WorldWideScience

Sample records for central balsas watershed

  1. Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico.

    Science.gov (United States)

    Piperno, D R; Moreno, J E; Iriarte, J; Holst, I; Lachniet, M; Jones, J G; Ranere, A J; Castanzo, R

    2007-07-17

    The origin of agriculture was a signal development in human affairs and as such has occupied the attention of scholars from the natural and social sciences for well over a century. Historical studies of climate and vegetation are closely associated with crop plant evolution because they can reveal the ecological contexts of plant domestication together with the antiquity and effects of agricultural practices on the environment. In this article, we present paleoecological evidence from three lakes and a swamp located in the Central Balsas watershed of tropical southwestern Mexico that date from 14,000 B.P. to the modern era. [Dates expressed in B.P. years are radiocarbon ages. Calibrated (calendar) ages, expressed as cal B.P., are provided for dates in the text.] Previous molecular studies suggest that maize (Zea mays L.) and other important crops such as squashes (Cucurbita spp.) were domesticated in the region. Our combined pollen, phytolith, charcoal, and sedimentary studies indicate that during the late glacial period (14,000-10,000 B.P.), lake beds were dry, the climate was cooler and drier, and open vegetational communities were more widespread than after the Pleistocene ended. Zea was a continuous part of the vegetation since at least the terminal Pleistocene. During the Holocene, lakes became important foci of human activity, and cultural interference with a species-diverse tropical forest is indicated. Maize and squash were grown at lake edges starting between 10,000 and 5,000 B.P., most likely sometime during the first half of that period. Significant episodes of climatic drying evidenced between 1,800 B.P. and 900 B.P. appear to be coeval with those documented in the Classic Maya region and elsewhere, showing widespread instability in the late Holocene climate. PMID:17537917

  2. DETERMINATION OF AGRICULTURAL POTENTIAL BY GEO SPATIAL MODELING AND MULTI CRITERIA ANALYSIS FOR “BALSAS MEZCALA” WATERSHED

    OpenAIRE

    Anastacio Espejel-García; Jorge Romero-Domínguez; Ariadna Isabel Barrera-Rodríguez; Benjamín Torres-Espejel; Jesús Félix-Crescencio

    2015-01-01

    The use of geographic information systems (GIS) facilitates the modeling of specific information allowing faster, lower costs and accuracy for the planning of the agricultural activities for large territories. The objective for this paper was to use GIS as a support for the approach of the land use potential for the “Balsas Mezcala” watershed; for this purpose the multi criteria analysis was used, that allows to consider decision make issues with multiples objectives and considering the fo...

  3. DETERMINATION OF AGRICULTURAL POTENTIAL BY GEO SPATIAL MODELING AND MULTI CRITERIA ANALYSIS FOR “BALSAS MEZCALA” WATERSHED

    Directory of Open Access Journals (Sweden)

    Anastacio Espejel-García

    2015-07-01

    Full Text Available The use of geographic information systems (GIS facilitates the modeling of specific information allowing faster, lower costs and accuracy for the planning of the agricultural activities for large territories. The objective for this paper was to use GIS as a support for the approach of the land use potential for the “Balsas Mezcala” watershed; for this purpose the multi criteria analysis was used, that allows to consider decision make issues with multiples objectives and considering the following criteria: geo-pedological (geomorphology and soil, climatology (thermal models and rainfall and the edapho-climatological requirements of the crops, the “Balsas Mezcala” hydrological region was chosen as the study area; through cartographic material the area was delimited and climate information was obtained from weather stations, geographic information and the data bases was collected from many different government agencies (INEGI, SEMARNAT, CONABIO, CONAGUA, IMTA, such information was processed in the ArcGIS software version 10.2.2, to obtained the geodatabases and geo spatial matrix which served as a cartographic input for the multi criteria analysis. The result of this investigation is a system that from geo spatial matrix and vectorial data originates raster dataset, same that were submitted to a modeling process with geo statistical algorithms, with that from a structure language, identify the potential zones with the highest aptness level, through the variable attributes that assign a weighted value using the methodology proposed by the United States Department of Agriculture (USDA in 1971 and taken by Food and Agriculture Organization of the United Nations (FAO for case studies since 1977 as an Agro-ecological Zoning System (AEZ. The result of the modeling of the soil aptness level in the watershed are 4 classes with 6 levels of aptness (very apt, apt, moderately apt, little apt, very little apt, unapt: Lands with irrigation potential

  4. Late Pleistocene and Holocene environmental history of the Iguala Valley, Central Balsas Watershed of Mexico

    OpenAIRE

    Piperno, D. R.; Moreno, J. E.; J Iriarte; Holst, I.; Lachniet, M.; Jones, J. G.; Ranere, A. J.; Castanzo, R.

    2007-01-01

    The origin of agriculture was a signal development in human affairs and as such has occupied the attention of scholars from the natural and social sciences for well over a century. Historical studies of climate and vegetation are closely associated with crop plant evolution because they can reveal the ecological contexts of plant domestication together with the antiquity and effects of agricultural practices on the environment. In this article, we present paleoecological evidence from three l...

  5. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    Science.gov (United States)

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  6. Vegetation analysis of Samin watershed, Central Java as water and soil conservation efforts

    OpenAIRE

    MARIDI; PUTRI AGUSTINA; ALANINDRA SAPUTRA

    2014-01-01

    Maridi, Agustina P, Saputra A. 2014. Vegetation analysis of Samin watershed, Central Java as water and soil conservation efforts. Biodiversitas 15: 215-223. Samin watershed in Central Java is one of 282 Indonesian watersheds which are in critical condition. Nowadays, the sustainability of forest resources in the upstream of Samin watershed is threatened by exploitation of forest by people. As a result, erosion and sedimentation are occurring in this area that may pose a threat of flooding and...

  7. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Directory of Open Access Journals (Sweden)

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  8. Balsa Tower Walls Brave "Big Buster"

    Science.gov (United States)

    Granlund, George

    2008-01-01

    Like many technology teachers, the author, a technology education teacher at Arthur Hill High School in Saginaw, Michigan, tries to stretch his budget by "milking" each student activity for maximum benefit. In the technology department, they use balsa wood towers to teach the basics of structural engineering. To get the most from their materials,…

  9. Fallout 137Cs in cultivated and noncultivated north central United States watersheds

    International Nuclear Information System (INIS)

    The cesium (137Cs) concentrations were measured in the soils and sediments of 14 watersheds, 7 cultivated and 7 noncultivated, in the North Central United States. The 137Cs concentration in watershed soils ranged from 56 to 149 nCi/m2, with cultivated watersheds averaging 75 nCi/m2 and noncultivated watersheds averaging 104 nCi/m2. The 137Cs concentration in the reservoir sediments ranged from 74 to 1,280 nCi/m2, with a mean of 676 nCi/m2 for the cultivated watersheds and 365 nCi/m2 for the noncultivated watersheds. The 137Cs concentrations per unit area in sediments were 0.8 to 18.7 times greater than those found in the contributing watershed soils. This indicated that some 137Cs is moving within the watersheds and that the reservoirs are acting as ''traps'' or ''sinks.'' The factors accounting for the variation in 137Cs concentration in the soils and sediments of the watersheds are (i) the erosion potential of the watershed, (ii) the sites for adsorption of 137Cs, and (iii) the input of radioactivity into the watershed

  10. Composition and structure of balsa (Ochroma pyramidale) wood

    OpenAIRE

    Borrega, Marc; Ahvenainen, Patrik; Serimaa, Ritva; Gibson, Lorna

    2014-01-01

    Balsa, with its low density and relatively high mechanical properties, is frequently used as the core in structural sandwich panels, in applications ranging from wind turbine blades to racing yachts. Here, both the cellular and cell wall structure of balsa are described, to enable multi-scale modeling and an improved understanding of its mechanical properties. The cellular structure consists of fibers (66–76 %), rays (20–25 %) and vessels (3–9 %). The density of balsa ranges from roughly 60 t...

  11. O Crescimento de duas espécies florestais pioneiras, pau-de-balsa (Ochroma lagopus Sw.) e caroba (Jacaranda copaia D. Don), usadas para recuperação de áreas degradadas pela agricultura na Amazônia Central, Brasil Growth of two forest pioneer species, pau-de-balsa (Ochroma lagopus Sw.) e caroba (Jacaranda copaia D. Don), used for rehabilitation of degraded areas from agriculture in Central Amazon, Brazil

    OpenAIRE

    Antenor Pereira Barbosa; Moacir Alberto Assis Campos; Paulo de Tarso Barbosa Sampaio; Shozo Nakamura; Cláudio de Queiroz Blair Gonçalves

    2003-01-01

    O objetivo deste trabalho foi estudar o crescimento das espécies florestais pioneiras pau-de-balsa (Ochroma lagopus Sw.) e caroba (Jacaranda copaia D. Don) para a recuperação de áreas degradadas pela agricultura. Na área, situada no km 120 da BR-174, tinha sido plantado mandioca e banana e abandonada há 8 anos, formando uma capoeira de porte baixo e rala. O experimento foi instalado em maio/98, com e sem gradagem da área. O espaçamento foi de 3x3m, em covas de 20 cm (diâmetro) x 30 cm (profun...

