WorldWideScience

Sample records for central receiver test facility

  1. Simulation of an EPRI-Nevada Test Site (NTS) hydrogen burn test at the Central Receiver Test Facility

    International Nuclear Information System (INIS)

    In order to augment results obtained from the hydrogen burn equipment survival tests performed by the Electric Power Research Institute (EPRI) at the Nevada Test Site (NTS), a series of tests was conducted at the Sandia National Laboratories Central Receiver Test Facility (CRTF). The CRTF tests simulated a 13 volume-percent burn from the EPRI-NTS series. During the CRTF tests, the thermal and operational responses of several specimens of nuclear power plant safety-related equipment were monitored when subjected to a solar heat flux simulation of a hydrogen burn. The simulation was conducted with and without steam in the vicinity of the test specimens. Prior to exposure, the specimens were preheated to temperatures corresponding to the precombustion environment in the EPRI-NTS test vessel

  2. 10-MWe pilot-plant-receiver panel test requirements document solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1978-08-25

    Testing plans for a full-scale test receiver panel and supporting hardware which essentially duplicate both physically and functionally, the design planned for the Barstow Solar Pilot Plant are presented. Testing is to include operation during normal start and shutdown, intermittent cloud conditions, and emergencies to determine the panel's transient and steady state operating characteristics and performance under conditions equal to or exceeding those expected in the pilot plant. The effects of variations of input and output conditions on receiver operation are also to be investigated. Test hardware are described, including the pilot plant receiver, the test receiver assembly, receiver panel, flow control, electrical control and instrumentation, and structural assembly. Requirements for the Solar Thermal Test Facility for the tests are given. The safety of the system is briefly discussed, and procedures are described for assembly, installation, checkout, normal and abnormal operations, maintenance, removal and disposition. Also briefly discussed are quality assurance, contract responsibilities, and test documentation. (LEW)

  3. A central tower solar test facility /RM/CTSTF/

    Science.gov (United States)

    Bevilacqua, S.; Gislon, R.

    The considered facility is intended for the conduction of test work in connection with studies of receivers, thermodynamic cycles, heliostats, components, and subassemblies. Major components of the test facility include a mirror field with a reflecting surface of 800 sq m, a 40 m tower, an electronic control system, a data-acquisition system, and a meteorological station. A preliminary experimental program is discussed, taking into account investigations related to facility characterization, an evaluation of advanced low-cost heliostats, materials and components tests, high-concentration photovoltaic experiments, and a study of advanced solar thermal cycles.

  4. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    McDowell, Michael W [Pratt & Whitney Rocketdyne; Miner, Kris [Pratt & Whitney Rocketdyne

    2013-03-30

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then complete the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent plan to

  5. Central solar energy receiver

    Science.gov (United States)

    Drost, M. Kevin

    1983-01-01

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  6. Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration

    Energy Technology Data Exchange (ETDEWEB)

    1982-04-01

    The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

  7. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  8. Ceramic high temperature receiver design and tests

    Science.gov (United States)

    Davis, S. B.

    1982-01-01

    The High Temperature Solar Thermal Receiver, which was tested a Edwards AFB, CA during the winter of 1980-1981, evolved from technologies developed over a five year period of work. This receiver was tested at the Army Solar Furnace at White Sands, NM in 1976. The receiver, was tested successfully at 1768 deg F and showed thermal efficiencies of 85%. The results were sufficiently promising to lead ERDA to fund our development and test of a 250 kW receiver to measure the efficiency of an open cavity receiver atop a central tower of a heliostat field. This receiver was required to be design scalable to 10, 50, and 100 MW-electric sizes to show applicability to central power tower receivers. That receiver employed rectagular silicon carbide panels and vertical stanchions to achieve scalability. The construction was shown to be fully scalable; and the receiver was operated at temperatures up to 2000 deg F to achieve the performance goals of the experiment during tests at the GIT advanced components test facility during the fall of 1978.

  9. Receiver subsystem analysis report (RADL Item 4-1). The 10-MWe solar thermal central-receiver pilot plant: Solar-facilities design integration

    Science.gov (United States)

    1982-04-01

    The results of thermal hydraulic, design for the stress analyses which are required to demonstrate that the receiver design for the Barstow Solar Pilot Plant satisfies the general design and performance requirements during the plant's design life are presented. Recommendations are made for receiver operation. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding.

  10. Waste Receiving and Processing Facility PMS Test Report/DMS-Y2K/System Security DMS (Data Management System)

    International Nuclear Information System (INIS)

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This documents shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems

  11. A partitioned central solar receiver

    International Nuclear Information System (INIS)

    Else of solar energy as substitute for conventional fuels at a competitive cost requires efficient conversion from solar radiation to usable forms of energy. In solar thermal or thermochemical applications, high efficiency usually re- quires high temperature and high concentration of incoming radiation. The main form of energy loss from high temperature solar central receivers is thermal emission ('re radiation'), at an effective temperature close to the maximum receiver temperature. This loss is reduced if the aperture is divided into segments, most of which are maintained at lower temperatures. A two-stage partitioned receiver demonstrating this concept is under construction at the Weizman Solar Tower. The high-temperature stage is the DIAPR (Directly Irradiated Annular Pressurized Receiver). The low-temperature stage is made of tubular cavity receivers of simpler design. Preliminary optical and thermal design of the partitioned receiver is presented. For the design exit temperature of 1500 K, the aperture size of the partitioned receiver is about 60% of the equivalent single-stage receiver, indicating a significant increase of conversion efficiency. The exit temperature of the low-temperature stage is around 1100 K, allowing simpler design and inexpensive construction. (authors)

  12. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  13. Central solar-energy receiver

    Science.gov (United States)

    Not Available

    1981-10-27

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  14. Waste Receiving and Processing (WRAP) Facility PMS Test Report For Data Management System (DMS) Security Test DMS-Y2K

    Energy Technology Data Exchange (ETDEWEB)

    PALMER, M.E.

    1999-09-21

    Test Plan HNF-4351 defines testing requirements for installation of a new server in the WRAP Facility. This document shows the results of the test reports on the DMS-Y2K and DMS-F81 (Security) systems.

  15. A final report on the Phase 1 testing of a molten-salt cavity receiver

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, J M [ed.; Smith, D C [Babcock and Wilcox Co., Barberton, OH (United States). Nuclear Equipment Div.

    1992-05-01

    This report describes the design, construction, and testing of a solar central receiver using molten nitrate salt as a heat exchange fluid. Design studies for large commercial plants (30--100 MWe) have shown molten salt to be an excellent fluid for solar thermal plants as it allows for efficient thermal storage. Plant design studies concluded that an advanced receiver test was required to address uncertainties not covered in prior receiver tests. This recommendation led to the current test program managed by Sandia National Laboratories for the US Department of Energy. The 4.5 MWt receiver is installed at Sandia National Laboratories' Central Receiver Test Facility in Albuquerque, New Mexico. The receiver incorporates features of large commercial receiver designs. This report describes the receiver's configuration, heat absorption surface (design and sizing), the structure and supporting systems, and the methods for control. The receiver was solar tested during a six-month period at the Central Receiver Test Facility in Albuquerque, NM. The purpose of the testing was to characterize the operational capabilities of the receiver under a number of solar operating and stand-by conditions. This testing consisted of initial check-out of the systems, followed by steady-state performance, transient receiver operation, receiver operation in clouds, receiver thermal loss testing, receiver start-up operation, and overnight thermal conditioning tests. This report describes the design, fabrication, and results of testing of the receiver.

  16. Solar central receiver heliostat reflector assembly

    Science.gov (United States)

    Horton, Richard H.; Zdeb, John J.

    1980-01-01

    A heliostat reflector assembly for a solar central receiver system comprises a light-weight, readily assemblable frame which supports a sheet of stretchable reflective material and includes mechanism for selectively applying tension to and positioning the sheet to stretch it to optical flatness. The frame is mounted on and supported by a pipe pedestal assembly that, in turn, is installed in the ground. The frame is controllably driven in a predetermined way by a light-weight drive system so as to be angularly adjustable in both elevation and azimuth to track the sun and efficiently continuously reflect the sun's rays to a focal zone, i.e. central receiver, which forms part of a solar energy utilization system, such as a solar energy fueled electrical power generation system. The frame may include a built-in system for testing for optical flatness of the reflector. The preferable geometric configuration of the reflector is octagonal; however, it may be other shapes, such as hexagonal, pentagonal or square. Several different embodiments of means for tensioning and positioning the reflector to achieve optical flatness are disclosed. The reflector assembly is based on the stretch frame concept which provides an extremely light-weight, simple, low-cost reflector assembly that may be driven for positioning and tracking by a light-weight, inexpensive drive system.

  17. A handbook for solar central receiver design

    Energy Technology Data Exchange (ETDEWEB)

    Falcone, P.K.

    1986-12-01

    This Handbook describes central receiver technology for solar thermal power plants. It contains a description and assessment of the major components in a central receiver system configured for utility scale production of electricity using Rankine-cycle steam turbines. It also describes procedures to size and optimize a plant and discussed examples from recent system analyses. Information concerning site selection criteria, cost estimation, construction, and operation and maintenance is also included, which should enable readers to perform design analyses for specific applications.

  18. Review of the Molten Salt Electric Experiment: A solar central receiver project

    Energy Technology Data Exchange (ETDEWEB)

    Delameter, W.R.; Bergan, N.E.

    1986-12-01

    The Molten Salt Electric Experiment was the first full solar-to-electric central receiver system to use molten nitrate salt as a primary working fluid. The experiment was built and tested at the Central Receiver Test Facility in Albuquerque, New Mexico, between 1982 and 1985. The purpose of the project was to demonstrate the technical feasibility of a molten salt central receiver system. The Molten Salt Electric Experiment was operated through a year of successful testing; system performance was measured, operating procedures and an effective receiver control algorithm were developed, and personnel from participating electrical utilities and solar industries were trained to operate the system. The testing culminated in a one-month power production campaign to measure daily performance, component reliability, and system availability. This paper discusses the major accomplishments and some of the more significant problems of the project.

  19. Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

    1995-01-01

    Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

  20. Second-generation central receiver technology comparison

    Science.gov (United States)

    Klimas, P. C.; Becker, M.

    Fifteen years of solar thermal technology development have produced a considerable amount of knowledge relating to the production of electricity from central receiver power plants. This body of knowledge is under examination by researchers from the United States and the Federal Republic of Germany for the purpose of defining the next generation central receiver electricity producers. This second generation power plant is expected to represent a significant step towards commercialization of these systems. During the course of the study, specific activities needed to realize this next-step technology are being defined. The study is an international team effort. Under the International Energy Agency Small Solar Power Systems project, researchers from DLR, Interatom, Sandia National Laboratories, and Bechtel have designed a study in which technologies relating to existing systems are quantified, logical next-step systems are characterized, and future potential advances are identified. The receiver concepts under investigation are: salt-in-tube, volumetric, and direct absorption. Two plant performance levels are examined, 30 and 100 MW(sub e). Each concept is applied with common capacity factors, solar multiples, and types and sizes of heliostats at each performance level. Availability and uncertainty analyses are also performed. Annual energy production figures are calculated using the SOLERGY computer code. Capital and Operation and Maintenance cost methodologies are mutually agreed upon in order that levelized energy cost calculations will be consistent for each power plant. During the course of this effort, further potential advances in central receiver technology have continued to become apparent. These possible areas for improvement will be described. An additional comparison is being made between central receivers and trough-based systems.

  1. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  2. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to: Evaluate and characterize the effect of flame and thermal...

  3. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  4. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  5. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural Analyses The ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide...

  6. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  7. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  8. Transient simulation of molten salt central receiver

    Science.gov (United States)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  9. A 200kW central receiver CPV system

    Energy Technology Data Exchange (ETDEWEB)

    Lasich, John, E-mail: jbl@raygen.com; Thomas, Ian, E-mail: ithomas@raygen.com; Hertaeg, Wolfgang; Shirley, David; Faragher, Neil; Erenstrom, Neil; Carter, Sam; Cox, Brian; Zuo, Xinyi [Raygen Resources Pty. Ltd., 15 King Street, Blackburn, Victoria, 3130 (Australia)

    2015-09-28

    Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.

  10. A 200kW central receiver CPV system

    Science.gov (United States)

    Lasich, John; Thomas, Ian; Hertaeg, Wolfgang; Shirley, David; Faragher, Neil; Erenstrom, Neil; Carter, Sam; Cox, Brian; Zuo, Xinyi

    2015-09-01

    Raygen Resources has recently completed a Central Receiver CPV (CSPV) pilot plant in Central Victoria, Australia. The system is under final commissioning and initial operation is expected in late April 2015. The pilot demonstrates a full scale CSPV repeatable unit in a form that is representative of a commercial product and provides a test bed to prove out performance and reliability of the CSPV technology. Extensive testing of the system key components: dense array module, wireless solar powered heliostat and control system has been performed in the laboratory and on sun. Results from this key component testing are presented herein.

  11. 10-MWe solar-thermal central-receiver pilot plant, solar facilities design integration: collector-field optimization report (RADL item 2-25)

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Appropriate cost and performance models and computer codes have been developed to carry out the collector field optimization, as well as additional computer codes to define the actual heliostat locations in the optimized field and to compute in detail the performance to be expected of the defined field. The range of capabilities of the available optimization and performance codes is described. The role of the optimization code in the definition of the pilot plant is specified, and a complete description of the optimization process itself is given. The detailed cost model used by the optimizer for the commercial system optimization is presented in the form of equations relating the cost element to each of the factors that determine it. The design basis for the commercial system is presented together with the rationale for its selection. The development of the individual heliostat performance code is presented. Use of the individual heliostat code in a completed study of receiver panel power under sunrise startup conditions is described. The procedure whereby performance and heliostat spacing data from the representative commercial-scale system are converted into coefficients of use in the layout processor is described, and the actual procedure used in the layout processor is described. Numerous special studies in support of the pilot plant design are described. (LEW)

  12. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  13. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  14. Thermal resistance model for CSP central receivers

    Science.gov (United States)

    de Meyer, O. A. J.; Dinter, F.; Govender, S.

    2016-05-01

    The receiver design and heliostat field aiming strategy play a vital role in the heat transfer efficiency of the receiver. In molten salt external receivers, the common operating temperature of the heat transfer fluid or molten salt ranges between 285°C to 565°C. The optimum output temperature of 565°C is achieved by adjusting the mass flow rate of the molten salt through the receiver. The reflected solar radiation onto the receiver contributes to the temperature rise in the molten salt by means of heat transfer. By investigating published work on molten salt external receiver operating temperatures, corresponding receiver tube surface temperatures and heat losses, a model has been developed to obtain a detailed thermographic representation of the receiver. The steady state model uses a receiver flux map as input to determine: i) heat transfer fluid mass flow rate through the receiver to obtain the desired molten salt output temperature of 565°C, ii) receiver surface temperatures iii) receiver tube temperatures iv) receiver efficiency v) pressure drop across the receiver and vi) corresponding tube strain per panel.

  15. Fifty cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, J. D.; Kolba, V. M.; Miller, W. E.; Gay, E. C.

    1980-07-01

    This report describes the design of a facility capable of the simultaneous testing of up to 50 high-temperature (400 to 500/sup 0/C) lithium alloy/iron sulfide cells; this facility is located in the Chemical Engineering Division of Argonne National Laboratory (ANL). The emphasis will be on the lifetime testing of cells fabricated by ANL and industrial contractors to acquire statistical data on the performance of cells of various designs. A computer-based data-acquisition system processes the cell performance data generated from the cells on test. The terminals and part of the data-acquisition equipment are housed in an air-conditioned enclosure adjacent to the testing facility; the computer is located remotely.

  16. Testing for central symmetry

    NARCIS (Netherlands)

    Einmahl, John; Gan, Zhuojiong

    2016-01-01

    Omnibus tests for central symmetry of a bivariate probability distribution are proposed. The test statistics compare empirical measures of opposite regions. Under rather weak conditions, we establish the asymptotic distribution of the test statistics under the null hypothesis; it follows that they a

  17. Testing (HIV). Quick test receives Singapore approval.

    Science.gov (United States)

    1996-04-22

    Hema-Strip HIV 1/2 is a rapid HIV antibody immunoassay developed by Saliva Diagnostic Systems, Inc. (SDS) which can be used by anyone who can read the product insert. The test kit is comprised of a small lancet for a finger stick, a cylindrical tube with a capillary tip and a SDS diagnostic strip inside, and a vial of buffer. Once blood is drawn by the lancet, the capillary tip is placed upon the blood droplet and the blood is automatically drawn into the tube. The tube is then inserted tip first into the vial of buffer. The buffer and blood migrate over the diagnostic strip inside, yielding stable results within 15 minutes. Studies have found Hema-Strip HIV 1/2 to have a sensitivity and specificity greater than 99.4%, as accurate as most conventional HIV tests which require the use of laboratory equipment and trained staff, and possibly hours to produce results. Moreover, the test kit requires neither refrigeration nor special storage. Hema-Strip HIV 1/2 has received a certificate of free sale from the Ministry of Health in Singapore and is now being submitted for regulatory approval in Brazil, China, Russia, India, Malaysia, Thailand, and the UK. SDS products in production include Sero-Strip HIV 1/2, a rapid serum-based HIV antibody test; Omni-SAL, a saliva collector which is the principal sample collection device used by British insurance companies for HIV testing with other confirmatory tests; Omni-Swab, a serrated swab which collects body fluids or cells; Saliva-Sampler, a saliva collection device used for general testing purposes; and Saliva Check, a test which checks the composition of saliva samples. SDS is in the final stages of developing Saliva-Strip HIV-1/2, a rapid saliva-based HIV antibody test. The company also intends to complete development in 1996 of a rapid blood-based antibody test for the Helicobacter pylori bacteria, a pathogen linked to 80% of peptic ulcers and gastric cancers. PMID:12290908

  18. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  19. Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    On October 1, 1977 work began at LLL on the Mirror Fusion Test Facility (MFTF), an advanced experimental fusion device. Scheduled for operation in late 1981, MFTF is designed as an intermediate step between present mirror machines, such as 2XIIB, and an experimental fusion reactor. This design incorporates improved technology and a better theoretical understanding of how neutral beam injection, plasma guns, and gas injection into the plasma region compensate for cooling and particle losses. With the new facility, we expect to achieve a confinement factor (n tau) of 1012 particles . sm/cm3--a tenfold increase over 2XIIB n tau values--and to increase plasma temperature to over 500 million K. The following article describes this new facility and reports on progress in some of the R and D projects that are providing the technological base for its construction

  20. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  1. Conceptual design of advanced central receiver power system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tracey, T. R.

    1978-09-01

    The design of a 300 MWe tower focus power plant which uses molten salt heat transfer fluids and sensible heat storage is described in detail. The system consists of nine heliostat fields with 7711 heliostats in each. Four cavity receivers are located at the top of a 155-meter tower. Tasks include: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) selection of preferred configuration; (4) commercial plant conceptual design; (5) assessment of commercial-sized advanced central power system; (6) development plan; (7) program plan; (8) reports and data; (9) program management; (10) safety analysis; and (11) material study and test program. (WHK)

  2. TESLA Test Facility. Status

    Energy Technology Data Exchange (ETDEWEB)

    Aune, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 {mu}s). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.). 19 refs.

  3. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  4. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Drake [Abengoa Solar LLC, Lakewood, CO (United States); Kelly, Bruce [Abengoa Solar LLC, Lakewood, CO (United States); Burkholder, Frank [Abengoa Solar LLC, Lakewood, CO (United States)

    2014-12-12

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Molten Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  5. Design, fabrication, and test of a heliostat for a central receiver solar thermal power plant. Project technical report, May 1974--Sep 1975

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, J.B.

    1975-09-01

    A full-scale central pedestal mounted elevation/azimuth heliostat was designed, fabricated, and tested. The heliostat consisted of a flat reflective surface composed of two co-planar lights of back silvered (second surface) glass, each 3.7 m (12 ft) x 1.85 m (6 ft) x 6 mm (1/4 inch) bonded to a steel frame structural support. The structural support was mounted on a drive housing equipped with a linear actuator for control of the elevation (tilt) axis, and a harmonic drive for azimuth control. DC gear motors (1/30 hp) were used in both drive axes. A quadrant photosensor mounted on a separate pedestal and aligned along the target-mirror of sight provided error signals to an analogue circuit which performed the error signal transformations and provided properly apportioned steering commands to the DC motors on the elevation/azimuth movement. Tracking and beam dispersion characteristics were investigated at six typical positions in the field ranging from 300 to 3000 ft horizontally from a screen target suspended between two 360 ft high towers. (GRA)

  6. Comparative Performance Assessment For Central Receiver CPV Systems

    Science.gov (United States)

    Lasich, John B.; Thomas, Ian; Verlinden, Pierre J.; Lewandowski, Allan; Heartag, Wolfgang; Wright, Mark

    2011-12-01

    A Central receiver Concentrating PV (C2PV) system has the potential to be the optimum solar energy generation system for utility scale because it combines the high efficiency of CPV with the low cost of a heliostat collector. Due to the off axis nature of a heliostat central receiver concentrator a cosine efficiency loss is incurred and, unlike `normal' tracking CPV lens and dish systems, the optical performance varies with time and site latitude. To investigate the optical performance of a C2PV system a ray trace model has been developed and the performance of a representative C2PV system is modelled throughout the year and at different site latitudes. The cosine loss and latitude dependence are put into perspective by calculating the annual average optical efficiency and testing its sensitivity to variations in site latitude. These values are then used to estimate a system performance by applying efficiencies for solar cell, balance of system and operational factors. This system efficiency is finally compared to published data for `normal' tracking CPV dish and lens systems. Modelled annual average AC system efficiency for the C2PV system was calculated to be 21% at 40° latitude and 19% at 15° latitude. These annual average AC system efficiencies are shown to be similar to those reported for typical dish and lens CPV systems when they are adjusted to use a total collector area baseline.

  7. Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014

    Energy Technology Data Exchange (ETDEWEB)

    Alan Giesbrecht

    2014-05-01

    The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

  8. Lagoon Seepage Testing Report for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory, Butte County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Bridger Morrison

    2014-09-01

    J-U-B ENGINEERS, Inc. (J-U-B) performed seepage tests on the CFA Wastewater Lagoons 1, 2, and 3 between August 26th and September 22nd, 2014. The lagoons were tested to satisfy the Idaho Department of Environmental Quality (DEQ) Rules (IDAPA 58.01.16) that require all lagoons be tested at a frequency of every 10 years and the Compliance Activity CA-141-03 in the DEQ Wastewater Reuse Permit for the CFA Sewage Treatment Plant (LA-000141-03). The lagoons were tested to determine if the average seepage rates are less than 0.25 in/day, the maximum seepage rate allowed for lagoons built prior to April 15, 2007. The average seepage rates were estimated for each lagoon and are given in Table-ES1. The average seepage rates for Lagoons 1 and 2 are less than the allowable seepage rate of 0.25 in/day. Lagoon 1 and 2 passed the seepage test and will not have to be tested again until the year 20241. However, the average seepage rate for Lagoon 3 appears to exceed the allowable seepage rate of 0.25 in/day which means the potential source for the excessive leakage should be investigated further.

  9. Air gun test facility

    International Nuclear Information System (INIS)

    This paper describes a facility that is potentially useful in providing data for models to predict the effects of nuclear explosions on cities. IIT Research Institute has a large air gun facility capable of launching heavy items of a wide variety of geometries to velocities ranging from about 80 fps to 1100 fps. The facility and its capabilities are described, and city model problem areas capable of investigation using the air gun are presented

  10. The Central Laser Facility at the Pierre Auger Observatory

    CERN Document Server

    Arqueros, F; Covault, C; D'Urso, D; Giulio, C D; Facal, P; Fick, B; Guarino, F; Malek, M; Matthews, J A J; Matthews, J; Meyhandan, R; Monasor, M; Mostafa, M; Petrinca, P; Roberts, M; Sommers, P; Travnicek, P; Valore, L; Verzi, V; Wiencke, L

    2005-01-01

    The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Auger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a "test beam" to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.

  11. The Central laser facility at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Arqueros, F.; Bellido, J.; Covault, C.; D' Urso, D.; Di Giulio, C.; Facal, P.; Fick, B.; Guarino, F.; Malek, M.; Matthews, J.A.J.; Matthews, J.; Meyhandan, R.; Monasor,; Mostafa, M.; Petrinca, P.; Roberts, M.; Sommers, P.; Travnicek, P.; Valore, L.; Verzi, V.; Wiencke, Lawrence; /Utah U.

    2005-07-01

    The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Auger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a ''test beam'' to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.

  12. The Integral Test Facility Karlstein

    OpenAIRE

    Stephan Leyer; Michael Wich

    2012-01-01

    The Integral Test Facility Karlstein (INKA) test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant A...

  13. Report on the symposium and workshop on the 5 MWt solar thermal test facility

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Design concepts and applications for the 5 MWt Solar Thermal Test Facility at Albuquerque are discussed in 43 papers. Session topics include central receivers, solar collectors, solar energy storage, high temperature materials and chemistry. A program overview and individual contractor reports for the test facility project are included, along with reports on conference workshop sessions and users group recommendations. A list of conference attendees is appended. Separate abstracts are prepared for 39 papers.

  14. Central receiver power plant: an environmental, ecological, and socioeconomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Davison, M.; Grether, D.

    1977-06-01

    The technical details of the central receiver design are reviewed. Socio-economic questions are considered including: market penetration, air industrial sector model, demands on industry, employment, effluents associated with manufacture of components, strains due to intensive construction, water requirements, and land requirements. The ecological effects in the vicinity of the central receiver plant site are dealt with, with emphasis on effects on land surface, mammals, and reptiles and amphibians. Climatological considerations are reviewed including: desert types, effects of surface albedo modification, effects of aerosols, effects on evaporation rates, the heliostat canopy, effects on turbulent transfer rates, effects on the wind profile, a model of convection about a central receiver plant, and a global scenario. Drawings of heliostat and plant design are included in appendices. (MHR)

  15. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  16. Static Loads Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to perform large-scale structural loads testing on spacecraft and other structures. Results from these tests can be used to verify...

  17. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  18. Solenoid Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Current Configuration: Accommodate a device under test up to 2.8 m diameter, 0.7 m height and 15,000 lbs. weight. Up to 10 g/s, 4.5 K helium flow. Up to 250 A test...

  19. Theory of cellwise optimization for solar central receiver system

    Science.gov (United States)

    Lipps, F. W.

    1985-05-01

    Cost effective optimization of the solar central receiver system is primarily concerned with the distribution of heliostats in the collector field, including the boundaries of the field. The cellwise optimization procedure determines the optimum cell usage and heliostat spacing parameters for each cell in the collector field. Spacing parameters determine the heliostat density and neighborhood structure uniformly in each cell. Consequently, the cellwise approach ignores heliostat mismatch at cell boundaries. Ignoring the cell boundary problem permits an easy solution for the optimum in terms of appropriately defined annual average data. Insolation, receiver interception, shading and blocking, cosine effects, and the cost parameters combine to control the optimum. Many trade offs are represented. Outputs include the receiver flux density distribution for design time, coefficients for an actual layout, the optimum boundary and various performance and cost estimates for the optimum field. It is also possible to optimize receiver size and tower height by a repeated application of the field optimization procedure.

  20. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, Alan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  1. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  2. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  3. Ice Adhesion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Uses Evaluate and compare the relative performance of materials and surfcae coating based on their ability to aid in ice removal Test the effectiveness of de-icing...

  4. Gamma Irradiation Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — DMEA has a unique total dose testing laboratory accredited by the American Association for Laboratory Accreditation (A2LA). The lab[HTML_REMOVED]s two J.L. Shepherd...

  5. Gaussian mixture models as flux prediction method for central receivers

    Science.gov (United States)

    Grobler, Annemarie; Gauché, Paul; Smit, Willie

    2016-05-01

    Flux prediction methods are crucial to the design and operation of central receiver systems. Current methods such as the circular and elliptical (bivariate) Gaussian prediction methods are often used in field layout design and aiming strategies. For experimental or small central receiver systems, the flux profile of a single heliostat often deviates significantly from the circular and elliptical Gaussian models. Therefore a novel method of flux prediction was developed by incorporating the fitting of Gaussian mixture models onto flux profiles produced by flux measurement or ray tracing. A method was also developed to predict the Gaussian mixture model parameters of a single heliostat for a given time using image processing. Recording the predicted parameters in a database ensures that more accurate predictions are made in a shorter time frame.

  6. Solar Central Receiver Prototype Heliostat. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-06-01

    The objective of this project was to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs; and (2) Identification of needs for near term and future research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from solar central receiver power plants. The prototype heliostat design is presented in detail; and manufacturing, installation, and maintenance procedures described. (WHK)

  7. SERC Central Laser Facility annual report 1992

    International Nuclear Information System (INIS)

    In this 1992 Annual Report to the Laser Facility Committee of the Science and Engineering Research Council, the Central Laser Facility at Rutherford Appleton Laboratory, technical progress is described and mid-term organizational goals outlined. Outstanding among recent achievements is the work on plasma heating being undertaken on the Sprite facility using the ultra-bright KrF laser pumped Raman beams. Two-beam operation at power levels approaching 2 TW in 10 ps are hoped for. On a four year timescale the Titania system will provide four Raman beams of exceptional brightness and power up to 20TW in 10ps. The other high power laser facility, Vulcan is also producing exciting work. Progress in nanosecond studies using Raman spectroscopy have produced the first Raman spectrum of solvated Buckmister fullerene and direct observation of the separation of germinate ion pairs, as well as information on the behaviour of a single base in an oligonuclide chain. Phase boundaries for the solidification of a two dimensional electron fluid have been determined in a Gallium Arsenide heterojunction. Despite staff number attrition, operation and development of the facilities have continued successfully. (UK)

  8. Solar central receiver prototype heliostat. Interim technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-04-05

    The objective of Phase I of this project is to support the Solar Central Receiver Power Plant research, development and demonstration effort by: (1) Establishment of a heliostat design, with associated manufacturing, assembly, installation and maintenance approaches, that, in quantity production will yield significant reductions in capital and operating costs over an assumed 30 year plant lifetime as compared with existing designs. (2) Identification of needs for near term and further research and development in heliostat concept, materials, manufacture, installation, maintenance, and other areas, where successful accomplishment and application would offer significant payoffs in the further reduction of the cost of electrical energy from Solar Central Receiver Power Plants. The Phase I study will define a low-cost heliostat preliminary design and the conceptual design of a heliostat manufacturing/installation plan which will result in low life cycle cost when produced and installed at high rate and large quantities for commercial Solar Central Receiver Power Plants. The study will develop the annualized life cycle cost and the performance of heliostats for a 30 year plant life, for each of three rates of continuous production and installation. The three specified rates are 25,000, 250,000, and 1,000,000 heliostats per year. The analysis of these varying production rates, requiring highly automated tooling and installation equipment concepts, will define the economies of large scale not realizable on Pilot Plant or Demonstration Plant installations. Project status is described in detail. (WHK)

  9. Laser solenoid radiation test facility

    International Nuclear Information System (INIS)

    The Laser Solenoid Radiation Test Facility (LSRTF) is a concept based on a pulsed plasma source of neutrons, alpha particles, and bremsstrahlung and is characterized by a moderate radiation flux and a large test sample volume. The LSRTF is intermediate in its size, technology, and availability (1985-1990), and consequently has potential for bridging the gap between small present day accelerator-target sources and a large pulsed plasma engineering research facility in the 1990's. It also has important potential as a compact engineering test reactor for realistic operational testing of integrated subsystems for a linear fusion reactor. Its design, performance and operating characteristics are discussed in the present paper. The necessary development programs to bring such a facility into timely operation are also described. (Auth.)

  10. Buildings, fields of activity, testing facilities

    International Nuclear Information System (INIS)

    Since 1969 the activities of the Materialpruefungsanstalt Stuttgart (MPA) have grown quickly as planned, especially in the field of reactor safety research, which made it necessary to increase the staff to approximately 165 members, to supplement the machines and equipment and to extend the fields of activities occasioning a further departmental reorganization. At present the MPA has the following departments: 1. Teaching (materials testing, materials science and strength of materials) 2. Materials and Welding Technology 3. Materials Science and General Materials Testing with Tribology 4. Design and Strength 5. Creep and Fatigue Testing 6. Central Facilities 7. Vessel and Component Testing. (orig./RW)

  11. Heat pipe central solar receiver. Volume I. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1979-04-01

    The objective of this project was the conceptual design of a Central Solar Receiver Gas Turbine Plant which utilizes a high temperature heat pipe receiver. Technical and economic feasibility of such a plant was to be determined and preliminary overall cost estimates obtained. The second objective was the development of the necessary heat pipe technology to meet the requirements of this receiver. A heat pipe receiver is ideally suited for heating gases to high temperatures. The heat pipes are essentially loss free thermal diffusers which accept a high solar flux and transform it to a lower flux which is compatible with heat transferred to gases. The high flux capability reduces receiver heating surface, thereby reducing receiver heat losses. An open recuperative air cycle with a turbine inlet temperature of 816/sup 0/C (1500/sup 0/F) was chosen as the baseline design. This results in peak metal temperatures of about 870/sup 0/C (1600/sup 0/F). The receiver consists of nine modular panels which form the semicircular backwall of a cavity. Gas enters the panels at the bottom and exits from the top. Each panel carries 637 liquid metal heat pipes which are mounted at right angle to the gas flow. The evaporators of the heat pipes protrude from the flux absorbing front surface of the panels, and the finned condensors traverse the gas stream. Capital cost estimates were made for a 10 MW(e) pilot plant. The total projected costs, in mid-1978 dollars, range from $1,947 to $2,002 per electrical kilowatt. On the same basis, the cost of a water/steam solar plant is approximately 50% higher.

