WorldWideScience

Sample records for central rna recognition

  1. Structure of the central RNA recognition motif of human TIA-1 at 1.95 A resolution

    International Nuclear Information System (INIS)

    Kumar, Amit O.; Swenson, Matthew C.; Benning, Matthew M.; Kielkopf, Clara L.

    2008-01-01

    T-cell-restricted intracellular antigen-1 (TIA-1) regulates alternative pre-mRNA splicing in the nucleus, and mRNA translation in the cytoplasm, by recognizing uridine-rich sequences of RNAs. As a step towards understanding RNA recognition by this regulatory factor, the X-ray structure of the central RNA recognition motif (RRM2) of human TIA-1 is presented at 1.95 A resolution. Comparison with structurally homologous RRM-RNA complexes identifies residues at the RNA interfaces that are conserved in TIA-1-RRM2. The versatile capability of RNP motifs to interact with either proteins or RNA is reinforced by symmetry-related protein-protein interactions mediated by the RNP motifs of TIA-1-RRM2. Importantly, the TIA-1-RRM2 structure reveals the locations of mutations responsible for inhibiting nuclear import. In contrast with previous assumptions, the mutated residues are buried within the hydrophobic interior of the domain, where they would be likely to destabilize the RRM fold rather than directly inhibit RNA binding

  2. Three RNA recognition motifs participate in RNA recognition and structural organization by the pro-apoptotic factor TIA-1

    Science.gov (United States)

    Bauer, William J.; Heath, Jason; Jenkins, Jermaine L.; Kielkopf, Clara L.

    2012-01-01

    T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering (SAXS) to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. SAXS analyses demonstrated a `V' shape for a TIA-1 construct comprising the three RRMs, and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed. PMID:22154808

  3. Conformational Selection and Induced Fit for RNA Polymerase and RNA/DNA Hybrid Backtracked Recognition

    Directory of Open Access Journals (Sweden)

    Haifeng eChen

    2015-11-01

    Full Text Available RNA polymerase catalyzes transcription with a high fidelity. If DNA/RNA mismatch or DNA damage occurs downstream, a backtracked RNA polymerase can proofread this situation. However, the backtracked mechanism is still poorly understood. Here we have performed multiple explicit-solvent molecular dynamics (MD simulations on bound and apo DNA/RNA hybrid to study backtracked recognition. MD simulations at room temperature suggest that specific electrostatic interactions play key roles in the backtracked recognition between the polymerase and DNA/RNA hybrid. Kinetics analysis at high temperature shows that bound and apo DNA/RNA hybrid unfold via a two-state process. Both kinetics and free energy landscape analyses indicate that bound DNA/RNA hybrid folds in the order of DNA/RNA contracting, the tertiary folding and polymerase binding. The predicted Φ-values suggest that C7, G9, dC12, dC15 and dT16 are key bases for the backtracked recognition of DNA/RNA hybrid. The average RMSD values between the bound structures and the corresponding apo ones and Kolmogorov-Smirnov (KS P test analyses indicate that the recognition between DNA/RNA hybrid and polymerase might follow an induced fit mechanism for DNA/RNA hybrid and conformation selection for polymerase. Furthermore, this method could be used to relative studies of specific recognition between nucleic acid and protein.

  4. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    Science.gov (United States)

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  6. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    Science.gov (United States)

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    Science.gov (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  8. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  9. Recognition of oral spelling is diagnostic of the central reading processes.

    Science.gov (United States)

    Schubert, Teresa; McCloskey, Michael

    2015-01-01

    The task of recognition of oral spelling (stimulus: "C-A-T", response: "cat") is often administered to individuals with acquired written language disorders, yet there is no consensus about the underlying cognitive processes. We adjudicate between two existing hypotheses: Recognition of oral spelling uses central reading processes, or recognition of oral spelling uses central spelling processes in reverse. We tested the recognition of oral spelling and spelling to dictation abilities of a single individual with acquired dyslexia and dysgraphia. She was impaired relative to matched controls in spelling to dictation but unimpaired in recognition of oral spelling. Recognition of oral spelling for exception words (e.g., colonel) and pronounceable nonwords (e.g., larth) was intact. Our results were predicted by the hypothesis that recognition of oral spelling involves the central reading processes. We conclude that recognition of oral spelling is a useful tool for probing the integrity of the central reading processes.

  10. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun

    2016-12-06

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  11. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches.

    Science.gov (United States)

    Jiang, Hanlun; Zhu, Lizhe; Héliou, Amélie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2017-01-01

    MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

  12. Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription.

    Science.gov (United States)

    Hicks, Jessica A; Li, Liande; Matsui, Masayuki; Chu, Yongjun; Volkov, Oleg; Johnson, Krystal C; Corey, David R

    2017-08-15

    In the cytoplasm, small RNAs can control mammalian translation by regulating the stability of mRNA. In the nucleus, small RNAs can also control transcription and splicing. The mechanisms for RNA-mediated nuclear regulation are not understood and remain controversial, hindering the effective application of nuclear RNAi and investigation of its natural regulatory roles. Here, we reveal that the human GW182 paralogs TNRC6A/B/C are central organizing factors critical to RNA-mediated transcriptional activation. Mass spectrometry of purified nuclear lysates followed by experimental validation demonstrates that TNRC6A interacts with proteins involved in protein degradation, RNAi, the CCR4-NOT complex, the mediator complex, and histone-modifying complexes. Functional analysis implicates TNRC6A, NAT10, MED14, and WDR5 in RNA-mediated transcriptional activation. These findings describe protein complexes capable of bridging RNA-mediated sequence-specific recognition of noncoding RNA transcripts with the regulation of gene transcription. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Membrane recognition and dynamics of the RNA degradosome.

    Directory of Open Access Journals (Sweden)

    Henrik Strahl

    2015-02-01

    Full Text Available RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane associated, but neither protein forms cytoskeletal-like structures as reported earlier by Taghbalout and Rothfield. We show that association of RhlB with the membrane depends on a direct protein interaction with RNase E, which is anchored to the inner cytoplasmic membrane through an MTS (Membrane Targeting Sequence. Molecular dynamics simulations show that the MTS interacts with the phospholipid bilayer by forming a stabilized amphipathic α-helix with the helical axis oriented parallel to the plane of the bilayer and hydrophobic side chains buried deep in the acyl core of the membrane. Based on the molecular dynamics simulations, we propose that the MTS freely diffuses in the membrane by a novel mechanism in which a large number of weak contacts are rapidly broken and reformed. TIRFm (Total Internal Reflection microscopy shows that RNase E in live cells rapidly diffuses over the entire inner membrane forming short-lived foci. Diffusion could be part of a scanning mechanism facilitating substrate recognition and cooperativity. Remarkably, RNase E foci disappear and the rate of RNase E diffusion increases with rifampicin treatment. Control experiments show that the effect of rifampicin is specific to RNase E and that the effect is not a secondary consequence of the shut off of E. coli transcription. We therefore interpret the effect of rifampicin as being due to the depletion of RNA substrates for degradation. We propose a model in which formation of foci and constraints on diffusion arise from the transient clustering of RNase E into cooperative degradation bodies.

  14. Recognition of tRNAs with a long variable arm by aminoacyl-tRNA synthetases

    Directory of Open Access Journals (Sweden)

    Tukalo M. A.

    2013-07-01

    Full Text Available In prokaryotic cells three tRNA species, tRNASer, tRNALeu and tRNATyr, possess a long variable arm of 11–20 nucleotides (type 2 tRNA rather than usual 4 or 5 nucleotides (type 1 tRNA. In this review we have summarized the results of our research on the structural basis for recognition and discrimination of type 2 tRNAs by Thermus thermophilus seryl-, tyrosyl- and leucyl-tRNA synthetases (SerRS, TyrRS and LeuRS obtained by X-ray crystallography and chemical probing tRNA in solution. Crystal structures are now known of all three aminoacyl-tRNA synthetases complexed with type 2 tRNAs and the different modes of tRNA recognition represented by these structures will be discussed. In particular, emphasis will be given to the results on recognition of characteristic shape of type 2 tRNAs by cognate synthetases. In tRNASer, tRNATyr and tRNALeu the orientation of the long variable arm with respect to the body of the tRNA is different and is controlled by different packing of the core. In the case of SerRS the N-terminal domain and in the case of TyrRS, the C-terminal domain, bind to the characteristic long variable arm of the cognate RNA, thus recognizing the unique shape of the tRNA. The core of T. thermophilus tRNALeu has several layers of unusual base-pairs, which are revealed by the crystal structure of tRNALeu complexed with T. thermophilus LeuRS and by probing a ligand-free tRNA by specific chemical reagents in solution. In the crystal structure of the LeuRS-tRNALeu complex the unique D-stem structure is recognized by the C-terminal domain of LeuRS and these data are in good agreement with those obtained in solution. LeuRS has canonical class I mode of tRNA recognition, approaching the tRNA acceptor stem from the D-stem and minor groove of the acceptor stem side. SerRS also has canonical class II mode of tRNA recognition and approaches tRNASer from opposite, variable stem and major groove of acceptor stem site. And finally, TyrRS in strong

  15. Membrane recognition and dynamics of the RNA degradosome

    NARCIS (Netherlands)

    Strahl, H.; Turlan, C.; Khalid, S.; Bond, P.J.; Kebalo, J.M.; Peyron, P.; Poljak, L.; Bouvier, M.; Hamoen, L.; Luisi, B.F.; Carpousis, A.J.

    2015-01-01

    RNase E, which is the central component of the multienzyme RNA degradosome, serves as a scaffold for interaction with other enzymes involved in mRNA degradation including the DEAD-box RNA helicase RhlB. Epifluorescence microscopy under live cell conditions shows that RNase E and RhlB are membrane

  16. RNA Binding of T-cell Intracellular Antigen-1 (TIA-1) C-terminal RNA Recognition Motif Is Modified by pH Conditions*

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Persson, Cecilia; Karlsson, B. Göran; Díaz-Moreno, Irene

    2013-01-01

    T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms. PMID:23902765

  17. Fragment-based modelling of single stranded RNA bound to RNA recognition motif containing proteins

    Science.gov (United States)

    de Beauchene, Isaure Chauvot; de Vries, Sjoerd J.; Zacharias, Martin

    2016-01-01

    Abstract Protein-RNA complexes are important for many biological processes. However, structural modeling of such complexes is hampered by the high flexibility of RNA. Particularly challenging is the docking of single-stranded RNA (ssRNA). We have developed a fragment-based approach to model the structure of ssRNA bound to a protein, based on only the protein structure, the RNA sequence and conserved contacts. The conformational diversity of each RNA fragment is sampled by an exhaustive library of trinucleotides extracted from all known experimental protein–RNA complexes. The method was applied to ssRNA with up to 12 nucleotides which bind to dimers of the RNA recognition motifs (RRMs), a highly abundant eukaryotic RNA-binding domain. The fragment based docking allows a precise de novo atomic modeling of protein-bound ssRNA chains. On a benchmark of seven experimental ssRNA–RRM complexes, near-native models (with a mean heavy-atom deviation of <3 Å from experiment) were generated for six out of seven bound RNA chains, and even more precise models (deviation < 2 Å) were obtained for five out of seven cases, a significant improvement compared to the state of the art. The method is not restricted to RRMs but was also successfully applied to Pumilio RNA binding proteins. PMID:27131381

  18. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex.

    Science.gov (United States)

    Jiang, F; Kumar, R A; Jones, R A; Patel, D J

    1996-07-11

    The catalytic properties of RNA and its well known role in gene expression and regulation are the consequence of its unique solution structures. Identification of the structural determinants of ligand recognition by RNA molecules is of fundamental importance for understanding the biological functions of RNA, as well as for the rational design of RNA Sequences with specific catalytic activities. Towards this latter end, Szostak et al. used in vitro selection techniques to isolate RNA sequences ('aptamers') containing a high-affinity binding site for ATP, the universal currency of cellular energy, and then used this motif to engineer ribozymes with polynucleotide kinase activity. Here we present the solution structure, as determined by multidimensional NMR spectroscopy and molecular dynamics calculations, of both uniformly and specifically 13C-, 15N-labelled 40-mer RNA containing the ATP-binding motif complexed with AMP. The aptamer adopts an L-shaped structure with two nearly orthogonal stems, each capped proximally by a G x G mismatch pair, binding the AMP ligand at their junction in a GNRA-like motif.

  19. RNA recognition motif (RRM)-containing proteins in Bombyx mori

    African Journals Online (AJOL)

    STORAGESEVER

    2009-03-20

    Mar 20, 2009 ... Recognition Motif (RRM), sometimes referred to as. RNP1, is one of the first identified domains for RNA interaction. RRM is very common ..... Apart from the RRM motif, eIF3-S9 has a Trp-Asp. (WD) repeat domain, Poly (A) ...

  20. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  1. miREE: miRNA recognition elements ensemble

    Science.gov (United States)

    2011-01-01

    Background Computational methods for microRNA target prediction are a fundamental step to understand the miRNA role in gene regulation, a key process in molecular biology. In this paper we present miREE, a novel microRNA target prediction tool. miREE is an ensemble of two parts entailing complementary but integrated roles in the prediction. The Ab-Initio module leverages upon a genetic algorithmic approach to generate a set of candidate sites on the basis of their microRNA-mRNA duplex stability properties. Then, a Support Vector Machine (SVM) learning module evaluates the impact of microRNA recognition elements on the target gene. As a result the prediction takes into account information regarding both miRNA-target structural stability and accessibility. Results The proposed method significantly improves the state-of-the-art prediction tools in terms of accuracy with a better balance between specificity and sensitivity, as demonstrated by the experiments conducted on several large datasets across different species. miREE achieves this result by tackling two of the main challenges of current prediction tools: (1) The reduced number of false positives for the Ab-Initio part thanks to the integration of a machine learning module (2) the specificity of the machine learning part, obtained through an innovative technique for rich and representative negative records generation. The validation was conducted on experimental datasets where the miRNA:mRNA interactions had been obtained through (1) direct validation where even the binding site is provided, or through (2) indirect validation, based on gene expression variations obtained from high-throughput experiments where the specific interaction is not validated in detail and consequently the specific binding site is not provided. Conclusions The coupling of two parts: a sensitive Ab-Initio module and a selective machine learning part capable of recognizing the false positives, leads to an improved balance between

  2. Molecular insights into the specific recognition between the RNA binding domain qRRM2 of hnRNP F and G-tract RNA: A molecular dynamics study.

    Science.gov (United States)

    Wang, Lingyun; Yan, Feng

    2017-12-09

    Heterogeneous nuclear ribonucleoprotein F (hnRNP F) controls the expression of various genes through regulating the alternative splicing of pre-mRNAs in the nucleus. It uses three quasi-RNA recognition motifs (qRRMs) to recognize G-tract RNA which contains at least three consecutive guanines. The structures containing qRRMs of hnRNP F in complex with G-tract RNA have been determined by nuclear magnetic resonance (NMR) spectroscopy, shedding light on the recognition mechanism of qRRMs with G-tract RNA. However, knowledge of the recognition details is still lacking. To investigate how qRRMs specifically bind with G-tract RNA and how the mutations of any guanine to an adenine in the G-tract affect the binding, molecular dynamics simulations with binding free energy analysis were performed based on the NMR structure of qRRM2 in complex with G-tract RNA. Simulation results demonstrate that qRRM2 binds strongly with G-tract RNA, but any mutation of the G-tract leads to a drastic reduction of the binding free energy. Further comparisons of the energetic components reveal that van der Waals and non-polar interactions play essential roles in the binding between qRRM2 and G-tract RNA, but the interactions are weakened by the effect of RNA mutations. Structural and dynamical analyses indicate that when qRRM2 binds with G-tract RNA, both qRRM2 and G-tract maintain stabilized structures and dynamics; however, the stability is disrupted by the mutations of the G-tract. These results provide novel insights into the recognition mechanism of qRRM2 with G-tract RNA that are not elucidated by the NMR technique. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS

    Energy Technology Data Exchange (ETDEWEB)

    Teplova, Marianna; Farazi, Thalia A.; Tuschl, Thomas; Patel, Dinshaw J.

    2015-09-08

    Abstract

    RNA-binding protein with multiple splicing (designated RBPMS) is a higher vertebrate mRNA-binding protein containing a single RNA recognition motif (RRM). RBPMS has been shown to be involved in mRNA transport, localization and stability, with key roles in axon guidance, smooth muscle plasticity, as well as regulation of cancer cell proliferation and migration. We report on structure-function studies of the RRM domain of RBPMS bound to a CAC-containing single-stranded RNA. These results provide insights into potential topologies of complexes formed by the RBPMS RRM domain and the tandem CAC repeat binding sites as detected by photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. These studies establish that the RRM domain of RBPMS forms a symmetrical dimer in the free state, with each monomer binding sequence-specifically to all three nucleotides of a CAC segment in the RNA bound state. Structure-guided mutations within the dimerization and RNA-binding interfaces of RBPMS RRM on RNA complex formation resulted in both disruption of dimerization and a decrease in RNA-binding affinity as observed by size exclusion chromatography and isothermal titration calorimetry. As anticipated from biochemical binding studies, over-expression of dimerization or RNA-binding mutants of Flag-HA-tagged RBPMS were no longer able to track with stress granules in HEK293 cells, thereby documenting the deleterious effects of such mutationsin vivo.

  4. Recognition elements in rRNA for the tylosin resistance methyltransferase RlmA(II)

    DEFF Research Database (Denmark)

    Lebars, Isabelle; Husson, Clotilde; Yoshizawa, Satoko

    2007-01-01

    The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide......RNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar...

  5. Maternal separation induces hippocampal changes in cadherin-1 (CDH-1) mRNA and recognition memory impairment in adolescent mice.

    Science.gov (United States)

    de Azeredo, Lucas Araújo; Wearick-Silva, Luis Eduardo; Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Centeno-Silva, Anderson; Orso, Rodrigo; Schröder, Nadja; Bredy, Timothy William; Grassi-Oliveira, Rodrigo

    2017-05-01

    In rodents, disruption of mother-infant attachment induced by maternal separation (MS) is associated with recognition memory impairment and long-term neurobiological consequences. Particularly stress-induced modifications have been associated to disruption of cadherin (CDH) adhesion function, which plays an important role in remodeling of neuronal connection and synaptic plasticity. This study investigated the sex-dependent effect of MS on recognition memory and mRNA levels of classical type I and type II CDH and the related β -catenin (β -Cat) in the hippocampus and prefrontal cortex of late adolescent mice. We provided evidence that the BALB/c mice exposed to MS present deficit in recognition memory, especially females. Postnatal MS induced higher hippocampal CDH-2 and CDH-8 mRNA levels, as well as an upregulation of CDH-1 in the prefrontal cortex in both males and females. MS-reared female mice presented lower CDH-1 mRNA levels in the hippocampus. In addition, hippocampal CDH-1 mRNA levels were positively correlated with recognition memory performance in females. MS-reared male mice exhibited higher β -Cat mRNA levels in the hippocampus. Considering sex-specific effects on CDH mRNA levels, it has been demonstrated mRNA changes in CDH-1, β -Cat, and CDH-6 in the hippocampus, as well as CDH-1, CDH-8 and CDH-11 in the prefrontal cortex. Overall, these findings suggest a complex interplay among MS, CDH mRNA expression, and sex differences in the PFC and hippocampus of adolescent mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M. Tanaka; Gavis, Elizabeth R. (Princeton); (NIH)

    2017-04-01

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.

  7. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition.

    Science.gov (United States)

    Tamayo, Joel V; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M Tanaka; Gavis, Elizabeth R

    2017-04-04

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo's RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo's functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    Directory of Open Access Journals (Sweden)

    Joel V. Tamayo

    2017-04-01

    Full Text Available The Drosophila hnRNP F/H homolog, Glorund (Glo, regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3′ untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.

  9. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition.

    Science.gov (United States)

    Duss, Olivier; Michel, Erich; Diarra dit Konté, Nana; Schubert, Mario; Allain, Frédéric H-T

    2014-04-01

    The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein-RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.

  10. Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA.

    Science.gov (United States)

    Rehage, Nina; Davydova, Elena; Conrad, Christine; Behrens, Gesine; Maiser, Andreas; Stehklein, Jenny E; Brenner, Sven; Klein, Juliane; Jeridi, Aicha; Hoffmann, Anne; Lee, Eunhae; Dianzani, Umberto; Willemsen, Rob; Feederle, Regina; Reiche, Kristin; Hackermüller, Jörg; Leonhardt, Heinrich; Sharma, Sonia; Niessing, Dierk; Heissmeyer, Vigo

    2018-01-19

    The ubiquitously expressed RNA-binding proteins Roquin-1 and Roquin-2 are essential for appropriate immune cell function and postnatal survival of mice. Roquin proteins repress target mRNAs by recognizing secondary structures in their 3'-UTRs and by inducing mRNA decay. However, it is unknown if other cellular proteins contribute to target control. To identify cofactors of Roquin, we used RNA interference to screen ~1500 genes involved in RNA-binding or mRNA degradation, and identified NUFIP2 as a cofactor of Roquin-induced mRNA decay. NUFIP2 binds directly and with high affinity to Roquin, which stabilizes NUFIP2 in cells. Post-transcriptional repression of human ICOS by endogenous Roquin proteins requires two neighboring non-canonical stem-loops in the ICOS 3'-UTR. This unconventional cis-element as well as another tandem loop known to confer Roquin-mediated regulation of the Ox40 3'-UTR, are bound cooperatively by Roquin and NUFIP2. NUFIP2 therefore emerges as a cofactor that contributes to mRNA target recognition by Roquin.

  11. Computational Recognition of RNA Splice Sites by Exact Algorithms for the Quadratic Traveling Salesman Problem

    Directory of Open Access Journals (Sweden)

    Anja Fischer

    2015-06-01

    Full Text Available One fundamental problem of bioinformatics is the computational recognition of DNA and RNA binding sites. Given a set of short DNA or RNA sequences of equal length such as transcription factor binding sites or RNA splice sites, the task is to learn a pattern from this set that allows the recognition of similar sites in another set of DNA or RNA sequences. Permuted Markov (PM models and permuted variable length Markov (PVLM models are two powerful models for this task, but the problem of finding an optimal PM model or PVLM model is NP-hard. While the problem of finding an optimal PM model or PVLM model of order one is equivalent to the traveling salesman problem (TSP, the problem of finding an optimal PM model or PVLM model of order two is equivalent to the quadratic TSP (QTSP. Several exact algorithms exist for solving the QTSP, but it is unclear if these algorithms are capable of solving QTSP instances resulting from RNA splice sites of at least 150 base pairs in a reasonable time frame. Here, we investigate the performance of three exact algorithms for solving the QTSP for ten datasets of splice acceptor sites and splice donor sites of five different species and find that one of these algorithms is capable of solving QTSP instances of up to 200 base pairs with a running time of less than two days.

  12. Single-Molecule View of Small RNA-Guided Target Search and Recognition.

    Science.gov (United States)

    Globyte, Viktorija; Kim, Sung Hyun; Joo, Chirlmin

    2018-05-20

    Most everyday processes in life involve a necessity for an entity to locate its target. On a cellular level, many proteins have to find their target to perform their function. From gene-expression regulation to DNA repair to host defense, numerous nucleic acid-interacting proteins use distinct target search mechanisms. Several proteins achieve that with the help of short RNA strands known as guides. This review focuses on single-molecule advances studying the target search and recognition mechanism of Argonaute and CRISPR (clustered regularly interspaced short palindromic repeats) systems. We discuss different steps involved in search and recognition, from the initial complex prearrangement into the target-search competent state to the final proofreading steps. We focus on target search mechanisms that range from weak interactions, to one- and three-dimensional diffusion, to conformational proofreading. We compare the mechanisms of Argonaute and CRISPR with a well-studied target search system, RecA.

  13. MicroRNA expression in the adult mouse central nervous system

    DEFF Research Database (Denmark)

    Bak, Mads; Silahtaroglu, Asli; Møller, Morten

    2008-01-01

    distinct areas of the adult mouse central nervous system (CNS). Microarray profiling in combination with real-time RT-PCR and LNA (locked nucleic acid)-based in situ hybridization uncovered 44 miRNAs displaying more than threefold enrichment in the spinal cord, cerebellum, medulla oblongata, pons......RNA-related gene regulatory networks in the mammalian central nervous system. Udgivelsesdato: 2008-Mar...

  14. A simple centrality index for scientific social recognition

    Science.gov (United States)

    Kinouchi, Osame; Soares, Leonardo D. H.; Cardoso, George C.

    2018-02-01

    We introduce a new centrality index for bipartite networks of papers and authors that we call K-index. The K-index grows with the citation performance of the papers that cite a given researcher and can be seen as a measure of scientific social recognition. Indeed, the K-index measures the number of hubs, defined in a self-consistent way in the bipartite network, that cites a given author. We show that the K-index can be computed by simple inspection of the Web of Science platform and presents several advantages over other centrality indexes, in particular Hirsch h-index. The K-index is robust to self-citations, is not limited by the total number of papers published by a researcher as occurs for the h-index and can distinguish in a consistent way researchers that have the same h-index but very different scientific social recognition. The K-index easily detects a known case of a researcher with inflated number of papers, citations and h-index due to scientific misconduct. Finally, we show that, in a sample of twenty-eight physics Nobel laureates and twenty-eight highly cited non-Nobel-laureate physicists, the K-index correlates better to the achievement of the prize than the number of papers, citations, citations per paper, citing articles or the h-index. Clustering researchers in a K versus h plot reveals interesting outliers that suggest that these two indexes can present complementary independent information.

  15. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  16. Mechanism for Coordinated RNA Packaging and Genome Replication by Rotavirus Polymerase VP1

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaohui; McDonald, Sarah M.; Tortorici, M. Alejandra; Tao, Yizhi Jane; Vasquez-Del Carpio, Rodrigo; Nibert, Max L.; Patton, John T.; Harrison, Stephen C. (Harvard-Med); (NIH); (CH-Boston)

    2009-04-08

    Rotavirus RNA-dependent RNA polymerase VP1 catalyzes RNA synthesis within a subviral particle. This activity depends on core shell protein VP2. A conserved sequence at the 3' end of plus-strand RNA templates is important for polymerase association and genome replication. We have determined the structure of VP1 at 2.9 {angstrom} resolution, as apoenzyme and in complex with RNA. The cage-like enzyme is similar to reovirus {lambda}3, with four tunnels leading to or from a central, catalytic cavity. A distinguishing characteristic of VP1 is specific recognition, by conserved features of the template-entry channel, of four bases, UGUG, in the conserved 3' sequence. Well-defined interactions with these bases position the RNA so that its 3' end overshoots the initiating register, producing a stable but catalytically inactive complex. We propose that specific 3' end recognition selects rotavirus RNA for packaging and that VP2 activates the autoinhibited VP1/RNA complex to coordinate packaging and genome replication.

  17. Nucleic Acid Sensors Involved in the Recognition of HBV in the Liver–Specific in vivo Transfection Mouse Models—Pattern Recognition Receptors and Sensors for HBV

    Directory of Open Access Journals (Sweden)

    Chean Ring Leong

    2015-04-01

    Full Text Available Cellular innate immune system recognizing pathogen infection is critical for the host defense against viruses. Hepatitis B virus (HBV is a DNA virus with a unique life cycle whereby the DNA and RNA intermediates present at different phases. However, it is still unclear whether the viral DNA or RNA templates are recognized by the pattern-recognition receptors (PRRs to trigger host antiviral immune response. Here in this article, we review the recent advances in the progress of the HBV studies, focusing on the nucleic acid sensors and the pathways involved in the recognition of HBV in the liver–specific in vivo transfection mouse models. Hydrodynamic injection transfecting the hepatocytes in the gene-disrupted mouse model with the HBV replicative genome DNA has revealed that IFNAR and IRF3/7 are indispensable in HBV eradication in the mice liver but not the RNA sensing pathways. Interestingly, accumulating evidence of the recent studies has demonstrated that HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the Stimulator of interferon genes (STING, which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. This review will present the current understanding of innate immunity in HBV infection and of the challenges for clearing of the HBV infection.

  18. Biochemical study of multiple drug recognition sites on central benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Trifiletti, R.R.

    1986-01-01

    The benzodiazepine receptor complex of mammalian brain possesses recognition sites which mediate (at least in part) the pharmacologic actions of the 1,4-benzodiazepines and barbiturates. Evidence is provided suggesting the existence of least seven distinct drug recognition sites on this complex. Interactions between the various recognition sites have been explored using radioligand binding techniques. This information is utilized to provide a comprehensive scheme for characterizing receptor-active drugs on an anxiolytic-anticonvulsant/proconvulsant continuum using radioligand binding techniques, as well as a comprehensive program for identifying potential endogenous receptor-active substances. Further evidence is provided here supporting the notion of benzodiazepine recognition site heterogeneity. Classical 1,4-benzodiazepines do not appear to differentiate two populations of benzodiazepine receptors in an equilibrium sense, but appear to do so in a kinetic sense. An apparent physical separation of the two receptor subtypes can be achieved by differential solubilization. The benzodiazepine binding subunit can be identified by photoaffinity labeling with the benzodiazepine agonist (/sup 3/H)flunitrazepan. Conditions for reproducible partial proteolytic mapping of (/sup 3/H)flunitrazepam photoaffinity labeled receptors are established. From these maps, it is concluded that there are probably no major differences in the primary sequence of the benzodiazepine binding subunit in various regions of the rat central nervous system.

  19. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Douthwaite, S

    1994-01-01

    investigated what structural elements in 23S rRNA are required for specific recognition by the ErmE methyltransferase. The ermE gene was cloned into R1 plasmid derivatives, providing a means of inducible expression in Escherichia coli. Expression of the methyltransferase in vivo confers resistance......, and the enzyme efficiently modifies 23S rRNA in vitro. Removal of most of the 23S rRNA structure, so that only domain V (nucleotides 2000 to 2624) remains, does not affect the efficiency of modification by the methyltransferase. In addition, modification still occurs after the rRNA tertiary structure has been...

  20. Neonatal paternal deprivation impairs social recognition and alters levels of oxytocin and estrogen receptor α mRNA expression in the MeA and NAcc, and serum oxytocin in mandarin voles.

    Science.gov (United States)

    Cao, Yan; Wu, Ruiyong; Tai, Fadao; Zhang, Xia; Yu, Peng; An, Xiaolei; Qiao, Xufeng; Hao, Ping

    2014-01-01

    Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation-dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Structural basis of RNA recognition and dimerization by the STAR proteins T-STAR and Sam68

    Science.gov (United States)

    Feracci, Mikael; Foot, Jaelle N.; Grellscheid, Sushma N.; Danilenko, Marina; Stehle, Ralf; Gonchar, Oksana; Kang, Hyun-Seo; Dalgliesh, Caroline; Meyer, N. Helge; Liu, Yilei; Lahat, Albert; Sattler, Michael; Eperon, Ian C.; Elliott, David J.; Dominguez, Cyril

    2016-01-01

    Sam68 and T-STAR are members of the STAR family of proteins that directly link signal transduction with post-transcriptional gene regulation. Sam68 controls the alternative splicing of many oncogenic proteins. T-STAR is a tissue-specific paralogue that regulates the alternative splicing of neuronal pre-mRNAs. STAR proteins differ from most splicing factors, in that they contain a single RNA-binding domain. Their specificity of RNA recognition is thought to arise from their property to homodimerize, but how dimerization influences their function remains unknown. Here, we establish at atomic resolution how T-STAR and Sam68 bind to RNA, revealing an unexpected mode of dimerization different from other members of the STAR family. We further demonstrate that this unique dimerization interface is crucial for their biological activity in splicing regulation, and suggest that the increased RNA affinity through dimer formation is a crucial parameter enabling these proteins to select their functional targets within the transcriptome. PMID:26758068

  2. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing.

    Directory of Open Access Journals (Sweden)

    Mahmoud Kandeel

    Full Text Available RNA interference (RNAi is a highly specialized process of protein-siRNA interaction that results in the regulation of gene expression and cleavage of target mRNA. The PAZ domain of the Argonaute proteins binds to the 3' end of siRNA, and during RNAi the attaching end of the siRNA switches between binding and release from its binding pocket. This biphasic interaction of the 3' end of siRNA with the PAZ domain is essential for RNAi activity; however, it remains unclear whether stronger or weaker binding with PAZ domain will facilitate or hinder the overall RNAi process. Here we report the correlation between the binding of modified siRNA 3' overhang analogues and their in vivo RNAi efficacy. We found that higher RNAi efficacy was associated with the parameters of lower Ki value, lower total intermolecular energy, lower free energy, higher hydrogen bonding, smaller total surface of interaction and fewer van der Waals interactions. Electrostatic interaction was a minor contributor to compounds recognition, underscoring the presence of phosphate groups in the modified analogues. Thus, compounds with lower binding affinity are associated with better gene silencing. Lower binding strength along with the smaller interaction surface, higher hydrogen bonding and fewer van der Waals interactions were among the markers for favorable RNAi activity. Within the measured parameters, the interaction surface, van der Waals interactions and inhibition constant showed a statistically significant correlation with measured RNAi efficacy. The considerations provided in this report will be helpful in the design of new compounds with better gene silencing ability.

  3. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    OpenAIRE

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2012-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substra...

  4. Characterization of the molecular basis of group II intron RNA recognition by CRS1-CRM domains.

    Science.gov (United States)

    Keren, Ido; Klipcan, Liron; Bezawork-Geleta, Ayenachew; Kolton, Max; Shaya, Felix; Ostersetzer-Biran, Oren

    2008-08-22

    CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.

  5. Molecular architecture of protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; C, Nithin; Pilla, Smita P; Bahadur, Ranjit Prasad

    2015-01-01

    The molecular architecture of protein-RNA interfaces are analyzed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein-protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein-protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein-protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein-protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2' position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein-protein interfaces is insignificant.

  6. Clinical descriptors for the recognition of central sensitization pain in patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Lluch, Enrique; Nijs, Jo; Courtney, Carol A

    2018-01-01

    BACKGROUND: Despite growing awareness of the contribution of central pain mechanisms to knee osteoarthritis pain in a subgroup of patients, routine evaluation of central sensitization is yet to be incorporated into clinical practice. AIM: The objective of this perspective is to design a set...... of clinical descriptors for the recognition of central sensitization in patients with knee osteoarthritis that can be implemented in clinical practice. METHODS: A narrative review of original research papers was conducted by nine clinicians and researchers from seven different countries to reach agreement...... hyperalgesia, hypoesthesia and reduced vibration sense. CONCLUSIONS: This article describes a set of clinically relevant descriptors that might indicate the presence of central sensitization in patients with knee osteoarthritis in clinical practice. Although based on research data, the descriptors proposed...

  7. miRNA profiles in cerebrospinal fluid from patients with central hypersomnias

    DEFF Research Database (Denmark)

    Holm, Anja; Bang-Berthelsen, Claus Heiner; Knudsen, Stine

    2014-01-01

    addressed whether miRNA levels are altered in the cerebrospinal fluid (CSF) of patients with central hypersomnias. We conducted high-throughput analyses of miRNAs in CSF from patients using quantitative real-time polymerase chain reaction panels. We identified 13, 9, and 11 miRNAs with a more than two...

  8. Biophysical Characterization of G-Quadruplex Recognition in the PITX1 mRNA by the Specificity Domain of the Helicase RHAU.

    Directory of Open Access Journals (Sweden)

    Emmanuel O Ariyo

    Full Text Available Nucleic acids rich in guanine are able to fold into unique structures known as G-quadruplexes. G-quadruplexes consist of four tracts of guanylates arranged in parallel or antiparallel strands that are aligned in stacked G-quartet planes. The structure is further stabilized by Hoogsteen hydrogen bonds and monovalent cations centered between the planes. RHAU (RNA helicase associated with AU-rich element is a member of the ATP-dependent DExH/D family of RNA helicases and can bind and resolve G-quadruplexes. RHAU contains a core helicase domain with an N-terminal extension that enables recognition and full binding affinity to RNA and DNA G-quadruplexes. PITX1, a member of the bicoid class of homeobox proteins, is a transcriptional activator active during development of vertebrates, chiefly in the anterior pituitary gland and several other organs. We have previously demonstrated that RHAU regulates PITX1 levels through interaction with G-quadruplexes at the 3'-end of the PITX1 mRNA. To understand the structural basis of G-quadruplex recognition by RHAU, we characterize a purified minimal PITX1 G-quadruplex using a variety of biophysical techniques including electrophoretic mobility shift assays, UV-VIS spectroscopy, circular dichroism, dynamic light scattering, small angle X-ray scattering and nuclear magnetic resonance spectroscopy. Our biophysical analysis provides evidence that the RNA G-quadruplex, but not its DNA counterpart, can adopt a parallel orientation, and that only the RNA can interact with N-terminal domain of RHAU via the tetrad face of the G-quadruplex. This work extends our insight into how the N-terminal region of RHAU recognizes parallel G-quadruplexes.

  9. Control of Drosophila Type I and Type II central brain neuroblast proliferation by bantam microRNA

    DEFF Research Database (Denmark)

    Weng, Ruifen; Cohen, Stephen M

    2015-01-01

    Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports proliferat......Post-transcriptional regulation of stem cell self-renewal by microRNAs is emerging as an important mechanism controlling tissue homeostasis. Here, we provide evidence that bantam microRNA controls neuroblast number and proliferation in the Drosophila central brain. Bantam also supports...

  10. Low-resolution expression recognition based on central oblique average CS-LBP with adaptive threshold

    Science.gov (United States)

    Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong

    2017-11-01

    In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.

  11. A Viral RNA Structural Element Alters Host Recognition of Nonself RNA

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, J. L.; Gardner, C. L.; Kimura, T.; White, J. P.; Liu, G.; Trobaugh, D. W.; Huang, C.; Tonelli, M.; Paessler, S.; Takeda, K.; Klimstra, W. B.; Amarasinghe, G. K.; Diamond, M. S.

    2014-01-30

    Although interferon (IFN) signaling induces genes that limit viral infection, many pathogenic viruses overcome this host response. As an example, 2'-O methylation of the 5' cap of viral RNA subverts mammalian antiviral responses by evading restriction of Ifit1, an IFN-stimulated gene that regulates protein synthesis. However, alphaviruses replicate efficiently in cells expressing Ifit1 even though their genomic RNA has a 5' cap lacking 2'-O methylation. We show that pathogenic alphaviruses use secondary structural motifs within the 5' untranslated region (UTR) of their RNA to alter Ifit1 binding and function. Mutations within the 5'-UTR affecting RNA structural elements enabled restriction by or antagonism of Ifit1 in vitro and in vivo. These results identify an evasion mechanism by which viruses use RNA structural motifs to avoid immune restriction.

  12. The early history of tRNA recognition by aminoacyl-tRNA synthetases

    Indian Academy of Sciences (India)

    Madhu

    2006-10-04

    Oct 4, 2006 ... Discovery of aminoacyl-tRNA synthetases and importance ... The pioneering work of Fritz Lipmann on the high-energy ... the peculiar structural and functional relationships tRNAs ... a bulk of only 20 families of tRNA molecules in contrast ...... balance of tRNA and aminoacyl-tRNA synthetase; Science 242.

  13. A "bulged" double helix in a RNA-protein contact site

    DEFF Research Database (Denmark)

    Peattie, D A; Douthwaite, S; Garrett, R A

    1981-01-01

    as a singly bulged nucleotide extending the Fox and Woese central helix by two base pairs in the E. coli sequence (to positions 16-23/60-68) as well as in each of 61 (prokaryotic and eukaryotic) aligned 5S RNA sequences. In each case, the single bulged nucleotide is at the relative position of adenosine-66...... in the RNA sequences. The presence of this putative bulged nucleotide appears to have been conserved in 5S RNA sequences throughout evolution, and its identity varies with major phylogenetic divisions. This residue is likely involved in specific 5S RNA-protein recognition or interaction in prokaryotic...... and eukaryotic ribosomes. The uridine-65 to adenosine-66 internucleotide bond is protected from RNase A digestion in the complex, and carbethoxylation of E. coli adenosine-66 prior to L18 binding affects formation of a stable RNA-protein complex. Thus, we identify a region of E. coli 5S RNA protected...

  14. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement

    KAUST Repository

    Jiang, Hanlun

    2015-07-16

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  15. Markov State Models Reveal a Two-Step Mechanism of miRNA Loading into the Human Argonaute Protein: Selective Binding followed by Structural Re-arrangement

    KAUST Repository

    Jiang, Hanlun; Sheong, Fu Kit; Zhu, Lizhe; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2015-01-01

    Argonaute (Ago) proteins and microRNAs (miRNAs) are central components in RNA interference, which is a key cellular mechanism for sequence-specific gene silencing. Despite intensive studies, molecular mechanisms of how Ago recognizes miRNA remain largely elusive. In this study, we propose a two-step mechanism for this molecular recognition: selective binding followed by structural re-arrangement. Our model is based on the results of a combination of Markov State Models (MSMs), large-scale protein-RNA docking, and molecular dynamics (MD) simulations. Using MSMs, we identify an open state of apo human Ago-2 in fast equilibrium with partially open and closed states. Conformations in this open state are distinguished by their largely exposed binding grooves that can geometrically accommodate miRNA as indicated in our protein-RNA docking studies. miRNA may then selectively bind to these open conformations. Upon the initial binding, the complex may perform further structural re-arrangement as shown in our MD simulations and eventually reach the stable binary complex structure. Our results provide novel insights in Ago-miRNA recognition mechanisms and our methodology holds great potential to be widely applied in the studies of other important molecular recognition systems.

  16. Insight into the recognition, binding, and reactivity of catalytic metallodrugs targeting stem loop IIb of hepatitis C IRES RNA.

    Science.gov (United States)

    Bradford, Seth S; Ross, Martin James; Fidai, Insiya; Cowan, James A

    2014-06-01

    The complex Cu-GGHYrFK-amide (1-Cu) was previously reported as a novel metallotherapeutic that catalytically inactivates stem loop IIb (SLIIb) of the hepatitis C virus (HCV) internal ribosomal entry site (IRES) RNA and demonstrates significant antiviral activity in a cellular HCV replicon assay. Herein we describe additional studies focused on understanding the cleavage mechanism as well as the relationship of catalyst configuration to structural recognition and site-selective cleavage of the structured RNA motif. These are advanced by use of a combination of MALDI-TOF mass spectrometry, melting temperature determinations, and computational analysis to develop a structural model for binding and reactivity toward SLIIb of the IRES RNA. In addition, the binding, reactivity, and structural chemistry of the all-D-amino acid form of this metallopeptide, complex 2-Cu, are reported and compared with those of complex 1-Cu. In vitro RNA binding and cleavage assays for complex 2-Cu show a KD value of 76 ± 3 nM, and Michaelis-Menten parameters of kcat =0.14 ± 0.01 min(-1) and KM =7.9 ± 1.2 μM, with a turnover number exceeding 40. In a luciferase-based cellular replicon assay Cu-GGhyrfk-amide shows activity similar to that of the 1-Cu parent peptide, with an IC50 value of 1.9 ± 0.4 μM and cytotoxicity exceeding 100 μM. RT-PCR experiments confirm a significant decrease in HCV RNA levels in replicon assays for up to nine days when treated with complex 1-Cu in three-day dosing increments. This study shows the influence that the α-carbon stereocenter has for this new class of compounds, while detailed mass spectrometry and computational analyses provide new insight into the mechanisms of recognition, binding, and reactivity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. JAK kinases are required for the bacterial RNA and poly I:C induced tyrosine phosphorylation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V; Tai, TC; Saleh, Mazen; Parrillo, Joseph E; Kumar, Anand; Kumar, Aseem

    2013-01-01

    Discriminating the molecular patterns associated with RNA is central to innate immunity. The protein kinase PKR is a cytosolic sensor involved in the recognition of viral dsRNA and triggering interferon-induced signaling. Here, we identified bacterial RNA as a novel distinct pattern recognized by PKR. We show that the tyrosine phosphorylation of PKR induced by either bacterial RNA or poly I:C is impaired in mutant cells lacking TYK2, JAK1, or JAK2 kinases. PKR was found to be a direct substrate for the activated JAKs. Our results indicated that the double-stranded structures of bacterial RNA are required to fully activate PKR. These results suggest that bacterial RNA signaling is analogous in some respects to that of viral RNA and interferons and may have implications in bacterial immunity. PMID:23236554

  18. Exploring the impact of the side-chain length on peptide/RNA binding events.

    Science.gov (United States)

    Sbicca, Lola; González, Alejandro López; Gresika, Alexandra; Di Giorgio, Audrey; Closa, Jordi Teixido; Tejedor, Roger Estrada; Andréola, Marie-Line; Azoulay, Stéphane; Patino, Nadia

    2017-07-19

    The impact of the amino-acid side-chain length on peptide-RNA binding events has been investigated using HIV-1 Tat derived peptides as ligands and the HIV-1 TAR RNA element as an RNA model. Our studies demonstrate that increasing the length of all peptide side-chains improves unexpectedly the binding affinity (K D ) but reduces the degree of compactness of the peptide-RNA complex. Overall, the side-chain length appears to modulate in an unpredictable way the ability of the peptide to compete with the cognate TAR RNA partner. Beyond the establishment of non-intuitive fundamental relationships, our results open up new perspectives in the design of effective RNA ligand competitors, since a large number of them have already been identified but few studies report on the modulation of the biological activity by modifying in the same way the length of all chains connecting RNA recognition motives to the central scaffold of a ligand.

  19. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Ambuj Srivastava

    2018-05-01

    Full Text Available Intrinsically disordered regions (IDRs and protein (IDPs are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT upon binding. We found that DOT regions are generally small in size (less than 3 residues for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface of DOT regions. This study provides insights to understand protein–RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.

  20. Development of pattern recognition algorithms for the central drift chamber of the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, Viktor

    2016-11-04

    In this thesis, the development of one of the pattern recognition algorithms for the Belle II experiment based on conformal and Legendre transformations is presented. In order to optimize the performance of the algorithm (CPU time and efficiency) specialized processing steps have been introduced. To show achieved results, Monte-Carlo based efficiency measurements of the tracking algorithms in the Central Drift Chamber (CDC) has been done.

  1. Nucleocapsid-Independent Specific Viral RNA Packaging via Viral Envelope Protein and Viral RNA Signal

    OpenAIRE

    Narayanan, Krishna; Chen, Chun-Jen; Maeda, Junko; Makino, Shinji

    2003-01-01

    For any of the enveloped RNA viruses studied to date, recognition of a specific RNA packaging signal by the virus's nucleocapsid (N) protein is the first step described in the process of viral RNA packaging. In the murine coronavirus a selective interaction between the viral transmembrane envelope protein M and the viral ribonucleoprotein complex, composed of N protein and viral RNA containing a short cis-acting RNA element, the packaging signal, determines the selective RNA packaging into vi...

  2. Structural Basis for Polypyrimidine Tract Recognition by the Essential Pre-mRNA Splicing Factor U2AF65

    International Nuclear Information System (INIS)

    Sickmier, E.; Frato, K.; Shen, H.; Paranawithana, S.; Green, M.; Kielkopf, C.

    2006-01-01

    The essential pre-mRNA splicing factor, U2AF 65 , guides the early stages of splice site choice by recognizing a polypyrimidine (Py)-tract consensus sequence near the 3'-splice site. Since Py-tracts are relatively poorly conserved in higher eukaryotes, U2AF 65 is faced with the problem of specifying uridine-rich sequences, yet tolerating a variety of nucleotide substitutions found in natural Py-tracts. To better understand these apparently contradictory RNA binding characteristics, the X-ray structure of the U2AF 65 RNA binding domain bound to a Py-tract composed of seven uridines has been determined at 2.5Angstroms resolution. Specific hydrogen bonds between U2AF 65 and the uracil bases provide an explanation for polyuridine recognition. Flexible sidechains and bound water molecules form the majority of the base contacts, and potentially could rearrange when the U2AF 65 structure adapts to different Py-tract sequences. The energetic importance of conserved residues for Py-tract binding is established by analysis of site-directed mutant U2AF 65 proteins using surface plasmon resonance

  3. Approaches to link RNA secondary structures with splicing regulation

    DEFF Research Database (Denmark)

    Plass, Mireya; Eyras, Eduardo

    2014-01-01

    In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either by facilitat...... describes the steps in the analysis of the secondary structure of the pre-mRNA and its possible relation to splicing. As a working example, we use the case of yeast and the problem of the recognition of the 3' splice site (3'ss).......In higher eukaryotes, alternative splicing is usually regulated by protein factors, which bind to the pre-mRNA and affect the recognition of splicing signals. There is recent evidence that the secondary structure of the pre-mRNA may also play an important role in this process, either...

  4. Analysis of bacterial core communities in the central Baltic by comparative RNA-DNA-based fingerprinting provides links to structure-function relationships.

    Science.gov (United States)

    Brettar, Ingrid; Christen, Richard; Höfle, Manfred G

    2012-01-01

    Understanding structure-function links of microbial communities is a central theme of microbial ecology since its beginning. To this end, we studied the spatial variability of the bacterioplankton community structure and composition across the central Baltic Sea at four stations, which were up to 450 km apart and at a depth profile representative for the central part (Gotland Deep, 235 m). Bacterial community structure was followed by 16S ribosomal RNA (rRNA)- and 16S rRNA gene-based fingerprints using single-strand conformation polymorphism (SSCP) electrophoresis. Species composition was determined by sequence analysis of SSCP bands. High similarities of the bacterioplankton communities across several hundred kilometers were observed in the surface water using RNA- and DNA-based fingerprints. In these surface communities, the RNA- and DNA-based fingerprints resulted in very different pattern, presumably indicating large difference between the active members of the community as represented by RNA-based fingerprints and the present members represented by the DNA-based fingerprints. This large discrepancy changed gradually over depth, resulting in highly similar RNA- and DNA-based fingerprints in the anoxic part of the water column below 130 m depth. A conceivable mechanism explaining this high similarity could be the reduced oxidative stress in the anoxic zone. The stable communities on the surface and in the anoxic zone indicate the strong influence of the hydrography on the bacterioplankton community structure. Comparative analysis of RNA- and DNA-based community structure provided criteria for the identification of the core community, its key members and their links to biogeochemical functions.