  12. Vegetation analysis of Samin watershed, Central Java as water and soil conservation efforts

    Directory of Open Access Journals (Sweden)

    MARIDI

    2014-10-01

    Full Text Available Maridi, Agustina P, Saputra A. 2014. Vegetation analysis of Samin watershed, Central Java as water and soil conservation efforts. Biodiversitas 15: 215-223. Samin watershed in Central Java is one of 282 Indonesian watersheds which are in critical condition. Nowadays, the sustainability of forest resources in the upstream of Samin watershed is threatened by exploitation of forest by people. As a result, erosion and sedimentation are occurring in this area that may pose a threat of flooding and landslide. Therefore, we need serious measures to maintain the function of Samin watershed, one of which is through the monitoring of vegetation in watershed. The purpose of this research was to analyze the structure and composition of vegetation in Samin watershed to support soil and water conservation. The survey of vegetation was conducted in 3 areas of Samin watershed based on geophysical conditions namely upstream, midstream, and downstream. At each sampling area, 37 sampling plots were randomly distributed in six observation stations. Vegetation analysis was carried out in both the lower crop community (LCC and the tree. Results showed that the number of LCC species found in the upstream, midstream, and downstream areas were 21, 34, and 28 respectively. The species diversity indexes of LCC vegetation in the upstream, midstream, and downstream areas were 1.04, 1.34, and 1.23 respectively. Based on this result, LCC vegetation in Samin watershed was categorized in medium condition. The number of tree species found in the upstream, midstream, and downstream areas were 27, 18, and 12 respectively. The species diversity indexes of tree vegetation in the upstream, midstream, and downstream areas were 1.31, 1.15, and 0.97 respectively. Based on this result, the tree vegetation in Samin watershed was categorized in medium condition for the upstream and midstream areas, and low condition for the downstream area. Vegetation in Samin watershed must be preserved

  13. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m2, and occurred 2 to 3 hours after the end of the pool fire. (author)

  14. O Crescimento de duas espécies florestais pioneiras, pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don, usadas para recuperação de áreas degradadas pela agricultura na Amazônia Central, Brasil Growth of two forest pioneer species, pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don, used for rehabilitation of degraded areas from agriculture in Central Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Antenor Pereira Barbosa

    2003-01-01

    Full Text Available O objetivo deste trabalho foi estudar o crescimento das espécies florestais pioneiras pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don para a recuperação de áreas degradadas pela agricultura. Na área, situada no km 120 da BR-174, tinha sido plantado mandioca e banana e abandonada há 8 anos, formando uma capoeira de porte baixo e rala. O experimento foi instalado em maio/98, com e sem gradagem da área. O espaçamento foi de 3x3m, em covas de 20 cm (diâmetro x 30 cm (profundidade, com adubação de 150g/cova de NPK (4-16-8 e calcário dolomítico na proporção de 3:1. Para a avaliação do crescimento, foram medidas a altura e o diâmetro das plantas aos 2 meses (julho/98 e a cada ano aproximadamente (junho/99, setembro/00 e maio/01. Os dados foram analisados através do delineamento inteiramente casualisado. A sobrevivência do pau-de-balsa foi maior em área gradeada (97,1% do que em area não gradeada (92,5%, após o primeiro ano do plantio; da caroba, foi cerca de 90% e sem diferenças entre as areas. A altura e diâmetro do pau-de-balsa, foram maiores em área gradeada, a partir do primeiro ano, chegando no terceiro ano a 11,85 m de altura e 11,42 cm de diâmetro. Na caroba, a diferença ocorreu a partir do segundo ano e no terceiro chegou a 8,37 m de altura e 11,18 cm de diâmetro. Além de outros fatores inerentes às espécies, o solo mais friável das áreas gradeadas, possibilitou um maior crescimento em altura e diâmetro das duas espécies estudadas.The objective of experiment was study the growth of pioneer forest species pau-de-balsa (Ochroma lagopus and caroba (Jacaranda copaia to rehabilitate degraded areas from agriculture. The experiment carried out at Br-174, km 120. After the use for cassava and banana plantations the area was abandoned for 8 years. The secondary forest that took place was of low height and sparse trees. The experiment was installed at may/98 and composed by harrowed and no harrowed

  15. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  16. Watershed Governance in South-Central Texas: Working from the Bottom up

    Science.gov (United States)

    Lopes, V. L.

    2014-12-01

    The purpose of this presentation is to introduce a set of key concepts that can guide the development of ecological governance systems and briefly describe a watershed ecological governance project in south-central Texas. Ecological governance is a form of governance embedding ecological principles and values in all levels of decision making and action, from the personal to the global. The model of ecological governance discussed here incorporates ideas and approaches that are already being put into practice in many watershed governance projects in the US and abroad; it is based on the premise that contemporary governance systems will continue to evolve in this direction, incorporating more and more of the features of ecological governance. The watershed governance project described here was devised to ensure that the long-term ecological integrity of a small urbanazing waterhed in south-central Texas is preserved and that the water quality standards are maintained for present and future generations. The ecological integrity of small spring-fed watersheds in Texas are under serious threat due to rapid urban development dependent on groundwater supplies, continued drilling of personal wells that are exempt from pumping regulation, and lack of adequate legal jurisdiction for managing development in rural and semi-rural areas. The watershed governance project was motivated by a firm belief of local stakeholders that watershed protection is an individual as well as a community responsibility, and the recognition that a balance between growth and protection is essential to maintain watershed integrity. It is concluded that whereas emergent systems of ecological governance struggle to succeed in an institutional context oriented towards the pursuit of self-interest and competition, their acceptance will happen more readily as ecological principles and values diffuses throughout modern society.

  17. Long-term agroecosystem research in the Central Mississippi River Basin: Goodwater Creek Experimental Watershed flow data

    Science.gov (United States)

    Flow monitoring in Goodwater Creek Experimental Watershed started in 1971 at three nested watersheds ranging from 12 to 73 km2 in drainage area. Since then, flow has been measured at 14 plots, 3 fields, and 12 additional stream sites ranging from 0.0034 to 6067 km2 in the Central Mississippi River B...

  18. The Probability Distribution of the Drought Parameters of the Central Anatolian Closed Watershed

    OpenAIRE

    KÖSE, Ömer

    2002-01-01

    In this research, first the various descriptions of drought were presented and then the statistical characteristics of drought parameters based on monthly data of four streams within the Central Anatolian Closed Watershed were analysed. These parameters are drought duration, drought severity and drought magnitude. The stationarity and randomness analyses of the drought parameters were performed. Trend analysis based upon Student's t-test was used for the stationarity analysis a...

  19. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker

    2007-01-01

    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  20. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.

    Science.gov (United States)

    Hu, X; McIsaac, G F; David, M B; Louwers, C A L

    2007-01-01

    Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds. PMID:17526878

  1. Surface Mining and Reclamation Effects on Flood Response of Watersheds in the Central Appalachian Plateau Region

    Science.gov (United States)

    Ferrari, J. R.; Lookingbill, T. R.; McCormick, B.; Townsend, P. A.; Eshleman, K. N.

    2009-01-01

    Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km2 watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

  2. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU

    Directory of Open Access Journals (Sweden)

    Ruibang Luo

    2014-06-01

    Full Text Available This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels, BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads, or just 25 min for 210-fold whole exome sequencing. BALSA’s speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.

  3. Natural Regeneration after Long-Term Bracken Fern Control with Balsa (Ochroma pyramidale in the Neotropics

    Directory of Open Access Journals (Sweden)

    Samuel I. Levy-Tacher

    2015-06-01

    Full Text Available In many parts of the Neotropics, deforested areas are often colonized by the highly competitive invasive bracken fern (Pteridium aquilinum, which inhabits naturally regenerated forests and successional forests on abandoned farmland. Within the tropical forest region of Chiapas in southern Mexico, we implemented an experiment in 2005 to out-compete bracken fern infestation and reduce or eliminate live bracken rhizomes using several treatments: Direct sowing of balsa seeds (Ochroma pyramidale; Malvaceae, a traditional Lacandon treatment of scattering balsa seeds, transplanting balsa seedlings, and a control treatment (without balsa. For each treatment, we applied three different bracken weeding frequencies: No weeding, biweekly weeding, and monthly weeding. In this study, we present data gathered four years after establishing the experiment regarding: Bracken fern rhizome biomass, balsa density, basal area, height, density, species richness of naturally regenerating vegetation for all treatments, and bracken weeding frequencies. We also evaluated the importance of balsa and its regenerative attributes in controlling bracken fern by correlating it with remaining belowground live rhizome biomass. Living rhizome biomass was completely eradicated in all treatments with biweekly and monthly weeding. Density and species richness of a naturally regenerated species were negatively correlated with bracken fern rhizome biomass, and the density of this species was highest in areas with no rhizome biomass. Although balsa tree stands are effective short-term solutions for controlling rhizome biomass, the success of natural regeneration following balsa establishment can be critical to long-term elimination of bracken fern.

