility

    International Nuclear Information System (INIS)

    The total facility, including laser, magnet, focusing optics, instrumentation and control, its design problems, and its current performance are discussed. Preliminary results from plasma heating experiments are discussed

  10. Nb3Sn conductor development for the ITER magnets

    International Nuclear Information System (INIS)

    The ITER magnet system consists of Toroidal Field (TF) coils, Poloidal Field (PF) coils, the Central Solenoid (CS) and error field correction coils (CC). The conductors for the coils are Nb3Sn or NbTi cable in conduit type, forced flow cooled with supercritical helium having a maximum operating current in the range 40-60 kA. To qualify the Nb3Sn conductor, two large model coils (energy up to 640 MJ) are being wound by the Home Teams of the Parties to the ITER EDA Agreement. A total of 24 t of strand has been completed for the CS model coil and 4 t for the TF model coil, and fabricated into 7 km of conductor in unit lengths up to 210 m, by an international collaboration involving 12 companies in Europe, Japan, Russia and the USA

  11. L-Star magnet system design studies

    International Nuclear Information System (INIS)

    The paper presents a brief summary of the many magnet designs considered for the L-Star Detector. Options included uniform field toroids, solenoids, magnetic bottles, concentric solenoids, cusps and transverse field dipoles. Fringe field shielding using a ferromagnetic return frame and/or superconducting windings have been considered. The level of design effort for the various concepts varied from electromagnetic design only to a full conceptual design including stress analysis, structural design, conductor and winding design and drawings. In all instances the level of effort is adequate to establish credibility of performance, construction and compatibility with the intended use

  12. Electric and magnetic energy at axion haloscopes

    CERN Document Server

    Ko, B R; Jang, W; Choi, J; Kim, D; Lee, M J; Lee, J; Won, E; Semertzidis, Y K

    2016-01-01

    We review a recent letter published in Phys. Rev. Lett. $\\textbf{116}$, 161804 (2016) of which the main argument is that the mode dependent magnetic form factors at axion haloscopes depend on the position of the cavity inside the solenoid while the corresponding electric form factors do not. We, however, find no such dependence, which is also equivalent to the statement that the electric and corresponding magnetic energy stored in the cavity modes are the same regardless of the position of the cavity inside the solenoid. Furthermore, we extend the statement to the cases satisfying $\\vec{\

  13. Conceptual design for the superconducting magnet system of a pulsed DEMO reactor

    International Nuclear Information System (INIS)

    Highlights: ► A 1D design approach of a pulsed DEMO reactor is presented. ► The main CS and TF conductor design criteria are presented. ► A typical major radius for a 2 GW DEMO is 9 m. ► A typical plasma magnetic field is 4.9 T. ► The pulse duration is 1.85 h for an aspect ratio of 3. -- Abstract: A methodology has been developed to consistently investigate, taking into account main reactor components, possible magnet solutions for a pulsed fusion reactor aiming at a large solenoid flux swing duration within the 2–3 h range. In a conceptual approach, investigations are carried out in the equatorial plane, taking into account the radial extension of the blanket-shielding zone, of the toroidal field magnet system inner leg and of the central solenoid for estimation of the pulsed swing. Design criteria are presented for the radial extension of the superconducting magnets, which is mostly driven by the structures (casings and conductor jacket). Typical available cable current densities are presented as a function of the magnetic field and of the temperature margin. The magnet design criteria have been integrated into SYCOMORE, a code for reactor modeling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modeling task force. Possible solutions are investigated for a 2 GW fusion power reactor with different aspect ratios. The final adjustment of the DEMO pulsed reactor parameters will have to be consistently done, considering all reactor components, when the final goals of the machine will be completely clarified

  14. Conceptual design for the superconducting magnet system of a pulsed DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duchateau, J.-L., E-mail: jean-luc.duchateau@cea.fr [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France); Hertout, P.; Saoutic, B.; Magaud, P.; Artaud, J.-F.; Giruzzi, G.; Bucalossi, J.; Johner, J.; Sardain, P.; Imbeaux, F.; Ané, J.-M.; Li-Puma, A. [CEA/IRFM, 13108 St. Paul lez Durance Cedex (France)