  5. Domain motions of Argonaute, the catalytic engine of RNA interference

    Directory of Open Access Journals (Sweden)

    Wall Michael E

    2007-11-01

    Full Text Available Abstract Background The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field. Results The analysis reveals low-frequency vibrations that facilitate the accommodation of RNA duplexes – an essential step in target recognition. The Pyrococcus furiosus and Aquifex aeolicus Argonaute proteins both exhibit low-frequency torsion and hinge motions; however, differences in the overall architecture of the proteins cause the detailed dynamics to be significantly different. Conclusion Overall, low-frequency vibrations of Argonaute are consistent with mechanisms within the current reaction cycle model for RNA interference.

  6. Track recognition in the central drift chamber of the SAPHIR detector at ELSA and first reconstruction of real tracks

    International Nuclear Information System (INIS)

    Korn, P.

    1991-02-01

    The FORTRAN program for pattern recognition in the central drift chamber of SAPHIR has been modified in order to find tracks with more than one missing wire signal and has been optimized in resolving the left/right ambiguities. The second part of this report deals with the reconstruction of some real tracks (γ → e + e - ), which were measured with SAPHIR. The efficiency of the central drift chamber and the space-to-drift time-relation are discussed. (orig.)

  7. From "Cellular" RNA to "Smart" RNA: Multiple Roles of RNA in Genome Stability and Beyond.

    Science.gov (United States)

    Michelini, Flavia; Jalihal, Ameya P; Francia, Sofia; Meers, Chance; Neeb, Zachary T; Rossiello, Francesca; Gioia, Ubaldo; Aguado, Julio; Jones-Weinert, Corey; Luke, Brian; Biamonti, Giuseppe; Nowacki, Mariusz; Storici, Francesca; Carninci, Piero; Walter, Nils G; Fagagna, Fabrizio d'Adda di

    2018-03-30

    Coding for proteins has been considered the main function of RNA since the "central dogma" of biology was proposed. The discovery of noncoding transcripts shed light on additional roles of RNA, ranging from the support of polypeptide synthesis, to the assembly of subnuclear structures, to gene expression modulation. Cellular RNA has therefore been recognized as a central player in often unanticipated biological processes, including genomic stability. This ever-expanding list of functions inspired us to think of RNA as a "smart" phone, which has replaced the older obsolete "cellular" phone. In this review, we summarize the last two decades of advances in research on the interface between RNA biology and genome stability. We start with an account of the emergence of noncoding RNA, and then we discuss the involvement of RNA in DNA damage signaling and repair, telomere maintenance, and genomic rearrangements. We continue with the depiction of single-molecule RNA detection techniques, and we conclude by illustrating the possibilities of RNA modulation in hopes of creating or improving new therapies. The widespread biological functions of RNA have made this molecule a reoccurring theme in basic and translational research, warranting it the transcendence from classically studied "cellular" RNA to "smart" RNA.

  8. Disruption of Specific RNA-RNA Interactions in a Double-Stranded RNA Virus Inhibits Genome Packaging and Virus Infectivity.

    Science.gov (United States)

    Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly

    2015-12-01

    Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs

  9. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn).

    Science.gov (United States)

    Nair, Nilendra; Raff, Hannah; Islam, Mohammed Tarek; Feen, Melanie; Garofalo, Denise M; Sheppard, Kelly

    2016-02-13

    Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. The chemical structure of DNA sequence signals for RNA transcription

    Science.gov (United States)

    George, D. G.; Dayhoff, M. O.

    1982-01-01

    The proposed recognition sites for RNA transcription for E. coli NRA polymerase, bacteriophage T7 RNA polymerase, and eukaryotic RNA polymerase Pol II are evaluated in the light of the requirements for efficient recognition. It is shown that although there is good experimental evidence that specific nucleic acid sequence patterns are involved in transcriptional regulation in bacteria and bacterial viruses, among the sequences now available, only in the case of the promoters recognized by bacteriophage T7 polymerase does it seem likely that the pattern is sufficient. It is concluded that the eukaryotic pattern that is investigated is not restrictive enough to serve as a recognition site.

  11. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  12. The cellular receptors of exogenous RNA

    Directory of Open Access Journals (Sweden)

    Patryk Reniewicz

    2016-04-01

    Full Text Available One of the key determinants of survival for organisms is proper recognition of exogenous and endogenous nucleic acids. Therefore, high eukaryotes developed a number of receptors that allow for discrimination between friend or foe DNA and RNA. Appearance of exogenous RNA in cytoplasm provides a signal of danger and triggers cellular responses that facilitate eradication of a pathogen. Recognition of exogenous RNA is additionally complicated by fact that large amount of endogenous RNA is present in cytoplasm Thus, number of different receptors, found in eukaryotic cells, is able to recognize that nucleic acid. First group of those receptors consist endosomal Toll like receptors, namely TLR3, TLR7, TLR8 and TLR13. Those receptors recognize RNA released from pathogens that enter the cell by endocytosis. The second group includes cytoplasmic sensors like PKR and the family of RLRs comprised of RIG-I, MDA5 and LGP2. Cytoplasmic receptors recognize RNA from pathogens invading the cell by non-endocytic pathway. In both cases binding of RNA by its receptors results in activation of the signalling cascades that lead to the production of interferon and other cytokines.

  13. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    Science.gov (United States)

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.

  14. Fluorescent nanodiamond and lanthanide labelled in situ hybridization for the identification of RNA transcripts in fixed and CLARITY-cleared central nervous system tissues (Conference Presentation)

    Science.gov (United States)

    Parker, Lindsay M.; Staikopoulos, Vicky; Cordina, Nicole M.; Sayyadi, Nima; Hutchinson, Mark R.; Packer, Nicolle H.

    2016-03-01

    Despite significant advancement in the methodology used to conjugate, incorporate and visualize fluorescent molecules at the cellular and tissue levels, biomedical imaging predominantly relies on the limitations of established fluorescent molecules such as fluorescein, cyanine and AlexaFluor dyes or genetic incorporation of fluorescent proteins by viral or other means. These fluorescent dyes and conjugates are highly susceptible to photobleaching and compete with cellular autofluorescence, making biomedical imaging unreliable, difficult and time consuming in many cases. In addition, some proteins have low copy numbers and/or poor antibody recognition, further making detection and imaging difficult. We are developing better methods for imaging central nervous system neuroinflammatory markers using targeted mRNA transcripts labelled with fluorescent nanodiamonds or lanthanide chelates. These tags have increased signal and photostability and can also discriminate against tissue/cell autofluorescence. Brains and spinal cords from BALB/c mice with a chronic constriction model of neuropathic pain (neuroinflammation group) or that have undergone sham surgeries (control group) were collected. A subset of brains and spinal cords were perfused and fixed with paraformaldehyde (n=3 sham and n=3 pain groups) prior to sectioning and in situ hybridization using nanodiamond or lanthanide chelate conjugated complementary RNA probes. Another subset of brains and spinal cords from the same cohort of animals were perfused and processed for CLARITY hydrogel based clearing prior to in situ hybridization with the same probes. We will present our findings on the photostability, sensitivity and discrimination from background tissue autofluorescence of our novel RNA probes, compared to traditional fluorophore tags.

  15. Structural insights into mechanisms of the small RNA methyltransferase HEN1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Ji, Lijuan; Huang, Qichen; Vassylyev, Dmitry G.; Chen, Xuemei; Ma, Jin-Biao; (UAB); (UCR)

    2010-02-22

    RNA silencing is a conserved regulatory mechanism in fungi, plants and animals that regulates gene expression and defence against viruses and transgenes. Small silencing RNAs of {approx}20-30 nucleotides and their associated effector proteins, the Argonaute family proteins, are the central components in RNA silencing. A subset of small RNAs, such as microRNAs and small interfering RNAs (siRNAs) in plants, Piwi-interacting RNAs in animals and siRNAs in Drosophila, requires an additional crucial step for their maturation; that is, 2'-O-methylation on the 3' terminal nucleotide. A conserved S-adenosyl-L-methionine-dependent RNA methyltransferase, HUA ENHANCER 1 (HEN1), and its homologues are responsible for this specific modification. Here we report the 3.1 {angstrom} crystal structure of full-length HEN1 from Arabidopsis in complex with a 22-nucleotide small RNA duplex and cofactor product S-adenosyl-L-homocysteine. Highly cooperative recognition of the small RNA substrate by multiple RNA binding domains and the methyltransferase domain in HEN1 measures the length of the RNA duplex and determines the substrate specificity. Metal ion coordination by both 2' and 3' hydroxyls on the 3'-terminal nucleotide and four invariant residues in the active site of the methyltransferase domain suggests a novel Mg{sup 2+}-dependent 2'-O-methylation mechanism.

  16. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs.

    Science.gov (United States)

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-06-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Computational assessment of the cooperativity between RNA binding proteins and MicroRNAs in Transcript Decay.

    Science.gov (United States)

    Jiang, Peng; Singh, Mona; Coller, Hilary A

    2013-01-01

    Transcript degradation is a widespread and important mechanism for regulating protein abundance. Two major regulators of transcript degradation are RNA Binding Proteins (RBPs) and microRNAs (miRNAs). We computationally explored whether RBPs and miRNAs cooperate to promote transcript decay. We defined five RBP motifs based on the evolutionary conservation of their recognition sites in 3'UTRs as the binding motifs for Pumilio (PUM), U1A, Fox-1, Nova, and UAUUUAU. Recognition sites for some of these RBPs tended to localize at the end of long 3'UTRs. A specific group of miRNA recognition sites were enriched within 50 nts from the RBP recognition sites for PUM and UAUUUAU. The presence of both a PUM recognition site and a recognition site for preferentially co-occurring miRNAs was associated with faster decay of the associated transcripts. For PUM and its co-occurring miRNAs, binding of the RBP to its recognition sites was predicted to release nearby miRNA recognition sites from RNA secondary structures. The mammalian miRNAs that preferentially co-occur with PUM binding sites have recognition seeds that are reverse complements to the PUM recognition motif. Their binding sites have the potential to form hairpin secondary structures with proximal PUM binding sites that would normally limit RISC accessibility, but would be more accessible to miRNAs in response to the binding of PUM. In sum, our computational analyses suggest that a specific set of RBPs and miRNAs work together to affect transcript decay, with the rescue of miRNA recognition sites via RBP binding as one possible mechanism of cooperativity.

  18. Helicase Dependent Isothermal Amplification of DNA and RNA using Self-Avoiding Molecular Recognition Systems

    Science.gov (United States)

    Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M.; Hoshika, Shuichi; Frye, Carole; Benner, Steven A.

    2015-01-01

    Assays that target DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low resource environments, requiring equipment and power that may not be available in these environments. However, isothermal procedures that avoid thermal cycling are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a “self avoiding molecular recognition system” (SAMRS) eliminates these artifacts to give clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3′-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, something difficult to achieve with HDA using standard primers. This shows that SAMRS-HDA is a more versatile approach than standard HDA with a broader applicability for xNA-targeted diagnostics and research. PMID:25953623

  19. Crystal Structure of the N-Terminal RNA Recognition Motif of mRNA Decay Regulator AUF1

    Directory of Open Access Journals (Sweden)

    Young Jun Choi

    2016-01-01

    Full Text Available AU-rich element binding/degradation factor 1 (AUF1 plays a role in destabilizing mRNAs by forming complexes with AU-rich elements (ARE in the 3′-untranslated regions. Multiple AUF1-ARE complexes regulate the translation of encoded products related to the cell cycle, apoptosis, and inflammation. AUF1 contains two tandem RNA recognition motifs (RRM and a Gln- (Q- rich domain in their C-terminal region. To observe how the two RRMs are involved in recognizing ARE, we obtained the AUF1-p37 protein covering the two RRMs. However, only N-terminal RRM (RRM1 was crystallized and its structure was determined at 1.7 Å resolution. It appears that the RRM1 and RRM2 separated before crystallization. To demonstrate which factors affect the separate RRM1-2, we performed limited proteolysis using trypsin. The results indicated that the intact proteins were cleaved by unknown proteases that were associated with them prior to crystallization. In comparison with each of the monomers, the conformations of the β2-β3 loops were highly variable. Furthermore, a comparison with the RRM1-2 structures of HuR and hnRNP A1 revealed that a dimer of RRM1 could be one of the possible conformations of RRM1-2. Our data may provide a guidance for further structural investigations of AUF1 tandem RRM repeat and its mode of ARE binding.

  20. The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism

    Science.gov (United States)

    Bækkedal, Cecilie; Haugen, Peik

    2015-01-01

    The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding. PMID:26327359

  1. The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism.

    Science.gov (United States)

    Bækkedal, Cecilie; Haugen, Peik

    2015-01-01

    The Spot 42 RNA is a 109 nucleotide long (in Escherichia coli) noncoding small regulatory RNA (sRNA) encoded by the spf (spot fourty-two) gene. spf is found in gamma-proteobacteria and the majority of experimental work on Spot 42 RNA has been performed using E. coli, and recently Aliivibrio salmonicida. In the cell Spot 42 RNA plays essential roles as a regulator in carbohydrate metabolism and uptake, and its expression is activated by glucose, and inhibited by the cAMP-CRP complex. Here we summarize the current knowledge on Spot 42, and present the natural distribution of spf, show family-specific secondary structural features of Spot 42, and link highly conserved structural regions to mRNA target binding.

  2. Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera).

    Science.gov (United States)

    Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark

    2009-09-09

    Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions, suggests that the

  3. Prediction and Dissection of Protein-RNA Interactions by Molecular Descriptors.

    Science.gov (United States)

    Liu, Zhi-Ping; Chen, Luonan

    2016-01-01

    Protein-RNA interactions play crucial roles in numerous biological processes. However, detecting the interactions and binding sites between protein and RNA by traditional experiments is still time consuming and labor costing. Thus, it is of importance to develop bioinformatics methods for predicting protein-RNA interactions and binding sites. Accurate prediction of protein-RNA interactions and recognitions will highly benefit to decipher the interaction mechanisms between protein and RNA, as well as to improve the RNA-related protein engineering and drug design. In this work, we summarize the current bioinformatics strategies of predicting protein-RNA interactions and dissecting protein-RNA interaction mechanisms from local structure binding motifs. In particular, we focus on the feature-based machine learning methods, in which the molecular descriptors of protein and RNA are extracted and integrated as feature vectors of representing the interaction events and recognition residues. In addition, the available methods are classified and compared comprehensively. The molecular descriptors are expected to elucidate the binding mechanisms of protein-RNA interaction and reveal the functional implications from structural complementary perspective.

  4. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  5. Engineered proteins with PUF scaffold to manipulate RNA metabolism

    Science.gov (United States)

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.

    2013-01-01

    Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364

  6. Getting ready for REDD+: Recognition and Donor-country Project Development Dynamics in Central Africa

    Directory of Open Access Journals (Sweden)

    Gretchen M Walters

    2017-01-01

    Full Text Available REDD+ (Reducing Emissions, Deforestation and forest Degradation+ is a United Nations Framework Convention for Climate Change (UNFCCC process through which governments reduce the impacts of climate change through forest conservation in a results-based payments scheme. Distinct from international negotiations about the REDD+ framework under the UNFCCC, there are also REDD+ projects that help governments to set up the institutional architecture, plans and strategies to implement REDD+. These capacity-building projects, in the first phase of 'REDD+ readiness', involve negotiations among national and international actors in which recognition and authority claims are used by participants to influence project-level negotiations. This study analyses the project development negotiations in a World Bank-led REDD+ capacity building regional project, involving six Central African countries between 2008 and 2011. It explores how the project created a 'negotiation table' constituted of national and regional institutions recognised by the donors and governments, and how this political space, influenced by global, regional and national political agendas led to 'instances' of recognition and misrecognition – in which some negotiating parties' claims of representation were acknowledge and affirmed, while others' claims were not. Focusing on Cameroon and Gabon, this article analyses how negotiations shaped full participation by Cameroon and only partial engagement by Gabon.

  7. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network.

    Science.gov (United States)

    Keegan, Caroline; Krutzik, Stephan; Schenk, Mirjam; Scumpia, Philip O; Lu, Jing; Pang, Yan Ling Joy; Russell, Brandon S; Lim, Kok Seong; Shell, Scarlet; Prestwich, Erin; Su, Dan; Elashoff, David; Hershberg, Robert M; Bloom, Barry R; Belisle, John T; Fortune, Sarah; Dedon, Peter C; Pellegrini, Matteo; Modlin, Robert L

    2018-05-01

    Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70. Copyright © 2018 by The American Association of Immunologists, Inc.

  8. Helicase-Dependent Isothermal Amplification of DNA and RNA by Using Self-Avoiding Molecular Recognition Systems.

    Science.gov (United States)

    Yang, Zunyi; McLendon, Chris; Hutter, Daniel; Bradley, Kevin M; Hoshika, Shuichi; Frye, Carole B; Benner, Steven A

    2015-06-15

    Assays that detect DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low-resource environments, and requires equipment and power that might not be available in these environments. Isothermal procedures, which avoid thermal cycling, are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a "self avoiding molecular recognition system" (SAMRS) eliminates these artifacts and gives clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3'-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, difficult to achieve with HDA using standard primers. Thus, SAMRS-HDA is a more versatile approach than standard HDA, with a broader applicability for xNA-targeted diagnostics and research. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.

    Science.gov (United States)

    Sternberg, Samuel H; Redding, Sy; Jinek, Martin; Greene, Eric C; Doudna, Jennifer A

    2014-03-06

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  10. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9

    Science.gov (United States)

    Sternberg, Samuel H.; Redding, Sy; Jinek, Martin; Greene, Eric C.; Doudna, Jennifer A.

    2014-03-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated enzyme Cas9 is an RNA-guided endonuclease that uses RNA-DNA base-pairing to target foreign DNA in bacteria. Cas9-guide RNA complexes are also effective genome engineering agents in animals and plants. Here we use single-molecule and bulk biochemical experiments to determine how Cas9-RNA interrogates DNA to find specific cleavage sites. We show that both binding and cleavage of DNA by Cas9-RNA require recognition of a short trinucleotide protospacer adjacent motif (PAM). Non-target DNA binding affinity scales with PAM density, and sequences fully complementary to the guide RNA but lacking a nearby PAM are ignored by Cas9-RNA. Competition assays provide evidence that DNA strand separation and RNA-DNA heteroduplex formation initiate at the PAM and proceed directionally towards the distal end of the target sequence. Furthermore, PAM interactions trigger Cas9 catalytic activity. These results reveal how Cas9 uses PAM recognition to quickly identify potential target sites while scanning large DNA molecules, and to regulate scission of double-stranded DNA.

  11. Alternative RNA splicing and cancer

    Science.gov (United States)

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  12. RNA Origami

    DEFF Research Database (Denmark)

    Sparvath, Steffen Lynge

    introducerede vores gruppe den enkeltstrengede RNA-origami metode, der giver mulighed for cotranscriptional foldning af veldefinerede nanostrukturer, og er en central del af arbejdet præsenteret heri. Denne ph.d.-afhandling udforsker potentielle anvendelser af RNA-origami nanostrukturer, som nanomedicin eller...... biosensorer. Afhandlingen består af en introduktion til RNA-nanoteknologi feltet, en introduktion af enkeltstrenget RNA-origami design, og fire studier, der beskriver design, produktion og karakterisering af både strukturelle og funktionelle RNA-origamier. Flere RNA-origami designs er blevet undersøgt, og...... projekterne, der indgår i denne afhandling, inkluderer de nyeste fremskridt indenfor strukturel RNA-nanoteknologi og udvikling af funktionelle RNA-baserede enheder. Det første studie beskriver konstruktion og karakterisering af en enkeltstrenget 6-helix RNA-origami stuktur, som er den første demonstration af...

  13. Structure, dynamics and RNA binding of the multi-domain splicing factor TIA-1

    Science.gov (United States)

    Wang, Iren; Hennig, Janosch; Jagtap, Pravin Kumar Ankush; Sonntag, Miriam; Valcárcel, Juan; Sattler, Michael

    2014-01-01

    Alternative pre-messenger ribonucleic acid (pre-mRNA) splicing is an essential process in eukaryotic gene regulation. The T-cell intracellular antigen-1 (TIA-1) is an apoptosis-promoting factor that modulates alternative splicing of transcripts, including the pre-mRNA encoding the membrane receptor Fas. TIA-1 is a multi-domain ribonucleic acid (RNA) binding protein that recognizes poly-uridine tract RNA sequences to facilitate 5′ splice site recognition by the U1 small nuclear ribonucleoprotein (snRNP). Here, we characterize the RNA interaction and conformational dynamics of TIA-1 by nuclear magnetic resonance (NMR), isothermal titration calorimetry (ITC) and small angle X-ray scattering (SAXS). Our NMR-derived solution structure of TIA-1 RRM2–RRM3 (RRM2,3) reveals that RRM2 adopts a canonical RNA recognition motif (RRM) fold, while RRM3 is preceded by an non-canonical helix α0. NMR and SAXS data show that all three RRMs are largely independent structural modules in the absence of RNA, while RNA binding induces a compact arrangement. RRM2,3 binds to pyrimidine-rich FAS pre-mRNA or poly-uridine (U9) RNA with nanomolar affinities. RRM1 has little intrinsic RNA binding affinity and does not strongly contribute to RNA binding in the context of RRM1,2,3. Our data unravel the role of binding avidity and the contributions of the TIA-1 RRMs for recognition of pyrimidine-rich RNAs. PMID:24682828

  14. Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera

    Directory of Open Access Journals (Sweden)

    Kubanek Julia

    2009-09-01

    Full Text Available Abstract Background Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s. We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. Results A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units

  15. Substrate recognition by ribonucleoprotein ribonuclease MRP.

    Science.gov (United States)

    Esakova, Olga; Perederina, Anna; Quan, Chao; Berezin, Igor; Krasilnikov, Andrey S

    2011-02-01

    The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.

  16. Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach.

    Science.gov (United States)

    Cambronne, Xiaolu A; Shen, Rongkun; Auer, Paul L; Goodman, Richard H

    2012-12-11

    Identifying targets is critical for understanding the biological effects of microRNA (miRNA) expression. The challenge lies in characterizing the cohort of targets for a specific miRNA, especially when targets are being actively down-regulated in miRNA- RNA-induced silencing complex (RISC)-messengerRNA (mRNA) complexes. We have developed a robust and versatile strategy called RISCtrap to stabilize and purify targets from this transient interaction. Its utility was demonstrated by determining specific high-confidence target datasets for miR-124, miR-132, and miR-181 that contained known and previously unknown transcripts. Two previously unknown miR-132 targets identified with RISCtrap, adaptor protein CT10 regulator of kinase 1 (CRK1) and tight junction-associated protein 1 (TJAP1), were shown to be endogenously regulated by miR-132 in adult mouse forebrain. The datasets, moreover, differed in the number of targets and in the types and frequency of microRNA recognition element (MRE) motifs, thus revealing a previously underappreciated level of specificity in the target sets regulated by individual miRNAs.

  17. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA.

    Science.gov (United States)

    Iakhiaeva, Elena; Iakhiaev, Alexei; Zwieb, Christian

    2010-11-13

    Human cells depend critically on the signal recognition particle (SRP) for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK) at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  18. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

    Science.gov (United States)

    Anders, Carolin; Bargsten, Katja; Jinek, Martin

    2016-03-17

    The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The optimal viewing position in face recognition.

    Science.gov (United States)

    Hsiao, Janet H; Liu, Tina T

    2012-02-28

    In English word recognition, the best recognition performance is usually obtained when the initial fixation is directed to the left of the center (optimal viewing position, OVP). This effect has been argued to involve an interplay of left hemisphere lateralization for language processing and the perceptual experience of fixating at word beginnings most often. While both factors predict a left-biased OVP in visual word recognition, in face recognition they predict contrasting biases: People prefer to fixate the left half-face, suggesting that the OVP should be to the left of the center; nevertheless, the right hemisphere lateralization in face processing suggests that the OVP should be to the right of the center in order to project most of the face to the right hemisphere. Here, we show that the OVP in face recognition was to the left of the center, suggesting greater influence from the perceptual experience than hemispheric asymmetry in central vision. In contrast, hemispheric lateralization effects emerged when faces were presented away from the center; there was an interaction between presented visual field and location (center vs. periphery), suggesting differential influence from perceptual experience and hemispheric asymmetry in central and peripheral vision.

  20. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists...... at the initiation site of transcription in both types of promoters than previously thought. When tested on the entire B. subtilis genome, the model predicts that approximately half of the sigma (A) recognition sites are of the extended type. Some of the response-regulator aspartate phosphatases were among...

  1. Image recognition and consistency of response

    Science.gov (United States)

    Haygood, Tamara M.; Ryan, John; Liu, Qing Mary A.; Bassett, Roland; Brennan, Patrick C.

    2012-02-01

    Purpose: To investigate the connection between conscious recognition of an image previously encountered in an experimental setting and consistency of response to the experimental question. Materials and Methods: Twenty-four radiologists viewed 40 frontal chest radiographs and gave their opinion as to the position of a central venous catheter. One-to-three days later they again viewed 40 frontal chest radiographs and again gave their opinion as to the position of the central venous catheter. Half of the radiographs in the second set were repeated images from the first set and half were new. The radiologists were asked of each image whether it had been included in the first set. For this study, we are evaluating only the 20 repeated images. We used the Kruskal-Wallis test and Fisher's exact test to determine the relationship between conscious recognition of a previously interpreted image and consistency in interpretation of the image. Results. There was no significant correlation between recognition of the image and consistency in response regarding the position of the central venous catheter. In fact, there was a trend in the opposite direction, with radiologists being slightly more likely to give a consistent response with respect to images they did not recognize than with respect to those they did recognize. Conclusion: Radiologists' recognition of previously-encountered images in an observer-performance study does not noticeably color their interpretation on the second encounter.

  2. A Tumor-specific MicroRNA Recognition System Facilitates the Accurate Targeting to Tumor Cells by Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yingting Yu

    2016-01-01

    Full Text Available Targeted therapy for cancer is a research area of great interest, and magnetic nanoparticles (MNPs show great potential as targeted carriers for therapeutics. One important class of cancer biomarkers is microRNAs (miRNAs, which play a significant role in tumor initiation and progression. In this study, a cascade recognition system containing multiple plasmids, including a Tet activator, a lacI repressor gene driven by the TetOn promoter, and a reporter gene repressed by the lacI repressor and influenced by multiple endogenous miRNAs, was used to recognize cells that display miRNA signals that are characteristic of cancer. For this purpose, three types of signal miRNAs with high proliferation and metastasis abilities were chosen (miR-21, miR-145, and miR-9. The response of this system to the human breast cancer MCF-7 cell line was 3.2-fold higher than that to the human breast epithelial HBL100 cell line and almost 7.5-fold higher than that to human embryonic kidney HEK293T cells. In combination with polyethyleneimine-modified MNPs, this recognition system targeted the tumor location in situ in an animal model, and an ≃42% repression of tumor growth was achieved. Our study provides a new combination of magnetic nanocarrier and gene therapy based on miRNAs that are active in vivo, which has potential for use in future cancer therapies.

  3. Non-canonical binding interactions of the RNA recognition motif (RRM) domains of P34 protein modulate binding within the 5S ribonucleoprotein particle (5S RNP).

    Science.gov (United States)

    Kamina, Anyango D; Williams, Noreen

    2017-01-01

    RNA binding proteins are involved in many aspects of RNA metabolism. In Trypanosoma brucei, our laboratory has identified two trypanosome-specific RNA binding proteins P34 and P37 that are involved in the maturation of the 60S subunit during ribosome biogenesis. These proteins are part of the T. brucei 5S ribonucleoprotein particle (5S RNP) and P34 binds to 5S ribosomal RNA (rRNA) and ribosomal protein L5 through its N-terminus and its RNA recognition motif (RRM) domains. We generated truncated P34 proteins to determine these domains' interactions with 5S rRNA and L5. Our analyses demonstrate that RRM1 of P34 mediates the majority of binding with 5S rRNA and the N-terminus together with RRM1 contribute the most to binding with L5. We determined that the consensus ribonucleoprotein (RNP) 1 and 2 sequences, characteristic of canonical RRM domains, are not fully conserved in the RRM domains of P34. However, the aromatic amino acids previously described to mediate base stacking interactions with their RNA target are conserved in both of the RRM domains of P34. Surprisingly, mutation of these aromatic residues did not disrupt but instead enhanced 5S rRNA binding. However, we identified four arginine residues located in RRM1 of P34 that strongly impact L5 binding. These mutational analyses of P34 suggest that the binding site for 5S rRNA and L5 are near each other and specific residues within P34 regulate the formation of the 5S RNP. These studies show the unique way that the domains of P34 mediate binding with the T. brucei 5S RNP.

  4. Exploring the molecular basis of dsRNA recognition by NS1 protein of influenza A virus using molecular dynamics simulation and free energy calculation.

    Science.gov (United States)

    Pan, Dabo; Sun, Huijun; Shen, Yulin; Liu, Huanxiang; Yao, Xiaojun

    2011-12-01

    The frequent outbreak of influenza pandemic and the limited available anti-influenza drugs highlight the urgent need for the development of new antiviral drugs. The dsRNA-binding surface of nonstructural protein 1 of influenza A virus (NS1A) is a promising target. The detailed understanding of NS1A-dsRNA interaction will be valuable for structure-based anti-influenza drug discovery. To characterize and explore the key interaction features between dsRNA and NS1A, molecular dynamics simulation combined with MM-GBSA calculations were performed. Based on the MM-GBSA calculations, we find that the intermolecular van der Waals interaction and the nonpolar solvation term provide the main driving force for the binding process. Meanwhile, 17 key residues from NS1A were identified to be responsible for the dsRNA binding. Compared with the wild type NS1A, all the studied mutants S42A, T49A, R38A, R35AR46A have obvious reduced binding free energies with dsRNA reflecting in the reduction of the polar and/or nonpolar interactions. In addition, the structural and energy analysis indicate the mutations have a small effect to the backbone structures but the loss of side chain interactions is responsible for the decrease of the binding affinity. The uncovering of NS1A-dsRNA recognition mechanism will provide some useful insights and new chances for the development of anti-influenza drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Central administration of angiotensin IV rapidly enhances novel object recognition among mice.

    Science.gov (United States)

    Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P

    2013-07-01

    Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    Science.gov (United States)

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  7. Identification of amino acid residues in protein SRP72 required for binding to a kinked 5e motif of the human signal recognition particle RNA

    Directory of Open Access Journals (Sweden)

    Zwieb Christian

    2010-11-01

    Full Text Available Abstract Background Human cells depend critically on the signal recognition particle (SRP for the sorting and delivery of their proteins. The SRP is a ribonucleoprotein complex which binds to signal sequences of secretory polypeptides as they emerge from the ribosome. Among the six proteins of the eukaryotic SRP, the largest protein, SRP72, is essential for protein targeting and possesses a poorly characterized RNA binding domain. Results We delineated the minimal region of SRP72 capable of forming a stable complex with an SRP RNA fragment. The region encompassed residues 545 to 585 of the full-length human SRP72 and contained a lysine-rich cluster (KKKKKKKKGK at postions 552 to 561 as well as a conserved Pfam motif with the sequence PDPXRWLPXXER at positions 572 to 583. We demonstrated by site-directed mutagenesis that both regions participated in the formation of a complex with the RNA. In agreement with biochemical data and results from chymotryptic digestion experiments, molecular modeling of SRP72 implied that the invariant W577 was located inside the predicted structure of an RNA binding domain. The 11-nucleotide 5e motif contained within the SRP RNA fragment was shown by comparative electrophoresis on native polyacrylamide gels to conform to an RNA kink-turn. The model of the complex suggested that the conserved A240 of the K-turn, previously identified as being essential for the binding to SRP72, could protrude into a groove of the SRP72 RNA binding domain, similar but not identical to how other K-turn recognizing proteins interact with RNA. Conclusions The results from the presented experiments provided insights into the molecular details of a functionally important and structurally interesting RNA-protein interaction. A model for how a ligand binding pocket of SRP72 can accommodate a new RNA K-turn in the 5e region of the eukaryotic SRP RNA is proposed.

  8. MicroRNA prediction using a fixed-order Markov model based on the secondary structure pattern.

    Directory of Open Access Journals (Sweden)

    Wei Shen

    Full Text Available Predicting miRNAs is an arduous task, due to the diversity of the precursors and complexity of enzyme processes. Although several prediction approaches have reached impressive performances, few of them could achieve a full-function recognition of mature miRNA directly from the candidate hairpins across species. Therefore, researchers continue to seek a more powerful model close to biological recognition to miRNA structure. In this report, we describe a novel miRNA prediction algorithm, known as FOMmiR, using a fixed-order Markov model based on the secondary structural pattern. For a training dataset containing 809 human pre-miRNAs and 6441 human pseudo-miRNA hairpins, the model's parameters were defined and evaluated. The results showed that FOMmiR reached 91% accuracy on the human dataset through 5-fold cross-validation. Moreover, for the independent test datasets, the FOMmiR presented an outstanding prediction in human and other species including vertebrates, Drosophila, worms and viruses, even plants, in contrast to the well-known algorithms and models. Especially, the FOMmiR was not only able to distinguish the miRNA precursors from the hairpins, but also locate the position and strand of the mature miRNA. Therefore, this study provides a new generation of miRNA prediction algorithm, which successfully realizes a full-function recognition of the mature miRNAs directly from the hairpin sequences. And it presents a new understanding of the biological recognition based on the strongest signal's location detected by FOMmiR, which might be closely associated with the enzyme cleavage mechanism during the miRNA maturation.

  9. Leaf Recognition of Woody Species in Central Europe

    Czech Academy of Sciences Publication Activity Database

    Novotný, P.; Suk, Tomáš

    2013-01-01

    Roč. 115, č. 4 (2013), s. 444-452 ISSN 1537-5110 R&D Projects: GA ČR GAP103/11/1552 Grant - others:GA UK(CZ) 524512/2012 Keywords : leaf recognition * image moment * Fourier descriptor * automated plant determination Subject RIV: IN - Informatics, Computer Science Impact factor: 1.367, year: 2013 http://library.utia.cas.cz/separaty/2013/ZOI/suk-0394324.pdf

  10. The binding of TIA-1 to RNA C-rich sequences is driven by its C-terminal RRM domain.

    Science.gov (United States)

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Gunzburg, Menachem J; Sivakumaran, Andrew; Yoon, Je-Hyun; Angulo, Jesús; Persson, Cecilia; Gorospe, Myriam; Karlsson, B Göran; Wilce, Jacqueline A; Díaz-Moreno, Irene

    2014-01-01

    T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein that regulates translation by sequestering target mRNAs in stress granules (SG) in response to stress conditions. TIA-1 possesses three RNA recognition motifs (RRM) along with a glutamine-rich domain, with the central domains (RRM2 and RRM3) acting as RNA binding platforms. While the RRM2 domain, which displays high affinity for U-rich RNA sequences, is primarily responsible for interaction with RNA, the contribution of RRM3 to bind RNA as well as the target RNA sequences that it binds preferentially are still unknown. Here we combined nuclear magnetic resonance (NMR) and surface plasmon resonance (SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a novel approach using saturation transfer difference NMR (STD-NMR) to quantify protein-nucleic acids interactions, we demonstrate that isolated RRM3 binds to both C- and U-rich stretches with micromolar affinity. In combination with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by biotinylated RNA pull-down analysis. Our findings provide new insight into the role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant at the 5' TOPs (5' terminal oligopyrimidine tracts) of mRNAs whose translation is repressed under stress situations.

  11. Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.

    Science.gov (United States)

    Yamano, Takashi; Zetsche, Bernd; Ishitani, Ryuichiro; Zhang, Feng; Nishimasu, Hiroshi; Nureki, Osamu

    2017-08-17

    The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Recognition of strong earthquake-prone areas (M ≥ 6.0) within mountain belts of Central Europe

    International Nuclear Information System (INIS)

    Gorshkov, Alexander I.; Soloviev, Alexander A.; Panza, Giuliano F.; Aoudia, Abdelkrim

    2003-06-01

    Within mountain belts of Central Europe we identify seismogenic nodes, specific structures formed at the intersections of fault zones. The nodes have been delineated with the morphostructural zoning method. Some of the delineated nodes host the crustal M ≥ 6.0 earthquakes. To identify all nodes where earthquakes with M ≥ 6.0 may occur, we have employed the pattern-recognition algorithm CORA- 3. The recognized seismogenic nodes are characterized by the contrast in neotectonic movements and by an increased fragmentation of the crust at depth. The results obtained indicate a high seismic potential for the studied area and provide important information for seismic hazard assessment: a number of nodes where strong events have not occurred so far, have been recognized prone to large earthquakes. (author)

  13. Analysis of electric moments of RNA-binding proteins: implications for mechanism and prediction

    Directory of Open Access Journals (Sweden)

    Sarai Akinori

    2011-02-01

    Full Text Available Abstract Background Protein-RNA interactions play important role in many biological processes such as gene regulation, replication, protein synthesis and virus assembly. Although many structures of various types of protein-RNA complexes have been determined, the mechanism of protein-RNA recognition remains elusive. We have earlier shown that the simplest electrostatic properties viz. charge, dipole and quadrupole moments, calculated from backbone atomic coordinates of proteins are biased relative to other proteins, and these quantities can be used to identify DNA-binding proteins. Closely related, RNA-binding proteins are investigated in this study. In particular, discrimination between various types of RNA-binding proteins, evolutionary conservation of these bulk electrostatic features and effect of conformational changes by complex formation are investigated. Basic binding mechanism of a putative RNA-binding protein (HI1333 from Haemophilus influenza is suggested as a potential application of this study. Results We found that similar to DNA-binding proteins (DBPs, RNA-binding proteins (RBPs also show significantly higher values of electric moments. However, higher moments in RBPs are found to strongly depend on their functional class: proteins binding to ribosomal RNA (rRNA constitute the only class with all three of the properties (charge, dipole and quadrupole moments being higher than control proteins. Neural networks were trained using leave-one-out cross-validation to predict RBPs from control data as well as pair-wise classification capacity between proteins binding to various RNA types. RBPs and control proteins reached up to 78% accuracy measured by the area under the ROC curve. Proteins binding to rRNA are found to be best distinguished (AUC = 79%. Changes in dipole and quadrupole moments between unbound and bound structures were small and these properties are found to be robust under complex formation. Conclusions Bulk electric

  14. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop.

    Science.gov (United States)

    Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang

    2018-05-25

    Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biochemistry and Function of the RNA Exosomes

    DEFF Research Database (Denmark)

    Lubas, Michal Szymon; Chlebowski, Aleksander; Dziembowski, Andrzej

    2012-01-01

    Discovery of the evolutionary conserved RNA exosome was a milestone in RNA biology. First identified as an activity essential for the processing of ribosomal RNA, the exosome has since proved to be central for RNA processing and degradation in both the nucleus and the cytoplasm of eukaryotic cell...

  16. The role of upstream sequences in selecting the reading frame on tmRNA

    Directory of Open Access Journals (Sweden)

    Dewey Jonathan D

    2008-06-01

    Full Text Available Abstract Background tmRNA acts first as a tRNA and then as an mRNA to rescue stalled ribosomes in eubacteria. Two unanswered questions about tmRNA function remain: how does tmRNA, lacking an anticodon, bypass the decoding machinery and enter the ribosome? Secondly, how does the ribosome choose the proper codon to resume translation on tmRNA? According to the -1 triplet hypothesis, the answer to both questions lies in the unique properties of the three nucleotides upstream of the first tmRNA codon. These nucleotides assume an A-form conformation that mimics the codon-anticodon interaction, leading to recognition by the decoding center and choice of the reading frame. The -1 triplet hypothesis is important because it is the most credible model in which direct binding and recognition by the ribosome sets the reading frame on tmRNA. Results Conformational analysis predicts that 18 triplets cannot form the correct structure to function as the -1 triplet of tmRNA. We tested the tmRNA activity of all possible -1 triplet mutants using a genetic assay in Escherichia coli. While many mutants displayed reduced activity, our findings do not match the predictions of this model. Additional mutagenesis identified sequences further upstream that are required for tmRNA function. An immunoblot assay for translation of the tmRNA tag revealed that certain mutations in U85, A86, and the -1 triplet sequence result in improper selection of the first codon and translation in the wrong frame (-1 or +1 in vivo. Conclusion Our findings disprove the -1 triplet hypothesis. The -1 triplet is not required for accommodation of tmRNA into the ribosome, although it plays a minor role in frame selection. Our results strongly disfavor direct ribosomal recognition of the upstream sequence, instead supporting a model in which the binding of a separate ligand to A86 is primarily responsible for frame selection.

  17. Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase.

    Science.gov (United States)

    Kiss, A; Jurkovicova, D; Jezova, D; Krizanova, O

    2001-06-01

    To study functional interactions between angiotensin II AT1 receptors and nitric oxide (NO) activity in different brain areas in rats exposed to immobilization stress. Central inhibition of nitric oxide synthase (NOS) was provided by intracerebroventricular (i.c.v.) administration of (N-omega-nitro-L-arginine-methylester) L-NAME and analysis of AT1 receptor mRNA was performed using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) technique. The immobilization in prone position lasted 2 hrs and the rats were sacrificed 24 hr later. The hypothalamus, hippocampus, thalamus, and cortex were isolated from fresh brains. In the cortex, gene expression of AT1 receptors was unaffected either by L-NAME treatment, or by a single exposure to immobilization stress for 2 hours followed by 24 hours of rest. In the hippocampus, the repeated treatment with L-NAME increased mRNA levels of AT1 receptors approximately 9-times compared to those in the control (untreated) group. Immobilization also increased AT1 receptor mRNA levels in the hippocampus which was similar to that induced by the L-NAME. The increase of AT1 receptor mRNA levels in the hippocampus of immobilized rats was not further altered when the animals were pretreated with L-NAME. In control rats, exposure to immobilization resulted in a significant rise in mRNA levels coding for AT1 receptors in the hypothalamus, but not in the thalamus. L-NAME treatment showed a tendency of increase in AT1 receptor mRNA levels in the hypothalamus. Moreover, when animals treated with L-NAME were subjected to immobilization, a further increase in AT1 receptor mRNA levels was observed in the hypothalamus in comparison with corresponding controls. The present data indicate that a single immobilization stress results in increased gene expression of AT1 receptors in the hypothalamus and hippocampus. The rise in AT1 mRNA levels in the same brain structures after repeated treatment with L-NAME allow to suggest an

  18. Nucleolin Mediates MicroRNA-directed CSF-1 mRNA Deadenylation but Increases Translation of CSF-1 mRNA*

    Science.gov (United States)

    Woo, Ho-Hyung; Baker, Terri; Laszlo, Csaba; Chambers, Setsuko K.

    2013-01-01

    CSF-1 mRNA 3′UTR contains multiple unique motifs, including a common microRNA (miRNA) target in close proximity to a noncanonical G-quadruplex and AU-rich elements (AREs). Using a luciferase reporter system fused to CSF-1 mRNA 3′UTR, disruption of the miRNA target region, G-quadruplex, and AREs together dramatically increased reporter RNA levels, suggesting important roles for these cis-acting regulatory elements in the down-regulation of CSF-1 mRNA. We find that nucleolin, which binds both G-quadruplex and AREs, enhances deadenylation of CSF-1 mRNA, promoting CSF-1 mRNA decay, while having the capacity to increase translation of CSF-1 mRNA. Through interaction with the CSF-1 3′UTR miRNA common target, we find that miR-130a and miR-301a inhibit CSF-1 expression by enhancing mRNA decay. Silencing of nucleolin prevents the miRNA-directed mRNA decay, indicating a requirement for nucleolin in miRNA activity on CSF-1 mRNA. Downstream effects followed by miR-130a and miR-301a inhibition of directed cellular motility of ovarian cancer cells were found to be dependent on nucleolin. The paradoxical effects of nucleolin on miRNA-directed CSF-1 mRNA deadenylation and on translational activation were explored further. The nucleolin protein contains four acidic stretches, four RNA recognition motifs (RRMs), and nine RGG repeats. All three domains in nucleolin regulate CSF-1 mRNA and protein levels. RRMs increase CSF-1 mRNA, whereas the acidic and RGG domains decrease CSF-1 protein levels. This suggests that nucleolin has the capacity to differentially regulate both CSF-1 RNA and protein levels. Our finding that nucleolin interacts with Ago2 indirectly via RNA and with poly(A)-binding protein C (PABPC) directly suggests a nucleolin-Ago2-PABPC complex formation on mRNA. This complex is in keeping with our suggestion that nucleolin may work with PABPC as a double-edged sword on both mRNA deadenylation and translational activation. Our findings underscore the complexity of

  19. Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Kimberlin, Christopher R.; Bornholdt, Zachary A.; Li, Sheng; Woods, Jr., Virgil L.; MacRae, Ian J.; Saphire, Erica Ollmann (Scripps); (UCSD)

    2010-03-12

    Ebolavirus causes a severe hemorrhagic fever and is divided into five distinct species, of which Reston ebolavirus is uniquely nonpathogenic to humans. Disease caused by ebolavirus is marked by early immunosuppression of innate immune signaling events, involving silencing and sequestration of double-stranded RNA (dsRNA) by the viral protein VP35. Here we present unbound and dsRNA-bound crystal structures of the dsRNA-binding domain of Reston ebolavirus VP35. The structures show that VP35 forms an unusual, asymmetric dimer on dsRNA binding, with each of the monomers binding dsRNA in a different way: one binds the backbone whereas the other caps the terminus. Additional SAXS, DXMS, and dsRNA-binding experiments presented here support a model of cooperative dsRNA recognition in which binding of the first monomer assists binding of the next monomer of the oligomeric VP35 protein. This work illustrates how ebolavirus VP35 could mask key recognition sites of molecules such as RIG-I, MDA-5, and Dicer to silence viral dsRNA in infection.

  20. Reciprocal regulation of A-to-I RNA editing and the vertebrate nervous system

    Directory of Open Access Journals (Sweden)

    Andrew Charles Penn

    2013-04-01

    Full Text Available The fine control of molecules mediating communication in the nervous system is key to adjusting neuronal responsiveness during development and in maintaining the stability of established networks in the face of altered sensory input. To prevent culmination of pathological recurrent network excitation or debilitating periods of quiescence, adaptive alterations occur in the signalling molecules and ion channels that control membrane excitability and synaptic transmission. However, rather than encoding (and thus ‘hardwiring’ modified gene copies, the nervous systems of metazoa have opted for expanding on post-transcriptional pre-mRNA splicing by altering key encoded amino acids using a conserved mechanism of A-to-I RNA editing: the enzymatic deamination of adenosine resulting in a change in the nucleotide to inosine. Inosine exhibits similar base-pairing properties to guanosine with respect to tRNA codon recognition, replication by polymerases and RNA secondary structure forming capacity. In addition to recoding within the open reading frame, adenosine deamination also occurs with high frequency throughout the non-coding transcriptome, where it affects multiple aspects of RNA metabolism and gene expression. We will describe here the recoding function of key RNA editing targets in the mammalian central nervous system (CNS and their potential to be regulated. We will then discuss how interactions of A-to-I editing with gene expression and alternative splicing could play a wider role in regulating the neuronal transcriptome. Finally, we will highlight the increasing complexity of this multifaceted control hub by summarising new findings from high-throughput studies.

  1. Characterizing the transcriptome upon depletion of RNA processing factors

    DEFF Research Database (Denmark)

    Herudek, Jan

    , it is not clear how they target and discriminate their RNA substrates. Moreover, many novel RNA species are poorly characterized and their function is not understood. Over the last decade, protein function has been studied using RNA interference. However, this approach does not allow investigation of instant......The human genome is pervasively transcribed and produces an enormous amount of non-coding RNA (ncRNA). Compared to protein-coding transcripts, many classes of ncRNAs are very unstable and rapidly degraded by the RNA decay machinery. The RNA exosome complex is a main RNA ‘degrader’ in the human...... nucleus and is responsible for the proper processing and decay of a wide range of RNA molecules. Notably, the RNA exosome complex associates with a plethora of co-factors and activators that assist in the recognition of specific RNA substrates. Although many exosome partners have been characterized...

  2. Translational repression of the Drosophila nanos mRNA involves the RNA helicase Belle and RNA coating by Me31B and Trailer hitch.

    Science.gov (United States)

    Götze, Michael; Dufourt, Jérémy; Ihling, Christian; Rammelt, Christiane; Pierson, Stephanie; Sambrani, Nagraj; Temme, Claudia; Sinz, Andrea; Simonelig, Martine; Wahle, Elmar

    2017-10-01

    Translational repression of maternal mRNAs is an essential regulatory mechanism during early embryonic development. Repression of the Drosophila nanos mRNA, required for the formation of the anterior-posterior body axis, depends on the protein Smaug binding to two Smaug recognition elements (SREs) in the nanos 3' UTR. In a comprehensive mass spectrometric analysis of the SRE-dependent repressor complex, we identified Smaug, Cup, Me31B, Trailer hitch, eIF4E, and PABPC, in agreement with earlier data. As a novel component, the RNA-dependent ATPase Belle (DDX3) was found, and its involvement in deadenylation and repression of nanos was confirmed in vivo. Smaug, Cup, and Belle bound stoichiometrically to the SREs, independently of RNA length. Binding of Me31B and Tral was also SRE-dependent, but their amounts were proportional to the length of the RNA and equimolar to each other. We suggest that "coating" of the RNA by a Me31B•Tral complex may be at the core of repression. © 2017 Götze et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  3. A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.

    Science.gov (United States)

    Zaborowska, Justyna; Taylor, Alice; Roeder, Robert G; Murphy, Shona

    2012-01-01

    Initiation of transcription of most human genes transcribed by RNA polymerase II (RNAP II) requires the formation of a preinitiation complex comprising TFIIA, B, D, E, F, H and RNAP II. The general transcription factor TFIID is composed of the TATA-binding protein and up to 13 TBP-associated factors. During transcription of snRNA genes, RNAP II does not appear to make the transition to long-range productive elongation, as happens during transcription of protein-coding genes. In addition, recognition of the snRNA gene-type specific 3' box RNA processing element requires initiation from an snRNA gene promoter. These characteristics may, at least in part, be driven by factors recruited to the promoter. For example, differences in the complement of TAFs might result in differential recruitment of elongation and RNA processing factors. As precedent, it already has been shown that the promoters of some protein-coding genes do not recruit all the TAFs found in TFIID. Although TAF5 has been shown to be associated with RNAP II-transcribed snRNA genes, the full complement of TAFs associated with these genes has remained unclear. Here we show, using a ChIP and siRNA-mediated approach, that the TBP/TAF complex on snRNA genes differs from that found on protein-coding genes. Interestingly, the largest TAF, TAF1, and the core TAFs, TAF10 and TAF4, are not detected on snRNA genes. We propose that this snRNA gene-specific TAF subset plays a key role in gene type-specific control of expression.