  4. Unravel biophysical factors on river water quality response in Chilean Central-Southern watersheds.

    Science.gov (United States)

    Yevenes, Mariela A; Arumí, José L; Farías, Laura

    2016-05-01

    Identifying the key anthropogenic (land uses) and natural (topography and climate) biophysical drivers affecting river water quality is essential for efficient management of water resources. We tested the hypothesis that water quality can be predicted by different biophysical factors. Multivariate statistics based on a geographical information system (GIS) were used to explore the influence of factors (i.e., precipitation, topography, and land uses) on water quality (i.e., nitrate (NO 3 (-) ), phosphate (PO 4 (3 -) ), silicate (Si(OH)4), dissolved oxygen (DO), suspended solids (TSS), biological oxygen demand (DO), temperature (T), conductivity (EC), and pH) for two consecutive years in the Itata and Biobío river watersheds, Central Chile (36° 00' and 38° 30'). The results showed that (NO 3 (-) ), (PO 4 (3 -) ), Si(OH)4, TSS, EC, and DO were higher during rainy season (austral fall, winter, and spring), whereas BOD and temperature were higher during dry season. The spatial variation of these parameters in both watersheds was related to land use, topography (e.g., soil moisture, soil hydrological group, and erodability), and precipitation. Soil hydrological group and soil moisture were the strongest explanatory predictors for PO 4 (3 -) , Si(OH)4 and EC in the river, followed by land use such as agriculture for NO 3 (-) and DO and silviculture for TSS and Si(OH)4. High-resolution water leaching and runoff maps allowed us to identify agriculture areas with major probability of water leaching and higher probability of runoff in silviculture areas. Moreover, redundancy analysis (RDA) revealed that land uses (agriculture and silviculture) explained in 60 % the river water quality variation. Our finding highlights the vulnerability of Chilean river waters to different biophysical drivers, rather than climate conditions alone, which is amplified by human-induced degradation. PMID:27038616

  5. Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Directory of Open Access Journals (Sweden)

    E. R. Vivoni

    2009-06-01

    Full Text Available Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year.

  6. Charlemagne's summit canal: an early medieval hydro-engineering project for passing the Central European Watershed.

    Directory of Open Access Journals (Sweden)

    Christoph Zielhofer

    Full Text Available The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.

  7. Charlemagne's summit canal: an early medieval hydro-engineering project for passing the Central European Watershed.

    Science.gov (United States)

    Zielhofer, Christoph; Leitholdt, Eva; Werther, Lukas; Stele, Andreas; Bussmann, Jens; Linzen, Sven; Schneider, Michael; Meyer, Cornelius; Berg-Hobohm, Stefanie; Ettel, Peter

    2014-01-01

    The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water. PMID:25251589

  8. Magnesium isotopes in permafrost-dominated Central Siberian larch forest watersheds

    Science.gov (United States)

    Mavromatis, Vasileios; Prokushkin, Anatoly S.; Pokrovsky, Oleg S.; Viers, Jérôme; Korets, Mikhail A.

    2014-12-01

    To unravel the Mg isotope fractionation pathways within the continuous permafrost zone in the larch deciduous forest of Central Siberia, we measured the Mg isotopic composition of two large Siberian rivers (Nizhnaya Tunguska and Kochechum, which flow into the Yenisey), a small forested stream, and the major fluid and solid sources of Mg in the watershed: atmospheric precipitates, surface suprapermafrost flow, interstitial soil solutions, plant biomass, litter and mineral soils. The obtained results indicate a significant seasonal variation in riverine water Mg isotope signatures. During the winter baseflow, the Mg isotope composition of large rivers is significantly lighter than the source basaltic rocks and the atmospheric depositions. These differences support the presence of fluids enriched in lighter Mg isotopes, such as those affected by the mineral precipitation of secondary silicates or fluids that dissolve sedimentary carbonate rocks. During the spring flood and in the summer and fall seasons, the river fluid δ26Mg values increased by 0.2-0.3‰ and approached the Mg isotope composition of the ground vegetation (dwarf shrubs, mosses) and the soil organic horizon. Overall, the riverine waters were 0.3-0.7‰ lighter than the unaltered bedrock and the deep minerals soil horizons. The Mg isotopic compositions of Larix gmelinii organs (i.e., stem wood, roots and needles) exhibit a low variability. However, an enrichment of 0.2-0.3‰ in the δ26Mg of larch needles in the course of the growing season, from June to September can be observed. This enrichment most likely demonstrates uptake of isotopically heavier Mg by the plant in addition to the progressive thawing of the mineral soil (deepening of the active layer of the soil). Overall, the Mg isotope approach indicates the important contribution of vegetation (larch needles, mosses and dwarf shrubs) to the riverine Mg isotope signature and helps to reveal the contribution of isotopically light carbonate rocks

  9. Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds

    Science.gov (United States)

    Bart, Ryan; Hope, Allen

    2014-11-01

    Baseflow recession rates vary inter-seasonally in many watersheds. This variability is generally associated with changes in evapotranspiration; however, an additional and less studied control over inter-seasonal baseflow recession rates is the effect of aquifer antecedent storage. Understanding the role of aquifer antecedent storage on baseflow recession rates is crucial for Mediterranean-climate regions, where seasonal asynchronicity of precipitation and energy levels produces large inter-seasonal differences in aquifer storage. The primary objective of this study was to elucidate the relation between aquifer antecedent storage and baseflow recession rates in four central California watersheds using antecedent streamflow as a surrogate for watershed storage. In addition, a parsimonious storage-discharge model consisting of two nonlinear stores in parallel was developed as a heuristic tool for interpreting the empirical results and providing insight into how inter-seasonal changes in aquifer antecedent storage may affect baseflow recession rates. Antecedent streamflow cumulated from the beginning of the wateryear was found to be the strongest predictor of baseflow recession rates, indicating that inter-seasonal differences in aquifer storage are a key control on baseflow recession rates in California watersheds. Baseflow recession rates and antecedent streamflow exhibited a negative power-law relation, with baseflow recession rates decreasing by up to two orders of magnitude as antecedent streamflow levels increased. Inference based on the storage-discharge model indicated that the dominant source of recession flow shifted from small, rapid response aquifers at the beginning of the wet season to large, seasonal aquifers as the wet season progressed. Aquifer antecedent storage in California watersheds should be accounted for along with evapotranspiration when characterizing baseflow recession rates.

  10. Crown Jewel of the Fleet: Design, Construction, and Use of the Seagoing Balsa of the Pre-Columbian Andean Coast

    OpenAIRE

    Emanuel, Jeffrey Paul

    2012-01-01

    The seaworthiness of the balsa sailing raft, and the seafaring aptitude of those who built and sailed it, has been the subject of critically biased, often conflicting accounts over the nearly five centuries since contact. This paper objectively marshals historical evidence to recover the preColumbian design and construction of this ‘Crown Jewel’ of the coastal Andean fleet. Sailing balsas were constructed of balsa tree (ochroma spp.) trunks lashed together with henequen, covered with one or m...

  11. Runoff measurement and prediction for a watershed under natural vegetation in central Brazil

    Directory of Open Access Journals (Sweden)

    C. L. Silva

    1999-09-01

    Full Text Available This work aimed to measure and analyze total rainfall (P, rainfall intensity and five-day antecedent rainfall effects on runoff (R; to compare measured and simulated R values using the Soil Conservation Service Curve Number method (CN for each rainfall event; and to establish average R/P ratios for observed R values. A one-year (07/01/96 to 06/30/97 rainfall-runoff data study was carried out in the Capetinga watershed (962.4 ha, located at the Federal District of Brazil, 47° 52' longitude West and 15° 52' latitude South. Soils of the watershed were predominantly covered by natural vegetation. Total rainfall and runoff for the period were 1,744 and 52.5 mm, respectively, providing R/P of 3% and suggesting that watershed physical characteristics favored water infiltration into the soil. A multivariate regression analysis for 31 main rainfall-runoff events totaling 781.9 and 51.0 mm, respectively, indicated that the amount of runoff was only dependent upon rainfall volume. Simulated values of total runoff were underestimated about 15% when using CN method and an area-weighted average of the CN based on published values. On the other hand, when average values of CN were calculated for the watershed, total runoff was overestimated about 39%, suggesting that CN method shoud be used with care in areas under natural vegetation.