  12. Solar-thermal central-receiver research study. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    1977-02-01

    A performance analysis and economic study has been completed of a cavity-type line central receiver and single-axis parabolic cylinder focusing heliostat array for generation of steam for electrical power. A solar thermal power plant was sized to produce 100 MWe at 2:00 p.m. of winter solstice. The system concept is presented. Using the cavity once-through receiver with boiler tubes having an absorptivity of 0.9 and an emissivity of 0.7, it was calculated that total busbar cost in 1976 dollars during the year 1991 the second year at operation, will be 30.27 mills per kilowatt hour. The estimated total capital investment for the 100-MWe plant for the first year of commercial operation is $1908 per kilowatt of capacity.

  13. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  14. The crustal structure of south central Mongolia using receiver functions

    Science.gov (United States)

    He, Jing; Wu, Qingju; Sandvol, Eric; Ni, James; Gallegos, Andrea; Gao, Mengtan; Ulziibat, Munkhuu; Demberel, Sodnomsambuu

    2016-06-01

    The crustal thickness H and average crustal velocity ratio k (Vp/Vs) beneath south central Mongolia are investigated using the H-k stacking method based on teleseismic radial receiver functions. Our primary results reveal that the local crustal thickness varies from 38 to 46 km with an average value of 43 km. Thicker crust is found beneath the western Hentey Mountains, while thinner crust is located in the southern area of the Zuunbayan fault zone. The Bouguer gravity anomalies exhibit a strong correlation with the overall crustal thickness pattern throughout most of our study regime. Moreover, a new approach which integrates the Bouguer anomaly gradient and the receiver function-derived crustal thickness is adopted to calculate the density of the lower crust underneath central Mongolia. Fairly dense lower crust of approximately 3000 kg/m3 is found in the Middle Gobi Desert. The measured crustal Vp/Vs ratio ranges from 1.68 to 1.83 with an average value of 1.74. Low Vp/Vs ratio is found beneath the western Hentey Mountains. In general, low Vp/Vs ratios correlate well with regions of quartz-rich crust and high heat flow. High Vp/Vs ratios occur in the Middle Gobi volcanic regions and the Mesozoic Southern Gobi Basin.

  15. Large-scale use of solar energy with central receivers

    Science.gov (United States)

    Kreith, F.; Meyer, R. T.

    1983-12-01

    The working principles of solar central receiver power plants are outlined and applications are discussed. Heliostat arrays direct sunlight into a receiver cavity mounted on a tower, heating the working fluid in the tower to temperatures exceeding 500 C. The formulation for the image plane and the geometric concentration ratio for a heliostat field are provided, noting that commercial electric power plants will require concentration ratios of 200-1000. Automated controls consider imperfections in the mirrors, tracking errors, and seasonal insolation intensity and angular variations. Membranes may be used instead of rigid heliostat mirrors to reduce costs, while trade-offs exist between the efficiencies of cavity and exterior receivers on the tower. Sensible heat storage has proved most effective for cloudy or nighttime operations. Details of the DOE Solar One 10 MW plant, which began operation in 1982, are provided, with mention given to the 33.6 continuous hours of power generation that have been achieved. Projected costs of commercial installations are $700/kWt, and possible applications include recovering and refining oil, processing natural gas, uranium ore, and sugar cane, drying gypsum board, and manufacturing ammonia.

  16. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume III. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long term objective of the Solar Central Receiver Hybrid Power System is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumpton, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains appendices to the conceptual design and systems analysis studies gien in Volume II, Books 1 and 2. (WHK)

  17. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    This is a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluent treatment facilities, thermal treatment facility ash, other WRAP modules, and other, miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume 1 provides a narrative of the project background, objective and justification. A description of the WRAP 2A mission, operations and project scope is also included. Significant project requirements such as security, health, safety, decontamination and decomissioning, maintenance, data processing, and quality are outlined. Environmental compliance issues and regulatory permits are identified, and a preliminary safety evaluation is provided

  18. Conceptual design for the Waste Receiving and Processing facility Module 2A

    International Nuclear Information System (INIS)

    This is part of a Conceptual Design Report (CDR) for the Waste Receiving and Processing (WRAP) Module 2A facility at Hanford Reservation. The mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities those contact handled (CH) low-level radioactive mixed wastes (LLMW) that: (1) are currently in retrievable storage at the Hanford Central Waste Complex (HCWC) awaiting a treatment capability to permit permanent disposal compliant with the Land Disposal Restrictions and; (2) are forecasted to be generated over the next 30 years. The primary sources of waste to be treated at WRAP Module 2A include the currently stored waste from the 183-H solar basin evaporators, secondary solids from the future Hanford site liquid effluenttreatment facilities, thermal treatment facility ash, other WRAP modules, and other miscellaneous waste from storage and onsite/offsite waste generators consisting of compactible and non-compactible solids, contaminated soils, and metals. This volume, Volume V, provides a comprehensive conceptual design level narrative description of the process, utility, ventilation, and plant control systems. The feeds and throughputs, design requirements, and basis for process selection are provided, as appropriate. Key DOE/WHC criteria and reference drawings are delineated

  19. Evaluation of Veda, Inc. , central receiver solar collection system concept

    Energy Technology Data Exchange (ETDEWEB)

    Ator, J.

    1981-08-01

    The Unified Heliostat Array (UHA) is a geometrical heliostat field layout with rows of mirrors placed at various levels on terraces. The Veda Industrial Heliostat (VIH) is a toroidal segment mirror mounted on an equatorial mount. These two concepts are evaluated to assess the credibility of the optical designs and the validity of UHA and VIH performance estimates, to determine what the distinctive features embodied in UHA AND VIH concepts offer that more conventional central receiver technologies do not, and to determine where the UHA and VIH concepts might be most applicable in DOE's Solar Thermal Program. The UHA area efficiency, flux density distribution, and beam safety are evaluated, and the feasibility of using a secondary mirror and the potential for special applications are assessed. The optical design, equatorial mount, and manufacturability of the VIH are evaluated. (LEW)

  20. Central Andean crustal structure from receiver function analysis

    Science.gov (United States)

    Ryan, Jamie; Beck, Susan; Zandt, George; Wagner, Lara; Minaya, Estela; Tavera, Hernado

    2016-07-01

    The Central Andean Plateau (15°-27°S) is a high plateau in excess of 3 km elevation, associated with thickened crust along the western edge of the South America plate, in the convergent margin between the subducting Nazca plate and the Brazilian craton. We have calculated receiver functions using seismic data from a recent portable deployment of broadband seismometers in the Bolivian orocline (12°-21°S) region and combined them with waveforms from 38 other stations in the region to investigate crustal thickness and crust and mantle structures. Results from the receiver functions provide a more detailed map of crustal thickness than previously existed, and highlight mid-crustal features that match well with prior studies. The active volcanic arc and Altiplano have thick crust with Moho depths increasing from the central Altiplano (65 km) to the northern Altiplano (75 km). The Eastern Cordillera shows large along strike variations in crustal thickness. Along a densely sampled SW-NE profile through the Bolivian orocline there is a small region of thin crust beneath the high peaks of the Cordillera Real where the average elevations are near 4 km, and the Moho depth varies from 55 to 60 km, implying the crust is undercompensated by ~ 5 km. In comparison, a broader region of high elevations in the Eastern Cordillera to the southeast near ~ 20°S has a deeper Moho at ~ 65-70 km and appears close to isostatic equilibrium at the Moho. Assuming the modern-day pattern of high precipitation on the flanks of the Andean plateau has existed since the late Miocene, we suggest that climate induced exhumation can explain some of the variations in present day crustal structure across the Bolivian orocline. We also suggest that south of the orocline at ~ 20°S, the thicker and isostatically compensated crust is due to the absence of erosional exhumation and the occurrence of lithospheric delamination.

  1. Sensor test facilities and capabilities at the Nevada test site

    Science.gov (United States)

    Boyer, William B.; Burke, Larry J.; Gomez, Bernard J.; Livingston, Leonard; Nelson, Daniel S.; Smathers, Douglas C.

    1997-07-01

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of Energy's Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force's Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  2. High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter

    OpenAIRE

    Chakraborty, Sumita; Affolter, Michael; Gunderson, Kurt; Neubert, Jakob; Thomas, Nicolas; Beck, Thomas; Gerber, Michael; Graf, Stefan; Piazza, Daniele; Pommerol, Antoine; Röthlisberger, Guillaume; Seiferlin, Karsten

    2012-01-01

    The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps o...

  3. Mirror Fusion Test Facility magnet

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-11-13

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given. (MOW)

  4. Mirror Fusion Test Facility magnet

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  5. Advanced Thermal Storage for Central Receivers with Supercritical Coolants

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Bruce D.

    2010-06-15

    The principal objective of the study is to determine if supercritical heat transport fluids in a central receiver power plant, in combination with ceramic thermocline storage systems, offer a reduction in levelized energy cost over a baseline nitrate salt concept. The baseline concept uses a nitrate salt receiver, two-tank (hot and cold) nitrate salt thermal storage, and a subcritical Rankine cycle. A total of 6 plant designs were analyzed, as follows: Plant Designation Receiver Fluid Thermal Storage Rankine Cycle Subcritical nitrate salt Nitrate salt Two tank nitrate salt Subcritical Supercritical nitrate salt Nitrate salt Two tank nitrate salt Supercritical Low temperature H2O Supercritical H2O Two tank nitrate salt Supercritical High temperature H2O Supercritical H2O Packed bed thermocline Supercritical Low temperature CO2 Supercritical CO2 Two tank nitrate salt Supercritical High temperature CO2 Supercritical CO2 Packed bed thermocline Supercritical Several conclusions have been drawn from the results of the study, as follows: 1) The use of supercritical H2O as the heat transport fluid in a packed bed thermocline is likely not a practical approach. The specific heat of the fluid is a strong function of the temperatures at values near 400 °C, and the temperature profile in the bed during a charging cycle is markedly different than the profile during a discharging cycle. 2) The use of supercritical CO2 as the heat transport fluid in a packed bed thermocline is judged to be technically feasible. Nonetheless, the high operating pressures for the supercritical fluid require the use of pressure vessels to contain the storage inventory. The unit cost of the two-tank nitrate salt system is approximately $24/kWht, while the unit cost of the high pressure thermocline system is nominally 10 times as high. 3) For the supercritical fluids, the outer crown temperatures of the receiver tubes are in the range of 700 to 800 °C. At temperatures of 700 °C and above

  6. Low-profile heliostat design for solar central receiver systems

    Science.gov (United States)

    Fourakis, E.; Severson, A. M.

    1977-01-01

    Heliostat designs intended to reduce costs and the effect of adverse wind loads on the devices were developed. Included was the low-profile heliostat consisting of a stiff frame with sectional focusing reflectors coupled together to turn as a unit. The entire frame is arranged to turn angularly about a center point. The ability of the heliostat to rotate about both the vertical and horizontal axes permits a central computer control system to continuously aim the sun's reflection onto a selected target. An engineering model of the basic device was built and is being tested. Control and mirror parameters, such as roughness and need for fine aiming, are being studied. The fabrication of these prototypes is in process. The model was also designed to test mirror focusing techniques, heliostat geometry, mechanical functioning, and tracking control. The model can be easily relocated to test mirror imaging on a tower from various directions. In addition to steering and aiming studies, the tests include the effects of temperature changes, wind gusting and weathering. The results of economic studies on this heliostat are also presented.

  7. FBR related test facilities data base

    International Nuclear Information System (INIS)

    The questionnaire of main specifications, test performance and features of each FBR related test facility in the O-arai Engineering Center were made from 2001 to 2002. This report equipped these questionnaires with database. Two tables list 134 facilities. These related test facilities contains the safety test, thermal hydraulics test, test facilities for structure, reactor, Na related test, irradiation rig, fuel monitoring facility and apparatus and others (failed fuel detection and location, helium accumulation fluence monitor measurement system, inductively coupled plasma mass spectrometer, laser resonance ionization mass spectrometry system, pressurized resistance welding equipment, fuel inspection system and inductively coupled plasma mass spectrometer). This report contains all questionnaires as data. (S.Y.)

  8. Survey of Facilities for Testing Photovoltaics

    Science.gov (United States)

    Weaver, R. W.

    1982-01-01

    42-page report describes facilities capable of testing complete photovoltaic systems, subsystems, or components. Compilation includes facilities and capabilities of five field centers of national photovoltaics program, two state-operated agencies, and five private testing laboratories.

  9. GERDA test facilities in Munich

    International Nuclear Information System (INIS)

    The GERDA (Germanium Detector Array) experiment is designed to search for neutrinoless double-beta decay of 76Ge. Germanium detectors enriched in 76Ge will be submerged in pure liquid argon. The cryogenic liquid is used as cooling liquid for the detectors and as shielding against gamma radiation. Several test facilities are currently under construction at the MPI Munich. Prototype Germanium detectors are tested in conditions close to the experimental setup of GERDA. Detector parameters are determined in a specialized vacuum teststand as well as directly in liquid argon. A new vacuum teststand named Galatea is under construction. It will be used to expose germanium detectors to α- and β-particles and study their response to surface events. This yields information about dead layers and the response to surface contaminations. (orig.)

  10. CICC Joint Development and Test for the Test Facility

    Institute of Scientific and Technical Information of China (English)

    武玉; 翁佩德

    2005-01-01

    The superconducting joint of the NbTi Cable-in -conduit Conductor (CICC) has been developed and tested on the magnet test facility at Institute of Plasma Physics, Chinese Academy of Sciences. The CICC is composed of (2NbTi+1Cu)×3×3×(6+1tube) strands each with 0.85 mm in diameter, which has been developed for a central solenoid model coil. The effective length of the joint is about 500 mm. There have been two common fabrication modes,one of them is to integrate the 2 CICC terminals with the copper substrate via lead-soldering, and the other is to mechanically compress the above two parts into an integrated unit. In the current range from 2 kA to 10 kA the joint resistance changes slightly. Up to now, 11 TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a large PF model coil of PF large coil have been completed via the latter joint in the test facility.

  11. Thermal effects testing at the National Solar Thermal Test Facility

    Science.gov (United States)

    Ralph, Mark E.; Cameron, Christopher P.; Ghanbari, Cheryl M.

    The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirtland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/sq cm that is uniform over a 15-cm diameter with a total beam power of over 5 MWt. One solar furnace produces flux levels of 270 W/sq cm over and delivers a 6-mm diameter and total power of 16 kWt. A second furnace produces flux levels up to 1000 W/sq cm over a 4 cm diameter and total power of 60 kWt. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11-m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/sq cm over a 2.5-cm diameter and total power of 75 kWt. High-speed shutters have been used to produce square pulses.

  12. High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter.

    Science.gov (United States)

    Chakraborty, Sumita; Affolter, Michael; Gunderson, Kurt; Neubert, Jakob; Thomas, Nicolas; Beck, Thomas; Gerber, Michael; Graf, Stefan; Piazza, Daniele; Pommerol, Antoine; Roethlisberger, Guillaume; Seiferlin, Karsten

    2012-07-10

    The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps of the calibration of the alignment facility and estimate the errors made at each of these steps. We finally prove that the current facility is ready for the alignment of the flight instrument. Its angular accuracy is 23 μrad. PMID:22781273

  13. Engineering test facility design definition

    Science.gov (United States)

    Bercaw, R. W.; Seikel, G. R.

    1980-06-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  14. Solar Thermal Propulsion Test Facility

    Science.gov (United States)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. This photograph shows a fully assembled solar thermal engine placed inside the vacuum chamber at the test facility prior to testing. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move theNation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  15. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  16. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  17. Solar Central Receiver Prototype Heliostat. Volume II. Phase II planning (preliminary)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    A currently planned DOE program will develop and construct a 10 MW/sub e/ Pilot Plant to demonstrate the feasibility and operational characteristics of Solar Central Receiver Power Generation. The field of heliostats is a major element of the Solar Central Receiver Power Generation system. The primary objective of the program described is to establish and verify the manufacturability, performance, durability, and maintenance requirements of the commercial plant heliostat design. End products of the 16 month effort include: (1) design, fabrication, and test of heliostats; (2) preliminary designs of manufacturing, assembly, installation, and maintenance processes for quantity production; (3) detailed design of critical tooling or other special equipment for such processes; (4) refined cost estimates for heliostats and maintenance; and (5) an updated commercial plant heliostat preliminary design. The program management and control system is discussed. (WHK)

  18. Salt Repository Project transportation system interface requirements: Transportation system/repository receiving facility interface requirements

    International Nuclear Information System (INIS)

    This report is a preliminary review of the interface between the transportation system and the repository receiving facility for a nuclear waste mined geologic disposal system in salt. Criteria for generic cask and facility designs are developed. These criteria are derived by examining the interfaces that occur as a result of the operations needed to receive nuclear waste at a repository. These criteria provide the basis for design of a safe, operable, practical nuclear waste receiving facility. The processing functions required to move the shipping unit from the gate into the unloading area and back to the gate for dispatch are described. Criteria for a generic receiving facility are discussed but no specific facility design is presented or evaluated. The criteria are stated in general terms to allow application to a wide variety of cask and facility designs. 9 refs., 6 figs., 4 tabs

  19. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 2. Appendices. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    The appendices include: (A) design data sheets and P and I drawing for 100-MWe commercial plant design, for all-sodium storage concept; (B) design data sheets and P and I drawing for 100-MWe commercial plant design, for air-rock bed storage concept; (C) electric power generating water-steam system P and I drawing and equipment list, 100-MWe commercial plant design; (D) design data sheets and P and I drawing for 281-MWe commercial plant design; (E) steam generator system conceptual design; (F) heat losses from solar receiver surface; (G) heat transfer and pressure drop for rock bed thermal storage; (H) a comparison of alternative ways of recovering the hydraulic head from the advanced solar receiver tower; (I) central receiver tower study; (J) a comparison of mechanical and electromagnetic sodium pumps; (K) pipe routing study of sodium downcomer; and (L) sodium-cooled advanced central receiver system simulation model. (WHK)

  20. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  1. Antenna Test Facility (ATF): User Test Planning Guide

    Science.gov (United States)

    Lin, Greg

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ATF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  2. Central Design Team (CDT) for an experimental fast spectra transmutation facility

    Energy Technology Data Exchange (ETDEWEB)

    Perezagua Aguado, M.

    2011-07-01

    The Central Design Team project comes as part of the 7th Framework Programme of the EC. Its purpose is to develop the basic engineering of facilities for use as a test-bed for transmutation and fast spectrum irradiation installations operating as an accelerator-drive subcritical system and/or as a critical reactor, These facilities will be installed in the upcoming SCK complex in Mol (Belgium) called MYRRHA (a multi-purpose flexible irradiation facility).

  3. Sophisticated test facility to detect land mines

    NARCIS (Netherlands)

    Jong, W. de; Lensen, H.A.; Janssen, Y.H.L.

    1999-01-01

    In the framework of the Dutch government humanitarian demining project 'HOM-2000', an outdoor test facility has been realized to test, improve and develop detection equipment for land mines. This sophisticated facility, allows us to access and compare the performance of the individual and of a combi

  4. Lead Coolant Test Facility Development Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Demkowicz

    2005-06-01

    A workshop was held at the Idaho National Laboratory on May 25, 2005, to discuss the development of a next generation lead or lead-alloy coolant test facility. Attendees included representatives from the Generation IV lead-cooled fast reactor (LFR) program, Advanced Fuel Cycle Initiative, and several universities. Several participants gave presentations on coolant technology, existing experimental facilities for lead and lead-alloy research, the current LFR design concept, and a design by Argonne National Laboratory for an integral heavy liquid metal test facility. Discussions were focused on the critical research and development requirements for deployment of an LFR demonstration test reactor, the experimental scope of the proposed coolant test facility, a review of the Argonne National Laboratory test facility design, and a brief assessment of the necessary path forward and schedule for the initial stages of this development project. This report provides a summary of the presentations and roundtable discussions.

  5. Laboratory-confirmed influenza B infection in immunized long-term care facility residents receiving oseltamivir prophylaxis in Ontario.

    Science.gov (United States)

    Winter, Anne-Luise; Peci, Adriana; Eshaghi, Alireza; Baird, Michelle; Memari, Nader; Kristjanson, Erik; Balogun, Elizabeth; Higgins, Rachel R; Li, Aimin; Farrell, David J; Gubbay, Jonathan B

    2013-11-01

    We report on an influenza B outbreak in an Ontario long-term care facility in which 2 immunized residents receiving oseltamivir prophylaxis for at least 5 days developed laboratory-confirmed influenza B infection. All isolates were tested for the most common oseltamivir resistance, and none of them had resistance identified. PMID:24113612

  6. Heat pipe central solar receiver. Semiannual progress report, September 1, 1976--May 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W. B.; Wolf, D. A.

    1977-09-01

    It is proposed to develop a solar-to-gas heat exchanger for a Central Solar Receiver Power Plant. The concept employs heat pipes to transfer the concentrated solar flux to the gaseous working medium of a Brayton cycle conversion system. During early phases of the program, an open air cycle with recuperator and a turbine inlet temperature of 800/sup 0/C was selected as the optimum design. The predicted cycle efficiency is 33 percent and the overall solar-to-electric efficiency is 20 percent. Three potential receiver configurations were also identified during the initial phases of the program. Optimum heat pipe diameter is approximately 5 cm for all three receiver configurations, and typical lengths are 2 to 3 meters. The required number of heat pipes for a 10 MWe receiver ranges from 2000 to 8000. Heat transport requirements per pipe vary from 4 to 18 Kw. Several wick structures were developed and evaluated in subscale heat pipe tests using sodium as the working fluid. One full scale heat pipe (5 cm diameter by 183 cm long) was developed and tested with sodium as the working fluid.

  7. Qualification test for the flexible receiver. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Tedeschi, D.J.

    1994-12-12

    This document provides the test plan and procedures to certify and design verify the 42{double_prime} and 4{double_prime}-6{double_prime} Flexible Receiver as a safety class 3 system. The Flexible Receiver will be used by projects W-151 and W-320 for removing equipment from tanks C-106 and AZ-101.

  8. 5-Megawatt solar-thermal test facility: environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-01-30

    An Environmental Assessment of the 5 Megawatt Solar Thermal Test Facility (STTF) is presented. The STTF is located at Albuquerque, New Mexico. The facility will have the capability for testing scale models of major subsystems comprising a solar thermal electrical power plant. The STTF capabilities will include testing a solar energy collector subsystem comprised of heliostat arrays, a receiver subsystem which consists of a boiler/superheater in which a working fluid is heated, and a thermal storage subsystem which includes tanks of high heat capacity material which stores thermal energy for subsequent use. The STTF will include a 200-foot receiver tower on which experimental receivers will be mounted. The Environmental Assessment describes the proposed STTF, its anticipated benefits, and the environment affected. It also evaluates the potential environmental impacts associated with STTF construction and operation.

  9. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  10. Buffet test in the National Transonic Facility

    Science.gov (United States)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  11. Health facility-based data on women receiving sulphadoxine-pyrimethamine during pregnancy in Tanzania

    DEFF Research Database (Denmark)

    Mubyazi, Godfrey M.; Byskov, Jens; Magnussen, Pascal;

    2014-01-01

    A study of health facility (HF) data on women receiving sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment of malaria during pregnancy (IPTp) was carried out at antenatal care (ANC) clinics in Mkuranga and Mufindi districts.......A study of health facility (HF) data on women receiving sulphadoxine-pyrimethamine (SP) for intermittent preventive treatment of malaria during pregnancy (IPTp) was carried out at antenatal care (ANC) clinics in Mkuranga and Mufindi districts....

  12. CryoModule Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CMTFis able to test complete SRF cryomodules at cryogenic operating temperatures and with RF Power. CMTF will house the PIP-II Injector Experiment allowing test of...

  13. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  14. Siting noxious facilities: A test of the Facility Siting Credo

    Energy Technology Data Exchange (ETDEWEB)

    Kunreuther, H.; Fitzgerald, K. (Univ. of Pennsylvania, Philadelphia (United States)); Aarts, T.D. (Browning Ferris Industries, Houston, TX (United States))

    1993-06-01

    Over the past decade it has become increasingly difficult to site noxious facilities, despite the fact that there is a growing need to do so. To address this problem, a set of guidelines for a fairer, wiser, and more workable siting process -- the Facility Siting Credo -- was developed during a National Facility Siting Workshop in 1990. This paper presents an empirical test of these guidelines. A questionnaire based on the Credo was completed by stakeholders in 29 waste facility siting cases, both successful and unsuccessful, across the United States and Canada. Using an independent determination of outcome (success), a preliminary ranking of the importance of various Credo principles was obtained. The data reveal that establishing trust between the developer and host community is an important factor in facilitating the siting process. The siting process is most likely to be successful when the community perceives the facility design to be appropriate and to satisfy its needs. Public participation also is seen to be an important process variable, particularly if it encourages a view that the facility best meets community needs. Moreover, a siting process where communities volunteer to host facilities in an approach to holds promise for meeting many of these key success criteria. 45 refs., 5 figs., 3 tabs.

  15. Improved high temperature solar absorbers for use in Concentrating Solar Power central receiver applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stechel, Ellen Beth; Ambrosini, Andrea; Hall, Aaron Christopher; Lambert, Timothy L.; Staiger, Chad Lynn; Bencomo, Marlene

    2010-09-01

    Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures >600 C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.05) in the IR region, be stable in air, and be low-cost and readily manufacturable. We propose to utilize solution-based synthesis techniques to prepare intrinsic absorbers for use in central receiver applications.

  16. Do central bank liquidity facilities affect interbank lending rates?

    OpenAIRE

    Jens H. E. Christensen; Lopez, Jose A.; Rudebusch, Glenn D.

    2009-01-01

    In response to the global financial crisis that started in August 2007, central banks provided extraordinary amounts of liquidity to the financial system. To investigate the effect of central bank liquidity facilities on term interbank lending rates, we estimate a six-factor arbitrage-free model of U.S. Treasury yields, financial corporate bond yields, and term interbank rates. This model can account for fluctuations in the term structure of credit risk and liquidity risk. A significant shift...

  17. Battery Post-Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Post-test diagnostics of aged batteries can provide additional information regarding the cause of performance degradation, which, previously, could be only inferred...

  18. Ballast Water Treatment Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides functionality for the full-scale testing and controlled simulation of ship ballasting operations for assessment of aquatic nuisance species (ANS)...

  19. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 1. Executive summary. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercial plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)

  20. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  1. Effect of High Receiver Thermal Loss Per Unit Area on the Performance of Solar Central Receiver Systems Having Optimum Heliostat Fields and Optimum Receiver Aperture Areas.

    Science.gov (United States)

    Pitman, Charles L.

    Recent efforts in solar central receiver research have been directed toward high temperature applications. Associated with high temperature processes are greater receiver thermal losses due to reradiation and convection. This dissertation examines the performance of central receiver systems having optimum heliostate fields and receiver aperture areas as a function of receiver thermal loss per unit area of receiver aperture. The results address the problem of application optimization (loss varies) as opposed to the problem of optimization of a design for a specific application (loss fixed). A reasonable range of values for the primary independent variable L (the average reradiative and convective loss per unit area of receiver aperture) and a reasonable set of design assumptions were first established. The optimum receiver aperture area, number and spacings of heliostats, and field boundary were then determined for two tower focal heights and for each value of L. From this, the solar subsystem performance for each optimized system was calculated. Heliostat field analysis and optimization required a detailed computational analysis. A significant modification to the standard method of solving the optimization equations, effectively a decoupling of the solution process into collector and receiver subsystem parts, greatly aided the analysis. Results are presented for tower focal heights of 150 and 180 m. Values of L ranging from 0.04 to 0.50 MW m('-2) were considered, roughly corresponding to working fluid temperatures (at receiver exit) in the range of 650 to 1650 C. As L increases over this range, the receiver thermal efficiency and the receiver interception factor decrease. The optimal power level drops by almost half, and the cost per unit of energy produced increases by about 25% for the base case set of design assumptions. The resulting decrease in solar subsystem efficiency (relative to the defined annual input energy) from 0.57 to 0.35 is about 40% and is a

  2. Centralization and Decentralization of Schools' Physical Facilities Management in Nigeria

    Science.gov (United States)

    Ikoya, Peter O.

    2008-01-01

    Purpose: This research aims to examine the difference in the availability, adequacy and functionality of physical facilities in centralized and decentralized schools districts, with a view to making appropriate recommendations to stakeholders on the reform programmes in the Nigerian education sector. Design/methodology/approach: Principals,…

  3. CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Steeper, T.

    2010-09-15

    This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that

  4. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  5. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  6. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  7. Directory of transport packaging test facilities

    International Nuclear Information System (INIS)

    Radioactive materials are transported in packagings or containers which have to withstand certain tests depending on whether they are Type A or Type B packagings. In answer to a request by the International Atomic Energy Agency, 13 Member States have provided information on the test facilities and services existing in their country which can be made available for use by other states by arrangement for testing different kinds of packagings. The directory gives the technical information on the facilities, the services, the tests that can be done and in some cases even the financial arrangement is included

  8. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  9. The integral test facility Karlstein - INKA

    International Nuclear Information System (INIS)

    The INKA (INtegral Test Facility KArlstein) test facility was designed and erected to test and demonstrate performance of the passive safety systems of KERENA™, the new AREVA Boiling Water Reactor (BWR) design. The experimental program within the KERENA™ development program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests will be performed to simulate transients and LOCA (Loss of Coolant Accident) scenarios at the INKA test facility. These tests will test and demonstrate the interaction between the passive components/systems and demonstrate their ability to perform their design function. For the integral tests, the Passive Pressure Pulse Transmitter will be included. The INKA test facility represents the KERENA™ Containment with a volume scaling of 1:24. Component heights and levels are full scale in order to match the driving forces for natural circulation. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein - a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The drywell of the INKA containment is divided into two compartments and connected to the wetwell (Pressure Suppression System) via a full scale vent pipe. Therefore, the INKA pressure suppression system meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios starting with the initiating event - for example pipe rupture. At INKA a full train of passive safety systems is available. INKA is also able to simulate the functions of active safety system such as containment heat removal. Therefore accident scenarios relevant to modern Gen III as well as for operating Gen II design can be simulated in order to validate system and

  10. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... GOOD LABORATORY PRACTICE STANDARDS Facilities § 160.43 Test system care facilities. (a) A testing... testing facility shall have a number of animal rooms or other test system areas separate from those... sanitary storage of waste before removal from the testing facility. Disposal facilities shall be...

  11. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 1015 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 1013 n/cm2.s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (U.S.)

  12. The Test Facility for the EAST Superconducting Magnets

    Institute of Scientific and Technical Information of China (English)

    Wu Yu; Weng Peide

    2005-01-01

    A large facility for testing superconducting magnets has been in operation at the Institute of Plasma Physics of the Chinese Academy of Sciences since the completion of its construction that began in 1999. A helium refrigerator is used to cool the magnets and liquefy helium which can provide 3.8 K ~ 4.5 K, 1.8 bar ~ 5 bar, 20 g/s ~ 40 g/s supercritical helium for the coils or a 150 L/h liquefying helium capacity. Other major parts include a large vacuum vessel (3.5 m in diameter and 6.1 m in height) with a liquid nitrogen temperature shield, two pairs of current lead,three sets of 14.5 kA~ 50 kA power supply with a fast dump quench protection circuitry, a data acquisition and control system, a vacuum pumping system, and a gas tightness inspecting devise.The primary goal of the test facility is to test the EAST TF and PF magnets in relation to their electromagnetic, stability, thermal, hydraulic, and mechanical performance. The construction of this facility was completed in 2002, followed by a series of systematic coil testing. By now ten TF magnets, a central solenoid model coil, a central solenoid prototype coil, and a model coil of the PF large coil have been successfully tested in the facility.

  13. Planning considerations for a Mars Sample Receiving Facility: summary and interpretation of three design studies.

    Science.gov (United States)

    Beaty, David W; Allen, Carlton C; Bass, Deborah S; Buxbaum, Karen L; Campbell, James K; Lindstrom, David J; Miller, Sylvia L; Papanastassiou, Dimitri A

    2009-10-01

    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.

  14. Mathematical Modeling of a developed Central Receiver Based on Evacuated Solar Tubes

    OpenAIRE

    Ali Basil. H.; Gilani S. I.; Al-Kayiem Hussain H.

    2016-01-01

    Solar central receiver plays a considerable role in the plant output power; it is one of the most important synthesis in the solar power tower plants. Its performance directly affects the efficiency of the entire solar power generation system. In this study, a new designed receiver model based on evacuated solar tube was proposed, and the dynamic characteristics of the developed receiver were investigated. In order to optimise and evaluate the dynamic characteristics of solar power plant comp...

  15. Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 2 testing

    International Nuclear Information System (INIS)

    This document summarizes the results of the Phase 2 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the test mixer pump currently installed in Tank 241-SY-101. The purpose of this acceptance test is to verify the strength of the containment bag and bag bottom cinching mechanism. It is postulated that 68 gallons of waste could be trapped inside the pump internals. The bag must be capable of supporting this waste if it shakes loose and drains to the bottom of the bag after the bag bottom has been cinched closed. This acceptance test was performed at the Maintenance and Storage Facility (MASF) Facility in the 400 area on January 23, 1995. The bag assembly supported the weight of 920 kg (2,020 lbs) of water with no leakage or damage to the bag. This value meets the acceptance criteria of 910 kg of water and therefore the results were found to be acceptable. The maximum volume of liquid expected to be held up in the pump internals is 258 L (68 gallons), which corresponds to 410 kg. This test weight gives just over a safety factor of 2. The bag also supported a small shock load while it was filled with water when the crane hoisted the bag assembly up and down. Based on the strength rating of the bag components, the bag assembly should support 2--3 times the test weight of 910 kg

  16. Testing of Stirling engine solar reflux heat-pipe receivers

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  17. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  18. 20-GHz bands receiving facilities at sub-earth-station for CS site diversity switching experiments

    Science.gov (United States)

    Kumagai, H.; Kimura, S.; Katto, T.; Komuro, H.; Ouchi, C.; Ohbu, K.; Isobe, T.; Ouchi, E.; Nishino, T.; Hori, T.