    2013-10-15

    Highlights: ► A 1D design approach of a pulsed DEMO reactor is presented. ► The main CS and TF conductor design criteria are presented. ► A typical major radius for a 2 GW DEMO is 9 m. ► A typical plasma magnetic field is 4.9 T. ► The pulse duration is 1.85 h for an aspect ratio of 3. -- Abstract: A methodology has been developed to consistently investigate, taking into account main reactor components, possible magnet solutions for a pulsed fusion reactor aiming at a large solenoid flux swing duration within the 2–3 h range. In a conceptual approach, investigations are carried out in the equatorial plane, taking into account the radial extension of the blanket-shielding zone, of the toroidal field magnet system inner leg and of the central solenoid for estimation of the pulsed swing. Design criteria are presented for the radial extension of the superconducting magnets, which is mostly driven by the structures (casings and conductor jacket). Typical available cable current densities are presented as a function of the magnetic field and of the temperature margin. The magnet design criteria have been integrated into SYCOMORE, a code for reactor modeling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modeling task force. Possible solutions are investigated for a 2 GW fusion power reactor with different aspect ratios. The final adjustment of the DEMO pulsed reactor parameters will have to be consistently done, considering all reactor components, when the final goals of the machine will be completely clarified.

  15. Report of the DOE Office of Energy Research review committee on the Solenoidal Detector Collaboration of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    At the request of Dr. James F. Decker, Deputy Director of DOE's Office of Energy Research, a technical review committee was assembled to perform a peer review of the Solenoidal Detector Collaboration (SDC) from October 26 to October 30, 1992, at the Superconducting Super Collider Laboratory (SSCL). The Energy Research Review Committee (ERC) evaluated the technical feasibility, the estimated cost, the proposed construction schedule, and the management arrangements for the SDC detector as documented in the SDC Technical Design Report, SDC Project Cost/Schedule Summary Book, SDC draft Project Management Plan, and other materials prepared for and presented to the Committee by the SDC management. The SDC detector is one of two major detector facilities anticipated at the SSC. The SDC project will be carried out by a worldwide collaboration of almost 1000 scientists, engineers, and managers from over 100 universities, national laboratories, and industries. The SDC will construct a state-of-the-art, general-purpose detector weighing over 26,000 tons and the size of an eight-story building, to perform a broad class of high energy physics experiments at the SSC beginning in the fall of 1999. The design of the SSC detector emphasizes tracking in a strong solenoidal magnetic field to measure charged-particle momenta and to assist in providing good electron and muon identification; identification of neutrinos and other penetrating particles using a hermetic calorimeter; studies of jets of hadrons using both calorimeter and tracking systems; and studies of short-lived particles, such as B mesons, and pattern recognition within complex events using a silicon-based vertex tracking system. These capabilities are the result of the intensive research, development, and design activities undertaken since 1989 by this very large and capable collaboration

  16. Commissioning report of the MuCool 5 Tesla solenoid coupled with helium refrigerator

    Energy Technology Data Exchange (ETDEWEB)

    Geynisman, Michael; /Fermilab

    2010-05-01

    MuCool 5T solenoid was successfully cooled down and operated coupled with MTA 'Brown' refrigerator. The system performed as designed with substantial performance margin. All process alarms and interlocks, as well as ODH and fire alarms, were active and performed as designed. The cooldown of the refrigerator started from warm conditions and took 44 hours to accumulate liquid helium level and solenoid temperature below 5K. Average liquid nitrogen consumption for the refrigerator precool and solenoid shield was measured as 20 gal/hr (including boil-off). Helium losses were small (below 30 scfh). The system was stable and with sufficient margin of performance and ran stably without wet expansion engine. Quench response demonstrated proper operation of the relieving devices and pointed to necessity of improving tightness of the relieving manifolds. Boil-off test demonstrated average heat load of 3 Watts for the unpowered solenoid. The solenoid can stay up to 48 hours cold and minimally filled if the nitrogen shield is maintained. A list of improvements includes commencing into operations the second helium compressor and completion of improvements and tune-ups for system efficiency.