  12. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  13. Evaluation of Ephemeral Surface Flow at Ibiekuma Watershed in South Central Nigeria

    OpenAIRE

    O. A. Ehigiator

    2009-01-01

    The primary objective of this effort is the application at Ibiekuma watershed of lessons derived froma large number of published and ongoing research projects on dry season surface flow and sediment yield atthe International Institute for Tropical Agriculture (IITA) Ibadan in South western Nigeria. The period coveredspans September through November which generally constitute the second growing season. The effect of thespatial distribution of rainfall on runoff generation becomes increasingly ...

  14. Characterization of Amazon fibers of the peach palm, balsa, and babassu by XDR, TGA and NMR

    International Nuclear Information System (INIS)

    The aim of this work was to present the results by testing X-ray diffraction (XRD), thermogravimetric analysis (TG), nuclear magnetic resonance (NMR) and determining the moisture content of the peach palm, balsa and babassu fibers for assessing the feasibility of composite materials. The fibers of peach palm, balsa and babassu showed characteristic chemical structure of lignocellulosic material, and good thermal stability up to 220 deg C. The fiber with the highest crystallinity index (Ic) is the peach palm (72%) and the less crystalline is the babassu (37%), while the balsa fibers have Ic equal to 64%. The results have shown that these fibers can be used in the manufacture of composite materials. (author)

  15. Summary statistics and graphical comparisons of historical hydrologic and water-quality data; Seco Creek Watershed, South-Central Texas

    Science.gov (United States)

    Brown, David W.; Slattery, Richard N.; Gilhousen, Jon R.

    1998-01-01

    The U.S. Geological Survey collected hydrologic (rainfall, streamflow, and reservoir content) and water-quality data in the Seco Creek watershed, south-central Texas. Most of the data from 15 sites were collected as part of a study in cooperation with the U.S. Department of Agriculture and the Texas State Soil and Water Conservation Board to evaluate the effects of agricultural best-management practices on surface- and ground-water quantity and quality in the 255-square-mile watershed. Nearly 400 best-management practices at 58 sites were implemented by landowners in the watershed during March 1990-September 1995. Most of the data are from the early 1990s, the period during and after implementation of best-management practices. Data from five sites include water quality and are summarized in tables and graphics in the text; and data from all 15 sites are summarized on a diskette. Maximum annual rainfall among the sites for which data are presented in the text (excluding one site) for the during-and-after-implementation period (March 1990-September 1995) was 53.27 inches in water year 1992. Maximum annual total streamflow among the sites for the period was 63,400 acre-feet, also in water year 1992. At the one site with water-quality data (under base-flow conditions) for both the before-implementation period and the during-and-after implementation period of best-management practices, percentiles (5, 25, 50, 75, 95) for specific conductance, nitrate concentration, and fecal coliform density were less for the during-and-after-implementation period than for the before-implementation period.

  16. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    Science.gov (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  17. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region - article no. W04407

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N. [University of Maryland, Frostburg, MD (United States)

    2009-04-15

    Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km{sup 2} watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

  18. Comparative analysis of hydrologic signatures in two agricultural watersheds in east-central Illinois: legacies of the past to inform the future

    Directory of Open Access Journals (Sweden)

    M. A. Yaeger

    2013-05-01

    Full Text Available Historically, the central Midwestern US has undergone drastic anthropogenic land use change, having been transformed, in part through federal government policy, from a natural grassland system to an artificially-drained agricultural system devoted to row cropping corn and soybeans. Current federal policies are again influencing land use change in this region with increased corn acreage and new biomass crops proposed as part of an energy initiative emphasizing biofuels. To better address these present and future challenges it is helpful to understand how the legacies of past changes have shaped the current response of the system. To this end, a comparative analysis of the hydrologic signatures in both spatial and time series data from two central Illinois watersheds was undertaken. The past history of these catchments is reflected in their current hydrologic responses, which are highly heterogeneous, more so in the extensively tile-drained Sangamon watershed. The differences in geologic history, artificial drainage patterns, and to some extent, reservoir construction, manifest at all time scales, from annual to daily, and spatially within the watersheds. These differences can also be seen in the summer low flow patterns, where the more tile-drained watershed shows more variability than does the more naturally drained one. Of interest is the scaling behavior of the low flows; generally as drainage area increases, small-scale heterogeneity decreases. This is not seen in the more tile-drained watershed, thus adding complexity to the problem of predicting the catchment response to future changes.

  19. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin

    2014-02-01

    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  20. Description of the physical environment an coal-mining history of West-Central Indiana, with emphasis on six small watersheds

    Science.gov (United States)

    Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, Richard F.; Renn, Danny E.

    1990-01-01

    This report describes the physical and human environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds selected for study of the hydrologic effects of surface coal mining. The report summarizes information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal-mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana. Site-specific information is given on the morphology, geology, soils, land use, coal-mining history, and hydrologic instrumentation of the six watersheds, which are each less than 3 square miles in area.

  1. Spatial and Temporal Variations of Water Quality in a Recently Urbanized Watershed in Central Ohio

    Science.gov (United States)

    Volk, J. M.

    2011-12-01

    The Big Darby Creek west of Columbus, Ohio is a National Scenic River and is highly protected by governmental and nongovernmental agencies. A watershed tributary, Hellbranch Run, drains land that has recently seen conversion from agricultural land to urban. Urbanization can degrade streams due to increased impervious surfaces in the watershed which create pulses of sediments and pollutants to flow to streams during storm events. Study objectives are to determine and interpret the temporal and spatial dynamics of major nutrient, major ion chemistry and total suspended solids concentrations from four sites along Hellbranch Run. Sites represent different land-use catchments and upstream/downstream on the mainstem of the stream. Land-use data from 1992, 2001 and 2006 were used to compare changes in nutrient and Cl- loads overtime to land-use changes. Bimonthly sampling took place from Nov. 2009 to Nov. 2010. Sampling involves measuring temperature, pH and conductivity in situ in the stream, laboratory analysis was conducted for major ions (alkalinity was calculated as HCO3-), total suspended solids (TSS) and major nutrients: NO3- + NO2- -N, NH4+ -N, total nitrogen, PO4-3 and total phosphorus concentrations. Results show total phosphorus having very high concentrations: median 398 ug/L (66.8 to 1,773 ug/L). Additionally, Hamilton Ditch, a headwater draining cultivated crop, has the highest concentrations of all nutrients and ions, whereas the larger urban headwater streamreach shows lower values. Seasonal shifts exhibited a strong control on nitrate with highest values in the winter and lowest in the summer, while phosphorus shows a weaker trend with highest values in the fall. Suspended solids show lower values upstream and highest just downstream of the confluence of the two headwaters. Total dissolved solids become diluted downstream, with highest concentrations during low flow. Historical flow, nutrients, Cl- and TSS data was used to estimate daily loads using the

  2. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    International Nuclear Information System (INIS)

    West-central Indiana is underlain by coal-bearing Pennsylvanian rocks. Nearly all of the area has been glaciated at least once and is characterized by wide flood plains and broad, flat uplands. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has > 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. More than 50,000 acres in west-central Indiana were disturbed by surface coal mining from 1941 through 1980. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined,agricultural land. Soils are very well drained shaly silty loams that have formed on steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation

  3. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt

    Directory of Open Access Journals (Sweden)

    N. Ohlanders

    2013-03-01

    Full Text Available Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the relative contribution of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources. Isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a moderate glacier cover (11.5%. We found that the steep altitude gradient of the studied catchment caused a corresponding gradient in snowpack isotopic composition and that this spatial variation had a profound effect on the temporal evolution of streamflow isotopic composition during snowmelt. Glacier melt and snowmelt contributions to streamflow in the studied basin were determined using a quantitative analysis of the isotopic composition of streamflow and its sources, resulting in a glacier melt contribution of 50–90% for the unusually dry melt year of 2011/2012. This suggests that in (La Niña years with little precipitation, glacier melt is an important water source for central Chile. Predicted decreases in glacier melt due to global warming may therefore have a negative long-term impact on water availability in the Central Andes. The pronounced seasonal pattern in streamflow isotope composition and its close relation to the variability in snow cover and discharge presents a potentially powerful tool to relate discharge variability in mountainous, melt-dominated catchments with related factors such as contributions of sources to streamflow and snowmelt transit times.

  4. Stable water isotope variation in a Central Andean watershed dominated by glacier- and snowmelt

    Directory of Open Access Journals (Sweden)

    N. Ohlanders

    2012-10-01

    Full Text Available Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the fraction of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources; isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a relatively high glacial cover (11.5%. We found that the steep altitude gradient of the studied catchment caused a corresponding gradient in snowpack isotopic composition and that this spatial variation had a profound effect on the temporal evolution of streamflow isotopic composition during snowmelt. Glacier- and snowmelt contributions to streamflow in the studied basin were calculated using a quantitative analysis of the isotopic composition of streamflow and its sources, resulting in a glacier melt contribution of 50–80% for the unusually dry melt year of 2011/12. This suggests that in (la Niña years with little precipitation, glacier melt is an important water source for Central Chile. Predicted decreases in glacier melt due to global warming may therefore have a negative impact on water availability in the Central Andes as well as in comparable semi-arid regions of the world; this impact is non-commensurable with areal glacial cover or with the relative areal influence coverage of glacier versus seasonal snowpack. The pronounced seasonal pattern in streamflow isotope composition and its close relation to the evolution of snow cover and to discharge presents a potentially powerful tool for relating discharge evolution in mountainous, melt-dominated catchments with related factors such as contributions of sources to streamflow and snowmelt transit times.