  4. Recognition determinants for proteins and antibiotics within 23S rRNA

    DEFF Research Database (Denmark)

    Douthwaite, Stephen Roger; Voldborg, Bjørn Gunnar Rude; Hansen, Lykke Haastrup

    1995-01-01

    Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of molecu......Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination......-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations...

  5. A structural view of microRNA–target recognition

    KAUST Repository

    Leoni, Guido

    2016-01-30

    It is well established that the correct identification of the messenger RNA targeted by a given microRNA (miRNA) is a difficult problem, and that available methods all suffer from low specificity. We hypothesize that the correct identification of the pairing should take into account the effect of the Argonaute protein (AGO), an essential catalyst of the recognition process. Therefore, we developed a strategy named MiREN for building and scoring three-dimensional models of the ternary complex formed by AGO, a miRNA and 22 nt of a target mRNA that putatively interacts with it. We show here that MiREN can be used to assess the likelihood that an RNA molecule is the target of a given miRNA and that this approach is more accurate than other existing methods, usually based on sequence or sequence-related features. Our results also suggest that AGO plays a relevant role in the selection of the miRNA targets. Our method can represent an additional step for refining predictions made by faster but less accurate classical methods for the identification of miRNA targets.

  6. RNA Recognition and Stress Granule Formation by TIA Proteins

    Science.gov (United States)

    Waris, Saboora; Wilce, Matthew Charles James; Wilce, Jacqueline Anne

    2014-01-01

    Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress. PMID:25522169

  7. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Science.gov (United States)

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  8. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Directory of Open Access Journals (Sweden)

    Weitong Ren

    Full Text Available The HIV-1 nucleocapsid 7 (NCp7 plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3 recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  9. Methods and compositions for controlling gene expression by RNA processing

    Science.gov (United States)

    Doudna, Jennifer A.; Qi, Lei S.; Haurwitz, Rachel E.; Arkin, Adam P.

    2017-08-29

    The present disclosure provides nucleic acids encoding an RNA recognition sequence positioned proximal to an insertion site for the insertion of a sequence of interest; and host cells genetically modified with the nucleic acids. The present disclosure also provides methods of modifying the activity of a target RNA, and kits and compositions for carrying out the methods.

  10. Efficient computation of optimal oligo-RNA binding.

    Science.gov (United States)

    Hodas, Nathan O; Aalberts, Daniel P

    2004-01-01

    We present an algorithm that calculates the optimal binding conformation and free energy of two RNA molecules, one or both oligomeric. This algorithm has applications to modeling DNA microarrays, RNA splice-site recognitions and other antisense problems. Although other recent algorithms perform the same calculation in time proportional to the sum of the lengths cubed, O((N1 + N2)3), our oligomer binding algorithm, called bindigo, scales as the product of the sequence lengths, O(N1*N2). The algorithm performs well in practice with the aid of a heuristic for large asymmetric loops. To demonstrate its speed and utility, we use bindigo to investigate the binding proclivities of U1 snRNA to mRNA donor splice sites.

  11. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  12. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy.

    Science.gov (United States)

    Matkovich, Scot J; Dorn, Gerald W

    2015-01-01

    MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.

  13. Functional characterization of recombinant chloroplast signal recognition particle

    NARCIS (Netherlands)

    Groves, M R; Mant, A; Kuhn, A; Koch, J; Dübel, S; Robinson, C; Sinning, I

    2001-01-01

    The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified

  14. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  15. Structural Basis for dsRNA Recognition by NS1 Protein of Influenza A Virus

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, A.; Wong, S; Yuan, Y

    2009-01-01

    Influenza A viruses are important human pathogens causing periodic pandemic threats. Nonstructural protein 1 (NS1) protein of influenza A virus (NS1A) shields the virus against host defense. Here, we report the crystal structure of NS1A RNA-binding domain (RBD) bound to a double-stranded RNA (dsRNA) at 1.7A. NS1A RBD forms a homodimer to recognize the major groove of A-form dsRNA in a length-independent mode by its conserved concave surface formed by dimeric anti-parallel alpha-helices. dsRNA is anchored by a pair of invariable arginines (Arg38) from both monomers by extensive hydrogen bonds. In accordance with the structural observation, isothermal titration calorimetry assay shows that the unique Arg38-Arg38 pair and two Arg35-Arg46 pairs are crucial for dsRNA binding, and that Ser42 and Thr49 are also important for dsRNA binding. Agrobacterium co-infiltration assay further supports that the unique Arg38 pair plays important roles in dsRNA binding in vivo.

  16. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)-adenine derivatives.

    Science.gov (United States)

    Stojković, Marijana Radić; Skugor, Marko; Dudek, Lukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    An investigation of the interactions of two novel and several known DBTAA-adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA-propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure-activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA.

  17. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites.

    Directory of Open Access Journals (Sweden)

    Stefanie Grüttner

    Full Text Available As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.

  18. Endosomal recognition of Lactococcus lactis G121 and its RNA by dendritic cells is key to its allergy-protective effects.

    Science.gov (United States)

    Stein, Karina; Brand, Stephanie; Jenckel, André; Sigmund, Anna; Chen, Zhijian James; Kirschning, Carsten J; Kauth, Marion; Heine, Holger

    2017-02-01

    Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4 + T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. L lactis G121-treated murine BMDCs and human moDCs released T H 1-polarizing cytokines and induced T H 1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of T H 1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13 -/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The T H 1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8. Copyright © 2016 American Academy of Allergy, Asthma & Immunology

  19. The RDE-10/RDE-11 complex triggers RNAi-induced mRNA degradation by association with target mRNA in C. elegans.

    Science.gov (United States)

    Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi

    2012-04-15

    The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.

  20. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    OpenAIRE

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand; Kumar, Aseem

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-strande...

  1. A Two-Piece Derivative of a Group I Intron RNA as a Platform for Designing Self-Assembling RNA Templates to Promote Peptide Ligation

    Directory of Open Access Journals (Sweden)

    Takahiro Tanaka

    2012-01-01

    Full Text Available Multicomponent RNA-peptide complexes are attractive from the viewpoint of artificial design of functional biomacromolecular systems. We have developed self-folding and self-assembling RNAs that serve as templates to assist chemical ligation between two reactive peptides with RNA-binding capabilities. The design principle of previous templates, however, can be applied only to limited classes of RNA-binding peptides. In this study, we employed a two-piece derivative of a group I intron RNA from the Tetrahymena large subunit ribosomal RNA (LSU rRNA as a platform for new template RNAs. In this group I intron-based self-assembling platform, modules for the recognition of substrate peptides can be installed independently from modules holding the platform structure. The new self-assembling platform allows us to expand the repertoire of substrate peptides in template RNA design.

  2. Pattern-Recognition Receptor Signaling Regulator mRNA Expression in Humans and Mice, and in Transient Inflammation or Progressive Fibrosis

    Science.gov (United States)

    Günthner, Roman; Kumar, Vankayala Ramaiah Santhosh; Lorenz, Georg; Anders, Hans-Joachim; Lech, Maciej

    2013-01-01

    The cell type-, organ-, and species-specific expression of the pattern-recognition receptors (PRRs) are well described but little is known about the respective expression profiles of their negative regulators. We therefore determined the mRNA expression levels of A20, CYLD, DUBA, ST2, CD180, SIGIRR, TANK, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, SHP1, SHP2, TOLLIP, IRF4, SIKE, NLRX1, ERBIN, CENTB1, and Clec4a2 in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. Additionally, we characterized their expression profiles in mononuclear blood cells upon bacterial endotoxin, which showed a consistent induction of A20, SOCS3, IRAK-M, and Clec4a2 in human and murine cells. Furthermore, we studied the expression pattern in transient kidney ischemia-reperfusion injury versus post-ischemic atrophy and fibrosis in mice. A20, CD180, ST2, SOCS1, SOCS3, SHIP, IRAK-M, DOK1, DOK2, IRF4, CENTB1, and Clec4a2 were all induced, albeit at different times of injury and repair. Progressive fibrosis was associated with a persistent induction of these factors. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to PRR-mediated innate immunity, which seems to be involved in tissue injury, tissue regeneration and in progressive tissue scarring. PMID:24009023

  3. Genetic mapping uncovers cis-regulatory landscape of RNA editing.

    Science.gov (United States)

    Ramaswami, Gokul; Deng, Patricia; Zhang, Rui; Anna Carbone, Mary; Mackay, Trudy F C; Li, Jin Billy

    2015-09-16

    Adenosine-to-inosine (A-to-I) RNA editing, catalysed by ADAR enzymes conserved in metazoans, plays an important role in neurological functions. Although the fine-tuning mechanism provided by A-to-I RNA editing is important, the underlying rules governing ADAR substrate recognition are not well understood. We apply a quantitative trait loci (QTL) mapping approach to identify genetic variants associated with variability in RNA editing. With very accurate measurement of RNA editing levels at 789 sites in 131 Drosophila melanogaster strains, here we identify 545 editing QTLs (edQTLs) associated with differences in RNA editing. We demonstrate that many edQTLs can act through changes in the local secondary structure for edited dsRNAs. Furthermore, we find that edQTLs located outside of the edited dsRNA duplex are enriched in secondary structure, suggesting that distal dsRNA structure beyond the editing site duplex affects RNA editing efficiency. Our work will facilitate the understanding of the cis-regulatory code of RNA editing.

  4. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.

    Science.gov (United States)

    Nishimasu, Hiroshi; Yamano, Takashi; Gao, Linyi; Zhang, Feng; Ishitani, Ryuichiro; Nureki, Osamu

    2017-07-06

    The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    Science.gov (United States)

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity relation for the studied series of compounds showed that the essential structural features for the ICD recognition are a) the presence of DNA-binding appendages (adenine side chain and positively charged side chain) on both DBTAA side chains, and b) the presence of a short propyl linker, which does not support intramolecular aromatic stacking between DBTAA and adenine. The observed AT-DNA-ICD pattern differs from previously reported ss-DNA (poly dT) ICD recognition by a strong negative ICD band at 350 nm, which allows for the dynamic differentiation between ss-DNA (poly dT) and coupled ds-AT-DNA. PMID:25246976

  6. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9).

    Science.gov (United States)

    Fu, Qinqin; Yuan, Y Adam

    2013-03-01

    Intensive research interest has focused on small RNA-processing machinery and the RNA-induced silencing complex (RISC), key cellular machines in RNAi pathways. However, the structural mechanism regarding RISC assembly, the primary step linking small RNA processing and RNA-mediated gene silencing, is largely unknown. Human RNA helicase A (DHX9) was reported to function as an RISC-loading factor, and such function is mediated mainly by its dsRNA-binding domains (dsRBDs). Here, we report the crystal structures of human RNA helicase A (RHA) dsRBD1 and dsRBD2 domains in complex with dsRNAs, respectively. Structural analysis not only reveals higher siRNA duplex-binding affinity displayed by dsRBD1, but also identifies a crystallographic dsRBD1 pair of physiological significance in cooperatively recognizing dsRNAs. Structural observations are further validated by isothermal titration calorimetric (ITC) assay. Moreover, co-immunoprecipitation (co-IP) assay coupled with mutagenesis demonstrated that both dsRBDs are required for RISC association, and such association is mediated by dsRNA. Hence, our structural and functional efforts have revealed a potential working model for siRNA recognition by RHA tandem dsRBDs, and together they provide direct structural insights into RISC assembly facilitated by RHA.

  7. Mechanisms of innate immune evasion in re-emerging RNA viruses.

    Science.gov (United States)

    Ma, Daphne Y; Suthar, Mehul S

    2015-06-01

    Recent outbreaks of Ebola, West Nile, Chikungunya, Middle Eastern Respiratory and other emerging/re-emerging RNA viruses continue to highlight the need to further understand the virus-host interactions that govern disease severity and infection outcome. As part of the early host antiviral defense, the innate immune system mediates pathogen recognition and initiation of potent antiviral programs that serve to limit virus replication, limit virus spread and activate adaptive immune responses. Concordantly, viral pathogens have evolved several strategies to counteract pathogen recognition and cell-intrinsic antiviral responses. In this review, we highlight the major mechanisms of innate immune evasion by emerging and re-emerging RNA viruses, focusing on pathogens that pose significant risk to public health. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR

    Science.gov (United States)

    Bonner, Eric R.; D’Elia, John N.; Billips, Benjamin K.; Switzer, Robert L.

    2001-01-01

    The pyrimidine nucleotide biosynthesis (pyr) operon in Bacillus subtilis is regulated by transcriptional attenuation. The PyrR protein binds in a uridine nucleotide-dependent manner to three attenuation sites at the 5′-end of pyr mRNA. PyrR binds an RNA-binding loop, allowing a terminator hairpin to form and repressing the downstream genes. The binding of PyrR to defined RNA molecules was characterized by a gel mobility shift assay. Titration indicated that PyrR binds RNA in an equimolar ratio. PyrR bound more tightly to the binding loops from the second (BL2 RNA) and third (BL3 RNA) attenuation sites than to the binding loop from the first (BL1 RNA) attenuation site. PyrR bound BL2 RNA 4–5-fold tighter in the presence of saturating UMP or UDP and 150- fold tighter with saturating UTP, suggesting that UTP is the more important co-regulator. The minimal RNA that bound tightly to PyrR was 28 nt long. Thirty-one structural variants of BL2 RNA were tested for PyrR binding affinity. Two highly conserved regions of the RNA, the terminal loop and top of the upper stem and a purine-rich internal bulge and the base pairs below it, were crucial for tight binding. Conserved elements of RNA secondary structure were also required for tight binding. PyrR protected conserved areas of the binding loop in hydroxyl radical footprinting experiments. PyrR likely recognizes conserved RNA sequences, but only if they are properly positioned in the correct secondary structure. PMID:11726695

  9. Investigation of the Relationship between Entrepreneurial Opportunity Recognition and Entrepreneurial Capitals

    OpenAIRE

    Susan Ramezanpour; Seyran Amiriyan; Ali Naghi Mosleh Shirazy

    2014-01-01

    The heart of entrepreneurship is the creation and/or recognition of opportunities. Although there is no universal definition of entrepreneurship, opportunity recognition has been viewed as the central definition of this phenomenon. Without an opportunity there is no entrepreneurship. Therefore opportunity recognition is widely seen as a key step of the entrepreneurial processes. The identification of opportunities has been recognized as one of the most important abilities of successful entrep...

  10. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    Science.gov (United States)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  11. Matrin 3 binds and stabilizes mRNA.

    Directory of Open Access Journals (Sweden)

    Maayan Salton

    Full Text Available Matrin 3 (MATR3 is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM, whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  12. Atomistic details of the molecular recognition of DNA-RNA hybrid ...

    Indian Academy of Sciences (India)

    conformations corresponding to typical A- and B-type nucleic acids and the .... protein chains and five base pairs in DNA-RNA hybrid ... employed to treat the long range electrostatic interac- .... The solvent accessible surface areas (SASA) of.

  13. Separating the FN400 and N400 potentials across recognition memory experiments

    Science.gov (United States)

    Stróżak, Paweł; Abedzadeh, Delora; Curran, Tim

    2016-01-01

    There is a growing debate as to whether frontally distributed FN400 potentials reflect familiarity-based recognition or are functionally identical to centro-parietal N400 reflecting semantic processing. We conducted two experiments in which event-related potentials (ERPs) associated with semantic priming and recognition were recorded, either when priming was embedded within a recognition test (Experiment 1), or when these two phases were separated (Experiment 2). In Experiment 1, we observed 300–500 ms differences between primed and unprimed old words as well as differences between old and new primed words, but these two effects did not differ topographically and both showed midline central maxima. In Experiment 2, the N400 for priming was recorded exclusively during encoding and again showed a midline central distribution. The ERP component of recognition was only found for unrelated words (not primed previously during encoding), and also showed a midline central maximum, but, in addition, was present in the left frontal area of the scalp. Conversely, the priming effect was absent in the left frontal cluster. This pattern of results indicate that FN400 and N400 potentials share similar neural generators; but when priming and recognition are not confounded, these potentials do not entirely overlap in terms of topographical distribution and presumably reflect functionally distinct processes. PMID:26776478

  14. Are Amyloid Fibrils RNA-Traps? A Molecular Dynamics Perspective

    Directory of Open Access Journals (Sweden)

    Massimiliano Meli

    2018-06-01

    Full Text Available The self-assembly of proteins and peptides into amyloids is a key feature of an increasing number of diseases. Amyloid fibrils display a unique surface reactivity endowing the sequestration of molecules such as MicroRNAs, which can be the active moiety of the toxic action. To test this hypothesis we studied the recognition between a model RNA and two different steric zipper spines using molecular dynamics simulations. We found that the interaction occurs and displays peptide-sequence dependence. Interestingly, interactions with polar zipper surfaces such as the formed by SNQNNF are more stable and favor the formation of β-barrel like complexes resembling the structures of toxic oligomers. These sequence-structure-recognition relationships of the two different assemblies may be exploited for the design of compounds targeting the fibers or competing with RNA-amyloid attachment

  15. Matrix proteins as centralized organizers of negative-sense RNA virions.

    Science.gov (United States)

    Liljeroos, Lassi; Butcher, Sarah J

    2013-01-01

    Matrix proteins are essential components of most negative-sense RNA, enveloped viruses. They serve a wide range of duties ranging from self-driven membrane budding and coordination of other viral components to modulation of viral transcription. The functional similarity between these proteins is striking, despite major differences in their structures. Whereas biochemical and structural studies have partly been hindered by the inherent aggregation properties of these proteins, their cellular functions are beginning to be understood. In this review we summarize the current knowledge on negative-sense RNA virus matrix proteins and their interactions with other viral and cellular proteins. We also discuss the similarities and differences in matrix protein functions between the different families within the negative-sense RNA viruses.

  16. Structural and functional basis for RNA cleavage by Ire1

    Directory of Open Access Journals (Sweden)

    Stroud Robert M

    2011-07-01

    Full Text Available Abstract Background The unfolded protein response (UPR controls the protein folding capacity of the endoplasmic reticulum (ER. Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes. The mRNA splicing reaction is an obligatory step of Ire1 signaling, yet its mechanism has remained poorly understood due to the absence of substrate-bound crystal structures of Ire1, the lack of structural similarity between Ire1 and other RNases, and a scarcity of quantitative enzymological data. Here, we experimentally define the active site of Ire1 RNase and quantitatively evaluate the contribution of the key active site residues to catalysis. Results This analysis and two new crystal structures suggest that Ire1 RNase uses histidine H1061 and tyrosine Y1043 as the general acid-general base pair contributing ≥ 7.6 kcal/mol and 1.4 kcal/mol to transition state stabilization, respectively, and asparagine N1057 and arginine R1056 for coordination of the scissile phosphate. Investigation of the stem-loop recognition revealed that additionally to the stem-loops derived from the classic Ire1 substrates HAC1 and Xbp1 mRNA, Ire1 can site-specifically and rapidly cleave anticodon stem-loop (ASL of unmodified tRNAPhe, extending known substrate specificity of Ire1 RNase. Conclusions Our data define the catalytic center of Ire1 RNase and suggest a mechanism of RNA cleavage: each RNase monomer apparently contains a separate catalytic apparatus for RNA cleavage, whereas two RNase subunits contribute to RNA stem-loop docking. Conservation of the key residues among Ire1 homologues suggests that the mechanism elucidated here for yeast Ire1 applies to Ire1 in metazoan cells, and to the only known Ire1 homologue RNase L.

  17. Cellular La protein shields nonsegmented negative-strand RNA viral leader RNA from RIG-I and enhances virus growth by diverse mechanisms.

    Science.gov (United States)

    Bitko, Vira; Musiyenko, Alla; Bayfield, Mark A; Maraia, Richard J; Barik, Sailen

    2008-08-01

    The La antigen (SS-B) associates with a wide variety of cellular and viral RNAs to affect gene expression in multiple systems. We show that La is the major cellular protein found to be associated with the abundant 44-nucleotide viral leader RNA (leRNA) early after infection with respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus. Consistent with this, La redistributes from the nucleus to the cytoplasm in RSV-infected cells. Upon RNA interference knockdown of La, leRNA is redirected to associate with the RNA-binding protein RIG-I, a known activator of interferon (IFN) gene expression, and this is accompanied by the early induction of IFN mRNA. These results suggest that La shields leRNA from RIG-I, abrogating the early viral activation of type I IFN. We mapped the leRNA binding function to RNA recognition motif 1 of La and showed that while wild-type La greatly enhanced RSV growth, a La mutant defective in RSV leRNA binding also did not support RSV growth. Comparative studies of RSV and Sendai virus and the use of IFN-negative Vero cells indicated that La supports the growth of nonsegmented negative-strand RNA viruses by both IFN suppression and a potentially novel IFN-independent mechanism.

  18. Inductive class representation and its central role in pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, L. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada)

    1996-12-31

    The definition of inductive learning (IL) based on the new concept of inductive class representation (ICR) is given. The ICR, in addition to the ability to recognize a noise-corrupted object from the class, must also provide the means to generate every element in the resulting approximation of the class, i.e., the emphasis is on the generative capability of the ICR. Thus, the IL problem absorbs the main difficulties associated with a satisfactory formulation of the pattern recognition problem. This formulation of the IL problem appeared gradually as a result of the development of a fundamentally new formal model of IL--evolving transformation system (ETS) model. The model with striking clarity suggests that IL is the basic process which produces all the necessary {open_quotes}structures{close_quotes} for the recognition process, which is built directly on top of it. Based on the training set, the IL process, constructs optimal discriminatory (symbolic) weighted {open_quotes}features{close_quotes} which induce the corresponding optimal (symbolic) distance measure. The distance measure is a generalization of the weighted Levenshtein, or edit, distance defined on strings over a finite alphabet. The ETS model has emerged as a result of an attempt to unify two basic, but inadequate, approaches to pattern recognition: the classical vector space based and the syntactic approaches. ETS also elucidates with remarkable clarity the nature of the interrelationships between the corresponding symbolic and numeric mechanisms, in which the symbolic mechanisms play a more fundamental part. The model, in fact, suggests the first formal definition of the symbolic mathematical structure and also suggests a fundamentally different, more satisfactory, way of introducing the concept of fuzziness. The importance of the ICR concept to semiotics and semantics should become apparent as soon as one fully realizes that it represents the class and specifies the semantics of the class.

  19. Bacterial RNA induces myocyte cellular dysfunction through the activation of PKR

    Science.gov (United States)

    Bleiblo, Farag; Michael, Paul; Brabant, Danielle; Ramana, Chilakamarti V.; Tai, TC; Saleh, Mazen; Parrillo, Joseph E.; Kumar, Anand

    2012-01-01

    Severe sepsis and the ensuing septic shock are serious life threatening conditions. These diseases are triggered by the host's over exuberant systemic response to the infecting pathogen. Several surveillance mechanisms have evolved to discriminate self from foreign RNA and accordingly trigger effective cellular responses to target the pathogenic threats. The RNA-dependent protein kinase (PKR) is a key component of the cytoplasmic RNA sensors involved in the recognition of viral double-stranded RNA (dsRNA). Here, we identify bacterial RNA as a distinct pathogenic pattern recognized by PKR. Our results indicate that natural RNA derived from bacteria directly binds to and activates PKR. We further show that bacterial RNA induces human cardiac myocyte apoptosis and identify the requirement for PKR in mediating this response. In addition to bacterial immunity, the results presented here may also have implications in cardiac pathophysiology. PMID:22833816

  20. Chaperoning 5S RNA assembly.

    Science.gov (United States)

    Madru, Clément; Lebaron, Simon; Blaud, Magali; Delbos, Lila; Pipoli, Juliana; Pasmant, Eric; Réty, Stéphane; Leulliot, Nicolas

    2015-07-01

    In eukaryotes, three of the four ribosomal RNAs (rRNAs)—the 5.8S, 18S, and 25S/28S rRNAs—are processed from a single pre-rRNA transcript and assembled into ribosomes. The fourth rRNA, the 5S rRNA, is transcribed by RNA polymerase III and is assembled into the 5S ribonucleoprotein particle (RNP), containing ribosomal proteins Rpl5/uL18 and Rpl11/uL5, prior to its incorporation into preribosomes. In mammals, the 5S RNP is also a central regulator of the homeostasis of the tumor suppressor p53. The nucleolar localization of the 5S RNP and its assembly into preribosomes are performed by a specialized complex composed of Rpf2 and Rrs1 in yeast or Bxdc1 and hRrs1 in humans. Here we report the structural and functional characterization of the Rpf2-Rrs1 complex alone, in complex with the 5S RNA, and within pre-60S ribosomes. We show that the Rpf2-Rrs1 complex contains a specialized 5S RNA E-loop-binding module, contacts the Rpl5 protein, and also contacts the ribosome assembly factor Rsa4 and the 25S RNA. We propose that the Rpf2-Rrs1 complex establishes a network of interactions that guide the incorporation of the 5S RNP in preribosomes in the initial conformation prior to its rotation to form the central protuberance found in the mature large ribosomal subunit. © 2015 Madru et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Different modes of interaction by TIAR and HuR with target RNA and DNA

    OpenAIRE

    Kim, Henry S.; Wilce, Matthew C. J.; Yoga, Yano M. K.; Pendini, Nicole R.; Gunzburg, Menachem J.; Cowieson, Nathan P.; Wilson, Gerald M.; Williams, Bryan R. G.; Gorospe, Myriam; Wilce, Jacqueline A.

    2011-01-01

    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U–rich sequences is mainly due to faster association with U-rich RNA, which we propose i...

  2. Effect of intramolecular photochemical cross-linking and of alkylation of 4-thiouridine in E. coli tRNAsub(l)sup(Val). On the heterologous misccharging by yeast phenylalanyl-tRNA synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S A; Krauskopf, M; Ofengand, J [Roche Inst. of Molecular Biology, Nutley, N.J. (USA)

    1973-08-01

    The ability of yeast phenylalanyl-tRNA synthetase to carry out the heterologous mischarging of nine E. coli tRNAs with phenylalanine, and the presence of a common sequence in these tRNAs in the double stranded region adjacent to the dihydrouridine loop, have led to the proposal (by Dudock) that this region of the tRNA is involved in recognition by the yeast enzyme. The validity of this hypothesis has now been examined by chemical modification of the region in question using as a test tRNA, E. coli tRNA/sub 1/sup( val). Photochemical cross-linking of /sup 4/S(8) and C(13) by irradiation at 335 nm led to a complete loss of the ability of yeast phenylalanyl-tRNA synthetase to functionally recognize tRNA/sub 1/sup( val) and the rate of cross-linking was correlated with the rate of loss of activity when appropriate assay conditions were used. Cross-linking had no effect on the recognition by the homologous E. coli valyl-tRNA synthetase (EC 6.1.1.9). Similarly, S-alkylation of the /sup 4/S(8) residue with iodoacetamide at pH 9 yielded the uridine-4-thio(2-acetamide) derivative of tRNA with no loss of homologous recognition but with complete loss of heterologous charging activity. These results provide evidence that at least part of the yeast phenylalanyl-tRNA synthetase recognition site is located in the region of the tRNA proposed by Dudock, and, as a corollary, show that the E. coli valyl-tRNA synthetase recognition site(s) must be elsewhere in the molecule.

  3. Recognition of DNA/RNA bulges by antimicrobial and antitumor metallohelices

    Czech Academy of Sciences Publication Activity Database

    Malina, Jaroslav; Scott, P.; Brabec, Viktor

    2015-01-01

    Roč. 44, č. 33 (2015), s. 14656-14665 ISSN 1477-9226 R&D Projects: GA ČR(CZ) GAP205/11/0856 Institutional support: RVO:68081707 Keywords : CONTAINING DEOXYTRIDECANUCLEOTIDE DUPLEXES * HIV -1 TAR RNA * METALLOSUPRAMOLECULAR CYLINDERS Subject RIV: BO - Biophysics Impact factor: 4.177, year: 2015

  4. Nonviral pulmonary delivery of siRNA.

    Science.gov (United States)

    Merkel, Olivia M; Kissel, Thomas

    2012-07-17

    RNA interference (RNAi) is an important part of the cell's defenses against viruses and other foreign genes. Moreover, the biotechnological exploitation of RNAi offers therapeutic potential for a range of diseases for which drugs are currently unavailable. Unfortunately, the small interfering RNAs (siRNAs) that are central to RNAi in the cytoplasm are readily degradable by ubiquitous nucleases, are inefficiently targeted to desired organs and cell types, and are excreted quickly upon systemic injection. As a result, local administration techniques have been favored over the past few years, resulting in great success in the treatment of viral infections and other respiratory disorders. Because there are several advantages of pulmonary delivery over systemic administration, two of the four siRNA drugs currently in phase II clinical trials are delivered intranasally or by inhalation. The air-blood barrier, however, has only limited permeability toward large, hydrophilic biopharmaceuticals such as nucleic acids; in addition, the lung imposes intrinsic hurdles to efficient siRNA delivery. Thus, appropriate formulations and delivery devices are very much needed. Although many different formulations have been optimized for in vitro siRNA delivery to lung cells, only a few have been reported successful in vivo. In this Account, we discuss both obstacles to pulmonary siRNA delivery and the success stories that have been achieved thus far. The optimal pulmonary delivery vehicle should be neither cytotoxic nor immunogenic, should protect the payload from degradation by nucleases during the delivery process, and should mediate the intracellular uptake of siRNA. Further requirements include the improvement of the pharmacokinetics and lung distribution profiles of siRNA, the extension of lung retention times (through reduced recognition by macrophages), and the incorporation of reversible or stimuli-responsive binding of siRNA to allow for efficient release of the siRNAs at the

  5. DNA → RNA: What Do Students Think the Arrow Means?

    Science.gov (United States)

    Fisk, J. Nick; Newman, Dina L.

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein products. We investigated understanding of central dogma concepts and found that students are not primed to think about information when presented with the canonical figure of the central dogma. We also uncovered conceptual errors in student interpretation of the meaning of the transcription arrow in the central dogma representation; 36% of students (n = 128; all undergraduate levels) described transcription as a chemical conversion of DNA into RNA or suggested that RNA existed before the process of transcription began. Interviews confirm that students with weak conceptual understanding of information flow find inappropriate meaning in the canonical representation of central dogma. Therefore, we suggest that use of this representation during instruction can be counterproductive unless educators are explicit about the underlying meaning. PMID:26086664

  6. The central noradrenergic system

    African Journals Online (AJOL)

    2006-07-27

    Jul 27, 2006 ... recognition of a direct influence of the central noradrenergic system on peripheral ... influences on cerebral function and behavior it is impossible to imagine ... stimuli and to speed-up information processing.4. The influence of ...

  7. Covalent Chemical 5'-Functionalization of RNA with Diazo Reagents.

    Science.gov (United States)

    Gampe, Christian M; Hollis-Symynkywicz, Micah; Zécri, Frédéric

    2016-08-22

    Functionalization of RNA at the 5'-terminus is important for analytical and therapeutic purposes. Currently, these RNAs are synthesized de novo starting with a chemically functionalized 5'-nucleotide, which is incorporated into RNA using chemical synthesis or biochemical techniques. Methods for direct chemical modification of native RNA would provide an attractive alternative but are currently underexplored. Herein, we report that diazo compounds can be used to selectively alkylate the 5'-phosphate of ribo(oligo)nucleotides to give RNA labelled through a native phosphate ester bond. We applied this method to functionalize oligonucleotides with biotin and an orthosteric inhibitor of the eukaryotic initiation factor 4E (eIF4E), an enzyme involved in mRNA recognition. The modified RNA binds to eIF4E, demonstrating the utility of this labelling technique to modulate biological activity of RNA. This method complements existing techniques and may be used to chemically introduce a broad range of functional handles at the 5'-end of RNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio.

    Science.gov (United States)

    Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  9. Myosin Va associates with mRNA in ribonucleoprotein particles present in myelinated peripheral axons and in the central nervous system.

    Science.gov (United States)

    Calliari, Aldo; Farías, Joaquina; Puppo, Agostina; Canclini, Lucía; Mercer, John A; Munroe, David; Sotelo, José R; Sotelo-Silveira, José R

    2014-03-01

    Sorting of specific mRNAs to particular cellular locations and regulation of their translation is an essential mechanism underlying cell polarization. The transport of RNAs by kinesins and dyneins has been clearly established in several cell models, including neurons in culture. A similar role appears to exist in higher eukaryotes for the myosins. Myosin Va (Myo5a) has been described as a component of ribonucleoprotein particles (RNPs) in the adult rat nervous system and associated to ZBP1 and ribosomes in ribosomal periaxoplasmic plaques (PARPs), making it a likely candidate for mediating some aspects of RNA transport in neurons. To test this hypothesis, we have characterized RNPs containing Myo5a in adult brains of rats and mice. Microarray analysis of RNAs co-immunoprecipitated with Myo5a indicates that this motor may associate with a specific subpopulation of neuronal mRNAs. We found mRNAs encoding α-synuclein and several proteins with functions in translation in these RNPs. Immunofluorescence analyses of RNPs showed apparent co-localization of Myo5a with ribosomes, mRNA and RNA-binding proteins in discrete structures present both in axons of neurons in culture and in myelinated fibers of medullary roots. Our data suggest that PARPs include RNPs bearing the mRNA coding for Myo5a and are equipped with kinesin and Myo5a molecular motors. In conclusion, we suggest that Myo5a is involved in mRNA trafficking both in the central and peripheral nervous systems. Copyright © 2013 Wiley Periodicals, Inc.

  10. Identification of Biomolecular Building Blocks by Recognition Tunneling: Stride towards Nanopore Sequencing of Biomolecules

    Science.gov (United States)

    Sen, Suman

    DNA, RNA and Protein are three pivotal biomolecules in human and other organisms, playing decisive roles in functionality, appearance, diseases development and other physiological phenomena. Hence, sequencing of these biomolecules acquires the prime interest in the scientific community. Single molecular identification of their building blocks can be done by a technique called Recognition Tunneling (RT) based on Scanning Tunneling Microscope (STM). A single layer of specially designed recognition molecule is attached to the STM electrodes, which trap the targeted molecules (DNA nucleoside monophosphates, RNA nucleoside monophosphates or amino acids) inside the STM nanogap. Depending on their different binding interactions with the recognition molecules, the analyte molecules generate stochastic signal trains accommodating their "electronic fingerprints". Signal features are used to detect the molecules using a machine learning algorithm and different molecules can be identified with significantly high accuracy. This, in turn, paves the way for rapid, economical nanopore sequencing platform, overcoming the drawbacks of Next Generation Sequencing (NGS) techniques. To read DNA nucleotides with high accuracy in an STM tunnel junction a series of nitrogen-based heterocycles were designed and examined to check their capabilities to interact with naturally occurring DNA nucleotides by hydrogen bonding in the tunnel junction. These recognition molecules are Benzimidazole, Imidazole, Triazole and Pyrrole. Benzimidazole proved to be best among them showing DNA nucleotide classification accuracy close to 99%. Also, Imidazole reader can read an abasic monophosphate (AP), a product from depurination or depyrimidination that occurs 10,000 times per human cell per day. In another study, I have investigated a new universal reader, 1-(2-mercaptoethyl)pyrene (Pyrene reader) based on stacking interactions, which should be more specific to the canonical DNA nucleosides. In addition

  11. Exportin-5 mediates nuclear export of SRP RNA in vertebrates.

    Science.gov (United States)

    Takeiwa, Toshihiko; Taniguchi, Ichiro; Ohno, Mutsuhito

    2015-04-01

    The signal recognition particle is a ribonucleoprotein complex that is essential for the translocation of nascent proteins into the endoplasmic reticulum. It has been shown that the RNA component (SRP RNA) is exported from the nucleus by CRM1 in the budding yeast. However, how SRP RNA is exported in higher species has been elusive. Here, we show that SRP RNA does not use the CRM1 pathway in Xenopus oocytes. Instead, SRP RNA uses the same export pathway as pre-miRNA and tRNA as showed by cross-competition experiments. Consistently, the recombinant Exportin-5 protein specifically stimulated export of SRP RNA as well as of pre-miRNA and tRNA, whereas an antibody raised against Exportin-5 specifically inhibited export of the same RNA species. Moreover, biotinylated SRP RNA can pull down Exportin-5 but not CRM1 from HeLa cell nuclear extracts in a RanGTP-dependent manner. These results, taken together, strongly suggest that the principal export receptor for SRP RNA in vertebrates is Exportin-5 unlike in the budding yeast. © 2015 The Authors. Genes to Cells published by Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  12. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration.

    Science.gov (United States)

    Ghibaudi, M; Boido, M; Vercelli, A

    2017-11-01

    New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Yeast eIF4B binds to the head of the 40S ribosomal subunit and promotes mRNA recruitment through its N-terminal and internal repeat domains.

    Science.gov (United States)

    Walker, Sarah E; Zhou, Fujun; Mitchell, Sarah F; Larson, Victoria S; Valasek, Leos; Hinnebusch, Alan G; Lorsch, Jon R

    2013-02-01

    Eukaryotic translation initiation factor (eIF)4B stimulates recruitment of mRNA to the 43S ribosomal pre-initiation complex (PIC). Yeast eIF4B (yeIF4B), shown previously to bind single-stranded (ss) RNA, consists of an N-terminal domain (NTD), predicted to be unstructured in solution; an RNA-recognition motif (RRM); an unusual domain comprised of seven imperfect repeats of 26 amino acids; and a C-terminal domain. Although the mechanism of yeIF4B action has remained obscure, most models have suggested central roles for its RRM and ssRNA-binding activity. We have dissected the functions of yeIF4B's domains and show that the RRM and its ssRNA-binding activity are dispensable in vitro and in vivo. Instead, our data indicate that the 7-repeats and NTD are the most critical domains, which mediate binding of yeIF4B to the head of the 40S ribosomal subunit via interaction with Rps20. This interaction induces structural changes in the ribosome's mRNA entry channel that could facilitate mRNA loading. We also show that yeIF4B strongly promotes productive interaction of eIF4A with the 43S•mRNA PIC in a manner required for efficient mRNA recruitment.

  14. Accessing Specific Peptide Recognition by Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Li, Ming

    Molecular recognition is at the basis of all processes for life, and plays a central role in many biological processes, such as protein folding, the structural organization of cells and organelles, signal transduction, and the immune response. Hence, my PhD project is entitled “Accessing Specific...... Peptide Recognition by Combinatorial Chemistry”. Molecular recognition is a specific interaction between two or more molecules through noncovalent bonding, such as hydrogen bonding, metal coordination, van der Waals forces, π−π, hydrophobic, or electrostatic interactions. The association involves kinetic....... Combinatorial chemistry was invented in 1980s based on observation of functional aspects of the adaptive immune system. It was employed for drug development and optimization in conjunction with high-throughput synthesis and screening. (chapter 2) Combinatorial chemistry is able to rapidly produce many thousands...

  15. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions

    Science.gov (United States)

    Shukla, Girish C.; Singh, Jagjit; Barik, Sailen

    2012-01-01

    The remarkable discovery of small noncoding microRNAs (miRNAs) and their role in posttranscriptional gene regulation have revealed another fine-tuning step in the expression of genetic information. A large number of cellular pathways, which act in organismal development and are important in health and disease, appear to be modulated by miRNAs. At the molecular level, miRNAs restrain the production of proteins by affecting the stability of their target mRNA and/or by down-regulating their translation. This review attempts to offer a snapshot of aspects of miRNA coding, processing, target recognition and function in animals. Our goal here is to provide the readers with a thought-provoking and mechanistic introduction to the miRNA world rather than with a detailed encyclopedia. PMID:22468167

  16. The Central Role of Recognition in Auditory Perception: A Neurobiological Model

    Science.gov (United States)

    McLachlan, Neil; Wilson, Sarah

    2010-01-01

    The model presents neurobiologically plausible accounts of sound recognition (including absolute pitch), neural plasticity involved in pitch, loudness and location information integration, and streaming and auditory recall. It is proposed that a cortical mechanism for sound identification modulates the spectrotemporal response fields of inferior…

  17. The role of nitric oxide in the object recognition memory.

    Science.gov (United States)

    Pitsikas, Nikolaos

    2015-05-15

    The novel object recognition task (NORT) assesses recognition memory in animals. It is a non-rewarded paradigm that it is based on spontaneous exploratory behavior in rodents. This procedure is widely used for testing the effects of compounds on recognition memory. Recognition memory is a type of memory severely compromised in schizophrenic and Alzheimer's disease patients. Nitric oxide (NO) is sought to be an intra- and inter-cellular messenger in the central nervous system and its implication in learning and memory is well documented. Here I intended to critically review the role of NO-related compounds on different aspects of recognition memory. Current analysis shows that both NO donors and NO synthase (NOS) inhibitors are involved in object recognition memory and suggests that NO might be a promising target for cognition impairments. However, the potential neurotoxicity of NO would add a note of caution in this context. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  19. Improved word recognition for observers with age-related maculopathies using compensation filters

    Science.gov (United States)

    Lawton, Teri B.

    1988-01-01

    A method for improving word recognition for people with age-related maculopathies, which cause a loss of central vision, is discussed. It is found that the use of individualized compensation filters based on an person's normalized contrast sensitivity function can improve word recognition for people with age-related maculopathies. It is shown that 27-70 pct more magnification is needed for unfiltered words compared to filtered words. The improvement in word recognition is positively correlated with the severity of vision loss.

  20. Advances in RNA Structure Determination | Center for Cancer Research

    Science.gov (United States)

    The recent years have witnessed a revolution in the field of RNA structure and function. Until recently the main contribution of RNA in cellular and disease functions was considered to be a role defined by the central dogma, namely DNA codes for mRNAs, which in turn encode for proteins, a notion facilitated by non-coding ribosomal RNA and tRNA. It was also assumed at the time

  1. Enzymatic recognition of DNA replication origins

    International Nuclear Information System (INIS)

    Stayton, M.M.; Bertsch, L.; Biswas, S.

    1983-01-01

    In this paper we discuss the process of recognition of the complementary-strand origin with emphasis on RNA polymerase action in priming M13 DNA replication, the role of primase in G4 DNA replication, and the function of protein n, a priming protein, during primosome assembly. These phage systems do not require several of the bacterial DNA replication enzymes, particularly those involved in the regulation of chromosome copy number of the initiatiion of replication of duplex DNA. 51 references, 13 figures, 1 table

  2. A genomically modified Escherichia coli strain carrying an orthogonal E. coli histidyl-tRNA synthetase•tRNAHis pair.

    Science.gov (United States)

    Englert, Markus; Vargas-Rodriguez, Oscar; Reynolds, Noah M; Wang, Yane-Shih; Söll, Dieter; Umehara, Takuya

    2017-11-01

    Development of new aminoacyl-tRNA synthetase (aaRS)•tRNA pairs is central for incorporation of novel non-canonical amino acids (ncAAs) into proteins via genetic code expansion (GCE). The Escherichia coli and Caulobacter crescentus histidyl-tRNA synthetases (HisRS) evolved divergent mechanisms of tRNA His recognition that prevent their cross-reactivity. Although the E. coli HisRS•tRNA His pair is a good candidate for GCE, its use in C. crescentus is limited by the lack of established genetic selection methods and by the low transformation efficiency of C. crescentus. E. coli was genetically engineered to use a C. crescentus HisRS•tRNA His pair. Super-folder green fluorescent protein (sfGFP) and chloramphenicol acetyltransferase (CAT) were used as reporters for read-through assays. A library of 313 ncAAs coupled with the sfGFP reporter system was employed to investigate the specificity of E. coli HisRS in vivo. A genomically modified E. coli strain (named MEOV1) was created. MEVO1 requires an active C. crescentus HisRS•tRNA His pair for growth, and displays a similar doubling time as the parental E. coli strain. sfGFP- and CAT-based assays showed that the E. coli HisRS•tRNA His pair is orthogonal in MEOV1 cells. A mutation in the anticodon loop of E. coli tRNA His CUA elevated its suppression efficiency by 2-fold. The C. crescentus HisRS•tRNA His pair functionally complements an E. coli ΔhisS strain. The E. coli HisRS•tRNA His is orthogonal in MEOV1 cells. E. coli tRNA His CUA is an efficient amber suppressor in MEOV1. We developed a platform that allows protein engineering of E. coli HisRS that should facilitate GCE in E. coli. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Recent developments for the pattern recognition in the central drift chamber of the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, Viktor; Feindt, Michael; Heck, Martin; Hauth, Thomas; Goldenzweig, Pablo [Karlsruhe Institute of Technology (Germany); Collaboration: Belle II-Collaboration

    2016-07-01

    The Belle II experiment is designed to perform more precise measurements (e.g. C P-violation measurements, New Physics phenomena, rare decays etc) than its predecessor, the Belle experiment. To achieve this goal, the luminosity of the experiment will be increased by a factor of 40 and as result multiple times more data will be collected. Due to this fact, faster reconstruction algorithms for the data processing need to be developed and at the same time accurate physical results should be retained. One important part in the data processing chain is the track reconstruction section. We present the development of one of the pattern recognition algorithms for the Belle II experiment based on conformal and Legendre transformations. In order to optimize the performance of the algorithm (CPU time and efficiency) we have introduced specialized processing steps. To show improvements in the results we introduce efficiency measurements of the tracking algorithms in the Central Drift Chamber (CDC) which were done using Monte-Carlo simulation of e{sup +} e{sup -} collisions followed by a full simulation of the Belle II detector.

  4. Cofactors in the RNA World

    Science.gov (United States)

    Ditzler, Mark A.

    2014-01-01

    RNA world theories figure prominently in many scenarios for the origin and early evolution of life. These theories posit that RNA molecules played a much larger role in ancient biology than they do now, acting both as the dominant biocatalysts and as the repository of genetic information. Many features of modern RNA biology are potential examples of molecular fossils from an RNA world, such as the pervasive involvement of nucleotides in coenzymes, the existence of natural aptamers that bind these coenzymes, the existence of natural ribozymes, a biosynthetic pathway in which deoxynucleotides are produced from ribonucleotides, and the central role of ribosomal RNA in protein synthesis in the peptidyl transferase center of the ribosome. Here, we uses both a top-down approach that evaluates RNA function in modern biology and a bottom-up approach that examines the capacities of RNA independent of modern biology. These complementary approaches exploit multiple in vitro evolution techniques coupled with high-throughput sequencing and bioinformatics analysis. Together these complementary approaches advance our understanding of the most primitive organisms, their early evolution, and their eventual transition to modern biochemistry.

  5. Systematic Prediction of the Impacts of Mutations in MicroRNA Seed Sequences

    Directory of Open Access Journals (Sweden)

    Bhattacharya Anindya

    2017-05-01

    Full Text Available MicroRNAs are a class of small non-coding RNAs that are involved in many important biological processes and the dysfunction of microRNA has been associated with many diseases. The seed region of a microRNA is of crucial importance to its target recognition. Mutations in microRNA seed regions may disrupt the binding of microRNAs to their original target genes and make them bind to new target genes. Here we use a knowledge-based computational method to systematically predict the functional effects of all the possible single nucleotide mutations in human microRNA seed regions. The result provides a comprehensive reference for the functional assessment of the impacts of possible natural and artificial single nucleotide mutations in microRNA seed regions.

  6. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases.

    Science.gov (United States)

    Hernández, Armando R; Peterson, Larryn W; Kool, Eric T

    2012-08-17

    Understanding the interactions between small interfering RNAs (siRNAs) and the RNA-induced silencing complex (RISC), the key protein complex of RNA interference (RNAi), is of great importance to the development of siRNAs with improved biological and potentially therapeutic function. Although various chemically modified siRNAs have been reported, relatively few studies with modified nucleobases exist. Here we describe the synthesis and hybridization properties of siRNAs bearing size-expanded RNA (xRNA) nucleobases and their use as a novel and systematic set of steric probes in RNAi. xRNA nucleobases are expanded by 2.4 Å using benzo-homologation and retain canonical Watson-Crick base-pairing groups. Our data show that the modified siRNA duplexes display small changes in melting temperature (+1.4 to -5.0 °C); substitutions near the center are somewhat destabilizing to the RNA duplex, while substitutions near the ends are stabilizing. RNAi studies in a dual-reporter luciferase assay in HeLa cells revealed that xRNA nucleobases in the antisense strand reduce activity at some central positions near the seed region but are generally well tolerated near the ends. Most importantly, we observed that xRNA substitutions near the 3'-end increased activity over that of wild-type siRNAs. The data are analyzed in terms of site-dependent steric effects in RISC. Circular dichroism experiments show that single xRNA substitutions do not significantly distort the native A-form helical structure of the siRNA duplex, and serum stability studies demonstrated that xRNA substitutions protect siRNAs against nuclease degradation.

  7. Host Recognition Responses of Western (Family: Chrysomelidae) Corn Rootworm Larvae to RNA Interference and Bt Corn.

    Science.gov (United States)

    Zukoff, Sarah N; Zukoff, Anthony L

    2017-01-01

    Western corn rootworm Diabrotica virgifera virgifera LeConte is an important pest of corn whose larvae exhibit particular quantifiable patterns of locomotion after exposure to, and removal from, host roots and nonhost roots. Using EthoVision software, the behavior and locomotion of the western corn rootworm larvae was analyzed to determine the level of host recognition to germinated roots of differing corn hybrids containing either rootworm targeted Bt genes, RNA interference (RNAi) technology, the stack of both Bt and RNAi, or the isoline of these. The behavior of the rootworm larvae indicated a significant host preference response to all corn hybrids (with or without insecticidal traits) compared to the filter paper and oat roots. A weaker host response to the RNAi corn roots was observed in the susceptible larvae when compared to the resistant larvae, but not for the Bt + RNAi vector stack. Additionally, the resistant larvae demonstrated a weaker host response to the isoline corn roots when compared to the susceptible larvae. Although weaker, these host responses were significantly different from those observed in the negative controls, indicating that all hybrids tested do contain the contact cues necessary to elicit a host preference response by both Cry3Bb1-resistant and Cry3Bb1-susceptible larvae that would work to hinder resistance development in refuge in a bag fields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Simultaneous visualization of the subfemtomolar expression of microRNA and microRNA target gene using HILO microscopy.