  17. Detecting Solenoid Valve Deterioration in In-Use Electronic Diesel Fuel Injection Control Systems

    Directory of Open Access Journals (Sweden)

    Chyuan-Yow Tseng

    2010-07-01

    Full Text Available The diesel engine is the main power source for most agricultural vehicles. The control of diesel engine emissions is an important global issue. Fuel injection control systems directly affect fuel efficiency and emissions of diesel engines. Deterioration faults, such as rack deformation, solenoid valve failure, and rack-travel sensor malfunction, are possibly in the fuel injection module of electronic diesel control (EDC systems. Among these faults, solenoid valve failure is most likely to occur for in-use diesel engines. According to the previous studies, this failure is a result of the wear of the plunger and sleeve, based on a long period of usage, lubricant degradation, or engine overheating. Due to the difficulty in identifying solenoid valve deterioration, this study focuses on developing a sensor identification algorithm that can clearly classify the usability of the solenoid valve, without disassembling the fuel pump of an EDC system for in-use agricultural vehicles. A diagnostic algorithm is proposed, including a feedback controller, a parameter identifier, a linear variable differential transformer (LVDT sensor, and a neural network classifier. Experimental results show that the proposed algorithm can accurately identify the usability of solenoid valves.

  18. Measurement of the CMS Magnetic Field

    CERN Document Server

    Klyukhin, V I; Bergsma, F; Campi, D; Curé, B; Gaddi, A; Gerwig, H; Hervé, A; Korienek, J; Linde, F; Lindenmeyer, C; Loveless, R; Mulders, M; Nebel, T; Smith, R P; Stickland, D; Teafoe, G; Veillet, L; Zimmerman, J K

    2011-01-01

    The measurement of the magnetic field in the tracking volume inside the superconducting coil of the Compact Muon Solenoid (CMS) detector under construction at CERN is done with a fieldmapper designed and produced at Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The precise fieldmapper measurements are done in 33840 points inside a cylinder of 1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three components of the magnetic flux density at the CMS coil maximum excitation and the remanent fields on the steel-air interface after discharge of the coil are measured in check-points with 95 3-D B-sensors located near the magnetic flux return yoke elements. Voltages induced in 22 flux-loops made of 405-turn installed on selected segments of the yoke are sampled online during the entire fast discharge (190 s time-constant) of the CMS coil and integrated offline to provide a measurement of the...

  19. Realisation of a {beta} spectrometer solenoidal and a double {beta} spectrometer at coincidence; Realisation d'un spectrometre {beta} solenoidal et d'un double spectrometre {beta} a coincidence

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-06-15

    The two spectrometers have been achieved to tackle numerous problems of nuclear spectrometry. They possess different fields of application that complete themselves. The solenoidal spectrometer permits the determination of the energy limits of {beta} spectra and of their shape; it also permits the determination of the coefficients of internal conversion and reports {alpha}{sub K} / {alpha}{sub L} and it is especially efficient for the accurate energy levels of the {gamma} rays by photoelectric effect. The double coincidence spectrometer has been conceived to get a good efficiency in coincidence: indeed, the sum of the solid angles used for the {beta} and {gamma} emission is rather little lower to 4{pi} steradians. To get this efficiency, one should have sacrificed a little the resolution that is lower to the one obtained with the solenoidal spectrometer for a same brightness. Each of the elements of the double spectrometer can also be adapted to the study of angular correlations {beta}{gamma} and e{sup -}{gamma}. In this use, it is superior to the thin magnetic lens used up to here. The double spectrometer also permits the survey of the coincidences e{sup -}e{sup -}, e{sup -}{beta} of a equivalent way to a double lens; it can also be consider some adaptation for the survey of the angular correlations e{sup -}e{sup -}, e{sup -}{beta}. Finally, we applied the methods by simple spectrometry and by coincidence spectrometry, to the study of the radiances of the following radioelements: {sup 76}As (26 h), {sup 122}Sb (2,8 j), {sup 124}Sb (60 j), {sup 125}Sb (2,7 years). (M.B.) [French] Les deux spectrometres qui ont ete realises permettent d'aborder un grand nombre de problemes de spectrometrie nucleaire. Ils possedent des champs d'application tres differents qui se completent. Le spectrometre solenoidal permet la determination des energies limites des spectres {beta} et de leur forme; il permet aussi la determination des coefficients de conversion interne et