  5. Stable water isotope variation in a Central Andean watershed dominated by glacier- and snowmelt

    OpenAIRE

    N. Ohlanders; Rodriguez, M.; McPhee, J

    2012-01-01

    Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the fraction of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources; isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a relatively high glacial cover (11.5%). We found that ...

  6. Natural Regeneration after Long-Term Bracken Fern Control with Balsa (Ochroma pyramidale) in the Neotropics

    OpenAIRE

    Samuel I. Levy-Tacher; Ivar Vleut; Francisco Román-Dañobeytia; James Aronson

    2015-01-01

    In many parts of the Neotropics, deforested areas are often colonized by the highly competitive invasive bracken fern (Pteridium aquilinum), which inhabits naturally regenerated forests and successional forests on abandoned farmland. Within the tropical forest region of Chiapas in southern Mexico, we implemented an experiment in 2005 to out-compete bracken fern infestation and reduce or eliminate live bracken rhizomes using several treatments: Direct sowing of balsa seeds (Ochroma pyramidale...

  7. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    Science.gov (United States)

    Martin, J.D.; Crawford, Charles G.; Duwelius, R.F.; Renn, D.E.

    1987-01-01

    Information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana is summarized. Site-specific information is given on the morphology , geology, soils, land use, coal mining history, and hydrologic instrumentation of the six watersheds which are each less than 3 sq mi in area. The Wabash, White, and Eel Rivers are the major drainages in west-central Indiana. Average annual precipitation is about 39.5 in/yr and average annual runoff is about 13 in/yr. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has more than 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. Almost half of Indiana 's surface reserves are in Clay, Owen, Sullivan, and Vigo Counties. More than 50,000 acres in west-central Indiana have been disturbed by surface coal mining from 1941 through 1980. Big Slough and Hooker Creek are streams that drain unmined, agricultural watersheds. Row-crop corn and soybeans are the principal crops. Soils are moderately well drained silt loams, and the watersheds well developed dendritic drainage systems. Unnamed tributaries drain mined and reclaimed watersheds. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and an unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Soils are very well drained shaly silty loams that have formed on steeply sloping banks. Both watersheds contain numerous

  8. FLUCTUACIONES ECONÓMICAS PREHISPÁNICAS EN LA CUENCA DEL RÍO BALSAS, MÉXICO (Prehispanic Economic Fluctuations in the Balsas River Basin, Mexico

    Directory of Open Access Journals (Sweden)

    Pascual Izquierdo-Egea

    2014-07-01

    Full Text Available Aplicando el método de valoración contextual al análisis del registro funerario de la cuenca del río Balsas, México, podemos aislar las fluctuaciones económicas y los cambios sociales prehispánicos codificados en la composición de los ajuares mortuorios. Entre los relevantes resultados obtenidos, destaca que el colapso de las antiguas civilizaciones mesoamericanas —Teotihuacan, Monte Albán o la maya clásica— aparezca perfectamente reflejado en las ofrendas de los entierros del periodo Clásico Tardío. ENGLISH: By applying the contextual valuation method to the analysis of the mortuary record in the Balsas River basin, Mexico, we can isolate the prehispanic economic fluctuations and social changes encoded in the composition of grave goods. Among the relevant results obtained, highlights that the collapse of ancient Mesoamerican civilizations (Teotihuacan, Monte Alban and the Maya Classic appears perfectly reflected in the offerings of Late Classic burials.

  9. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative...

  10. Comparative analysis of hydrologic signatures in two agricultural watersheds in east-central Illinois: legacies of the past to inform the future

    Science.gov (United States)

    Yaeger, M. A.; Sivapalan, M.; McIsaac, G. F.; Cai, X.

    2013-11-01

    Historically, the central Midwestern US has undergone drastic anthropogenic land use change, having been transformed, in part through government policy, from a natural grassland system to an artificially drained agricultural system devoted to row cropping corn and soybeans. Current federal policies are again influencing land use in this region with increased corn acreage and new biomass crops proposed as part of an energy initiative emphasizing biofuels. To better address these present and future challenges it is helpful to understand whether and how the legacies of past changes have shaped the current response of the system. To this end, a comparative analysis of the hydrologic signatures in both spatial and time series data from two central Illinois watersheds was undertaken. The past history of these catchments is reflected in their current hydrologic responses, which are highly heterogeneous due to differences in geologic history, artificial drainage patterns, and reservoir operation, and manifest temporally, from annual to daily timescales, and spatially, both within and between the watersheds. These differences are also apparent from analysis of the summer low flows, where the more tile-drained watershed shows greater variability overall than does the more naturally drained one. In addition, precipitation in this region is also spatially heterogeneous even at small scales, and this, interacting with and filtering through the historical modifications to the system, increases the complexity of the problem of predicting the catchment response to future changes.

  11. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    Science.gov (United States)

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of

  12. Characterization of Amazon fibers of the peach palm, balsa, and babassu by XDR, TGA and NMR; Caracterizacao das fibras amazonicas de pupunha, babacu e balsa atraves de DRX, TG e RMN

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Maria A.; Marconcini, Jose M., E-mail: mariaalice@cnpdia.embrapa.br [Embrapa Instrumentacao, Sao Carlos-SP (Brazil); Morelli, Carolina L.; Marinelli, Alessandra L.; Bretas, Rosario E.S. [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil)

    2011-07-01

    The aim of this work was to present the results by testing X-ray diffraction (XRD), thermogravimetric analysis (TG), nuclear magnetic resonance (NMR) and determining the moisture content of the peach palm, balsa and babassu fibers for assessing the feasibility of composite materials. The fibers of peach palm, balsa and babassu showed characteristic chemical structure of lignocellulosic material, and good thermal stability up to 220 deg C. The fiber with the highest crystallinity index (Ic) is the peach palm (72%) and the less crystalline is the babassu (37%), while the balsa fibers have Ic equal to 64%. The results have shown that these fibers can be used in the manufacture of composite materials. (author)

  13. Coptoborus ochromactonus, n. sp. (Coleoptera: Curculionidae: Scolytinae), an emerging pest of cultivated balsa (Malvales: Malvaceae) in Ecuador.

    Science.gov (United States)

    Stilwell, Abby R; Smith, Sarah M; Cognato, Anthony I; Martinez, Malena; Flowers, R Wills

    2014-04-01

    A new species of xyleborine ambrosia beetle has been found to attack balsa, Ochroma pyramidale (Cavanilles ex Lamarck) Urban, in Ecuador. Coptoborus ochromactonus Smith & Cognato is described and its biology is reported. Large-scale surveys were conducted between 2006 and 2009, and observational studies were carried out between 2010 and 2013 in Ecuadorian commercial plantations to determine life history and host preference characteristics. C. ochromactonus attacked balsa between 1.5 and 3 yr in age. Successful attacks were more prevalent in smaller diameter trees and unhealthy trees. In general, attacks and beetle-caused mortality were more prevalent during the dry summer months when trees were under more moisture and light stress. Fungal mycelia were consistently observed coating beetle galleries and are likely the true damaging agent to balsa trees. PMID:24772549

  14. Bees (Hymenoptera: Apidae) present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 = Abelhas (Hymenoptera: Apidae) associadas às flores do pau-de-balsa Ochroma lagopus Swartz, 1788

    OpenAIRE

    Carla Regina Guimarães Brighenti; Deodoro Magno Brighenti

    2010-01-01

    The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the familyApidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Af...

  15. Probabilistic fatigue life of balsa cored sandwich composites subjected to transverse shear

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2015-01-01

    model are obtaining characteristic S–Ncurves corresponding to a given survival probability, and calibrating partial safety factorsfor material fatigue. The latter is demonstrated by a calibration performed using reliability analysis with the first-order reliability method. The measured variance in balsa...... controlled to the same extent as an industrial manufacturing processes. The large variance in the probabilistic model for fatigue life is reflected in the corresponding calibrated partial safety factors, which are higher thanthe factors usually associated with synthetic materials such as fiber...