    1982-09-01

    Site diversity switching experiments using CS (Medium-capacity Communications Satellite for Expperimental Purposes) were programmed. The satellite communication facilities used in the experiments both at the main- and the sub-earth-station have been constructed in the ECS project. In addition, receiving facilities at 20-GHz bands of CS down-link were newly installed at the sub-earth-station. They were composed of an antenna feed, a low-noise receiver, and a down converter. In the present paper, the outline and the performance of the facilities added at the sub-earth-station are described. The performance of these facilities has proved to be good enough to carry out the experiments.

  19. Dynamic instabilities in radiation-heated boiler tubes for solar central receivers

    Science.gov (United States)

    Wolf, S.; Chan, K. C.; Chen, K.; Yadigaroglu, G.

    1982-11-01

    Density-wave instabilities have been investigated in circumferentially nonuniform radiation-heated boiler tubes, simulating solar heating. Analysis and experimental data are presented. The analysis provides the basis for a computer code, STEAMFREQ-I, for the prediction of density-wave instabilities in boiler tubes with imposed heat flux. The key model features include a drift-flux flow model in the boiling region, spatial variation of heat flux, wall dynamics, and variable steam properties in the superheat region. The experimental data include results from two radiation heated boiler panel tests. The data are applicable to central receivers for solar electric power plants. Data for stable and unstable conditions are compared with predictions from STEAMFREQ-I.

  20. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  1. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  2. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    Science.gov (United States)

    Kolb, G. J.

    The 10-MW(sub e) Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the U.S. Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the U.S. utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  3. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... CONTROL ACT (CONTINUED) GOOD LABORATORY PRACTICE STANDARDS Facilities § 792.43 Test system care facilities. (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... different tests. (b) A testing facility shall have a number of animal rooms or other test system...

  4. Solar power tower design guide: Solar thermal central receiver power systems. A source of electricity and/or process heat

    Science.gov (United States)

    Battleson, K. W.

    1981-04-01

    Preliminary evaluations of whether a solar thermal central receiver plant is technically and economically feasible and desirable, for the potential user's application are reported. The cost elements, performance, and operation of solar central receiver systems are described.

  5. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  6. Impact of Aerosols on Atmospheric Attenuation Loss in Central Receiver Systems: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Wagner, M. J.

    2011-08-01

    Atmospheric attenuation loss between the heliostat field and receiver has been recognized as a significant source of loss in Central Receiver Systems. In clear sky situations, extinction of Direct Normal Irradiance (DNI) is primarily by aerosols in the atmosphere. When aerosol loading is high close to the surface the attenuation loss between heliostat and receivers is significantly influenced by the amount of aerosols present on a particular day. This study relates measured DNI to aerosol optical depths close to the surface of the earth. The model developed in the paper uses only measured DNI to estimate the attenuation between heliostat and receiver in a central receiver system. The requirement that only a DNI measurement is available potentially makes the model a candidate for widespread use.

  7. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  8. Performance and reliability of a 30-kW triple-junction photovoltaic receiver for 500X concentrator dish or central receiver applications

    Science.gov (United States)

    Verlinden, P. J.; Lewandowski, A.; Lasich, J. B.

    2006-08-01

    Over the last 15 years, Solar Systems has developed a dense array receiver PV technology for 500X concentrator reflective dish applications. This concentrator PV technology has been successfully deployed at six different locations in Australia, counting for about 1 MWp of installed peak power. A new Multijunction III-V receiver to replace the current silicon Point-Contact solar cells has recently been developed. The new receiver technology is based on high-efficiency (> 32%) Concentrator Ultra Triple Junction (CUTJ) solar cells from Spectrolab, resulting in system power and energy performance improvement of more than 50% compared to the silicon cells. The 0.235 m2 concentrator PV receiver, designed for continuous 500X operation, is composed of 64 dense array modules, and made of series and parallel-connected solar cells, totaling approximately 1,500 cells. The individual dense array modules have been tested under high intensity pulsed light, as well as with concentrated sunlight at the Solar Systems research facility and at the National Renewable Energy Laboratory's High Flux Solar Furnace. The efficiency of the dense array modules ranges from 30% to 36% at 500X (50 W/cm2, AM1.5D low AOD, 21°C). The temperature coefficients for power, voltage and current, as well as the influence of Air Mass on the cell responsivity, were measured. The reliability of the dense array multijunction III-V modules has been studied with accelerated aging tests, such as thermal cycling, damp heat and high-temperature soak, and with real-life high-intensity exposure. The first 33-kWp multijunction III-V receiver was recently installed in a Solar Systems dish and tested in real-life 500X concentrated sunlight conditions. Receiver efficiencies of 30.3% and 29.0% were measured at Standard Operating Conditions and Normal Operating Conditions respectively.

  9. Science and Engineering Research Council Central Laser Facility

    International Nuclear Information System (INIS)

    This report covers the work done at, or in association with, the Central Laser Facility during the year April 1980 to March 1981. In the first chapter the major reconstruction and upgrade of the glass laser, which has been undertaken in order to increase the versatility of the facility, is described. The work of the six groups of the Glass Laser Scientific Progamme and Scheduling Committee is described in further chapters entitled; glass laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  10. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  11. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  12. Testing the Susceptibility of GNSS Receivers to Radio Frequency Interference

    Science.gov (United States)

    Berglund, H. T.; Blume, F.; Gallaher, W. W.

    2015-12-01

    Global Navigational Satellite Systems (GNSS) receivers are employed by the scientific community for measuring a variety of geodetic, geophysical and atmospheric phenomena. Data acquisition frequently occurs in a variety of challenging environments, which include locations with high Radio Frequency (RF) noise characteristics. Tracking the relatively low powered GNSS carrier signals broadcast from space becomes even more challenging in the presence of adjacent band RF noise. The demand for terrestrial RF spectrum use for a variety of non-GNSS applications is ever increasing, which poses potential challenges for GNSS site operators who would like to acquire the highest quality data possible. In recent years, UNAVCO has observed an increase in the number of GNSS sites which are negatively impacted by RF interference. In previous work, we have shown that telemetry systems utilizing the Iridium satellite constellation can degrade GNSS data quality, as the adjacent-band (1610-1616 Mhz) signals transmitted by Iridium data transmitters are close in proximity to the L1 frequency of GNSS. The impact of RF interference from Iridium data transmitters on GNSS receivers can cause reduced Signal-to-Noise (SNR), increased cycle slips, and in worst case scenarios, prevent the receiver from tracking. To better characterize GNSS receiver susceptibility to RF interference, UNAVCO has performed a variety of tests with Continuous Wave (CW) noise sources in RF bands adjacent to the GNSS spectrum. We simulate a subset of discrete noise frequencies commonly observed in the field using a frequency generator, which supplies a signal with varying power output from a transmitter located within 1 m of the GNSS antenna. Signal power is incremented in small steps until receiver tracking fails. All receivers are simultaneously evaluated using an 8-way splitter. In addition, we investigate receiver tracking performance with a simulated increase in the RF noise floor. To analyze the results we use

  13. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    International Nuclear Information System (INIS)

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site

  14. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    International Nuclear Information System (INIS)

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management

  15. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    Energy Technology Data Exchange (ETDEWEB)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  16. Tri-Lateral Noor al Salaam High Concentration Solar Central Receiver Program

    Energy Technology Data Exchange (ETDEWEB)

    Blackmon, James B

    2008-03-31

    This report documents the efforts conducted primarily under the Noor al Salaam (“Light of Peace”) program under DOE GRANT NUMBER DE-FC36-02GO12030, together with relevant technical results from a closely related technology development effort, the U.S./Israel Science and Technology Foundation (USISTF) High Concentration Solar Central Receiver program. These efforts involved preliminary design, development, and test of selected prototype power production subsystems and documentation of an initial version of the system definition for a high concentration solar hybrid/gas electrical power plant to be built in Zaafarana, Egypt as a first step in planned commercialization. A major part of the planned work was halted in 2007 with an amendment in October 2007 requiring that we complete the technical effort by December 31, 2007 and provide a final report to DOE within the following 90 days. This document summarizes the work conducted. The USISTF program was a 50/50 cost-shared program supported by the Department of Commerce through the U.S./Israel Science and Technology Commission (USISTC). The USISTC was cooperatively developed by President Clinton and the late Prime Minister Rabin of Israel "to encourage technological collaboration" and "support peace in the Middle East through economic development". The program was conducted as a follow-on effort to Israel's Magnet/CONSOLAR Program, which was an advanced development effort to design, fabricate, and test a solar central receiver and secondary optics for a "beam down" central receiver concept. The status of these hardware development programs is reviewed, since they form the basis for the Noor al Salaam program. Descriptions are provided of the integrated system and the major subsystems, including the heliostat, the high temperature air receiver, the power conversion unit, tower and tower reflector, compound parabolic concentrator, and the master control system. One objective of the USISTF program was to conduct

  17. Conceptual studies of plasma engineering test facility

    International Nuclear Information System (INIS)

    Conceptual studies have been made of a Plasma Engineering Test Facility, which is to be constructed following JT-60 prior to the experimental power reactor. The physical aim of this machine is to examine self-ignition conditions. This machine possesses all essential technologies for reactor plasma, i.e. superconducting magnet, remote maintenance, shielding, blanket test modules, tritium handling. Emphasis in the conceptual studies was on structural consistency of the machine and whether the machine would be constructed practically. (author)

  18. FAST FLUX TEST FACILITY DRIVER FUEL MEETING

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1966-06-01

    The Pacific Northwest Laboratory has convened this meeting to enlist the best talents of our laboratories and industry in soliciting factual, technical information pertinent to the Pacific Northwest's Laboratory's evaluation of the potential fuel systems for the Fast Flux Test Facility. The particular factors emphasized for these fuel systems are those associated with safety, ability to meet testing objectives, and economics. The proceedings includes twenty-three presentations, along with a transcript of the discussion following each, as well as a summary discussion.

  19. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  20. Life-cycle testing of receiving waters with Ceriodaphnia dubia

    International Nuclear Information System (INIS)

    Seven-day tests with Ceriodaphnia are commonly used to estimate the toxicity of effluents or receiving waters, but may yield no toxicity outcomes even when pollutants are present (a possible type II error). The authors conducted two sets of full life-cycle tests with C. dubia to (1) see if tests with longer exposure periods revealed evidence for toxicity that might not be evident from shorter tests, and (2) determine the relative importance of water quality versus food as factors influencing C. dubia reproduction. In the first set of tests, daphnids were reared in diluted mineral water (control), water from a stream impacted by coal fly-ash, or water from a mercury-contaminated retention basin. The second set of tests used water from the retention basin only, but this water was either filtered or not filtered, and food was either added or not added. C. dubia survival and reproduction did not differ much among the three waters in the first set of tests. However, both parameters were strongly affected by the filtering and food-addition treatments in the second set of tests. Thus, C. dubia seems to be moderately insensitive to general water-quality factors, but quite sensitive to food-related parameters. Regression analysis showed that the predictability of life-time reproduction of C. dubia from 7-day test results was low in five of six cases. The increase in predictability as a function of test duration also differed among water types (first set of tests), and among treatments (second set of tests). Thus, 7-day tests with C. dubia may be used to quantify water-quality problems, but it may not be possible to reliably extrapolate the results of such tests to longer time scales

  1. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  2. 10 CFR 26.123 - Testing facility capabilities.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Testing facility capabilities. 26.123 Section 26.123 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.123 Testing facility capabilities. Each licensee testing facility shall have the capability, at the...

  3. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  4. C Reactor overbore test facility review

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, P.A.; Nilson, R.

    1964-04-24

    In 1961, large-size, smooth-bore, Zircaloy process tubes were installed in C-Reactor graphite channels that had been enlarged to 2.275 inches. These tubes were installed to provide a test and demonstration facility for the concept of overboring as a means of securing significant improvement in the production capability of the reactors, After two years of facility operation, it is now appropriate to consider the extent to which original objectives have been achieved, to re-examine the original objectives, and to consider the best future use of this unique facility. This report presents the general results of such a review and re-examination in more detail.

  5. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    International Nuclear Information System (INIS)

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility

  6. Solar advanced internal film receiver

    International Nuclear Information System (INIS)

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs

  7. Waste Receiving and Processing Facility Module 1: Volume 1, Preliminary Design report

    International Nuclear Information System (INIS)

    The Preliminary Design Report (Title 1) for the Waste Receiving and Processing (WRAP) Module 1 provides a comprehensive narrative description of the proposed facility and process systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title 1 design. The primary mission of the WRAP 1 Facility is to characterize and certify contact-handled (CH) waste in 55-gallon drums for disposal. Its secondary function is to certify CH waste in Standard Waste Boxes (SWBs) for disposal. The preferred plan consist of retrieving the waste and repackaging as necessary in the Waste Receiving and Processing (WRAP) facility to certify TRU waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. WIPP is a research and development facility designed to demonstrate the safe and environmentally acceptable disposal of TRU waste from National Defense programs. Retrieved waste found to be Low-Level Waste (LLW) after examination in the WRAP facility will be disposed of on the Hanford site in the low-level waste burial ground. The Hanford Site TRU waste will be shipped to the WIPP for disposal between 1999 and 2013

  8. Waste Receiving and Processing Facility, Module 1: Volume 6, Engineering assessments

    International Nuclear Information System (INIS)

    This report evaluates the ability of the WRAP Module 1 Facility to achieve the required material throughput by developing a time and motion simulation model of the facility using the WITNESS Simulation Program. Analysis of the simulation model indicated that the required throughput of 6825 drums per year based on working 5.5 hours in the Shipping ampersand Receiving and Waste Process areas and 7 hours in the NDA/NDE area for 175 days a year, as stated in the Functional Design Criteria (FDC) Rev. 1 and Supplemental Design Requirements Document (SDRD) Rev. 1, can be achieved

  9. Waste Receiving and Processing Facility, Module 1: Volume 7, Project design criteria

    International Nuclear Information System (INIS)

    This Project Design Criteria document for the WRAP facility at the Hanford Site is presented within a systems format. The WRAP Module 1 facility has been categorized into eight (8) engineering systems for design purposes. These systems include: receiving, shipping and storage, nondestructive assay/nondestructive examination (NDA/NDE), waste process, internal transportation, building, heating ventilation and air conditioning (HVAC), process control, and utilities. Within each system section of this document, the system-specific requirements are identified. The scope of the system is defined, the design goals are identified and the functional requirements are detailed

  10. Central Acceptance Testing for Camera Technologies for CTA

    CERN Document Server

    Bonardi, A; Chadwick, P; Dazzi, F; Förster, A; Hörandel, J R; Punch, M

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international initiative to build the next generation ground based very-high energy gamma-ray observatory. It will consist of telescopes of three different sizes, employing several different technologies for the cameras that detect the Cherenkov light from the observed air showers. In order to ensure the compliance of each camera technology with CTA requirements, CTA will perform central acceptance testing of each camera technology. To assist with this, the Camera Test Facilities (CTF) work package is developing a detailed test program covering the most important performance, stability, and durability requirements, including setting up the necessary equipment. Performance testing will include a wide range of tests like signal amplitude, time resolution, dead-time determination, trigger efficiency, performance testing under temperature and humidity variations and several others. These tests can be performed on fully-integrated cameras using a portable setup at the came...

  11. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    Energy Technology Data Exchange (ETDEWEB)

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  12. Safety assessment for the rf Test Facility

    International Nuclear Information System (INIS)

    The Radio Frequency Test Facility (RFTF) is a part of the Magnetic Fusion Program's rf Heating Experiments. The goal of the Magnetic Fusion Program (MFP) is to develop and demonstrate the practical application of fusion. RFTF is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power. This report was compiled as a summary of the analysis done to ensure the safe operation of RFTF

  13. Information on commercial disposal facilities that may have received offshore drilling wastes.

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, J. R.; Veil, J. A.; Ayers, R. C., Jr.

    2000-08-25

    The U.S. Environmental Protection Agency (EPA) is developing regulations that would establish requirements for discharging synthetic-based drill cuttings from offshore wells into the ocean. Justification for allowing discharges of these cuttings is that the environmental impacts from discharging drilling wastes into the ocean may be less harmful than the impacts from hauling them to shore for disposal. In the past, some onshore commercial facilities that disposed of these cuttings were improperly managed and operated and left behind environmental problems. This report provides background information on commercial waste disposal facilities in Texas, Louisiana, California, and Alaska that received or may have received offshore drilling wastes in the past and are now undergoing cleanup.

  14. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  15. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    International Nuclear Information System (INIS)

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  16. Waste receiving and processing facility module 1 data management system software project management plan

    International Nuclear Information System (INIS)

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  17. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    International Nuclear Information System (INIS)

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal

  18. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    Energy Technology Data Exchange (ETDEWEB)

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  19. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  20. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    International Nuclear Information System (INIS)

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected

  1. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  2. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  3. Vitrification Facility integrated system performance testing report

    International Nuclear Information System (INIS)

    This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process

  4. Plans for an ERL Test Facility at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Erik [CERN; Bruning, O S [CERN; Calaga, Buchi Rama Rao [CERN; Schirm, Karl-Martin [CERN; Torres-Sanchez, R [CERN; Valloni, Alessandra [CERN; Aulenbacher, Kurt [Mainz; Bogacz, Slawomir [JLAB; Hutton, Andrew [JLAB; Klein, M [University of Liverpool

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and their tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.

  5. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  6. Monte-Carlo RAY tracing simulation of a falling particle receiver in connection with a central receiver field

    Energy Technology Data Exchange (ETDEWEB)

    Alxneit, I. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The program RAY was developed to perform Monte-Carlo simulations of the flux distribution in solar reactors in connection with an arbitrary heliostat field. The code accounts for the shading of the incoming rays from the sun due to the reactor supporting tower as well as for full blocking and shading of the heliostats among themselves. A simplified falling particle reactor (FPR) was evaluated. A central receiver field was used with a total area of 311 m{sup 2} composed of 176 round, focusing heliostats. No attempt was undertaken to optimise either the geometry of the heliostat field nor the aiming strategy of the heliostats. The FPR was evaluated at two different geographic latitudes (-8.23W/47.542N; PSI and -8.23W/20.0N) and during the course of a day (May 30{sup th}). The incident power passing through the reactor aperture and the flux density distribution within the FPR was calculated. (author) 3 figs., 1 tab., 3 refs.

  7. Iowa Central Quality Fuel Testing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Heach, Don; Bidieman, Julaine

    2013-09-30

    The objective of this project is to finalize the creation of an independent quality fuel testing laboratory on the campus of Iowa Central Community College in Fort Dodge, Iowa that shall provide the exploding biofuels industry a timely and cost-effective centrally located laboratory to complete all state and federal fuel and related tests that are required. The recipient shall work with various state regulatory agencies, biofuel companies and state and national industry associations to ensure that training and testing needs of their members and American consumers are met. The recipient shall work with the Iowa Department of Ag and Land Stewardship on the development of an Iowa Biofuel Quality Standard along with the Development of a standard that can be used throughout industry.

  8. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John

    2014-01-31

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  9. The Great Plains Wind Power Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, John [Texas Tech Univ., Lubbock, TX (United States)

    2014-01-30

    This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

  10. Test facility for rewetting experiments at CDTN

    International Nuclear Information System (INIS)

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  11. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  12. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  13. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  14. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  15. Usability Testing and Analysis Facility (UTAF)

    Science.gov (United States)

    Wong, Douglas T.

    2010-01-01

    This slide presentation reviews the work of the Usability Testing and Analysis Facility (UTAF) at NASA Johnson Space Center. It is one of the Space Human Factors Laboratories in the Habitability and Human Factors Branch (SF3) at NASA Johnson Space Center The primary focus pf the UTAF is to perform Human factors evaluation and usability testing of crew / vehicle interfaces. The presentation reviews the UTAF expertise and capabilities, the processes and methodologies, and the equipment available. It also reviews the programs that it has supported detailing the human engineering activities in support of the design of the Orion space craft, testing of the EVA integrated spacesuit, and work done for the design of the lunar projects of the Constellation Program: Altair, Lunar Electric Rover, and Outposts

  16. An automated test facility for neutronic amplifiers

    International Nuclear Information System (INIS)

    Neutronic amplifiers are used at the Chalk River Laboratory in applications such as neutron flux monitoring and reactor control systems. Routine preventive maintenance of control and safety systems included annual calibration and characterization of the neutronic amplifiers. An investigation into the traditional methods of annual routine maintenance of amplifiers concluded that frequency and phase response measurements in particular were labour intensive and subject to non-repeatable errors. A decision was made to upgrade testing methods and facilities by using programmable test equipment under the control of a computer. In order to verify the results of the routine measurements, expressions for the transfer functions were derived from the circuit diagrams. Frequency and phase responses were then calculated and plotted thus providing a bench-mark to which the test results can be compared. (author)

  17. NASA Plum Brook's B-2 Test Facility: Thermal Vacuum and Propellant Test Facility

    Science.gov (United States)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77 K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  18. NASA Plum Brook's B-2 test facility-Thermal vacuum and propellant test facility

    Science.gov (United States)

    Kudlac, Maureen; Weaver, Harold; Cmar, Mark

    2012-06-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Spacecraft Propulsion Research Facility, commonly referred to as B-2, is NASA's third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of upper stage chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility. The heat sink provided a uniform temperature environment of approximately 77K. The modernized infrared lamp array produced a nominal heat flux of 1.4 kW/m2. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface.

  19. Aseismic design and testing of nuclear facilities

    International Nuclear Information System (INIS)

    Earthquake possibility is a main problem faced by certain countries concerning nuclear reactor siting and safety. To assist in finding solutions to earthquake problems, a Panel on Aseismic Design and Testing of Nuclear Facilities was held from 12 to 16 June 1967 in Tokyo. Paper presented in the Panel are condensed into recommendations that comprise this report. Topics discussed in this report are (i) basic philosophy of aseismic design (ii) site selection or evaluation (iii) aseismic design and (iv) future action including investigations and research problems. Tabs

  20. An LQ-solution to a control problem associated with a solar thermal central receiver

    Science.gov (United States)

    Sworder, D. D.; Rogers, R. O.

    1983-10-01

    The linearized process dynamics of the steam boiler in a solar-powered central receiver change abruptly when clouds interfere with the sun's rays. The steam temperature regulator used to maintain proper exit steam conditions must control a system with variable structure and discontinuous state trajectories. This paper investigates the quadratic-optimal control of such a system, and gives the design equations for the optimal regulator.

  1. The Cost of Supplying Segmented Consumers From a Central Facility

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Klose, Andreas

    consider three measures of dispersion of demand points: the average distance between demand points, the maximum distance and the surface size.In our distribution model, all demand points are restocked from a central facility. The observed logistics costs are determined using the tour length estimations......Organizations regularly face the strategic marketing decision which groups of consumers they should target. A potential problem, highlighted in Steenkamp et al. (2002), is that the target consumers may be so widely dispersed that an organization cannot serve its customers cost-effectively. We...... described in Daganzo (2004). Normal, continuous travel distance estimates require that demand locations are uniformly distributed across the plane, but we also consider scenarios with non-uniformly distributed demand locations. The resulting travel distances are highly correlated with our surface size...

  2. Mirror fusion test facility plasma diagnostics system

    International Nuclear Information System (INIS)

    During the past 25 years, experiments with several magnetic mirror machines were performed as part of the Magnetic Fusion Energy (MFE) Program at LLL. The latest MFE experiment, the Mirror Fusion Test Facility (MFTF), builds on the advances of earlier machines in initiating, stabilizing, heating, and sustaining plasmas formed with deuterium. The goals of this machine are to increase ion and electron temperatures and show a corresponding increase in containment time, to test theoretical scaling laws of plasma instabilities with increased physical dimensions, and to sustain high-beta plasmas for times that are long compared to the energy containment time. This paper describes the diagnostic system being developed to characterize these plasma parameters

  3. Central Solenoid On-surface Test

    CERN Multimedia

    Ruber, R

    2004-01-01

    A full scale on-surface test of the central solenoid has been performed before its final installation in the ATLAS cavern starting in November. The successful integration of the central solenoid into the barrel cryostat, as reported in the March 2004 ATLAS eNews, was hardly finished when testing started. After a six-week period to cool down the LAr calorimeter, the solenoid underwent a similar procedure. Cooling it down to 4.6 Kelvin from room temperature took just over five and a half days. Cold and superconducting, it was time to validate the functionality of the control and safety systems. These systems were largely the same as the systems to be used in the final underground installation, and will be used not only for the solenoid and toroid magnets, but parts of it also for other LHC experiments. This solenoid test was the first occasion to test the system functionality in a real working environment. Several days were spent to fine tune the systems, especially the critical safety system, which turned out...

  4. Large-coil-test-facility fault-tree analysis

    International Nuclear Information System (INIS)

    An operating-safety study is being conducted for the Large Coil Test Facility (LCTF). The purpose of this study is to provide the facility operators and users with added insight into potential problem areas that could affect the safety of personnel or the availability of equipment. This is a preliminary report, on Phase I of that study. A central feature of the study is the incorporation of engineering judgements (by LCTF personnel) into an outside, overall view of the facility. The LCTF was analyzed in terms of 32 subsystems, each of which are subject to failure from any of 15 generic failure initiators. The study identified approximately 40 primary areas of concern which were subjected to a computer analysis as an aid in understanding the complex subsystem interactions that can occur within the facility. The study did not analyze in detail the internal structure of the subsystems at the individual component level. A companion study using traditional fault tree techniques did analyze approximately 20% of the LCTF at the component level. A comparison between these two analysis techniques is included in Section 7

  5. Fast Flux Test Facility (FFTF) standby plan

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1997-03-06

    The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

  6. Central receiver solar thermal power system, Phase 1. Quarterly progress report (final) for period ending March 31, 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-10-01

    During this period (January 1976 through March 1976), the primary program effort was expended toward the completion of the detail design of the three major research experiments. Also, the Preliminary Pilot Plant Economic Cost Study was completed. In the Collector Subsystem, the designs for both the twenty-five mirror and the nine-mirror heliostats were completed and released. In the Receiver Subsystem, Foster Wheeler continued with the detail design of the 5 MW research experiment receiver. A preliminary draft of the detailed test plan for the receiver subsystem research experiment was prepared and is now undergoing a final review. The detailed design of the Thermal Storage Subsystem continued at Georgia Institute of Technology. Several incremental detail design reviews were held as the design progressed. During this period, Bechtel completed the preliminary environmental analysis for the Pilot Plant. The optimization studies of the electrical power generation subsystem were initiated. A major effort was the preparation of the preliminary cost analysis for the 10 MWe Central Receiver Solar Thermal Pilot Plant. This task required the development of a cost accounting structure and a definition of all of the costs associated with the design, construction, checkout, and two-year test of the Pilot Plant. (WDM)

  7. Recent program at the TESLA test facility

    International Nuclear Information System (INIS)

    The design goal of the TESLA Test facility (TTF) to demonstrate the possibility of routine operation at 15 MV/m with superconducting 9-cell cavities has been more than achieved. Average accelerating gradients in the cryomodule up to 23 MV/m have been reached. Average gradients well above 25 MV/m have been achieved for the 9-cell cavities from the latest production series. For electropolished one-cell cavities up to 43 MV/m have been reached. The rf source for TESLA, the 10 MW multibeam-klystron has produced full power at 65% efficiency, and it has been operating now at the TTF for over 1000 hrs. High grain self-amplified spontaneous emission at wave length ranging from 80 to 181 nm has been demonstrated

  8. Conceptual design of an RTG shipping and receiving facility transportation system

    International Nuclear Information System (INIS)

    The conceptual design of an RTG Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during onloading and offloading sequences. The RTG Shipping ampersand Receiving Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a custom designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock Limiting Transit Device Subsystem consists of a consumable honeycomb anti-shock frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the offloading and onloading of the RTG Package into and out of the semitrailer as well as meet ALARA (as low as reasonably achievable) radiation exposure guidelines. copyright 1995 American Institute of Physics

  9. Conceptual design of an RTG Shipping and Receiving Facility Transportation System

    International Nuclear Information System (INIS)

    The conceptual design of an RTG Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during onloading and offloading sequences. The RTG Shipping ampersand Receiving Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a custom designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock Limiting Transit Device Subsystem consists of a consumable honeycomb anti-shock frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the offloading and onloading of the RTG Package into and out of the semitrailer as well as meet ALARA (as low as reasonably achievable) radiation exposure guidelines

  10. Solar central receiver hybrid power system. Monthly technical progress report for the month of December 1978

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-17

    Levelized busbar energy costs for the sodium-cooled hybrid central receiver concept using both oil and coal as a fuel were developed as a function of the plant capacity factor and as a function of the solar multiple. The fuel escalation question was reviewed in detail on the basis of past historical data, and it was concluded that the lower escalation numbers that are provided in the requirements definition document appear to be more likely to represent the real situation. Subsystem-level trade studies were continued during this reporting period. A detailed investigation of the series/parallel arrangement of the sodium heater and solar receiver was conducted. The various performance, lifetime, and cost factors were determined for each arrangement for the receiver and nonsolar subsystems, respectively. Collector subsystem studies were continued. Revised cost algorithms that include levelized O and M costs for the heliostats were generated in order that they can be used in the field optimization. On the basis of the subsystem studies and the economic assessment work, a reference configuration was tentatively derived. This configuration does not require storage and uses a parallel arrangement of the receiver and the heater. At this time, a coal-fired heater seems to have a potential economic advantage under realistic assumptions for the escalation of coal relative to oil over the next decade or so.

  11. Solar central receiver prototype heliostat CDRL item B. d. Final technical report, Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Easton, C. R.

    1978-08-01

    This is volume II of a two volume report which presents the results of a study to define a low-cost approach to the production, installation, and operation of heliostats for central receiver solar thermal power plants. Performance and cost analyses are presented, and critical R and D areas are identified. Also, computer printed work sheets are included for heliostat investment, maintenance equipment investment, initial spares investment, and first years operations and maintenance for 2,500, 25,000, 250,000, and 1,000,000 units per year production. (WHK)

  12. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  13. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection

  14. Accelerator system for the Central Japan Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Accelerator system for Central Japan Synchrotron Radiation Research Facility that consists of 50MeV electron S-band linac, 1.2GeV full energy booster synchrotron and 1.2GeV storage ring, has been constructed. Eight 1.4T bending magnets and four 5T superconducting magnet with compact refrigerator system provide beam lines. For top-up operation, the 1ns single bunch electron beam from 50MeV injector linac is injected by on-axis injection scheme and accelerated up to 1.2GeV at booster synchrotron. The timing system is designed for injection from booster ring is possible for any bunch position of storage ring. To improve efficiency of booster injection, the electron gun trigger and RF frequency of 2856MHz is synchronized with storage ring frequency of 499.654MHz. The EPICS control system is used with timing control system for linac, pulse magnet and also for booster pattern memory system. The beam commissioning for 1.2GeV storage ring has been progressing. (author)

  15. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and full nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system (Bragg-Sitton, 2005). The current paper applies the same testing methodology to a direct drive gas cooled reactor system, demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. In each testing application, core power transients were controlled by a point kinetics model with reactivity feedback based on core average temperature; the neutron generation time and the temperature feedback coefficient are provided as model inputs. Although both system designs utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility.

  16. Los Alamos studies of the Nevada test site facilities for the testing of nuclear rockets

    Science.gov (United States)

    Hynes, Michael V.

    The topics are presented in viewgraph form and include the following: Nevada test site geographic location; location of NRDA facilities, area 25; assessment program plan; program goal, scope, and process -- the New Nuclear Rocket Program; nuclear rocket engine test facilities; EMAD Facility; summary of final assessment results; ETS-1 Facility; and facilities cost summary.

  17. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2008-07-30

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

  18. Solar Thermal Propulsion Test Facility at MSFC

    Science.gov (United States)

    1999-01-01

    This photograph shows an overall view of the Solar Thermal Propulsion Test Facility at the Marshall Space Flight Center (MSFC). The 20-by 24-ft heliostat mirror, shown at the left, has dual-axis control that keeps a reflection of the sunlight on an 18-ft diameter concentrator mirror (right). The concentrator mirror then focuses the sunlight to a 4-in focal point inside the vacuum chamber, shown at the front of concentrator mirror. Researchers at MSFC have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than chemical a combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propell nt. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth-orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  19. CEOS database of worldwide calibration facilities and validation test sites

    Science.gov (United States)

    Butler, James J.; Wanchoo, Lalit; Le, Truong

    2001-02-01

    12 Since 1995, the CEOS Calibration/Validation (Cal/Val) Database has provided the international Earth remote sensing science community with a) a central repository for information on current and planned Calibration/Validation activities and b) a means to foster collaboration on common Cal/Val issues. The Cal/Val Database uses an ORACLE relation database management system to store the data and is accessed via the World Wide Web (WWW) using PERL scripts to search and query the database. The search queries are structured such that users can define any combination of fields, either through selection of valids, or by directly typing the information. All query results are displayed in the text form. The text displays are interactive allowing the user to point and click to access more detailed information. System functionality provides an on-line form of all of the three questionnaires for submitting new information and allows a user with the assigned password to edit archived information for their facility. This functionality allows users to update information, as it becomes available. In 2000, the Cal/Val database was updated through a process of additional surveying of existing and planned Cal/Val capabilities to support the NASA's Earth Science Enterprise (ESE) and other international Earth observing missions. A set of three updated questionnaires was prepared: one for calibration laboratories, one for test sites, and one for field instruments. The information requested included: a description of the facility, instruments available, instrument characteristics, types of measurements performed, programs/projects that have used the facility, etc. These questionnaires with cover letter were mailed to over 250 research groups that included CEOS members and facilities within the USA. The information collected from worldwide facilities was used to construct and update this on-line database for use not only by the CEOS members, but also the broader international Earth

  20. Dynamic Response Testing in an Electrically Heated Reactor Test Facility

    Science.gov (United States)

    Bragg-Sitton, Shannon M.; Morton, T. J.