  20. An improved billet on billet extrusion process of continuous aluminium alloy shapes for cryogenic applications in the Compact Muon Solenoid experiment

    CERN Document Server

    Tavares, S S

    2003-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments being designed in the framework of the Large Hadron Collider accelerator at CERN. CMS will contain the largest and the most powerful superconducting solenoid magnet ever built in terms of stored energy. It will work at 4.2 K, will have a magnetic length of 12.5 m, with a free bore of 6m and will be manufactured as a layered and modular structure of NbTi cables embedded in a high purity (99.998%) Al- stabiliser. Each layer consists of a wound continuous length of 2.55 km. In order to withstand the high electromagnetic forces, two external aluminium alloy reinforcing sections are foreseen. These reinforcements, of 24 mm multiplied by 18 mm cross-section, will be continuously electron beam (EB) welded to the pure Al-stabiliser. The alloy EN AW-6082 has been selected for the reinforcements due to its excellent extrudability, high strength in the precipitation hardened state, high toughness and strength at cryogenic temperatures and ready EB weldability. Ea...

  1. Application of High-speed Solenoid Valve to the Semi-active Control of Landing Gear

    Institute of Scientific and Technical Information of China (English)

    Liu Hui; Gu Hongbin; Chen Dawei

    2008-01-01

    To select or develop an appropriate actuator is one of the key and difficult issues in the study of semi-active controlled landing gear.Performance of the actuator may directly affect the effectiveness of semi-active control.In this article,parallel high-speed solenoid valves are chosen to be the actuators for the semi-active controlled landing gear and being studied.A nonlinear high-speed solenoid valve model is developed with the consideration of magnctic saturation characteristics and verified by test.According to the design rule of keeping the peak load as small as possible while absorbing the specified shock energy,a fuzzy PD control rule is designed.By the rule,controller parameters can be self-regulated.The simulation results indicate that the semi-active control based on high-speed solenoid valve can effectively improve the control performance and reduce impact load during landing.

  2. The SISSI project: an intense secondary ion source using superconducting solenoid lenses

    International Nuclear Information System (INIS)

    Secondary beams are routinely produced at GANIL for experiments from a target placed in the high energy beam line of the accelerator. In order to make a better use of the higher beam intensities soon available at GANIL, a proposal called SISSI was presented in 1989. This project is now funded. It consists of a set of two superconducting solenoid lenses of very short focal length (.6m). The first solenoid is used to sharply focus the incoming beam on a fast moving target. The second increases the angular acceptance of the beam line downstream the target for charged reaction products. Calculations show that from .4mm diameter beam spot on the target, an acceptance angle of up to 80 mrad will be reached without significant emittance growth due to aberration effects. Technical aspects of that project are then presented concerning both the solenoids and the cryogenic devices as well as the solid target

  3. The Density Probability Distribution in Compressible Isothermal Turbulence: Solenoidal vs Compressive Forcing

    CERN Document Server

    Federrath, Christoph; Schmidt, Wolfram

    2008-01-01

    The probability density function (PDF) of the gas density in turbulent supersonic flows is investigated with high-resolution numerical simulations. In a systematic study, we compare the density statistics of compressible turbulence driven by the usually adopted solenoidal forcing (divergence-free) and by compressive forcing (curl-free). Our results are in agreement with studies using solenoidal forcing. However, compressive forcing yields a significantly broader density distribution with standard deviation ~3 times larger at the same rms Mach number. The standard deviation-Mach number relation used in analytical models of star formation is reviewed and a modification of the existing expression is proposed, which takes into account the ratio of solenoidal and compressive modes of the turbulence forcing.