  16. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    Science.gov (United States)

    Paschke, Suzanne S.; Walton-Day, Katie; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    Toll Gate Creek, in the west-central part of the Denver Basin, is a perennial stream in which concentrations of dissolved selenium have consistently exceeded the Colorado aquatic-life standard of 4.6 micrograms per liter. Recent studies of selenium in Toll Gate Creek identified the Denver lignite zone of the non-marine Cretaceous to Tertiary-aged (Paleocene) Denver Formation underlying the watershed as the geologic source of dissolved selenium to shallow ground-water and surface water. Previous work led to this study by the U.S. Geological Survey, in cooperation with the City of Aurora Utilities Department, which investigated geologic sources of selenium and selenium concentrations in the watershed. This report documents the occurrence of selenium-bearing rocks and groundwater within the Cretaceous- to Tertiary-aged Denver Formation in the west-central part of the Denver Basin, including the Toll Gate Creek watershed. The report presents background information on geochemical processes controlling selenium concentrations in the aquatic environment and possible geologic sources of selenium; the hydrogeologic setting of the watershed; selenium results from groundwater-sampling programs; and chemical analyses of solids samples as evidence that weathering of the Denver Formation is a geologic source of selenium to groundwater and surface water in the west-central part of the Denver Basin, including Toll Gate Creek. Analyses of water samples collected from 61 water-table wells in 2003 and from 19 water-table wells in 2007 indicate dissolved selenium concentrations in groundwater in the west-central Denver Basin frequently exceeded the Colorado aquatic-life standard and in some locations exceeded the primary drinking-water standard of 50 micrograms per liter. The greatest selenium concentrations were associated with oxidized groundwater samples from wells completed in bedrock materials. Selenium analysis of geologic core samples indicates that total selenium

  17. Processes and trends of the land use change in Aksu watershed in the central Asia from 1960 to 2008

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Land use change (LUC) in trans-boundary watersheds is of great importance to environmental assessment. The Aksu River is the largest trans-boundary river crossing Kyrgyzstan and China,but there was little information on the LUC of the watershed. We quantitatively investigated the processes and trends of its LUC by using analytic models based on the land use data derived from the remote sensing images and topographic maps. The LUC was in the quasi-balanced status with a slight difference between the loss and the gain of the area for most land use types during the period of 1960-1990,whereas transferred to the unbalanced status with significant difference between the loss and gain of the area during the period of 1990-2008. At the same time,land conversion direction changed from two-way transition to one-way transition for the most land use types. The integrated rate of net change of land use during the period of 1990-2008 is 2.1 times of that during the period of 1960-1990. Information on the processes and trends of LUC is valuable for better understanding the environmental changes across the whole trans-boundary watershed,and helpful to decision-making management for Kyrgyzstan and China.

  18. Cicatih Watershed

    OpenAIRE

    CIFOR

    2007-01-01

    On the 15 of March, IPB and CIFOR organized a workshop as an initial effort to invite all stakeholders of CICATIH watershed (Sukabumi - West Java) to discuss potentials and constrains in protecting the watershed and improving the quality of life of the people residing within the watershed. PES-1 (Payments for Environmental Services Associate Award)

  19. Watershed Seasons

    Science.gov (United States)

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  20. Regional scale modeling of hill slope sediment delivery: a case study in the Esera-Isabena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    Energy Technology Data Exchange (ETDEWEB)

    Alatorre, L. C.; Begueria, S.; Garcia-Ruiz, J. M.

    2009-07-01

    Soil ersoion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km{sup 2}, central Spanish Pyrenees), which is drained by the Esera and Isabena rivers. Several input data layers with a 20 x 20 m resolution were derived using a GIS package comprising a digital terrain model (DTM), and stream network, land use, rainfall erosivity, soil erodibility and crop management factors. (Author) 6 refs.

  1. Regional scale modeling of hill slope sediment delivery: a case study in the Esera-Isabena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    International Nuclear Information System (INIS)

    Soil ersoion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km2, central Spanish Pyrenees), which is drained by the Esera and Isabena rivers. Several input data layers with a 20 x 20 m resolution were derived using a GIS package comprising a digital terrain model (DTM), and stream network, land use, rainfall erosivity, soil erodibility and crop management factors. (Author) 6 refs.

  2. Water-Balance Simulations of Runoff and Reservoir Storage for the Upper Helmand Watershed and Kajakai Reservoir, Central Afghanistan

    Science.gov (United States)

    Vining, Kevin C.; Vecchia, Aldo V.

    2007-01-01

    A study was performed to provide information on monthly historical and hypothetical future runoff for the Upper Helmand watershed and reservoir storage in Kajakai Reservoir that could be used by Afghanistan authorities to make economic and demographic decisions concerning reservoir design and operation, reservoir sedimentation, and development along the Helmand River. Estimated reservoir volume at the current spillway elevation of 1,033.5 meters decreased by about 365 million cubic meters from 1968 to 2006 because of sedimentation. Water-balance simulations indicated a good fit between modeled and recorded monthly runoff at the two gaging stations in the watershed for water years 1956-79 and indicated an excellent fit between modeled and recorded monthly changes in Kajakai Reservoir storage for water years 1956-79. Future simulations, which included low starting reservoir water levels and a spillway raised to an elevation of 1,045 meters, indicated that the reservoir is likely to fill within 2 years. Although Kajakai Reservoir is likely to fill quickly, multiyear deficits may still occur. If future downstream irrigation demand doubles but future precipitation, temperature, and reservoir sedimentation remain similar to historical conditions, the reservoir would have more than a 50-percent chance of being full during April or May of a typical year. Future simulations with a 10-percent reduction in precipitation indicated that supply deficits would occur more than 1 in 4 years, on average, during August, September, or October. The reservoir would be full during April or May fewer than 1 in 2 years, on average, and multiyear supply deficits could occur. Increased sedimentation had little effect on reservoir levels during April through July, but the frequency of deficits increased substantially during September and October.

  3. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  4. Growth and production of Donax striatus (Bivalvia: Donacidae) from Las Balsas beach, Gibara, Cuba.

    Science.gov (United States)

    Ocaña, Frank A

    2015-09-01

    Clams of the genus Donax are worldwide the dominating group of the invertebrate community on sandy beaches. They are primary consumers that provide a significant abundance and biomass to the ecosystem. In the Caribbean, Donax striatus has an important role for nature and human, nonetheless studies on the population dynamics of this beach clam are scarce and no information exists on secondary production of this species. Growth parameters and secondary production of D. striatus were estimated from February 2008 to November 2009 at Las Balsas beach, Northeastern Cuba, in order to provide basic information for management purposes. In each month 45 samples were taken by means of a PVC corer of 0.025 m2 area and sieved with a 1 mm mesh. Animals were measured and weighted with and without shell. A total of 5 471 specimens were collected during the sampling period. Shell length ranged from 2.7-33.3 mm. Growth parameters estimated from length frequency data were L∞ = 36.1 mm, K= 0.8/yr and t0= 0.2/yr. The growth performance resulted in values of Φ'= 3.02. Life span was 2.4 yrs and mortality rate was 3.07 /yr. In 2008, mean abundance of D. striatus ranged between 17.1 - 770.7 ind./m2. In 2009 the lowest mean abundance was 34.4 and the highest was 892.5 ind./m2. During 2009 biomass and production was more than twice higher in comparison with 2008. Individual production showed highest values in the 24 mm shell size (3.74 g/m2.yr) and 25 mm (0.71 g/m2.yr), considering mass with shell and without shell, respectively. During 2009 abundance of individuals with 15 mm shell length or more increased resulting in higher biomass and production, compared to 2008. Using the conversion factor of wet mass to ash free dry mass (AFDM), annual production ranged between 2.87-6.11 g AFDM/m2.yr, resulting in a turnover rate (P/B) between 5.11 and 3.47 in 2008 and 2009, respectively. The rapid growth and high turnover rate of D. striatus suggest a rapid recovery of the population. These

  5. Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach

    Science.gov (United States)

    Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.

    2009-12-01

    at the outlet, with a dominance of cohesive sediments (mainly silt and clay). Sediment delivery dynamics was found to be seasonally dependent and principally driven by the river network transport capacity. With the exception of events associated with a very high discharge peak, sub-catchments delivered very little sediment to the basin’s outlet during first events of the rainy season (corresponding to May-June period). Later on (from July until the end of the season), even low headwater sediment peaks were coupled with significant sediment fluxes at the outlet. An analysis of SSC-Q hysteresis patterns was also conducted for major flood events at each site. Anti-clockwise SSC-Q hysteresis loops were recorded most frequently at the three upland sub-catchments, while at the outlet a double-peaked SSC signal was repeatedly detected, outlining the variety in sediment contributions. The findings of this nested watershed approach suggest that during the first part of the rainy season, fine sediment loads exported from active hillslopes deposit as fluid mud layers in the lowland river channels. Once the in-channel storage capacity is loaded, the river transport potential guarantees a direct transit between headwater areas and delivery zones.