    Science.gov (United States)

    Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling

    2017-09-01

    The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.

  9. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Ayaho; Kanaba, Teppei [Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji 192-0397 (Japan); Satoh, Ryosuke [Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo (Japan); Fujiwara, Toshinobu [Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku 141-0021, Tokyo (Japan); Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku,Nagoya 467-8603 (Japan); Ito, Yutaka [Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji 192-0397 (Japan); Sugiura, Reiko [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Mishima, Masaki, E-mail: mishima-masaki@tmu.ac.jp [Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji 192-0397 (Japan)

    2013-07-19

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed.

  10. Structure of the second RRM domain of Nrd1, a fission yeast MAPK target RNA binding protein, and implication for its RNA recognition and regulation

    International Nuclear Information System (INIS)

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Fujiwara, Toshinobu; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2013-01-01

    Highlights: •Solution structure of the second RRM of Nrd1 was determined. •RNA binding site of the second RRM was estimated. •Regulatory mechanism of RNA binding by phosphorylation is discussed. -- Abstract: Negative regulator of differentiation 1 (Nrd1) is known as a negative regulator of sexual differentiation in fission yeast. Recently, it has been revealed that Nrd1 also regulates cytokinesis, in which physical separation of the cell is achieved by a contractile ring comprising many proteins including actin and myosin. Cdc4, a myosin II light chain, is known to be required for cytokinesis. Nrd1 binds and stabilizes Cdc4 mRNA, and thereby suppressing the cytokinesis defects of the cdc4 mutants. Interestingly, Pmk1 MAPK phosphorylates Nrd1, resulting in markedly reduced RNA binding activity. Furthermore, Nrd1 localizes to stress granules in response to various stresses, and Pmk1 phosphorylation enhances the localization. Nrd1 consists of four RRM domains, although the mechanism by which Pmk1 regulates the RNA binding activity of Nrd1 is unknown. In an effort to delineate the relationship between Nrd1 structure and function, we prepared each RNA binding domain of Nrd1 and examined RNA binding to chemically synthesized oligo RNA using NMR. The structure of the second RRM domain of Nrd1 was determined and the RNA binding site on the second RRM domain was mapped by NMR. A plausible mechanism pertaining to the regulation of RNA binding activity by phosphorylation is also discussed

  11. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    International Nuclear Information System (INIS)

    Chu, Wenchy; Horowitz, J.

    1991-01-01

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA Val with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K M and V max values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA Val . Binding of VRS to (FUra)tRNA Val induces structural perturbations that are reflected in selective changes in the 19 F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA Val along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA Val , suggesting conformational changes in this part of the molecule. No 19 F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA Val that has been proposed as a common intermediate in the aminoacylation reaction

  12. Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

    OpenAIRE

    Stojković, Marijana Radić; Škugor, Marko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2014-01-01

    Summary An investigation of the interactions of two novel and several known DBTAA–adenine conjugates with double-stranded DNA and RNA has revealed the DNA/RNA groove as the dominant binding site, which is in contrast to the majority of previously studied DBTAA analogues (DNA/RNA intercalators). Only DBTAA–propyladenine conjugates revealed the molecular recognition of AT-DNA by an ICD band pattern > 300 nm, whereas significant ICD bands did not appear for other ds-DNA/RNA. A structure–activity...

  13. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    Science.gov (United States)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  14. Martini Coarse-Grained Force Field : Extension to RNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Marrink, Siewert J.; Faustino, Ignacio

    2017-01-01

    RNA has an important role not only as the messenger of genetic information but also as a regulator of gene expression. Given its central role in cell biology, there is significant interest in studying the structural and dynamic behavior of RNA in relation to other biomolecules. Coarse-grain

  15. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study.

    Science.gov (United States)

    Cheatham, Carol L; Sheppard, Kelly Will

    2015-11-03

    The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA) with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70-30 oddball paradigm in a high-density 128-lead event-related potential (ERP) paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal) for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.

  16. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  17. tRNA-like structure regulates translation of Brome mosaic virus RNA.

    Science.gov (United States)

    Barends, Sharief; Rudinger-Thirion, Joëlle; Florentz, Catherine; Giegé, Richard; Pleij, Cornelis W A; Kraal, Barend

    2004-04-01

    For various groups of plant viruses, the genomic RNAs end with a tRNA-like structure (TLS) instead of the 3' poly(A) tail of common mRNAs. The actual function of these TLSs has long been enigmatic. Recently, however, it became clear that for turnip yellow mosaic virus, a tymovirus, the valylated TLS(TYMV) of the single genomic RNA functions as a bait for host ribosomes and directs them to the internal initiation site of translation (with N-terminal valine) of the second open reading frame for the polyprotein. This discovery prompted us to investigate whether the much larger TLSs of a different genus of viruses have a comparable function in translation. Brome mosaic virus (BMV), a bromovirus, has a tripartite RNA genome with a subgenomic RNA4 for coat protein expression. All four RNAs carry a highly conserved and bulky 3' TLS(BMV) (about 200 nucleotides) with determinants for tyrosylation. We discovered TLS(BMV)-catalyzed self-tyrosylation of the tyrosyl-tRNA synthetase but could not clearly detect tyrosine incorporation into any virus-encoded protein. We established that BMV proteins do not need TLS(BMV) tyrosylation for their initiation. However, disruption of the TLSs strongly reduced the translation of genomic RNA1, RNA2, and less strongly, RNA3, whereas coat protein expression from RNA4 remained unaffected. This aberrant translation could be partially restored by providing the TLS(BMV) in trans. Intriguingly, a subdomain of the TLS(BMV) could even almost fully restore translation to the original pattern. We discuss here a model with a central and dominant role for the TLS(BMV) during the BMV infection cycle.

  18. Recognition of RNA by amide modified backbone nucleic acids: molecular dynamics simulations of DNA-RNA hybrids in aqueous solution.

    Science.gov (United States)

    Nina, Mafalda; Fonné-Pfister, Raymonde; Beaudegnies, Renaud; Chekatt, Habiba; Jung, Pierre M J; Murphy-Kessabi, Fiona; De Mesmaeker, Alain; Wendeborn, Sebastian

    2005-04-27

    Thermodynamic and structural properties of a chemically modified DNA-RNA hybrid in which a phosphodiester linkage is replaced by a neutral amide-3 linkage (3'-CH(2)-CONH-5') were investigated using UV melting experiments, molecular dynamics simulations in explicit water, and continuum solvent models. van't Hoff analysis of the experimental UV melting curves suggests that the significant increase of the thermodynamic stability of a 15-mer DNA-RNA with seven alternated amide-3 modifications (+11 degrees C) is mainly due to an increased binding enthalpy. To further evaluate the origin in the observed affinities differences, the electrostatic contribution to the binding free energy was calculated by solving the Poisson-Boltzmann equation numerically. The nonelectrostatic contribution was estimated as the product of a hydrophobic surface tension coefficient and the surface area that is buried upon double strand formation. Structures were taken from 10 ns molecular dynamics simulations computed in a consistent fashion using explicit solvent, counterions, and the particle-mesh Ewald procedure. The present preliminary thermodynamic study suggests that the favorable binding free energy of the amide-3 DNA single strand to the complementary RNA is equally driven by electrostatic and nonpolar contributions to the binding compared to their natural analogues. In addition, molecular dynamics simulations in explicit water were performed on an amide-3 DNA single strand and the corresponding natural DNA. Results from the conformations cluster analysis of the simulated amide-3 DNA single strand ensembles suggest that the 25% of the population sampled within 10 ns has a pre-organized conformation where the sugar C3' endo pucker is favored at the 3'-flanking nucleotides. These structural and thermodynamic features contribute to the understanding of the observed increased affinities of the amide-3 DNA-RNA hybrids at the microscopic level.

  19. CYP3A5 mRNA degradation by nonsense-mediated mRNA decay.

    Science.gov (United States)

    Busi, Florent; Cresteil, Thierry

    2005-09-01

    The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected into MCF7 cells, and the endogenous CYP3A5 gene expressed in HepG2 cells. The 3'-untranslated region g.31611C>T mutation has no effect on CYP3A5 mRNA decay. Splice variants containing exon 3B were more unstable than wild-type (wt) CYP3A5 mRNA. Cycloheximide prevents the recognition of PTCs by ribosomes: in transfected MCF7 and HepG2 cells, cycloheximide slowed down the degradation of exon 3B-containing splice variants, suggesting the participation of nonsense-mediated decay (NMD). When PTCs were removed from pseudoexon 3B or when UPF1 small interfering RNA was used to impair the NMD mechanism, the decay of the splice variant was reduced, confirming the involvement of NMD in the degradation of CYP3A5 splice variants. Induction could represent a source of variability for CYP3A5 expression and could modify the proportion of splice variants. The extent of CYP3A5 induction was investigated after exposure to barbiturates or steroids: CYP3A4 was markedly induced in a pediatric population compared with untreated neonates. However, no effect could be detected in either the total CYP3A5 RNA, the proportion of splice variant RNA, or the protein level. Therefore, in these carriers, induction is unlikely to switch on the phenotypic CYP3A5 expression in carriers of CYP3A5*3/*3.

  20. Identification and analysis of the RNA degrading complexes and machinery of Giardia lamblia using an in silico approach.

    Science.gov (United States)

    Williams, Christopher W; Elmendorf, Heidi G

    2011-11-29

    RNA degradation is critical to the survival of all cells. With increasing evidence for pervasive transcription in cells, RNA degradation has gained recognition as a means of regulating gene expression. Yet, RNA degradation machinery has been studied extensively in only a few eukaryotic organisms, including Saccharomyces cerevisiae and humans. Giardia lamblia is a parasitic protist with unusual genomic traits: it is binucleated and tetraploid, has a very compact genome, displays a theme of genomic minimalism with cellular machinery commonly comprised of a reduced number of protein components, and has a remarkably large population of long, stable, noncoding, antisense RNAs. Here we use in silico approaches to investigate the major RNA degradation machinery in Giardia lamblia and compare it to a broad array of other parasitic protists. We have found key constituents of the deadenylation and decapping machinery and of the 5'-3' RNA degradation pathway. We have similarly found that all of the major 3'-5' RNA degradation pathways are present in Giardia, including both exosome-dependent and exosome-independent machinery. However, we observe significant loss of RNA degradation machinery genes that will result in important differences in the protein composition, and potentially functionality, of the various RNA degradation pathways. This is most apparent in the exosome, the central mediator of 3'-5' degradation, which apparently contains an altered core configuration in both Giardia and Plasmodium, with only four, instead of the canonical six, distinct subunits. Additionally the exosome in Giardia is missing both the Rrp6, Nab3, and Nrd1 proteins, known to be key regulators of noncoding transcript stability in other cells. These findings suggest that although the full complement of the major RNA degradation mechanisms were present - and likely functional - early in eukaryotic evolution, the composition and function of the complexes is more variable than previously

  1. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study

    Directory of Open Access Journals (Sweden)

    Carol L. Cheatham

    2015-11-01

    Full Text Available The aim was to explore the relation of human milk lutein; choline; and docosahexaenoic acid (DHA with recognition memory abilities of six-month-olds. Milk samples obtained three to four months postpartum were analyzed for fatty acids, lutein, and choline. At six months, participants were invited to an electrophysiology session. Recognition memory was tested with a 70–30 oddball paradigm in a high-density 128-lead event-related potential (ERP paradigm. Complete data were available for 55 participants. Data were averaged at six groupings (Frontal Right; Frontal Central; Frontal Left; Central; Midline; and Parietal for latency to peak, peak amplitude, and mean amplitude. Difference scores were calculated as familiar minus novel. Final regression models revealed the lutein X free choline interaction was significant for the difference in latency scores at frontal and central areas (p < 0.05 and p < 0.001; respectively. Higher choline levels with higher lutein levels were related to better recognition memory. The DHA X free choline interaction was also significant for the difference in latency scores at frontal, central, and midline areas (p < 0.01; p < 0.001; p < 0.05 respectively. Higher choline with higher DHA was related to better recognition memory. Interactions between human milk nutrients appear important in predicting infant cognition, and there may be a benefit to specific nutrient combinations.

  2. Crystallization and preliminary X-ray diffraction analysis of iron regulatory protein 1 in complex with ferritin IRE RNA

    International Nuclear Information System (INIS)

    Selezneva, Anna I.; Cavigiolio, Giorgio; Theil, Elizabeth C.; Walden, William E.; Volz, Karl

    2006-01-01

    The iron regulatory protein IRP1 has been crystallized in a complex with ferritin IRE RNA and a complete data set has been collected to 2.8 Å resolution. Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe–4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe–4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase. The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe–S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P2 1 , with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 Å, β = 92.0°. Native data sets have been collected from several crystals with resolution extending to 2.8 Å and the structure has been solved by molecular replacement

  3. Current insights into the molecular systems pharmacology of lncRNA-miRNA regulatory interactions and implications in cancer translational medicine

    Directory of Open Access Journals (Sweden)

    Sujit Nair

    2016-04-01

    Full Text Available In recent times, the role(s of microRNAs (miRNAs and long noncoding RNAs (lncRNAs in the pathogenesis of various cancers has received great attention. Indeed, there is also a growing recognition of regulatory RNA cross-talk, i.e., lncRNA-miRNA interactions, that may modulate various events in carcinogenesis and progression to metastasis. This review summarizes current evidence in the literature of lncRNA-miRNA interactions in various cancers such as breast, liver, stomach, lung, prostate, bladder, colorectal, blood, brain, skin, kidney, cervical, laryngeal, gall bladder, and bone. Further, the potential prognostic and theragnostic clinical applications of lncRNA-miRNA interactions in cancer are discussed along with an overview of noncoding RNA (ncRNA-based studies that were presented at the American Society of Clinical Oncology (ASCO 2015. Interestingly, the last decade has seen tremendous innovation, as well as increase in complexity, of the cancer biological network(s from mRNA- to miRNA- and lncRNA-based networks. Thus, biological networks devoted to understanding regulatory interactions between these ncRNAs would be the next frontier in better elucidating the contributions of lncRNA-miRNA interactions in cancer. Herein, a cancer biological network of lncRNA-miRNA interactions is presented wherein “edges” connect interacting lncRNA-miRNA pairs, with each ncRNA serving as a discrete “node” of the network. In conclusion, the untapped potential of lncRNA-miRNA interactions in terms of its diagnostic, prognostic and therapeutic potential as targets for clinically actionable intervention as well as biomarker validation in discovery pipelines remains to be explored. Future research will likely harness this potential so as to take us closer to the goal of “precision” and “personalized medicine” which is tailor-made to the unique needs of each cancer patient, and is clearly the way forward going into the future.

  4. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    Science.gov (United States)

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m 7 G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m 7 GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as

  5. A Multimodal Database for Affect Recognition and Implicit Tagging

    NARCIS (Netherlands)

    Soleymani, Mohammad; Lichtenauer, Jeroen; Pun, Thierry; Pantic, Maja

    MAHNOB-HCI is a multimodal database recorded in response to affective stimuli with the goal of emotion recognition and implicit tagging research. A multimodal setup was arranged for synchronized recording of face videos, audio signals, eye gaze data, and peripheral/central nervous system

  6. Dynamic regulation of genome-wide pre-mRNA splicing and stress tolerance by the Sm-like protein LSm5 in Arabidopsis

    KAUST Repository

    Cui, Peng

    2014-01-07

    Background: Sm-like proteins are highly conserved proteins that form the core of the U6 ribonucleoprotein and function in several mRNA metabolism processes, including pre-mRNA splicing. Despite their wide occurrence in all eukaryotes, little is known about the roles of Sm-like proteins in the regulation of splicing.Results: Here, through comprehensive transcriptome analyses, we demonstrate that depletion of the Arabidopsis supersensitive to abscisic acid and drought 1 gene (SAD1), which encodes Sm-like protein 5 (LSm5), promotes an inaccurate selection of splice sites that leads to a genome-wide increase in alternative splicing. In contrast, overexpression of SAD1 strengthens the precision of splice-site recognition and globally inhibits alternative splicing. Further, SAD1 modulates the splicing of stress-responsive genes, particularly under salt-stress conditions. Finally, we find that overexpression of SAD1 in Arabidopsis improves salt tolerance in transgenic plants, which correlates with an increase in splicing accuracy and efficiency for stress-responsive genes.Conclusions: We conclude that SAD1 dynamically controls splicing efficiency and splice-site recognition in Arabidopsis, and propose that this may contribute to SAD1-mediated stress tolerance through the metabolism of transcripts expressed from stress-responsive genes. Our study not only provides novel insights into the function of Sm-like proteins in splicing, but also uncovers new means to improve splicing efficiency and to enhance stress tolerance in a higher eukaryote. 2014 Cui et al.; licensee BioMed Central Ltd.

  7. RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes

    KAUST Repository

    Lee, Keh Chien

    2017-04-11

    The RNA recognition motif of Arabidopsis splicing factor SF1 affects the alternative splicing of FLOWERING LOCUS M pre-mRNA and a heat shock transcription factor HsfA2 pre-mRNA. Splicing factor 1 (SF1) plays a crucial role in 3\\' splice site recognition by binding directly to the intron branch point. Although plant SF1 proteins possess an RNA recognition motif (RRM) domain that is absent in its fungal and metazoan counterparts, the role of the RRM domain in SF1 function has not been characterized. Here, we show that the RRM domain differentially affects the full function of the Arabidopsis thaliana AtSF1 protein under different experimental conditions. For example, the deletion of RRM domain influences AtSF1-mediated control of flowering time, but not the abscisic acid sensitivity response during seed germination. The alternative splicing of FLOWERING LOCUS M (FLM) pre-mRNA is involved in flowering time control. We found that the RRM domain of AtSF1 protein alters the production of alternatively spliced FLM-β transcripts. We also found that the RRM domain affects the alternative splicing of a heat shock transcription factor HsfA2 pre-mRNA, thereby mediating the heat stress response. Taken together, our results suggest the importance of RRM domain for AtSF1-mediated alternative splicing of a subset of genes involved in the regulation of flowering and adaptation to heat stress.

  8. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    Energy Technology Data Exchange (ETDEWEB)

    Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T.; Tanaka Hall, Traci M.; Goldstrohm, Aaron C.

    2016-08-02

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation byDrosophilaPumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulatedin vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.

  9. An integrated miRNA functional screening and target validation method for organ morphogenesis.

    Science.gov (United States)

    Rebustini, Ivan T; Vlahos, Maryann; Packer, Trevor; Kukuruzinska, Maria A; Maas, Richard L

    2016-03-16

    The relative ease of identifying microRNAs and their increasing recognition as important regulators of organogenesis motivate the development of methods to efficiently assess microRNA function during organ morphogenesis. In this context, embryonic organ explants provide a reliable and reproducible system that recapitulates some of the important early morphogenetic processes during organ development. Here we present a method to target microRNA function in explanted mouse embryonic organs. Our method combines the use of peptide-based nanoparticles to transfect specific microRNA inhibitors or activators into embryonic organ explants, with a microRNA pulldown assay that allows direct identification of microRNA targets. This method provides effective assessment of microRNA function during organ morphogenesis, allows prioritization of multiple microRNAs in parallel for subsequent genetic approaches, and can be applied to a variety of embryonic organs.

  10. Mouse nucleolin binds to 4.5S RNAH, a small noncoding RNA

    International Nuclear Information System (INIS)

    Hirose, Yutaka; Harada, Fumio

    2008-01-01

    4.5S RNAH is a rodent-specific small noncoding RNA that exhibits extensive homology to the B1 short interspersed element. Although 4.5S RNAH is known to associate with cellular poly(A)-terminated RNAs and retroviral genomic RNAs, its function remains unclear. In this study, we analyzed 4.5S RNAH-binding proteins in mouse nuclear extracts using gel mobility shift and RNA-protein UV cross-linking assays. We found that at least nine distinct polypeptides (p170, p110, p93, p70, p48, p40, p34, p20, and p16.5) specifically interacted with 4.5S RNAHin vitro. Using anti-La antibody, p48 was identified as mouse La protein. To identify the other 4.5S RNAH-binding proteins, we performed expression cloning from a mouse cDNA library and obtained cDNA clones derived from nucleolin mRNA. We identified p110 as nucleolin using nucleolin-specific antibodies. UV cross-linking analysis using various deletion mutants of nucleolin indicated that the third of four tandem RNA recognition motifs is a major determinant for 4.5S RNAH recognition. Immunoprecipitation of nucleolin from the subcellular fractions of mouse cell extracts revealed that a portion of the endogenous 4.5S RNAH was associated with nucleolin and that this complex was located in both the nucleoplasm and nucleolus

  11. Towards Antiviral shRNAs Based on the AgoshRNA Design.

    Directory of Open Access Journals (Sweden)

    Ying Poi Liu

    Full Text Available RNA interference (RNAi can be induced by intracellular expression of a short hairpin RNA (shRNA. Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA. Dicer is also involved in microRNA (miRNA processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2 protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these "AgoshRNA" molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.

  12. Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli.

    Science.gov (United States)

    Hayes, Robert P; Xiao, Yibei; Ding, Fran; van Erp, Paul B G; Rajashankar, Kanagalaghatta; Bailey, Scott; Wiedenheft, Blake; Ke, Ailong

    2016-02-25

    Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.

  13. 5′-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping

    Science.gov (United States)

    Ogino, Minako

    2017-01-01

    ABSTRACT The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5′-phospho-RNA (pRNA) from 5′-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5′-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2′- or 3′-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5′-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups

  14. Structure of Hepatitis C Virus Polymerase in Complex with Primer-Template RNA

    Energy Technology Data Exchange (ETDEWEB)

    Mosley, Ralph T.; Edwards, Thomas E.; Murakami, Eisuke; Lam, Angela M.; Grice, Rena L.; Du, Jinfa; Sofia, Michael J.; Furman, Philip A.; Otto, Michael J. (Pharmasset); (Emerald)

    2012-08-01

    The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory {beta}-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory {beta}-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.

  15. Long noncoding RNA in hematopoiesis and immunity.

    Science.gov (United States)

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    Science.gov (United States)

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  17. Applying IFRS 9 to Central Banks Foreign Reserves

    OpenAIRE

    World Bank

    2016-01-01

    Effective January 1, 2018, IFRS 9 Financial Instruments will replace IAS 39 Financial Instruments: Recognition and Measurement (IAS 39). Unlike most publications on IFRS 9, this paper focuses primarily on the application of the new standard on central banks’ foreign reserve assets, which increasingly constitute a substantial part of central banks’ balance sheet. Based on IFRS 9 implementa...

  18. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors.

    Directory of Open Access Journals (Sweden)

    Katerina Gkirtzou

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small, single stranded RNAs with a key role in post-transcriptional regulation of thousands of genes across numerous species. While several computational methods are currently available for identifying miRNA genes, accurate prediction of the mature miRNA remains a challenge. Existing approaches fall short in predicting the location of mature miRNAs but also in finding the functional strand(s of miRNA precursors. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present a computational tool that incorporates a Naive Bayes classifier to identify mature miRNA candidates based on sequence and secondary structure information of their miRNA precursors. We take into account both positive (true mature miRNAs and negative (same-size non-mature miRNA sequences examples to optimize sensitivity as well as specificity. Our method can accurately predict the start position of experimentally verified mature miRNAs for both human and mouse, achieving a significantly larger (often double performance accuracy compared with two existing methods. Moreover, the method exhibits a very high generalization performance on miRNAs from two other organisms. More importantly, our method provides direct evidence about the features of miRNA precursors which may determine the location of the mature miRNA. We find that the triplet of positions 7, 8 and 9 from the mature miRNA end towards the closest hairpin have the largest discriminatory power, are relatively conserved in terms of sequence composition (mostly contain a Uracil and are located within or in very close proximity to the hairpin loop, suggesting the existence of a possible recognition site for Dicer and associated proteins. CONCLUSIONS: This work describes a novel algorithm for identifying the start position of mature miRNA(s produced by miRNA precursors. Our tool has significantly better (often double performance than two existing approaches and provides new insights about the potential use

  19. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yih-Horng Shiao

    Full Text Available BACKGROUND: Ribosomal RNA (rRNA is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1 and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014. During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014. Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. CONCLUSIONS/SIGNIFICANCE: The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  20. The Accuracy of Seryl-tRNA Synthesis

    Directory of Open Access Journals (Sweden)

    Ita Gruic-Sovulj

    2002-01-01

    Full Text Available The high level of translational fidelity is ensured by various types of quality control mechanisms, which are adapted to prevent or correct naturally occurring mistakes. Accurate aminoacyl-tRNA synthesis is mostly dependent on the specificity of the aminoacyl-tRNA synthetases (aaRS, i.e. their ability to choose among competing structurally similar substrates. Our studies have revealed that accurate seryl-tRNA synthesis in yeast and plants is accomplished via tRNA-assisted optimization of amino acid binding to the active site of seryl-tRNA synthetase (SerRS. Based on our recent kinetic data, a mechanism is proposed by which transient protein : RNA complex activates the cognate amino acid more efficiently and more specifically than the apoenzyme alone. This may proceed via a tRNA induced conformational change in the enzyme’s active site. The influence of tRNASer, on the activation of serine by SerRS variants mutated in the active site, is much less pronounced. Although SerRS misactivates structurally similar threonine in vitro, the formation of such erroneous threonyl-adenylate is reduced in the presence of nonchargeable tRNASer analog. Thus, the sequence-specific tRNA : SerRS interactions enhance the accuracy of amino acid recognition. Another type of quality control mechanism in tRNA serylation is assumed to be based on the complex formation between SerRS and a nonsynthetase protein. Using in vivo interaction screen, yeast peroxin Pex21p was identified as SerRS interacting protein. This was confirmed by an in vitro binding assay. Kinetic experiments performed in the presence of Pex21p revealed that this peroxin acts as an activator of seryl-tRNA synthetase in the aminoacylation reaction.

  1. 8 CFR 1292.2 - Organizations qualified for recognition; requests for recognition; withdrawal of recognition...

    Science.gov (United States)

    2010-01-01

    ...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. 1292.2...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. (a) Qualifications of organizations. A non-profit religious, charitable, social service, or similar organization...

  2. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings.

    Science.gov (United States)

    Al-Hashimi, Hashim M; Gosser, Yuying; Gorin, Andrey; Hu, Weidong; Majumdar, Ananya; Patel, Dinshaw J

    2002-01-11

    Ground-state dynamics in RNA is a critical precursor for structural adaptation observed ubiquitously in protein-RNA recognition. A tertiary conformational analysis of the stem-loop structural element in the transactivation response element (TAR) from human immunodeficiency virus type 1 (HIV-I) RNA is presented using recently introduced NMR methods that rely on the measurement of residual dipolar couplings (RDC) in partially oriented systems. Order matrix analysis of RDC data provides evidence for inter-helical motions that are of amplitude 46(+/-4) degrees, of random directional character, and that are executed about an average conformation with an inter-helical angle between 44 degrees and 54 degrees. The generated ensemble of TAR conformations have different organizations of functional groups responsible for interaction with the trans-activator protein Tat, including conformations similar to the previously characterized bound-state conformation. These results demonstrate the utility of RDC-NMR for simultaneously characterizing RNA tertiary dynamics and average conformation, and indicate an avenue for TAR complex formation involving tertiary structure capture. Copyright 2001 Academic Press.

  3. Threshold models of recognition and the recognition heuristic

    Directory of Open Access Journals (Sweden)

    Edgar Erdfelder

    2011-02-01

    Full Text Available According to the recognition heuristic (RH theory, decisions follow the recognition principle: Given a high validity of the recognition cue, people should prefer recognized choice options compared to unrecognized ones. Assuming that the memory strength of choice options is strongly correlated with both the choice criterion and recognition judgments, the RH is a reasonable strategy that approximates optimal decisions with a minimum of cognitive effort (Davis-Stober, Dana, and Budescu, 2010. However, theories of recognition memory are not generally compatible with this assumption. For example, some threshold models of recognition presume that recognition judgments can arise from two types of cognitive states: (1 certainty states in which judgments are almost perfectly correlated with memory strength and (2 uncertainty states in which recognition judgments reflect guessing rather than differences in memory strength. We report an experiment designed to test the prediction that the RH applies to certainty states only. Our results show that memory states rather than recognition judgments affect use of recognition information in binary decisions.

  4. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  5. DNA → RNA: What Do Students Think the Arrow Means?

    Science.gov (United States)

    Wright, L Kate; Fisk, J Nick; Newman, Dina L

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein products. We investigated understanding of central dogma concepts and found that students are not primed to think about information when presented with the canonical figure of the central dogma. We also uncovered conceptual errors in student interpretation of the meaning of the transcription arrow in the central dogma representation; 36% of students (n = 128; all undergraduate levels) described transcription as a chemical conversion of DNA into RNA or suggested that RNA existed before the process of transcription began. Interviews confirm that students with weak conceptual understanding of information flow find inappropriate meaning in the canonical representation of central dogma. Therefore, we suggest that use of this representation during instruction can be counterproductive unless educators are explicit about the underlying meaning. © 2014 L. K. Wright et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Improvement of In Vivo Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins

    Science.gov (United States)

    Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2017-01-01

    Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647

  8. Role of syllable segmentation processes in peripheral word recognition.

    Science.gov (United States)

    Bernard, Jean-Baptiste; Calabrèse, Aurélie; Castet, Eric

    2014-12-01

    Previous studies of foveal visual word recognition provide evidence for a low-level syllable decomposition mechanism occurring during the recognition of a word. We investigated if such a decomposition mechanism also exists in peripheral word recognition. Single words were visually presented to subjects in the peripheral field using a 6° square gaze-contingent simulated central scotoma. In the first experiment, words were either unicolor or had their adjacent syllables segmented with two different colors (color/syllable congruent condition). Reaction times for correct word identification were measured for the two different conditions and for two different print sizes. Results show a significant decrease in reaction time for the color/syllable congruent condition compared with the unicolor condition. A second experiment suggests that this effect is specific to syllable decomposition and results from strategic, presumably involving attentional factors, rather than stimulus-driven control.

  9. Association of BRAFV600E Mutation and MicroRNA Expression with Central Lymph Node Metastases in Papillary Thyroid Cancer: A Prospective Study from Four Endocrine Surgery Centers

    OpenAIRE

    Aragon Han, Patricia; Kim, Hyun-seok; Cho, Soonweng; Fazeli, Roghayeh; Najafian, Alireza; Khawaja, Hunain; McAlexander, Melissa; Dy, Benzon; Sorensen, Meredith; Aronova, Anna; Sebo, Thomas J.; Giordano, Thomas J.; Fahey, Thomas J.; Thompson, Geoffrey B.; Gauger, Paul G.

    2016-01-01

    Background: Studies have demonstrated an association of the BRAFV600E mutation and microRNA (miR) expression with aggressive clinicopathologic features in papillary thyroid cancer (PTC). Analysis of BRAFV600E mutations with miR expression data may improve perioperative decision making for patients with PTC, specifically in identifying patients harboring central lymph node metastases (CLNM).

  10. RNA Binding Proteins in Eye Development and Disease: Implication of Conserved RNA Granule Components

    Science.gov (United States)

    Dash, Soma; Siddam, Archana D.; Barnum, Carrie E.; Janga, Sarath Chandra

    2016-01-01

    The molecular biology of metazoan eye development is an area of intense investigation. These efforts have led to the surprising recognition that although insect and vertebrate eyes have dramatically different structures, the orthologs or family members of several conserved transcription and signaling regulators such as Pax6, Six3, Prox1 and Bmp4 are commonly required for their development. In contrast, our understanding of post-transcriptional regulation in eye development and disease, particularly regarding the function of RNA binding proteins (RBPs), is limited. We examine the present knowledge of RBPs in eye development in the insect model Drosophila, as well as several vertebrate models such as fish, frog, chicken and mouse. Interestingly, of the 42 RBPs that have been investigated with for their expression or function in vertebrate eye development, 24 (~60%) are recognized in eukaryotic cells as components of RNA granules such as Processing bodies (P-bodies), Stress granules, or other specialized ribonucleoprotein (RNP) complexes. We discuss the distinct developmental and cellular events that may necessitate potential RBP/RNA granule-associated RNA regulon models to facilitate post-transcriptional control of gene expression in eye morphogenesis. In support of these hypotheses, three RBPs and RNP/RNA granule components Tdrd7, Caprin2 and Stau2 are linked to ocular developmental defects such as congenital cataract, Peters anomaly and microphthalmia in human patients or animal models. We conclude by discussing the utility of interdisciplinary approaches such as the bioinformatics tool iSyTE (integrated Systems Tool for Eye gene discovery) to prioritize RBPs for deriving post-transcriptional regulatory networks in eye development and disease. PMID:27133484

  11. Neurodegenerative Disorders Treatment: The MicroRNA Role.

    Science.gov (United States)

    Ridolfi, Barbara; Abdel-Haq, Hanin

    2017-01-01

    Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and prion disease are not timely and effectively treated using conventional therapies. This emphasizes the need for alternative therapeutic approaches. In this respect, gene-based therapies have been adopted as potentially feasible alternative therapies, where the microRNA (miRNA) approach has experienced a great explosion in recent years. Because miRNAs have been shown to be implicated in the pathogenesis of several diseases including neurodegenerative diseases, they are intensely studied as candidates for diagnostic and prognostic biomarkers, as predictors of drug response and as therapeutic agents. In this review, we evaluate the feasibility of both direct and indirect miRNA mimics and inhibitors toward the regulation of neurodegenerative-related genes both in vivo and in vitro models, highlight the advantages and drawbacks associated with miRNA-based therapy, and summarize the relevant techniques and approaches attempted to deliver miRNAs to the central nervous system for therapeutic purposes, with particular regard to the exosomes. Additionally, we describe a new approach that holds great promise for the treatment of a wide range of diseases including neurodegenerative disorders. This approach is based on addressing the incorporation of miRNAs into exosomes to increase the quantity and quality of miRNA packed and delivered to the central nervous system and other sites of action. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins

    International Nuclear Information System (INIS)

    Hoffman, D.W.; Query, C.C.; Golden, B.L.; White, S.W.; Keene, J.D.

    1991-01-01

    An RNA recognition motif (RRM) of ∼80 amino acids constitutes the core of RNA-binding domains found in a large family of proteins involved in RNA processing. The U1 RNA-binding domain of the A protein component of the human U1 small nuclear ribonucleoprotein (RNP), which encompasses the RRM sequence, was analyzed by using NMR spectroscopy. The domain of the A protein is a highly stable monomer in solution consisting of four antiparallel β-strands and two α-helices. The highly conserved RNP1 and RNP2 consensus sequences, containing residues previously suggested to be involved in nucleic acid binding, are juxtaposed in adjacent β-strands. Conserved aromatic side chains that are critical for RNA binding are clustered on the surface to the molecule adjacent to a variable loop that influences recognition of specific RNA sequences. The secondary structure and topology of the RRM are similar to those of ribosomal proteins L12 and L30, suggesting a distant evolutionary relationship between these two types of RNA-associated proteins

  13. RNA-Mediated Gene Duplication and Retroposons: Retrogenes, LINEs, SINEs, and Sequence Specificity

    Science.gov (United States)

    2013-01-01

    A substantial number of “retrogenes” that are derived from the mRNA of various intron-containing genes have been reported. A class of mammalian retroposons, long interspersed element-1 (LINE1, L1), has been shown to be involved in the reverse transcription of retrogenes (or processed pseudogenes) and non-autonomous short interspersed elements (SINEs). The 3′-end sequences of various SINEs originated from a corresponding LINE. As the 3′-untranslated regions of several LINEs are essential for retroposition, these LINEs presumably require “stringent” recognition of the 3′-end sequence of the RNA template. However, the 3′-ends of mammalian L1s do not exhibit any similarity to SINEs, except for the presence of 3′-poly(A) repeats. Since the 3′-poly(A) repeats of L1 and Alu SINE are critical for their retroposition, L1 probably recognizes the poly(A) repeats, thereby mobilizing not only Alu SINE but also cytosolic mRNA. Many flowering plants only harbor L1-clade LINEs and a significant number of SINEs with poly(A) repeats, but no homology to the LINEs. Moreover, processed pseudogenes have also been found in flowering plants. I propose that the ancestral L1-clade LINE in the common ancestor of green plants may have recognized a specific RNA template, with stringent recognition then becoming relaxed during the course of plant evolution. PMID:23984183

  14. [Effect of opioid receptors on acute stress-induced changes in recognition memory].

    Science.gov (United States)

    Liu, Ying; Wu, Yu-Wei; Qian, Zhao-Qiang; Yan, Cai-Fang; Fan, Ka-Min; Xu, Jin-Hui; Li, Xiao; Liu, Zhi-Qiang

    2016-12-25

    Although ample evidence has shown that acute stress impairs memory, the influences of acute stress on different phases of memory, such as acquisition, consolidation and retrieval, are different. Experimental data from both human and animals support that endogenous opioid system plays a role in stress, as endogenous opioid release is increased and opioid receptors are activated during stress experience. On the other hand, endogenous opioid system mediates learning and memory. The aim of the present study was to investigate the effect of acute forced swimming stress on recognition memory of C57 mice and the role of opioid receptors in this process by using a three-day pattern of new object recognition task. The results showed that 15-min acute forced swimming damaged the retrieval of recognition memory, but had no effect on acquisition and consolidation of recognition memory. No significant change of object recognition memory was found in mice that were given naloxone, an opioid receptor antagonist, by intraperitoneal injection. But intraperitoneal injection of naloxone before forced swimming stress could inhibit the impairment of recognition memory retrieval caused by forced swimming stress. The results of real-time PCR showed that acute forced swimming decreased the μ opioid receptor mRNA levels in whole brain and hippocampus, while the injection of naloxone before stress could reverse this change. These results suggest that acute stress may impair recognition memory retrieval via opioid receptors.

  15. Analysis and recognition of 5 ' UTR intron splice sites in human pre-mRNA

    DEFF Research Database (Denmark)

    Eden, E.; Brunak, Søren

    2004-01-01

    Prediction of splice sites in non-coding regions of genes is one of the most challenging aspects of gene structure recognition. We perform a rigorous analysis of such splice sites embedded in human 5' untranslated regions (UTRs), and investigate correlations between this class of splice sites and...

  16. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; McConnell, Erin M; Chang, Yangyang; Brennan, John D; Li, Yingfu

    2018-03-26

    Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  18. Neural Mechanisms and Information Processing in Recognition Systems

    Directory of Open Access Journals (Sweden)

    Mamiko Ozaki

    2014-10-01

    Full Text Available Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.

  19. The European Regulatory Environment of RNA-Based Vaccines.

    Science.gov (United States)

    Hinz, Thomas; Kallen, Kajo; Britten, Cedrik M; Flamion, Bruno; Granzer, Ulrich; Hoos, Axel; Huber, Christoph; Khleif, Samir; Kreiter, Sebastian; Rammensee, Hans-Georg; Sahin, Ugur; Singh-Jasuja, Harpreet; Türeci, Özlem; Kalinke, Ulrich

    2017-01-01

    A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.

  20. Measuring RNA-Ligand Interactions with Microscale Thermophoresis.

    Science.gov (United States)

    Moon, Michelle H; Hilimire, Thomas A; Sanders, Allix M; Schneekloth, John S

    2018-01-31

    In recent years, there has been dramatic growth in the study of RNA. RNA has gone from being known as an intermediate in the central dogma of molecular biology to a molecule with a large diversity of structure and function that is involved in all aspects of biology. As new functions are rapidly discovered, it has become clear that there is a need for RNA-targeting small molecule probes to investigate RNA biology and clarify the potential for therapeutics based on RNA-small molecule interactions. While a host of techniques exist to measure RNA-small molecule interactions, many of these have drawbacks that make them intractable for routine use and are often not broadly applicable. A newer technology called microscale thermophoresis (MST), which measures the directed migration of a molecule and/or molecule-ligand complex along a temperature gradient, can be used to measure binding affinities using very small amounts of sample. The high sensitivity of this technique enables measurement of affinity constants in the nanomolar and micromolar range. Here, we demonstrate how MST can be used to study a range of biologically relevant RNA interactions, including peptide-RNA interactions, RNA-small molecule interactions, and displacement of an RNA-bound peptide by a small molecule.

  1. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  2. Nerve growth factor mRNA in brain: localization by in situ hybridization

    International Nuclear Information System (INIS)

    Rennert, P.D.; Heinrich, G.

    1986-01-01

    Nerve Growth Factor is a 118 amino acid polypeptide that plays an important role in the differentiation and survival of neurons. The recent discovery that a mRNA that encodes beta Nerve Growth Factor is present in brain suggests that the Nerve Growth Factor gene may not only regulate gene expression of peripheral but also of central neurons. To identify the site(s) of Nerve Growth Factor mRNA production in the brain and to determine which cells express the Nerve Growth Factor gene, the technique of in situ hybridization was employed. A 32P-labeled RNA probe complementary to Nerve Growth Factor mRNA hybridized to cells in the stratum granulosum of the dentate gyrus and the stratum pyramidale of the hippocampus. These observations identify for the first time cellular sites of Nerve Growth Factor gene expression in the central nervous system, and suggest that Nerve Growth Factor mRNA is produced by neurons

  3. Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing

    Directory of Open Access Journals (Sweden)

    Delphine Trochet

    2016-01-01

    Full Text Available Dynamin 2 (DNM2 is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.

  4. RNA search engines empower the bacterial intranet.

    Science.gov (United States)

    Dendooven, Tom; Luisi, Ben F

    2017-08-15

    RNA acts not only as an information bearer in the biogenesis of proteins from genes, but also as a regulator that participates in the control of gene expression. In bacteria, small RNA molecules (sRNAs) play controlling roles in numerous processes and help to orchestrate complex regulatory networks. Such processes include cell growth and development, response to stress and metabolic change, transcription termination, cell-to-cell communication, and the launching of programmes for host invasion. All these processes require recognition of target messenger RNAs by the sRNAs. This review summarizes recent results that have provided insights into how bacterial sRNAs are recruited into effector ribonucleoprotein complexes that can seek out and act upon target transcripts. The results hint at how sRNAs and their protein partners act as pattern-matching search engines that efficaciously regulate gene expression, by performing with specificity and speed while avoiding off-target effects. The requirements for efficient searches of RNA patterns appear to be common to all domains of life. © 2017 The Author(s).

  5. Pattern recognition

    CERN Document Server

    Theodoridis, Sergios

    2003-01-01

    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  6. Sequence-specific RNA Photocleavage by Single-stranded DNA in Presence of Riboflavin

    Science.gov (United States)

    Zhao, Yongyun; Chen, Gangyi; Yuan, Yi; Li, Na; Dong, Juan; Huang, Xin; Cui, Xin; Tang, Zhuo

    2015-10-01

    Constant efforts have been made to develop new method to realize sequence-specific RNA degradation, which could cause inhibition of the expression of targeted gene. Herein, by using an unmodified short DNA oligonucleotide for sequence recognition and endogenic small molecue, vitamin B2 (riboflavin) as photosensitizer, we report a simple strategy to realize the sequence-specific photocleavage of targeted RNA. The DNA strand is complimentary to the target sequence to form DNA/RNA duplex containing a G•U wobble in the middle. The cleavage reaction goes through oxidative elimination mechanism at the nucleoside downstream of U of the G•U wobble in duplex to obtain unnatural RNA terminal, and the whole process is under tight control by using light as switch, which means the cleavage could be carried out according to specific spatial and temporal requirements. The biocompatibility of this method makes the DNA strand in combination with riboflavin a promising molecular tool for RNA manipulation.

  7. Canonical A-to-I and C-to-U RNA editing is enriched at 3'UTRs and microRNA target sites in multiple mouse tissues.

    Directory of Open Access Journals (Sweden)

    Tongjun Gu

    Full Text Available RNA editing is a process that modifies RNA nucleotides and changes the efficiency and fidelity of the central dogma. Enzymes that catalyze RNA editing are required for life, and defects in RNA editing are associated with many diseases. Recent advances in sequencing have enabled the genome-wide identification of RNA editing sites in mammalian transcriptomes. Here, we demonstrate that canonical RNA editing (A-to-I and C-to-U occurs in liver, white adipose, and bone tissues of the laboratory mouse, and we show that apparent non-canonical editing (all other possible base substitutions is an artifact of current high-throughput sequencing technology. Further, we report that high-confidence canonical RNA editing sites can cause non-synonymous amino acid changes and are significantly enriched in 3' UTRs, specifically at microRNA target sites, suggesting both regulatory and functional consequences for RNA editing.

  8. Potyviral VPg enhances viral RNA Translation and inhibits reporter mRNA translation in planta.

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I; Mäkinen, Kristiina

    2011-09-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5' untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation.

  9. Potyviral VPg Enhances Viral RNA Translation and Inhibits Reporter mRNA Translation In Planta▿

    Science.gov (United States)

    Eskelin, Katri; Hafrén, Anders; Rantalainen, Kimmo I.; Mäkinen, Kristiina

    2011-01-01

    Viral protein genome-linked (VPg) plays a central role in several stages of potyvirus infection. This study sought to answer questions about the role of Potato virus A (PVA; genus Potyvirus) VPg in viral and host RNA expression. When expressed in Nicotiana benthamiana leaves in trans, a dual role of VPg in translation is observed. It repressed the expression of monocistronic luciferase (luc) mRNA and simultaneously induced a significant upregulation in the expression of both replicating and nonreplicating PVA RNAs. This enhanced viral gene expression was due at least to the 5′ untranslated region (UTR) of PVA RNA, eukaryotic initiation factors 4E and iso 4E [eIF4E/eIF(iso)4E], and the presence of a sufficient amount of VPg. Coexpression of VPg with viral RNA increased the viral RNA amount, which was not the case with the monocistronic mRNA. Both mutations at certain lysine residues in PVA VPg and eIF4E/eIF(iso)4E depletion reduced its ability to upregulate the viral RNA expression. These modifications were also involved in VPg-mediated downregulation of monocistronic luc expression. These results suggest that VPg can titrate eIF4Es from capped monocistronic RNAs. Because VPg-mediated enhancement of viral gene expression required eIF4Es, it is possible that VPg directs eIF4Es to promote viral RNA expression. From this study it is evident that VPg can serve as a specific regulator of PVA expression by boosting the viral RNA amounts as well as the accumulation of viral translation products. Such a mechanism could function to protect viral RNA from being degraded and to secure efficient production of coat protein (CP) for virion formation. PMID:21697470

  10. Efficient reverse transcription using locked nucleic acid nucleotides towards the evolution of nuclease resistant RNA aptamers

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Edwards, Stacey L

    2012-01-01

    We found that SuperScript® III Reverse Transcriptase is an efficient enzyme for the recognition of LNA nucleotides, making it a prime candidate to be used in de novo selection of LNA containing RNA aptamers....

  11. 8 CFR 292.2 - Organizations qualified for recognition; requests for recognition; withdrawal of recognition...

    Science.gov (United States)

    2010-01-01

    ...; requests for recognition; withdrawal of recognition; accreditation of representatives; roster. 292.2...; withdrawal of recognition; accreditation of representatives; roster. (a) Qualifications of organizations. A non-profit religious, charitable, social service, or similar organization established in the United...

  12. Theiler's virus RNA and protein synthesis in the central nervous system of demyelinating mice

    International Nuclear Information System (INIS)

    Cash, E.; Chamorro, M.; Brahic, M.

    1985-01-01

    The authors studied Theiler's virus RNA and capsid protein synthesis in sections of mouse spinal cord using in situ hybridization coupled to immunoperoxidase. They found that the majority of infected cells contain 100 to 500 viral genomes and no detectable capsid antigens. Similarly, baby hamster kidney (BHK) cells, which are permissive to Theiler's virus, do not synthesize capsid if they contain less than 1000 viral genomes. The results demonstrate that virus multiplication is restricted in vivo at the level of RNA replication. They suggest that RNA restriction is sufficient to explain the lack of capsid antigen synthesis

  13. Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling

    Science.gov (United States)

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, Jongone; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-06-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single-molecule protein sequencing is a critical step in the search for protein biomarkers. Here, we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules, then measuring the electron tunnelling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic `fingerprints' associated with each binding motif. With this recognition tunnelling technique, we are able to identify D and L enantiomers, a methylated amino acid, isobaric isomers and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore.

  14. DNA?RNA: What Do Students Think the Arrow Means?

    Science.gov (United States)

    Wright, L. Kate; Fisk, J. Nick; Newman, Dina L.

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein…

  15. Extended Target Recognition in Cognitive Radar Networks

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2010-11-01

    Full Text Available We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR based sequential hypothesis testing (SHT framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS. Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  16. Analytical Performances of Human Immunodeficiency Virus Type 1 RNA-Based Amplix® Real-Time PCR Platform for HIV-1 RNA Quantification

    Directory of Open Access Journals (Sweden)

    Christian Diamant Mossoro-Kpinde

    2016-01-01

    Full Text Available Objectives. We evaluated the performances of Amplix real-time PCR platform developed by Biosynex (Strasbourg, France, combining automated station extraction (Amplix station 16 Dx and real-time PCR (Amplix NG, for quantifying plasma HIV-1 RNA by lyophilized HIV-1 RNA-based Amplix reagents targeting gag and LTR, using samples from HIV-1-infected adults from Central African Republic. Results. Amplix real-time PCR assay showed low limit of detection (28 copies/mL, across wide dynamic range (1.4–10 log copies/mL, 100% sensitivity and 99% specificity, high reproducibility, and accuracy with mean bias < 5%. The assay showed excellent correlations and concordance of 95.3% with the reference HIV-1 RNA load assay (Roche, with mean absolute bias of +0.097 log copies/mL by Bland-Altman analysis. The assay was able to detect and quantify the most prevalent HIV-1 subtype strains and the majority of non-B subtypes, CRFs of HIV-1 group M, and HIV-1 groups N and O circulating in Central Africa. The Amplix assay showed 100% sensitivity and 99.6% specificity to diagnose virological failure in clinical samples from antiretroviral drug-experienced patients. Conclusions. The HIV-1 RNA-based Amplix real-time PCR platform constitutes sensitive and reliable system for clinical monitoring of HIV-1 RNA load in HIV-1-infected children and adults, particularly adapted to intermediate laboratory facilities in sub-Saharan Africa.