  4. A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

    International Nuclear Information System (INIS)

    Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.

  5. Novel MEMS-based fabrication technology of micro solenoid-type inductor

    International Nuclear Information System (INIS)

    Solenoid configuration of micro inductor, which has advantages of high quality factor and low loss, is needed in micro energy and power electronics applications but it is difficult to prepare using conventional microfabrication processes. In this work, we present a new microelectromechanical systems-based technology of micro solenoid-type inductor by a newly developed cylindrical projection photolithography method. Direct electroplating process of copper film on coil patterns was also successfully developed for achieving thick windings so that thick photoresist-based electroplating molds are not needed. Micro solenoid-type inductor prototypes of the winding pitch of about 40 µm, the winding number of 20 and 50, and the winding thickness of about 14 µm, were successfully fabricated on a 1 mm diameter glass capillary. The prepared 20-turn and 50-turn micro inductors were of inductance of 69 and 205 nH at 30 MHz, respectively. (paper)

  6. Performance of solenoids vs. quadrupoles in focusing and energy selection of laser accelerated protons

    CERN Document Server

    Hofmann, Ingo

    2013-01-01

    Using laser accelerated protons or ions for various applications - for example in particle therapie or short-pulse radiographic diagnostics - requires an effective method of focusing and energy selection. We derive an analytical scaling for the performance of a solenoid compared with a doublet/triplet as function of the energy, which is confirmed by TRACEWIN simulations. The scaling shows that above a few MeV a solenoid needs to be pulsed or super-conducting, whereas the quadrupoles can remain conventional. The transmission of the triplet is found only 25% lower than that of the equivalent solenoid. Both systems are equally suitable for energy selection based on their chromatic effect as is shown using an initial distribution following the RPA simulation model by Yan et al.\\cite{yan2009}.

  7. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  8. What Happened with Spectrometer Magnet 2B

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A

    2010-05-27

    The spectrometer solenoid is supposed to be the first magnets installed in MICE [1]-[4]. This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A [5], magnet 2A [6], and magnet 2B [7]. Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  9. What Happened with Spectrometer Magnet 2B

    International Nuclear Information System (INIS)

    The spectrometer solenoid is supposed to be the first magnets installed in MICE (1)-(4). This report described what happened during the test of the MICE spectrometer solenoid 2B. First, the report describes the temperatures in the magnet, the cooler top plate and the shield during the run where the magnet quenched at 258 A. During this quench, a lead between the bottom of the HTS leads and the diode bank burned out causing the magnet to quench. Second, three methods for measuring the net heat flow into the cold mass are described. Third, there is a discussion of possible resistive heating in the HTS leads between liquid helium temperature and the copper plate, which is at about 50 K. Fourth, there is a discussion of the measured first stage heat loads in the magnet, when there is no current in the magnet. The first stage heat load calculations are based on knowing the first stage temperatures of the three two-stage pulse tube coolers and the single stage GM cooler. Fifth, the estimated heat load to the first stage when the magnet has current in it is discussed. Sixth, there is a comparison of the stage 1 heat loads in magnet 1A (5), magnet 2A (6), and magnet 2B (7). Finally there is a discussion of recommended changes for improving the spectrometer solenoids so that the coolers can keep them cold.

  10. Design and Comparison of a 1 MW / 5s HTS SMES with Toroidal and Solenoidal Geometry

    CERN Document Server

    Morandi, Antonio; Gholizad, Babak; Grilli, Francesco; Sirois, Frédéric; Zermeño, Víctor M R

    2015-01-01

    The design of a HTS SMES coil with solenoidal and toroidal geometry is carried out based on a commercially available 2G HTS conductor. A SMES system of practical interest (1 MW / 5 s) is considered. The comparison between ideal toroidal and solenoidal geometry is first discussed and the criteria used for choosing the geometrical parameters of the coils' bore are explained. The design of the real coil is then carried out and the final amount of conductor needed is compared. A preliminary comparison of the two coils in terms of AC loss during one charge discharge cycle is also discussed.