    2006-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG

  1. Combined cycle solar central receiver hybrid power system study. Final technical report. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This study develops the conceptual design for a commercial-scale (nominal 100 MWe) central receiver solar/fossil fuel hybrid power system with combined cycle energy conversion. A near-term, metallic heat pipe receiver and an advanced ceramic tube receiver hybrid system are defined through parametric and market potential analyses. Comparative evaluations of the cost of power generation, the fuel displacement potential, and the technological readiness of these two systems indicate that the near-term hybrid system has better potential for commercialization by 1990. Based on the assessment of the conceptual design, major cost and performance improvements are projected for the near-term system. Constraints preventing wide-spread use were not identified. Energy storage is not required for this system and analyses show no economic advantages with energy storage provisions. It is concluded that the solar hybrid system is a cost effective alternative to conventional gas turbines and combined cycle generating plants, and has potential for intermediate-load market penetration at 15% annual fuel escalation rate. Due to their flexibility, simple solar/nonsolar interfacing, and short startup cycles, these hybrid plants have significant operating advantages. Utility company comments suggest that hybrid power systems will precede stand-alone solar plants.

  2. Health maintenance facility system effectiveness testing

    Science.gov (United States)

    Lloyd, Charles W.; Gosbee, John; Bueker, Richard; Kupra, Debra; Ruta, Mary

    1993-01-01

    The Medical Simulations Working Group conducted a series of medical simulations to evaluate the proposed Health Maintenance Facility (HMF) Preliminary Design Review (PDR) configuration. The goal of these simulations was to test the system effectiveness of the HMF PDR configurations. The objectives of the medical simulations are to (1) ensure fulfillment of requirements with this HMF design, (2) demonstrate the conformance of the system to human engineering design criteria, and (3) determine whether undesirable design or procedural features were introduced into the design. The simulations consisted of performing 6 different medical scenarios with the HMF mockup in the KRUG laboratory. The scenarios included representative medical procedures and used a broad spectrum of HMF equipment and supplies. Scripts were written and simulations performed by medical simulations working group members under observation from others. Data were collected by means of questionnaires, debriefings, and videotapes. Results were extracted and listed in the individual reports. Specific issues and recommendations from each simulation were compiled into the individual reports. General issues regarding the PDR design of the HMF are outlined in the summary report.

  3. Results from DR and Instrumentation Test Facilities

    CERN Document Server

    Urakawa, Junji

    2005-01-01

    The KEK Accelerator Test Facility (ATF) is a 1.3GeV storage ring capable of producing ultra-low emittance electron beams and has a beam extraction line for ILC R&D. The ATF has proven to be an ideal place for researches with small, stable beams. 2x1010 single bunch and low current 20 bunch-train with 2.8nsec bunch spacing have been extracted to develop Nano-Cavity BPM’s, FONT, Nano Beam Orbit handling (FEATHER), Optical Diffraction Radiation (ODR) monitor, a precision multi-bunch laser-based beam profile monitor and polarized positron beam generation via backward-Compton scattering by the international collaboration. A set of three cavity BPM's is installed in the ATF extraction line on a set of extremely stiff supports. The KEK group installed another set of three BPM's, with their own support mechanism. The full set of 6 will prove extremely useful. In the DR (Damping Ring), we are researching the fast ion instability, micro-wave instability with four sets of damping wiggler and developing pul...

  4. Line focus solar thermal central receiver research study. Final report, April 30, 1977-March 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Di Canio, D.G.; Treytl, W.J.; Jur, F.A.; Watson, C.D.

    1979-04-01

    The results of a study to examine the line focus central receiver alternative for solar thermal generation of electric power on a commercial scale are presented. The baseline concept consists of the following elements: (1) a solar collector (heliostat) whose geometry is the equivalent of a focused parabolic cylinder. The heliostat reflecting surface is composed of an array of flexible rectangular mirror panels supported along their long edges by a framework which rotates about an axis parallel to the ground plane. The mirror panels in one section (18.3 meters by 3.05 meters (60 feet by 10 feet)) are defocused in unison by a simple mechanism under computer control to achieve the required curvature. Two sections (110 meters/sup 2/(591 feet/sup 2/)) are controlled and driven in elevation by one control/drive unit. (2) A linear cavity receiver, composed of 61-meter (200-foot) sections supported by towers at an elevation of 61 meters (200 feet). Each section receives feedwater and produces turbine-rated steam. The cavity is an open cylinder 1.83 meters (6 feet) in inside diameter, with a 1.22 meter (4 foot) aperture oriented at 45 degrees to the collector field. (3) Heliostat control, consisting of a local controller at each heliostat module which communicates with a master control computer to perform elevation tracking and focal length adjustment. The control logic is open-loop, with sun position computer by the master computer with an algorithm. Image sensors, mounted above and below the receiver aperture, are used to monitor the collector field and provide feedback to the master computer for detection of misaligned heliostats. (WHK)

  5. Preliminary design of the Carrisa Plains solar central receiver power plant. Volume III, Book 3. Appendices. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.

    1983-12-31

    The auxiliary heat transport systems of the Carrisa Plains Solar Power Plant (CPSPP) comprise facilities which are used to support plant operation and provide plant safety and maintenance. The facilities are the sodium purification system, argon cover gas system, sodium receiving and filling system, sodium-water reaction product receiving system, and safety and maintenance equipment. The functions of the facilities of the auxiliary system are described. Design requirements are established based on plant operating parameters. Descriptions are given on the system which will be adequate to perform the function and satisfy the requirements. Valve and equipment lists are included in the appendix.

  6. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  7. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in propulsion test facility design and development by assessing risks, identifying failure modes and predicting...

  8. Computational Modeling in Support of High Altitude Testing Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in rocket engine test facility design and development by assessing risks, identifying failure modes and predicting...

  9. Direct Heat-Flux Measurement System (MDF) for Solar central Receiver Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ballestrin, J.

    2001-07-01

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPS-CRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. the geometry of the receiver determines the operation and analysis procedures to obtain the indecent power onto the defined area. The study of previous experiences with direct flux measurement systems ha been useful to define a new simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. All these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs.

  10. Direct Heat-Flux Measurement System (MDF) for Solar Central Receiver Evaluation

    International Nuclear Information System (INIS)

    A direct flux measurement system, MDF, has been designed, constructed and mounted on top of the SSPSCRS tower at the Plataforma Solar de Almeria (PSA) in addition to an indirect flux measurement system based on a CCD camera. It's one of the main future objectives to compare systematically both measurements of the concentrated solar power, increasing in this way the confidence in the estimate of this quantity. Today everything is prepared to perform the direct flux measurement on the aperture of solar receivers: calorimeter array, data acquisition system and software. The geometry of the receiver determines the operation and analysis procedures to obtain the incident power onto the defined area. The study of previous experiences with direct flux measurement systems has been useful to define a new, simpler and more accurate system. A description of each component of the MDF system is included, focusing on the heat-flux sensors or calorimeters, which enables these measurements to be done in a few seconds without water-cooling. The incident solar power and the spatial flux distribution on the aperture of the volumetric receiver Hitrec II are supplied by the above-mentioned MDF system. The first results obtained during the evaluation of this solar receiver are presented including a sunrise-sunset test. AU these measurements have been concentrated in one coefficient that describes the global behavior of the Solar Power Plant. (Author) 18 refs

  11. Thermoeconomic optimization of a Kalina cycle for a central receiver concentrating solar power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, Jesper Graa;

    2016-01-01

    Concentrating solar power plants use a number of reflecting mirrors to focus and convert the incident solar energy to heat, and a power cycle to convert this heat into electricity. This paper evaluates the use of a high temperature Kalina cycle for a central receiver concentrating solar power plant...... with direct vapour generation and without storage. The use of the ammonia-water mixture as the power cycle working fluid with non-isothermal evaporation and condensation presents the potential to improve the overall performance of the plant. This however comes at a price of requiring larger heat exchangers...... and the economic perspectives, the results suggest that it is not beneficial to use the Kalina cycle for high temperature concentrating solar power plants....

  12. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; Brion Bennett

    2011-11-01

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  13. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; Wert, Jerry; Foster, Charles

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  14. Test facility of thermal storage equipment for space power generation

    Science.gov (United States)

    Inoue, T.; Nakagawa, M.; Mochida, Y.; Ohtomo, F.; Shimizu, K.; Tanaka, K.; Abe, Y.; Nomura, O.; Kamimoto, M.

    A thermal storage equipment test facility has been built in connection with developing solar dynamic power systems (SDPSs). The test facility consists of a recuperative closed Brayton cycle system (CBC), with a mixture of helium and xenon with a molecular weight of 39.9 serving as the working fluid. CBC has been shown to be the most attractive power generation system among several types of SDPSs because of its ability to meet the required high power demand and its thermal efficiency, about 30 percent. The authors present a description of this test facility and give results of the preliminary test and the first-stage test with heat storage equipment.

  15. Pyroshock testing-shock simulation facilities

    Science.gov (United States)

    Bateman, Vesta I.

    2002-05-01

    A variety of shock simulation facilities are available to simulate pyroshock events. These facilities range from bounded impact shock machines and electrodynamic shakers to resonant fixture techniques. This presentation will focus on the use of general purpose and tuned resonant fixture techniques including a unique tunable beam apparatus developed at SNL. Examples of application of the resonant fixture technique for both component and full-scale structure pyroshock simulations will be presented. Advantages and disadvantages of each technique will be discussed along with the usable frequency content and bandwidth.

  16. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  17. 10 CFR 26.125 - Licensee testing facility personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Licensee testing facility personnel. 26.125 Section 26.125 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.125..., medical technology, or equivalent. He or she shall also have training and experience in the theory...

  18. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  19. Central receiver solar thermal power system, Phase 1. Annual progress report (final) for period ending September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-02-01

    The program activities since the beginning of the program in July of 1975 through September of 1976 are summarized. The primary efforts during the first portion of this period were the preparation of the Pilot Plant Preliminary Design Baseline, and the Conceptual Design of the three subsystem research experiments. The Preliminary Design Baseline for the Pilot Plant was developed from the commercial plant conceptual design that had been defined prior to the start of this program. It definitized each of the basic Pilot Plant Subsystems and provided the basis for development of the conceptual designs of the research experiments. For each of the solar peculiar subsystems, the Collector Subsystem, the Receiver Subsystem and the Thermal Storage Subsystem, a subsystem research experiment was planned. The Conceptual Design of each of these experiments was prepared and reviewed with ERDA and Sandia in order to obtain authorization for the design, build and test of these experiments. In the Collector Subsystem experiment the design was completed, the four experimental heliostats have been fabricated and erected. Initial calorimeter and radiometer data have been obtained and have demonstrated good correlation with the projected performance. The 5 megawatt thermal experiment receiver has been fabricated by Foster Wheeler Energy Corporation and is now completing erection at the Radiant Heat Test Facility at Sandia in Albuquerque, New Mexico. This testing is scheduled for the period from December 1976 through February 1977. The Thermal Storage Research Experiment fabrication and erection is nearing completion by Georgia Institute of Technology. Checkout of this experiment is scheduled for the first of December 1976 with the test program to be complete by the end of January 1977.

  20. An Injector Test Facility for the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Colby, E., (ed.); /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  1. Preliminary Design of the AEGIS Test Facility

    CERN Document Server

    Dassa, Luca; Cambiaghi, Danilo

    2010-01-01

    The AEGIS experiment is expected to be installed at the CERN Antiproton Decelerator in a very close future, since the main goal of the AEGIS experiment is the measurement of gravity impact on antihydrogen, which will be produced on the purpose. Antihydrogen production implies very challenging environmental conditions: at the heart of the AEGIS facility 50 mK temperature, 1e-12 mbar pressure and a 1 T magnetic field are required. Interfacing extreme cryogenics with ultra high vacuum will affect very strongly the design of the whole facility, requiring a very careful mechanical design. This paper presents an overview of the actual design of the AEGIS experimental facility, paying special care to mechanical aspects. Each subsystem of the facility – ranging from the positron source to the recombination region and the measurement region – will be shortly described. The ultra cold region, which is the most critical with respect to the antihydrogen formation, will be dealt in detail. The assembly procedures will...

  2. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 2. Conceptual design, Sections 5 and 6

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume contains the detailed conceptual design and cost/performance estimates and an assessment of the commercial scale solar central receiver hybrid power system. (WHK)

  3. Mine-detection test facilities at TNO-FEL test location "Waalsdorp"

    NARCIS (Netherlands)

    Rhebergen, J.B.; Zwamborn, A.P.M.

    1998-01-01

    As part of the TNO-FEL Ultra-Wide-Band Ground-Penetrating-Radar (UWB-GPR) project, a test facility for controlled GPR experiments was planned. Construction of this sand-box test facility has recently been completed. At the same site another test facility, for evaluating various commercial of the she

  4. New construction of an inside-container drying facility in the central decontamination and water treatment facility (ZDW)

    International Nuclear Information System (INIS)

    For the future conditioning of radioactive liquid waste during the proceeding dismantling of the NPP Greifswald the GNS company provides the an inside-container drying facility in the frame of the new construction of ZDW (central decontamination and water treatment facility) including related infrastructure and media supply. The concept of the FAVORIT facility which is in operation since years has been refined; a fully automated version was realized so that no handling by the personnel is necessary for loading and unloading of the container station. Components of the vacuum system were optimized.

  5. Solar heating and hot water system for the central administrative office facility. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    Progress on the solar heating and hot water system for the central administrative office facility of the Lincoln Housing Authority, Lincoln, NE is covered. An acceptance test plan is presented and the results of the test are tabulated. A complete blueprint of the system as built is provided. The monitoring system is drawn and settings and installation are described. An operation and maintenance manual discusses procedures for start up, shut down and seasonal changeover and include a valve list and pictures and specifications of components and materials used. Photographs of the final installation are included, and technical data and performance data are given. Finally, there is a brief description of system design and operation and a discussion of major maintenance problems encountered and their solutions. (LEW)

  6. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  7. Separate effects test matrix for thermal-hydraulic code validation. Volume 1 - phenomena characterisation and selection of facilities and tests. Volume 2 - facility and experiment characteristics

    International Nuclear Information System (INIS)

    An internationally agreed Separate Effects Test (SET) Validation Matrix for thermal-hydraulic system codes has been established, as requested by OECD/NEA CSNI Principal Group n.2 on Coolant System Behaviour. The construction of such a matrix is an attempt to collect together in a systematic way the best sets of openly available test data for code validation, assessment and improvement, including quantitative assessment of uncertainties in the modelling of individual phenomena by the codes. The first volume of the SETM report provides cross references between test facilities and thermal-hydraulic phenomena, and lists tests classified by phenomena (67 phenomena were identified for inclusion in the SET matrix and, in all, about 2094 tests were included). Information received on the facility and experiment characteristics of 187 test facilities as potential sources of separate effects data, has been consolidated in Volume II; it contains a set of information sheets which briefly describe the capabilities of each test facility and the range of its associated test programmes

  8. Centralized computer-based controls of the Nova Laser Facility

    International Nuclear Information System (INIS)

    This article introduces the overall architecture of the computer-based Nova Laser Control System and describes its basic components. Use of standard hardware and software components ensures that the system, while specialized and distributed throughout the facility, is adaptable. 9 references, 6 figures

  9. Cryogenic system for CS test facility

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute has successfully constructed a cryogenic system for the ITER CS (Central Solenoid) model coil, which has verified to have the capacity of more than 5-kW refrigeration or 920-liter/h liquefaction. The newly developed helium compressor system and turbines are adopted, having attained good performances; the isothermal compression of 64% and the isentropic expansion efficiency of 85%, respectively. (author)

  10. On-line satellite/central computer facility of the Multiparticle Argo Spectrometer System

    International Nuclear Information System (INIS)

    An on-line satellite/central computer facility has been developed at Brookhaven National Laboratory as part of the Multiparticle Argo Spectrometer System (MASS). This facility consisting of a PDP-9 and a CDC-6600, has been successfully used in study of proton-proton interactions at 28.5 GeV/c. (U.S.)

  11. The Central Electricity Generating Board flask test project

    International Nuclear Information System (INIS)

    In 1981, the UK Central Electricity Generating Board set up a wide-ranging programme of theoretical and experimental work to develop a detailed understanding of the way in which Magnox flasks behave in severe transport accidents. Specific objectives of the project included an investigation into the validity of the use of scale models to represent full-size flask behaviour and the relevance of the IAEA regulatory tests in relation to real transport accidents. In all, over a hundred tests on flask components, model flasks and other test pieces were conducted, culminating in the drop testing of a full-sized Magnox flask and a simulated rail crash test carried out in public in July 1984. The project was based on a steady progression from the study of fundamental principles to the execution of the train crash. Extensive use was made of experimental drop-test facilities and computer-aided analytical techniques, such as the finite element method. The project confirmed that, with some important exceptions, linear scalability can be applied with confidence to predict flask behaviour under impact loading. Where those exceptions were encountered, some guidance was obtained as to how it should be properly accounted for when interpreting scale model data. Good correlation was achieved between finite element analyses (carried out using DYNA-3D and ANSYS) and experimental results. The knowledge gained as a result of developing and running the finite element model proved to be invaluable in developing a high degree of understanding of flask impact behaviour. This knowledge ultimately allowed a series of very simple mathematical models to be developed and used as engineering tools in other studies. (author)

  12. Scaling, experiment, and code assessment on an integral testing facility

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Choi, S.W.; Lim, J.; Lee, D.Y.; Rassame, S.; Hibiki, T.; Ishii, M. [Purdue Univ., West Lafayette, Indiana (United States)

    2011-07-01

    A series of integral tests simulating different types of Loss-Of-Coolant Accidents (LOCAs) for new Boiling Water Reactor (BWR) design were conducted on an integral test facility (Purdue University Multi-Dimensional Integral Test Assembly, PUMA) facility. The PUMA facility was built with a scaling methodology addressing both the conservation principles and constitutive laws. A systemic study about the safety evaluation of the advanced passively safe BWR design has been performed with the collaboration of experiments on the scaled-down test facility and RELAP5/Mod3.3 code simulation. Various types of LOCA tests were performed, such as Main Steam Line Break (MSLB), Bottom Drain Line Break (BDLB), Gravity-Driven Line Break (GDLB), and Feed Water Line Break (FWLB). (author)

  13. Scaling, experiment, and code assessment on an integral testing facility

    International Nuclear Information System (INIS)

    A series of integral tests simulating different types of Loss-Of-Coolant Accidents (LOCAs) for new Boiling Water Reactor (BWR) design were conducted on an integral test facility (Purdue University Multi-Dimensional Integral Test Assembly, PUMA) facility. The PUMA facility was built with a scaling methodology addressing both the conservation principles and constitutive laws. A systemic study about the safety evaluation of the advanced passively safe BWR design has been performed with the collaboration of experiments on the scaled-down test facility and RELAP5/Mod3.3 code simulation. Various types of LOCA tests were performed, such as Main Steam Line Break (MSLB), Bottom Drain Line Break (BDLB), Gravity-Driven Line Break (GDLB), and Feed Water Line Break (FWLB). (author)

  14. Project W-049H disposal facility test report

    Energy Technology Data Exchange (ETDEWEB)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria.

  15. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  16. Field Lysimeter Test Facility for protective barriers: Experimental plan

    International Nuclear Information System (INIS)

    This document was first written in October 1986 and has been used to guide the design of the Field Lysimeter Test Facility (FLTF) and to promote discussions between research and engineering staff regarding the selection of barrier treatments for inclusion in the FLTF. The construction of the lysimeter facility was completed June 28, 1987. This document describes the facility, the treatments placed in each lysimeter, types of measurements made in each lysimeter, and a brief discussion of project activities related to quality assurance, safety, and funding requirements. The treatment description and figures have been updated to reflect the lysimeter facility as constructed. 12 refs., 6 figs., 5 tabs

  17. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    Science.gov (United States)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  18. Technical Evaluation of Oak Ridge Filter Test Facility

    CERN Document Server

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  19. Micro-Combined Heat and Power Device Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NIST has developed a test facility for micro-combined heat and power (micro-CHP) devices to measure their performance over a range of different operating strategies...

  20. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  1. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  2. Bagged barrier testing at overseas facilities

    Energy Technology Data Exchange (ETDEWEB)

    David Humphreys; Terry O' Beirne [ACIRL (Australia)

    2000-12-01

    The bag-barrier system, invented by the South African group CSIR-Miningtek and now used in Australia, represents a significant change to the management of explosion suppression in underground coal mines. This report summarises the initial testing of the bagged barrier leading to its recent use in Australia, and details the latest results from testing in the multi-heading Lake Lynn Experimental Mine in USA.

  3. Evaluation of the variability of wind speed at different heights and its impact on the receiver efficiency of central receiver systems

    Science.gov (United States)

    Delgado, A.; Gertig, C.; Blesa, E.; Loza, A.; Hidalgo, C.; Ron, R.

    2016-05-01

    Typical plant configurations for Central Receiver Systems (CRS) are comprised of a large field of heliostats which concentrate solar irradiation onto the receiver, which is elevated hundreds of meters above the ground. Wind speed changes with altitude above ground, impacting on the receiver thermal efficiency due to variations of the convective heat losses. In addition, the physical properties of air vary at high altitudes to a significant degree, which should be considered in the thermal losses calculation. DNV GL has long-reaching experience in wind energy assessment with reliable methodologies to reduce the uncertainty of the determination of the wind regime. As a part of this study, DNV GL estimates the wind speed at high altitude for different sites using two methods, a detailed estimation applying the best practices used in the wind energy sector based on measurements from various wind sensors and a simplified estimation applying the power law (1, 2) using only one wind measurement and a representative value for the surface roughness. As a result of the study, a comparison of the wind speed estimation considering both methods is presented and the impact on the receiver performance for the evaluated case is estimated.

  4. Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 4. Commercial and pilot plant cost data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-03-01

    This volume of the advanced central receiver final report presents the cost data using the cost breakdown structure identified in the preliminary specification. Cost summaries are presented in the following sections for the 100-MWe and 281-MWe commercial plant and a 10-MWe pilot plant. Cost substantiation data for this volume are presented in the appendices. Other cost summary data include Nth plant data for the 100-MWe and 281-MWe commercial plants, and a summary for the alternative concept air-rock storage system. The main description of the plant costing technique occurs as part of Section II for the 100-MWe baseline concept.

  5. A test facility of active alignment system at KEK

    International Nuclear Information System (INIS)

    A test facility with one control axis has been constructed at KEK to investigate a super-accurate alignment technique for the JLC (Japan Linear Collider) project. The facility consists of a stabilized laser system and a vibration control stage equipped with piezo transducers. Results of the first test show that the distance of about 28 cm is kept stable to 50 nm or better up to the frequency of 20 Hz, against the sine wave disturbance with a 500 nm amplitude

  6. Design progress on ITER port plug test facility

    International Nuclear Information System (INIS)

    To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill these requirements, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) provides the possibility to test upper and equatorial port plugs before installation on the machine. The port plug test facility is composed of several test stands. These test stands are first used in the domestic agencies and on the ITER Organization site to test the port plugs at the end of manufacturing. Two of these stands are installed later in the ITER hot cell facility to test the port plugs after refurbishment. The port plugs to be tested are the Ion Cyclotron (IC) heating and current drive antennas, Electron Cyclotron (EC) heating and current drive launchers, diagnostics and test blanket modules port plugs. Test stands shall be capable to perform environmental and functional tests. The test stands are composed of one vacuum tank (3.3 m in diameter, 5.6 m long) and the associated heating, vacuum and control systems. The vacuum tank shall achieve an ultimate pressure of 1 × 10−5 Pa at 100 °C containing a port plug. The heating system shall provide water at 240 °C and 4.4 MPa to heat up the port plugs. Openings are provided on the back of the vacuum tank to insert probes for the functional tests. This paper describes the tests to be performed on the port plugs and the conceptual design of the port plug test facility. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  7. A flight test facility design for examining digital information transfer

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  8. High vacuum facility for hydrazine thruster testing

    Science.gov (United States)

    Neary, Patrick F.

    1990-01-01

    An ongoing modification is described of a large vacuum chamber to accommodate the ignition of an arcjet hydrazine thruster while maintaining a vacuum level of 1 x 10(exp -5) torr or less. The vacuum facility consists of a 20 ft stainless steel vacuum tank with an internal LN2 shroud, four 35 in. cryopumps and an 8 in. turbopump. To maintain a vacuum level of 1 x 10(exp -5) torr or less, 900 sq ft of liquid helium (LHe) shroud surface was installed to maintain the vacuum level and pumping requirements. A vacuum level of 1 x 10(exp -5) torr or less will allow the hydrazine thrust to exit the thruster nozzle and radiate into a space type environment so that the plume flow field can be analyzed and compared to the analytical model density distribution profile. Some other arcjet thruster characteristics measured are the electromagnetic interference (EMI) and exhaust contamination. This data is used to evaluate if the arcjet thruster with its high specific impulse in comparison to current chemical propulsion thruster can be used for the next generation of communication satellites.

  9. Cryocooled Facilities for Superconducting Coils Testing in Gaseous Helium

    Science.gov (United States)

    Naumov, A. V.; Keilin, V. E.; Kovalev, I. A.; Surin, M. I.; Shcherbakov, V. I.; Shevchenko, S. A.; Ilin, A. A.

    Two superconducting coil test facilities equipped by Sumitomo SRDK-415D cryocoolers were developed, manufactured and tested. The motivation for their constructing was to make cheaper the testing (and especially training of LTS magnets) by liquid helium (LHe) saving. It is well known that the helium price increases rapidly and this tendency most probably will continue for a long time, as the demand of helium grows faster than its production. The utilization of heat-exchange gas considerably reduces many problems, that arise in the design of completely dry LTS magnets. The goal was to decrease or even completely avoid the consumption of rather expensive liquid helium for testing the laboratory size Nb-Ti and Nb3Sn coils including their training process. Several superconducting magnets were tested by using these facilities. For example, the first facility was successfully used for testing of 13 T, 60 kg coil cooled by cryocooler in helium gas (several torr pressure) heat exchange atmosphere. The precooling time was about 45 hours. The quench current (240 A at 4.2 K) was equal to that reached in the pool boiling LHe cryostat. The second facility with 420 mm wide access bore can be used for testing of corresponding size superconducting coils with very modest consumption of liquid helium with its level well below the lower flange of the coil. Each test facility is equipped by 2 pairs of HTS current leads. Design and operational experience of one of them is described.

  10. Power Systems Development Facility Gasification Test Campaign TC22

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-11-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

  11. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    Zafina, I.; Bosma, H.; Tazelaar, Edwin; Bruinsma, J.; Veenhuizen, Bram

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a station

  12. Fast flux test facility coupon surveillance program

    International Nuclear Information System (INIS)

    This document is a single source of reference for all current information that deals with the implementation of criteria and requirements for the FFTF Coupon Surveillance Program. Accelerated irradiation of samples of reactor structures and their post-irradiation testing are described

  13. Final safety analysis report (FSAR) for waste receiving and processing (WRAP) facility

    International Nuclear Information System (INIS)

    This safety analysis report provides a summary description of the WRAP Facility, focusing on significant safety-related characteristics of the location and facility design. This report demonstrates that adherence to the safety basis wi11 ensure necessary operational safety considerations have been addressed sufficiently and justifies the adequacy of the safety basis in protecting the health and safety of the public, workers, and the environment

  14. Ocean Thermal Energy Conversion (OTEC) test facilities study program. Final report. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-17

    A comprehensive test program has been envisioned by ERDA to accomplish the OTEC program objectives of developing an industrial and technological base that will lead to the commercial capability to successfully construct and economically operate OTEC plants. This study was performed to develop alternative non-site specific OTEC test facilities/platform requirements for an integrated OTEC test program including both land and floating test facilities. A progression of tests was established in which OTEC power cycle component designs proceed through advanced research and technology, component, and systems test phases. This progression leads to the first OTEC pilot plant and provides support for following developments which potentially reduce the cost of OTEC energy. It also includes provisions for feedback of results from all test phases to enhance modifications to existing designs or development of new concepts. The tests described should be considered as representative of generic types since specifics can be expected to change as the OTEC plant design evolves. Emphasis is placed on defining the test facility which is capable of supporting the spectrum of tests envisioned. All test support facilities and equipment have been identified and included in terms of space, utilities, cost, schedule, and constraints or risks. A highly integrated data acquisition and control system has been included to improve test operations and facility effectiveness through a centralized computer system capable of automatic test control, real-time data analysis, engineering analyses, and selected facility control including safety alarms. Electrical power, hydrogen, and ammonia are shown to be technically feasible as means for transmitting OTEC power to a land-based distribution point. (WHK)

  15. Solar central receiver prototype heliostat: phase 1. Final technical report, September 30, 1977-June 24, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-01

    The complete preliminary design analysis and drawings of the heliostat system that were used as the basis for the manufacturing conceptual design and cost estimates are presented. Complete costing data is included along with all of the assumptions and data used in studying the production processes. A detailed description of the control system design is given together with a full report on the breadboard testing of the linear motor drives and the self-calibrating control system. Specifications and a conceptual design of the Automatic Foundation Machine are provided as well as a complete description of the installation process and its labor and time estimates. The enclosed heliostat consists of an aluminized film reflector which is deployed on a lightweight, eight-strut frame mounted on a single pipe pedestal with azimuth and elevation drives and totally housed in an air supported enclosure. An open loop control system with self calibration capability directs centrally computed sun angles and steering commands to individual heliostats of a total system via 2-way multiplex methods over the field power distribution network. Totally mass-produced in conventional industrial factories, the preassembled components are shipped without restriction and are semi-automatically installed within 30-minute time cycles. Requiring no cleaning, the 30-year life cycle maintenance costs include two complete enclosure and reflector replacements. (WHK)

  16. Solar Central Receiver Hybrid Power Systems sodium-cooled receiver concept. Final report. Volume II, Book 1. Conceptual design, Sections 1 through 4

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    The overall, long-term objective of the Solar Central Receiver Hybrid Power System program is to identify, characterize, and ultimately demonstrate the viability and cost effectiveness of solar/fossil, steam Rankine cycle, hybrid power systems that: (1) consist of a combined solar central receiver energy source and a nonsolar energy source at a single, common site, (2) may operate in the base, intermediate, and peaking capacity modes, (3) produce the rated output independent of variations in solar insolation, (4) provide a significant savings (50% or more) in fuel consumption, and (5) produce power at the minimum possible cost in mills/kWh. It is essential that these hybrid concepts be technically feasible and economically competitive with other systems in the near to mid-term time period (1985-1990) on a commercial scale. The program objective for Phase I is to identify and conceptually characterize solar/fossil steam Rankine cycle, commercial-scale, power plant systems that are economically viable and technically feasible. This volume presents in detail the market analysis, parametric analysis, and the selection process for the preferred system. (WHK)

  17. Biaxial wheel/hub test facility. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, G.; Grubisic, V. [eds.

    2000-07-01

    The 4{sup th} meeting aims to exchange the experience and knowledge of engineers during several presentations and discussions about new developments required for a reliable, time and cost reducing validation of the wheel/hub assembly. Tremendous development of the wheel performance, described by the ratio of the rated load (kg) versus the wheel weight (kg) had taken place during the last 5000 years. Starting from the ratio of 3 for wooden 2-piece-disc-wheels in Mesopotamia it needed nearly 1000 years to increase the ratio to approx 5 at light-weight spoke wheels for fighting carriages, found in the grave of king Tutenchamon in Egypt. Modern light alloy wheels of commercial vehicles reach values up to 160 kg/kg. Additionally the comlex design of the modern systems for cars and commercial vehicles comprising wheel, brake, hub, bearing, spindle and hub carrier, including different materials and their treatment, fasteners, press-fits, require an appropriate testing procedure. The variable loading conditions, caused by operational wheel forces, brake and torque moments including heating, may result in changing tolerances and press-fits during operation and consequently in different damage mechanisms. This can be simulated in the Biaxial Wheel Test Machine, whereby corresponding load programs are necessary. An overview about all biaxial test machines in usage at the end of 1999 is shown in the introduction. The total number is 17 for cars, 7 for commercial vehicles and 1 for trains. The six presentations of this meeting were consequently concentrated on: (a) recommendations for a standardization of load programs of the German Wheel Committee, (b) the simulation of brake and torque events and (c) the possibility for a numerical stress analyses and fatigue life assessment. (orig./AKF)

  18. Laboratory Facilities for Testing Thermal Engines

    Directory of Open Access Journals (Sweden)

    Ioan Ruja

    2010-10-01

    Full Text Available This work presents an electromechanical plant through with which is realised couples different resistant, MR (0 ÷ MRN, on the gearbox shaft of internal combustion engine. The purpose is to study the plant in phase and stationary behaviour of the main technical parameters that define the engine operation such as: torque, speed, temperature, pressure, vibration, burnt gas, noise, forces. You can take measurements to determine engine performance testing and research on improving engine thermal efficiency. With the proposed plant is built by measuring the characteristic internal combustion engines (tuning characteristic and functional characteristic and determine the technical performance of interest, optimal.

  19. Central receiver solar thermal power system, phase 1. Progress report for period ending December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-04-01

    The program objective is the preliminary design of a 10 MWe pilot solar power plant supported by major subsystem experiments. Progress is reported on the following task elements: 10 MWe pilot plant; collector subsystem design and analysis; receiver subsystem requirements; receiver subsystem design; thermal storage subsystem; electrical power generation subsystem; and pilot plant architectural engineering and support. (WDM)

  20. Space exploration initiative candidate nuclear propulsion test facilities

    Science.gov (United States)

    Baldwin, Darrell; Clark, John S.

    1993-01-01

    One-page descriptions for approximately 200 existing government, university, and industry facilities which may be available in the future to support SEI nuclear propulsion technology development and test program requirements are provided. To facilitate use of the information, the candidate facilities are listed both by location (Index L) and by Facility Type (Index FT). The included one-page descriptions provide a brief narrative description of facility capability, suggest potential uses for each facility, and designate a point of contact for additional information that may be needed in the future. The Nuclear Propulsion Office at NASA Lewis presently plans to maintain, expand, and update this information periodically for use by NASA, DOE, and DOD personnel involved in planning various phases of the SEI Nuclear Propulsion Project.