  17. Speech recognition systems on the Cell Broadband Engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Jones, H; Vaidya, S; Perrone, M; Tydlitat, B; Nanda, A

    2007-04-20

    In this paper we describe our design, implementation, and first results of a prototype connected-phoneme-based speech recognition system on the Cell Broadband Engine{trademark} (Cell/B.E.). Automatic speech recognition decodes speech samples into plain text (other representations are possible) and must process samples at real-time rates. Fortunately, the computational tasks involved in this pipeline are highly data-parallel and can receive significant hardware acceleration from vector-streaming architectures such as the Cell/B.E. Identifying and exploiting these parallelism opportunities is challenging, but also critical to improving system performance. We observed, from our initial performance timings, that a single Cell/B.E. processor can recognize speech from thousands of simultaneous voice channels in real time--a channel density that is orders-of-magnitude greater than the capacity of existing software speech recognizers based on CPUs (central processing units). This result emphasizes the potential for Cell/B.E.-based speech recognition and will likely lead to the future development of production speech systems using Cell/B.E. clusters.

  18. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    OpenAIRE

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Enjuanes, Luis; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. Th...

  19. Likelihood ratio sequential sampling models of recognition memory.

    Science.gov (United States)

    Osth, Adam F; Dennis, Simon; Heathcote, Andrew

    2017-02-01

    The mirror effect - a phenomenon whereby a manipulation produces opposite effects on hit and false alarm rates - is benchmark regularity of recognition memory. A likelihood ratio decision process, basing recognition on the relative likelihood that a stimulus is a target or a lure, naturally predicts the mirror effect, and so has been widely adopted in quantitative models of recognition memory. Glanzer, Hilford, and Maloney (2009) demonstrated that likelihood ratio models, assuming Gaussian memory strength, are also capable of explaining regularities observed in receiver-operating characteristics (ROCs), such as greater target than lure variance. Despite its central place in theorising about recognition memory, however, this class of models has not been tested using response time (RT) distributions. In this article, we develop a linear approximation to the likelihood ratio transformation, which we show predicts the same regularities as the exact transformation. This development enabled us to develop a tractable model of recognition-memory RT based on the diffusion decision model (DDM), with inputs (drift rates) provided by an approximate likelihood ratio transformation. We compared this "LR-DDM" to a standard DDM where all targets and lures receive their own drift rate parameters. Both were implemented as hierarchical Bayesian models and applied to four datasets. Model selection taking into account parsimony favored the LR-DDM, which requires fewer parameters than the standard DDM but still fits the data well. These results support log-likelihood based models as providing an elegant explanation of the regularities of recognition memory, not only in terms of choices made but also in terms of the times it takes to make them. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.

    Science.gov (United States)

    Han, S; Arvai, A S; Clancy, S B; Tainer, J A

    2001-01-05

    Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors

  1. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  2. Advances in targeted delivery of small interfering RNA using simple bioconjugates

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Kjems, Jørgen; Sorensen, Kristine Rothaus

    2014-01-01

    with a targeting moiety, in a simple bioconjugate construct. We discuss the use of different types of targeting moieties, as well as the different conjugation strategies employed for preparing these bioconjugate constructs that deliver the siRNA to target cells. We focus especially on the in-built or passive......Introduction: Development of drugs based on RNA interference by small interfering RNA (siRNA) has been progressing slowly due to a number of challenges associated with the in vivo behavior of siRNA. A central problem is controlling siRNA delivery to specific cell types. Here, we review existing...... literature on one type of strategy for solving the issue of cell-specific delivery of siRNA, namely delivering the siRNA as part of simple bioconjugate constructs. Areas covered: This review presents current experience from strategies aimed at targeting siRNA to specific cell types, by associating the siRNA...

  3. Innate immune restriction and antagonism of viral RNA lacking 2'-O methylation

    Energy Technology Data Exchange (ETDEWEB)

    Hyde, Jennifer L. [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Diamond, Michael S., E-mail: diamond@borcim.wustl.edu [Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110 (United States); Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 (United States); Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110 (United States); The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110 (United States)

    2015-05-15

    N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m{sup 7}GpppN; cap 1, m{sup 7}GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.

  4. A Contemporary, Laboratory-Intensive Course on Messenger RNA Transcription and Processing

    Science.gov (United States)

    Carson, Sue; Miller, Heather

    2012-01-01

    Messenger ribonucleic acid (mRNA) plays a pivotal role in the central dogma of molecular biology. Importantly, molecular events occurring during and after mRNA synthesis have the potential to create multiple proteins from one gene, leading to some of the remarkable protein diversity that genomes hold. The North Carolina State University…

  5. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    Czech Academy of Sciences Publication Activity Database

    Krepl, Miroslav; Clery, A.; Blatter, M.; Allain, F.H.T.; Šponer, Jiří

    2016-01-01

    Roč. 44, č. 13 (2016), s. 6452-6470 ISSN 0305-1048 Institutional support: RVO:68081707 Keywords : molecular- dynamics simulations * particle mesh ewald * pre-ribosomal-rna Subject RIV: BO - Biophysics Impact factor: 10.162, year: 2016

  6. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  7. Hypothesis: A Role for Fragile X Mental Retardation Protein in Mediating and Relieving MicroRNA-Guided Translational Repression?

    Directory of Open Access Journals (Sweden)

    Isabelle Plante

    2006-01-01

    Full Text Available MicroRNA (miRNA-guided messenger RNA (mRNA translational repression is believed to be mediated by effector miRNA-containing ribonucleoprotein (miRNP complexes harboring fragile X mental retardation protein (FMRP. Recent studies documented the nucleic acid chaperone properties of FMRP and characterized its role and importance in RNA silencing in mammalian cells. We propose a model in which FMRP could facilitate miRNA assembly on target mRNAs in a process involving recognition of G quartet structures. Functioning within a duplex miRNP, FMRP may also mediate mRNA targeting through a strand exchange mechanism, in which the miRNA* of the duplex is swapped for the mRNA. Furthermore, FMRP may contribute to the relief of miRNA-guided mRNA repression through a reverse strand exchange reaction, possibly initiated by a specific cellular signal, that would liberate the mRNA for translation. Suboptimal utilization of miRNAs may thus account for some of themolecular defects in patients with the fragile X syndrome.

  8. DNA/RNA hybrid substrates modulate the catalytic activity of purified AID.

    Science.gov (United States)

    Abdouni, Hala S; King, Justin J; Ghorbani, Atefeh; Fifield, Heather; Berghuis, Lesley; Larijani, Mani

    2018-01-01

    Activation-induced cytidine deaminase (AID) converts cytidine to uridine at Immunoglobulin (Ig) loci, initiating somatic hypermutation and class switching of antibodies. In vitro, AID acts on single stranded DNA (ssDNA), but neither double-stranded DNA (dsDNA) oligonucleotides nor RNA, and it is believed that transcription is the in vivo generator of ssDNA targeted by AID. It is also known that the Ig loci, particularly the switch (S) regions targeted by AID are rich in transcription-generated DNA/RNA hybrids. Here, we examined the binding and catalytic behavior of purified AID on DNA/RNA hybrid substrates bearing either random sequences or GC-rich sequences simulating Ig S regions. If substrates were made up of a random sequence, AID preferred substrates composed entirely of DNA over DNA/RNA hybrids. In contrast, if substrates were composed of S region sequences, AID preferred to mutate DNA/RNA hybrids over substrates composed entirely of DNA. Accordingly, AID exhibited a significantly higher affinity for binding DNA/RNA hybrid substrates composed specifically of S region sequences, than any other substrates composed of DNA. Thus, in the absence of any other cellular processes or factors, AID itself favors binding and mutating DNA/RNA hybrids composed of S region sequences. AID:DNA/RNA complex formation and supporting mutational analyses suggest that recognition of DNA/RNA hybrids is an inherent structural property of AID. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Central Dogma Goes Digital.

    Science.gov (United States)

    Lin, Yihan; Elowitz, Michael B

    2016-03-17

    In this issue of Molecular Cell, Tay and colleagues (Albayrak et al., 2016) describe a new technique to digitally quantify the numbers of protein and mRNA in the same mammalian cell, providing a new way to look at the central dogma of molecular biology. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Building the library of RNA 3D nucleotide conformations using the clustering approach

    Directory of Open Access Journals (Sweden)

    Zok Tomasz

    2015-09-01

    Full Text Available An increasing number of known RNA 3D structures contributes to the recognition of various RNA families and identification of their features. These tasks are based on an analysis of RNA conformations conducted at different levels of detail. On the other hand, the knowledge of native nucleotide conformations is crucial for structure prediction and understanding of RNA folding. However, this knowledge is stored in structural databases in a rather distributed form. Therefore, only automated methods for sampling the space of RNA structures can reveal plausible conformational representatives useful for further analysis. Here, we present a machine learning-based approach to inspect the dataset of RNA three-dimensional structures and to create a library of nucleotide conformers. A median neural gas algorithm is applied to cluster nucleotide structures upon their trigonometric description. The clustering procedure is two-stage: (i backbone- and (ii ribose-driven. We show the resulting library that contains RNA nucleotide representatives over the entire data, and we evaluate its quality by computing normal distribution measures and average RMSD between data points as well as the prototype within each cluster.

  11. Structural imprints in vivo decode RNA regulatory mechanisms.

    Science.gov (United States)

    Spitale, Robert C; Flynn, Ryan A; Zhang, Qiangfeng Cliff; Crisalli, Pete; Lee, Byron; Jung, Jong-Wha; Kuchelmeister, Hannes Y; Batista, Pedro J; Torre, Eduardo A; Kool, Eric T; Chang, Howard Y

    2015-03-26

    Visualizing the physical basis for molecular behaviour inside living cells is a great challenge for biology. RNAs are central to biological regulation, and the ability of RNA to adopt specific structures intimately controls every step of the gene expression program. However, our understanding of physiological RNA structures is limited; current in vivo RNA structure profiles include only two of the four nucleotides that make up RNA. Here we present a novel biochemical approach, in vivo click selective 2'-hydroxyl acylation and profiling experiment (icSHAPE), which enables the first global view, to our knowledge, of RNA secondary structures in living cells for all four bases. icSHAPE of the mouse embryonic stem cell transcriptome versus purified RNA folded in vitro shows that the structural dynamics of RNA in the cellular environment distinguish different classes of RNAs and regulatory elements. Structural signatures at translational start sites and ribosome pause sites are conserved from in vitro conditions, suggesting that these RNA elements are programmed by sequence. In contrast, focal structural rearrangements in vivo reveal precise interfaces of RNA with RNA-binding proteins or RNA-modification sites that are consistent with atomic-resolution structural data. Such dynamic structural footprints enable accurate prediction of RNA-protein interactions and N(6)-methyladenosine (m(6)A) modification genome wide. These results open the door for structural genomics of RNA in living cells and reveal key physiological structures controlling gene expression.

  12. Structures of a putative RNA 5-methyluridine methyltransferase, Thermus thermophilus TTHA1280, and its complex with S-adenosyl-l-homocysteine

    International Nuclear Information System (INIS)

    Pioszak, Augen A.; Murayama, Kazutaka; Nakagawa, Noriko; Ebihara, Akio; Kuramitsu, Seiki; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2005-01-01

    Three structures of a putative RNA 5-methyluridine methyltransferase from T. thermophilus, including its complex with S-adenosyl-l-homocysteine, are presented. The structures reveal the mode of cofactor binding, architecture of the putative active site, and the presence of a deep cleft adjacent to the active site that may bind RNA. The Thermus thermophilus hypothetical protein TTHA1280 belongs to a family of predicted S-adenosyl-l-methionine (AdoMet) dependent RNA methyltransferases (MTases) present in many bacterial and archaeal species. Inspection of amino-acid sequence motifs common to class I Rossmann-fold-like MTases suggested a specific role as an RNA 5-methyluridine MTase. Selenomethionine (SeMet) labelled and native versions of the protein were expressed, purified and crystallized. Two crystal forms of the SeMet-labelled apoprotein were obtained: SeMet-ApoI and SeMet-ApoII. Cocrystallization of the native protein with S-adenosyl-l-homocysteine (AdoHcy) yielded a third crystal form, Native-AdoHcy. The SeMet-ApoI structure was solved by the multiple anomalous dispersion method and refined at 2.55 Å resolution. The SeMet-ApoII and Native-AdoHcy structures were solved by molecular replacement and refined at 1.80 and 2.60 Å, respectively. TTHA1280 formed a homodimer in the crystals and in solution. Each subunit folds into a three-domain structure composed of a small N-terminal PUA domain, a central α/β-domain and a C-terminal Rossmann-fold-like MTase domain. The three domains form an overall clamp-like shape, with the putative active site facing a deep cleft. The architecture of the active site is consistent with specific recognition of uridine and catalysis of methyl transfer to the 5-carbon position. The cleft is suitable in size and charge distribution for binding single-stranded RNA.

  13. Analysis of the substrate recognition state of TDP-43 to single-stranded DNA using fluorescence correlation spectroscopy

    Directory of Open Access Journals (Sweden)

    Akira Kitamura

    2018-07-01

    Full Text Available Normal function and abnormal aggregation of transactivation response (TAR DNA/RNA-binding protein 43 kDa (TDP-43 are directly associated with the lethal genetic diseases: cystic fibrosis, amyotrophic lateral sclerosis (ALS, and frontotemporal lobar degeneration (FTLD. The binding of TDP-43 to single-stranded DNA (ssDNA or RNA is involved in transcriptional repression, regulation of RNA splicing, and RNA stabilization. Equilibrium dissociation constants (Kd of TDP-43 and ssDNA or RNA have been determined using various methods; however, methods that can measure Kd with high sensitivity in a short time using a small amount of TDP-43 in solution would be advantageous. Here, in order to determine the Kd of TDP-43 and fluorescence-labeled ssDNA as well as the binding stoichiometry, we use fluorescence correlation spectroscopy (FCS, which detects the slowed diffusion of molecular interactions in solution with single-molecule sensitivity, in addition to electrophoretic mobility shift assay (EMSA. Using tandem affinity chromatography of TDP-43 dually tagged with glutathione-S-transferase and poly-histidine tags, highly purified protein was obtained. FCS successfully detected specific interaction between purified TDP-43 and TG ssDNA repeats, with a Kd in the nanomolar range. The Kd of the TDP-43 mutant was not different from the wild type, although mutant oligomers, which did not bind ssDNA, were observed. Analysis of the fluorescence brightness per dimerized TDP-43/ssDNA complex was used to evaluate their binding stoichiometry. The results suggest that an assay combining FCS and EMSA can precisely analyze ssDNA recognition mechanisms, and that FCS may be applied for the rapid and quantitative determination of the interaction strength between TDP-43 and ssDNA or RNA. These methods will aid in the elucidation of the substrate recognition mechanism of ALS- and FTLD-associated variants of TDP-43.

  14. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.

    Science.gov (United States)

    Anders, Carolin; Niewoehner, Ole; Duerst, Alessia; Jinek, Martin

    2014-09-25

    The CRISPR-associated protein Cas9 is an RNA-guided endonuclease that cleaves double-stranded DNA bearing sequences complementary to a 20-nucleotide segment in the guide RNA. Cas9 has emerged as a versatile molecular tool for genome editing and gene expression control. RNA-guided DNA recognition and cleavage strictly require the presence of a protospacer adjacent motif (PAM) in the target DNA. Here we report a crystal structure of Streptococcus pyogenes Cas9 in complex with a single-molecule guide RNA and a target DNA containing a canonical 5'-NGG-3' PAM. The structure reveals that the PAM motif resides in a base-paired DNA duplex. The non-complementary strand GG dinucleotide is read out via major-groove interactions with conserved arginine residues from the carboxy-terminal domain of Cas9. Interactions with the minor groove of the PAM duplex and the phosphodiester group at the +1 position in the target DNA strand contribute to local strand separation immediately upstream of the PAM. These observations suggest a mechanism for PAM-dependent target DNA melting and RNA-DNA hybrid formation. Furthermore, this study establishes a framework for the rational engineering of Cas9 enzymes with novel PAM specificities.

  15. Preferences of AAA/AAG codon recognition by modified nucleosides, τm5s2U34 and t6A37 present in tRNALys.

    Science.gov (United States)

    Sonawane, Kailas D; Kamble, Asmita S; Fandilolu, Prayagraj M

    2017-12-27

    Deficiency of 5-taurinomethyl-2-thiouridine, τm 5 s 2 U at the 34th 'wobble' position in tRNA Lys causes MERRF (Myoclonic Epilepsy with Ragged Red Fibers), a neuromuscular disease. This modified nucleoside of mt tRNA Lys , recognizes AAA/AAG codons during protein biosynthesis process. Its preference to identify cognate codons has not been studied at the atomic level. Hence, multiple MD simulations of various molecular models of anticodon stem loop (ASL) of mt tRNA Lys in presence and absence of τm 5 s 2 U 34 and N 6 -threonylcarbamoyl adenosine (t 6 A 37 ) along with AAA and AAG codons have been accomplished. Additional four MD simulations of multiple ASL mt tRNA Lys models in the context of ribosomal A-site residues have also been performed to investigate the role of A-site in recognition of AAA/AAG codons. MD simulation results show that, ASL models in presence of τm 5 s 2 U 34 and t 6 A 37 with codons AAA/AAG are more stable than the ASL lacking these modified bases. MD trajectories suggest that τm 5 s 2 U recognizes the codons initially by 'wobble' hydrogen bonding interactions, and then tRNA Lys might leave the explicit codon by a novel 'single' hydrogen bonding interaction in order to run the protein biosynthesis process smoothly. We propose this model as the 'Foot-Step Model' for codon recognition, in which the single hydrogen bond plays a crucial role. MD simulation results suggest that, tRNA Lys with τm 5 s 2 U and t 6 A recognizes AAA codon more preferably than AAG. Thus, these results reveal the consequences of τm 5 s 2 U and t 6 A in recognition of AAA/AAG codons in mitochondrial disease, MERRF.

  16. Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy

    Directory of Open Access Journals (Sweden)

    Marcheggiani Stefania

    2008-10-01

    Full Text Available Abstract Background Microbiological indicators are commonly used in the assessment of public health risks associated with fecal contamination of freshwater ecosystems. Sediments are a reservoir of microorganisms, and can thus provide information on past pollution events, not obtainable through the testing of surface water. Moreover, pathogens present in sediment may represent future threats to human health. Clostridium perfringens, a typical colonizer of sediments, has been suggested as an alternative indicator of fecal pollution. In order to be suitable for such purpose, the microorganism should be widely distributed in contaminated environments. The objective of this study was thus to determine the composition of the anaerobic community in sediment samples of the lower Tiber basin, in central Italy, through a combined approach involving granulometric analysis of sediment samples, as well as a microbiological and molecular (16S rRNA analysis of strains. Results Granulometry showed a similar, clayey sediment composition, in most sampling sites. The microbiological method, employing, an adaptation of the standard method, proved to be effective in isolating anaerobic bacteria from the environmental matrix for the purpose of genetic analysis. Eighty-three strains of bacteria were isolated and the partial 16S rRNA gene sequenced. While biochemical analysis detected only C. perfringens strains, phylogenetic analysis indicated the presence of three clusters: C. perfringens, C. bifermentans and B. cereus, comprising eight taxa. C. perfringens, the commonest in almost all sediment sampling sites, was present in all sites, and in both seasons (seasonal sampling was carried out only along the Tiber and Aniene rivers. None of the described genetic profiles showed complete similarity with GenBank sequences. Conclusion The study underlines the value of C. perfringens as an alternative microbial indicator of fecal contamination in river sediments. This is

  17. Microbiological and 16S rRNA analysis of sulphite-reducing clostridia from river sediments in central Italy.

    Science.gov (United States)

    Marcheggiani, Stefania; Iaconelli, Marcello; D'angelo, Annamaria; Pierdominici, Elio; La Rosa, Giuseppina; Muscillo, Michele; Equestre, Michele; Mancini, Laura

    2008-10-08

    Microbiological indicators are commonly used in the assessment of public health risks associated with fecal contamination of freshwater ecosystems. Sediments are a reservoir of microorganisms, and can thus provide information on past pollution events, not obtainable through the testing of surface water. Moreover, pathogens present in sediment may represent future threats to human health. Clostridium perfringens, a typical colonizer of sediments, has been suggested as an alternative indicator of fecal pollution. In order to be suitable for such purpose, the microorganism should be widely distributed in contaminated environments. The objective of this study was thus to determine the composition of the anaerobic community in sediment samples of the lower Tiber basin, in central Italy, through a combined approach involving granulometric analysis of sediment samples, as well as a microbiological and molecular (16S rRNA) analysis of strains. Granulometry showed a similar, clayey sediment composition, in most sampling sites. The microbiological method, employing, an adaptation of the standard method, proved to be effective in isolating anaerobic bacteria from the environmental matrix for the purpose of genetic analysis. Eighty-three strains of bacteria were isolated and the partial 16S rRNA gene sequenced. While biochemical analysis detected only C. perfringens strains, phylogenetic analysis indicated the presence of three clusters: C. perfringens, C. bifermentans and B. cereus, comprising eight taxa. C. perfringens, the commonest in almost all sediment sampling sites, was present in all sites, and in both seasons (seasonal sampling was carried out only along the Tiber and Aniene rivers). None of the described genetic profiles showed complete similarity with GenBank sequences. The study underlines the value of C. perfringens as an alternative microbial indicator of fecal contamination in river sediments. This is supported by the bacterium's presence in all sampling sites

  18. TIA-1 RRM23 binding and recognition of target oligonucleotides.

    Science.gov (United States)

    Waris, Saboora; García-Mauriño, Sofía M; Sivakumaran, Andrew; Beckham, Simone A; Loughlin, Fionna E; Gorospe, Myriam; Díaz-Moreno, Irene; Wilce, Matthew C J; Wilce, Jacqueline A

    2017-05-05

    TIA-1 (T-cell restricted intracellular antigen-1) is an RNA-binding protein involved in splicing and translational repression. It mainly interacts with RNA via its second and third RNA recognition motifs (RRMs), with specificity for U-rich sequences directed by RRM2. It has recently been shown that RRM3 also contributes to binding, with preferential binding for C-rich sequences. Here we designed UC-rich and CU-rich 10-nt sequences for engagement of both RRM2 and RRM3 and demonstrated that the TIA-1 RRM23 construct preferentially binds the UC-rich RNA ligand (5΄-UUUUUACUCC-3΄). Interestingly, this binding depends on the presence of Lys274 that is C-terminal to RRM3 and binding to equivalent DNA sequences occurs with similar affinity. Small-angle X-ray scattering was used to demonstrate that, upon complex formation with target RNA or DNA, TIA-1 RRM23 adopts a compact structure, showing that both RRMs engage with the target 10-nt sequences to form the complex. We also report the crystal structure of TIA-1 RRM2 in complex with DNA to 2.3 Å resolution providing the first atomic resolution structure of any TIA protein RRM in complex with oligonucleotide. Together our data support a specific mode of TIA-1 RRM23 interaction with target oligonucleotides consistent with the role of TIA-1 in binding RNA to regulate gene expression. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Dysfunctional role of parietal lobe during self-face recognition in schizophrenia.

    Science.gov (United States)

    Yun, Je-Yeon; Hur, Ji-Won; Jung, Wi Hoon; Jang, Joon Hwan; Youn, Tak; Kang, Do-Hyung; Park, Sohee; Kwon, Jun Soo

    2014-01-01

    Anomalous sense of self is central to schizophrenia yet difficult to demonstrate empirically. The present study examined the effective neural network connectivity underlying self-face recognition in patients with schizophrenia (SZ) using [15O]H2O Positron Emission Tomography (PET) and Structural Equation Modeling. Eight SZ and eight age-matched healthy controls (CO) underwent six consecutive [15O]H2O PET scans during self-face (SF) and famous face (FF) recognition blocks, each of which was repeated three times. There were no behavioral performance differences between the SF and FF blocks in SZ. Moreover, voxel-based analyses of data from SZ revealed no significant differences in the regional cerebral blood flow (rCBF) levels between the SF and FF recognition conditions. Further effective connectivity analyses for SZ also showed a similar pattern of effective connectivity network across the SF and FF recognition. On the other hand, comparison of SF recognition effective connectivity network between SZ and CO demonstrated significantly attenuated effective connectivity strength not only between the right supramarginal gyrus and left inferior temporal gyrus, but also between the cuneus and right medial prefrontal cortex in SZ. These findings support a conceptual model that posits a causal relationship between disrupted self-other discrimination and attenuated effective connectivity among the right supramarginal gyrus, cuneus, and prefronto-temporal brain areas involved in the SF recognition network of SZ. © 2013.

  20. Selective blockade of microRNA processing by Lin-28

    Science.gov (United States)

    Viswanathan, Srinivas R.; Daley, George Q.; Gregory, Richard I.

    2012-01-01

    MicroRNAs (miRNAs) play critical roles in development, and dysregulation of miRNA expression has been observed in human malignancies. Recent evidence suggests that the processing of several primary miRNA transcripts (pri-miRNAs) is blocked post-transcriptionally in embryonic stem (ES) cells, embryonal carcinoma (EC) cells, and primary tumors. Here we show that Lin-28, a developmentally regulated RNA-binding protein, selectively blocks the processing of pri-let-7 miRNAs in embryonic cells. Using in vitro and in vivo studies, we demonstrate that Lin-28 is necessary and sufficient for blocking Microprocessor-mediated cleavage of pri-let-7 miRNAs. Our results identify Lin-28 as a negative regulator of miRNA biogenesis and suggest that Lin-28 may play a central role in blocking miRNA-mediated differentiation in stem cells and certain cancers. PMID:18292307

  1. Vocal Affect Recognition and Psychopathy: Converging Findings Across Traditional and Cluster Analytic Approaches to Assessing the Construct

    Science.gov (United States)

    Bagley, Amy D.; Abramowitz, Carolyn S.; Kosson, David S.

    2010-01-01

    Deficits in emotion processing have been widely reported to be central to psychopathy. However, few prior studies have examined vocal affect recognition in psychopaths, and these studies suffer from significant methodological limitations. Moreover, prior studies have yielded conflicting findings regarding the specificity of psychopaths’ affect recognition deficits. This study examined vocal affect recognition in 107 male inmates under conditions requiring isolated prosodic vs. semantic analysis of affective cues and compared subgroups of offenders identified via cluster analysis on vocal affect recognition. Psychopaths demonstrated deficits in vocal affect recognition under conditions requiring use of semantic cues and conditions requiring use of prosodic cues. Moreover, both primary and secondary psychopaths exhibited relatively similar emotional deficits in the semantic analysis condition compared to nonpsychopathic control participants. This study demonstrates that psychopaths’ vocal affect recognition deficits are not due to methodological limitations of previous studies and provides preliminary evidence that primary and secondary psychopaths exhibit generally similar deficits in vocal affect recognition. PMID:19413412

  2. Nonsense and sense suppression abilities of original and derivative Methanosarcina mazei pyrrolysyl-tRNA synthetase-tRNA(Pyl pairs in the Escherichia coli BL21(DE3 cell strain.

    Directory of Open Access Journals (Sweden)

    Keturah A Odoi

    Full Text Available Systematic studies of nonsense and sense suppression of the original and three derivative Methanosarcina mazei PylRS-tRNA(Pyl pairs and cross recognition between nonsense codons and various tRNA(Pyl anticodons in the Escherichia coli BL21(DE3 cell strain are reported. tRNA(CUA(Pyl is orthogonal in E. coli and able to induce strong amber suppression when it is co-expressed with pyrrolysyl-tRNA synthetase (PylRS and charged with a PylRS substrate, N(ε-tert-butoxycarbonyl-L-lysine (BocK. Similar to tRNA(CUA(Pyl, tRNA(UUA(Pyl is also orthogonal in E. coli and can be coupled with PylRS to genetically incorporate BocK at an ochre mutation site. Although tRNA(UUA(Pyl is expected to recognize a UAG codon based on the wobble hypothesis, the PylRS-tRNA(UUA(Pyl pair does not give rise to amber suppression that surpasses the basal amber suppression level in E. coli. E. coli itself displays a relatively high opal suppression level and tryptophan (Trp is incorporated at an opal mutation site. Although the PylRS-tRNA(UCA(Pyl pair can be used to encode BocK at an opal codon, the pair fails to suppress the incorporation of Trp at the same site. tRNA(CCU(Pyl fails to deliver BocK at an AGG codon when co-expressed with PylRS in E. coli.

  3. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    molecular motor that translocates the viral DNA into a preformed viral shell. A key event in DNA packaging is recognition of the viral DNA among other nucleic acids in the host cell. Commonly, a DNA-binding protein mediates the interaction of viral DNA with the motor/head shell. Here we show that for the bacteriophage ϕ29, this essential step of genome recognition is mediated by a viral genome-encoded RNA rather than a protein. A domain of the prohead RNA (pRNA) imparts specificity and stringency to the motor by ensuring the correct orientation of DNA packaging and restricting initiation to a single event. Since this assembly step is unique to the virus, DNA packaging is a novel target for the development of antiviral drugs. PMID:26423956

  4. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    Science.gov (United States)

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    that translocates the viral DNA into a preformed viral shell. A key event in DNA packaging is recognition of the viral DNA among other nucleic acids in the host cell. Commonly, a DNA-binding protein mediates the interaction of viral DNA with the motor/head shell. Here we show that for the bacteriophage ϕ29, this essential step of genome recognition is mediated by a viral genome-encoded RNA rather than a protein. A domain of the prohead RNA (pRNA) imparts specificity and stringency to the motor by ensuring the correct orientation of DNA packaging and restricting initiation to a single event. Since this assembly step is unique to the virus, DNA packaging is a novel target for the development of antiviral drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Identity, recognition and redistribution: a critical analysis of Charles Taylor, Axel Honneth and Nancy Fraser’s theories

    Directory of Open Access Journals (Sweden)

    Javier Amadeo

    2017-06-01

    Full Text Available http://dx.doi.org/10.5007/2175-7984.2017v16n35p242 The politics of identity and the idea of recognition have become dominant issues in contemporary political theory. Recognition, as a concept, means that an individual or a social group claims the right to have their identity recognized, directly or throw the mediation of set of institutions. The theories that have evaluated these questions address both important theoretical issues and central political subjects, as the definition of minority rights, national self-determination claims or the challenges posed of our increasingly multicultural societies. The main objective of this paper is to discuss the central arguments presents by Charles Taylor, Axel Honneth and Nancy Fraser emphasizing the discussion around the relationship between recognition and redistribution. A more specific purpose is to analyze the relation between the question of injustice based on the demand of identity and the problem of economic inequality. Finally, we try to understand some of the theoretical and political implications of the idea of difference and the recognition theory in a broader conceptual perspective.

  6. A universal entropy-driven mechanism for thioredoxin–target recognition

    Science.gov (United States)

    Palde, Prakash B.; Carroll, Kate S.

    2015-01-01

    Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx–protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx–target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein–protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx–target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition. PMID:26080424

  7. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory.

    Science.gov (United States)

    Benn, Abigail; Barker, Gareth R I; Stuart, Sarah A; Roloff, Eva V L; Teschemacher, Anja G; Warburton, E Clea; Robinson, Emma S J

    2016-05-04

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. Copyright © 2016 Benn et al.

  8. Optical Pattern Recognition

    Science.gov (United States)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  9. DNA → RNA: What Do Students Think the Arrow Means?

    OpenAIRE

    Wright, L. Kate; Fisk, J. Nick; Newman, Dina L.

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein products. We investigated understanding of central dogma concepts and found that students are not primed to think about information when presented w...

  10. A new selective developmental deficit: Impaired object recognition with normal face recognition.

    Science.gov (United States)

    Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley

    2011-05-01

    Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual

  11. Daily Living Movement Recognition for Pedestrian Dead Reckoning Applications

    Directory of Open Access Journals (Sweden)

    Alessio Martinelli

    2016-01-01

    Full Text Available Nowadays, activity recognition is a central topic in numerous applications such as patient and sport activity monitoring, surveillance, and navigation. By focusing on the latter, in particular Pedestrian Dead Reckoning navigation systems, activity recognition is generally exploited to get landmarks on the map of the buildings in order to permit the calibration of the navigation routines. The present work aims to provide a contribution to the definition of a more effective movement recognition for Pedestrian Dead Reckoning applications. The signal acquired by a belt-mounted triaxial accelerometer is considered as the input to the movement segmentation procedure which exploits Continuous Wavelet Transform to detect and segment cyclic movements such as walking. Furthermore, the segmented movements are provided to a supervised learning classifier in order to distinguish between activities such as walking and walking downstairs and upstairs. In particular, four supervised learning classification families are tested: decision tree, Support Vector Machine, k-nearest neighbour, and Ensemble Learner. Finally, the accuracy of the considered classification models is evaluated and the relative confusion matrices are presented.

  12. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    International Nuclear Information System (INIS)

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M.

    2007-01-01

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction

  13. Altered spinal microRNA-146a and the microRNA-183 cluster contribute to osteoarthritic pain in knee joints.

    Science.gov (United States)

    Li, Xin; Kroin, Jeffrey S; Kc, Ranjan; Gibson, Gary; Chen, Di; Corbett, Grant T; Pahan, Kalipada; Fayyaz, Sana; Kim, Jae-Sung; van Wijnen, Andre J; Suh, Joon; Kim, Su-Gwan; Im, Hee-Jeong

    2013-12-01

    The objective of this study was to examine whether altered expression of microRNAs in central nervous system components is pathologically linked to chronic knee joint pain in osteoarthritis. A surgical animal model for knee joint OA was generated by medial meniscus transection in rats followed by behavioral pain tests. Relationships between pathological changes in knee joint and development of chronic joint pain were examined by histology and imaging analyses. Alterations in microRNAs associated with OA-evoked pain sensation were determined in bilateral lumbar dorsal root ganglia (DRG) and the spinal dorsal horn by microRNA array followed by individual microRNA analyses. Gain- and loss-of-function studies of selected microRNAs (miR-146a and miR-183 cluster) were conducted to identify target pain mediators regulated by these selective microRNAs in glial cells. The ipsilateral hind leg displayed significantly increased hyperalgesia after 4 weeks of surgery, and sensitivity was sustained for the remainder of the 8-week experimental period (F = 341, p pain was correlated with pathological changes in the knee joints as assessed by histological and imaging analyses. MicroRNA analyses showed that miR-146a and the miR-183 cluster were markedly reduced in the sensory neurons in DRG (L4/L5) and spinal cord from animals experiencing knee joint OA pain. The downregulation of miR-146a and/or the miR-183 cluster in the central compartments (DRG and spinal cord) are closely associated with the upregulation of inflammatory pain mediators. The corroboration between decreases in these signature microRNAs and their specific target pain mediators were further confirmed by gain- and loss-of-function analyses in glia, the major cellular component of the central nervous system (CNS). MicroRNA therapy using miR-146a and the miR-183 cluster could be powerful therapeutic intervention for OA in alleviating joint pain and concomitantly regenerating peripheral knee joint cartilage. © 2013

  14. Recognition of face and non-face stimuli in autistic spectrum disorder.

    Science.gov (United States)

    Arkush, Leo; Smith-Collins, Adam P R; Fiorentini, Chiara; Skuse, David H

    2013-12-01

    The ability to remember faces is critical for the development of social competence. From childhood to adulthood, we acquire a high level of expertise in the recognition of facial images, and neural processes become dedicated to sustaining competence. Many people with autism spectrum disorder (ASD) have poor face recognition memory; changes in hairstyle or other non-facial features in an otherwise familiar person affect their recollection skills. The observation implies that they may not use the configuration of the inner face to achieve memory competence, but bolster performance in other ways. We aimed to test this hypothesis by comparing the performance of a group of high-functioning unmedicated adolescents with ASD and a matched control group on a "surprise" face recognition memory task. We compared their memory for unfamiliar faces with their memory for images of houses. To evaluate the role that is played by peripheral cues in assisting recognition memory, we cropped both sets of pictures, retaining only the most salient central features. ASD adolescents had poorer recognition memory for faces than typical controls, but their recognition memory for houses was unimpaired. Cropping images of faces did not disproportionately influence their recall accuracy, relative to controls. House recognition skills (cropped and uncropped) were similar in both groups. In the ASD group only, performance on both sets of task was closely correlated, implying that memory for faces and other complex pictorial stimuli is achieved by domain-general (non-dedicated) cognitive mechanisms. Adolescents with ASD apparently do not use domain-specialized processing of inner facial cues to support face recognition memory. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  15. CT diagnosis of congenital anomalies of the central nervous system

    International Nuclear Information System (INIS)

    Mori, Koreaki

    1980-01-01

    In the diagnosis of central nervous system congenital anomalies, understanding of embryology of the central nervous system and pathophysiology of each anomaly are essential. It is important for clinical approach to central nervous system congenital anomalies to evaluate the size of the head and tention of the anterior fontanelle. Accurate diagnosis of congenital anomalies depends on a correlation of CT findings to clinical pictures. Clinical diagnosis of congenital anomalies should include prediction of treatability and prognosis, in addition to recognition of a disease. (author)

  16. Type I-E CRISPR-Cas Systems Discriminate Target from Non-Target DNA through Base Pairing-Independent PAM Recognition

    Science.gov (United States)

    Datsenko, Kirill A.; Jackson, Ryan N.; Wiedenheft, Blake; Severinov, Konstantin; Brouns, Stan J. J.

    2013-01-01

    Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas) proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences) located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism. PMID:24039596

  17. Robust computational analysis of rRNA hypervariable tag datasets.

    Directory of Open Access Journals (Sweden)

    Maksim Sipos

    Full Text Available Next-generation DNA sequencing is increasingly being utilized to probe microbial communities, such as gastrointestinal microbiomes, where it is important to be able to quantify measures of abundance and diversity. The fragmented nature of the 16S rRNA datasets obtained, coupled with their unprecedented size, has led to the recognition that the results of such analyses are potentially contaminated by a variety of artifacts, both experimental and computational. Here we quantify how multiple alignment and clustering errors contribute to overestimates of abundance and diversity, reflected by incorrect OTU assignment, corrupted phylogenies, inaccurate species diversity estimators, and rank abundance distribution functions. We show that straightforward procedural optimizations, combining preexisting tools, are effective in handling large (10(5-10(6 16S rRNA datasets, and we describe metrics to measure the effectiveness and quality of the estimators obtained. We introduce two metrics to ascertain the quality of clustering of pyrosequenced rRNA data, and show that complete linkage clustering greatly outperforms other widely used methods.

  18. Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice.

    Science.gov (United States)

    Clipperton-Allen, Amy E; Lee, Anna W; Reyes, Anny; Devidze, Nino; Phan, Anna; Pfaff, Donald W; Choleris, Elena

    2012-02-28

    Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Antagonism pattern detection between microRNA and target expression in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Loredana Martignetti

    Full Text Available MicroRNAs (miRNAs have emerged as fundamental regulators that silence gene expression at the post-transcriptional and translational levels. The identification of their targets is a major challenge to elucidate the regulated biological processes. The overall effect of miRNA is reflected on target mRNA expression, suggesting the design of new investigative methods based on high-throughput experimental data such as miRNA and transcriptome profiles. We propose a novel statistical measure of non-linear dependence between miRNA and mRNA expression, in order to infer miRNA-target interactions. This approach, which we name antagonism pattern detection, is based on the statistical recognition of a triangular-shaped pattern in miRNA-target expression profiles. This pattern is observed in miRNA-target expression measurements since their simultaneously elevated expression is statistically under-represented in the case of miRNA silencing effect. The proposed method enables miRNA target prediction to strongly rely on cellular context and physiological conditions reflected by expression data. The procedure has been assessed on synthetic datasets and tested on a set of real positive controls. Then it has been applied to analyze expression data from Ewing's sarcoma patients. The antagonism relationship is evaluated as a good indicator of real miRNA-target biological interaction. The predicted targets are consistently enriched for miRNA binding site motifs in their 3'UTR. Moreover, we reveal sets of predicted targets for each miRNA sharing important biological function. The procedure allows us to infer crucial miRNA regulators and their potential targets in Ewing's sarcoma disease. It can be considered as a valid statistical approach to discover new insights in the miRNA regulatory mechanisms.

  20. Using Analogy Role-Play Activity in an Undergraduate Biology Classroom to Show Central Dogma Revision

    Science.gov (United States)

    Takemura, Masaharu; Kurabayashi, Mario

    2014-01-01

    For the study of biology in an undergraduate classroom, a classroom exercise was developed: an analogy role-play to learn mechanisms of gene transcription and protein translation (central dogma). To develop the central dogma role-play exercise, we made DNA and mRNA using paper sheets, tRNA using a wire dress hanger, and amino acids using Lego®…

  1. miRNA-like duplexes as RNAi triggers with improved specificity

    Directory of Open Access Journals (Sweden)

    Juan G. Betancur

    2012-07-01

    Full Text Available siRNA duplexes, the most common triggers of RNA interference, are first loaded into an Argonaute (Ago protein and then undergo unwinding via passenger strand cleavage, which requires the slicer activity of the Ago protein. In mammals, only Ago2 out of the four Ago proteins possesses such slicer activity. In contrast, miRNA/miRNA* duplexes often contain central mismatches that prevent slicer-dependent unwinding. Instead, mismatches in specific regions (seed and 3´-mid regions promote efficient slicer-independent unwinding by any of the four mammalian Ago proteins. Both slicer-dependent and slicer-independent unwinding mechanisms produce guide-containing RNA-induced silencing complex (RISC, which silences target mRNAs by cleavage, translational repression, and/or deadenylation that leads to mRNA decay. In this review, we summarize our current knowledge of the RISC assembly pathways, and describe a simple method to rationally design artificial miRNA/miRNA*-like duplexes and highlight its benefits to reduce the unwanted off-target effects without compromising the specific target silencing activity.

  2. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    Science.gov (United States)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  3. PRince: a web server for structural and physicochemical analysis of protein-RNA interface.

    Science.gov (United States)

    Barik, Amita; Mishra, Abhishek; Bahadur, Ranjit Prasad

    2012-07-01

    We have developed a web server, PRince, which analyzes the structural features and physicochemical properties of the protein-RNA interface. Users need to submit a PDB file containing the atomic coordinates of both the protein and the RNA molecules in complex form (in '.pdb' format). They should also mention the chain identifiers of interacting protein and RNA molecules. The size of the protein-RNA interface is estimated by measuring the solvent accessible surface area buried in contact. For a given protein-RNA complex, PRince calculates structural, physicochemical and hydration properties of the interacting surfaces. All these parameters generated by the server are presented in a tabular format. The interacting surfaces can also be visualized with software plug-in like Jmol. In addition, the output files containing the list of the atomic coordinates of the interacting protein, RNA and interface water molecules can be downloaded. The parameters generated by PRince are novel, and users can correlate them with the experimentally determined biophysical and biochemical parameters for better understanding the specificity of the protein-RNA recognition process. This server will be continuously upgraded to include more parameters. PRince is publicly accessible and free for use. Available at http://www.facweb.iitkgp.ernet.in/~rbahadur/prince/home.html.

  4. Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

    KAUST Repository

    Jiang, Hanlun; Zhu, Lizhe; Hé liou, Amé lie; Gao, Xin; Bernauer, Julie; Huang, Xuhui

    2016-01-01

    that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms

  5. Interferon gamma, interleukin 4 and transforming growth factor beta in experimental autoimmune encephalomyelitis in Lewis rats: dynamics of cellular mRNA expression in the central nervous system and lymphoid cells

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Mustafa, M; Ljungdahl, A

    1995-01-01

    , the target organ in EAE, cells expressing mRNA for IFN-gamma, first appeared at the onset of clinical signs, i.e., day 10 postimmunization (p.i.), peaked at the height of disease (day 13 p.i.) and then gradually decreased concomitant with recovery. Very few IL-4 mRNA-expressing cells appeared in the spinal...... to limit central nervous system (CNS) inflammation. In lymphoid organs, primed MBP 63-88 reactive T cells showed an interesting time-dependent evolution of their cytokine production in vitro. Thus, early after immunization there was a conspicuous MBP 63-88-induced production of both IFN-gamma and IL-4...... cord with no clear relation to clinical signs or histopathology. In contrast, expression of mRNA for TGF-beta did not increase until day 13 p.i., at height of the disease, shortly preceding recovery. These data are consistent with a disease upregulating role of IFN-gamma, while TGF-beta may act...

  6. Enhancement of Gene Silencing Effect and Membrane Permeability by Peptide-Conjugated 27-Nucleotide Small Interfering RNA

    Directory of Open Access Journals (Sweden)

    Toshio Seyama

    2012-09-01

    Full Text Available Two different sizes of siRNAs, of which one type was 21-nucleotide (nt siRNA containing 2-nt dangling ends and the other type was 27-nt siRNA with blunt ends, were conjugated with a nuclear export signal peptide of HIV-1 Rev at the 5′-sense end. Processing by Dicer enzyme, cell membrane permeability, and RNAi efficiency of the peptide-conjugated siRNAs were examined. Dicer cleaved the peptide-conjugated 27-nt siRNA leading to the release of 21-nt siRNA, whereas the peptide-conjugated 21-nt siRNA was not cleaved. High membrane permeability and cytoplasmic localization was found in the conjugates. Moreover, the peptide-conjugated 27-nt siRNA showed increased potency of RNAi in comparison with the nonmodified 21-nt and 27-nt siRNAs, whereas the peptide-conjugated 21-nt siRNA showed decreased RNAi efficacy. This potent RNAi efficacy is probably owing to acceleration of RISC through recognition by Dicer, as well as to the improvement of cell membrane permeability and intracellular accumulation.

  7. A novel RNA-recognition-motif protein is required for premeiotic G1/S-phase transition in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nonomura

    2011-01-01

    Full Text Available The molecular mechanism for meiotic entry remains largely elusive in flowering plants. Only Arabidopsis SWI1/DYAD and maize AM1, both of which are the coiled-coil protein, are known to be required for the initiation of plant meiosis. The mechanism underlying the synchrony of male meiosis, characteristic to flowering plants, has also been unclear in the plant kingdom. In other eukaryotes, RNA-recognition-motif (RRM proteins are known to play essential roles in germ-cell development and meiosis progression. Rice MEL2 protein discovered in this study shows partial similarity with human proline-rich RRM protein, deleted in Azoospermia-Associated Protein1 (DAZAP1, though MEL2 also possesses ankyrin repeats and a RING finger motif. Expression analyses of several cell-cycle markers revealed that, in mel2 mutant anthers, most germ cells failed to enter premeiotic S-phase and meiosis, and a part escaped from the defect and underwent meiosis with a significant delay or continued mitotic cycles. Immunofluorescent detection revealed that T7 peptide-tagged MEL2 localized at cytoplasmic perinuclear region of germ cells during premeiotic interphase in transgenic rice plants. This study is the first report of the plant RRM protein, which is required for regulating the premeiotic G1/S-phase transition of male and female germ cells and also establishing synchrony of male meiosis. This study will contribute to elucidation of similarities and diversities in reproduction system between plants and other species.

  8. RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology.

    Science.gov (United States)

    Ohno, Hirohisa; Saito, Hirohide

    2016-01-01

    Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  10. Speech Recognition

    Directory of Open Access Journals (Sweden)

    Adrian Morariu

    2009-01-01

    Full Text Available This paper presents a method of speech recognition by pattern recognition techniques. Learning consists in determining the unique characteristics of a word (cepstral coefficients by eliminating those characteristics that are different from one word to another. For learning and recognition, the system will build a dictionary of words by determining the characteristics of each word to be used in the recognition. Determining the characteristics of an audio signal consists in the following steps: noise removal, sampling it, applying Hamming window, switching to frequency domain through Fourier transform, calculating the magnitude spectrum, filtering data, determining cepstral coefficients.

  11. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  12. Electrostatics and the assembly of an RNA virus

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Bruinsma, R.

    2005-01-01

    Electrostatic interactions play a central role in the assembly of single-stranded RNA viruses. Under physiological conditions of salinity and acidity, virus capsid assembly requires the presence of genomic material that is oppositely charged to the core proteins. In this paper we apply basic polymer

  13. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms...... or interpretations of recognition and toleration are considered, confusing and problematic uses of the terms are noted, and the compatibility of toleration and recognition is discussed. The article argues that there is a range of legitimate and importantly different conceptions of both toleration and recognition...

  14. Structure of RDE-4 dsRBDs and mutational studies provide insights into dsRNA recognition in the Caenorhabditis elegans RNAi pathway.

    Science.gov (United States)

    Chiliveri, Sai Chaitanya; Deshmukh, Mandar V

    2014-02-15

    The association of RDE-4 (RNAi defective 4), a protein containing two dsRBDs (dsRNA-binding domains), with long dsRNA and Dcr-1 (Dicer1 homologue) initiates the siRNA pathway in Caenorhabditis elegans. Unlike its homologues in higher eukaryotes, RDE-4 dsRBDs possess weak (micromolar) affinity for short dsRNA. With increasing length of dsRNA, RDE-4 exhibits enhanced affinity due to co-operativity. The linker and dsRBD2 are indispensable for RDE-4's simultaneous interaction with dsRNA and Dcr-1. In the present study, we have determined the solution structures of RDE-4 constructs that contain both dsRBDs and the linker region. In addition to the canonical dsRBD fold, both dsRBDs of RDE-4 show modified structural features such as truncation in the β1-β2 loop that rationalize RDE-4's relatively weak dsRNA affinity. Structure and binding studies demonstrate that dsRBD2 plays a decisive role in the RDE-4-dsRNA interaction; however, in contrast with previous findings, we found ephemeral interaction of RDE-4 dsRBD1 with dsRNA. More importantly, mutations in two tandem lysine residues (Lys217 and Lys218) in dsRBD2 impair RDE-4's dsRNA-binding ability and could obliterate RNAi initiation in C. elegans. Additionally, we postulate a structural basis for the minimal requirement of linker and dsRBD2 for RDE-4's association with dsRNA and Dcr-1.

  15. Recognition of cis-acting sequences in RNA 3 of Prunus necrotic ringspot virus by the replicase of Alfalfa mosaic virus.