  11. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion sourcea)

    Science.gov (United States)

    Kondo, K.; Yamamoto, T.; Sekine, M.; Okamura, M.

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (˜100 μA) with high charge (˜10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  12. Development of solenoid-induced helical wiggler with four poles per period

    CERN Document Server

    Ohigashi, N; Kiyochi, M; Nakao, N; Fujita, M; Imasaki, K; Nakai, S; Mima, K

    1999-01-01

    A new type of helical wiggler consisting of two staggered-iron arrays inserted into a solenoid field has been developed. The field measured by a test wiggler showed linear increment with the period. It was seen that 24% of the solenoid field contributed to the induced wiggler field when the gap length and the period of the wiggler were 16 and 24 mm, respectively. This wiggler would be useful for an FEL with a low-energy electron beam propagating in a strong axial guiding field.

  13. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source

    International Nuclear Information System (INIS)

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline.

  14. Laser ion source with solenoid for Brookhaven National Laboratory-electron beam ion source.

    Science.gov (United States)

    Kondo, K; Yamamoto, T; Sekine, M; Okamura, M

    2012-02-01

    The electron beam ion source (EBIS) preinjector at Brookhaven National Laboratory (BNL) is a new heavy ion-preinjector for relativistic heavy ion collider (RHIC) and NASA Space Radiation Laboratory (NSRL). Laser ion source (LIS) is a primary ion source provider for the BNL-EBIS. LIS with solenoid at the plasma drift section can realize the low peak current (∼100 μA) with high charge (∼10 nC) which is the BNL-EBIS requirement. The gap between two solenoids does not cause serious plasma current decay, which helps us to make up the BNL-EBIS beamline. PMID:22380298

  15. ASME XI stroke time testing of solenoid valves at Connecticut Yankee Station

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C.W.

    1996-12-01

    Connecticut Yankee Atomic Power Company has developed the capability of measuring the stroke times of AC and DC solenoid valves. This allows the station to measure the stroke time of any solenoid valve in the plant, even those valves which do not have valve stem position indicators. Connecticut Yankee has adapted the ITI MOVATS Checkmate 3 system, using a signal input from a Bruel and Kjaer (B&K) Model 4382 acoustic accelerometer and the Schaumberg Campbell Associates (SCA) Model SCA-1148 dual sensor, which is a combined accelerometer and gaussmeter.

  16. An analysis of the performance of the Compact Muon Solenoid Endcap Muon Chambers

    Science.gov (United States)

    Ippolito, Nicole M.

    In the fall of 2006, the Compact Muon Solenoid, one of the two multi-purpose detectors built along the Large Hadron Collider ring, was used to collect data in a full magnetic field of 4 Tesla. This series of runs was the so-named Magnet Test-Cosmic Challenge (or MTCC). For the first time, some sector of all sub-detectors were included in the data chain. Many terabytes of data was collected during this approximately month-long endeavor. The analysis of some subset of this data is considered herein. All work focused on the achievements made by the Cathode-Strip Chambers, which are part of the Endcap Muon system. Two major areas were considered: the resolution being achieved by the CSC's using the reconstruction software at the time of the MTCC, and the possibility of momentum reconstruction from the local tracks within the CSC's, removed from other parts of the detector. This thesis is divided into a number of different chapters. In chapter 1, the physics which the LHC hopes to achieve is discussed in some general sense. Chapter 2 delves into the background physics of cosmic ray muons-their origin, and some typical behavior that one would expect to see in an analysis such as this. Chapter 3 breaks down the CMS detector into the various subsystems which it is comprised of. Chapter 4 discusses the involvement with the hardware-namely the commissioning of the detector. Chapter 5 discusses some a preliminary analysis which was performed during the spring and summer of 2006-before the MTCC data had been collected. Chapters 6 and 7 then delve into the work which comprises the bulk of this analysis. The first task, that of the determining the resolution of the chambers from the cosmic data, is discussed in detail in chapter 6, along with improvements that could be considered. It was determined that the chambers are performing close to the design tolerances they were built to achieve, provided somewhat stringent cuts in the data set are made. The design of the chambers calls