  6. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  7. Tecnologia alternativa para a quebra de dormência das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae) Alternative technology for breaking dormancy of balsa wood (Ochroma lagopus Sw., Bombacaceae) seeds

    OpenAIRE

    Antenor P. Barbosa; Paulo de .T. B. Sampaio; Moacir. A. A. Campos; Vânia P. Varela; Cláudia de Q. B. Gonçalves; Shigeo Iida

    2004-01-01

    Este trabalho, teve como objetivo estudar a germinação das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae) em diferentes estágios de maturação aparente dos frutos; a germinação das sementes provenientes de árvores com diferentes diâmetros a altura do peito (DAP) e a germinação das sementes tratadas para quebra de dormência. No primeiro experimento, avaliou-se a germinação das sementes dos frutos verdes, verdosos (verde amarelado), negros (fruto fechado) e negros deiscentes (fruto ...

  8. Conservação e vigor de sementes de pau-de-balsa (Ochroma pyramidale) Conservation and vigour of balsawood seeds (Ochroma pyramidale)

    OpenAIRE

    Antonio Moçambite Pinto; Mario Takao Inoue; Antonio Carlos Nogueira

    2004-01-01

    Ochroma pyramidale, Bombacaceae, conhecida popularmente como pau-de-balsa, é utilizada para construção de jangadas, balsas, salva-vidas, bóias, brinquedos e na fabricação de papel e celulose. O objetivo deste estudo foi definir um método de acondicionamento de sementes de O. pyramidale, visando a conservação da viabilidade e vigor destas para sua utilização e comercialização em épocas de baixa produção. Sementes de O. pyramidale foram embaladas em sacos de papel tipo kraft e sacos de plástico...

  9. Determinants of Farmers' Adoption of Improved Soil Conservation Technology in a Middle Mountain Watershed of Central Nepal

    Science.gov (United States)

    Tiwari, Krishna R.; Sitaula, Bishal K.; Nyborg, Ingrid L. P.; Paudel, Giridhari S.

    2008-08-01

    This study explores different socio-economic and institutional factors influencing the adoption of improved soil conservation technology (ISCT) on Bari land (Rainfed outward sloping terraces) in the Middle Mountain region of Central Nepal. Structured questionnaire survey and focus group discussion methods were applied to collect the necessary information from farm households. The logistic regression model predicted seven factors influencing the adoption of improved soil conservation technology in the study area including years of schooling of the household head, caste of the respondent, land holding size of the Bari land, cash crop vegetable farming, family member occupation in off farm sector, membership of the Conservation and Development Groups, and use of credit. The study showed that technology dissemination through multi-sectoral type community based local groups is a good option to enhance the adoption of improved soil conservation technology in the Middle Mountain farming systems in Nepal. Planners and policy makers should formulate appropriate policies and programs considering the farmers’ interest, capacity, and limitation in promoting improved soil conservation technology for greater acceptance and adoption by the farmers.

  10. Influencia de las coberturas de sombreo suspendidas instaladas en balsas de riego sobre los requerimientos de filtrado

    OpenAIRE

    Maestre Valero, José Francisco; Martínez Álvarez, Víctoriano

    2013-01-01

    Este estudio presenta el análisis del efecto de la instalación de coberturas de sombreo suspendidas sobre los requerimientos de lavado de filtros de un sistema de riego. Se evaluó el filtrado en 10 balsas, 2 de ellas cubiertas con una cobertura de sombreo suspendida. Un equipo de riego portátil dotado con dos manómetros analógicos y uno digital registro el aumento progresivo de las pérdidas de carga en filtro (indicador de retención de partículas). Adicionalmente, una sonda OTT-DS5 determinó ...

  11. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  12. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle...

  13. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed...

  14. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate that mixed alluvial–bedrock channels exhibit first-order lithologic controls (lithologic resistance and valley confinement) of channel geometry, second

  15. Soil properties in different types of Eucalypt Plantations in a small forested watershed, north-central Portugal

    Science.gov (United States)

    Santos, J. M.; van Beersum, S.; van Hall, I.; Bernard-Jannin, L.; Rial-Rivas, M. E.; Nunes, J. P.; Keizer, J. J.

    2012-04-01

    The main aim of the HIDRIA project is to improve the knowledge and understanding of factors and processes that determine the hydrological behaviour of forested foothills in the Caramulo mountain range, North-Central Portugal. The changes from natural forest cover to Eucalyptus plantations in the last decades in Portugal is present in Serra de Cima catchment, one of the four experimental catchments monitored within the framework of the project. The objectives of the present study are to determine the effects of these changes on soil properties, and to improve the parameterization of the SWAT model to simulate the impact of land-use changes associated with forestry practices on hydrological processes. The study catchment (Serra de Cima) is located in the Águeda Basin, draining the foothills of the Caramulo mountains east of Águeda (40°36'N, -8°20'E). The climate is wet Mediterranean with a mean annual precipitation of about 1600 mm at 445 m a.s.l. Soils are generally Umbric Leptosols (pine forest (27% of the total area). Eucalypts are managed as Short Rotation Coppices, with each stand growing during 30-36 years; trees are cut every 10-12 years and stems re-grow from roots afterwards. The eucalypt stands in the study area differ in tree age, undergoing their first, second or third rotations. Climate, soil moisture and streamflow are monitored at the catchment. The presentation will focus on the results of a field campaign done on June 2011 to characterize soil and vegetation properties for six points on eucalypt stands in different stages of growth, as well as pine stands. The parameters sampled in this campaign were selected based on a sensitivity analysis of the SWAT model, and included: tree density and diameter; Leaf Area Index (LAI); ground cover; profile description; dry bulk density; texture and rock content; organic matter content; intensity of Soil Water Repellency (Molarity of Ethanol Droplet test); and near-saturated hydraulic conductivity (mini

  16. CZO perspective in Central Africa : The Lopé watershed, Lopé National Park, Ogooué River basin, Gabon.

    Science.gov (United States)

    Braun, J. J.; Jeffery, K.; Koumba Pambo, A. F.; Paiz, M. C.; Richter, D., Jr.; John, P.; Jerome, G.

    2015-12-01

    Critical Zone Observatories (CZO) in equatorial regions are seldom (see e. g. http://www.czen.org/, USA and http://rnbv.ipgp.fr/, France). The equatorial zone of Central Africa is almost free of them with the exception of the CZO of the Upper Nyong river basin (organic-rich river on the lateritic plateau of South Cameroon; SO BVET, http://bvet.omp.obs-mip.fr/). On both sides of the Equator line, the Ogooué River Basin (215,000 km2) stretches on about 80% of the total area of Gabon and drains various geological and morpho-pedological contexts and feeds the sedimentation areas of the Central African passive margin (Guillochaux et al., 2014). The Upper Ogooué (up to Lambaréné) drains the stepped planation surface of the Congo craton while the Lower Ogooué drains Mesozoic and Cenozoic sedimentary terrains. The climate is equatorial (Pmean = 2500 mm/yr; Tmean = 26 °; %humidity > 80%). Continuous hydro-climatic chronicles exist for the period 1953-1974 (managed by ORSTOM, now IRD). The runoff at Lambaréné (92% of the basin area) is very high (714 mm/yr). With a rural density of 1 inhabitant/km2, it is one of the last largely pristine tropical forested ecosystems on the Planet. In addition, the basin will be, in the coming decades, the theatre of important anthropogenic changes (dams, agriculture, mining, urbanisation, …). However, a conservation plan with an ambitious sustainable development policy is set up. This plan articulates the environmental issues related to the emergence of the country. Because of these characteristics, the basin offers ideal conditions for studying the changes in equatorial region of hydro-climate, weathering/erosion regimes and regolith production based on morpho-pedological contexts and associated physical, chemical and biological processes. It is thus germane to launch an integrated CZO initiative at both regional scale and local scale. At the regional scale, we plan to reactivate some of the hydro-climatic stations located on the

  17. Standard practice for acoustic emission examination of pressurized containers made of fiberglass reinforced plastic with balsa wood cores

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals. 1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design. 1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents. 1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container. 1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that...

  18. Evaluation of mechanical properties and low velocity impact characteristics of balsa wood and urethane foam applied to impact limiter of nuclear spent fuel shipping cask

    International Nuclear Information System (INIS)

    The paper aims to evaluate the low velocity impact responses and mechanical properties of balsa wood and urethane foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5J. The experimental results showed that both the urethane foam and the balsa wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask

  19. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  20. Density-dependent regulation of brook trout population dynamics along a core-periphery distribution gradient in a central Appalachian watershed.

    Directory of Open Access Journals (Sweden)

    Brock M Huntsman

    Full Text Available Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3-60 km(2 and long-term average densities ranging from 0.335-0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to

  1. Density-dependent regulation of brook trout population dynamics along a core-periphery distribution gradient in a central Appalachian watershed.

    Science.gov (United States)

    Huntsman, Brock M; Petty, J Todd

    2014-01-01

    Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3-60 km(2) and long-term average densities ranging from 0.335-0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for

  2. Bees (Hymenoptera: Apidae) present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103 Bees (Hymenoptera: Apidae) present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103

    OpenAIRE

    Deodoro Magno Brighenti; Carla Regina Guimarães Brighenti

    2010-01-01

    The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the family Apidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the A...