  1. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  2. Evaluation of the feasibility of a utility-financed power-generation facility at the FFTF (Fast Flux Test Facility)

    Energy Technology Data Exchange (ETDEWEB)

    Honekamp, J.R.; Guttenberg, S.; Sanders, J.; Sedore, J.K.; Sugden, K.

    1987-06-01

    The three public utilities serving the Tri-Cities area of central Washington State have entered into a Cooperative Agreement with the Department of Energy to explore the feasibility of a utility-owned power addition to the Fast Flux Test Facility (FFTF). This paper describes the results of the design and economic studies completed to data, which indicate that the addition of steam generators and a 120 MWe power plant to the FFTF is both technically feasible and economically attractive compared to alternative power sources. 1 ref., 3 figs., 2 tabs.

  3. National RF Test Facility as a multipurpose development tool

    International Nuclear Information System (INIS)

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments

  4. Cryogenic turbulence test facilities at CEA/SBT

    Science.gov (United States)

    Rousset, B.; Baudet, C.; Bon Mardion, M.; Bourgoin, M.; Braslau, A.; Daviaud, F.; Diribarne, P.; Dubrulle, B.; Gagne, Y.; Gallet, B.; Gibert, M.; Girard, A.; Lehner, T.; Moukharski, I.; Sy, F.

    2015-12-01

    Recently, CEA Grenoble SBT has designed, built and tested three liquid helium facilities dedicated to turbulence studies. All these experiments can operate either in HeI or HeII within the same campaign. The three facilities utilize moving parts inside liquid helium. The SHREK experiment is a von Kármán swirling flow between 0.72 m diameter counterrotating disks equipped with blades. The HeJet facility is used to produce a liquid helium free jet inside a 0.200 m I.D., 0.47 m length stainless steel cylindrical testing chamber. The OGRES experiment consists of an optical cryostat equipped with a particle injection device and an oscillating grid. We detail specific techniques employed to accommodate these stringent specifications. Solutions for operating these facilities without bubbles nor boiling/cavitation are described. Control parameters as well as Reynolds number and temperature ranges are given.

  5. ROSA-IV large scale test facility (LSTF) system description

    International Nuclear Information System (INIS)

    The ROSA-IV Program's large scale test facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during a small break loss-of-coolant accident (LOCA) or an operational transient. This document provides the necessary background information to interpret the experimental data obtained from the LSTF experiments. The information provided includes LSTF test objectives and approach, the LSTF design philosopy, the component and geometry description, the instrumentation and data acquisition system description, and the outline of experiments to be performed. (author)

  6. Effects of vertically ribbed surface roughness on the forced convective heat losses in central receiver systems

    Science.gov (United States)

    Uhlig, Ralf; Frantz, Cathy; Fritsch, Andreas

    2016-05-01

    External receiver configurations are directly exposed to ambient wind. Therefore, a precise determination of the convective losses is a key factor in the prediction and evaluation of the efficiency of the solar absorbers. Based on several studies, the forced convective losses of external receivers are modeled using correlations for a roughened cylinder in a cross-flow of air. However at high wind velocities, the thermal efficiency measured during the Solar Two experiment was considerably lower than the efficiency predicted by these correlations. A detailed review of the available literature on the convective losses of external receivers has been made. Three CFD models of different level of detail have been developed to analyze the influence of the actual shape of the receiver and tower configuration, of the receiver shape and of the absorber panels on the forced convective heat transfer coefficients. The heat transfer coefficients deduced from the correlations have been compared to the results of the CFD simulations. In a final step the influence of both modeling approaches on the thermal efficiency of an external tubular receiver has been studied in a thermal FE model of the Solar Two receiver.

  7. ERDA/Lewis research center photovoltaic systems test facility

    Science.gov (United States)

    Forestieri, A. F.; Johnson, J. A.; Knapp, W. D.; Rigo, H.; Stover, J.; Suhay, R.

    1977-01-01

    A national photovoltaic power systems test facility (of initial 10-kW peak power rating) is described. It consists of a solar array to generate electrical power, test-hardware for several alternate methods of power conversion, electrical energy storage systems, and an instrumentation and data acquisition system.

  8. Electrical energy and cost for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    An operational scenario has been developed for the Mirror Fusion Test Facility (MFTF-B) based on the System Requirements, our experience with existing systems, and discussions with the project engineers and designers who are responsible for the systems. This scenario was used to predict the amount of electrical energy needed for running the facility. A generic type listing is included for the equipment considered in each system

  9. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  10. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    This paper includes an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem discussed to present a basic composite of the entire facility. The following subsystems are included: 500kW nitrogen reliquefier, subcoolers, and distribution system; 15kW helium refrigerator/liquefier and distribution system; helium recovery and storage system; rough vacuum and high vacuum systems

  11. Development of a fault test experimental facility model using Matlab

    International Nuclear Information System (INIS)

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  12. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  13. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    Energy Technology Data Exchange (ETDEWEB)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R&D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets.

  14. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  15. Testing stellar opacities with laser facilities

    Science.gov (United States)

    Le Pennec, Maëlle; TURCK-CHIEZE, Sylvaine; RIBEYRE, Xavier; DUCRET, Jean-Eric; SALMON, Sébastien; BLANCARD, Christophe; COSSE, Philippe; MONDET, Guillaume; FAUSSURIER, Gérald; CONSORTIUM, OPAC

    2015-08-01

    Helio and asteroseismology (SoHo, KEPLER...) have produced observed acoustic oscillations of thousands of stars which characteristics are deeply linked to the transport of radiation inside the stars. However, the comparisons of seismic data with model predictions have led to significant discrepancies, which could be due to a bad knowledge of production and transport of energy.β-Cephei are pulsating stars, progenitor of supernovae and thus deeply linked to our understanding of stellar medium enrichment. Their study has shown some difficulty to predict the observed oscillation modes, which are directly linked to an opacity bump of the elements of the iron group (Cr, Fe, Ni) at log T=5.25 (κ-mechanism). We will show that several parameters of the stars (mass, age, metallicity) have a great influence on the amplitude of the bump, which impact their structure. We will then present the final results of an experiment conducted at LULI 2000 in 2011 on Cr, Fe and Ni compared to several opacity codes. We will show how to improve the opacity in the range of temperature around log T= 5.3.The Sun is a privilege place to test and validate physics. Since the recent update of the solar composition, there is a well established large discrepancy (Turck-Chièze et al. 2001) between solar models and seismic data, visible on the solar sound speed profile comparison.An explanation could be that the calculations of energy transport are not correctly taken into account.Unfortunately, there are very few experiments to validate these calculations (Bailey et al. 2014). That's why we are proposing an opacity experiment on a high-energy laser like LMJ, in the conditions of the radiative zone. We are exploiting in that purpose an approach called the Double Ablation Front to reach these high temperatures and densities at LTE and validate or not plasma effects and line widths. We will show the principle of this technique and the results of our simulations on several elements.In the mean time

  16. The development and operation of the international solar-terrestrial physics central data handling facility

    Science.gov (United States)

    Lehtonen, Kenneth

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) International Solar-Terrestrial Physics (ISTP) Program is committed to the development of a comprehensive, multi-mission ground data system which will support a variety of national and international scientific missions in an effort to study the flow of energy from the sun through the Earth-space environment, known as the geospace. A major component of the ISTP ground data system is an ISTP-dedicated Central Data Handling Facility (CDHF). Acquisition, development, and operation of the ISTP CDHF were delegated by the ISTP Project Office within the Flight Projects Directorate to the Information Processing Division (IPD) within the Mission Operations and Data Systems Directorate (MO&DSD). The ISTP CDHF supports the receipt, storage, and electronic access of the full complement of ISTP Level-zero science data; serves as the linchpin for the centralized processing and long-term storage of all key parameters generated either by the ISTP CDHF itself or received from external, ISTP Program approved sources; and provides the required networking and 'science-friendly' interfaces for the ISTP investigators. Once connected to the ISTP CDHF, the online catalog of key parameters can be browsed from their remote processing facilities for the immediate electronic receipt of selected key parameters using the NASA Science Internet (NSI), managed by NASA's Ames Research Center. The purpose of this paper is twofold: (1) to describe how the ISTP CDHF was successfully implemented and operated to support initially the Japanese Geomagnetic Tail (GEOTAIL) mission and correlative science investigations, and (2) to describe how the ISTP CDHF has been enhanced to support ongoing as well as future ISTP missions. Emphasis will be placed on how various project management approaches were undertaken that proved to be highly effective in delivering an operational ISTP CDHF to the Project on schedule and

  17. New Test Facilities For GNSS Testing And Dynamic Calibration

    Directory of Open Access Journals (Sweden)

    Trzuskowsky Andreas

    2014-06-01

    Full Text Available With Galileo, the European GNSS (Global Navigation Satellite System starting early services in 2015, open-area-testing of applications which use the new positioning system gets more and more important. This contribution gives an overview on existing test sites like railGATE, automotiveGATE and seaGATE, it highlights the latest addition for dynamic calibration with geodetic precision and finally describes the testing regime of the BONUS project ANCHOR, where multiple test sites are used for maximum benefit in a maritime application.

  18. Solar advanced internal film receiver; Receptor avanzado de pelicular interna

    Energy Technology Data Exchange (ETDEWEB)

    Torre Cabezas, M. de la

    1990-07-01

    In a Solar Central Internal Film Receiver, the heat absorbing fluid (a molten nitrate salt) flows in a thin film down over the non illuminated side of an absorber panel. Since the molten salt working fluid is not contained in complicated tube manifolds, the receiver design is simples than a conventional tube type-receiver resulting in a lower cost and a more reliable receiver. The Internal Film Receiver can be considered as an alternative to the Direct Absorption Receiver, in the event that the current problems of the last one can not be solved. It also describes here the test facility which will be used for its solar test, and the test plans foreseen. (Author) 17 refs.

  19. Langley Ground Facilities and Testing in the 21st Century

    Science.gov (United States)

    Ambur, Damodar R.; Kegelman, Jerome T.; Kilgore, William A.

    2010-01-01

    A strategic approach for retaining and more efficiently operating the essential Langley Ground Testing Facilities in the 21st Century is presented. This effort takes advantage of the previously completed and ongoing studies at the Agency and National levels. This integrated approach takes into consideration the overall decline in test business base within the nation and reduced utilization in each of the Langley facilities with capabilities to test in the subsonic, transonic, supersonic, and hypersonic speed regimes. The strategy accounts for capability needs to meet the Agency programmatic requirements and strategic goals and to execute test activities in the most efficient and flexible facility operating structure. The structure currently being implemented at Langley offers agility to right-size our capability and capacity from a national perspective, to accommodate the dynamic nature of the testing needs, and will address the influence of existing and emerging analytical tools for design. The paradigm for testing in the retained facilities is to efficiently and reliably provide more accurate and high-quality test results at an affordable cost to support design information needs for flight regimes where the computational capability is not adequate and to verify and validate the existing and emerging computational tools. Each of the above goals are planned to be achieved, keeping in mind the increasing small industry customer base engaged in developing unpiloted aerial vehicles and commercial space transportation systems.

  20. Test results from a full-scale sodium reflux pool-boiler solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Diver, R. B.; Ginn, W. C.; Dudley, V.; Rawlinson, K. S.

    1990-01-01

    A sodium reflux pool-boiler solar receiver has been tested on a nominal 75 kW sub t parabolic-dish concentrator. The purpose was to demonstrate the feasibility of reflux-receiver technology for application to Stirling-engine dish-electric systems. In this application, pool boilers (and more generally liquid-metal reflux receivers) have a number of advantages over directly-illuminated tube receivers. The advantages, to be discussed, include more uniform temperature, which results in longer lifetime and higher temperature available to the engine.

  1. Facility for cold flow testing of solid rocket motor models

    Science.gov (United States)

    Bacchus, D. L.; Hill, O. E.; Whitesides, R. Harold

    1992-02-01

    A new cold flow test facility was designed and constructed at NASA Marshall Space Flight Center for the purpose of characterizing the flow field in the port and nozzle of solid propellant rocket motors (SRM's). A National Advisory Committee was established to include representatives from industry, government agencies, and universities to guide the establishment of design and instrumentation requirements for the new facility. This facility design includes the basic components of air storage tanks, heater, submicron filter, quiet control valve, venturi, model inlet plenum chamber, solid rocket motor (SRM) model, exhaust diffuser, and exhaust silencer. The facility was designed to accommodate a wide range of motor types and sizes from small tactical motors to large space launch boosters. This facility has the unique capability of testing ten percent scale models of large boosters such as the new Advanced Solid Rocket Motor (ASRM), at full scale motor Reynolds numbers. Previous investigators have established the validity of studying basic features of solid rocket motor development programs include the acquisition of data to (1) directly evaluate and optimize the design configuration of the propellant grain, insulation, and nozzle; and (2) provide data for validation of the computational fluid dynamics, (CFD), analysis codes and the performance analysis codes. A facility checkout model was designed, constructed, and utilized to evaluate the performance characteristics of the new facility. This model consists of a cylindrical chamber and converging/diverging nozzle with appropriate manifolding to connect it to the facility air supply. It was designed using chamber and nozzle dimensions to simulate the flow in a 10 percent scale model of the ASRM. The checkout model was recently tested over the entire range of facility flow conditions which include flow rates from 9.07 to 145 kg/sec (20 to 320 Ibm/sec) and supply pressure from 5.17 x 10 exp 5 to 8.27 x 10 exp 6 Pa. The

  2. Central Receiver Solar Thermal Power System, Phase 1. CDRL Item 2. Pilot Plant preliminary design report. Volume III, Book 1. Collector subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-10-01

    The central receiver system consists of a field of heliostats, a central receiver, a thermal storage unit, an electrical power generation system, and balance of plant. This volume discusses the collector field geometry, requirements and configuration. The development of the collector system and subsystems are discussed and the selection rationale outlined. System safety and availability are covered. Finally, the plans for collector portion of the central receiver system are reviewed.

  3. High Power RF Test Facility at the SNS

    International Nuclear Information System (INIS)

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavities have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components

  4. Large valve test facilities of AREVA NP GmbH

    Energy Technology Data Exchange (ETDEWEB)

    Beisiegel, A.; Wagner, T.; Stecher, W.

    2011-07-01

    As market leader in the field of nuclear power plant technology, AREVA runs an internationally-unique test and qualification infrastructure for power plant components. The associated Thermal-Hydraulic Platform with different test facilities in Karlstein and Erlangen has been recognized as a test body according to ISO 17025. The DAkkS the German Society for Accreditation has now also certified the Thermal-hydraulic Platorm as an independent inspection body Type C according to ISO 17020.

  5. Testing otter board hydrodynamic performances in wind tunnel facilities

    OpenAIRE

    Mellibovsky Elstein, Fernando; Prat Farran, Joana d'Arc; Notti, Emilio; Sala, Antonello

    2015-01-01

    The feasibility and potential advantages of wind tunnel testing of otter board designs are assessed. Traditional flume tank tests incur high operational costs and present some limitations in terms of flexibility and accuracy. Modern flume tanks, despite more flexible and accurate, are still expensive to operate or hire. Wind tunnel facilities are widespread, with a potential for low budget tests, and allow for an accurate control of velocity, angle of attack and sideslip as well as precise me...

  6. Global Positioning System Time Transfer Receiver (GPS/TTR) prototype design and initial test evaluation

    Science.gov (United States)

    Oaks, J.; Frank, A.; Falvey, S.; Lister, M.; Buisson, J.; Wardrip, C.; Warren, H.

    1982-01-01

    Time transfer equipment and techniques used with the Navigation Technology Satellites were modified and extended for use with the Global Positioning System (GPS) satellites. A prototype receiver was built and field tested. The receiver uses the GPS L1 link at 1575 MHz with C/A code only to resolve a measured range to the satellite. A theoretical range is computed from the satellite ephemeris transmitted in the data message and the user's coordinates. Results of user offset from GPS time are obtained by differencing the measured and theoretical ranges and applying calibration corrections. Results of the first field test evaluation of the receiver are presented.

  7. Test bench HEATREC for heat loss measurement on solar receiver tubes

    Science.gov (United States)

    Márquez, José M.; López-Martín, Rafael; Valenzuela, Loreto; Zarza, Eduardo

    2016-05-01

    In Solar Thermal Electricity (STE) plants the thermal energy of solar radiation is absorbed by solar receiver tubes (HCEs) and it is transferred to a heat transfer fluid. Therefore, heat losses of receiver tubes have a direct influence on STE plants efficiency. A new test bench called HEATREC has been developed by Plataforma Solar de Almería (PSA) in order to determinate the heat losses of receiver tubes under laboratory conditions. The innovation of this test bench consists in the possibility to determine heat losses under controlled vacuum.

  8. Upgrade and Development of Nuclear Data Production Test Facility

    International Nuclear Information System (INIS)

    It is necessary to improve the Pohang Neutron Facility (PNF) in order to be used as a nuclear data production facility for users in both domestic and abroad. We improved following items: (1) upgrade the electron linac, (2) collimators inside the TOF beam pipe, (3) the development and installation of an automatic sample changer, (4) the extension of the TOF beam line, and (5) the data acquisition system. We would like to establish a utilization system for users to measure the nuclear data at the PNF. To do this, we made manuals for the accelerator operation and the data acquisition system. We also made an application form to apply for users to measure the nuclear data in both domestic and abroad. The main object of the Pohang Neutron Facility is to measure the nuclear data in the neutron energy region from thermal neutron to few hundreds of eV. In addition to neutron beams produced at the PNF, photon and electron beams are produced in this facility. We thus utilize this facility for other fields, such as test facility for detectors, activation experiments, polarized neutron beam source, and so on. In addition to these, we could use this facility for training students

  9. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  10. R and D needs assessment for the Engineering Test Facility

    International Nuclear Information System (INIS)

    The Engineering Test Facility (ETF), planned to be the next major US magnetic fusion device, has its mission (1) to provide the capability for moving into the engineering phase of fusion development and (2) to provide a test-bed for reactor components in a fusion environment. The design, construction, and operation of the ETF requires an increasing emphasis on certain key research and development (R and D) programs in magnetic fusion in order to provide the necessary facility design base. This report identifies these needs and discusses the apparent inadequacies of the presently planned US program to meet them, commensurate with the ETF schedule

  11. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...

  12. Occurrence of pharmaceuticals in municipal wastewater treatment plants and receiving surface waters in Central and Southern Finland

    OpenAIRE

    Lindholm-Lehto, Petra

    2016-01-01

    The presence of five selected pharmaceuticals, four anti-inflammatory drugs, diclofenac, ibuprofen, ketoprofen, naproxen, and an antiepileptic drug carbamazepine, was determined at four municipal wastewater treatment plants (WWTPs) and in the receiving waterway near the city of Jyväskylä, in central Finland and also in the River Vantaa. First, an analytical method was developed including a pretreatment and purification followed by liquid chromatography coupled to tandem mass spectrometry (LC-...

  13. 2-MW plasmajet facility thermal tests of concrete

    International Nuclear Information System (INIS)

    A test was made in the 2-Megawatt Plasmajet Facility to obtain experimental data relative to the thermal response of concrete to incident heat flux. 14.6 cm diameter by 8.0 cm long concrete cylinders were positioned in a supersonic flow of heated nitrogen from an arc heater. The end of the concrete cylinders impacted by the flow were subjected to heat fluxes in the range of 0.13 to 0.35 kW/cm2. Measurements included cold wall surface heat flux and pressure distributions, surface and indepth temperatures, ablation rates, and surface emission spectrographs. The test was part of the Sandia light water reactor safety research program and complements similar tests made in the Radiant Heat Facility at heat fluxes from 0.03 to 0.12 kW/cm2. A description of the tests and a tabulation of test data are included

  14. Technical bases for establishing a salt test facility

    International Nuclear Information System (INIS)

    The need for a testing facility in which radioactive materials may be used in an underground salt environment is explored. No such facility is currently available in salt deposits in the United States. A salt test facility (STF) would demonstrate the feasibility of safely storing radioactive waste in salt and would provide data needed to support the design, construction, licensing, and operation of a radioactive waste repository in salt. Nineteen issues that could affect long-term isolation of waste materials in a salt repository are identified from the most pertinent recent literature. The issues are assigned an overall priority and a priority relative to the activities of the STF. Individual tests recommended for performance in the STF to resolve the 19 issues are described and organized under three groups: waste package performance, repository design and operation, and site characterization and evaluation. The requirements for a salt test facility are given in the form of functional criteria, and the approach that will be used in the design, execution, interpretation, and reporting of tests is discussed

  15. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  16. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  17. Evaluation of Milking Facilities and Machinery in Dairy Operations of Central Anatolia

    Directory of Open Access Journals (Sweden)

    Cevdet Sağlam

    2014-09-01

    Full Text Available The present study was conducted to investigate the recent changes in dairy operations of Central Anatolia and to evaluate the milking facilities and machinery capacities of the facilities.The basic objective is to put forward the recent changes through the state supports provided to dairy facilities of the Central Anatolian Provinces. While investigating and evaluating the recent changes, milking parlors, milking machinery and livestock inventories of the facilities were taken into consideration. The relevant data were gathered from the recent records of Turkish Institute of Statistics (TUIK, Agriculture and Rural Development Support Institution (TKDK and the Ministry of Economy.As a result, in this study while in determining the recent changes in dairy facilities of the Central Anatolian Provinces, the number of milking machinery, milking parlors and livestock inventories were taken into consideration as well as milk yields per animal and number of animals per machine. According to TUIK records for last six years; 384 milking parlors were built, 8877 milking machinery were bought, the increment in the number of livestock inventories and milk yields per animal were taken place as 62.9% and 9.5% respectively. It is thought that supports provided to dairy operations had a great effect on the recent developments. Such supports should also be provided in the future to furnish entire dairy operations with modern machinery and equipment, thus to improve yields and product qualities.

  18. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  19. First on-sun test of NaK pool-boiler solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.; Cordeiro, P. G.; Dudley, V. E.; Rawlinson, K. S.

    During 1989-1990, a refluxing liquid-metal pool-boiler solar receiver designed for dish/Stirling application at 75 kW(sub t) throughput was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver included (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Following this first demonstration, a second-generation pool-boiler receiver that brings the concept closer to commercialization has been designed, constructed, and successfully tested. For long life, the new receiver is built from Haynes Alloy 230. For increased safety factors against film boiling and flooding, the absorber area and vapor-flow passages have been enlarged. To eliminate the need for trace heating, sodium has been replaced by the sodium-potassium alloy NaK-78. To reduce manufacturing costs, the receiver has a powdered-metal coating instead of EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it contains a small amount of xenon. In this paper, we present the receiver design and report the results of on-sun tests using a nominal 75 kW(sub t) test-bed concentrator to characterize boiling stability, hot-restart behavior, and thermal efficiency at temperatures up to 750 C. We also report briefly on late results from an advanced-concepts pool-boiler receiver.

  20. A facility to test short superconducting accelerator magnets at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Lamm, M.J.; Hess, C.; Lewis, D.; Jaffery, T.; Kinney, W.; Ozelis, J.P.; Strait, J. (Fermi National Accelerator Lab., Batavia, IL (United States)); Butteris, J.; McInturff, A.D. (Superconducting Super Collider Lab., Dallas, TX (United States)); Coulter, K.J. (Argonne National Lab., IL (United States))

    1992-10-01

    During the past four years the Superconducting Magnet R D facility at Fermilab (Lab 2) has successfully tested superconducting dipole, quadrupole, and correction coil magnets less than 2 meters in length for the SSC project and the Tevatron D0/B0 Low-[beta] Insertion. During this time several improvements have been made to the facility that have greatly enhanced its magnet testing capabilities. Among the upgrades have been a new rotating coil and data acquisition system for measuring magnetic fields, a controlled flow liquid helium transfer line using an electronically actuated cryo valve, and stand-alone systems for measuring AC loss and training low current Tevatron correction coil packages. A description of the Lab 2 facilities is presented.

  1. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L.; Nickson, R.; Harboe-Sorensen, R. [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W.; Berger, G.

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  2. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  3. CAD/CAM transtibial prosthetic sockets from central fabrication facilities: How accurate are they?

    Science.gov (United States)

    Sanders, Joan E.; Rogers, Ellen L.; Sorenson, Elizabeth A.; Lee, Gregory S.; Abrahamson, Daniel C.

    2014-01-01

    This research compares transtibial prosthetic sockets made by central fabrication facilities with their corresponding American Academy of Orthotists and Prosthetists (AAOP) electronic shape files and assesses the central fabrication process. We ordered three different socket shapes from each of 10 manufacturers. Then we digitized the sockets using a very accurate custom mechanical digitizer. Results showed that quality varied considerably among the different manufacturers. Four of the companies consistently made sockets within +/−1.1% volume (approximately 1 sock ply) of the AAOP electronic shape file, while six other companies did not. Six of the companies showed consistent undersizing or oversizing in their sockets, which suggests a consistent calibration or manufacturing error. Other companies showed inconsistent sizing or shape distortion, a difficult problem that represents a most challenging limitation for central fabrication facilities. PMID:18247236

  4. Central-receiver solar-thermal power system. Collector subsystem research experiments detail design report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-02-24

    The detail design (DD) of research experiment hardware for the collector subsystem (heliostats) to support the 10 MW/sub e/ Pilot Plant preliminary design (PD) is presented. Additionally, test plans for assembly, integration, and array tests are presented, along with results of completed component/material tests. Research experiment DD and tests described were planned to provide design verification and supporting data, with hardware which either duplicates, or closely simulates the Pilot Plant PD baseline. (WHK)

  5. Information services in the Tesla test facility control system

    International Nuclear Information System (INIS)

    The Tesla test facility (TTF) consists of a linear accelerator of electrons and equipment for studying the accelerating modules based on superconducting cavities. The main TTF information services and their status to October 1998 are described. The services are the following ones: equipment name server, WWW supported document management system and TTF cavity database

  6. TESLA test facility control system and its current status

    International Nuclear Information System (INIS)

    Tesla test facility electron linear accelerator control system (TTF CS) is described. The TTF CS subsystems and principles of their integration are presented. The integration is ensured with the distributed object oriented control system (DOOCS). The DOOCS architecture and device servers are discussed. At present the TTF CS provides reliable and flexible control of all systems of the TTF linear accelerator

  7. 40 CFR 160.15 - Inspection of a testing facility.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Inspection of a testing facility. 160.15 Section 160.15 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE... not consider reliable for purposes of supporting an application for a research or marketing permit...

  8. Fermilab Test Beam Facility Annual Report. FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). et al.

    2015-01-01

    Fermilab Test Beam Facility (FTBF) operations are summarized for FY 2014. It is one of a series of publications intended to gather information in one place. In this case, the information concerns the individual experiments that ran at FTBF. Each experiment section was prepared by the relevant authors, and was edited for inclusion in this summary.

  9. Maintenance Implementation Plan for the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C.N.; Duffield, M.F.

    1992-06-01

    The maintenance program for the 400 Area, Fast Flux Test Facility (FFTF)Plant and plant support facilities includes the reactor plant, reactor support systems and equipment, Maintenance and Storage Facility, plant buildings, and building support systems. These are the areas of the facility that are covered by this plan. The personnel support facilities and buildings are maintained and supported by another department within Westinghouse Hanford, and are not included here. The FFTF maintenance program conducts the corrective and preventive maintenance necessary to ensure the operational reliability and safety of the reactor plant and support equipment. This comprehensive maintenance program also provides for maximizing the useful life of plant equipment and systems to realize the most efficient possible use of resources. The long-term future of the FFTF is uncertain; in the near term, the facility is being placed in standby. As the plant transitions from operating status to standby, the scope of the maintenance program will change from one of reactor operational reliability and life extension to preservation.

  10. Direct sunlight facility for testing and research in HCPV

    Energy Technology Data Exchange (ETDEWEB)

    Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

    2014-09-26

    A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  11. Direct sunlight facility for testing and research in HCPV

    Science.gov (United States)

    Sciortino, Luisa; Agnello, Simonpietro; Barbera, Marco; Bonsignore, Gaetano; Buscemi, Alessandro; Candia, Roberto; Cannas, Marco; Collura, Alfonso; Di Cicca, Gaspare; Gelardi, Franco Mario; Cicero, Ugo Lo; Montagnino, Fabio Maria; Napoli, Gianluca; Paredes, Filippo; Spallino, Luisa; Varisco, Salvo

    2014-09-01

    A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

  12. Comparison of intelligence quotient in children surviving leukemia who received different prophylactic central nervous system treatments

    OpenAIRE

    Reisi Nahid; Khalilian Leila

    2012-01-01

    Background: Neurocognitive deficits and decrease in intelligence quotient (IQ) is one of the complication of prophylactic central nervous system (CNS) treatment in acute lymphoblastic leukemia (ALL) patients. In this study, we compare the IQ in survivors of ALL that were treated with different prophylactic CNS treatments. Materials and Methods : We compared 43 long-term survivors of ALL: 21 survivors with intrathecal methotrexate (IT MTX) as CNS prophylaxis, 22 with IT MTX+1800-2400 rads c...

  13. Advanced Test Reactor National Scientific User Facility Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of

  14. Optical fiber feasibility study in Accelerated Pavement Testing facility

    OpenAIRE

    Bueche, N.; Rychen, P.; Dumont, A.-G.; Santagata, E.

    2009-01-01

    The presented research has been carried out within the European project Intelligent Roads (INTRO). The major objective followed was to assess the potential of optical fiber for pavement monitoring in comparison with classical strain gauges. Thus, both measurement devices have been tested under the same conditions in a full scale Accelerated Pavement Testing (APT) at LAVOC. This facility allows the user to control different parameters such as loading configuration and temperature and, as a mat...

  15. ACIGA's high optical power test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ju, L [School of Physics, University of Western Australia, Perth (Australia); Aoun, M [Computer and Information Science, Edith Cowan University, Perth (Australia); Barriga, P [School of Physics, University of Western Australia, Perth (Australia)] [and others

    2004-03-07

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with {approx}10{sup 6} W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties.

  16. Comparison of the performance of two measures of central adiposity among apparently healthy Nigerians using the receiver operating characteristic analysis

    Directory of Open Access Journals (Sweden)

    Christian Ifedili Okafor

    2011-01-01

    Full Text Available Objective: To compare the performance of waist circumference (WC and waist-to-hip ratio (WHR in predicting the presence of cardiovascular risk factors (hypertension and generalized obesity in an apparently healthy population. Materials and Methods: We recruited 898 apparently healthy subjects (318 males and 580 females of the Igbo ethnic group resident in Enugu (urban, Southeast Nigeria. Data collection was done using the World Health Organization Stepwise approach to Surveillance of risk factors (STEPS instrument. Subjects had their weight, height, waist and hip circumferences, systolic and diastolic blood pressures measured according to the guidelines in the step 2 of STEPS instrument. Generalized obesity and hypertension were defined using body mass index (BMI and JNC 7 classifications, respectively. Quantitative and qualitative variables were analyzed using t-test and Chi-square analysis, respectively, while the performance of WC and WHR was compared using the Receiver Operating Characteristic (ROC analysis. P value was set at <0.05. Results: The mean age of the subjects was 48.7 (12.9 years. Central obesity was found in 76.9% and 66.5% of subjects using WHR and WC, respectively. WC had a significantly higher area under the curve (AUC than WHR in all the cardiovascular risk groups, namely, generalized obesity (AUC = 0.88 vs. 0.62, hypertension alone (AUC = 0.60 vs. 0.53, and both generalized obesity and hypertension (AUC = 0.86 vs. 0.57. Conclusion: WC performed better than WHR in predicting the presence of cardiovascular risk factors. Being a simple index, it can easily be measured in routine clinic settings without the need for calculations or use of cumbersome techniques.

  17. Development of DCC software dynamic test facility: past and future

    International Nuclear Information System (INIS)

    This paper describes a test facility for future dynamic testing of DCC software used in the control computers of CANDU nuclear power stations. It is a network of three computers: the DCC emulator, the dynamic CANDU plant simulator and the testing computer. Shared network files are used for input/output data exchange between computers. The DCC emulator runs directly on the binary image of the DCC software. The dynamic CANDU plant simulator accepts control signals from the DCC emulator and returns realistic plant behaviour. The testing computer accepts test scripts written in AECL Test Language. Both dynamic test and static tests may be performed on the DCC software to verify control program outputs and dynamic responses. (author)

  18. Central Laser Facility. Rutherford Appleton Laboratory; annual report 1996/97

    International Nuclear Information System (INIS)

    The Central Laser Facility (CLF) is one of the UK's major research facilities and is devoted to the provision of advanced laser systems for pure and applied research. Based at Rutherford Appleton Laboratory near Didcot in Oxfordshire, the CLF was set up twenty years ago to provide the UK university community with a world class high power laser system. The initial impetus behind the establishment of the CLF was the then recently released idea of laser induced thermonuclear fusion. These days, laser fusion is just one topic amongst many that is studied at the CLF and the extent and capabilities of the laser systems have expanded enormously as new discoveries in the rapidly changing field of laser science have been incorporated into the facilities provided. This overview looks at these facilities as they were at the end of March 1997. (author)

  19. AREAL test facility for advanced accelerator and radiation source concepts

    Science.gov (United States)

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  20. RF Test Results from Cryomodule 1 at the Fermilab SRF Beam Test Facility

    CERN Document Server

    Harms, E; Chase, B; Cullerton, E; Hocker, A; Jensen, C; Joireman, P; Klebaner, A; Kubicki, T; Kucera, M; Legan, A; Leibfritz, J; Martinez, A; McGee, M; Nagaitsev, S; Nezhevenko, O; Nicklaus, D; Pfeffer, H; Pischalnikov, Y; Prieto, P; Reid, J; Schappert, W; Tupikov, V; Varghese, P; Branlard, J

    2012-01-01

    Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab.