  17. Solenoid transport of a heavy ion beam for warm dense matterstudies and inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Julien

    2006-10-01

    From February to July 2006, I have been doing research as a guest at Lawrence Berkeley National Laboratory (LBNL), in the Heavy Ion Fusion group. This internship, which counts as one semester in my master's program in France, I was very pleased to do it in a field that I consider has the beauty of fundamental physics, and at the same time the special appeal of a quest for a long-term and environmentally-respectful energy source. During my stay at LBNL, I have been involved in three projects, all of them related to Neutralized Drift Compression Experiment (NDCX). The first one, experimental and analytical, has consisted in measuring the effects of the eddy currents induced by the pulsed magnets in the conducting plates of the source and diagnostic chambers of the Solenoid Transport Experiment (STX, which is a subset of NDCX). We have modeled the effect and run finite-element simulations that have reproduced the perturbation to the field. Then, we have modified WARP, the Particle-In-Cell code used to model the whole experiment, in order to import realistic fields including the eddy current effects and some details of each magnet. The second project has been to take part in a campaign of WARP simulations of the same experiment to understand the leakage of electrons that was observed in the experiment as a consequence to some diagnostics and the failure of the electrostatic electron trap. The simulations have shown qualitative agreement with the measured phenomena, but are still in progress. The third project, rather theoretical, has been related to the upcoming target experiment of a thin aluminum foil heated by a beam to the 1-eV range. At the beginning I helped by analyzing simulations of the hydrodynamic expansion and cooling of the heated material. But, progressively, my work turned into making estimates for the nature of the liquid/vapor two-phase flow. In particular, I have been working on criteria and models to predict the formation of droplets, their size

  18. The CERN Cryogenic Test Facility for the Atlas Barrel Toroid Magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    1999-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m2 experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and its ins...

  19. The CERN cryogenic test facility for the ATLAS barrel toroid magnets

    CERN Document Server

    Haug, F; Delruelle, N; Orlic, J P; Passardi, Giorgio; Tischhauser, Johann

    2000-01-01

    The superconducting magnet system of the ATLAS detector will consist of a central solenoid, two end-cap toroidal magnets (ECT) and the barrel toroid magnet (BT) made of eight coils symmetrically placed around the central axis of the detector. The magnets will be tested individually in a 5000 m/sup 2/ experimental area prior to their final installation at an underground cavern of the LHC Collider. For the BT magnets, a dedicated cryogenic test facility has been designed which is currently under the construction and commissioning phase. A liquid nitrogen pre-cooling unit and a 1200 W@4.5K refrigerator will allow flexible operating conditions via a rather complex distribution and transfer line system. Flow of two-phase helium for cooling the coils is provided by centrifugal pumps immersed in a saturated liquid helium bath. The integration of the pumps in an existing cryostat required the adoption of novel mechanical solutions. Tests conducted permitted the validation of the technical design of the cryostat and i...

  20. Design and Development of a Miniaturized Double Latching Solenoid Valve for the Sample Analysis at Mars Instrument Suite

    Science.gov (United States)

    Smith, James T.

    2008-01-01

    The development of the in-house Miniaturized Double Latching Solenoid Valve, or Microvalve, for the Gas Processing System (GPS) of the Sample Analysis at Mars (SAM) instrument suite is described. The Microvalve is a double latching solenoid valve that actuates a pintle shaft axially to hermetically seal an orifice. The key requirements and the design innovations implemented to meet them are described.