    Science.gov (United States)

    Aparicio, F; Sánchez-Navarro, J A; Olsthoorn, R C; Pallás, V; Bol, J F

    2001-04-01

    Alfalfa mosaic virus (AMV) and Prunus necrotic ringspot virus (PNRSV) belong to the genera ALFAMOVIRUS: and ILARVIRUS:, respectively, of the family BROMOVIRIDAE: Initiation of infection by AMV and PNRSV requires binding of a few molecules of coat protein (CP) to the 3' termini of the inoculum RNAs and the CPs of the two viruses are interchangeable in this early step of the replication cycle. CIS:-acting sequences in PNRSV RNA 3 that are recognized by the AMV replicase were studied in in vitro replicase assays and by inoculation of AMV-PNRSV RNA 3 chimeras to tobacco plants and protoplasts transformed with the AMV replicase genes (P12 plants). The results showed that the AMV replicase recognized the promoter for minus-strand RNA synthesis in PNRSV RNA 3 but not the promoter for plus-strand RNA synthesis. A chimeric RNA with PNRSV movement protein and CP genes accumulated in tobacco, which is a non-host for PNRSV.

  16. Global organization of a positive-strand RNA virus genome.

    Directory of Open Access Journals (Sweden)

    Baodong Wu

    Full Text Available The genomes of plus-strand RNA viruses contain many regulatory sequences and structures that direct different viral processes. The traditional view of these RNA elements are as local structures present in non-coding regions. However, this view is changing due to the discovery of regulatory elements in coding regions and functional long-range intra-genomic base pairing interactions. The ∼4.8 kb long RNA genome of the tombusvirus tomato bushy stunt virus (TBSV contains these types of structural features, including six different functional long-distance interactions. We hypothesized that to achieve these multiple interactions this viral genome must utilize a large-scale organizational strategy and, accordingly, we sought to assess the global conformation of the entire TBSV genome. Atomic force micrographs of the genome indicated a mostly condensed structure composed of interconnected protrusions extending from a central hub. This configuration was consistent with the genomic secondary structure model generated using high-throughput selective 2'-hydroxyl acylation analysed by primer extension (i.e. SHAPE, which predicted different sized RNA domains originating from a central region. Known RNA elements were identified in both domain and inter-domain regions, and novel structural features were predicted and functionally confirmed. Interestingly, only two of the six long-range interactions known to form were present in the structural model. However, for those interactions that did not form, complementary partner sequences were positioned relatively close to each other in the structure, suggesting that the secondary structure level of viral genome structure could provide a basic scaffold for the formation of different long-range interactions. The higher-order structural model for the TBSV RNA genome provides a snapshot of the complex framework that allows multiple functional components to operate in concert within a confined context.

  17. Different modes of interaction by TIAR and HuR with target RNA and DNA.

    Science.gov (United States)

    Kim, Henry S; Wilce, Matthew C J; Yoga, Yano M K; Pendini, Nicole R; Gunzburg, Menachem J; Cowieson, Nathan P; Wilson, Gerald M; Williams, Bryan R G; Gorospe, Myriam; Wilce, Jacqueline A

    2011-02-01

    TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity for U-rich RNA. However, the higher affinity for U-rich sequences is mainly due to faster association with U-rich RNA, which we propose is a reflection of the higher probability of association. Differences between TIAR and HuR are observed in their modes of binding to RNA. TIAR is able to bind deoxy-oligonucleotides with nanomolar affinity, whereas HuR affinity is reduced to a micromolar level. Studies with U-rich DNA reveal that TIAR binding depends less on the 2'-hydroxyl group of RNA than HuR binding. Finally we show that SAXS data, recorded for the first two domains of TIAR in complex with RNA, are more consistent with a flexible, elongated shape and not the compact shape that the first two domains of Hu proteins adopt upon binding to RNA. We thus propose that these triple-RRM proteins, which compete for the same binding sites in cells, interact with their targets in fundamentally different ways.

  18. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase

    DEFF Research Database (Denmark)

    Nielsen, Allan K.; Douthwaite, Stephen; Vester, Birte

    1999-01-01

    -mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones...

  19. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    Science.gov (United States)

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  20. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans.

    Science.gov (United States)

    Tops, Bastiaan B J; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C; Plasterk, Ronald H A; Ketting, René F

    2005-01-01

    In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of approximately 250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.

  1. Maturational changes in ear advantage for monaural word recognition in noise among listeners with central auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Mohsin Ahmed Shaikh

    2017-02-01

    Full Text Available This study aimed to investigate differences between ears in performance on a monaural word recognition in noise test among individuals across a broad range of ages assessed for (CAPD. Word recognition scores in quiet and in speech noise were collected retrospectively from the medical files of 107 individuals between the ages of 7 and 30 years who were diagnosed with (CAPD. No ear advantage was found on the word recognition in noise task in groups less than ten years. Performance in both ears was equally poor. Right ear performance improved across age groups, with scores of individuals above age 10 years falling within the normal range. In contrast, left ear performance remained essentially stable and in the impaired range across all age groups. Findings indicate poor left hemispheric dominance for speech perception in noise in children below the age of 10 years with (CAPD. However, a right ear advantage on this monaural speech in noise task was observed for individuals 10 years and older.

  2. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.

    Science.gov (United States)

    Kota, Venkatesh; Sommer, Gunhild; Durette, Chantal; Thibault, Pierre; van Niekerk, Erna A; Twiss, Jeffery L; Heise, Tilman

    2016-01-01

    The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO), but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP) elements from the 5' untranslated regions (UTR) of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1) mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.

  3. SUMO-Modification of the La Protein Facilitates Binding to mRNA In Vitro and in Cells.

    Directory of Open Access Journals (Sweden)

    Venkatesh Kota

    Full Text Available The RNA-binding protein La is involved in several aspects of RNA metabolism including the translational regulation of mRNAs and processing of pre-tRNAs. Besides its well-described phosphorylation by Casein kinase 2, the La protein is also posttranslationally modified by the Small Ubiquitin-like MOdifier (SUMO, but the functional outcome of this modification has not been defined. The objective of this study was to test whether sumoylation changes the RNA-binding activity of La. Therefore, we established an in vitro sumoylation assay for recombinant human La and analyzed its RNA-binding activity by electrophoretic mobility shift assays. We identified two novel SUMO-acceptor sites within the La protein located between the RNA recognition motif 1 and 2 and we demonstrate for the first time that sumoylation facilitates the RNA-binding of La to small RNA oligonucleotides representing the oligopyrimidine tract (TOP elements from the 5' untranslated regions (UTR of mRNAs encoding ribosomal protein L22 and L37 and to a longer RNA element from the 5' UTR of cyclin D1 (CCND1 mRNA in vitro. Furthermore, we show by RNA immunoprecipitation experiments that a La mutant deficient in sumoylation has impaired RNA-binding activity in cells. These data suggest that modulating the RNA-binding activity of La by sumoylation has important consequences on its functionality.

  4. Facial Expression Recognition of Various Internal States via Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Young-Suk Shin

    2009-01-01

    Emotions are becoming increasingly important in human-centered interaction architectures. Recognition of facial expressions, which are central to human-computer interactions, seems natural and desirable. However, facial expressions include mixed emotions, continuous rather than discrete, which vary from moment to moment. This paper represents a novel method of recognizing facial expressions of various internal states via manifold learning, to achieve the aim of humancentered interaction studies. A critical review of widely used emotion models is described, then, facial expression features of various internal states via the locally linear embedding (LLE) are extracted. The recognition of facial expressions is created with the pleasure-displeasure and arousal-sleep dimensions in a two-dimensional model of emotion. The recognition result of various internal state expressions that mapped to the embedding space via the LLE algorithm can effectively represent the structural nature of the two-dimensional model of emotion. Therefore our research has established that the relationship between facial expressions of various internal states can be elaborated in the two-dimensional model of emotion, via the locally linear embedding algorithm.

  5. Lost in Translation: Defects in Transfer RNA Modifications and Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Andrea Bednářová

    2017-05-01

    Full Text Available Transfer RNAs (tRNAs are key molecules participating in protein synthesis. To augment their functionality they undergo extensive post-transcriptional modifications and, as such, are subject to regulation at multiple levels including transcription, transcript processing, localization and ribonucleoside base modification. Post-transcriptional enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and influences specific anticodon–codon interactions and regulates translation, its efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable and results in a rich structural diversity of tRNA of which over 100 modified nucleosides have been characterized. Most often these hypermodified nucleosides are found in the wobble position of tRNAs, where they play a direct role in codon recognition as well as in maintaining translational efficiency and fidelity, etc. Several recent studies have pointed to a link between defects in tRNA modifications and human diseases including neurological disorders. Therefore, defects in tRNA modifications in humans need intensive characterization at the enzymatic and mechanistic level in order to pave the way to understand how lack of such modifications are associated with neurological disorders with the ultimate goal of gaining insights into therapeutic interventions.

  6. tRNA's wobble decoding of the genome: 40 years of modification.

    Science.gov (United States)

    Agris, Paul F; Vendeix, Franck A P; Graham, William D

    2007-02-09

    The genetic code is degenerate, in that 20 amino acids are encoded by 61 triplet codes. In 1966, Francis Crick hypothesized that the cell's limited number of tRNAs decoded the genome by recognizing more than one codon. The ambiguity of that recognition resided in the third base-pair, giving rise to the Wobble Hypothesis. Post-transcriptional modifications at tRNA's wobble position 34, especially modifications of uridine 34, enable wobble to occur. The Modified Wobble Hypothesis proposed in 1991 that specific modifications of a tRNA wobble nucleoside shape the anticodon architecture in such a manner that interactions were restricted to the complementary base plus a single wobble pairing for amino acids with twofold degenerate codons. However, chemically different modifications at position 34 would expand the ability of a tRNA to read three or even four of the fourfold degenerate codons. One foundation of Crick's Wobble Hypothesis was that a near-constant geometry of canonical base-pairing be maintained in forming all three base-pairs between the tRNA anticodon and mRNA codon on the ribosome. In accepting an aminoacyl-tRNA, the ribosome requires maintenance of a specific geometry for the anticodon-codon base-pairing. However, it is the post-transcriptional modifications at tRNA wobble position 34 and purine 37, 3'-adjacent to the anticodon, that pre-structure the anticodon domain to ensure the correct codon binding. The modifications create both the architecture and the stability needed for decoding through restraints on anticodon stereochemistry and conformational space, and through selective hydrogen bonding. A physicochemical understanding of modified nucleoside contributions to the tRNA anticodon domain architecture and its decoding of the genome has advanced RNA world evolutionary theory, the principles of RNA chemistry, and the application of this knowledge to the introduction of new amino acids to proteins.

  7. Re-thinking employee recognition: understanding employee experiences of recognition

    OpenAIRE

    Smith, Charlotte

    2013-01-01

    Despite widespread acceptance of the importance of employee recognition for both individuals and organisations and evidence of its increasing use in organisations, employee recognition has received relatively little focused attention from academic researchers. Particularly lacking is research exploring the lived experience of employee recognition and the interpretations and meanings which individuals give to these experiences. Drawing on qualitative interviews conducted as part of my PhD rese...

  8. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Directory of Open Access Journals (Sweden)

    Yonghua Wang

    Full Text Available MicroRNAs (miRNAs are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1 three important (PAZ, Mid and PIWI domains exist in Argonaute which define the global dynamics of the protein; 2 the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3 it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+ plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA. Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  9. Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.

    Science.gov (United States)

    Wang, Yonghua; Li, Yan; Ma, Zhi; Yang, Wei; Ai, Chunzhi

    2010-07-29

    MicroRNAs (miRNAs) are endogenously produced approximately 21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5'-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg(2+)) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago.

  10. Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

    DEFF Research Database (Denmark)

    Hedman, Hanna K; Kirpekar, Finn; Elmroth, Sofi K C

    2011-01-01

    expression, and the other one focused on the function of endogenous miRNAs. In both cases, the active molecule consists of a ∼20-nucleotide-long RNA duplex. In the siRNA case, improved systemic stability is of central interest for its further development toward clinical applications. With respect to mi......RNA processing and function, understanding its influence on mRNA targeting and the silencing ability of individual miRNAs, e.g., under pathological conditions, remains a scientific challenge. In the present study, a model system is presented where the influence of the two clinically used anticancer drugs......, cisplatin and oxaliplatin, on siRNA's silencing capacity has been evaluated. More specifically, siRNAs targeting the 3' UTR region of Wnt-5a mRNA (NM_003352) were constructed, and the biologically active antisense RNA strand was pre-platinated. Platinum adducts were detected and characterized...

  11. Use of the recognition heuristic depends on the domain's recognition validity, not on the recognition validity of selected sets of objects.

    Science.gov (United States)

    Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E

    2017-07-01

    According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.

  12. The conformation of 23S rRNA nucleotide A2058 determines its recognition by the ErmE methyltransferase

    DEFF Research Database (Denmark)

    Vester, B; Hansen, L H; Douthwaite, S

    1995-01-01

    the effects of mutations around position A2058 on methylation. Mutagenizing A2058 (to G or U) completely abolishes methylation of 23S rRNA by ErmE. No methylation occurred at other sites in the rRNA, demonstrating the fidelity of ErmE for A2058. Breaking the neighboring G2057-C2611 Watson-Crick base pair...... by introducing either an A2057 or a U2611 mutation, greatly reduces the rate of methylation at A2058. Methylation remains impaired after these mutations have been combined to create a new A2057-U2611 Watson-Crick base interaction. The conformation of this region in 23S rRNA was probed with chemical reagents...

  13. Graphical symbol recognition

    OpenAIRE

    K.C. , Santosh; Wendling , Laurent

    2015-01-01

    International audience; The chapter focuses on one of the key issues in document image processing i.e., graphical symbol recognition. Graphical symbol recognition is a sub-field of a larger research domain: pattern recognition. The chapter covers several approaches (i.e., statistical, structural and syntactic) and specially designed symbol recognition techniques inspired by real-world industrial problems. It, in general, contains research problems, state-of-the-art methods that convey basic s...

  14. A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Astrid D. Haase

    2016-01-01

    Full Text Available Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1 the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2 a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.

  15. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    Science.gov (United States)

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Transgenic miR132 alters neuronal spine density and impairs novel object recognition memory.

    Directory of Open Access Journals (Sweden)

    Katelin F Hansen

    2010-11-01

    Full Text Available Inducible gene expression plays a central role in neuronal plasticity, learning, and memory, and dysfunction of the underlying molecular events can lead to severe neuronal disorders. In addition to coding transcripts (mRNAs, non-coding microRNAs (miRNAs appear to play a role in these processes. For instance, the CREB-regulated miRNA miR132 has been shown to affect neuronal structure in an activity-dependent manner, yet the details of its physiological effects and the behavioral consequences in vivo remain unclear. To examine these questions, we employed a transgenic mouse strain that expresses miR132 in forebrain neurons. Morphometric analysis of hippocampal neurons revealed that transgenic miR132 triggers a marked increase in dendritic spine density. Additionally, miR132 transgenic mice exhibited a decrease in the expression of MeCP2, a protein implicated in Rett Syndrome and other disorders of mental retardation. Consistent with these findings, miR132 transgenic mice displayed significant deficits in novel object recognition. Together, these data support a role for miR132 as a regulator of neuronal structure and function, and raise the possibility that dysregulation of miR132 could contribute to an array of cognitive disorders.

  17. Manduca sexta recognition and resistance among allopolyploid Nicotiana host plants

    OpenAIRE

    Lou, Yonggen; Baldwin, Ian T.

    2003-01-01

    Allopolyploid speciation occurs instantly when the genomes of different species combine to produce self-fertile offspring and has played a central role in the evolution of higher plants, but its consequences for adaptive responses are unknown. We compare herbivore-recognition and -resistance responses of the diploid species and putative ancestral parent Nicotiana attenuata with those of the two derived allopolyploid species Nicotiana clevelandii and Nicotiana bigelovii. Manduca sexta larvae a...

  18. Early recognition of technological opportunities. Realization and perspectives

    International Nuclear Information System (INIS)

    Stegelmann, H.U.; Peters, H.P.; Stein, G.; Muench, E.

    1988-03-01

    In cooperation with the American consulting company Arthur D. Little, a number of procedures, including evaluation of literature data banks, expert interviews and expert workshops, were tried. A three-step concept was finally developed involving identification of candidate technologies (identification), collection of information on these candidates (exploration), ultimately leading to an assessment of the candidate technologies (evaluation). Such a procedure basically enables long-term observation of the scientific policy decisions. This information may serve to identify the deficits and strength of the German scientific system in comparison to that of other countries. Such a system permits the survey and documentation of scientists' subjective expectations on the trends of technology developments and the associated economic and other social consequences. It became apparent that this concept should not raise expectations too high and that it is not essentially different from the advisory instruments already employed today (advisory councils, expert consultants), but rather that these established procedures are merely systematized and supplemented by further information sources (e.g. data banks). In implementing this study two central sets of problems were identified which must be overcome: The early recognition of opportunities is in the long run based on analysts infiltrating the existing network of specialist scientists and examining the information in circulation there with respect to the aims of early recognition so that access to this network is a decisive requirement for an institutionalization of early recognition; incentive systems must be created motivating scientists to become actively involved in the early recognition of technological opportunities. (orig./HP) [de

  19. RNA regulatory elements and polyadenylation in plants

    Directory of Open Access Journals (Sweden)

    Arthur G. Hunt

    2012-01-01

    Full Text Available Alternative poly(A site choice (also known as alternative polyadenylation, or APA has the potential to affect gene expression in qualitative and quantitative ways. Alternative polyadenylation may affect as many as 82% of all expressed genes in a plant. The consequences of APA include the generation of transcripts with differing 3’-UTRs (and thus differing potential regulatory potential and of transcripts with differing protein-coding potential. Genome-wide studies of possible APA suggest a linkage with pre-mRNA splicing, and indicate a coincidence of and perhaps cooperation between RNA regulatory elements that affect splicing efficiency and the recognition of novel intronic poly(A sites. These studies also raise the possibility of the existence of a novel class of polyadenylation-related cis elements that are distinct from the well-characterized plant polyadenylation signal. Many potential APA events, however, have not been associated with identifiable cis elements. The present state of the field reveals a broad scope of APA, and also numerous opportunities for research into mechanisms that govern both choice and regulation of poly(A sites in plants.

  20. Targeted Delivery of siRNA to Macrophages for Anti-inflammatory Treatment

    OpenAIRE

    Kim, Sang-Soo; Ye, Chunting; Kumar, Priti; Chiu, Isaac; Subramanya, Sandesh; Wu, Haoquan; Shankar, Premlata; Manjunath, N

    2010-01-01

    Inflammation mediated by tumor necrosis factor-α (TNF-α) and the associated neuronal apoptosis characterizes a number of neurologic disorders. Macrophages and microglial cells are believed to be the major source of TNF-α in the central nervous system (CNS). Here, we show that suppression of TNF-α by targeted delivery of small interfering RNA (siRNA) to macrophage/microglial cells dramatically reduces lipopolysaccharide (LPS)-induced neuroinflammation and neuronal apoptosis in vivo. Because ma...

  1. Entrepreneurship education as a factor of entrepreneurial opportunity recognition for starting a new business

    Directory of Open Access Journals (Sweden)

    Ajka Baručić

    2016-12-01

    Full Text Available One of the central issues for entrepreneurship researchers is how and why some people are able to identify and use entrepreneurial opportunity and start a business, while others are not. Research has shown that factors conditioning entrepreneurial opportunity recognition may include: creativity, work experience, social networking of entrepreneurs, prior knowledge on the market, customers’ needs and the ways to satisfy them, intuition and ability to foresee or cognitive factors. This paper presents the research into the relation between entrepreneurship education and entrepreneurial opportunity recognition, that was not a subject of interest of theoretical discussions and research of previous researchers.

  2. A novel glutamine–RNA interaction identified by screening libraries in mammalian cells

    OpenAIRE

    Tan, Ruoying; Frankel, Alan D.

    1998-01-01

    The arginine-rich motif provides a versatile framework for RNA recognition in which few amino acids other than arginine are needed to mediate specific binding. Using a mammalian screening system based on transcriptional activation by HIV Tat, we identified novel arginine-rich peptides from combinatorial libraries that bind tightly to the Rev response element of HIV. Remarkably, a single glutamine, but not asparagine, within a stretch of polyarginine can mediate high-affinity binding. These re...

  3. Forensic face recognition as a means to determine strength of evidence: A survey.

    Science.gov (United States)

    Zeinstra, C G; Meuwly, D; Ruifrok, A Cc; Veldhuis, R Nj; Spreeuwers, L J

    2018-01-01

    This paper surveys the literature on forensic face recognition (FFR), with a particular focus on the strength of evidence as used in a court of law. FFR is the use of biometric face recognition for several applications in forensic science. It includes scenarios of ID verification and open-set identification, investigation and intelligence, and evaluation of the strength of evidence. We present FFR from operational, tactical, and strategic perspectives. We discuss criticism of FFR and we provide an overview of research efforts from multiple perspectives that relate to the domain of FFR. Finally, we sketch possible future directions for FFR. Copyright © 2018 Central Police University.

  4. Dibenzotetraaza[14]annulene-adenine conjugate recognizes complementary poly dT among ss-DNA/ss-RNA sequences.

    Science.gov (United States)

    Radić Stojković, Marijana; Škugor, Marko; Tomić, Sanja; Grabar, Marina; Smrečki, Vilko; Dudek, Łukasz; Grolik, Jarosław; Eilmes, Julita; Piantanida, Ivo

    2013-06-28

    Among three novel DBTAA derivatives only the DBTAA-propyl-adenine conjugate showed recognition of the consecutive oligo dT sequence by increased affinity and specific induced chirooptical response in comparison to other single stranded RNA and DNA; whereby of particular importance is the up until now unique efficient differentiation between dT and rU. At variance, its close analogue DBTAA-hexyl-adenine did not reveal any selectivity between ss-DNA/RNA pointing out the important role of steric factors (linker length); moreover non-selectivity of the reference compound (, lacking adenine) stressed the importance of adenine interactions in the selectivity.

  5. Cotinine improves visual recognition memory and decreases cortical Tau phosphorylation in the Tg6799 mice.

    Science.gov (United States)

    Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina

    2017-08-01

    Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.

  6. Does unpaired adenosine-66 from helix II of Escherichia coli 5S RNA bind to protein L18?

    DEFF Research Database (Denmark)

    Christiansen, J; Douthwaite, S R; Christensen, A

    1985-01-01

    Adenosine-66 is unpaired within helix II of Escherichia coli 5S RNA and lies in the binding site of ribosomal protein L18. It has been proposed as a recognition site for protein L18. We have investigated further the structural importance of this nucleotide by deleting it. The 5S RNA gene of the rrn...... plasmid derived from pKK3535. Binding studies with protein L18 revealed that the protein bound much more weakly to the mutated 5S RNA. We consider the most likely explanation of this result is that L18 interacts with adenosine-66, and we present a tentative model for an interaction between the unpaired...

  7. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  8. MicroRNA (miRNA Signaling in the Human CNS in Sporadic Alzheimer’s Disease (AD-Novel and Unique Pathological Features

    Directory of Open Access Journals (Sweden)

    Yuhai Zhao

    2015-12-01

    Full Text Available Of the approximately ~2.65 × 103 mature microRNAs (miRNAs so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS. This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD and related forms of chronic neurodegeneration; and (ii highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS.

  9. MicroRNA (miRNA) Signaling in the Human CNS in Sporadic Alzheimer’s Disease (AD)-Novel and Unique Pathological Features

    Science.gov (United States)

    Zhao, Yuhai; Pogue, Aileen I.; Lukiw, Walter J.

    2015-01-01

    Of the approximately ~2.65 × 103 mature microRNAs (miRNAs) so far identified in Homo sapiens, only a surprisingly small but select subset—about 35–40—are highly abundant in the human central nervous system (CNS). This fact alone underscores the extremely high selection pressure for the human CNS to utilize only specific ribonucleotide sequences contained within these single-stranded non-coding RNAs (ncRNAs) for productive miRNA–mRNA interactions and the down-regulation of gene expression. In this article we will: (i) consolidate some of our still evolving ideas concerning the role of miRNAs in the CNS in normal aging and in health, and in sporadic Alzheimer’s disease (AD) and related forms of chronic neurodegeneration; and (ii) highlight certain aspects of the most current work in this research field, with particular emphasis on the findings from our lab of a small pathogenic family of six inducible, pro-inflammatory, NF-κB-regulated miRNAs including miRNA-7, miRNA-9, miRNA-34a, miRNA-125b, miRNA-146a and miRNA-155. This group of six CNS-abundant miRNAs significantly up-regulated in sporadic AD are emerging as what appear to be key mechanistic contributors to the sporadic AD process and can explain much of the neuropathology of this common, age-related inflammatory neurodegeneration of the human CNS. PMID:26694372

  10. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  11. Regulation of immune responses and tolerance: the microRNA perspective.

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-05-01

    Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Perceptual learning eases crowding by reducing recognition errors but not position errors.

    Science.gov (United States)

    Xiong, Ying-Zi; Yu, Cong; Zhang, Jun-Yun

    2015-08-01

    When an observer reports a letter flanked by additional letters in the visual periphery, the response errors (the crowding effect) may result from failure to recognize the target letter (recognition errors), from mislocating a correctly recognized target letter at a flanker location (target misplacement errors), or from reporting a flanker as the target letter (flanker substitution errors). Crowding can be reduced through perceptual learning. However, it is not known how perceptual learning operates to reduce crowding. In this study we trained observers with a partial-report task (Experiment 1), in which they reported the central target letter of a three-letter string presented in the visual periphery, or a whole-report task (Experiment 2), in which they reported all three letters in order. We then assessed the impact of training on recognition of both unflanked and flanked targets, with particular attention to how perceptual learning affected the types of errors. Our results show that training improved target recognition but not single-letter recognition, indicating that training indeed affected crowding. However, training did not reduce target misplacement errors or flanker substitution errors. This dissociation between target recognition and flanker substitution errors supports the view that flanker substitution may be more likely a by-product (due to response bias), rather than a cause, of crowding. Moreover, the dissociation is not consistent with hypothesized mechanisms of crowding that would predict reduced positional errors.

  13. Mapping face recognition information use across cultures

    Directory of Open Access Journals (Sweden)

    Sébastien eMiellet

    2013-02-01

    Full Text Available Face recognition is not rooted in a universal eye movement information-gathering strategy. Western observers favor a local facial feature sampling strategy, whereas Eastern observers prefer sampling face information from a global, central fixation strategy. Yet, the precise qualitative (the diagnostic and quantitative (the amount information underlying these cultural perceptual biases in face recognition remains undetermined.To this end, we monitored the eye movements of Western and Eastern observers during a face recognition task, with a novel gaze-contingent technique: the Expanding Spotlight. We used 2° Gaussian apertures centered on the observers' fixations expanding dynamically at a rate of 1° every 25ms at each fixation - the longer the fixation duration, the larger the aperture size. Identity-specific face information was only displayed within the Gaussian aperture; outside the aperture, an average face template was displayed to facilitate saccade planning. Thus, the Expanding Spotlight simultaneously maps out the facial information span at each fixation location.Data obtained with the Expanding Spotlight technique confirmed that Westerners extract more information from the eye region, whereas Easterners extract more information from the nose region. Interestingly, this quantitative difference was paired with a qualitative disparity. Retinal filters based on spatial frequency decomposition built from the fixations maps revealed that Westerners used local high-spatial frequency information sampling, covering all the features critical for effective face recognition (the eyes and the mouth. In contrast, Easterners achieved a similar result by using global low-spatial frequency information from those facial features.Our data show that the face system flexibly engages into local or global eye movement strategies across cultures, by relying on distinct facial information span and culturally tuned spatially filtered information. Overall, our

  14. Signal recognition particle assembly in relation to the function of amplified nucleoli of Xenopus oocytes.

    Science.gov (United States)

    Sommerville, John; Brumwell, Craig L; Politz, Joan C Ritland; Pederson, Thoru

    2005-03-15

    The signal recognition particle (SRP) is a ribonucleoprotein machine that controls the translation and intracellular sorting of membrane and secreted proteins. The SRP contains a core RNA subunit with which six proteins are assembled. Recent work in both yeast and mammalian cells has identified the nucleolus as a possible initial site of SRP assembly. In the present study, SRP RNA and protein components were identified in the extrachromosomal, amplified nucleoli of Xenopus laevis oocytes. Fluorescent SRP RNA microinjected into the oocyte nucleus became specifically localized in the nucleoli, and endogenous SRP RNA was also detected in oocyte nucleoli by RNA in situ hybridization. An initial step in the assembly of SRP involves the binding of the SRP19 protein to SRP RNA. When green fluorescent protein (GFP)-tagged SRP19 protein was injected into the oocyte cytoplasm it was imported into the nucleus and became concentrated in the amplified nucleoli. After visiting the amplified nucleoli, GFP-tagged SRP19 protein was detected in the cytoplasm in a ribonucleoprotein complex, having a sedimentation coefficient characteristic of the SRP. These results suggest that the amplified nucleoli of Xenopus oocytes produce maternal stores not only of ribosomes, the classical product of nucleoli, but also of SRP, presumably as a global developmental strategy for stockpiling translational machinery for early embryogenesis.

  15. Myotonic Dystrophy Type 1 RNA Crystal Structures Reveal Heterogeneous 1 × 1 Nucleotide UU Internal Loop Conformations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Park, HaJeung; Fang, Pengfei; Parkesh, Raman; Guo, Min; Nettles, Kendall W.; Disney, Matthew D. (Scripps)

    2012-03-27

    RNA internal loops often display a variety of conformations in solution. Herein, we visualize conformational heterogeneity in the context of the 5'CUG/3'GUC repeat motif present in the RNA that causes myotonic dystrophy type 1 (DM1). Specifically, two crystal structures of a model DM1 triplet repeating construct, 5'r[{und UU}GGGC(C{und U}G){sub 3}GUCC]{sub 2}, refined to 2.20 and 1.52 {angstrom} resolution are disclosed. Here, differences in the orientation of the 5' dangling UU end between the two structures induce changes in the backbone groove width, which reveals that noncanonical 1 x 1 nucleotide UU internal loops can display an ensemble of pairing conformations. In the 2.20 {angstrom} structure, CUGa, the 5' UU forms a one hydrogen-bonded pair with a 5' UU of a neighboring helix in the unit cell to form a pseudoinfinite helix. The central 1 x 1 nucleotide UU internal loop has no hydrogen bonds, while the terminal 1 x 1 nucleotide UU internal loops each form a one-hydrogen bond pair. In the 1.52 {angstrom} structure, CUGb, the 5' UU dangling end is tucked into the major groove of the duplex. While the canonically paired bases show no change in base pairing, in CUGb the terminal 1 x 1 nucleotide UU internal loops now form two hydrogen-bonded pairs. Thus, the shift in the major groove induced by the 5' UU dangling end alters noncanonical base patterns. Collectively, these structures indicate that 1 x 1 nucleotide UU internal loops in DM1 may sample multiple conformations in vivo. This observation has implications for the recognition of this RNA, and other repeating transcripts, by protein and small molecule ligands.

  16. Rotation-invariant neural pattern recognition system with application to coin recognition.

    Science.gov (United States)

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  17. A Systematic Genetic Screen to Dissect the MicroRNA Pathway in Drosophila.

    Science.gov (United States)

    Pressman, Sigal; Reinke, Catherine A; Wang, Xiaohong; Carthew, Richard W

    2012-04-01

    A central goal of microRNA biology is to elucidate the genetic program of miRNA function and regulation. However, relatively few of the effectors that execute miRNA repression have been identified. Because such genes may function in many developmental processes, mutations in them are expected to be pleiotropic and thus are discarded in most standard genetic screens. Here, we describe a systematic screen designed to identify all Drosophila genes in ∼40% of the genome that function in the miRNA pathway. To identify potentially pleiotropic genes, the screen analyzed clones of homozygous mutant cells in heterozygous animals. We identified 45 mutations representing 24 genes, and we molecularly characterized 9 genes. These include 4 previously known genes that encode core components of the miRNA pathway, including Drosha, Pasha, Dicer-1, and Ago1. The rest are new genes that function through chromatin remodeling, signaling, and mRNA decapping. The results suggest genetic screens that use clonal analysis can elucidate the miRNA program and that ∼100 genes are required to execute the miRNA program.

  18. Viral tRNA Mimicry from a Biocommunicative Perspective

    Directory of Open Access Journals (Sweden)

    Ascensión Ariza-Mateos

    2017-12-01

    Full Text Available RNA viruses have very small genomes which limits the functions they can encode. One of the strategies employed by these viruses is to mimic key factors of the host cell so they can take advantage of the interactions and activities these factors typically participate in. The viral RNA genome itself was first observed to mimic cellular tRNA over 40 years ago. Since then researchers have confirmed that distinct families of RNA viruses are accessible to a battery of cellular factors involved in tRNA-related activities. Recently, potential tRNA-like structures have been detected within the sequences of a 100 mRNAs taken from human cells, one of these being the host defense interferon-alpha mRNA; these are then additional to the examples found in bacterial and yeast mRNAs. The mimetic relationship between tRNA, cellular mRNA, and viral RNA is the central focus of two considerations described below. These are subsequently used as a preface for a final hypothesis drawing on concepts relating to mimicry from the social sciences and humanities, such as power relations and creativity. Firstly, the presence of tRNA-like structures in mRNAs indicates that the viral tRNA-like signal could be mimicking tRNA-like elements that are contextualized by the specific carrier mRNAs, rather than, or in addition to, the tRNA itself, which would significantly increase the number of potential semiotic relations mediated by the viral signals. Secondly, and in particular, mimicking a host defense mRNA could be considered a potential new viral strategy for survival. Finally, we propose that mRNA’s mimicry of tRNA could be indicative of an ancestral intracellular conflict in which species of mRNAs invaded the cell, but from within. As the meaning of the mimetic signal depends on the context, in this case, the conflict that arises when the viral signal enters the cell can change the meaning of the mRNAs’ internal tRNA-like signals, from their current significance to that

  19. The microRNA effector RNA-induced silencing complex in hidradenitis suppurativa: a significant dysregulation within active inflammatory lesions.

    Science.gov (United States)

    Hessam, S; Sand, M; Skrygan, M; Bechara, Falk G

    2017-09-01

    Recently, we could show that the expression levels of the key regulators of the microRNA (miRNA) maturation and transport were dysregulated in inflamed hidradenitis suppurativa (HS) tissue (Heyam et al. in Wiley Interdiscip Rev RNA 6:271-289, 2015). The RNA-induced silencing complex (RISC) is the central element of the miRNA pathway and regulates miRNA formation and function. We investigated the expression of the RISC components, namely transactivation-responsive RNA-binding protein-1 (TRBP1), TRBP2, protein activator (PACT) of the interferon-induced protein kinase R, Argonaute RISC Catalytic Component-1 (AGO1) and Component-2 (AGO2), metadherin, and staphylococcal nuclease and Tudor domain-containing-1 (SND1) in inflamed HS tissue compared to healthy and psoriatic controls by real-time reverse transcription polymerase chain reaction. Expression levels of all investigated components were significantly lower in lesional HS skin (n = 18) compared to healthy controls (n = 10). TRBP1, PACT, AGO1, AGO2, and SND1 expression levels were significantly down-regulated in lesional HS skin compared to healthy-appearing perilesional skin (n = 7). TRBP2 and SND1 expression levels were significantly lower in healthy-appearing perilesional skin compared to healthy controls. In lesional HS skin, expression levels of PACT, AGO1, and AGO2 were significantly lower compared to psoriatic skin (n = 10). In summary, our data showed that all investigated components of RISC are dysregulated in the skin of HS patients, providing support for the hypothesis that miRNAs may have a pathological role in the inflammatory pathogenesis of HS.

  20. Specificity and multiplicity in the recognition of individuals: implications for the evolution of social behaviour.

    Science.gov (United States)

    Wiley, R H

    2013-02-01

    Recognition of conspecifics occurs when individuals classify sets of conspecifics based on sensory input from them and associate these sets with different responses. Classification of conspecifics can vary in specificity (the number of individuals included in a set) and multiplicity (the number of sets differentiated). In other words, the information transmitted varies in complexity. Although recognition of conspecifics has been reported in a wide variety of organisms, few reports have addressed the specificity or multiplicity of this capability. This review discusses examples of these patterns, the mechanisms that can produce them, and the evolution of these mechanisms. Individual recognition is one end of a spectrum of specificity, and binary classification of conspecifics is one end of a spectrum of multiplicity. In some cases, recognition requires no more than simple forms of learning, such as habituation, yet results in individually specific recognition. In other cases, recognition of individuals involves complex associations of multiple cues with multiple previous experiences in particular contexts. Complex mechanisms for recognition are expected to evolve only when simpler mechanisms do not provide sufficient specificity and multiplicity to obtain the available advantages. In particular, the evolution of cooperation and deception is always promoted by specificity and multiplicity in recognition. Nevertheless, there is only one demonstration that recognition of specific individuals contributes to cooperation in animals other than primates. Human capacities for individual recognition probably have a central role in the evolution of complex forms of human cooperation and deception. Although relatively little studied, this capability probably rivals cognitive abilities for language. © 2012 The Author. Biological Reviews © 2012 Cambridge Philosophical Society.

  1. Nuclear factor 90 uses an ADAR2-like binding mode to recognize specific bases in dsRNA.

    Science.gov (United States)

    Jayachandran, Uma; Grey, Heather; Cook, Atlanta G

    2016-02-29

    Nuclear factors 90 and 45 (NF90 and NF45) form a protein complex involved in the post-transcriptional control of many genes in vertebrates. NF90 is a member of the dsRNA binding domain (dsRBD) family of proteins. RNA binding partners identified so far include elements in 3' untranslated regions of specific mRNAs and several non-coding RNAs. In NF90, a tandem pair of dsRBDs separated by a natively unstructured segment confers dsRNA binding activity. We determined a crystal structure of the tandem dsRBDs of NF90 in complex with a synthetic dsRNA. This complex shows surprising similarity to the tandem dsRBDs from an adenosine-to-inosine editing enzyme, ADAR2 in complex with a substrate RNA. Residues involved in unusual base-specific recognition in the minor groove of dsRNA are conserved between NF90 and ADAR2. These data suggest that, like ADAR2, underlying sequences in dsRNA may influence how NF90 recognizes its target RNAs. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Embedded palmprint recognition system using OMAP 3530.

    Science.gov (United States)

    Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen

    2012-01-01

    We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.

  3. Primary processing of CRISPR RNA by the endonuclease Cas6 in Staphylococcus epidermidis.

    Science.gov (United States)

    Wakefield, Noelle; Rajan, Rakhi; Sontheimer, Erik J

    2015-10-07

    In many bacteria and archaea, an adaptive immune system (CRISPR-Cas) provides immunity against foreign genetic elements. This system uses CRISPR RNAs (crRNAs) derived from the CRISPR array, along with CRISPR-associated (Cas) proteins, to target foreign nucleic acids. In most CRISPR systems, endonucleolytic processing of crRNA precursors (pre-crRNAs) is essential for the pathway. Here we study the Cas6 endonuclease responsible for crRNA processing in the Type III-A CRISPR-Cas system from Staphylococcus epidermidis RP62a, a model for Type III-A CRISPR-Cas systems, and define substrate requirements for SeCas6 activity. We find that SeCas6 is necessary and sufficient for full-length crRNA biogenesis in vitro, and that it relies on both sequence and stem-loop structure in the 3' half of the CRISPR repeat for recognition and processing. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules".

    Science.gov (United States)

    Wang, Wang-Xia; Wilfred, Bernard R; Xie, Kevin; Jennings, Mary H; Hu, Yanling Hu; Stromberg, Arnold J; Nelson, Peter T

    2010-01-01

    MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using an assay we validated previously-a "RIP-Chip" experimental design. RIP-Chip data provided a list of mRNAs recruited into the AGO-miRNP in correlation to each miRNA. These experimentally identified miRNA targets were analyzed for complementary six nucleotide "seed" sequences within the transfected miRNAs. We found that miR-124 targets tended to have sequences in the 3'UTR that would be recognized by the 5' seed of miR-124, as described in previous studies. By contrast, miR-107 targets tended to have 'seed' sequences in the mRNA open reading frame, but not the 3' UTR. Further, mRNA targets of miR-128 and miR-320 are less enriched for 6-mer seed sequences in comparison to miR-107 and miR-124. In sum, our data support the importance of the 5' seed in determining binding characteristics for some miRNAs; however, the "binding rules" are complex, and individual miRNAs can have distinct sequence determinants that lead to mRNA targeting.

  5. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  6. The modeled structure of the RNA dependent RNA polymerase of GBV-C Virus suggests a role for motif E in Flaviviridae RNA polymerases

    Directory of Open Access Journals (Sweden)

    Dutartre Hélène

    2005-10-01

    Full Text Available Abstract Background The Flaviviridae virus family includes major human and animal pathogens. The RNA dependent RNA polymerase (RdRp plays a central role in the replication process, and thus is a validated target for antiviral drugs. Despite the increasing structural and enzymatic characterization of viral RdRps, detailed molecular replication mechanisms remain unclear. The hepatitis C virus (HCV is a major human pathogen difficult to study in cultured cells. The bovine viral diarrhea virus (BVDV is often used as a surrogate model to screen antiviral drugs against HCV. The structure of BVDV RdRp has been recently published. It presents several differences relative to HCV RdRp. These differences raise questions about the relevance of BVDV as a surrogate model, and cast novel interest on the "GB" virus C (GBV-C. Indeed, GBV-C is genetically closer to HCV than BVDV, and can lead to productive infection of cultured cells. There is no structural data for the GBV-C RdRp yet. Results We show in this study that the GBV-C RdRp is closest to the HCV RdRp. We report a 3D model of the GBV-C RdRp, developed using sequence-to-structure threading and comparative modeling based on the atomic coordinates of the HCV RdRp structure. Analysis of the predicted structural features in the phylogenetic context of the RNA polymerase family allows rationalizing most of the experimental data available. Both available structures and our model are explored to examine the catalytic cleft, allosteric and substrate binding sites. Conclusion Computational methods were used to infer evolutionary relationships and to predict the structure of a viral RNA polymerase. Docking a GTP molecule into the structure allows defining a GTP binding pocket in the GBV-C RdRp, such as that of BVDV. The resulting model suggests a new proposition for the mechanism of RNA synthesis, and may prove useful to design new experiments to implement our knowledge on the initiation mechanism of RNA

  7. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses.

    Science.gov (United States)

    Li, Ci-Xiu; Shi, Mang; Tian, Jun-Hua; Lin, Xian-Dan; Kang, Yan-Jun; Chen, Liang-Jun; Qin, Xin-Cheng; Xu, Jianguo; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-29

    Although arthropods are important viral vectors, the biodiversity of arthropod viruses, as well as the role that arthropods have played in viral origins and evolution, is unclear. Through RNA sequencing of 70 arthropod species we discovered 112 novel viruses that appear to be ancestral to much of the documented genetic diversity of negative-sense RNA viruses, a number of which are also present as endogenous genomic copies. With this greatly enriched diversity we revealed that arthropods contain viruses that fall basal to major virus groups, including the vertebrate-specific arenaviruses, filoviruses, hantaviruses, influenza viruses, lyssaviruses, and paramyxoviruses. We similarly documented a remarkable diversity of genome structures in arthropod viruses, including a putative circular form, that sheds new light on the evolution of genome organization. Hence, arthropods are a major reservoir of viral genetic diversity and have likely been central to viral evolution.

  8. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    Science.gov (United States)

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  9. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  10. Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA

    KAUST Repository

    Magana-Mora, Arturo

    2017-08-15

    BackgroundPolyadenylation is a critical stage of RNA processing during the formation of mature mRNA, and is present in most of the known eukaryote protein-coding transcripts and many long non-coding RNAs. The correct identification of poly(A) signals (PAS) not only helps to elucidate the 3′-end genomic boundaries of a transcribed DNA region and gene regulatory mechanisms but also gives insight into the multiple transcript isoforms resulting from alternative PAS. Although progress has been made in the in-silico prediction of genomic signals, the recognition of PAS in DNA genomic sequences remains a challenge.ResultsIn this study, we analyzed human genomic DNA sequences for the 12 most common PAS variants. Our analysis has identified a set of features that helps in the recognition of true PAS, which may be involved in the regulation of the polyadenylation process. The proposed features, in combination with a recognition model, resulted in a novel method and tool, Omni-PolyA. Omni-PolyA combines several machine learning techniques such as different classifiers in a tree-like decision structure and genetic algorithms for deriving a robust classification model. We performed a comparison between results obtained by state-of-the-art methods, deep neural networks, and Omni-PolyA. Results show that Omni-PolyA significantly reduced the average classification error rate by 35.37% in the prediction of the 12 considered PAS variants relative to the state-of-the-art results.ConclusionsThe results of our study demonstrate that Omni-PolyA is currently the most accurate model for the prediction of PAS in human and can serve as a useful complement to other PAS recognition methods. Omni-PolyA is publicly available as an online tool accessible at www.cbrc.kaust.edu.sa/omnipolya/.

  11. Functional specialization of the small interfering RNA pathway in response to virus infection.

    Directory of Open Access Journals (Sweden)

    Joao Trindade Marques

    Full Text Available In Drosophila, post-transcriptional gene silencing occurs when exogenous or endogenous double stranded RNA (dsRNA is processed into small interfering RNAs (siRNAs by Dicer-2 (Dcr-2 in association with a dsRNA-binding protein (dsRBP cofactor called Loquacious (Loqs-PD. siRNAs are then loaded onto Argonaute-2 (Ago2 by the action of Dcr-2 with another dsRBP cofactor called R2D2. Loaded Ago2 executes the destruction of target RNAs that have sequence complementarity to siRNAs. Although Dcr-2, R2D2, and Ago2 are essential for innate antiviral defense, the mechanism of virus-derived siRNA (vsiRNA biogenesis and viral target inhibition remains unclear. Here, we characterize the response mechanism mediated by siRNAs against two different RNA viruses that infect Drosophila. In both cases, we show that vsiRNAs are generated by Dcr-2 processing of dsRNA formed during viral genome replication and, to a lesser extent, viral transcription. These vsiRNAs seem to preferentially target viral polyadenylated RNA to inhibit viral replication. Loqs-PD is completely dispensable for silencing of the viruses, in contrast to its role in silencing endogenous targets. Biogenesis of vsiRNAs is independent of both Loqs-PD and R2D2. R2D2, however, is required for sorting and loading of vsiRNAs onto Ago2 and inhibition of viral RNA expression. Direct injection of viral RNA into Drosophila results in replication that is also independent of Loqs-PD. This suggests that triggering of the antiviral pathway is not related to viral mode of entry but recognition of intrinsic features of virus RNA. Our results indicate the existence of a vsiRNA pathway that is separate from the endogenous siRNA pathway and is specifically triggered by virus RNA. We speculate that this unique framework might be necessary for a prompt and efficient antiviral response.

  12. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    Science.gov (United States)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  13. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory.

    Science.gov (United States)

    Brown, M W; Barker, G R I; Aggleton, J P; Warburton, E C

    2012-11-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty

  14. Final report for ER65039, The Role of Small RNA in Biomass Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, Matthew E. [Univ. of Illinois, Urbana, IL (United States)

    2015-03-12

    Our objective in this project was to discover the role of sRNA in regulating both biomass biosynthesis and perenniality in the Andropogoneae feedstock grasses. Our central hypothesis was that there is a time-and space specific sRNA network playing a crucial role in regulating processes associated with cell wall biosynthesis, flowering time control, overwintering/juvenility, and nutrient sequestration in the feedstock grasses. To address this, we performed a large scale biological project consisting of the growth of material, generation of Illumina libraries, sequencing and analysis for small RNA, mRNA and Degradome / cmRNA. Our subsidiary objectives included analysis of the biology of small RNAs and the cell wall composition of Miscanthus. These objectives have all been completed, one publication is in print, one is submitted and several more are in progress.

  15. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.

    Science.gov (United States)

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki

    2017-03-01

    Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in Δ rneG Δ pnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ pnp , Δ rneG , and Δ ybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in

  16. Familiar Person Recognition: Is Autonoetic Consciousness More Likely to Accompany Face Recognition Than Voice Recognition?

    Science.gov (United States)

    Barsics, Catherine; Brédart, Serge

    2010-11-01

    Autonoetic consciousness is a fundamental property of human memory, enabling us to experience mental time travel, to recollect past events with a feeling of self-involvement, and to project ourselves in the future. Autonoetic consciousness is a characteristic of episodic memory. By contrast, awareness of the past associated with a mere feeling of familiarity or knowing relies on noetic consciousness, depending on semantic memory integrity. Present research was aimed at evaluating whether conscious recollection of episodic memories is more likely to occur following the recognition of a familiar face than following the recognition of a familiar voice. Recall of semantic information (biographical information) was also assessed. Previous studies that investigated the recall of biographical information following person recognition used faces and voices of famous people as stimuli. In this study, the participants were presented with personally familiar people's voices and faces, thus avoiding the presence of identity cues in the spoken extracts and allowing a stricter control of frequency exposure with both types of stimuli (voices and faces). In the present study, the rate of retrieved episodic memories, associated with autonoetic awareness, was significantly higher from familiar faces than familiar voices even though the level of overall recognition was similar for both these stimuli domains. The same pattern was observed regarding semantic information retrieval. These results and their implications for current Interactive Activation and Competition person recognition models are discussed.

  17. Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome.

    Science.gov (United States)

    Kätsyri, Jari; Saalasti, Satu; Tiippana, Kaisa; von Wendt, Lennart; Sams, Mikko

    2008-01-01

    The theory of 'weak central coherence' [Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25] implies that persons with autism spectrum disorders (ASDs) have a perceptual bias for local but not for global stimulus features. The recognition of emotional facial expressions representing various different levels of detail has not been studied previously in ASDs. We analyzed the recognition of four basic emotional facial expressions (anger, disgust, fear and happiness) from low-spatial frequencies (overall global shapes without local features) in adults with an ASD. A group of 20 participants with Asperger syndrome (AS) was compared to a group of non-autistic age- and sex-matched controls. Emotion recognition was tested from static and dynamic facial expressions whose spatial frequency contents had been manipulated by low-pass filtering at two levels. The two groups recognized emotions similarly from non-filtered faces and from dynamic vs. static facial expressions. In contrast, the participants with AS were less accurate than controls in recognizing facial emotions from very low-spatial frequencies. The results suggest intact recognition of basic facial emotions and dynamic facial information, but impaired visual processing of global features in ASDs.

  18. Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis.