  1. Quality of Sulfadoxine-Pyrimethamine Given as Antimalarial Prophylaxis in Pregnant Women in Selected Health Facilities in Central Region of Ghana

    Directory of Open Access Journals (Sweden)

    Danny F. Yeboah

    2016-01-01

    Full Text Available The use of sulfadoxine-pyrimethamine (SP as an intermittent preventive treatment (IPT against malaria during pregnancy has become a policy in most sub-Sahara African countries and crucially depends on the efficacy of SP. This study sets out to evaluate the effectiveness of the SP given to the pregnant women in some selected health facilities in the Central Region of Ghana to prevent maternal malaria in pregnant women. A total of 543 pregnant women recruited from 7 selected health centres in Central Region of Ghana participated in the study. Parasite density of Plasmodium falciparum was determined from peripheral blood of the pregnant women using microscopy. High performance liquid chromatography (HPLC and dissolution tester were used to determine the quality of the SP. Malaria infection was recorded in 11.2% of pregnant women who had a history of SP consumption. SP failed the dissolution test. Pregnant women who did not receive IPT-SP were 44%. Low haemoglobin level was recorded in 73.5% of the pregnant women. The results indicated that SP was substandard. IPT-SP is ineffective in preventing malaria infection.

  2. Integral Test Facility PKL: Experimental PWR Accident Investigation

    Directory of Open Access Journals (Sweden)

    Klaus Umminger

    2012-01-01

    Full Text Available Investigations of the thermal-hydraulic behavior of pressurized water reactors under accident conditions have been carried out in the PKL test facility at AREVA NP in Erlangen, Germany for many years. The PKL facility models the entire primary side and significant parts of the secondary side of a pressurized water reactor (PWR at a height scale of 1 : 1. Volumes, power ratings and mass flows are scaled with a ratio of 1 : 145. The experimental facility consists of 4 primary loops with circulation pumps and steam generators (SGs arranged symmetrically around the reactor pressure vessel (RPV. The investigations carried out encompass a very broad spectrum from accident scenario simulations with large, medium, and small breaks, over the investigation of shutdown procedures after a wide variety of accidents, to the systematic investigation of complex thermal-hydraulic phenomena. This paper presents a survey of test objectives and programs carried out to date. It also describes the test facility in its present state. Some important results obtained over the years with focus on investigations carried out since the beginning of the international cooperation are exemplarily discussed.

  3. Status of the IDTF high-heat-flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V.; Gorbenko, A.; Davydov, V.; Kokoulin, A.; Komarov, A.; Mazul, I.; Mudyugin, B.; Ovchinnikov, I.; Stepanov, N.; Rulev, R.; Volodin, A., E-mail: volodin@sintez.niiefa.spb.su

    2014-10-15

    Highlights: • In the Efremov Institute the IDTF (ITER Divertor Test Facility) was created for the high heat flux tests (HHFT) of the PFUs of the ITER divertor. • In summer 2012, the IDTF had been qualified for the testing of the outer vertical full-scale prototypes. • The HHFT of the test assembly of the outer vertical target full-scale prototype – was completed at the end of 2012. - Abstract: The ITER Divertor Test Facility (IDTF) was designed for the high heat flux tests of outer vertical targets, inner vertical targets and domes of the ITER divertor. This facility was created in the Efremov Institute under the Procurement Arrangement 1.7.P2D.RF (high heat flux tests of the plasma facing units of the ITER divertor). The heat flux is generated by an electron-beam system (EBS), 800 kW power and 60 kV maximum accelerating voltage. The component to be tested is mounted on a manipulator in the vacuum chamber capable of testing objects up to 2.5 m long and 1.5 m wide. The pressure in the vacuum chamber is about 3*10{sup −3} Pa. The parameters of the cooling system and the water quality (deionized water) are similar to the cooling conditions of the ITER divertor. The integrated control system regulates all IDTF subsystems and data acquisition from all diagnostic devices, such as pyrometers, IR-cameras, video cameras, flow, pressure and temperature sensors. Started in 2008, the IDTF was commissioned in 2012 with the testing the outer vertical full-scale prototypes and the completion of the PA 1.7.P2D.RF task. This paper details the main characteristics of the IDTF.

  4. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  5. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  6. I and C functional test facility user guide

    International Nuclear Information System (INIS)

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ''C'' language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author)

  7. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  8. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  9. East Mesa geothermal pump test facility (EMPTF). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  10. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    This Operational Area Monitoring Plan for environmental monitoring, is for EG ampersand G Energy Measurements, Inc. (EG ampersand G/EM) which operates several offsite facilities in support of activities at the Nevada Test Site (NTS). These facilities include: (1) Amador Valley Operations (AVO), Pleasanton, California; (2) Kirtland Operations (KO), Kirtland Air Force base, Albuquerque, New Mexico (KAFB); (3) Las Vegas Area Operations (LVAO), Remote Sensing Laboratory (RSL), and North Las Vegas (NLV) Complex at Nellis Air Force Base (NAFB), North Las Vegas, Nevada; (4) Los Alamos Operations (LAO), Los Alamos, New Mexico; (5) Santa Barbara Operations (SBO), Goleta, California; (6) Special Technologies Laboratory (STL), Santa Barbara, California; (7) Washington Aerial Measurements Department (WAMD), Andrews Air Force Base, Maryland; and, (8) Woburn Cathode Ray Tube Operations (WCO), Woburn, Massachusetts. Each of these facilities has an individual Operational Area Monitoring Plan, but they have been consolidated herein to reduce redundancy

  11. Vibrational Stability of SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Volk, J.T.; /Fermilab

    2009-05-01

    Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

  12. Tandem mirror magnet system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  13. Tandem mirror magnet system for the mirror fusion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Bulmer, R.H.; Van Sant, J.H.

    1980-10-14

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper.

  14. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  15. The Advanced Test Reactor as a National Scientific User Facility

    International Nuclear Information System (INIS)

    The Advanced Test Reactor (ATR) has been in operation since 1967 and mainly used to support U.S. Department of Energy (US DOE) materials and fuels research programs. Irradiation capabilities of the ATR and post-irradiation examination capabilities of the Idaho National Laboratory (INL) were generally not being utilized by universities and other potential users due largely to a prohibitive pricing structure. While materials and fuels testing programs using the ATR continue to be needed for US DOE programs such as the Advanced Fuel Cycle Initiative and Next Generation Nuclear Plant, US DOE recognized there was a national need to make these capabilities available to a broader user base. In April 2007, the U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). As a NSUF, most of the services associated with university experiment irradiation and post-irradiation examinations are provided free-of-charge. The US DOE is providing these services to support U.S. leadership in nuclear science, technology, and education and to encourage active university/industry/laboratory collaboration. The first full year of implementing the user facility concept was 2008 and it was a very successful year. The first university experiment pilot project was developed in collaboration with the University of Wisconsin and began irradiation in the ATR in 2008. Lessons learned from this pilot program will be applied to future NSUF projects. Five other university experiments were also competitively selected in March 2008 from the initial solicitation for proposals. The NSUF now has a continually open process where universities can submit proposals as they are ready. Plans are to invest in new and upgraded capabilities at the ATR, post-irradiation examination capabilities at the INL, and in a new experiment assembly facility to further support the implementation of the user facility concept. Through a newly created Partnership Program

  16. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  17. The impact of facility relocation on patients' perceptions of ward atmosphere and quality of received forensic psychiatric care.

    Science.gov (United States)

    Alexiou, Eirini; Degl' Innocenti, Alessio; Kullgren, Anette; Wijk, Helle

    2016-08-01

    In recent years, large groups of forensic psychiatric patients have been relocated into new medium- and maximum-security forensic psychiatric facilities in Sweden, where a psychosocial care approach is embedded. From this perspective and on the assumption that physical structures affect the therapeutic environment, a prospective longitudinal study was designed to investigate the impact of the facility relocation of three forensic psychiatric hospitals on patients' perceptions of ward atmosphere and quality of received forensic psychiatric care. Participants were patients over 18 years of age sentenced to compulsory forensic psychiatric treatment. Data were obtained by validated questionnaires. Overall, 58 patients (78%) answered the questionnaires at baseline with a total of 25 patients (34%) completing follow-up 1 at six months and 11 patients (15%) completing follow-up 2, one year after relocation. Approximately two-thirds of the participants at all time-points were men and their age range varied from 18 to 69. The results of this study showed that poor physical environment features can have a severe impact on care quality and can reduce the possibilities for person-centered care. Furthermore, the study provides evidence that the patients' perceptions of person-centered care in forensic psychiatric clinics are highly susceptible to factors in the physical and psychosocial environment. Future work will explore the staff's perception of ward atmosphere and the possibilities to adapt a person-centered approach in forensic psychiatric care after facility relocation. PMID:27213839

  18. The impact of facility relocation on patients' perceptions of ward atmosphere and quality of received forensic psychiatric care.

    Science.gov (United States)

    Alexiou, Eirini; Degl' Innocenti, Alessio; Kullgren, Anette; Wijk, Helle

    2016-08-01

    In recent years, large groups of forensic psychiatric patients have been relocated into new medium- and maximum-security forensic psychiatric facilities in Sweden, where a psychosocial care approach is embedded. From this perspective and on the assumption that physical structures affect the therapeutic environment, a prospective longitudinal study was designed to investigate the impact of the facility relocation of three forensic psychiatric hospitals on patients' perceptions of ward atmosphere and quality of received forensic psychiatric care. Participants were patients over 18 years of age sentenced to compulsory forensic psychiatric treatment. Data were obtained by validated questionnaires. Overall, 58 patients (78%) answered the questionnaires at baseline with a total of 25 patients (34%) completing follow-up 1 at six months and 11 patients (15%) completing follow-up 2, one year after relocation. Approximately two-thirds of the participants at all time-points were men and their age range varied from 18 to 69. The results of this study showed that poor physical environment features can have a severe impact on care quality and can reduce the possibilities for person-centered care. Furthermore, the study provides evidence that the patients' perceptions of person-centered care in forensic psychiatric clinics are highly susceptible to factors in the physical and psychosocial environment. Future work will explore the staff's perception of ward atmosphere and the possibilities to adapt a person-centered approach in forensic psychiatric care after facility relocation.

  19. The contribution of pharmaceutically active compounds from healthcare facilities to a receiving sewage treatment plant in Canada.

    Science.gov (United States)

    Kleywegt, Sonya; Pileggi, Vince; Lam, Yuet Ming; Elises, Alan; Puddicomb, Aaron; Purba, Gurminder; Di Caro, Joanne; Fletcher, Tim

    2016-04-01

    Concentrations and percent loadings of pharmaceutically active compounds (PhACs) and other emerging contaminants released from healthcare facilities (2 hospitals and a long-term care facility) to a sewage treatment plant (STP) in a large urban sewershed were evaluated. An additional hospital outside the sewershed was also monitored. Fourteen of the 24 steroids/hormones and 88 of the 117 PhACs and emerging contaminants were detected at least once. Commonly used substances, including cotinine, caffeine and its metabolite 1,7-dimethylxanthine, ibuprofen and naproxen (analgesics), venlafaxine (antidepressant), and N,N-diethyl-meta-toluamide (insect repellant), were detected in all samples at all sites. Concentrations detected in the large specialty hospital outside the sewershed were similar to those within the sewershed. Cytotoxic drugs (tamoxifen and cyclophosphamide) and x-ray contrast media (iopamidol and diatrizoic acid) were infrequently detected in hospital effluents. Analysis for antibiotics indicated that azithromycin, clarithromycin, ciprofloxacin, erythromycin, ofloxacin, and sulfamethoxazole were consistently detected in hospital wastewaters, as was triclosan (antibacterial agent). Fifteen compounds individually contributed greater than 1% to the total PhAC and emerging contaminant load to the STP from the 2 hospitals in the sewershed, and 9 compounds in the STP effluent exceeded ecotoxicological criteria. The present survey demonstrates that point source discharges from healthcare facilities in this sewershed make a small contribution to the overall PhAC and emerging contaminant loading compared with the total concentrations entering the receiving STP.

  20. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  1. Multiloop Integral System Test (MIST): MIST Facility Functional Specification

    International Nuclear Information System (INIS)

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock ampersand Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Functional Specification documents as-built design features, dimensions, instrumentation, and test approach. It also presents the scaling basis for the facility and serves to define the scope of work for the facility design and construction. 13 refs., 112 figs., 38 tabs

  2. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

  3. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  4. Groundwater Remediation and Alternate Energy at White Sands Test Facility

    Science.gov (United States)

    Fischer, Holger

    2008-01-01

    White Sands Test Facility Core Capabilities: a) Remote Hazardous Testing of Reactive, Explosive, and Toxic Materials and Fluids; b) Hypergolic Fluids Materials and Systems Testing; c) Oxygen Materials and System Testing; d) Hypervelocity Impact Testing; e)Flight Hardware Processing; and e) Propulsion Testing. There is no impact to any drinking water well. Includes public wells and the NASA supply well. There is no public exposure. Groundwater is several hundred feet below ground. No air or surface water exposure. Plume is moving very slowly to the west. Plume Front Treatment system will stop this westward movement. NASA performs on-going monitoring. More than 200 wells and zones are routinely sampled. Approx. 850 samples are obtained monthly and analyzed for over 300 different hazardous chemicals.

  5. Developing Test Facilities to Validate the Design of SMART MMIS

    International Nuclear Information System (INIS)

    SMART (System-integrated Modular Advanced ReacTor) MMIS (Man-Machine Interface System) has been designed using modular, flexible and compact design features. SMART has been newly designed at KAERI. The MMIS is also new. The standard design of SMART is being carried out at KAERI to achieve SDA (Standard Design Approval) from the Korean nuclear regulatory committee by 2011. For this, it is necessary to validate the MMIS design features by developing test facilities that consist of a platform and a mockup. The platform was developed to validate safety I and C (Instrumentation and Control) systems. The mockup was developed to validate MCR (Main Control Room). The platform consists of control unit sub-racks and communication switching devices. The mockup consists of a large display panel and five workstations. For individual performance tests of the safety I and C systems, the performance of a safety control unit sub-rack and a safety communication switching device was tested. For integrated performance tests of the systems, two channels of protection systems and one channel of safety component control system were tested. From these tests, the overall response time of the safety systems was then validated. For MCR human interface tests, the effectiveness of the selected key man-machine interface technologies such as the elastic tile-based alarm display, alarm reduction and ecological interface design was tested. The overall performance of the MCR was then tested through a full-scope dynamic mockup. From these tests, the effectiveness of the MCR design was validated. Experts with experience in nuclear plant operations participated in the tests. In conclusion, the design features of the MMIS were properly validated through the use of the test facilities

  6. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  7. Optical design of a 4-off-axis-unit Cassegrain ultra-high concentrator photovoltaics module with a central receiver.

    Science.gov (United States)

    Ferrer-Rodríguez, Juan P; Fernández, Eduardo F; Almonacid, Florencia; Pérez-Higueras, Pedro

    2016-05-01

    Ultra-high concentrator photovoltaics (UHCPV), with concentrations higher than 1000 suns, have been pointed out by different authors as having great potential for being a cost-effective PV technology. This Letter presents a UHCPV Cassegrain-based optical design in which the sunrays are concentrated and sent from four different and independent paraboloid-hyperboloid pairs optical units onto a single central receiver. The optical design proposed has the main advantage of the achievement of ultra-high concentration ratios using relative small mirrors with similar performance values of efficiency, acceptance angle, and irradiance uniformity to other designs.

  8. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    Energy Technology Data Exchange (ETDEWEB)

    Ware, A.G.; Longhurst, G.R.

    1981-12-01

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

  9. Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey

    International Nuclear Information System (INIS)

    This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available

  10. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    International Nuclear Information System (INIS)

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m2 high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun

  11. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  12. 2014 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. During the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.

  13. Development and testing of Band 10 receivers for the ALMA project

    Energy Technology Data Exchange (ETDEWEB)

    Uzawa, Y., E-mail: y.uzawa@nao.ac.jp [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Fujii, Y.; Gonzalez, A.; Kaneko, K.; Kroug, M.; Kojima, T.; Kuroiwa, K.; Miyachi, A. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Saito, S.; Makise, K.; Wang, Z. [National Institute of Information and Telecommunications Technology, 588-2 Iwaoka, Iwaoka-cho, Kobe, Hyogo 651-2492 (Japan); Asayama, S. [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura, Santiago (Chile)

    2013-11-15

    Highlights: •The ALMA Band 10 (787–950 GHz) SIS receivers have been developed. •The complex conductivity of NbTiN was measured by a THz-TDS for the mixer design. •Tens of Band 10 receivers have been produced and their performance was quite well. •The best achieved receiver noise temperature was 125 K corresponding to 3hf/k{sub B}. •Band 10 receiver installed in the ALMA antenna captured astronomical signals. -- Abstract: The production model of a dual polarization heterodyne receiver for the Atacama Large Millimeter/submillimteter Array (ALMA) telescope has been developed to operate in the 787–950 GHz frequency band. The receiver uses two double sideband (DSB) waveguide mixers with Nb/AlOx/Nb tunnel junctions and NbTiN/SiO{sub 2}/Al microstrip tuning circuits on quartz substrate. A terahertz time domain spectrometer was used to characterize our NbTiN film for the tuning circuit design, which revealed that the complex conductivity of the film is described by the Mattis-Bardeen theory including a finite scattering time of 15 fs and a superconducting gap with a gap ratio 2Δ/k{sub B}T{sub C} ∼ 4.0. Tens of these receivers (out of the total production number of 73) have been successfully produced, and their performance is well within the stringent ALMA requirements. The best achieved DSB receiver noise temperature is 125 K, corresponding to about 3hf/k{sub B} for 4 K operation. One of Band 10 receivers has successfully been installed in the ALMA antenna for a test observation.

  14. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  15. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  16. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    Science.gov (United States)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  17. Characterization and reclamation assessment for the central shops diesel storage facility at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.W.

    1994-12-31

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful cleanups. Using innovative approaches, the central Shops Diesel Storage Facility at the Savannah River Site (SRS) was characterized to determine the extent of subsurface diesel fuel contamination. Effective bioremediation techniques for cleaning up of the contaminant plume were established.

  18. Wastewater Land Application Permit LA-000141 Renewal Information for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Laboratory, Idaho National

    1999-02-01

    On July 25, 1994, the State ofldaho Division of Environmental Quality (DEQ) issued a Wastewater Land Application Permit (WLAP) for the Idaho National Engineering Laboratory's (INEL, now the Idaho National Engineering and Environmental Laboratory [INEEL]) Central Facilities Area (CFA) Sewage Treatment Plant (STP). The permit expires August 7, 1999. In addition to the renewal application, this report was prepared to provide the following information as requested by DEQ.

  19. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; McLallin, K. L.; Kerslake, T. W.

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  20. Full-size solar dynamic heat receiver thermal-vacuum tests

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    The testing of a full-size, 102 kW, solar dynamic heat receiver utilizing high-temperature thermal energy storage is described. The purpose of the test program was to quantify receiver thermodynamic performance, operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber with liquid nitrogen cold shrouds and an aperture cold plate to partly simulate a low-Earth-orbit environment. The cavity of the receiver was heated by an infrared quartz lamp heater with 30 independently controllable zones to allow axially and circumferentially varied flux distributions. A closed-Brayton cycle engine simulator conditioned a helium-xenon gas mixture to specific interface conditions to simulate the various operational modes of the solar dynamic power module on the Space Station Freedom. Inlet gas temperature, pressure, and flow rate were independently varied. A total of 58 simulated orbital cycles, each 94 minutes in duration, was completed during the test period.

  1. EXPLAINING DIFFERENCES IN PRICES RECEIVED BY FARMERS: TESTING THEORY BASED ON ACTUAL FARMER TRANSACTIONS

    OpenAIRE

    Cunningham, Lewis T., III; Brorsen, B. Wade; Anderson, Kim B.

    2004-01-01

    There has been considerable normative research about how farmers should make marketing decisions, but little positive research on what farmers really do. Regressions of gender, total volume, timing, and frequency of sales on the average weighted price received are used to test hypotheses regarding gender differences, myopic loss aversion, economies of size, and market efficiency.

  2. General Atomic's superconducting high field test facility and initial performance

    International Nuclear Information System (INIS)

    General Atomic has established a high field test facility whose primary mission is to investigate the J-B-T and stability performance margins of commercial NbTi superconductor in the 10 tesla, 4.20K region. This work is part of the overall DOE/MFE/MAGNETIC SYSTEMS effort to provide an adequate technological base for construction of superconducting toroidal field coils for the next generation of large tokamak fusion devices. The principal components of the facility are the coil/cryostat assembly, the helium refrigerator-liquefier/compressor system, and the gaseous helium recovery and storage system. The epoxy impregnated, layer wound main background field coil generates 8 tesla within its 40 cm diameter bore. The insert background field coil was layer wound with cooling channels provided by ''barber pole'' mylar conductor insulation. Ten tesla is generated within its 22 cm bore. The initial performance of the facility will be discussed. Future testing calls for operating test coils with implanted heating elements to simulate mechanically induced perturbations. The normal zone growth and recovery behavior will be observed for various disturbance energies. This data will then be compared with results obtained from the transient recovery analysis developed at General Atomic

  3. Linear Accelerator Test Facility at LNF Conceptual Design Report

    CERN Document Server

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  4. Ethnic and Racial Differences in HPV Knowledge and Vaccine Intentions among Men Receiving HPV Test Results

    OpenAIRE

    Daley, Ellen M.; Marhefka, Stephanie; Buhi, Eric; Hernandez, Natalie D.; Chandler, Rasheeta; Vamos, Cheryl; Kolar, Stephanie; Wheldon, Christopher; Papenfuss, Mary R.; Giuliano, Anna R.

    2011-01-01

    We examined factors associated with HPV vaccine intentions by racial/ethnic group among men participating in a HPV natural history study. HPV knowledge, vaccine intentions and perceived barriers were assessed among non-Hispanic White, non-Hispanic Black and Hispanic men. Men were tested for HPV every 6 months. After receiving test results from their previous visit, participants (N=477) reported their intentions for HPV vaccination in a computer-assisted survey instrument (CASI). Vaccine inten...

  5. Facility for generating crew waste water product for ECLSS testing

    Science.gov (United States)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  6. Central receiver solar thermal power system, Phase 1. CDRL Item 2. Pilot plant preliminary design report. Volume IV. Receiver subsystem. [10-MW Pilot Plant and 100-MW Commercial Plant

    Energy Technology Data Exchange (ETDEWEB)

    Hallet, Jr., R. W.; Gervais, R. L.

    1977-11-01

    The conception, design, and testing of the receiver subsystem proposed by the McDonnell Douglas/Rocketdyne Receiver team for the DOE 10-MW Pilot Plant and the 100-MW Commercial Plant are described. The receiver subsystem consists of the receiver unit, the tower on which the receiver unit is mounted above the collector field, and the supporting control and instrumentation equipment. The plans for implementation of the Pilot Plant are given including the anticipated schedule and production plan (procurement, installation, checkout, and maintenance). Specifications for the performance, design, and test requirements for the Pilot Plant receiver subsystem are included. (WHK)

  7. Solar central receiver prototype heliostat CDRL item B. b. Technical progress report: interim

    Energy Technology Data Exchange (ETDEWEB)

    Easton, C. R.

    1978-03-01

    The objectives of this program are to establish a heliostat design with the associated manufacturing, assembly, installation and maintenance approaches that will: (1) yield a significant reduction of capital and operating costs; (2) meet performance specifications for large collector subsystems; and (3) can be produced and deployed throughout the southwestern United States. In addition, cost plans and schedules to develop, fabricate, and operate the heliostat are to be developed. This volume presents the collector design, including trade study and test results, and the manufacturing, installation and checkout, and operations and maintenance concepts. Also, a discussion of specification verification and optimization is included. (WHK)

  8. Sodium reflux pool-boiler solar receiver on-sun test results

    Energy Technology Data Exchange (ETDEWEB)

    Andraka, C E; Moreno, J B; Diver, R B; Moss, T A [Oak Ridge National Lab., TN (United States)

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW{sub t} sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW{sub t} parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90% when operated at full power and 800{degree}C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  9. Sodium reflux pool-boiler solar receiver on-sun test results

    Science.gov (United States)

    Andraka, C. E.; Moreno, J. B.; Diver, R. B.; Moss, T. A.

    1992-06-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of a 75-kW(sub t) sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW(sub t) parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver thermal efficiency was about 90 percent when operated at full power and 800 C. Stable sodium boiling was promoted by the addition of 35 equally spaced artificial cavities in the wetted absorber surface. High incipient boiling superheats following cloud transients were suppressed passively by the addition of small amounts of xenon gas to the receiver volume. Stable boiling without excessive incipient boiling superheats was observed under all operating conditions. The receiver developed a leak during performance evaluation, terminating the testing after accumulating about 50 hours on sun. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, infrared thermography, x-ray studies of the boiling behavior, and a postmortem analysis.

  10. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

  11. Numerical study of local/regional atmospheric changes caused by a large solar central receiver power plant

    Science.gov (United States)

    Bhumralkar, C. M.; Slemmons, A. J.; Nitz, K. C.

    1981-06-01

    A two-dimensional numerical atmospheric mesoscale model with a vertical cross section is applied to study the potential local/regional atmospheric effects of the installation of a 100 MWe solar thermal central receiver power plant in California. The plant comprises heliostats (mirrors) covering a portion of ground surface and reflecting sunlight onto a central receiving tower. The model is able to simulate the changes in surface characteristics associated with the installation of heliostats and other power plant ancillaries and can also simulate the effects of waste heat from cooling towers. The model equations are integrated to simulate typical summer and atypical summer. The results for typical summer conditions at the site and in the surrounding region demonstrate that the power plant has the potential to increase local humidity and wind circulation but cannot induce the formation of clouds or rain. The results for atypical summer conditions show that the solar power plant is potentially able to increase the wind circulation and form clouds and rain. It is noted, however, that the life cycle of such formations is only 2-3 h.

  12. Embracing Safe Ground Test Facility Operations and Maintenance

    Science.gov (United States)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  13. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Ladewig, T.D.

    1981-03-01

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  14. Comparison of Two High Intensity Acoustic Test Facilities

    Science.gov (United States)

    Launay, A.; Tadao Sakita, M.; Kim, Youngkey K.

    2004-08-01

    In two different countries, at the same period of time, the institutes in charge of the development of space activities have decided to extend their satellite integration and test center, and to implement a reverberant acoustic chamber. In Brazil the INPE laboratory (LIT : Laboratorio de Integracao e Testes) and in South Korea the KARI laboratory (SITC : Satellite Integration and Test Center) started their projects in July 2000 for the RATF (Reverberant Acoustic Test Facility) and in May 2001 for the HIAC (High Intensity Acoustic Chamber) respectively, writing the technical specifications. The kick-off meetings took place in December 2000 and in February 2002 and the opening ceremonies in December 19, 2002 in Brazil and in August 22, 2003 in Korea. This paper compares the two projects in terms of design choices, manufacturing processes, equipment installed and technical final characteristics.

  15. Feasibility test of NaK filled pressure transducers for sodium test facility

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngil; Kim, Jong-Man; Ko, Yungju; Kim, Hyungmo; Lee, Dongwon; Cho, Chungho; Jung, Min-Hwan; Lee, Jewhan; Gam, Da-Young; Jeong, Ji-Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, feasibility tests of NaK filled pressure transduces in a relatively low pressure level were performed for a sodium test facility. In the test, model KE pressure transducers made by GEFRAN were tested in a pressure range (i.e., up to 200 kPa) which usually expected for a sodium test facility. The validation of using in a low pressure level was confirmed by the feasibility tests as well as high pressure. Most of the sodium experiments are performed at the high temperature condition. And on account of the strong chemical reactivity of sodium and solidification in a room temperature, many pressure transducers cannot be adapted directly. To use existing pressure transducers without any intermediate medium, it must be equipped by heaters, valves and safety devices to avoid solidification and to prevent chemical reaction of sodium. The pressure transducer filled NaK (Sodiumpotassium alloy is generally referred to as NaK.) is selected as pressure transducers for sodium test facility. The advantage of NaK over sodium is a lower melting point than a room temperature. The lower melting point can make a pressure transducer can be directly used without additional parts such as heaters and valves. NaK filled pressure transducer will be validated at high temperature and robustness in long term uses and repetition in our sodium test facility at KAERI. The lower melting point of NaK can make a pressure transducer simple without many devices such as heater, valve, leak detector and many electronic measuring points. In this paper, application of pressure transducers filled NaK (KE) to sodium test facility (SELFA) was described. In an expected pressure range, the linearity is still represented considerably. In the near future, the pressure transducer with NaK will be adapted to a sodium test facility.

  16. Experimental facility for the nuclear planetology instruments testing

    International Nuclear Information System (INIS)

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82×3.21 m and total weight near 30 t has been assembled in the facility. The glass material was chosen for imitation of absolutely dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. The portable pulse neutron generator was used as a neutron source to test active neutron and gamma spectrometers. The facility is a radiation hazard area and that is why it is equipped with locking and radiation monitoring systems in accordance with national radiation safety regulations

  17. Direct contrast enhanced Venography MR in the study of central venous accesses in children receiving total parenteral nutrition

    International Nuclear Information System (INIS)

    Purpose. To present direct contrast enhanced Magnetic Resonance Venography, a recently developed method for the study of central venous accesses. Materials and methods. Six patients (4 males and 2 females; age range 15-18 Years) with severe intestinal failure treated with indwelling central Venous catheter since childhood were studied by MR-angiography. The examination was carried out with a 1.5 Philips Gyroscan Intera Magnet, sequences during the simultaneous injection of about 60 ml/limb paramagnetic contrast material, Gd DTPA, diluted with saline solution at a ratio of 1:12. The images were processed with maximum intensity coronal projections and compared with the phlebographic images obtained earlier. Results. In 4 cases the method demonstrated superior vena cava occlusion, in 2 cases inferior vena cava occlusion. The examination was well tolerated by all patients and image quality was very similar to that of the gold standard Study, conventional phlebography. Conclusions. We believe direct contrast-enhanced MR-venography to be a minimally invasive, panoramic and diagnostically reliable method, which should be considered the first choice in the study of central venous accesses of patients receiving total parental nutrition for the medical treatment of intestinal failure. The method does not expose the patients to ionizing radiation or require iodinated contrast material, and is relatively short with a room lime of about 30-40 minutes

  18. Waste receiving and processing module 2A mixing tests status report

    International Nuclear Information System (INIS)

    The purpose of this report is to document the Phase II test conditions, observations, and results of this work. This report provides additional mixing performance test data and rheologic data that provide further indications that there are clear and distinct advantages in the preliminary choice of high-shear mixing alone, and high-shear dispersion in combination with, or followed by, a low-speed type mixer/stirrer for WRAP 2A facility design. Another objective was to determine if significant scale-up problems might exist in the various mix and mixer designs. In the later Phase 2 tests the test material quantities were significantly larger than in the Phase 1 tests

  19. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, Jim E.; Shallo, Frank A.; Musselwhite, E Larry; Wiedemann, George F.; Young, Moylen

    1979-09-01

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model.

  20. Studies and research concerning BNFP: converting reprocessing plant's fuel receiving and storage area to an away-from-reactor (AFR) storage facility. Final report

    International Nuclear Information System (INIS)

    Converting a reprocessing plant's fuel receiving and storage station into an Away-From-Reactor storage facility is evaluated in this report. An engineering analysis is developed which includes (1) equipment modifications to the facility including the physical protection system, (2) planning schedules for licensing-related activities, and (3) cost estimates for implementing such a facility conversion. Storage capacities are evaluated using the presently available pools of the existing Barnwell Nuclear Fuel Plant-Fuel Receiving and Storage Station (BNFP-FRSS) as a model

  1. 10-MWe solar-thermal central-receiver pilot plant. Operating and maintenance manual

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    Information required to perform the initial program loading and operation of the Heliostat Array Controller (HAC) is provided. Operating activities are described as required for heliostat control. All computer console command steps, from power up to power down are described. Detailed steps are provided to wake up the system and direct heliostat beams to standby, on target, standby to stow and power down. Maintenance requirements (preventive and corrective), reparability (reparable - non-reparable decisions), spares identification, spares storage location, replacement levels, replacement location and repair location are established. Individual system breakdown block diagrams are provided for each system/assembly/subassembly. Maintenance and repair description sheets are provided for each maintenance significant item. The manual provides support of the following equipment: (a) helostat assembly; (b) heliostat control assembly; and (c) maintenance and installation equipment. The safety requirements for the operating and maintenance functions are established. These procedures will assist in eliminating or controlling the accident potentials caused by human error, environment, or component malfunctions or interactions that could result in major injury or fatality to operating or visiting personnel, or damage to subsystem components or support equipment. These procedures are for normal and test operating conditions and emergency situations, and apply to all Martin Marietta Corporation, governmental, operating and visitor personnel. (LEW)

  2. Cryogenic system for the mirror fusion test facility

    International Nuclear Information System (INIS)

    The Mirror Fusion Test Facility (MFTF), currently being constructed at the Lawrence Livermore Laboratory, has large superconducting magnets, cryopanels, and supporting cryogenic equipment that will comprise one of the world's largest liquid helium (LHe) systems. The facility will provide mirror magnetic confinement for experimental fusion plasmas that will be approximately the same physical size as if in a conceptual fusion reactor. The cryogenic system typifies the magnitude and makeup of systems that will be used in future magnetic fusion reactors. Here we describe the LHe cryopumping and magnet systems. Principal components include a 3300 W helium refrigerator, 30,000 L LHe storage, a 1.5 MW (2000 hp) refrigerator compressor, 1100 m2 of cryopanels, and a 420 MJ superconducting magnet system. Design features, method of operation, thermal protection, and helium recovery operations are discussed

  3. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    CERN Document Server

    McGee, M W; Martinez, A; Pischalnikov, Y; Schappert, W

    2012-01-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  4. Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

    2011-03-01

    The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

  5. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  6. Small Satellite Verification and Assessment Test Facility with Space Environments Effects Ground-testing Capabilities

    OpenAIRE

    Stromberg, Eric; Frazier, Crystal; Montierth Phillipps, Lisa; Souvall, Alex; Dennison, JR; Dyer, James S.

    2015-01-01

    The Utah State University Space Dynamics Laboratory (SDL) and Materials Physics Group (MPG) have developed an extensive versatile and cost-effective pre-launch test capability for verification and assessment of small satellites, system components, and spacecraft materials. The facilities can perform environmental testing, component characterization, system level hardware in-the-loop testing, and qualification testing to ensure that each element is functional, reliable, and working per its des...

  7. Combined effects experiments with the condensation pool test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M. [Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland)

    2007-01-15

    This report summarizes the results of the condensation pool experiments in spring 2006, where steam and steam/air mixture was blown into the pool through a DN200 blowdown pipe. Altogether three experiments, each consisting of several blows, were carried out with a scaled down test facility designed and constructed at Lappeenranta University of Technology. The main purpose of the experiments was to study the effects of non-condensable gas present in the discharge flow. Particularly pressure pulses inside the blowdown pipe and at the pool bottom caused by chugging were of interest. The test pool was an open stainless steel tank with a wall thickness of 4 mm and a bottom thickness of 5 mm containing 15 m3 of water. The nearby PACTEL test facility was used as a steam source. During the experiments the initial pressure of the steam source was 0.5 MPa and the pool water bulk temperature ranged from 40 C to 70 C. The test facility was equipped with high frequency instrumentation for capturing different aspects of the investigated phenomena. The data acquisition program recorded data with the frequency of 10 kHz. A digital high-speed video camera was used for visual observation of the pool interior. Air, in quantities even less than 1 %, reduced the condensation rate considerably. The high pressure pulses registered inside the blowdown pipe due to water hammer propagation during chugging almost disappeared when the combined discharge period of steam and air started. With noncondensable gas fractions above 3 % the damping of pressure oscillations inside the blowdown pipe was practically complete. Air quantities in the vicinity of 2 % started to have an effect also on the oscillations measured by the pressure sensor at the pool bottom. Both the amplitude and frequency of the pressure pulses decreased considerably. The experiments demonstrated that even small quantities of noncondensable gas can have a strong diminishing effect on pressure oscillations and structural loads

  8. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  9. Evaluation of Geopolymer Concrete for Rocket Test Facility Flame Deflectors

    Science.gov (United States)

    Allgood, Daniel C.; Montes, Carlos; Islam, Rashedul; Allouche, Erez

    2014-01-01

    The current paper presents results from a combined research effort by Louisiana Tech University (LTU) and NASA Stennis Space Center (SSC) to develop a new alumina-silicate based cementitious binder capable of acting as a high performance refractory material with low heat ablation rate and high early mechanical strength. Such a binder would represent a significant contribution to NASA's efforts to develop a new generation of refractory 'hot face' liners for liquid or solid rocket plume environments. This project was developed as a continuation of on-going collaborations between LTU and SSC, where test sections of a formulation of high temperature geopolymer binder were cast in the floor and walls of Test Stand E-1 Cell 3, an active rocket engine test stand flame trench. Additionally, geopolymer concrete panels were tested using the NASA-SSC Diagnostic Test Facility (DTF) thruster, where supersonic plume environments were generated on a 1ft wide x 2ft long x 6 inch deep refractory panel. The DTF operates on LOX/GH2 propellants producing a nominal thrust of 1,200 lbf and the combustion chamber conditions are Pc=625psig, O/F=6.0. Data collected included high speed video of plume/panel area and surface profiles (depth) of the test panels measured on a 1-inch by 1-inch giving localized erosion rates during the test. Louisiana Tech conducted a microstructure analysis of the geopolymer binder after the testing program to identify phase changes in the material.

  10. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  11. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  12. Development and testing of Band 10 receivers for the ALMA project

    Science.gov (United States)

    Uzawa, Y.; Fujii, Y.; Gonzalez, A.; Kaneko, K.; Kroug, M.; Kojima, T.; Kuroiwa, K.; Miyachi, A.; Saito, S.; Makise, K.; Wang, Z.; Asayama, S.

    2013-11-01

    The production model of a dual polarization heterodyne receiver for the Atacama Large Millimeter/submillimteter Array (ALMA) telescope has been developed to operate in the 787-950 GHz frequency band. The receiver uses two double sideband (DSB) waveguide mixers with Nb/AlOx/Nb tunnel junctions and NbTiN/SiO2/Al microstrip tuning circuits on quartz substrate. A terahertz time domain spectrometer was used to characterize our NbTiN film for the tuning circuit design, which revealed that the complex conductivity of the film is described by the Mattis-Bardeen theory including a finite scattering time of 15 fs and a superconducting gap with a gap ratio 2Δ/kBTC ∼ 4.0. Tens of these receivers (out of the total production number of 73) have been successfully produced, and their performance is well within the stringent ALMA requirements. The best achieved DSB receiver noise temperature is 125 K, corresponding to about 3hf/kB for 4 K operation. One of Band 10 receivers has successfully been installed in the ALMA antenna for a test observation.

  13. Engine testing the design, building, modification and use of powertrain test facilities

    CERN Document Server

    MARTYR, A J

    2012-01-01

    Engine Testing is a unique, well-organized and comprehensive collection of the different aspects of engine and vehicle testing equipment and infrastructure for anyone involved in facility design and management, physical testing and the maintenance, upgrading and trouble shooting of testing equipment. Designed so that its chapters can all stand alone to be read in sequence or out of order as needed, Engine Testing is also an ideal resource for automotive engineers required to perform testing functions whose jobs do not involve engine testing on a regular basis. This recognized standard refer

  14. Five years operating experience at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baumhardt, R. J.; Bechtold, R. A.

    1987-04-01

    The Fast Flux Test Facility (FFTF) is a 400 Mw(t), loop-type, sodium-cooled, fast neutron reactor. It is operated by the Westinghouse Hanford Company for the United States Department of Energy at Richland, Washington. The FFTF is a multipurpose test reactor used to irradiate fuels and materials for programs such as Liquid Metal Reactor (LMR) research, fusion research, space power systems, isotope production and international research. FFTF is also used for testing concepts to be used in Advanced Reactors which will be designed to maximize passive safety features and not require complex shutdown systems to assure safe shutdown and heat removal. The FFTF also provides experience in the operation and maintenance of a reactor having prototypic components and systems typical of large LMR (LMFBR) power plants. The 5 year operational performance of the FFTF reactor is discussed in this report. 6 refs., 10 figs., 2 tabs.

  15. Reflectance measurement in heliostats field of Solar Thermal Central Receivers Systems; Medida de reflectancia en campos de heliostatos de sistemas de Torre Central

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Reche, J.; Monterreal, R.

    2004-07-01

    Determination of the mean reflectance of Heliostats field of Solar Thermal Central Receivers Systems takes high relevance, from both the operational point of view and the components evaluation. To calculate the mean reflectance calculation becomes essential to establish a procedure that allows offering its value without measuring all and each one of the facets that constitute the field, since this is a long-time consuming and little operational task. This work presents the results of the statistical reflectance study of the CRS heliostats field of the Plataforma Solar de Almeria. In addition, to validate the results, the obtained average reflectance is introduced in the heliostats field simulation code Fiat{sub L}ux. A comparison between the simulation and real incident solar power measurement was performed. (Author)

  16. Benchmark Experiments at VNIITF Test Facilities for Verification of Nuclear Data Libraries

    International Nuclear Information System (INIS)

    The paper describes test facilities used by the Russian Federal Nuclear Center, All-Russian Institute of Technical Physics (VNIITF) to perform benchmark experiments essential for the verification of nuclear data libraries. The key experiments discussed in the paper include critical mass measurements; the investigation of reaction rate distribution in critical and subcritical systems, in particular those with a 14-MeV neutron source; and studies on the spectra of neutrons and gamma quanta emitted from spheres and reflected by hemispheres with a central pulse source of 14-MeV neutrons. New experiments are proposed with a view to revising nuclear data essential for new nuclear developments

  17. Exploring differences between central located test and home use test in a living lab context

    DEFF Research Database (Denmark)

    Wendin, Karin Maria Elisabet; Annika, Åström; Anna, Ståhlbröst

    2015-01-01

    The concept of Living Labs (LLs) has evolved to support the creation of experience-based development of innovations in real-life, user-driven and open environments. Two types of consumer product tests used generally are central location tests (CLT) and home use tests (HUT) where the acceptability...

  18. Central location test vs. home use test: Contrasting results depending on product type

    NARCIS (Netherlands)

    Boutrolle, I.; Delarue, J.; Arranz, D.; Rogeaux, M.; Köster, E.P.

    2007-01-01

    Marketing professionals and sensory scientists have several hedonic testing methods at their disposal to assess product acceptability. The central location test (CLT) which usually takes place in a standardised location under controlled conditions is more frequently used than the home use test (HUT)

  19. Central Acceptance Testing for Camera Technologies for CTA

    OpenAIRE

    Bonardi, A.; T. Buanes; Chadwick, P.; Dazzi, F.; A. Förster(CERN, Geneva, Switzerland); Hörandel, J. R.; Punch, M.; Consortium, R. M. Wagner for the CTA

    2015-01-01

    The Cherenkov Telescope Array (CTA) is an international initiative to build the next generation ground based very-high energy gamma-ray observatory. It will consist of telescopes of three different sizes, employing several different technologies for the cameras that detect the Cherenkov light from the observed air showers. In order to ensure the compliance of each camera technology with CTA requirements, CTA will perform central acceptance testing of each camera technology. To assist with thi...

  20. Fast Flux Test Facility core restraint system performance

    International Nuclear Information System (INIS)

    Characterizing Fast Flux Test Facility (FFTF) core restraint system performance has been ongoing since the first operating cycle. Characterization consists of prerun analysis for each core load, in-reactor and postirradiation measurements of subassembly withdrawal loads and deformations, and using measurement data to fine tune predictive models. Monitoring FFTF operations and performing trend analysis has made it possible to gain insight into core restraint system performance and head off refueling difficulties while maximizing component lifetimes. Additionally, valuable information for improved designs and operating methods has been obtained. Focus is on past operating experience, emphasizing performance improvements and avoidance of potential problems. 4 refs., 12 figs., 2 tabs

  1. Seismic analysis of the mirror fusion test facility shielding vault

    International Nuclear Information System (INIS)

    This report presents a seismic analysis of the vault in Building 431 at Lawrence Livermore National Laboratory which houses the mirror Fusion Test Facility. The shielding vault structure is approximately 120 ft long by 80 ft wide and is constructed of concrete blocks approximately 7 x 7 x 7 ft. The north and south walls are approximately 53 ft high and the east wall is approximately 29 ft high. These walls are supported on a monolithic concrete foundation that surrounds a 21-ft deep open pit. Since the 53-ft walls appeared to present the greatest seismic problem they were the first investigated

  2. Vehicle Testing and Integration Facility; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    Engineers at the National Renewable Energy Laboratory’s (NREL’s) Vehicle Testing and Integration Facility (VTIF) are developing strategies to address two separate but equally crucial areas of research: meeting the demands of electric vehicle (EV) grid integration and minimizing fuel consumption related to vehicle climate control. Dedicated to renewable and energy-efficient solutions, the VTIF showcases technologies and systems designed to increase the viability of sustainably powered vehicles. NREL researchers instrument every class of on-road vehicle, conduct hardware and software validation for EV components and accessories, and develop analysis tools and technology for the Department of Energy, other government agencies, and industry partners.

  3. Fast Flux Test Facility final safety analysis report. Amendment 73

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, D.A.

    1993-08-01

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  4. Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities

    Science.gov (United States)

    Micol, J. R.

    1998-01-01

    Description, capabilities, recent upgrades, and utilization of the NASA Langley Research Center (LaRC) Aerothermodynamic Facilities Complex (AFC) are presented. The AFC consists of five hypersonic, blow-down-to-vacuum wind tunnels that collectively provide a range of Mach number from 6 to 20, unit Reynolds number from 0.04 to 22 million per foot and, most importantly for blunt configurations, normal shock density ratio from 4 to 12. These wide ranges of hypersonic simulation parameters are due, in part, to the use of three different test gases (air, helium, and tetrafluoromethane), thereby making several of the facilities unique. The Complex represents nearly three-fourths of the conventional (as opposed to impulse)-type hypersonic wind tunnels operational in this country. AFC facilities are used to assess and optimize the hypersonic aerodynamic performance and aeroheating characteristics of aerospace vehicle concepts and to provide benchmark aerodynamic/aeroheating data fr generating the flight aerodynamic databook and final design of the thermal protection system (TPS) (e.g., establishment of flight limitations not to exceed TPS design limits). Modifications and enhancements of AFC hardware components and instrumentation have been pursued to increase capability, reliability, and productivity in support of programmatic goals. Examples illustrating facility utilization in recent years to generate essentially all of the experimental hypersonic aerodynamic and aeroheating information for high-priority, fast-paced Agency programs are presented. These programs include Phase I of the Reusable Launch Vehicle (RLV) Advanced Technology Demonstrator, X-33 program, PHase II of the X-33 program, X-34 program, the Hyper-X program ( a Mach 5,7, and 10 airbreathing propulsion flight experiment), and the X-38 program (Experimental Crew Return Vehicle, X-CRV). Current upgrades/enchancements and future plans for the AFC are discussed.

  5. Solar central receiver hybrid power system, Phase I. Volume 2. Conceptual design. Final technical report, October 1978-August 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-09-01

    The objectives of this study were to develop a hybrid power system design that (1) produces minimum cost electric power, (2) minimizes the capital investment and operating cost, (3) permits capacity displacement, (4) and achieves utility acceptance for market penetration. We have met the first three of these objectives and therefore believe that the fourth, utility acceptance, will become a reality. These objectives have been met by utilizing the Martin Marietta concept that combines the alternate central receiver power system design and a high-temperature salt primary heat transfer fluid and thermal storage media system with a fossil-fired nonsolar energy source. Task 1 reviewed the requirements definition document and comments and recommendations were provided to DOE/San Francisco. Task 2 consisted of a market analysis to evaluate the potential market of solar hybrid power plants. Twenty-two utilities were selected within nine regions of the country. Both written and verbal correspondence was used to assess solar hybrid power plants with respect to the utilities' future requirements and plans. The parametric analysis of Task 3 evaluated a wide range of subsystem configurations and sizes. These analyses included subsystems from the solar standalone alternate central receiver power system using high-temperature molten salt and from fossil fuel nonsolar subsystems. Task 4, selection of the preferred commerical system configuration, utilized the parametric analyses developed in Task 3 to select system and subsystem configurations for the commercial plant design. Task 5 developed a conceptual design of the selected commercial plant configuration and assessed the related cost and performance. Task 6 assessed the economics and performance of the selected configuration as well as future potential improvements or limitations of the hybrid power plants.

  6. Suppression Pool Mixing and Condensation Tests in PUMA Facility

    International Nuclear Information System (INIS)

    Condensation of steam with non-condensable in the form of jet flow or bubbly flow inside the suppression pool is an important phenomenon on determining the containment pressure of a passively safe boiling water reactor. 32 cases of pool mixing and condensation test have been performed in Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility under the sponsor of the U.S. Nuclear Regulatory Commission to investigate thermal stratification and pool mixing inside the suppression pool during the reactor blowdown period. The test boundary conditions, such as the steam flow rate, the noncondensable gas flow rate, the initial water temperature, the pool initial pressure and the vent opening submergence depth, which covers a wide range of prototype (SBWR-600) conditions during Loss of Coolant Accident (LOCA) were obtained from the RELAP5 calculation. The test results show that steam is quickly condensed at the exit of the vent opening. For pure steam injection or low noncondensable injection cases, only the portion above the vent opening in the suppression pool is heated up by buoyant plumes. The water below the vent opening can be heated up slowly through conduction. The test results also show that the degree of thermal stratification in suppression pool is affected by the vent opening submergence depth, the pool initial pressure and the steam injection rate. And it is slightly affected by the initial water temperature. From these tests it is concluded that the pool mixing is strongly affected by the noncondensable gas flow rate. (authors)

  7. [Experimental testing of centrally authorised medicinal products. The CAP programme].

    Science.gov (United States)

    Giess, S

    2014-10-01

    In addition to marketing authorisation, inspection and pharmacovigilance the experimental testing within the CAP programme provides another important instrument of assessing and testing centrally authorised medicinal products. Coordinated activities in European member states and institutions--including planning, sampling, lab testing, reporting and assessment of results--allow us to establish an effective quality control system for this group of innovative medicinal products. By means of using existing networks and national structures, unnecessary parallel sampling and testing can be avoided, and limited resources can be used in a better way. The CAP programme is an independent test and surveillance programme, which demonstrates the high quality of centrally authorised medicinal products in the EU/EEA. That way, it strengthens the confidence of patients and the public in these innovative medicinal products. Furthermore, it enables OMCLs to gain experience with new sensitive analytical methods, which can also be used in other areas, for example for the identification of counterfeits or the assessment of biosimilars and generics. PMID:25159224

  8. Techniques for Measuring Aerosol Attenuation using the Central Laser Facility at the Pierre Auger Observatory

    CERN Document Server

    ,

    2013-01-01

    The Pierre Auger Observatory in Malarg\\"ue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that re...

  9. Adolescents' intention and self-efficacy to follow Pap testing recommendations after receiving the HPV vaccine.

    Science.gov (United States)

    Higgins, Lisa M; Dirksing, Kelsie N; Ding, Lili; Morrow, Charlene D; Widdice, Lea A; Kahn, Jessica A

    2016-06-01

    Human papillomavirus (HPV) vaccines are recommended in the US for girls and women 11-26 y of age. Because these vaccines do not prevent all cervical cancers, Papanicolaou (Pap) screening is still recommended after vaccination. Young women who have been vaccinated may perceive themselves at lower risk for HPV infection and cervical cancer, which could lead to lower intention and self-efficacy to follow cervical cancer screening guidelines, and subsequent nonadherence to Pap testing. The aim of this study was to examine whether perceived risk of human papillomavirus (HPV) after vaccination and other factors are associated with adolescents' intention and self-efficacy to get Pap testing after HPV vaccination. Women 13-21 y of age (N = 339) receiving their first HPV vaccine dose completed a survey. Multivariable logistic regression examined associations between perceived risk of HPV and intention/self-efficacy to get a Pap test while adjusting for other factors. Approximately half of participants reported high intention and half reported high self-efficacy to get a Pap test. Factors significantly associated with high intention were Pap testing history and knowledge about HPV/HPV vaccines; factors significantly associated with high self-efficacy included insurance plan, Pap testing history, communication with clinician about needing a Pap test after vaccination, lifetime number of male sexual partners, and recent smoking. In conclusion, educating adolescents about HPV/HPV vaccines and the need for Pap testing may increase self-efficacy/intention to get a Pap test after vaccination. PMID:26934107

  10. Prognostic Significance of Central Pulse Pressure for Mortality in Patients With Coronary Artery Disease Receiving Repeated Percutaneous Coronary Intervention.

    Science.gov (United States)

    Lin, Mao-Jen; Chen, Chun-Yu; Lin, Hau-De; Lin, Chung-Sheng; Wu, Han-Ping

    2016-03-01

    Coronary artery disease (CAD) is a life-threatening medical emergency which needs urgent medical attention. Percutaneous coronary intervention (PCI) is common and necessary for patients with CAD, but it has not completely evaluated in cases with repeated PCI. Therefore, the aim of this study was to examine the risk factors and prognosis in patients with CAD requiring repeated PCI. This is a prospective observational study. A total of 1126 patients with CAD requiring PCI took part in this study. Clinical parameters including baseline characteristics, hemodynamic data, location of vascular lesions, SYNTAX score, left ventricular ejection fraction, central pulse pressure (CPP), central aortic systolic pressure (CSP), risk factors, and invasive strategies were analyzed to identify the risk factors for patients requiring repeated PCI. We further analyzed the prognosis, including risk for myocardial infarction (MI), cardiovascular (CV) mortality, and all-cause mortality, in patients with repeated PCI. Among patients with PCI, 276 received repeated PCI. Patients in the repeated PCI group had a higher CPP (66.7 vs 62.5 mm Hg; P = 0.006), CSP (139.9 vs 135.9 mm Hg; P = 0.017), and male preponderance (P = 0.012). Drugs including diuretics, beta-blockers (BBs), angiotensin-converting enzyme inhibitors (ACEIs), and aspirin were all used more frequently in the repeated PCI group (all P patients with CAD after performing repeated PCI. PMID:27043689

  11. Safety analysis of the 700-horsepower combustion test facility

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, B.D.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the 700 h.p. Combustion Test Facility located in Building 93 at the Pittsburgh Energy Technology Center. Extensive safety related measures have been incorporated into the design, construction, and operation of the Combustion Test Facility. These include: nitrogen addition to the coal storage bin, slurry hopper, roller mill and pulverizer baghouse, use of low oxygen content combustion gas for coal conveying, an oxygen analyzer for the combustion gas, insulation on hot surfaces, proper classification of electrical equipment, process monitoring instrumentation and a planned remote television monitoring system. Analysis of the system considering these factors has resulted in the determination of overall probabilities of occurrence of hazards as shown in Table I. Implementation of the recommendations in this report will reduce these probabilities as indicated. The identified hazards include coal dust ignition by hot ductwork and equipment, loss of inerting within the coal conveying system leading to a coal dust fire, and ignition of hydrocarbon vapors or spilled oil, or slurry. The possibility of self-heating of coal was investigated. Implementation of the recommendations in this report will reduce the ignition probability to no more than 1 x 10/sup -6/ per event. In addition to fire and explosion hazards, there are potential exposures to materials which have been identified as hazardous to personal health, such as carbon monoxide, coal dust, hydrocarbon vapors, and oxygen deficient atmosphere, but past monitoring experience has not revealed any problem areas. The major environmental hazard is an oil spill. The facility has a comprehensive spill control plan.

  12. FUSION NUCLEAR SCIENCE FACILITY (FNSF) BEFORE UPGRADE TO COMPONENT TEST FACILITY (CTF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yueng Kay Martin [ORNL; Canik, John [ORNL; Diem, Stephanie J [ORNL; Milora, Stanley L [ORNL; Park, J. M. [Oak Ridge National Laboratory (ORNL); Sontag, Aaron C [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Lumsdaine, Arnold [ORNL; Murakami, Masanori [ORNL; Burgess, Thomas W [ORNL; Cole, Michael J [ORNL; Katoh, Yutai [ORNL; Korsah, Kofi [ORNL; Patton, Bradley D [ORNL; Wagner, John C [ORNL; Yoder, III, Graydon L [ORNL

    2011-01-01

    The compact (R0~1.2-1.3m) Fusion Nuclear Science Facility (FNSF) is aimed at providing a fully integrated, continuously driven fusion nuclear environment of copious fusion neutrons. This facility would be used to test, discover, and understand the complex challenges of fusion plasma material interactions, nuclear material interactions, tritium fuel management, and power extraction. Such a facility properly designed would provide, initially at the JET-level plasma pressure (~30%T2) and conditions (e.g., Hot-Ion H-Mode, Q<1)), an outboard fusion neutron flux of 0.25 MW/m2 while requiring a fusion power of ~19 MW. If and when this research is successful, its performance can be extended to 1 MW/m2 and ~76 MW by reaching for twice the JET plasma pressure and Q. High-safety factor q and moderate-plasmas are used to minimize or eliminate plasma-induced disruptions, to deliver reliably a neutron fluence of 1 MW-yr/m2 and a duty factor of 10% presently anticipated for the FNS research. Success of this research will depend on achieving time-efficient installation and replacement of all internal components using remote handling (RH). This in turn requires modular designs for the internal components, including the single-turn toroidal field coil center-post. These device goals would further dictate placement of support structures and vacuum weld seals behind the internal and shielding components. If these goals could be achieved, the FNSF would further provide a ready upgrade path to the Component Test Facility (CTF), which would aim to test, for 6 MW-yr/m2 and 30% duty cycle, the demanding fusion nuclear engineering and technologies for DEMO. This FNSF-CTF would thereby complement the ITER Program, and support and help mitigate the risks of an aggressive world fusion DEMO R&D Program. The key physics and technology research needed in the next decade to manage the potential risks of this FNSF are identified.

  13. Digital simulation test system for steam generator multi-purpose thermalhydraulic test facility

    International Nuclear Information System (INIS)

    Taking advantage of NPA2000's software and hardware environment. This project was to develop a full scope digital simulation system of Steam Generator Thermalhydraulic Test Facility. The research work on steam generator was done, including verifying steady state parameters and transient thermalhydraulic processes in advance, predicting the operation scenarios under the incidental conditions and studying the emergency acts, etc. On the other hand, the real test recorded data could greatly help modify and improve the simulation model to make it more practical and to achieve higher fidelity. The enhanced simulation system would be a good supplement to the real facility with those accident or malfunction conditions and destructive conditions

  14. Dish/Stirling Hybrid-Receiver Sub-Scale Tests and Full-Scale Design

    International Nuclear Information System (INIS)

    We have designed and tested a prototype dish/Stirling hybrid-receiver combustion system. The system consists of a pre-mixed natural-gas burner heating a pin-finned sodium heat pipe. The design emphasizes simplicity, low cost, and ruggedness. Our test was on a 1/6th -scale device, with a nominal firing rate of 18kWt, a power throughput of 13kWt, and a sodium vapor temperature of 750 ampersand deg;C. The air/fuel mixture was electrically preheated to 640 ampersand deg;C to simulate recuperation. The test rig was instrumented for temperatures, pressures, flow rates, overall leak rate, and exhaust emissions. The data verify our burner and heat-transfer models. Performance and post-test examinations validate our choice of materials and fabrication methods. Based on the 1/6th -scale results, we are designing a till-scale hybrid receiver. This is a fully-integrated system, including burner, pin-fin primary heat exchanger, recuperator (in place of the electrical pre-heater used in the prototype system), solar absorber, and sodium heat pipe. The major challenges of the design are to avoid pre-ignition, achieve robust heat-pipe performance, and attain long life of the burner matrix, recuperator, and flue-gas seals. We have used computational fluid dynamics extensively in designing to avoid pre-ignition and for designing the heat-pipe wick, and we have used individual component tests and results of the 1/6th -scale test to optimize for long life. In this paper, we present our design philosophy and basic details of our design. We describe the sub-scale test rig and compare test results with predictions. Finally, we outline the evolution of our full-scale design, and present its current status

  15. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  16. Scoping Studies for an Integrated PMI-PFC Test Facility

    Science.gov (United States)

    Prager, S. C.; the PPPL PMI Test Facility Team

    2011-10-01

    Innovative plasma facing components (PFCs) are needed for next-step fusion experiments and beyond, and can be most efficiently developed in a dedicated test facility. In scoping studies for such a facility, we have considered a range of sources (to provide high heat fluxes to target PFCs to simulate the plasma-material interaction) and a variety of PFCs to be exposed. We have investigated sources ranging from small low-field devices for basic science studies to a 1/4 torus with the size and field of the NSTX upgrade outfitted with a source that provides 10 to 40 MW/m2 for 5 seconds. Aiming toward solutions for DEMO-level PFCs, concepts that have been considered for testing include slow-flowing capillary-restrained lithium PFC modules, thick fast-flowing liquid walls and jets, and active PFC coatings and engineered solid surfaces. Extensive surface and plasma diagnostics, as well as modeling such as liquid metal MHD, will be needed to extrapolate the results to future tokamaks. Work supported by USDOE.

  17. The synchro laser system for the CLIC Test Facility

    International Nuclear Information System (INIS)

    The CLIC Test Facility at CERN uses a laser driven 3 GHz electron gun. Considerable effort has been spent to develop a laser system, which meets the requirements of the Test Facility. The laser is based on a diode-pumped ND:YLF mode-locked oscillator. It delivers a 250 MHz train of laser pulses at 1047 nm with a length of 6.6 ps. A phase-locked timing stabilizer is used to synchronize the laser with the rf-gun. One or two pulses are amplified to 10 mJ. The amplifier system is based on a regenerative amplifier and two single pass power amplifiers. A set of harmonic generators deliver laser pulses at 523 nm, 262 nm and optional at 209nm. The measured pulse length after amplification and harmonic generations is 8 ± 2 ps (FWHM). A good pointing stability and a reasonable uniform transverse profile is obtained by relay imaging and spatial filtering. For some experiments, a train of electron bunches is used. A new pulse train generator working at 262 nm was developed to split the laser beam into 12 pulses. The simultaneous amplification of two seed laser pulses gives the possibility to double the number of pulses in the train without the need to add further splitting stages

  18. Development of IASCC Test Facility for Neutron-irradiated Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. W.; Kim, D. J.; Hwang, S. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    From literature review and benchmark studies on recent technologies for IASCC evaluation of highly irradiated stainless steels, the requirements to establish IASCC test facility were drawn. According to the requirements, IASCC test facility for assessment of life time and integrity of RVIs in Korean PWRs will be designed in detail and constructed in hot cells of KAERI. Irradiation assisted stress corrosion cracking (IASCC) has been regarded as the main cause for intergranular cracking incidents in reactor vessel internals (RVIs) in light water reactors (LWRs). IASCC was reported in a fuel rod in the 1960s, a control rod in the 1970s, and a baffle former bolt in recent years. For a proactive management of IASCC of these components, a lot of work has been performed in boiling water reactors (BWRs). From these works, IASCC mechanism and its relation to radiation-induced segregation (RIS), neutron fluence, and applied stress were proposed to describe IASCC behavior of RVIs in BWRs. However, the IASCC mechanism of RVIs in pressurized water reactors (PWRs) is not fully understood yet as compared with that in BWRs owing to a lack of reliable data. Recently, worldwide efforts have been made to investigate the IASCC susceptibility of RVIs in PWRs.

  19. Wastewater Land Application Permit LA-000141 Renewal Information for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-02-01

    On July 25, 1994, the State of ldaho Division of Environmental Quality issued a Wastewater Land Application Permit, #LA-000141-01, for the Central Facilities Area Sewage Treatment Plant. The permit expires August 7, 1999. This report is being submitted with the renewal application and specifically addresses; Wastewater flow; Wastewater characteristics; Impacts to vegetation in irrigation area; Impacts to soil in irrigation area; Evaluation of groundwater monitoring wells for Wastewater Land Application Permit purposes; Summary of trends observed during the 5-year reporting period; and Projection of changes and new processes.

  20. MagLev Cobra: Test Facilities and Operational Experiments

    Science.gov (United States)

    Sotelo, G. G.; Dias, D. H. J. N.; de Oliveira, R. A. H.; Ferreira, A. C.; De Andrade, R., Jr.; Stephan, R. M.

    2014-05-01

    The superconducting MagLev technology for transportation systems is becoming mature due to the research and developing effort of recent years. The Brazilian project, named MagLev-Cobra, started in 1998. It has the goal of developing a superconducting levitation vehicle for urban areas. The adopted levitation technology is based on the diamagnetic and the flux pinning properties of YBa2Cu3O7-δ (YBCO) bulk blocks in the interaction with Nd-Fe-B permanent magnets. A laboratory test facility with permanent magnet guideway, linear induction motor and one vehicle module is been built to investigate its operation. The MagLev-Cobra project state of the art is presented in the present paper, describing some construction details of the new test line with 200 m.

  1. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility); Betriebshandbuch fuer die Mehrzweck-Thermohydraulikversuchsanlage TOPFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S. [SAAS Systemanalyse und Automatisierungsservice GmbH, Possendorf (Germany)

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  2. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  3. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft2) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  4. Diagnostic x-ray equipment compliance and facility survey. Recommended procedures for equipment and facility testing

    International Nuclear Information System (INIS)

    The Radiation Protection Bureau has set out guidelines for the testing of diagnostic x-ray equipment and facilities. This guide provides information for the x-ray inspector, test engineer, technologist, medical physicist and any other person responsible for verifying the regulatory compliance or safety of diagnostic x-ray equipment and facilities. Diagnostic x-radiation is an essential part of present day medical practice. The largest contributor of irradiation to the general population comes from diagnostic x-radiation. Although individual irradiations are usually small, there is a concern of possible excess cancer risk when large populations are irradiated. Unnecessary irradiations to patients from radiological procedures can be significantly reduced with little or no decrease in the value of medical diagnostic information. This can be achieved by using well designed x-ray equipment which is installed, used and maintained by trained personnel, and by the adoption of standardized procedures. In general, when patient surface dose is reduced, there is a corresponding decrease in dose to x-ray equipment operators and other health care personnel. 2 tabs., 4 figs

  5. The prevalence and correlates of receiving confirmatory HIV test results among newly diagnosed HIV-positive individuals at a community-based testing center.

    Science.gov (United States)

    Feldman, Matthew; Wu, Elwin; Mendoza, Moira; Lowry, Blakely; Ford, Lynnette; Holloway, Ian

    2012-10-01

    This study examined the prevalence and correlates of completing the HIV testing process-specifically receiving a confirmatory HIV test and returning for the results-in a sample of newly diagnosed HIV-positive individuals at an HIV testing center in New York City. Of the 213 individuals who received a reactive rapid HIV test result, 82% received a confirmatory HIV test. Of the 236 individuals who received a positive result on a rapid or traditional HIV test that was validated by a positive confirmatory HIV test, 65% returned for the confirmatory test results. Multivariate analyses revealed that being a non-U.S. citizen, homeless/living in transitional housing, being uninsured, and testing off-site were significantly associated with completing the HIV testing process. The findings indicate the need to explore strategies that address obstacles to receiving confirmatory HIV testing and returning for the results, in addition to the feasibility of a rapid confirmatory HIV test. PMID:23016505

  6. Power Systems Development Facility Gasification Test Run TC11

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  7. The ''CAMERA'' test facility in the OSIRIS reactor

    International Nuclear Information System (INIS)

    CAMERA is an irradiation installation conceived to measure under neutronic flux and continuously the dimension variations of a fuel pencil of PWR reactors. The device, set in the periphery of the OSIRIS reactor, can receive new, preirradiated or reconstituted pencils. The principles of measurements is explained. Then, a brief description of the installation is given: in-pile part; out-of-pile part; connections. The technical characteristics of the installation are presented. A first qualification test of the installation under flux has been carried out at the end of the first semester 1984 in the OSIRIS reactor

  8. Advanced Test Reactor National Scientific User Facility Progress

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

    2012-10-01

    The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives

  9. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo

  10. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    Science.gov (United States)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  11. Communication Between Breast Cancer Patients Who Received Inconclusive Genetic Test Results and Their Daughters and Sisters Years After Testing.