    Science.gov (United States)

    Enyeart, Peter J; Mohr, Georg; Ellington, Andrew D; Lambowitz, Alan M

    2014-01-13

    Mobile group II introns are bacterial retrotransposons that combine the activities of an autocatalytic intron RNA (a ribozyme) and an intron-encoded reverse transcriptase to insert site-specifically into DNA. They recognize DNA target sites largely by base pairing of sequences within the intron RNA and achieve high DNA target specificity by using the ribozyme active site to couple correct base pairing to RNA-catalyzed intron integration. Algorithms have been developed to program the DNA target site specificity of several mobile group II introns, allowing them to be made into 'targetrons.' Targetrons function for gene targeting in a wide variety of bacteria and typically integrate at efficiencies high enough to be screened easily by colony PCR, without the need for selectable markers. Targetrons have found wide application in microbiological research, enabling gene targeting and genetic engineering of bacteria that had been intractable to other methods. Recently, a thermostable targetron has been developed for use in bacterial thermophiles, and new methods have been developed for using targetrons to position recombinase recognition sites, enabling large-scale genome-editing operations, such as deletions, inversions, insertions, and 'cut-and-pastes' (that is, translocation of large DNA segments), in a wide range of bacteria at high efficiency. Using targetrons in eukaryotes presents challenges due to the difficulties of nuclear localization and sub-optimal magnesium concentrations, although supplementation with magnesium can increase integration efficiency, and directed evolution is being employed to overcome these barriers. Finally, spurred by new methods for expressing group II intron reverse transcriptases that yield large amounts of highly active protein, thermostable group II intron reverse transcriptases from bacterial thermophiles are being used as research tools for a variety of applications, including qRT-PCR and next-generation RNA sequencing (RNA-seq). The

  19. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics

    NARCIS (Netherlands)

    Best, Myron G.; Sol, Nik; Kooi, Irsan; Tannous, Jihane; Westerman, Bart A.; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Koster, Jan; Ylstra, Bauke; Ameziane, Najim; Dorsman, Josephine; Smit, Egbert F.; Verheul, Henk M.; Noske, David P.; Reijneveld, Jaap C.; Nilsson, R. Jonas A.; Tannous, Bakhos A.; Wesseling, Pieter; Wurdinger, Thomas

    2015-01-01

    Tumor-educated blood platelets (TEPs) are implicated as central players in the systemic and local responses to tumor growth, thereby altering their RNA profile. We determined the diagnostic potential of TEPs by mRNA sequencing of 283 platelet samples. We distinguished 228 patients with localized and

  20. 8-Methoxypsoralen DNA interstrand cross-linking of the ribosomal RNA genes in Tetrahymena thermophila. Distribution, repair and effect on rRNA synthesis

    DEFF Research Database (Denmark)

    Fengquin, X; Nielsen, Henrik; Zhen, W

    1993-01-01

    between three domains (terminal spacer, transcribed region and central spacer) as defined by restriction enzyme analysis (BamHI and ClaI). It is furthermore shown that a dosage resulting in approximately one cross-link per rDNA molecule (21 kbp, two genes) is sufficient to block RNA synthesis. Finally......, it is shown that the cross-links in the rDNA molecules are repaired at equal rate in all three domains within 24 h and that RNA synthesis is partly restored during this repair period. The majority of the cells also go through one to two cell divisions in this period but do not survive....

  1. Pattern Recognition of the Multiple Sclerosis Syndrome

    Science.gov (United States)

    Stewart, Renee; Healey, Kathleen M.

    2017-01-01

    During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis. PMID:29064441

  2. MicroRNA related polymorphisms and breast cancer risk.

    Science.gov (United States)

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L; Muranen, Taru A; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F; Southey, Melissa C; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A; van der Luijt, Rob B; Meindl, Alfons; Schmutzler, Rita K; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J; Hunter, David J; Cox, Angela; Cross, Simon S; Reed, Malcolm W R; Schmidt, Marjanka K; Broeks, Annegien; Van't Veer, Laura J; Hogervorst, Frans B; Fasching, Peter A; Schrauder, Michael G; Ekici, Arif B; Beckmann, Matthias W; Bojesen, Stig E; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M; Perez, Jose I A; Haiman, Christopher A; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D P; Dunning, Alison M; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J; Wang, Xianshu; Vachon, Celine; Olson, Janet E; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Andrulis, Irene L; Knight, Julia A; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V; Antonenkova, Natalia N; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A E M; Seynaeve, Caroline; van Asperen, Christi J; Kristensen, Vessela N; Slager, Susan; Toland, Amanda E; Ambrosone, Christine B; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J; Martens, John W M; Collée, J Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88-0.96), rs1052532 (OR 0.97; 95% CI: 0.95-0.99), rs10719 (OR 0.97; 95% CI: 0.94-0.99), rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05) located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  3. [Prosopagnosia and facial expression recognition].

    Science.gov (United States)

    Koyama, Shinichi

    2014-04-01

    This paper reviews clinical neuropsychological studies that have indicated that the recognition of a person's identity and the recognition of facial expressions are processed by different cortical and subcortical areas of the brain. The fusiform gyrus, especially the right fusiform gyrus, plays an important role in the recognition of identity. The superior temporal sulcus, amygdala, and medial frontal cortex play important roles in facial-expression recognition. Both facial recognition and facial-expression recognition are highly intellectual processes that involve several regions of the brain.

  4. Elicitation of hypersensitive responses in Nicotiana glutinosa by the suppressor of RNA silencing protein P0 from poleroviruses.

    Science.gov (United States)

    Wang, Ken-Der; Empleo, Roman; Nguyen, Tan Tri V; Moffett, Peter; Sacco, Melanie Ann

    2015-06-01

    Plant disease resistance (R) proteins that confer resistance to viruses recognize viral gene products with diverse functions, including viral suppressors of RNA silencing (VSRs). The P0 protein from poleroviruses is a VSR that targets the ARGONAUTE1 (AGO1) protein for degradation, thereby disrupting RNA silencing and antiviral defences. Here, we report resistance against poleroviruses in Nicotiana glutinosa directed against Turnip yellows virus (TuYV) and Potato leafroll virus (PLRV). The P0 proteins from TuYV (P0(T) (u) ), PLRV (P0(PL) ) and Cucurbit aphid-borne yellows virus (P0(CA) ) were found to elicit a hypersensitive response (HR) in N. glutinosa accession TW59, whereas other accessions recognized P0(PL) only. Genetic analysis showed that recognition of P0(T) (u) by a resistance gene designated RPO1 (Resistance to POleroviruses 1) is inherited as a dominant allele. Expression of P0 from a Potato virus X (PVX) expression vector transferred recognition to the recombinant virus on plants expressing RPO1, supporting P0 as the unique Polerovirus factor eliciting resistance. The induction of HR required a functional P0 protein, as P0(T) (u) mutants with substitutions in the F-box motif that abolished VSR activity were unable to elicit HR. We surmised that the broad P0 recognition seen in TW59 and the requirement for the F-box protein motif could indicate detection of P0-induced AGO1 degradation and disruption of RNA silencing; however, other viral silencing suppressors, including the PVX P25 that also causes AGO1 degradation, failed to elicit HR in N. glutinosa. Investigation of P0 elicitation of RPO1 could provide insight into P0 activities within the cell that trigger resistance. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  5. iDoRNA: An Interacting Domain-based Tool for Designing RNA-RNA Interaction Systems

    Directory of Open Access Journals (Sweden)

    Jittrawan Thaiprasit

    2016-03-01

    Full Text Available RNA-RNA interactions play a crucial role in gene regulation in living organisms. They have gained increasing interest in the field of synthetic biology because of their potential applications in medicine and biotechnology. However, few novel regulators based on RNA-RNA interactions with desired structures and functions have been developed due to the challenges of developing design tools. Recently, we proposed a novel tool, called iDoDe, for designing RNA-RNA interacting sequences by first decomposing RNA structures into interacting domains and then designing each domain using a stochastic algorithm. However, iDoDe did not provide an optimal solution because it still lacks a mechanism to optimize the design. In this work, we have further developed the tool by incorporating a genetic algorithm (GA to find an RNA solution with maximized structural similarity and minimized hybridized RNA energy, and renamed the tool iDoRNA. A set of suitable parameters for the genetic algorithm were determined and found to be a weighting factor of 0.7, a crossover rate of 0.9, a mutation rate of 0.1, and the number of individuals per population set to 8. We demonstrated the performance of iDoRNA in comparison with iDoDe by using six RNA-RNA interaction models. It was found that iDoRNA could efficiently generate all models of interacting RNAs with far more accuracy and required far less computational time than iDoDe. Moreover, we compared the design performance of our tool against existing design tools using forty-four RNA-RNA interaction models. The results showed that the performance of iDoRNA is better than RiboMaker when considering the ensemble defect, the fitness score and computation time usage. However, it appears that iDoRNA is outperformed by NUPACK and RNAiFold 2.0 when considering the ensemble defect. Nevertheless, iDoRNA can still be an useful alternative tool for designing novel RNA-RNA interactions in synthetic biology research. The source code of iDoRNA

  6. Pupil dilation during recognition memory: Isolating unexpected recognition from judgment uncertainty.

    Science.gov (United States)

    Mill, Ravi D; O'Connor, Akira R; Dobbins, Ian G

    2016-09-01

    Optimally discriminating familiar from novel stimuli demands a decision-making process informed by prior expectations. Here we demonstrate that pupillary dilation (PD) responses during recognition memory decisions are modulated by expectations, and more specifically, that pupil dilation increases for unexpected compared to expected recognition. Furthermore, multi-level modeling demonstrated that the time course of the dilation during each individual trial contains separable early and late dilation components, with the early amplitude capturing unexpected recognition, and the later trailing slope reflecting general judgment uncertainty or effort. This is the first demonstration that the early dilation response during recognition is dependent upon observer expectations and that separate recognition expectation and judgment uncertainty components are present in the dilation time course of every trial. The findings provide novel insights into adaptive memory-linked orienting mechanisms as well as the general cognitive underpinnings of the pupillary index of autonomic nervous system activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Directory of Open Access Journals (Sweden)

    Tina Y Liu

    Full Text Available CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus Type III-A Csm complex (TthCsm with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  8. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    Science.gov (United States)

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  9. Convergent microRNA actions coordinate neocortical development.

    Science.gov (United States)

    Barca-Mayo, Olga; De Pietri Tonelli, Davide

    2014-08-01

    Neocortical development is a complex process that, at the cellular level, involves tight control of self-renewal, cell fate commitment, survival, differentiation and delamination/migration. These processes require, at the molecular level, the precise regulation of intrinsic signaling pathways and extrinsic factors with coordinated action in a spatially and temporally specific manner. Transcriptional regulation plays an important role during corticogenesis; however, microRNAs (miRNAs) are emerging as important post-transcriptional regulators of various aspects of central nervous system development. miRNAs are a class of small, single-stranded noncoding RNA molecules that control the expression of the majority of protein coding genes (i.e., targets). How do different miRNAs achieve precise control of gene networks during neocortical development? Here, we critically review all the miRNA-target interactions validated in vivo, with relevance to the generation and migration of pyramidal-projection glutamatergic neurons, and for the initial formation of cortical layers in the embryonic development of rodent neocortex. In particular, we focus on convergent miRNA actions, which are still a poorly understood layer of complexity in miRNA signaling, but potentially one of the keys to disclosing how miRNAs achieve the precise coordination of complex biological processes such as neocortical development.

  10. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.

    2012-11-02

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  11. Computational tools for genome-wide miRNA prediction and study

    KAUST Repository

    Malas, T.B.; Ravasi, Timothy

    2012-01-01

    MicroRNAs (miRNAs) are single-stranded non-coding RNA susually of 22 nucleotidesin length that play an important post-transcriptional regulation role in many organisms. MicroRNAs bind a seed sequence to the 3-untranslated region (UTR) region of the target messenger RNA (mRNA), inducing degradation or inhibition of translation and resulting in a reduction in the protein level. This regulatory mechanism is central to many biological processes and perturbation could lead to diseases such as cancer. Given the biological importance, of miRNAs, there is a great need to identify and study their targets and functions. However, miRNAs are very difficult to clone in the lab and this has hindered the identification of novel miRNAs. Next-generation sequencing coupled with new computational tools has recently evolved to help researchers efficiently identify large numbers of novel miRNAs. In this review, we describe recent miRNA prediction tools and discuss their priorities, advantages and disadvantages. Malas and Ravasi.

  12. Report of the Central Tracking Group

    International Nuclear Information System (INIS)

    Cassel, D.G.; Hanson, G.G.

    1986-10-01

    Issues involved in building a realistic central tracking system for a general-purpose 4π detector for the SSC are addressed. Such a central tracking system must be capable of running at the full design luminosity of 10 33 cm -2 s -1 . Momentum measurement was required in a general-purpose 4π detector. Limitations on charged particle tracking detectors at the SSC imposed by rates and radiation damage are reviewed. Cell occupancy is the dominant constraint, which led us to the conclusion that only small cells, either wires or straw tubes, are suitable for a central tracking system at the SSC. Mechanical problems involved in building a central tracking system of either wires or straw tubes were studied, and our conclusion was that it is possible to build such a large central tracking system. Of course, a great deal of research and development is required. We also considered central tracking systems made of scintillating fibers or silicon microstrips, but our conclusion was that neither is a realistic candidate given the current state of technology. We began to work on computer simulation of a realistic central tracking system. Events from interesting physics processes at the SSC will be complex and will be further complicated by hits from out-of-time bunch crossings and multiple interactions within the same bunch crossing. Detailed computer simulations are needed to demonstrate that the pattern recognition and tracking problems can be solved

  13. RNA-SSPT: RNA Secondary Structure Prediction Tools.

    Science.gov (United States)

    Ahmad, Freed; Mahboob, Shahid; Gulzar, Tahsin; Din, Salah U; Hanif, Tanzeela; Ahmad, Hifza; Afzal, Muhammad

    2013-01-01

    The prediction of RNA structure is useful for understanding evolution for both in silico and in vitro studies. Physical methods like NMR studies to predict RNA secondary structure are expensive and difficult. Computational RNA secondary structure prediction is easier. Comparative sequence analysis provides the best solution. But secondary structure prediction of a single RNA sequence is challenging. RNA-SSPT is a tool that computationally predicts secondary structure of a single RNA sequence. Most of the RNA secondary structure prediction tools do not allow pseudoknots in the structure or are unable to locate them. Nussinov dynamic programming algorithm has been implemented in RNA-SSPT. The current studies shows only energetically most favorable secondary structure is required and the algorithm modification is also available that produces base pairs to lower the total free energy of the secondary structure. For visualization of RNA secondary structure, NAVIEW in C language is used and modified in C# for tool requirement. RNA-SSPT is built in C# using Dot Net 2.0 in Microsoft Visual Studio 2005 Professional edition. The accuracy of RNA-SSPT is tested in terms of Sensitivity and Positive Predicted Value. It is a tool which serves both secondary structure prediction and secondary structure visualization purposes.

  14. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  15. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  16. Combinatorics of RNA-RNA interaction

    DEFF Research Database (Denmark)

    Li, Thomas J X; Reidys, Christian

    2012-01-01

    RNA-RNA binding is an important phenomenon observed for many classes of non-coding RNAs and plays a crucial role in a number of regulatory processes. Recently several MFE folding algorithms for predicting the joint structure of two interacting RNA molecules have been proposed. Here joint structure...... means that in a diagram representation the intramolecular bonds of each partner are pseudoknot-free, that the intermolecular binding pairs are noncrossing, and that there is no so-called "zigzag" configuration. This paper presents the combinatorics of RNA interaction structures including...

  17. Feminist Politics in the Age of Recognition: A Two-Dimensional Approach to Gender Justice

    Directory of Open Access Journals (Sweden)

    Nancy Fraser

    2007-03-01

    Full Text Available In the course of the last thirty years, feminist theories of gender have shifted from quasi-Marxist, labor-centered conceptions to putatively “post-Marxist”culture- and identity-based conceptions. Reflecting a broader political move from redistribution to recognition, this shift has been double-edged. On the one hand, it has broadened feminist politics to encompass legitimate issues of representation, identity, and difference. Yet, in the context of an ascendant neoliberalism, feminist struggles for recognition may be serving to less to enrich struggles for redistribution than to displace the latter. I aim to resist that trend. In this essay, I propose an analysis of gender that is broad enough to house the full range of feminist concerns, those central to the old socialist-feminism as well as those rooted in the cultural turn. I also propose a correspondingly broad conception of justice, capable of encompassing both distribution and recognition, and a non-identitarian account of recognition, capable of synergizing with redistribution. I conclude by examining some practical problems that arise when we try to envision institutional reforms that could redress gender maldistribution and gender misrecognition simultaneously.

  18. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions

    Directory of Open Access Journals (Sweden)

    Jaeil Han

    2016-09-01

    Full Text Available The RNA exosome is a 3′–5′ ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44ch, RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44da, RNA gains direct access to the active site. Here, we show that the Rrp44da exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  19. RNA-dependent RNA polymerase: Addressing Zika outbreak by a phylogeny-based drug target study.

    Science.gov (United States)

    Stephen, Preyesh; Lin, Sheng-Xiang

    2018-01-01

    Since the first major outbreak of Zika virus (ZIKV) in 2007, ZIKV is spreading explosively through South and Central America, and recent reports in highly populated developing countries alarm the possibility of a more catastrophic outbreak. ZIKV infection in pregnant women leads to embryonic microcephaly and Guillain-Barré syndrome in adults. At present, there is limited understanding of the infectious mechanism, and no approved therapy has been reported. Despite the withdrawal of public health emergency, the WHO still considers the ZIKV as a highly significant and long-term public health challenge that the situation has to be addressed rapidly. Non-structural protein 5 is essential for capping and replication of viral RNA and comprises a methyltransferase and RNA-dependent RNA polymerase (RdRp) domain. We used molecular modeling to obtain the structure of ZIKV RdRp, and by molecular docking and phylogeny analysis, we here demonstrate the potential sites for drug screening. Two metal binding sites and an NS3-interacting region in ZIKV RdRp are demonstrated as potential drug screening sites. The docked structures reveal a remarkable degree of conservation at the substrate binding site and the potential drug screening sites. A phylogeny-based approach is provided for an emergency preparedness, where similar class of ligands could target phylogenetically related proteins. © 2017 John Wiley & Sons A/S.

  20. Word position affects stimulus recognition: evidence for early ERP short-term plastic modulation.

    Science.gov (United States)

    Spironelli, Chiara; Galfano, Giovanni; Umiltà, Carlo; Angrilli, Alessandro

    2011-12-01

    The present study was aimed at investigating the short-term plastic changes that follow word learning at a neurophysiological level. The main hypothesis was that word position (left or right visual field, LVF/RH or RVF/LH) in the initial learning phase would leave a trace that affected, in the subsequent recognition phase, the Recognition Potential (i.e., the first negative component distinguishing words from other stimuli) elicited 220-240 ms after centrally presented stimuli. Forty-eight students were administered, in the learning phase, 125 words for 4s, randomly presented half in the left and half in the right visual field. In the recognition phase, participants were split into two equal groups, one was assigned to the Word task, the other to the Picture task (in which half of the 125 pictures were new, and half matched prior studied words). During the Word task, old RVF/LH words elicited significantly greater negativity in left posterior sites with respect to old LVF/RH words, which in turn showed the same pattern of activation evoked by new words. Therefore, correspondence between stimulus spatial position and hemisphere specialized in automatic word recognition created a robust prime for subsequent recognition. During the Picture task, pictures matching old RVF/LH words showed no differences compared with new pictures, but evoked significantly greater negativity than pictures matching old LVF/RH words. Thus, the priming effect vanished when the task required a switch from visual analysis to stored linguistic information, whereas the lack of correspondence between stimulus position and network specialized in automatic word recognition (i.e., when words were presented to the LVF/RH) revealed the implicit costs for recognition. Results support the view that short-term plastic changes occurring in a linguistic learning task interact with both stimulus position and modality (written word vs. picture representation). Copyright © 2011 Elsevier B.V. All rights

  1. Sudden Event Recognition: A Survey

    Directory of Open Access Journals (Sweden)

    Mohd Asyraf Zulkifley

    2013-08-01

    Full Text Available Event recognition is one of the most active research areas in video surveillance fields. Advancement in event recognition systems mainly aims to provide convenience, safety and an efficient lifestyle for humanity. A precise, accurate and robust approach is necessary to enable event recognition systems to respond to sudden changes in various uncontrolled environments, such as the case of an emergency, physical threat and a fire or bomb alert. The performance of sudden event recognition systems depends heavily on the accuracy of low level processing, like detection, recognition, tracking and machine learning algorithms. This survey aims to detect and characterize a sudden event, which is a subset of an abnormal event in several video surveillance applications. This paper discusses the following in detail: (1 the importance of a sudden event over a general anomalous event; (2 frameworks used in sudden event recognition; (3 the requirements and comparative studies of a sudden event recognition system and (4 various decision-making approaches for sudden event recognition. The advantages and drawbacks of using 3D images from multiple cameras for real-time application are also discussed. The paper concludes with suggestions for future research directions in sudden event recognition.

  2. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery

    DEFF Research Database (Denmark)

    Tuttolomondo, Martina; Casella, Cinzia; Hansen, Pernille Lund

    2017-01-01

    tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using......-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10-800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We...

  3. Unzippers, Resolvers and Sensors: A Structural and Functional Biochemistry Tale of RNA Helicases

    Directory of Open Access Journals (Sweden)

    Ana Lúcia Leitão

    2015-01-01

    Full Text Available The centrality of RNA within the biological world is an irrefutable fact that currently attracts increasing attention from the scientific community. The panoply of functional RNAs requires the existence of specific biological caretakers, RNA helicases, devoted to maintain the proper folding of those molecules, resolving unstable structures. However, evolution has taken advantage of the specific position and characteristics of RNA helicases to develop new functions for these proteins, which are at the interface of the basic processes for transference of information from DNA to proteins. RNA helicases are involved in many biologically relevant processes, not only as RNA chaperones, but also as signal transducers, scaffolds of molecular complexes, and regulatory elements. Structural biology studies during the last decade, founded in X-ray crystallography, have characterized in detail several RNA-helicases. This comprehensive review summarizes the structural knowledge accumulated in the last two decades within this family of proteins, with special emphasis on the structure-function relationships of the most widely-studied families of RNA helicases: the DEAD-box, RIG-I-like and viral NS3 classes.

  4. Correlations between RNA and protein expression profiles in 23 human cell lines

    Directory of Open Access Journals (Sweden)

    Pontén Fredrik

    2009-08-01

    Full Text Available Abstract Background The Central Dogma of biology holds, in famously simplified terms, that DNA makes RNA makes proteins, but there is considerable uncertainty regarding the general, genome-wide correlation between levels of RNA and corresponding proteins. Therefore, to assess degrees of this correlation we compared the RNA profiles (determined using both cDNA- and oligo-based microarrays and protein profiles (determined immunohistochemically in tissue microarrays of 1066 gene products in 23 human cell lines. Results A high mean correlation coefficient (0.52 was obtained from the pairwise comparison of RNA levels determined by the two platforms. Significant correlations, with correlation coefficients exceeding 0.445, between protein and RNA levels were also obtained for a third of the specific gene products. However, the correlation coefficients between levels of RNA and protein products of specific genes varied widely, and the mean correlations between the protein and corresponding RNA levels determined using the cDNA- and oligo-based microarrays were 0.25 and 0.20, respectively. Conclusion Significant correlations were found in one third of the examined RNA species and corresponding proteins. These results suggest that RNA profiling might provide indirect support to antibodies' specificity, since whenever a evident correlation between the RNA and protein profiles exists, this can sustain that the antibodies used in the immunoassay recognized their cognate antigens.

  5. MicroRNA related polymorphisms and breast cancer risk.

    Directory of Open Access Journals (Sweden)

    Sofia Khan

    Full Text Available Genetic variations, such as single nucleotide polymorphisms (SNPs in microRNAs (miRNA or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS. Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC. Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR 0.92; 95% confidence interval (CI: 0.88-0.96, rs1052532 (OR 0.97; 95% CI: 0.95-0.99, rs10719 (OR 0.97; 95% CI: 0.94-0.99, rs4687554 (OR 0.97; 95% CI: 0.95-0.99, and rs3134615 (OR 1.03; 95% CI: 1.01-1.05 located in the 3' UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects.

  6. MicroRNA Related Polymorphisms and Breast Cancer Risk

    Science.gov (United States)

    Khan, Sofia; Greco, Dario; Michailidou, Kyriaki; Milne, Roger L.; Muranen, Taru A.; Heikkinen, Tuomas; Aaltonen, Kirsimari; Dennis, Joe; Bolla, Manjeet K.; Liu, Jianjun; Hall, Per; Irwanto, Astrid; Humphreys, Keith; Li, Jingmei; Czene, Kamila; Chang-Claude, Jenny; Hein, Rebecca; Rudolph, Anja; Seibold, Petra; Flesch-Janys, Dieter; Fletcher, Olivia; Peto, Julian; dos Santos Silva, Isabel; Johnson, Nichola; Gibson, Lorna; Aitken, Zoe; Hopper, John L.; Tsimiklis, Helen; Bui, Minh; Makalic, Enes; Schmidt, Daniel F.; Southey, Melissa C.; Apicella, Carmel; Stone, Jennifer; Waisfisz, Quinten; Meijers-Heijboer, Hanne; Adank, Muriel A.; van der Luijt, Rob B.; Meindl, Alfons; Schmutzler, Rita K.; Müller-Myhsok, Bertram; Lichtner, Peter; Turnbull, Clare; Rahman, Nazneen; Chanock, Stephen J.; Hunter, David J.; Cox, Angela; Cross, Simon S.; Reed, Malcolm W. R.; Schmidt, Marjanka K.; Broeks, Annegien; Veer, Laura J. V. a. n't.; Hogervorst, Frans B.; Fasching, Peter A.; Schrauder, Michael G.; Ekici, Arif B.; Beckmann, Matthias W.; Bojesen, Stig E.; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Benitez, Javier; Zamora, Pilar M.; Perez, Jose I. A.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Pharoah, Paul D. P.; Dunning, Alison M.; Shah, Mitul; Luben, Robert; Brown, Judith; Couch, Fergus J.; Wang, Xianshu; Vachon, Celine; Olson, Janet E.; Lambrechts, Diether; Moisse, Matthieu; Paridaens, Robert; Christiaens, Marie-Rose; Guénel, Pascal; Truong, Thérèse; Laurent-Puig, Pierre; Mulot, Claire; Marme, Frederick; Burwinkel, Barbara; Schneeweiss, Andreas; Sohn, Christof; Sawyer, Elinor J.; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Andrulis, Irene L.; Knight, Julia A.; Tchatchou, Sandrine; Mulligan, Anna Marie; Dörk, Thilo; Bogdanova, Natalia V.; Antonenkova, Natalia N.; Anton-Culver, Hoda; Darabi, Hatef; Eriksson, Mikael; Garcia-Closas, Montserrat; Figueroa, Jonine; Lissowska, Jolanta; Brinton, Louise; Devilee, Peter; Tollenaar, Robert A. E. M.; Seynaeve, Caroline; van Asperen, Christi J.; Kristensen, Vessela N.; Slager, Susan; Toland, Amanda E.; Ambrosone, Christine B.; Yannoukakos, Drakoulis; Lindblom, Annika; Margolin, Sara; Radice, Paolo; Peterlongo, Paolo; Barile, Monica; Mariani, Paolo; Hooning, Maartje J.; Martens, John W. M.; Collée, J. Margriet; Jager, Agnes; Jakubowska, Anna; Lubinski, Jan; Jaworska-Bieniek, Katarzyna; Durda, Katarzyna; Giles, Graham G.; McLean, Catriona; Brauch, Hiltrud; Brüning, Thomas; Ko, Yon-Dschun; Brenner, Hermann; Dieffenbach, Aida Karina; Arndt, Volker; Stegmaier, Christa; Swerdlow, Anthony; Ashworth, Alan; Orr, Nick; Jones, Michael; Simard, Jacques; Goldberg, Mark S.; Labrèche, France; Dumont, Martine; Winqvist, Robert; Pylkäs, Katri; Jukkola-Vuorinen, Arja; Grip, Mervi; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Mannermaa, Arto; Hamann, Ute; Chenevix-Trench, Georgia; Blomqvist, Carl; Aittomäki, Kristiina; Easton, Douglas F.; Nevanlinna, Heli

    2014-01-01

    Genetic variations, such as single nucleotide polymorphisms (SNPs) in microRNAs (miRNA) or in the miRNA binding sites may affect the miRNA dependent gene expression regulation, which has been implicated in various cancers, including breast cancer, and may alter individual susceptibility to cancer. We investigated associations between miRNA related SNPs and breast cancer risk. First we evaluated 2,196 SNPs in a case-control study combining nine genome wide association studies (GWAS). Second, we further investigated 42 SNPs with suggestive evidence for association using 41,785 cases and 41,880 controls from 41 studies included in the Breast Cancer Association Consortium (BCAC). Combining the GWAS and BCAC data within a meta-analysis, we estimated main effects on breast cancer risk as well as risks for estrogen receptor (ER) and age defined subgroups. Five miRNA binding site SNPs associated significantly with breast cancer risk: rs1045494 (odds ratio (OR) 0.92; 95% confidence interval (CI): 0.88–0.96), rs1052532 (OR 0.97; 95% CI: 0.95–0.99), rs10719 (OR 0.97; 95% CI: 0.94–0.99), rs4687554 (OR 0.97; 95% CI: 0.95–0.99, and rs3134615 (OR 1.03; 95% CI: 1.01–1.05) located in the 3′ UTR of CASP8, HDDC3, DROSHA, MUSTN1, and MYCL1, respectively. DROSHA belongs to miRNA machinery genes and has a central role in initial miRNA processing. The remaining genes are involved in different molecular functions, including apoptosis and gene expression regulation. Further studies are warranted to elucidate whether the miRNA binding site SNPs are the causative variants for the observed risk effects. PMID:25390939

  7. Scavenger receptors in human airway epithelial cells: role in response to double-stranded RNA.

    Directory of Open Access Journals (Sweden)

    Audrey Dieudonné

    Full Text Available Scavenger receptors and Toll-like receptors (TLRs cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (dsRNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.

  8. Myelin Basic Protein synthesis is regulated by small non-coding RNA 715

    NARCIS (Netherlands)

    Bauer, N.M.; Moos, C.; van Horssen, J.; Witte, M.E.; van der Valk, P.; Altenhein, B.; Luhmann, H.J.; White, R.

    2012-01-01

    Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP

  9. Central vein perforation during tunneled dialysis catheter insertion: principles of acute management.

    Science.gov (United States)

    Pua, Uei

    2014-10-01

    Central venous perforation during dialysis catheter insertion is a potentially fatal complication. Prompt recognition and judicious initial steps are important in optimizing the outcome. The purpose of this manuscript is to illustrate the imaging features and steps in initial management. © 2014 International Society for Hemodialysis.

  10. Distribution of protein and RNA in the 30S ribosomal subunit

    International Nuclear Information System (INIS)

    Ramakrishnan, V.

    1986-01-01

    In Escherichia coli, the small ribosomal subunit has a sedimentation coefficient of 30S, and consists of a 16S RNA molecule of 1541 nucleotides complexed with 21 proteins. Over the last few years, a controversy has emerged regarding the spatial distribution of RNA and protein in the 30S subunit. Contrast variation with neutron scattering was used to suggest that the RNA was located in a central core of the subunit and the proteins mainly in the periphery, with virtually no separation between the centers of mass of protein and RNA. However, these findings are incompatible with the results of efforts to locate individual ribosomal proteins by immune electron microscopy and triangulation with interprotein distance measurements. The conflict between these two views is resolved in this report of small-angle neutron scattering measurements on 30S subunits with and without protein S1, and on subunits reconstituted from deuterated 16S RNA and unlabeled proteins. The results show that (i) the proteins and RNA are intermingled, with neither component dominating at the core or the periphery, and (ii) the spatial distribution of protein and RNA is asymmetrical, with a separation between their centers of mass of about 25 angstroms

  11. Programmable molecular recognition based on the geometry of DNA nanostructures.

    Science.gov (United States)

    Woo, Sungwook; Rothemund, Paul W K

    2011-07-10

    From ligand-receptor binding to DNA hybridization, molecular recognition plays a central role in biology. Over the past several decades, chemists have successfully reproduced the exquisite specificity of biomolecular interactions. However, engineering multiple specific interactions in synthetic systems remains difficult. DNA retains its position as the best medium with which to create orthogonal, isoenergetic interactions, based on the complementarity of Watson-Crick binding. Here we show that DNA can be used to create diverse bonds using an entirely different principle: the geometric arrangement of blunt-end stacking interactions. We show that both binary codes and shape complementarity can serve as a basis for such stacking bonds, and explore their specificity, thermodynamics and binding rules. Orthogonal stacking bonds were used to connect five distinct DNA origami. This work, which demonstrates how a single attractive interaction can be developed to create diverse bonds, may guide strategies for molecular recognition in systems beyond DNA nanostructures.

  12. Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry.

    Science.gov (United States)

    Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela

    2007-05-05

    The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported. (c) 2007 Wiley-Liss, Inc.

  13. The Improvement of Behavior Recognition Accuracy of Micro Inertial Accelerometer by Secondary Recognition Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-05-01

    Full Text Available Behaviors of “still”, “walking”, “running”, “jumping”, “upstairs” and “downstairs” can be recognized by micro inertial accelerometer of low cost. By using the features as inputs to the well-trained BP artificial neural network which is selected as classifier, those behaviors can be recognized. But the experimental results show that the recognition accuracy is not satisfactory. This paper presents secondary recognition algorithm and combine it with BP artificial neural network to improving the recognition accuracy. The Algorithm is verified by the Android mobile platform, and the recognition accuracy can be improved more than 8 %. Through extensive testing statistic analysis, the recognition accuracy can reach 95 % through BP artificial neural network and the secondary recognition, which is a reasonable good result from practical point of view.

  14. A deep learning method for lincRNA detection using auto-encoder algorithm.

    Science.gov (United States)

    Yu, Ning; Yu, Zeng; Pan, Yi

    2017-12-06

    RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly

  15. Assessing spoken word recognition in children who are deaf or hard of hearing: a translational approach.

    Science.gov (United States)

    Kirk, Karen Iler; Prusick, Lindsay; French, Brian; Gotch, Chad; Eisenberg, Laurie S; Young, Nancy

    2012-06-01

    Under natural conditions, listeners use both auditory and visual speech cues to extract meaning from speech signals containing many sources of variability. However, traditional clinical tests of spoken word recognition routinely employ isolated words or sentences produced by a single talker in an auditory-only presentation format. The more central cognitive processes used during multimodal integration, perceptual normalization, and lexical discrimination that may contribute to individual variation in spoken word recognition performance are not assessed in conventional tests of this kind. In this article, we review our past and current research activities aimed at developing a series of new assessment tools designed to evaluate spoken word recognition in children who are deaf or hard of hearing. These measures are theoretically motivated by a current model of spoken word recognition and also incorporate "real-world" stimulus variability in the form of multiple talkers and presentation formats. The goal of this research is to enhance our ability to estimate real-world listening skills and to predict benefit from sensory aid use in children with varying degrees of hearing loss. American Academy of Audiology.

  16. Detection of rabies virus nucleoprotein-RNA in several organs outside the Central Nervous System in naturally-infected vampire bats

    Directory of Open Access Journals (Sweden)

    Luiz F. P Vieira

    2011-10-01

    Full Text Available Rabies is a neurological disease, but the rabies virus spread to several organs outside the central nervous system (CNS. The rabies virus antigen or RNA has been identified from the salivary glands, the lungs, the kidneys, the heart and the liver. This work aimed to identify the presence of the rabies virus in non-neuronal organs from naturally-infected vampire bats and to study the rabies virus in the salivary glands of healthy vampire bats. Out of the five bats that were positive for rabies in the CNS, by fluorescent antibody test (FAT, viral isolation in N2A cells and reverse transcription - polymerase chain reaction (RT-PCR, 100% (5/5 were positive for rabies in samples of the tongue and the heart, 80% (4/5 in the kidneys, 40% (2/5 in samples of the salivary glands and the lungs, and 20% (1/5 in the liver by RT-PCR test. All the nine bats that were negative for rabies in the CNS, by FAT, viral isolation and RT-PCR were negative for rabies in the salivary glands by RT-PCR test. Possible consequences for rabies epidemiology and pathogenesis are discussed in this work.

  17. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection.

    Directory of Open Access Journals (Sweden)

    Yanfeng Yan

    Full Text Available BACKGROUND: Small non-coding RNAs (sRNAs facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unknown. METHODOLOGY AND PRINCIPAL FINDINGS: We used RNA-seq technology to identify the sRNA candidates expressed from Y. pestis grown in vitro and in the infected lungs of mice. A total of 104 sRNAs were found, including 26 previously annotated sRNAs, by searching against the Rfam database with 78 novel sRNA candidates. Approximately 89% (93/104 of these sRNAs from Y. pestis are shared with its ancestor Y. pseudotuberculosis. Ninety-seven percent of these sRNAs (101/104 are shared among more than 80 sequenced genomes of 135 Y. pestis strains. These 78 novel sRNAs include 62 intergenic and 16 antisense sRNAs. Fourteen sRNAs were selected for verification by independent Northern blot analysis. Results showed that nine selected sRNA transcripts were Hfq-dependent. Interestingly, three novel sRNAs were identified as new members of the transcription factor CRP regulon. Semi-quantitative analysis revealed that Y. pestis from the infected lungs induced the expressions of six sRNAs including RyhB1, RyhB2, CyaR/RyeE, 6S RNA, RybB and sR039 and repressed the expressions of four sRNAs, including CsrB, CsrC, 4.5S RNA and sR027. CONCLUSIONS AND SIGNIFICANCE: This study is the first attempt to subject RNA from Y. pestis-infected samples to direct high-throughput sequencing. Many novel sRNAs were identified and the expression patterns of relevant sRNAs in Y. pestis during in vitro growth and in vivo infection were revealed. The annotated sRNAs accounted for the most abundant sRNAs either expressed in bacteria grown in vitro or differentially expressed in the infected lungs

  18. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  19. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    Directory of Open Access Journals (Sweden)

    Kenji Matsuura

    Full Text Available Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP, which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence

  20. Auditory ERB like admissible wavelet packet features for TIMIT phoneme recognition

    Directory of Open Access Journals (Sweden)

    P.K. Sahu

    2014-09-01

    Full Text Available In recent years wavelet transform has been found to be an effective tool for time–frequency analysis. Wavelet transform has been used as feature extraction in speech recognition applications and it has proved to be an effective technique for unvoiced phoneme classification. In this paper a new filter structure using admissible wavelet packet is analyzed for English phoneme recognition. These filters have the benefit of having frequency bands spacing similar to the auditory Equivalent Rectangular Bandwidth (ERB scale. Central frequencies of ERB scale are equally distributed along the frequency response of human cochlea. A new sets of features are derived using wavelet packet transform's multi-resolution capabilities and found to be better than conventional features for unvoiced phoneme problems. Some of the noises from NOISEX-92 database has been used for preparing the artificial noisy database to test the robustness of wavelet based features.

  1. Nuclease-resistant c-di-AMP derivatives that differentially recognize RNA and protein receptors

    Science.gov (United States)

    Meehan, Robert E.; Torgerson, Chad D.; Gaffney, Barbara L.; Jones, Roger A.; Strobel, Scott A.

    2016-01-01

    The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3’-5’-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activate specific pathways and mediate phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogs, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position, more than a carbonyl at the C6 position. We also identified phosphate-modified analogs that bind both the ydaO RNA and GdpP protein with high affinity, while symmetrically-modified ribose analogs exhibited a substantial decrease in ydaO affinity, but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogs could be useful as chemical tools to specifically target subsections of the second-messenger signaling pathways. PMID:26789423

  2. Dynamic behavior of RNA nanoparticles analyzed by AFM on a mica/air interface.

    Science.gov (United States)

    Sajja, Sameer; Chandler, Morgan; Federov, Dmitry; Kasprzak, Wojciech K; Lushnikov, Alexander Y; Viard, Mathias; Shah, Ankit; Dang, Dylan; Dahl, Jared; Worku, Beamlak; Dobrovolskaia, Marina A; Krasnoslobodtsev, Alexey; Shapiro, Bruce A; Afonin, Kirill A

    2018-04-18

    RNA is an attractive biopolymer for engineering self-assembling materials suitable for biomedical applications. Previously, programmable hexameric RNA rings were developed for the controlled delivery of up to six different functionalities. To increase the potential for functionalization with little impact on nanoparticle topology, we introduce gaps into the double-stranded regions of the RNA rings. Molecular dynamic simulations are used to assess the dynamic behavior and the changes in the flexibility of novel designs. The changes suggested by simulations, however, cannot be clearly confirmed by the conventional techniques such as non-denaturing polyacrylamide gel electrophoresis (native-PAGE) and dynamic light scattering (DLS). Also, an in vitro analysis in primary cultures of human peripheral blood mononuclear cells does not reveal any discrepancy in immunological recognition of new assemblies. To address these deficiencies, we introduce a computer-assisted quantification strategy. This strategy is based on an algorithmic atomic force microscopy (AFM)-resolved deformation analysis of the RNA nanoparticles studied on a mica/air interface. We validate this computational method by manual image analysis and fitting it to the simulation-predicted results. The presented nanoparticle modification strategy and subsequent AFM-based analysis are anticipated to provide a broad spectrum approach for the future development of nucleic acid-based nanotechnology.

  3. The Legal Recognition of Sign Languages

    Science.gov (United States)

    De Meulder, Maartje

    2015-01-01

    This article provides an analytical overview of the different types of explicit legal recognition of sign languages. Five categories are distinguished: constitutional recognition, recognition by means of general language legislation, recognition by means of a sign language law or act, recognition by means of a sign language law or act including…

  4. Comprehensive characterization of lncRNA-mRNA related ceRNA network across 12 major cancers

    Science.gov (United States)

    Feng, Li; Li, Feng; Sun, Zeguo; Wu, Tan; Shi, Xinrui; Li, Jing; Li, Xia

    2016-01-01

    Recent studies indicate that long noncoding RNAs (lncRNAs) can act as competing endogenous RNAs (ceRNAs) to indirectly regulate mRNAs through shared microRNAs, which represents a novel layer of RNA crosstalk and plays critical roles in the development of tumor. However, the global regulation landscape and characterization of these lncRNA related ceRNA crosstalk in cancers is still largely unknown. Here, we systematically characterized the lncRNA related ceRNA interactions across 12 major cancers and the normal physiological states by integrating multidimensional molecule profiles of more than 5000 samples. Our study suggest the large difference of ceRNA regulation between normal and tumor states and the higher similarity across similar tissue origin of tumors. The ceRNA related molecules have more conserved features in tumor networks and they play critical roles in both the normal and tumorigenesis processes. Besides, lncRNAs in the pan-cancer ceRNA network may be potential biomarkers of tumor. By exploring hub lncRNAs, we found that these conserved key lncRNAs dominate variable tumor hallmark processes across pan-cancers. Network dynamic analysis highlights the critical roles of ceRNA regulation in tumorigenesis. By analyzing conserved ceRNA interactions, we found that miRNA mediate ceRNA regulation showed different patterns across pan-cancer; while analyzing the cancer specific ceRNA interactions reveal that lncRNAs synergistically regulated tumor driver genes of cancer hallmarks. Finally, we found that ceRNA modules have the potential to predict patient survival. Overall, our study systematically dissected the lncRNA related ceRNA networks in pan-cancer that shed new light on understanding the molecular mechanism of tumorigenesis. PMID:27580177

  5. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation

    Science.gov (United States)

    Martos, Laura; Fernández-Pardo, Álvaro; Oto, Julia; Medina, Pilar; España, Francisco; Navarro, Silvia

    2017-01-01

    microRNAs are promising biomarkers in biological fluids in several diseases. Different plasma RNA isolation protocols and carriers are available, but their efficiencies have been scarcely compared. Plasma microRNAs were isolated using a phenol and column-based procedure and a column-based procedure, in the presence or absence of two RNA carriers (yeast RNA and MS2 RNA). We evaluated the presence of PCR inhibitors and the relative abundance of certain microRNAs by qRT-PCR. Furthermore, we analyzed the association between different isolation protocols, the relative abundance of the miRNAs in the sample, the GC content and the free energy of microRNAs. In all microRNAs analyzed, the addition of yeast RNA as a carrier in the different isolation protocols used gave lower raw Cq values, indicating higher microRNA recovery. Moreover, this increase in microRNAs recovery was dependent on their own relative abundance in the sample, their GC content and the free-energy of their own most stable secondary structure. Furthermore, the normalization of microRNA levels by an endogenous microRNA is more reliable than the normalization by plasma volume, as it reduced the difference in microRNA fold abundance between the different isolation protocols evaluated. Our thorough study indicates that a standardization of pre- and analytical conditions is necessary to obtain reproducible inter-laboratory results in plasma microRNA studies. PMID:29077772

  6. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition.

    Science.gov (United States)

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Nguyen, Nhu T; Topkar, Ved V; Zheng, Zongli; Joung, J Keith

    2015-12-01

    CRISPR-Cas9 nucleases target specific DNA sequences using a guide RNA but also require recognition of a protospacer adjacent motif (PAM) by the Cas9 protein. Although longer PAMs can potentially improve the specificity of genome editing, they limit the range of sequences that Cas9 orthologs can target. One potential strategy to relieve this restriction is to relax the PAM recognition specificity of Cas9. Here we used molecular evolution to modify the NNGRRT PAM of Staphylococcus aureus Cas9 (SaCas9). One variant we identified, referred to as KKH SaCas9, showed robust genome editing activities at endogenous human target sites with NNNRRT PAMs, thereby increasing SaCas9 targeting range by two- to fourfold. Using GUIDE-seq, we show that wild-type and KKH SaCas9 induce comparable numbers of off-target effects in human cells. Our strategy for evolving PAM specificity does not require structural information and therefore should be applicable to a wide range of Cas9 orthologs.

  7. Human activity recognition and prediction

    CERN Document Server

    2016-01-01

    This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques. .

  8. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhang

    2015-01-01

    Full Text Available Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM, to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment.

  9. Association of mitochondrial lysyl-tRNA synthetase with HIV-1 GagPol involves catalytic domain of the synthetase and transframe and integrase domains of Pol

    Directory of Open Access Journals (Sweden)

    Shalak V. F.

    2011-10-01

    Full Text Available Aim. Analyze the interaction between Lysyl-tRNA synthetase (LysRS and HIV-1 GagPol to know whether a particular N-terminal sequence of mitochondrial LysRS triggers a specific recognition with GagPol. Methods. Yeast two-hybrid analysis, immunoprecipitation. Results. We have shown that LysRS associates with the Pol domain of GagPol. Conclusions. A model of the assembly of the LysRS:tRNA3Lys:GagPol packaging complex is proposed.

  10. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  11. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis.

    Science.gov (United States)

    Huber, R; Burggraf, S; Mayer, T; Barns, S M; Rossnagel, P; Stetter, K O

    1995-07-06

    A variety of hyperthermophilic bacteria and archaea have been isolated from high-temperature environments by plating and serial dilutions. However, these techniques allow only the small percentage of organisms able to form colonies, or those that are predominant within environmental samples, to be obtained in pure culture. Recently, in situ 16S ribosomal RNA analyses of samples from the Obsidian hot pool at Yellowstone National Park, Wyoming, revealed a variety of archaeal sequences, which were all different from those of previously isolated species. This suggests substantial diversity of archaea with so far unknown morphological, physiological and biochemical features, which may play an important part within high-temperature ecosystems. Here we describe a procedure to obtain pure cultures of unknown organisms harbouring specific 16S rRNA sequences identified previously within the environment. It combines visual recognition of single cells by phylogenetic staining and cloning by 'optical tweezers'. Our result validates polymerase chain reaction data on the existence of large archael communities.

  12. Recognizing "me" benefits "we": Investigating the positive spillover effects of formal individual recognition in teams.

    Science.gov (United States)

    Li, Ning; Zheng, Xiaoming; Harris, T Brad; Liu, Xin; Kirkman, Bradley L

    2016-07-01

    Many organizations use formal recognition programs (e.g., "employee of the month") as a way to publically acknowledge an individual employee's outstanding performance and motivate continued high performance. However, it remains unclear whether emphasizing individual achievement in a team context is beneficial or detrimental for recipients' teammates and, by extension, the team as a whole. Drawing on a social influence perspective, we examine potential spillover effects of individual formal recognition programs in teams. We hypothesize that a single team member's recognition will produce positive spillover effects on other team members' performance, as well as overall team performance, via social influence processes, especially when the award recipient is located in a central position in a team. Findings from 2 lab experiments of 24 teams and 40 teams (Study 1 and Study 2, respectively) and a field experiment of 52 manufacturing teams (Study 3) reveal that formally recognizing a team member leads to positive changes in her/his teammates' individual and collective performance. Thus, formal social recognition programs can potentially provide a motivational effect beyond individual recipients. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Radar automatic target recognition (ATR) and non-cooperative target recognition (NCTR)

    CERN Document Server

    Blacknell, David

    2013-01-01

    The ability to detect and locate targets by day or night, over wide areas, regardless of weather conditions has long made radar a key sensor in many military and civil applications. However, the ability to automatically and reliably distinguish different targets represents a difficult challenge. Radar Automatic Target Recognition (ATR) and Non-Cooperative Target Recognition (NCTR) captures material presented in the NATO SET-172 lecture series to provide an overview of the state-of-the-art and continuing challenges of radar target recognition. Topics covered include the problem as applied to th

  14. Recognition and Toleration

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2010-01-01

    Recognition and toleration are ways of relating to the diversity characteristic of multicultural societies. The article concerns the possible meanings of toleration and recognition, and the conflict that is often claimed to exist between these two approaches to diversity. Different forms or inter...

  15. Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer's disease.

    Science.gov (United States)

    Alkallas, Rached; Fish, Lisa; Goodarzi, Hani; Najafabadi, Hamed S

    2017-10-13

    The abundance of mRNA is mainly determined by the rates of RNA transcription and decay. Here, we present a method for unbiased estimation of differential mRNA decay rate from RNA-sequencing data by modeling the kinetics of mRNA metabolism. We show that in all primary human tissues tested, and particularly in the central nervous system, many pathways are regulated at the mRNA stability level. We present a parsimonious regulatory model consisting of two RNA-binding proteins and four microRNAs that modulate the mRNA stability landscape of the brain, which suggests a new link between RBFOX proteins and Alzheimer's disease. We show that downregulation of RBFOX1 leads to destabilization of mRNAs encoding for synaptic transmission proteins, which may contribute to the loss of synaptic function in Alzheimer's disease. RBFOX1 downregulation is more likely to occur in older and female individuals, consistent with the association of Alzheimer's disease with age and gender."mRNA abundance is determined by the rates of transcription and decay. Here, the authors propose a method for estimating the rate of differential mRNA decay from RNA-seq data and model mRNA stability in the brain, suggesting a link between mRNA stability and Alzheimer's disease."

  16. dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35.

    Science.gov (United States)

    Zinzula, Luca; Esposito, Francesca; Pala, Daniela; Tramontano, Enzo

    2012-03-01

    The Ebola viruses (EBOVs) VP35 protein is a multifunctional major virulence factor involved in EBOVs replication and evasion of the host immune system. EBOV VP35 is an essential component of the viral RNA polymerase, it is a key participant of the nucleocapsid assembly and it inhibits the innate immune response by antagonizing RIG-I like receptors through its dsRNA binding function and, hence, by suppressing the host type I interferon (IFN) production. Insights into the VP35 dsRNA recognition have been recently revealed by structural and functional analysis performed on its C-terminus protein. We report the biochemical characterization of the Zaire ebolavirus (ZEBOV) full-length recombinant VP35 (rVP35)-dsRNA binding function. We established a novel in vitro magnetic dsRNA binding pull down assay, determined the rVP35 optimal dsRNA binding parameters, measured the rVP35 equilibrium dissociation constant for heterologous in vitro transcribed dsRNA of different length and short synthetic dsRNA of 8bp, and validated the assay for compound screening by assessing the inhibitory ability of auryntricarboxylic acid (IC(50) value of 50μg/mL). Furthermore, we compared the dsRNA binding properties of full length wt rVP35 with those of R305A, K309A and R312A rVP35 mutants, which were previously reported to be defective in dsRNA binding-mediated IFN inhibition, showing that the latter have measurably increased K(d) values for dsRNA binding and modified migration patterns in mobility shift assays with respect to wt rVP35. Overall, these results provide the first characterization of the full-length wt and mutants VP35-dsRNA binding functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. antaRNA: ant colony-based RNA sequence design.

    Science.gov (United States)

    Kleinkauf, Robert; Mann, Martin; Backofen, Rolf

    2015-10-01

    RNA sequence design is studied at least as long as the classical folding problem. Although for the latter the functional fold of an RNA molecule is to be found ,: inverse folding tries to identify RNA sequences that fold into a function-specific target structure. In combination with RNA-based biotechnology and synthetic biology ,: reliable RNA sequence design becomes a crucial step to generate novel biochemical components. In this article ,: the computational tool antaRNA is presented. It is capable of compiling RNA sequences for a given structure that comply in addition with an adjustable full range objective GC-content distribution ,: specific sequence constraints and additional fuzzy structure constraints. antaRNA applies ant colony optimization meta-heuristics and its superior performance is shown on a biological datasets. http://www.bioinf.uni-freiburg.de/Software/antaRNA CONTACT: backofen@informatik.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  18. Boolean logic analysis for flow regime recognition of gas–liquid horizontal flow

    International Nuclear Information System (INIS)

    Ramskill, Nicholas P; Wang, Mi

    2011-01-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air–water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime

  19. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA

    Science.gov (United States)

    Musiyenko, Alla; Majumdar, Tanmay; Andrews, Joel; Adams, Brian; Barik, Sailen

    2013-01-01

    Summary Argonaute (Ago) plays a central role in RNA interference in metazoans, but its status in lower organisms remains ill-defined. We report on the Ago complex of the unicellular protozoan, Toxoplasma gondii (Tg), an obligatory pathogen of mammalian hosts. The PIWI-like domain of TgAgo lacked the canonical DDE/H catalytic triad, explaining its weak target RNA cleavage activity. However, TgAgo associated with a stronger RNA slicer, a Tudor staphylococcal nuclease (TSN), and with a protein Arg methyl transferase, PRMT1. Mutational analysis suggested that the N-terminal RGG-repeat domain of TgAgo was methylated by PRMT1, correlating with the recruitment of TSN. The slicer activity of TgAgo was Mg2+-dependent and required perfect complementarity between the guide RNA and the target. In contrast, the TSN activity was Ca2+-dependent and required an imperfectly paired guide RNA. Ago knockout parasites showed essentially normal growth, but in contrast, the PRMT1 knockouts grew abnormally. Chemical inhibition of Arg-methylation also had an anti-parasitic effect. These results suggest that the parasitic PRMT1 plays multiple roles, and its loss affects the recruitment of a more potent second slicer to the parasitic RNA silencing complex, the exact mechanism of which remains to be determined. PMID:22309152

  20. Super-recognition in development: A case study of an adolescent with extraordinary face recognition skills.

    Science.gov (United States)

    Bennetts, Rachel J; Mole, Joseph; Bate, Sarah

    2017-09-01

    Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.

  1. 34A, miRNA-944, miRNA-101 and miRNA-218 in cervical cancer

    African Journals Online (AJOL)

    RNAs (21 - 24 nucleotides in length) that are critical for many important processes such as development, ... RNA extraction and reverse transcription. Total RNA was extracted from each of the experimental groups using ... used as an endogenous control to normalize the expression of miRNA-143, miRNA-34A, miRNA-.

  2. A motivational determinant of facial emotion recognition: regulatory focus affects recognition of emotions in faces.

    Science.gov (United States)

    Sassenrath, Claudia; Sassenberg, Kai; Ray, Devin G; Scheiter, Katharina; Jarodzka, Halszka

    2014-01-01

    Two studies examined an unexplored motivational determinant of facial emotion recognition: observer regulatory focus. It was predicted that a promotion focus would enhance facial emotion recognition relative to a prevention focus because the attentional strategies associated with promotion focus enhance performance on well-learned or innate tasks - such as facial emotion recognition. In Study 1, a promotion or a prevention focus was experimentally induced and better facial emotion recognition was observed in a promotion focus compared to a prevention focus. In Study 2, individual differences in chronic regulatory focus were assessed and attention allocation was measured using eye tracking during the facial emotion recognition task. Results indicated that the positive relation between a promotion focus and facial emotion recognition is mediated by shorter fixation duration on the face which reflects a pattern of attention allocation matched to the eager strategy in a promotion focus (i.e., striving to make hits). A prevention focus did not have an impact neither on perceptual processing nor on facial emotion recognition. Taken together, these findings demonstrate important mechanisms and consequences of observer motivational orientation for facial emotion recognition.

  3. Statistical Physics Approaches to RNA Editing

    Science.gov (United States)

    Bundschuh, Ralf

    2012-02-01

    The central dogma of molecular Biology states that DNA is transcribed base by base into RNA which is in turn translated into proteins. However, some organisms edit their RNA before translation by inserting, deleting, or substituting individual or short stretches of bases. In many instances the mechanisms by which an organism recognizes the positions at which to edit or by which it performs the actual editing are unknown. One model system that stands out by its very high rate of on average one out of 25 bases being edited are the Myxomycetes, a class of slime molds. In this talk we will show how the computational methods and concepts from statistical Physics can be used to analyze DNA and protein sequence data to predict editing sites in these slime molds and to guide experiments that identified previously unknown types of editing as well as the complete set of editing events in the slime mold Physarum polycephalum.

  4. Targeted transfection increases siRNA uptake and gene silencing of primary endothelial cells in vitro--a quantitative study.

    Science.gov (United States)

    Asgeirsdóttir, Sigridur A; Talman, Eduard G; de Graaf, Inge A; Kamps, Jan A A M; Satchell, Simon C; Mathieson, Peter W; Ruiters, Marcel H J; Molema, Grietje

    2010-01-25

    Applications of small-interfering RNA (siRNA) call for specific and efficient delivery of siRNA into particular cell types. We developed a novel, non-viral targeting system to deliver siRNA specifically into inflammation-activated endothelial cells. This was achieved by conjugating the cationic amphiphilic lipid SAINT to antibodies recognizing the inflammatory cell adhesion molecule E-selectin. These anti-E-selectin-SAINT lipoplexes (SAINTarg) maintained antigen recognition capacity of the parental antibody in vitro, and ex vivo in human kidney tissue slices subjected to inflammatory conditions. Regular SAINT mediated transfection resulted in efficient gene silencing in human microvascular endothelial cells (HMEC-1) and conditionally immortalized glomerular endothelial cells (ciGEnC). However, primary human umbilical vein endothelial cells (HUVEC) transfected poorly, a phenomenon that we could quantitatively correlate with a cell-type specific capacity to facilitate siRNA uptake. Importantly, SAINTarg increased siRNA uptake and transfection specificity for activated endothelial cells. Transfection with SAINTarg delivered significantly more siRNA into activated HUVEC, compared to transfection with non-targeted SAINT. The enhanced uptake of siRNA was corroborated by improved silencing of both gene- and protein expression of VE-cadherin in activated HUVEC, indicating that SAINTarg delivered functionally active siRNA into endothelial cells. The obtained results demonstrate a successful design of a small nucleotide carrier system with improved and specific siRNA delivery into otherwise difficult-to-transfect primary endothelial cells, which in addition reduced considerably the amount of siRNA needed for gene silencing. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  6. A REVIEW: OPTICAL CHARACTER RECOGNITION

    OpenAIRE

    Swati Tomar*1 & Amit Kishore2

    2018-01-01

    This paper presents detailed review in the field of Optical Character Recognition. Various techniques are determine that have been proposed to realize the center of character recognition in an optical character recognition system. Even though, sufficient studies and papers are describes the techniques for converting textual content from a paper document into machine readable form. Optical character recognition is a process where the computer understands automatically the image of handwritten ...

  7. Extracellular RNA Communication (ExRNA)

    Data.gov (United States)

    Federal Laboratory Consortium — Until recently, scientists believed RNA worked mostly inside the cell that produced it. Some types of RNA help translate genes into proteins that are necessary for...

  8. HTLV-1 Tax plugs and freezes UPF1 helicase leading to nonsense-mediated mRNA decay inhibition.

    Science.gov (United States)

    Fiorini, Francesca; Robin, Jean-Philippe; Kanaan, Joanne; Borowiak, Malgorzata; Croquette, Vincent; Le Hir, Hervé; Jalinot, Pierre; Mocquet, Vincent

    2018-01-30

    Up-Frameshift Suppressor 1 Homolog (UPF1) is a key factor for nonsense-mediated mRNA decay (NMD), a cellular process that can actively degrade mRNAs. Here, we study NMD inhibition during infection by human T-cell lymphotropic virus type I (HTLV-1) and characterise the influence of the retroviral Tax factor on UPF1 activity. Tax interacts with the central helicase core domain of UPF1 and might plug the RNA channel of UPF1, reducing its affinity for nucleic acids. Furthermore, using a single-molecule approach, we show that the sequential interaction of Tax with a RNA-bound UPF1 freezes UPF1: this latter is less sensitive to the presence of ATP and shows translocation defects, highlighting the importance of this feature for NMD. These mechanistic insights reveal how HTLV-1 hijacks the central component of NMD to ensure expression of its own genome.

  9. RNA Crystallization

    Science.gov (United States)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  10. Simultaneous visualization of the subfemtomolar expression of microRNA and microRNA target gene using HILO microscopy† †Electronic supplementary information (ESI) available: The LED device for the sample photobleaching, a schematic presentation of HILO microscopy, fluorescence spectra and hybridization curves of the molecular beacons, the linear correlation between the miRNA fluorescence intensity and the miRNA copy number, a validation of the miRNA adsorption and miRNA target gene expression via RT-qPCR, a validation of RT-qPCR using capillary electrophoresis, the reproducibility of RT-qPCR and Poisson distribution of the miRNA pipetting as well as a complete list of the oligonucleotides used in this study. See DOI: 10.1039/c7sc02701j Click here for additional data file.

    Science.gov (United States)

    Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun

    2017-01-01

    The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target (HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells. PMID:28989695

  11. Identifying microRNA/mRNA dysregulations in ovarian cancer.

    Science.gov (United States)

    Miles, Gregory D; Seiler, Michael; Rodriguez, Lorna; Rajagopal, Gunaretnam; Bhanot, Gyan

    2012-03-27

    MicroRNAs are a class of noncoding RNA molecules that co-regulate the expression of multiple genes via mRNA transcript degradation or translation inhibition. Since they often target entire pathways, they may be better drug targets than genes or proteins. MicroRNAs are known to be dysregulated in many tumours and associated with aggressive or poor prognosis phenotypes. Since they regulate mRNA in a tissue specific manner, their functional mRNA targets are poorly understood. In previous work, we developed a method to identify direct mRNA targets of microRNA using patient matched microRNA/mRNA expression data using an anti-correlation signature. This method, applied to clear cell Renal Cell Carcinoma (ccRCC), revealed many new regulatory pathways compromised in ccRCC. In the present paper, we apply this method to identify dysregulated microRNA/mRNA mechanisms in ovarian cancer using data from The Cancer Genome Atlas (TCGA). TCGA Microarray data was normalized and samples whose class labels (tumour or normal) were ambiguous with respect to consensus ensemble K-Means clustering were removed. Significantly anti-correlated and correlated genes/microRNA differentially expressed between tumour and normal samples were identified. TargetScan was used to identify gene targets of microRNA. We identified novel microRNA/mRNA mechanisms in ovarian cancer. For example, the expression level of RAD51AP1 was found to be strongly anti-correlated with the expression of hsa-miR-140-3p, which was significantly down-regulated in the tumour samples. The anti-correlation signature was present separately in the tumour and normal samples, suggesting a direct causal dysregulation of RAD51AP1 by hsa-miR-140-3p in the ovary. Other pairs of potentially biological relevance include: hsa-miR-145/E2F3, hsa-miR-139-5p/TOP2A, and hsa-miR-133a/GCLC. We also identified sets of positively correlated microRNA/mRNA pairs that are most likely result from indirect regulatory mechanisms. Our findings identify

  12. Reading the viral signature by Toll-like receptors and other pattern recognition receptors.

    Science.gov (United States)

    Mogensen, Trine H; Paludan, Søren R

    2005-03-01

    Successful host defense against viral infections relies on early production of type I interferon (IFN) and subsequent activation of a cellular cytotoxic response. The acute IFN and inflammatory response against virus infections is mediated by cellular pattern-recognition receptors (PRRs) that recognize specific molecular structures on viral particles or products of viral replication. Toll-like receptors (TLRs) constitute a class of membrane-bound PRRs capable of detecting microbial infections. While TLR2 and TLR4, which were first identified to recognize Gram-positive and Gram-negative bacteria, respectively, sense specific viral proteins on the cell surface, TLRs 3, 7, 8, and 9 serve as receptors for viral nucleic acids in endosomic compartments. In addition to TLRs, cells express cytoplasmic PRRs such as the RNA helicase retinoic acid inducible gene I and the kinase double-stranded RNA-activated protein kinase R, both of which sense dsRNA, a characteristic signature of viral replication, and initiate a protective cellular response. Here we review the recent progress in our understanding of PRRs and viral infections and discuss the molecular and cellular responses evoked by virus-activated PRRs. Finally, we look into what is currently known about the role of PRRs in viral infections in vivo.

  13. HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens.

    Science.gov (United States)

    Ahmadi, Hamed; Ahmadi, Ali; Azimzadeh-Jamalkandi, Sadegh; Shoorehdeli, Mahdi Aliyari; Salehzadeh-Yazdi, Ali; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-02-01

    MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method by which the target mRNAs of existing miRNAs can be correctly identified. In this study, combined pattern recognition neural network (PRNN) and principle component analysis (PCA) architecture has been proposed in order to model the complicated relationship between miRNAs and their target mRNAs in humans. The results of several types of intelligent classifiers and our proposed model were compared, showing that our algorithm outperformed them with higher sensitivity and specificity. Using the recent release of the mirBase database to find potential targets of miRNAs, this model incorporated twelve structural, thermodynamic and positional features of miRNA:mRNA binding sites to select target candidates. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Natural RNA circles function as efficient microRNA sponges

    DEFF Research Database (Denmark)

    Hansen, Thomas Birkballe; Jensen, Trine I; Clausen, Bettina Hjelm

    2013-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called comp......MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so......-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more...... sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA....

  15. Challenging ocular image recognition

    Science.gov (United States)

    Pauca, V. Paúl; Forkin, Michael; Xu, Xiao; Plemmons, Robert; Ross, Arun A.

    2011-06-01

    Ocular recognition is a new area of biometric investigation targeted at overcoming the limitations of iris recognition performance in the presence of non-ideal data. There are several advantages for increasing the area beyond the iris, yet there are also key issues that must be addressed such as size of the ocular region, factors affecting performance, and appropriate corpora to study these factors in isolation. In this paper, we explore and identify some of these issues with the goal of better defining parameters for ocular recognition. An empirical study is performed where iris recognition methods are contrasted with texture and point operators on existing iris and face datasets. The experimental results show a dramatic recognition performance gain when additional features are considered in the presence of poor quality iris data, offering strong evidence for extending interest beyond the iris. The experiments also highlight the need for the direct collection of additional ocular imagery.

  16. Branched RNA: A New Architecture for RNA Interference

    Directory of Open Access Journals (Sweden)

    Anna Aviñó

    2011-01-01

    Full Text Available Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

  17. RNA-Seq Study of Microbially Induced Hemocyte Transcripts from Larval Heliothis virescens (Lepidoptera: Noctuidae

    Directory of Open Access Journals (Sweden)

    Kent S. Shelby

    2012-08-01

    Full Text Available Larvae of the tobacco budworm are major polyphagous pests throughout the Americas. Development of effective microbial biopesticides for this and related noctuid pests has been stymied by the natural resistance mediated innate immune response. Hemocytes play an early and central role in activating and coordinating immune responses to entomopathogens. To approach this problem we completed RNA-seq expression profiling of hemocytes collected from larvae following an in vivo challenge with bacterial and fungal cell wall components to elicit an immune response. A de novo exome assembly was constructed by combination of sequence tags from all treatments. Sequence tags from each treatment were aligned separately with the assembly to measure expression. The resulting table of differential expression had > 22,000 assemblies each with a distinct combination of annotation and expression. Within these assemblies > 1,400 were upregulated and > 1,500 downregulated by immune activation with bacteria or fungi. Orthologs to innate immune components of other insects were identified including pattern recognition, signal transduction pathways, antimicrobial peptides and enzymes, melanization and coagulation. Additionally orthologs of components regulating hemocytic functions such as autophagy, apoptosis, phagocytosis and nodulation were identified. Associated cellular oxidative defenses and detoxification responses were identified providing a comprehensive snapshot of the early response to elicitation.

  18. Dissociable roles of internal feelings and face recognition ability in facial expression decoding.

    Science.gov (United States)

    Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia

    2016-05-15

    The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. miRNAtools: Advanced Training Using the miRNA Web of Knowledge.

    Science.gov (United States)

    Stępień, Ewa Ł; Costa, Marina C; Enguita, Francisco J

    2018-02-16

    Micro-RNAs (miRNAs) are small non-coding RNAs that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets have helped the development not only of many computer applications for the prediction of miRNA target recognition but also of specific applications for functional assessment and analysis. Learning about miRNA function requires practical training in the use of specific computer and web-based applications that are complementary to wet-lab studies. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This article compiles tools with which miRNAs and their regulatory action can be analyzed and that function to collect and organize information dispersed on the web. The miRNAtools website contains a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials engage in analyses of the functions of selected miRNAs, starting with their nomenclature and genomic localization and finishing with their involvement in specific cellular functions.

  20. Quantum Point Contact Single-Nucleotide Conductance for DNA and RNA Sequence Identification.

    Science.gov (United States)

    Afsari, Sepideh; Korshoj, Lee E; Abel, Gary R; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-11-28

    Several nanoscale electronic methods have been proposed for high-throughput single-molecule nucleic acid sequence identification. While many studies display a large ensemble of measurements as "electronic fingerprints" with some promise for distinguishing the DNA and RNA nucleobases (adenine, guanine, cytosine, thymine, and uracil), important metrics such as accuracy and confidence of base calling fall well below the current genomic methods. Issues such as unreliable metal-molecule junction formation, variation of nucleotide conformations, insufficient differences between the molecular orbitals responsible for single-nucleotide conduction, and lack of rigorous base calling algorithms lead to overlapping nanoelectronic measurements and poor nucleotide discrimination, especially at low coverage on single molecules. Here, we demonstrate a technique for reproducible conductance measurements on conformation-constrained single nucleotides and an advanced algorithmic approach for distinguishing the nucleobases. Our quantum point contact single-nucleotide conductance sequencing (QPICS) method uses combed and electrostatically bound single DNA and RNA nucleotides on a self-assembled monolayer of cysteamine molecules. We demonstrate that by varying the applied bias and pH conditions, molecular conductance can be switched ON and OFF, leading to reversible nucleotide perturbation for electronic recognition (NPER). We utilize NPER as a method to achieve >99.7% accuracy for DNA and RNA base calling at low molecular coverage (∼12×) using unbiased single measurements on DNA/RNA nucleotides, which represents a significant advance compared to existing sequencing methods. These results demonstrate the potential for utilizing simple surface modifications and existing biochemical moieties in individual nucleobases for a reliable, direct, single-molecule, nanoelectronic DNA and RNA nucleotide identification method for sequencing.

  1. Interaction of sigma 70 with Escherichia coli RNA polymerase core enzyme studied by surface plasmon resonance.

    Science.gov (United States)

    Ferguson, A L; Hughes, A D; Tufail, U; Baumann, C G; Scott, D J; Hoggett, J G

    2000-09-22

    The interaction between the core form of bacterial RNA polymerases and sigma factors is essential for specific promoter recognition, and for coordinating the expression of different sets of genes in response to varying cellular needs. The interaction between Escherichia coli core RNA polymerase and sigma 70 has been investigated by surface plasmon resonance. The His-tagged form of sigma 70 factor was immobilised on a Ni2+-NTA chip for monitoring its interaction with core polymerase. The binding constant for the interaction was found to be 1.9x10(-7) M, and the dissociation rate constant for release of sigma from core, in the absence of DNA or transcription, was 4x10(-3) s(-1), corresponding to a half-life of about 200 s.

  2. Plant RNA Regulatory Network and RNA Granules in Virus Infection

    Directory of Open Access Journals (Sweden)

    Kristiina Mäkinen

    2017-12-01

    Full Text Available Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and

  3. Plant RNA Regulatory Network and RNA Granules in Virus Infection.

    Science.gov (United States)

    Mäkinen, Kristiina; Lõhmus, Andres; Pollari, Maija

    2017-01-01

    Regulation of post-transcriptional gene expression on mRNA level in eukaryotic cells includes translocation, translation, translational repression, storage, mRNA decay, RNA silencing, and nonsense-mediated decay. These processes are associated with various RNA-binding proteins and cytoplasmic ribonucleoprotein complexes many of which are conserved across eukaryotes. Microscopically visible aggregations formed by ribonucleoprotein complexes are termed RNA granules. Stress granules where the translationally inactive mRNAs are stored and processing bodies where mRNA decay may occur present the most studied RNA granule types. Diverse RNP-granules are increasingly being assigned important roles in viral infections. Although the majority of the molecular level studies on the role of RNA granules in viral translation and replication have been conducted in mammalian systems, some studies link also plant virus infection to RNA granules. An increasing body of evidence indicates that plant viruses require components of stress granules and processing bodies for their replication and translation, but how extensively the cellular mRNA regulatory network is utilized by plant viruses has remained largely enigmatic. Antiviral RNA silencing, which is an important regulator of viral RNA stability and expression in plants, is commonly counteracted by viral suppressors of RNA silencing. Some of the RNA silencing suppressors localize to cellular RNA granules and have been proposed to carry out their suppression functions there. Moreover, plant nucleotide-binding leucine-rich repeat protein-mediated virus resistance has been linked to enhanced processing body formation and translational repression of viral RNA. Many interesting questions relate to how the pathways of antiviral RNA silencing leading to viral RNA degradation and/or repression of translation, suppression of RNA silencing and viral RNA translation converge in plants and how different RNA granules and their individual

  4. The time course of spoken word recognition in Mandarin Chinese: a unimodal ERP study.

    Science.gov (United States)

    Huang, Xianjun; Yang, Jin-Chen; Zhang, Qin; Guo, Chunyan

    2014-10-01

    In the present study, two experiments were carried out to investigate the time course of spoken word recognition in Mandarin Chinese using both event-related potentials (ERPs) and behavioral measures. To address the hypothesis that there is an early phonological processing stage independent of semantics during spoken word recognition, a unimodal word-matching paradigm was employed, in which both prime and target words were presented auditorily. Experiment 1 manipulated the phonological relations between disyllabic primes and targets, and found an enhanced P2 (200-270 ms post-target onset) as well as a smaller early N400 to word-initial phonological mismatches over fronto-central scalp sites. Experiment 2 manipulated both phonological and semantic relations between monosyllabic primes and targets, and replicated the phonological mismatch-associated P2, which was not modulated by semantic relations. Overall, these results suggest that P2 is a sensitive electrophysiological index of early phonological processing independent of semantics in Mandarin Chinese spoken word recognition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq.

    Science.gov (United States)

    Watters, Kyle E; Abbott, Timothy R; Lucks, Julius B

    2016-01-29

    Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Deployment of spatial attention to words in central and peripheral vision.

    Science.gov (United States)

    Ducrot, Stéphanie; Grainger, Jonathan

    2007-05-01

    Four perceptual identification experiments examined the influence of spatial cues on the recognition of words presented in central vision (with fixation on either the first or last letter of the target word) and in peripheral vision (displaced left or right of a central fixation point). Stimulus location had a strong effect on word identification accuracy in both central and peripheral vision, showing a strong right visual field superiority that did not depend on eccentricity. Valid spatial cues improved word identification for peripherally presented targets but were largely ineffective for centrally presented targets. Effects of spatial cuing interacted with visual field effects in Experiment 1, with valid cues reducing the right visual field superiority for peripherally located targets, but this interaction was shown to depend on the type of neutral cue. These results provide further support for the role of attentional factors in visual field asymmetries obtained with targets in peripheral vision but not with centrally presented targets.

  7. Genetic specificity of face recognition.

    Science.gov (United States)

    Shakeshaft, Nicholas G; Plomin, Robert

    2015-10-13

    Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.

  8. Structure and reconstitution of yeast Mpp6-nuclear exosome complexes reveals that Mpp6 stimulates RNA decay and recruits the Mtr4 helicase

    Energy Technology Data Exchange (ETDEWEB)

    Wasmuth, Elizabeth V. [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Zinder, John C. [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Tri-Institutional Training Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, United States; Zattas, Dimitrios [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Das, Mom [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Lima, Christopher D. [Structural Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, United States

    2017-07-25

    Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome. Mpp6-exosomes can recruit Mtr4, while Mpp6 and Rrp47 each contribute to Mtr4-dependent RNA decay, with maximal Mtr4-dependent decay observed with both cofactors. The 3.3 Å structure of a twelve-subunit nuclear Mpp6 exosome bound to RNA shows the central region of Mpp6 bound to the exosome core, positioning its Mtr4 recruitment domain next to Rrp6 and the exosome central channel. Genetic analysis reveals interactions that are largely consistent with our model.

  9. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  10. Face Detection and Recognition

    National Research Council Canada - National Science Library

    Jain, Anil K

    2004-01-01

    This report describes research efforts towards developing algorithms for a robust face recognition system to overcome many of the limitations found in existing two-dimensional facial recognition systems...

  11. Application of unsupervised pattern recognition approaches for exploration of rare earth elements in Se-Chahun iron ore, central Iran

    Science.gov (United States)

    Sarparandeh, Mohammadali; Hezarkhani, Ardeshir

    2017-12-01

    The use of efficient methods for data processing has always been of interest to researchers in the field of earth sciences. Pattern recognition techniques are appropriate methods for high-dimensional data such as geochemical data. Evaluation of the geochemical distribution of rare earth elements (REEs) requires the use of such methods. In particular, the multivariate nature of REE data makes them a good target for numerical analysis. The main subject of this paper is application of unsupervised pattern recognition approaches in evaluating geochemical distribution of REEs in the Kiruna type magnetite-apatite deposit of Se-Chahun. For this purpose, 42 bulk lithology samples were collected from the Se-Chahun iron ore deposit. In this study, 14 rare earth elements were measured with inductively coupled plasma mass spectrometry (ICP-MS). Pattern recognition makes it possible to evaluate the relations between the samples based on all these 14 features, simultaneously. In addition to providing easy solutions, discovery of the hidden information and relations of data samples is the advantage of these methods. Therefore, four clustering methods (unsupervised pattern recognition) - including a modified basic sequential algorithmic scheme (MBSAS), hierarchical (agglomerative) clustering, k-means clustering and self-organizing map (SOM) - were applied and results were evaluated using the silhouette criterion. Samples were clustered in four types. Finally, the results of this study were validated with geological facts and analysis results from, for example, scanning electron microscopy (SEM), X-ray diffraction (XRD), ICP-MS and optical mineralogy. The results of the k-means clustering and SOM methods have the best matches with reality, with experimental studies of samples and with field surveys. Since only the rare earth elements are used in this division, a good agreement of the results with lithology is considerable. It is concluded that the combination of the proposed

  12. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    International Nuclear Information System (INIS)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E.; Eghbalnia, Hamid R.

    2012-01-01

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ( 1 H– 15 N 2D HMQC) and proton–proton nuclear Overhauser enhancement spectroscopy ( 1 H– 1 H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino resonances for a

  13. RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts

    Energy Technology Data Exchange (ETDEWEB)

    Bahrami, Arash; Clos, Lawrence J.; Markley, John L.; Butcher, Samuel E. [National Magnetic Resonance Facility at Madison (United States); Eghbalnia, Hamid R., E-mail: eghbalhd@uc.edu [University of Cincinnati, Department of Molecular and Cellular Physiology (United States)

    2012-04-15

    The significant biological role of RNA has further highlighted the need for improving the accuracy, efficiency and the reach of methods for investigating RNA structure and function. Nuclear magnetic resonance (NMR) spectroscopy is vital to furthering the goals of RNA structural biology because of its distinctive capabilities. However, the dispersion pattern in the NMR spectra of RNA makes automated resonance assignment, a key step in NMR investigation of biomolecules, remarkably challenging. Herein we present RNA Probabilistic Assignment of Imino Resonance Shifts (RNA-PAIRS), a method for the automated assignment of RNA imino resonances with synchronized verification and correction of predicted secondary structure. RNA-PAIRS represents an advance in modeling the assignment paradigm because it seeds the probabilistic network for assignment with experimental NMR data, and predicted RNA secondary structure, simultaneously and from the start. Subsequently, RNA-PAIRS sets in motion a dynamic network that reverberates between predictions and experimental evidence in order to reconcile and rectify resonance assignments and secondary structure information. The procedure is halted when assignments and base-parings are deemed to be most consistent with observed crosspeaks. The current implementation of RNA-PAIRS uses an initial peak list derived from proton-nitrogen heteronuclear multiple quantum correlation ({sup 1}H-{sup 15}N 2D HMQC) and proton-proton nuclear Overhauser enhancement spectroscopy ({sup 1}H-{sup 1}H 2D NOESY) experiments. We have evaluated the performance of RNA-PAIRS by using it to analyze NMR datasets from 26 previously studied RNAs, including a 111-nucleotide complex. For moderately sized RNA molecules, and over a range of comparatively complex structural motifs, the average assignment accuracy exceeds 90%, while the average base pair prediction accuracy exceeded 93%. RNA-PAIRS yielded accurate assignments and base pairings consistent with imino

  14. Forensic Face Recognition: A Survey

    NARCIS (Netherlands)

    Ali, Tauseef; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.; Quaglia, Adamo; Epifano, Calogera M.

    2012-01-01

    The improvements of automatic face recognition during the last 2 decades have disclosed new applications like border control and camera surveillance. A new application field is forensic face recognition. Traditionally, face recognition by human experts has been used in forensics, but now there is a

  15. Retrovirus-specific differences in matrix and nucleocapsid protein-nucleic acid interactions: implications for genomic RNA packaging.

    Science.gov (United States)

    Sun, Meng; Grigsby, Iwen F; Gorelick, Robert J; Mansky, Louis M; Musier-Forsyth, Karin

    2014-01-01

    Retroviral RNA encapsidation involves a recognition event between genomic RNA (gRNA) and one or more domains in Gag. In HIV-1, the nucleocapsid (NC) domain is involved in gRNA packaging and displays robust nucleic acid (NA) binding and chaperone functions. In comparison, NC of human T-cell leukemia virus type 1 (HTLV-1), a deltaretrovirus, displays weaker NA binding and chaperone activity. Mutation of conserved charged residues in the deltaretrovirus bovine leukemia virus (BLV) matrix (MA) and NC domains affects virus replication and gRNA packaging efficiency. Based on these observations, we hypothesized that the MA domain may generally contribute to NA binding and genome encapsidation in deltaretroviruses. Here, we examined the interaction between HTLV-2 and HIV-1 MA proteins and various NAs in vitro. HTLV-2 MA displays higher NA binding affinity and better chaperone activity than HIV-1 MA. HTLV-2 MA also binds NAs with higher affinity than HTLV-2 NC and displays more robust chaperone function. Mutation of two basic residues in HTLV-2 MA α-helix II, previously implicated in BLV gRNA packaging, reduces NA binding affinity. HTLV-2 MA binds with high affinity and specificity to RNA derived from the putative packaging signal of HTLV-2 relative to nonspecific NA. Furthermore, an HIV-1 MA triple mutant designed to mimic the basic character of HTLV-2 MA α-helix II dramatically improves binding affinity and chaperone activity of HIV-1 MA in vitro and restores RNA packaging to a ΔNC HIV-1 variant in cell-based assays. Taken together, these results are consistent with a role for deltaretrovirus MA proteins in viral RNA packaging.

  16. U2AF1 mutations alter splice site recognition in hematological malignancies.

    Science.gov (United States)

    Ilagan, Janine O; Ramakrishnan, Aravind; Hayes, Brian; Murphy, Michele E; Zebari, Ahmad S; Bradley, Philip; Bradley, Robert K

    2015-01-01

    Whole-exome sequencing studies have identified common mutations affecting genes encoding components of the RNA splicing machinery in hematological malignancies. Here, we sought to determine how mutations affecting the 3' splice site recognition factor U2AF1 alter its normal role in RNA splicing. We find that U2AF1 mutations influence the similarity of splicing programs in leukemias, but do not give rise to widespread splicing failure. U2AF1 mutations cause differential splicing of hundreds of genes, affecting biological pathways such as DNA methylation (DNMT3B), X chromosome inactivation (H2AFY), the DNA damage response (ATR, FANCA), and apoptosis (CASP8). We show that U2AF1 mutations alter the preferred 3' splice site motif in patients, in cell culture, and in vitro. Mutations affecting the first and second zinc fingers give rise to different alterations in splice site preference and largely distinct downstream splicing programs. These allele-specific effects are consistent with a computationally predicted model of U2AF1 in complex with RNA. Our findings suggest that U2AF1 mutations contribute to pathogenesis by causing quantitative changes in splicing that affect diverse cellular pathways, and give insight into the normal function of U2AF1's zinc finger domains. © 2015 Ilagan et al.; Published by Cold Spring Harbor Laboratory Press.

  17. MysiRNA-designer: a workflow for efficient siRNA design.

    Directory of Open Access Journals (Sweden)

    Mohamed Mysara

    Full Text Available The design of small interfering RNA (siRNA is a multi factorial problem that has gained the attention of many researchers in the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features. MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design programs. MysiRNA is a freely accessible (Microsoft Windows based desktop application that can be used to design siRNA with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this area.

  18. Voice Recognition in Face-Blind Patients

    Science.gov (United States)

    Liu, Ran R.; Pancaroglu, Raika; Hills, Charlotte S.; Duchaine, Brad; Barton, Jason J. S.

    2016-01-01

    Right or bilateral anterior temporal damage can impair face recognition, but whether this is an associative variant of prosopagnosia or part of a multimodal disorder of person recognition is an unsettled question, with implications for cognitive and neuroanatomic models of person recognition. We assessed voice perception and short-term recognition of recently heard voices in 10 subjects with impaired face recognition acquired after cerebral lesions. All 4 subjects with apperceptive prosopagnosia due to lesions limited to fusiform cortex had intact voice discrimination and recognition. One subject with bilateral fusiform and anterior temporal lesions had a combined apperceptive prosopagnosia and apperceptive phonagnosia, the first such described case. Deficits indicating a multimodal syndrome of person recognition were found only in 2 subjects with bilateral anterior temporal lesions. All 3 subjects with right anterior temporal lesions had normal voice perception and recognition, 2 of whom performed normally on perceptual discrimination of faces. This confirms that such lesions can cause a modality-specific associative prosopagnosia. PMID:25349193

  19. RNA binding and replication by the poliovirus RNA polymerase

    International Nuclear Information System (INIS)

    Oberste, M.S.

    1988-01-01

    RNA binding and RNA synthesis by the poliovirus RNA-dependent RNA polymerase were studied in vitro using purified polymerase. Templates for binding and RNA synthesis studies were natural RNAs, homopolymeric RNAs, or subgenomic poliovirus-specific RNAs synthesized in vitro from cDNA clones using SP6 or T7 RNA polymerases. The binding of the purified polymerase to poliovirion and other RNAs was studied using a protein-RNA nitrocellulose filter binding assay. A cellular poly(A)-binding protein was found in the viral polymerase preparations, but was easily separated from the polymerase by chromatography on poly(A) Sepharose. The binding of purified polymerase to 32 P-labeled ribohomopolymeric RNAs was examined, and the order of binding observed was poly(G) >>> poly(U) > poly(C) > poly(A). The K a for polymerase binding to poliovirion RNA and to a full-length negative strand transcript was about 1 x 10 9 M -1 . The polymerase binds to a subgenomic RNAs which contain the 3' end of the genome with a K a similar to that for virion RNA, but binds less well to 18S rRNA, globin mRNA, and subgenomic RNAs which lack portions of the 3' noncoding region

  20. Invariant Face recognition Using Infrared Images

    International Nuclear Information System (INIS)

    Zahran, E.G.

    2012-01-01

    Over the past few decades, face recognition has become a rapidly growing research topic due to the increasing demands in many applications of our daily life such as airport surveillance, personal identification in law enforcement, surveillance systems, information safety, securing financial transactions, and computer security. The objective of this thesis is to develop a face recognition system capable of recognizing persons with a high recognition capability, low processing time, and under different illumination conditions, and different facial expressions. The thesis presents a study for the performance of the face recognition system using two techniques; the Principal Component Analysis (PCA), and the Zernike Moments (ZM). The performance of the recognition system is evaluated according to several aspects including the recognition rate, and the processing time. Face recognition systems that use visual images are sensitive to variations in the lighting conditions and facial expressions. The performance of these systems may be degraded under poor illumination conditions or for subjects of various skin colors. Several solutions have been proposed to overcome these limitations. One of these solutions is to work in the Infrared (IR) spectrum. IR images have been suggested as an alternative source of information for detection and recognition of faces, when there is little or no control over lighting conditions. This arises from the fact that these images are formed due to thermal emissions from skin, which is an intrinsic property because these emissions depend on the distribution of blood vessels under the skin. On the other hand IR face recognition systems still have limitations with temperature variations and recognition of persons wearing eye glasses. In this thesis we will fuse IR images with visible images to enhance the performance of face recognition systems. Images are fused using the wavelet transform. Simulation results show that the fusion of visible and

  1. End-Stop Exemplar Based Recognition

    DEFF Research Database (Denmark)

    Olsen, Søren I.

    2003-01-01

    An approach to exemplar based recognition of visual shapes is presented. The shape information is described by attributed interest points (keys) detected by an end-stop operator. The attributes describe the statistics of lines and edges local to the interest point, the position of neighboring int...... interest points, and (in the training phase) a list of recognition names. Recognition is made by a simple voting procedure. Preliminary experiments indicate that the recognition is robust to noise, small deformations, background clutter and partial occlusion....

  2. Speech Recognition on Mobile Devices

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Lindberg, Børge

    2010-01-01

    in the mobile context covering motivations, challenges, fundamental techniques and applications. Three ASR architectures are introduced: embedded speech recognition, distributed speech recognition and network speech recognition. Their pros and cons and implementation issues are discussed. Applications within......The enthusiasm of deploying automatic speech recognition (ASR) on mobile devices is driven both by remarkable advances in ASR technology and by the demand for efficient user interfaces on such devices as mobile phones and personal digital assistants (PDAs). This chapter presents an overview of ASR...

  3. Markov Models for Handwriting Recognition

    CERN Document Server

    Plotz, Thomas

    2011-01-01

    Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden

  4. Examining ERP correlates of recognition memory: Evidence of accurate source recognition without recollection

    Science.gov (United States)

    Addante, Richard, J.; Ranganath, Charan; Yonelinas, Andrew, P.

    2012-01-01

    Recollection is typically associated with high recognition confidence and accurate source memory. However, subjects sometimes make accurate source memory judgments even for items that are not confidently recognized, and it is not known whether these responses are based on recollection or some other memory process. In the current study, we measured event related potentials (ERPs) while subjects made item and source memory confidence judgments in order to determine whether recollection supported accurate source recognition responses for items that were not confidently recognized. In line with previous studies, we found that recognition memory was associated with two ERP effects: an early on-setting FN400 effect, and a later parietal old-new effect [Late Positive Component (LPC)], which have been associated with familiarity and recollection, respectively. The FN400 increased gradually with item recognition confidence, whereas the LPC was only observed for highly confident recognition responses. The LPC was also related to source accuracy, but only for items that had received a high confidence item recognition response; accurate source judgments to items that were less confidently recognized did not exhibit the typical ERP correlate of recollection or familiarity, but rather showed a late, broadly distributed negative ERP difference. The results indicate that accurate source judgments of episodic context can occur even when recollection fails. PMID:22548808

  5. Evaluating music emotion recognition:Lessons from music genre recognition?

    OpenAIRE

    Sturm, Bob L.

    2013-01-01

    A fundamental problem with nearly all work in music genre recognition (MGR)is that evaluation lacks validity with respect to the principal goals of MGR. This problem also occurs in the evaluation of music emotion recognition (MER). Standard approaches to evaluation, though easy to implement, do not reliably differentiate between recognizing genre or emotion from music, or by virtue of confounding factors in signals (e.g., equalization). We demonstrate such problems for evaluating an MER syste...

  6. RNA.

    Science.gov (United States)

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  7. Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case

    OpenAIRE

    Zhang, Yunpeng; Liu, Wei; Xu, Yanjun; Li, Chunquan; Wang, Yingying; Yang, Haixiu; Zhang, Chunlong; Su, Fei; Li, Yixue; Li, Xia

    2015-01-01

    Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it i...

  8. Word Recognition in Auditory Cortex

    Science.gov (United States)

    DeWitt, Iain D. J.

    2013-01-01

    Although spoken word recognition is more fundamental to human communication than text recognition, knowledge of word-processing in auditory cortex is comparatively impoverished. This dissertation synthesizes current models of auditory cortex, models of cortical pattern recognition, models of single-word reading, results in phonetics and results in…

  9. [Comparative studies of face recognition].

    Science.gov (United States)

    Kawai, Nobuyuki

    2012-07-01

    Every human being is proficient in face recognition. However, the reason for and the manner in which humans have attained such an ability remain unknown. These questions can be best answered-through comparative studies of face recognition in non-human animals. Studies in both primates and non-primates show that not only primates, but also non-primates possess the ability to extract information from their conspecifics and from human experimenters. Neural specialization for face recognition is shared with mammals in distant taxa, suggesting that face recognition evolved earlier than the emergence of mammals. A recent study indicated that a social insect, the golden paper wasp, can distinguish their conspecific faces, whereas a closely related species, which has a less complex social lifestyle with just one queen ruling a nest of underlings, did not show strong face recognition for their conspecifics. Social complexity and the need to differentiate between one another likely led humans to evolve their face recognition abilities.

  10. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  11. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread

    Directory of Open Access Journals (Sweden)

    Mattia Dall’Ara

    2016-08-01

    Full Text Available Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the “life aspects” of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.

  12. RNA STRAND: The RNA Secondary Structure and Statistical Analysis Database

    Directory of Open Access Journals (Sweden)

    Andronescu Mirela

    2008-08-01

    Full Text Available Abstract Background The ability to access, search and analyse secondary structures of a large set of known RNA molecules is very important for deriving improved RNA energy models, for evaluating computational predictions of RNA secondary structures and for a better understanding of RNA folding. Currently there is no database that can easily provide these capabilities for almost all RNA molecules with known secondary structures. Results In this paper we describe RNA STRAND – the RNA secondary STRucture and statistical ANalysis Database, a curated database containing known secondary structures of any type and organism. Our new database provides a wide collection of known RNA secondary structures drawn from public databases, searchable and downloadable in a common format. Comprehensive statistical information on the secondary structures in our database is provided using the RNA Secondary Structure Analyser, a new tool we have developed to analyse RNA secondary structures. The information thus obtained is valuable for understanding to which extent and with which probability certain structural motifs can appear. We outline several ways in which the data provided in RNA STRAND can facilitate research on RNA structure, including the improvement of RNA energy models and evaluation of secondary structure prediction programs. In order to keep up-to-date with new RNA secondary structure experiments, we offer the necessary tools to add solved RNA secondary structures to our database and invite researchers to contribute to RNA STRAND. Conclusion RNA STRAND is a carefully assembled database of trusted RNA secondary structures, with easy on-line tools for searching, analyzing and downloading user selected entries, and is publicly available at http://www.rnasoft.ca/strand.

  13. MicroRNA from tuberculosis RNA: A bioinformatics study

    OpenAIRE

    Wiwanitkit, Somsri; Wiwanitkit, Viroj

    2012-01-01

    The role of microRNA in the pathogenesis of pulmonary tuberculosis is the interesting topic in chest medicine at present. Recently, it was proposed that the microRNA can be a useful biomarker for monitoring of pulmonary tuberculosis and might be the important part in pathogenesis of disease. Here, the authors perform a bioinformatics study to assess the microRNA within known tuberculosis RNA. The microRNA part can be detected and this can be important key information in further study of the p...

  14. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    Science.gov (United States)

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.; Leung, Daisy W.

    2016-08-01

    The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most open reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.

  16. Studying RNA-protein interactions in vivo by RNA immunoprecipitation

    DEFF Research Database (Denmark)

    Selth, Luke A; Close, Pierre; Svejstrup, Jesper Q

    2011-01-01

    and have significant effects on gene expression. RNA immunoprecipitation (RIP) is a powerful technique used to detect direct and indirect interactions between individual proteins and specific RNA molecules in vivo. Here, we describe RIP methods for both yeast and mammalian cells.......The crucial roles played by RNA-binding proteins in all aspects of RNA metabolism, particularly in the regulation of transcription, have become increasingly evident. Moreover, other factors that do not directly interact with RNA molecules can nevertheless function proximally to RNA polymerases...

  17. RNA SURVEILLANCE– AN EMERGING ROLE FOR RNA REGULATORY NETWORKS IN AGING

    OpenAIRE

    Montano, Monty; Long, Kimberly

    2010-01-01

    In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems – RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionall...

  18. Simultaneous sequencing of coding and noncoding RNA reveals a human transcriptome dominated by a small number of highly expressed noncoding genes.

    Science.gov (United States)

    Boivin, Vincent; Deschamps-Francoeur, Gabrielle; Couture, Sonia; Nottingham, Ryan M; Bouchard-Bourelle, Philia; Lambowitz, Alan M; Scott, Michelle S; Abou-Elela, Sherif

    2018-07-01

    Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle. S tructured n on c oding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a small number of highly expressed sncRNAs specializing in functions related to translation and splicing. © 2018 Boivin et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  19. Structures of SRP54 and SRP19, the two proteins that organize the ribonucleic core of the signal recognition particle from Pyrococcus furiosus.

    Directory of Open Access Journals (Sweden)

    Pascal F Egea

    Full Text Available In all organisms the Signal Recognition Particle (SRP, binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane. We present here high-resolution X-ray structures of SRP54 and SRP19, the two RNA binding components forming the core of the signal recognition particle from the hyper-thermophilic archaeon Pyrococcus furiosus (Pfu. The 2.5 A resolution structure of free Pfu-SRP54 is the first showing the complete domain organization of a GDP bound full-length SRP54 subunit. In its ras-like GTPase domain, GDP is found tightly associated with the protein. The flexible linker that separates the GTPase core from the hydrophobic signal sequence binding M domain, adopts a purely alpha-helical structure and acts as an articulated arm allowing the M domain to explore multiple regions as it scans for signal peptides as they emerge from the ribosomal tunnel. This linker is structurally coupled to the GTPase catalytic site and likely to propagate conformational changes occurring in the M domain through the SRP RNA upon signal sequence binding. Two different 1.8 A resolution crystal structures of free Pfu-SRP19 reveal a compact, rigid and well-folded protein even in absence of its obligate SRP RNA partner. Comparison with other SRP19*SRP RNA structures suggests the rearrangement of a disordered loop upon binding with the RNA through a reciprocal induced-fit mechanism and supports the idea that SRP19 acts as a molecular scaffold and a chaperone, assisting the SRP

  20. Neural-network classifiers for automatic real-world aerial image recognition

    Science.gov (United States)

    Greenberg, Shlomo; Guterman, Hugo

    1996-08-01

    We describe the application of the multilayer perceptron (MLP) network and a version of the adaptive resonance theory version 2-A (ART 2-A) network to the problem of automatic aerial image recognition (AAIR). The classification of aerial images, independent of their positions and orientations, is required for automatic tracking and target recognition. Invariance is achieved by the use of different invariant feature spaces in combination with supervised and unsupervised neural networks. The performance of neural-network-based classifiers in conjunction with several types of invariant AAIR global features, such as the Fourier-transform space, Zernike moments, central moments, and polar transforms, are examined. The advantages of this approach are discussed. The performance of the MLP network is compared with that of a classical correlator. The MLP neural-network correlator outperformed the binary phase-only filter (BPOF) correlator. It was found that the ART 2-A distinguished itself with its speed and its low number of required training vectors. However, only the MLP classifier was able to deal with a combination of shift and rotation geometric distortions.