    Science.gov (United States)

    Baars, Jessica E; Ausems, Margreet G E M; van Riel, Els; Kars, Marijke C; Bleiker, Eveline M A

    2016-06-01

    Inconclusive genetic test results including screening recommendations for the breast cancer patients and their first-degree relatives are the most common outcomes of BRCA 1/2 testing. Patients themselves should communicate these results to their relatives. Our aim was to explore communication of breast cancer genetic counseling results with daughters and sisters over a long period of time. Breast cancer patients, who had received an inconclusive DNA test result 7-14 years earlier, completed a self-report questionnaire. Additionally, in-depth interviews were conducted and analysed thematically. Of the 93 respondents, 85 (91 %) considered themselves responsible for communicating genetic test results to relatives. In-depth interviews (n = 14) showed, that counselees wanted 'to hand over' their responsibilities to communicate the test results and screening recommendations to their sisters. Although most patients had informed their daughters and sisters about the genetic test results, usually little is spoken about genetic test results and screening recommendations once the duty of informing is completed. We recommend that, similar to the procedure for BRCA1/2-mutation carriers, a separate letter for first-degree relatives of patients with an inconclusive test result should be provided. In this way information about risks and screening recommendations can be verified by family members years after genetic testing has been completed. PMID:26446011

  12. Preliminary Results From the CAUGHT Experiment: Investigation of the North Central Andes Subsurface Using Receiver Functions and Ambient Noise Tomography

    Science.gov (United States)

    Ryan, J. C.; Ward, K. M.; Porter, R. C.; Beck, S. L.; Zandt, G.; Wagner, L. S.; Minaya, E.; Tavera, H.

    2011-12-01

    Jamie Ryan, Kevin M. Ward, Ryan Porter, Susan Beck, George Zandt, Lara Wagner, Estela Minaya, and Hernando Tavera The University of Arizona The University of North Carolina San Calixto Observatorio, La Paz, Bolivia IGP, Lima, Peru In order to investigate the interplay between crustal shortening, lithospheric removal, and surface uplift we have deployed 50 broadband seismometers in northwestern Bolivia and southern Peru as part of the interdisciplinary Central Andean Uplift and Geodynamics of High Topography (CAUGHT) project. The morphotectonic units of the central Andes from west to east, consist of the Western Cordillera, the active volcanic arc, the Altiplano, an internally drained basin (~4 km elevation), the Eastern Cordillera, the high peaks (~6 km elevation) of an older fold and thrust belt, the Subandean zone, the lower elevation active fold and thrust belt, and the foreland Beni basin. Between northwestern Bolivia and southern Peru, the Altiplano pinches out north of Lake Titicaca as the Andes narrow northward. The CAUGHT seismic instruments were deployed between 13° to 18° S latitudes to investigate the crust and mantle lithosphere of the central Andes in this transitional zone. In northwest Bolivia, perpendicular to the strike of the Andes, there is a total of 275 km of documented upper crustal shortening (15° to 17°S) (McQuarrie et al, 2008). Associated with the shortening is crustal thickening and possibly lithospheric removal as the thickening lithospheric root becomes unstable. An important first order study is to compare upper crustal shortening estimates with present day crustal thickness. To estimate crustal thickness, we have calculated receiver functions using an iterative deconvolution method and used common conversion point stacking along the same profile as the geologically based shortening estimates. In our preliminary results, we observed a strong P to S conversion corresponding to the Moho at approximately 60-65 km depth underneath the

  13. The operator interface for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    The uncertain and most likely changing nature of a large experimental facility like MFTF, as well as its large number of control and monitor points, ruled against the traditional hardware approach involving walls of knobs, dials, oscilloscopes, and strip chart recorders. Rather, from the beginning, project management specified computer control of all systems, and operation of the complete MFTF under an integrated computer control system became a major engineering goal. The Integrated Controls and Diagnostics (ICADS) group was charged with the design and implementation of this control system. We designed a control system with an extremely flexible operator interface which uses computer generated CRT displays for output and pointing devices such as touch sensitive CRT overlays, mice, and joysticks for input. Construction of MFTF was completed at the end of 1985 within the project budget of $241.6M and was followed immediately by a 5 month long acceptance test. During this period (known as PACE test) operators, engineers, and physicists successfully used our computer control system daily to test MFTF. Much of their willingness to forsake the traditional hands-on hardware approach to testing was a result of the powerful and flexible operator interface to the MFTF control system. In this paper, we describe the operator interface with emphasis on the displays, the touch screens, and the mouse. We also report the experiences of users and, in particular, stress those aspects of the user interface they strongly liked and disliked

  14. Power Systems Development Facility Gasification Test Campaing TC18

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

  15. Commissioning of the cryogenic safety test facility PICARD

    Science.gov (United States)

    Heidt, C.; Schön, H.; Stamm, M.; Grohmann, S.

    2015-12-01

    The sizing of cryogenic safety relief devices requires detailed knowledge on the evolution of the pressure increase in cryostats following hazardous incidents such as the venting of the insulating vacuum with atmospheric air. Based on typical design and operating conditions in liquid helium cryostats, the new test facility PICARD, which stands for Pressure Increase in Cryostats and Analysis of Relief Devices, has been constructed. The vacuum-insulated test stand has a cryogenic liquid volume of 100 liters and a nominal design pressure of 16 bar(g). This allows a broad range of experimental conditions with cryogenic fluids. In case of helium, mass flow rates through safety valves and rupture disks up to about 4kg/s can be measured. Beside flow rate measurements under various conditions (venting diameter, insulation, working fluid, liquid level, set pressure), the test stand will be used for studies on the impact of two-phase flow and for the measurement of flow coefficients of safety devices at low temperature. This paper describes the operating range, layout and instrumentation of the test stand and presents the status of the commissioning phase.

  16. Production Facility Prototype Blower 1000 Hour Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Woloshun, Keith Albert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Romero, Frank Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-18

    The roots blower in use at ANL for in-beam experiments and also at LANL for flow tests was sized for 12 mm diameter disks and significantly less beam heating. Currently, the disks are 29 mm in diameter, with a 12 mm FWHM Gaussian beam spot at 42 MeV and 2.86 μA on each side of the target, 5.72 μA total. The target design itself is reported elsewhere. With the increased beam heating, the helium flow requirement increased so that a larger blower was need for a mass flow rate of 400 g/s at 2.76 MPa (400 psig). An Aerzen GM 12.4 blower was selected, and is now installed at the LANL facility for target and component flow testing. Two extended test of >1000 hr operation have been completed. Those results and discussion thereof are reported herein. Also included in Appendix A is the detailed description of the blower and its installation, while Appendix B documents the pressure vessel design analysis. The blower has been operated for 1000 hours as a preliminary investigation of long term performance, operation and possible maintenance issues. The blower performed well, with no significant change in blower head or mass flow rate developed under the operating conditions. Upon inspection, some oil had leaked out of the shaft seal of the blower. The shaft seal and bearing race have been replaced. Test results and conclusions are in Appendix B.

  17. Development of Modeling Approaches for Nuclear Thermal Propulsion Test Facilities

    Science.gov (United States)

    Jones, Daniel R.; Allgood, Daniel C.; Nguyen, Ke

    2014-01-01

    High efficiency of rocket propul-sion systems is essential for humanity to venture be-yond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rock-ets with relatively high thrust and twice the efficiency of the Space Shuttle Main Engine. NASA is in the pro-cess of developing a new NTP engine, and is evaluat-ing ground test facility concepts that allow for the thor-ough testing of NTP devices. NTP engine exhaust, hot gaseous hydrogen, is nominally expected to be free of radioactive byproducts from the nuclear reactor; how-ever, it has the potential to be contaminated due to off-nominal engine reactor performance. Several options are being investigated to mitigate this hazard potential with one option in particular that completely contains the engine exhaust during engine test operations. The exhaust products are subsequently disposed of between engine tests. For this concept (see Figure 1), oxygen is injected into the high-temperature hydrogen exhaust that reacts to produce steam, excess oxygen and any trace amounts of radioactive noble gases released by off-nominal NTP engine reactor performance. Water is injected to condense the potentially contaminated steam into water. This water and the gaseous oxygen (GO2) are subsequently passed to a containment area where the water and GO2 are separated into separate containment tanks.

  18. Radionuclide migration pathways analysis for the Oak Ridge Central Waste Disposal Facility on the West Chestnut Ridge site

    International Nuclear Information System (INIS)

    A dose-to-man pathways analysis is performed for disposal of low-level radioactive waste at the Central Waste Disposal Facility on the West Chestnut Ridge Site. Both shallow land burial (trench) and aboveground (tumulus) disposal methods are considered. The waste volumes, characteristics, and radionuclide concentrations are those of waste streams anticipated from the Oak Ridge National Laboratory, the Y-12 Plant, and the Oak Ridge Gaseous Diffusion Plant. The site capacity for the waste streams is determined on the basis of the pathways analysis. The exposure pathways examined include (1) migration and transport of leachate from the waste disposal units to the Clinch River (via the groundwater medium for trench disposal and Ish Creek for tumulus disposal) and (2) those potentially associated with inadvertent intrusion following a 100-year period of institutional control: an individual resides on the site, inhales suspended particles of contaminated dust, ingests vegetables grown on the plot, consumes contaminated water from either an on-site well or from a nearby surface stream, and receives direct exposure from the contaminated soil. It is found that either disposal method would provide effective containment and isolation for the anticipated waste inventory. However, the proposed trench disposal method would provide more effective containment than tumuli because of sorption of some radionuclides in the soil. Persons outside the site boundary would receive radiation doses well below regulatory limits if they were to ingest water from the Clinch River. An inadvertent intruder could receive doses that approach regulatory limits; however, the likelihood of such intrusions and subsequent exposures is remote. 33 references, 31 figures, 28 tables

  19. Solvent extraction studies with high-burnup Fast Flux Test Facility fuel in the Solvent Extraction Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benker, D.E.; Bigelow, J.E.; Bond, W.D.; Chattin, F.R.; King, L.J.; Kitts, F.G.; Ross, R.G.; Stacy, R.G.

    1986-10-01

    A batch of high-burnup fuel from the Fast Flux Test Facility (FFTF) was processed in the Solvent Extraction Test Facility (SETF) during Campaign 9. The fuel had a burnup of {similar_to}0 MWd/kg and a cooling time of {similar_to} year. Two runs were made with this fuel; in the first, the solvent contained 30% tri-n-butyl phosphate (TBP) and partitioning of the uranium and plutonium was effected by reducing the plutonium with hydroxylamine nitrate (HAN); in the second, the solvent contained 10% TBP and a low operating temperature was used in an attempt to partition without reducing the plutonium valence. The plutonium reoxidation problem, which was present in previous runs that used HAN, may have been solved by lowering the temperature and acidity in the partition contactor. An automatic control system was used to maintain high loadings of heavy metals in the coextraction-coscrub contactor in order to increase its efficiency while maintaining low losses of uranium and plutonium to the aqueous raffinate. An in-line photometer system was used to measure the plutonium concentration in an intermediate extraction stage; and based on this data, a computer algorithm determined the appropriate adjustments in the addition rate of the extractant. The control system was successfully demonstrated in a preliminary run with purified uranium. However, a variety of equipment and start up problems prevented an extended demonstration from being accomplished during the runs with the FFTF fuel.

  20. Full Scale Component Test Facility KOPRA - Qualification Test of EPR Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Alexander; Herr, Wolfgang [AREVA NP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Champomier, Francois [AREVA NP SAS, Tour AREVA - Cedex 16, 92084 Paris-La Defense (France)

    2008-07-01

    The test facility KOPRA is designed for full scale-tests on nuclear components under operational conditions. One part of it is the component test loop for developing and qualifying nuclear core components respecting temperature, pressure and mass flow of pressurized water reactor conditions. The KOPRA test facility and its measuring equipment is presented through qualification tests for the control rod drive mechanism and the control rod drive line of the new European Pressurized Water Reactor (EPR). The control rod drive mechanism qualification test program is split into three different test phases. At first, performance tests are conducted to verify the adequate performance of the new equipment, e.g. measurement of rod cluster control assembly drop time under different thermal hydraulic conditions, impact velocity of drive rod on CRDM latch tips and drive rod acceleration during stepping operation by means of strain gauges or through direct measurement. After these functional tests follow the stability tests to ensure that proper functioning is reliably achieved over an appreciable amount of time and the endurance tests to quantify the amount of time and/or the number of steps during which no appreciable wear, that could possibly alter the correct behaviour, is to be expected. (authors)

  1. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  2. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  3. Construction and testing of the Nb3Sn coils for the High-Field Test Facility

    International Nuclear Information System (INIS)

    This project was undertaken: (1) to establish manufacturing capability for a high-current, cryostable Nb3Sn conductor for the mirror fusion program; (2) to evaluate the conductor design with regard to manufacturability, windability, and cryostability; and (3) to provide a facility for testing insert coils of up to 1 m outer diameter at approximately 12 T

  4. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  5. Experiments with the HORUS-II test facility

    Energy Technology Data Exchange (ETDEWEB)

    Alt, S.; Lischke, W. [Univ. for Applied Sciences Zittau/Goerlitz, Zittau (Germany). Dept. of Nuclear Engineering

    1997-12-31

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA`s fourth phase at the original plant. 4 refs.

  6. Experiments with the HORUS-II test facility

    International Nuclear Information System (INIS)

    Within the scope of the German reactor safety research the thermohydraulic computer code ATHLET which was developed for accident analyses of western nuclear power plants is more and more used for the accident analysis of VVER-plants particularly for VVER-440,V-213. The experiments with the HORUS-facilities and the analyses with the ATHLET-code have been realized at the Technical University Zittau/Goerlitz since 1991. The aim of the investigations was to improve and verify the condensation model particularly the correlations for the calculation of the heat transfer coefficients in the ATHLET-code for pure steam and steam-noncondensing gas mixtures in horizontal tubes. About 130 condensation experiments have been performed at the HORUS-II facility. The experiments have been carried out with pure steam as well as with noncondensing gas injections into the steam mass flow. The experimental simulations are characterized as accident simulation tests for SBLOCA for VVER-conditions. The simulation conditions had been adjusted correspondingly to the parameters of a postulated SBLOCA's fourth phase at the original plant

  7. The BNL Accelerator Test Facility and experimental program

    International Nuclear Information System (INIS)

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  8. Knowledge Management at the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wootan, David W.; Omberg, Ronald P.

    2013-06-01

    One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

  9. Steam line rupture experiments with the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    The results of the steam line rupture experiment series in 2007 with the scaled down PPOOLEX test facility designed and constructed at Lappeenranta University of Technology are reported. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. Air was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool. Altogether five experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the initial phase of a postulated steam line break accident inside a BWR containment. Specifically, thermal stratification in the dry well compartment and ejection of water plug from the blowdown pipe were of interest. In addition, the effect of counterpressure on bubble dynamics was studied. A temperature difference of approximately 15 deg. C between the upper and lower part of the dry well was measured. In the wet well gas space, a temperature difference of more than 30 deg. C was registered. These were measured during the compression period of the tests. Towards the end of the tests the temperature differences tended to disappear. To get a more detailed picture of temperature distribution in the wet well, especially close to the water level, a dense net of measurements is required in future experiments. In longer experiments, heat conduction to structures and heat losses to surroundings should also be taken into account. Ejection of water plugs from the blowdown pipe did not cause notable loads to the structures due to the suppressing effect of the dry well compartment. The maximum measured pressure pulse at the pool bottom was only 10 kPa and the maximum strain amplitude at the pool bottom rounding was negligible both in axial and circumferential direction. As the counterpressure of the system increased, but the flow rate remained the same, the maximum size of the air bubbles at the blowdown pipe outlet got smaller and

  10. Status of the realization of the neutral beam test facility

    International Nuclear Information System (INIS)

    The ITER Neutral Beam Injectors (NBI) are required to deliver 16.5 MW of additional heating power to the plasma, accelerating negative ions up to -1 MV with a beam current of 40A lasting up to 1 hour. Since these outstanding requirements were never achieved all together so far, the realization of a Neutral Beam Test Facility (NBTF), called PRIMA, currently under construction in Padova, was launched with the aim to test the operation of the NB injector and to study the relevant physical and technological issues, in advance to the implementation in ITER. Two projects are under development: MITICA and SPIDER. MITICA is a full scale prototype of the ITER NB injector; the design is based on a similar scheme and layout, with the same power supply system and also the control and protection systems are being designed according to the ITER rules and constraints. The HV components are procured by JADA; the low voltage ones and the injector are procured by F4E. SPIDER project is an ion source with the same characteristics of the ITER one, specifically addressed to study the issues related to the RF operation; for this reason, the beam energy is limited to 100keV. It can generate both Hydrogen and Deuterium Ions; the design includes provisions to filter electrons and also to allow the use of cesium to attain the high values of current density required. SPIDER is procured by F4E and INDA. The construction of PRIMA buildings and auxiliaries, started in autumn 2008, was completed in summer 2015. SPIDER plant systems procurement is well advanced and some systems are under installation or site acceptance tests. In 2016 integrated commissioning and power supply integrated tests will be performed followed by the beginning of the first experimental phase. MITICA design was completed; many procurement contracts have been signed or will be launched in the next months. Installation activity will start in December 2015 with the installation of the first HV power supply components provided

  11. The development of functional requirement for integrated test facility

    International Nuclear Information System (INIS)

    An Integrated Test Facility (ITF) is a human factors experimental environment comprised of a nuclear power plant function simulator, man-machine interfaces (MMI), human performance recording systems, and signal control and data analysis systems. In this study, we are going to describe how the functional requirements are developed by identification of both the characteristics of generic advanced control rooms and the research topics of world-wide research interest in human factors community. The functional requirements of user interface developed in this paper together with those of the other elements will be used for the design and implementation of the ITF which will serve as the basis for experimental research on a line of human factors topics. (author). 15 refs, 1 fig

  12. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  13. Power Systems Development Facility Gasification Test Campaing TC14

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-02-28

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

  14. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  15. SHEAR STRENGTH MEASURING EQUIPMENT EVALUATION AT THE COLD TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    MEACHAM JE

    2009-09-09

    Retrievals under current criteria require that approximately 2,000,000 gallons of double-shell tank (DST) waste storage space not be used to prevent creating new tanks that might be susceptible to buoyant displacement gas release events (BDGRE). New criteria are being evaluated, based on actual sludge properties, to potentially show that sludge wastes do not exhibit the same BDGRE risk. Implementation of the new criteria requires measurement of in situ waste shear strength. Cone penetrometers were judged the best equipment for measuring in situ shear strength and an A.P. van den berg Hyson 100 kN Light Weight Cone Penetrometer (CPT) was selected for evaluation. The CPT was procured and then evaluated at the Hanford Site Cold Test Facility. Evaluation demonstrated that the equipment with minor modification was suitable for use in Tank Farms.

  16. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning environmental test... conditioning environmental test facility ambient requirements. The goal of an air conditioning test facility is..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average...

  17. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    International Nuclear Information System (INIS)

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays

  18. Test plan for the soils facility demonstration: A petroleum contaminated soil bioremediation facility

    Energy Technology Data Exchange (ETDEWEB)

    Lombard, K.H.

    1994-08-01

    The objectives of this test plan are to show the value added by using bioremediation as an effective and environmentally sound method to remediate petroleum contaminated soils (PCS) by: demonstrating bioremediation as a permanent method for remediating soils contaminated with petroleum products; establishing the best operating conditions for maximizing bioremediation and minimizing volatilization for SRS PCS during different seasons; determining the minimum set of analyses and sampling frequency to allow efficient and cost-effective operation; determining best use of existing site equipment and personnel to optimize facility operations and conserve SRS resources; and as an ancillary objective, demonstrating and optimizing new and innovative analytical techniques that will lower cost, decrease time, and decrease secondary waste streams for required PCS assays.

  19. Vacuum vessel for the tandem Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    In 1980, the US Department of Energy gave the Lawrence Livermore National Laboratory approval to design and build a tandem Mirror Fusion Test Facility (MFTF-B) to support the goals of the National Mirror Program. We designed the MFTF-B vacuum vessel both to maintain the required ultrahigh vacuum environment and to structurally support the 42 superconducting magnets plus auxiliary internal and external equipment. During our design work, we made extensive use of both simple and complex computer models to arrive at a cost-effective final configuration. As part of this work, we conducted a unique dynamic analysis to study the interaction of the 32,000-tonne concrete-shielding vault with the 2850-tonne vacuum vessel system. To maintain a vacuum of 2 x 10-8 torr during the physics experiments inside the vessel, we designed a vacuum pumping system of enormous capacity. The vacuum vessel (4200-m3 internal volume) has been fabricated and erected, and acceptance tests have been completed at the Livermore site. The rest of the machine has been assembled, and individual systems have been successfully checked. On October 1, 1985, we began a series of integrated engineering tests to verify the operation of all components as a complete system

  20. An outdoor test facility for the Cherenkov Telescope Array mirrors

    CERN Document Server

    Medina, M C; Maya, J; Mancilla, A; Larrarte, J J; Rasztocky, E; Benitez, M; Dipold, J; Platino, M

    2013-01-01

    The Cherenkov Telescopes Array (CTA) is planned to be an Observatory for very high energy gamma ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m$^2$. The mirrors of these telescopes will be formed by a set of facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. In this work we present the preliminary results of the first Middle Size Telescope (MST) mirror-monitoring campaign, started in 2013.

  1. Power Systems Development Facility Gasification Test Run TC09

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-09-30

    This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

  2. Power Systems Development Facility Gasification Test Campaign TC17

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2004-11-30

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

  3. Power Systems Development Facility Gasification Test Campaign TC25

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2008-12-01

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

  4. CFD simulation of air discharge tests in the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  5. Power Systems Development Facility Gasification Test Run TC07

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2002-04-05

    This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

  6. Performance Test of High Heat Flux Test Facility for the Calorimetry and Beam Control

    International Nuclear Information System (INIS)

    The Korea Heat Load Test facility, KoHLT-EB (Electron Beam) has been operating for the plasma facing components to develop fusion engineering in Korea. The ITER Neutral Beam Duct Liner (NBDL) was fabricated and tested to qualify the thermocouple fixation method for the temperature measurement during a direct collision of the high-power neutral beam during ITER operation. The NBDL is CuCrZr panels, which are actively water cooled using deep drilled channels. To perform the profile test, the assessment for the possibility of an electron beam Gaussian power density profile and the result of absorbed power for that profile before the test start is needed. To assess the possibility of Gaussian profile, for the qualification test of a Gaussian heat load profile, small calorimetry was manufactured to simulate a real heat profile in the neutral beam duct liner, and this calorimetry has two cooling channel with five thermocouples, which is the same as NBDL. Preliminary analyses with ANSYSCFX using a 3D model were performed with the calorimetry model. The heating area was modeled to be 60 mm x 250 mm. The simulated heat flux is 0.5 - 1.2 MW/m''2 at 0.75 kg/sec of the water flow rate. A steady heat flux test was performed to measure the surface heat flux, surface temperature profile. With a thermohydraulic analysis and heat load test, the Gaussian heat profile will be confirmed for this calorimetry and NBDL mockup. The Korean heat load test facility will be used to qualify the specifications of various plasma facing components in fusion devices. To conduct a beam profile test, an assessment of the possibility of electron beam Gaussian power density profile and the results of the absorbed power for that profile before the test starts are needed. To assess the possibility of a Gaussian profile, for the qualification test of the Gaussian heat load profile, a calorimeter mockup and large Cu module were manufactured to simulate real heat. For this high-heat flux test

  7. Testing of ceramic filter materials at the PCFB test facility; Keraamisten suodinmateriaalien testaus PCFB-koelaitoksessa

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R.; Eriksson, T.; Lehtonen, P.; Tiensuu, J. [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula, Finland since 1986. In 1989, a 10 MW PCFB test facility was constructed. The test facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main objective of the project Y53 was to evaluate advanced candle filter materials for the Hot Gas Clean-up Unit (HGCU) to be used in a commercial PCFB Demonstration Project. To achieve this goal, the selected candle materials were exposed to actual high temperature, high pressure coal combustion flue gases for a period of 1000-1500 h during the PCFB test runs. The test runs were carried out in three test segments in Foster Wheeler`s PCFB test facility at the Karhula R and D Center. An extensive inspection and sampling program was carried out after the second test segment. Selected sample candles were analyzed by the filter supplier and the preliminary results were encouraging. The material strength had decreased only within expected range. Slight elongation of the silicon carbide candles was observed, but at this phase the elongation can not be addressed to creep, unlike in the candles tested in 1993-94. The third and last test segment was completed successfully in October 1996. The filter system was inspected and several sample candles were selected for material characterization. The results will be available in February - March 1997. (orig.)

  8. Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). User Test Planning Guide

    Science.gov (United States)

    2011-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ARMSEF. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  9. Demonstration Testing of a Thermal Desorption Unit to Receive and Treat Waste with Unlimited Concentration of PCBs - 13437

    International Nuclear Information System (INIS)

    For the last nine years, EnergySolutions and TD*X Associates LP have teamed up to provide the most comprehensive organic removal treatment process in the radioactive waste industry. The high performance thermal desorption unit (HP-TDU) located at the EnergySolutions Clive facility in Utah has successfully processed over 1,850 tons of organically contaminated radioactive mixed waste. Products from the HP-TDU system include a radioactively contaminated dry solid material that can be disposed in the on-site landfill and an organic condensate with high thermal energy content that is generally below background radiation and capable of free-release to a non-radioactive incinerator. Over the years, Permits and approvals have been obtained through the state of Utah, United States Environmental Protection Agency (USEPA) Region 8, and USEPA headquarters that enable the treatment of several waste categories including volatile and semi-volatile organic compounds, combustion-coded (CMBST) compounds, volatile metals, and polychlorinated biphenyls (PCBs). The unit has recently successfully completed Demonstration Testing for PCB concentrations up to 660,000 ppm (parts per million). Solid processed material from this Demonstration Testing was less than two ppm PCBs in three separate treatment runs; reprocessing or additional treatment was not needed to meet this limit. Through post-demonstration permitting, the system is unlimited in scope as approval has been given to receive and solidify up to pure PCBs down to this processing limit concentration to complete treatment of mixed waste. (authors)

  10. Demonstration Testing of a Thermal Desorption Unit to Receive and Treat Waste with Unlimited Concentration of PCBs - 13437

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Timothy L. [EnergySolutions, 423 West 300 South, Salt Lake City, UT 84101 (United States); Palmer, Carl R. [TD.X Associates LP, 148 South Dowlen Road, PMB 700, Beaumont, TX 77707 (United States)

    2013-07-01

    For the last nine years, EnergySolutions and TD*X Associates LP have teamed up to provide the most comprehensive organic removal treatment process in the radioactive waste industry. The high performance thermal desorption unit (HP-TDU) located at the EnergySolutions Clive facility in Utah has successfully processed over 1,850 tons of organically contaminated radioactive mixed waste. Products from the HP-TDU system include a radioactively contaminated dry solid material that can be disposed in the on-site landfill and an organic condensate with high thermal energy content that is generally below background radiation and capable of free-release to a non-radioactive incinerator. Over the years, Permits and approvals have been obtained through the state of Utah, United States Environmental Protection Agency (USEPA) Region 8, and USEPA headquarters that enable the treatment of several waste categories including volatile and semi-volatile organic compounds, combustion-coded (CMBST) compounds, volatile metals, and polychlorinated biphenyls (PCBs). The unit has recently successfully completed Demonstration Testing for PCB concentrations up to 660,000 ppm (parts per million). Solid processed material from this Demonstration Testing was less than two ppm PCBs in three separate treatment runs; reprocessing or additional treatment was not needed to meet this limit. Through post-demonstration permitting, the system is unlimited in scope as approval has been given to receive and solidify up to pure PCBs down to this processing limit concentration to complete treatment of mixed waste. (authors)

  11. Prevalence of enterobacteriaceae in Tupinambis merianae (Squamata: Teiidae) from a captive facility in Central Brazil, with a profile of antimicrobial drug resistance in Salmonella enterica

    OpenAIRE

    Andréa de Moraes Carvalho; Ayrton Klier Péres Júnior; Maria Auxiliadora Andrade; Valéria de Sá Jayme

    2013-01-01

    The present study reports the presence of enterobacteriaceae in Tegu Lizards (Tupinambis merianae)from a captive facility in central Brazil. From a total of 30 animals, 10 juveniles and 20 adults (10 males, 10 females), 60 samples were collected, in two periods separated by 15 days. The samples were cultivated in Xylose-lysine-deoxycholate agar (XLT4) and MacConkey agar. The Salmonella enterica were tested for antimicrobial susceptibility. A total of 78 bacteria was isolated, of wich 27 were ...

  12. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.

  13. Bayesian receiver operating characteristic estimation of multiple tests for diagnosis of bovine tuberculosis in Chadian cattle.

    Directory of Open Access Journals (Sweden)

    Borna Müller

    Full Text Available BACKGROUND: Bovine tuberculosis (BTB today primarily affects developing countries. In Africa, the disease is present essentially on the whole continent; however, little accurate information on its distribution and prevalence is available. Also, attempts to evaluate diagnostic tests for BTB in naturally infected cattle are scarce and mostly complicated by the absence of knowledge of the true disease status of the tested animals. However, diagnostic test evaluation in a given setting is a prerequisite for the implementation of local surveillance schemes and control measures. METHODOLOGY/PRINCIPAL FINDINGS: We subjected a slaughterhouse population of 954 Chadian cattle to single intra-dermal comparative cervical tuberculin (SICCT testing and two recently developed fluorescence polarization assays (FPA. Using a Bayesian modeling approach we computed the receiver operating characteristic (ROC curve of each diagnostic test, the true disease prevalence in the sampled population and the disease status of all sampled animals in the absence of knowledge of the true disease status of the sampled animals. In our Chadian setting, SICCT performed better if the cut-off for positive test interpretation was lowered from >4 mm (OIE standard cut-off to >2 mm. Using this cut-off, SICCT showed a sensitivity and specificity of 66% and 89%, respectively. Both FPA tests showed sensitivities below 50% but specificities above 90%. The true disease prevalence was estimated at 8%. Altogether, 11% of the sampled animals showed gross visible tuberculous lesions. However, modeling of the BTB disease status of the sampled animals indicated that 72% of the suspected tuberculosis lesions detected during standard meat inspections were due to other pathogens than Mycobacterium bovis. CONCLUSIONS/SIGNIFICANCE: Our results have important implications for BTB diagnosis in a high incidence sub-Saharan African setting and demonstrate the practicability of our Bayesian approach for

  14. Study of fast reactor safety test facilities. Preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Bell, G.I.; Boudreau, J.E.; McLaughlin, T.; Palmer, R.G.; Starkovich, V.; Stein, W.E.; Stevenson, M.G.; Yarnell, Y.L.

    1975-05-01

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods. (DG)

  15. Study of fast reactor safety test facilities. Preliminary report

    International Nuclear Information System (INIS)

    Included are sections dealing with the following topics: (1) perspective and philosophy of fast reactor safety analysis; (2) status of accident analysis and experimental needs; (3) experiment and facility definitions; (4) existing in-pile facilities; (5) new facility options; and (6) data acquisition methods

  16. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    Science.gov (United States)

    Moreno, J. B.; Moss, T. A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  17. Heater test planning for the Near Surface Test Facility at the Hanford reservation. Volume II. Appendix

    International Nuclear Information System (INIS)

    Volume II contains the following information: theoretical support for radioactive waste storage projects - development of data analysis methods and numerical models; injectivity temperature profiling as a means of permeability characterization; geophysical holes at the Near Surface Test Facility (NSTF), Hanford; proposed geophysical and hydrological measurements at NSTF; suggestions for characterization of the discontinuity system at NSTF; monitoring rock property changes caused by radioactive waste storage using the electrical resistivity method; microseismic detection system for heated rock; Pasco Basin groundwater contamination study; a letter to Mark Board on Gable Mountain Faulting; report on hydrofracturing tests for in-situ stress measurement, NSTF, Hole DC-11, Hanford Reservation; and borehole instrumentation layout for Hanford Near Surface Test Facility

  18. Conceptual design report, Sodium Storage Facility, Fast Flux Test Facility, Project F-031

    International Nuclear Information System (INIS)

    The Sodium Storage Facility Conceptual Design Report provides conceptual design for construction of a new facility for storage of the 260,000 gallons of sodium presently in the FFTF plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  19. Structure of the upper mantle in the north-western and central United States from USArray S-receiver functions

    Directory of Open Access Journals (Sweden)

    R. Kind

    2015-03-01

    Full Text Available We used more than 40 000 S-receiver functions recorded by the USArray project to study the structure of the upper mantle between the Moho and the 410 km discontinuity from the Phanerozoic western United States to the cratonic central US. We obtained clear observations of downward velocity reductions in the uppermost mantle which are commonly interpreted as the lithosphere-asthenosphere boundary (LAB in the western US and as the mid-lithospheric discontinuity (MLD in the cratonic US. We observe the western LAB reaching partly to the mid-continental rift system underneath the cratonic crust. The MLD is surprisingly plunging steeply towards the west from the Rocky Mountains Front to about 200 km depth near the Sevier Thrust Belt. There is a significant break in the lithosphere at the Sevier Thrust Belt. We also observe a velocity reduction about 30 km above the 410 km discontinuity in the same region where in the western US the LAB is observed, but not in the cratonic US.

  20. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Carl M. Stoots; Keith G. Condie; James E. O' Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.