  3. Regional scale modeling of hillslope sediment delivery: a case study in the Ésera—Isábena watershed, central Spanish Pyrenees, with WATEM/SEDEM

    OpenAIRE

    Alatorre, L. C.; BEGUERÍA Santiago; García-Ruiz, José María

    2009-01-01

    Soil erosion and sediment delivery to streams is an important environmental problem and a major concern for sustainable development. The spatial nature of soil erosion and sediment delivery, as well as the variety of possible soil conservation and sediment control measures, require an integrated approach to catchment management. A spatially-distributed soil erosion and sediment delivery model (WATEM/SEDEM) was applied to the watershed of the Barasona Reservoir (1504 km2; centra...

  4. Physicochemical and macroinvertebrate community trends in manmade ponds constructed in reclaimed opencast coal mines = Tendencias en la fisicoquímica y la comunidad de macroinvertebrados en balsas de nueva creación en minas de carbón a cielo abierto recuperadas

    OpenAIRE

    Miguel Chinchilla, Leticia

    2013-01-01

    En las últimas décadas el número de balsas construidas por el hombre ha crecido considerablemente. Sin embargo, el aumento en el número de balsas artificiales no ha sido acompañado por estudios científicos de carácter ecológico acerca de sus características y su funcionamiento a lo largo del tiempo. De hecho, el conocimiento que se tiene sobre la evolución a largo plazo en balsas artificiales es todavía escaso desde los puntos de vista fisicoquímico y biológico. Las balsas artificiales se con...

  5. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment - A case study in the Xiangjiang watershed, central-south China

    International Nuclear Information System (INIS)

    Groundwater samples were collected in the Xiangjiang watershed in China from 2002 to 2008 to analyze concentrations of arsenic, cadmium, chromium, copper, iron, lead, mercury, manganese, and zinc. Spatial and seasonal trends of metal concentrations were then discussed. Combined with geostatistics, an ingestion risk assessment of metals in groundwater was performed using the dose-response assessment method and the triangulated irregular network (TIN) model. Arsenic concentration in groundwater had a larger variation from year to year, while the variations of other metal concentrations were minor. Meanwhile, As concentrations in groundwater over the period of 2002-2004 were significantly higher than that over the period of 2005-2007, indicating the improvement of groundwater quality within the later year. The hazard index (HI) in 2002 was also significantly higher than that in 2005, 2006, 2007 and 2008. Moreover, more than 80% of the study area recorded an HI of more than 1.0 for children, suggesting that some people will experience deleterious health effects from drinking groundwater in the Xiangjiang watershed. Arsenic and manganese were the largest contributors to human health risks (HHRs). This study highlights the value of long-term health risk evaluation and the importance of geographic information system (GIS) technologies in the assessment of watershed-scale human health risk.

  6. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Love, E. (Shaw Environmental, Monroeville, PA); Hammack, R.W.; Harbert, W.P. (Univ. of Pittsburgh); Sams, J.I.; Veloski, G.A.; Ackman, T.E.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  7. Bees (Hymenoptera: Apidae present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 = Abelhas (Hymenoptera: Apidae associadas às flores do pau-de-balsa Ochroma lagopus Swartz, 1788

    Directory of Open Access Journals (Sweden)

    Carla Regina Guimarães Brighenti

    2010-10-01

    Full Text Available The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the familyApidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Africanized bees that fed on the nectar of this flower was compared to those that fed on 50% aqueous solution of honey. Forty flowers were analyzed, and 949 individuals of the orders Hymenoptera (98.1%, Hemiptera (0.95%, Coleoptera (0.74% and Diptera (0.21% were collected. Most Hymenoptera individuals were bees of the genera Partamona and Trigona (677 individuals, which were considered of constant occurrence. Flowers producing up to 16.7 nectar mL were found. The nectar diet contained 16.44% of total sugar, and resulted in low survival of the bees in laboratory (31.32 . 2.37 hours, compared to a diet of 50% aqueous solution of honey (112.32 .2.03 hours.A flor do pau-de-balsa produz cerca de 10 a 15 mL de néctar, útil na atração de polinizadores, uma vez que o gênero Ochroma é incapaz de fazer autofecundação. É observada intensa mortalidade de abelhas em suas flores. Objetivou-se realizar o levantamento da frequência e constância de mortalidade de indivíduos da família Apidae, sendo os dados levantados no período de junho a agosto de 2008 em Lavras, MinasGerais, Brasil. Além disso, avaliou-se a sobrevivência de abelhas africanizadas alimentadas com o néctar desta flor quando comparados com aquelas alimentadas com solução aquosa de mel a 50%. Foram analisadas 40 flores e coletados 949 indivíduos das Ordens: Hymenoptera (98,1%, Hemiptera (0,95%, Coleoptera (0,74% e Diptera (0,21%. Dentre os himenópteros os mais frequentes foram dos g

  8. Riqueza y diversidad de especies leñosas del bosque tropical caducifolio El Tarimo, Cuenca del Balsas, Guerrero Richness and diversity of woody species in the tropical dry forest of El Tarimo, Cuenca del Balsas, Guerrero

    Directory of Open Access Journals (Sweden)

    Fernando Pineda-García

    2007-06-01

    Full Text Available Se describe la composición florística, la riqueza y la diversidad de especies de un bosque tropical caducifolio en la provincia florística Cuenca del Balsas, México. Se seleccionaron 4 sitios de 1000 m² cada uno, censándose los árboles, arbustos y lianas con d.a.p. >1 cm. En total se registraron 1456 individuos, pertenecientes a 82 especies, 56 géneros y 24 familias. Independientemente del sitio y de la forma de crecimiento, Leguminosae fue la familia con mayor número de especies y de individuos. Los géneros más diversos fueron Bursera (Burseraceae y Cordia (Boraginaceae con 9 y 4 especies, respectivamente. La riqueza entre los sitios varió de 43 a 55 especies y su similitud fue más alta en el nivel de familia que en el de especie. Los árboles fueron la forma de crecimiento con mayor riqueza de especies. Respectoa otros bosques tropicales caducifolios de México y del mundo, los sitios que se estudiaron en este bosque ocupan una posición baja en cuanto a sus valores de riqueza y estructura.Floristic composition, species richness, and diversity of the seasonally dry tropical forest in the floristic province of the Balsas Depression, México, is described. We sampled four 1,000 m² sites and recorded species and dbh of trees, shrubs and lianas >1 cm dbh. Data from 1,456 individuals were recorded, representing 82 species, 56 genera, and 24 families. Independently of site or growth form, Leguminosae was the family with the highest number of species and individuals. Bursera (Burseraceae and Cordia (Boraginaceae were the most speciose genera, with nine and four species, respectively. Species richness among sites ranged from 43-55 species and their similarity was higher at the family level than the species level. Trees had higher numbers of species than shrubs and lianas. Our results indicate that these forests have low values of species richness and structure attributes in relation with other tropical dry forests of Mexico and the world.

  9. Does social capital improve watershed environmental governance?

    OpenAIRE

    Monteiro, Fernando

    2006-01-01

    International audience In Brazil, water management has been both sectored and centralized. In the 1990s, a series of state level reforms granted substantial participation to civil society and water users' organizations by incorporating Integrated Water Resourse Management principles and Watershed Committees as its guideline. However, its full implementation should produce quite different outcomes, understood as improved or poorer watershed environmental governance. That means that the key ...

  10. Tecnologia alternativa para a quebra de dormência das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae Alternative technology for breaking dormancy of balsa wood (Ochroma lagopus Sw., Bombacaceae seeds

    Directory of Open Access Journals (Sweden)

    Antenor P. Barbosa

    2004-01-01

    Full Text Available Este trabalho, teve como objetivo estudar a germinação das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae em diferentes estágios de maturação aparente dos frutos; a germinação das sementes provenientes de árvores com diferentes diâmetros a altura do peito (DAP e a germinação das sementes tratadas para quebra de dormência. No primeiro experimento, avaliou-se a germinação das sementes dos frutos verdes, verdosos (verde amarelado, negros (fruto fechado e negros deiscentes (fruto aberto com painas expostas. No segundo, a germinação das sementes de árvores da mesma idade e com diferentes DAP's: pequeno (5,4 cm, médio (9,1 cm e grande (13,2 cm. No terceiro, a germinação das sementes com diferentes quebra de dormência: testemunha; água por 24 e 48 horas; água a 80ºC até esfriar; H2SO4 por ½ e 1 minuto com e sem paina; queima da paina em peneira metálica; e semeio de sementes com a paina. As sementes germinaram em gerbox sobre papel de filtro, em câmara de germinação, nas temperaturas de 20ºC, 30ºC e 25ºC, no primeiro, segundo e terceiro experimentos, respectivamente. As sementes de pau-de-balsa germinaram melhor e mais rápido quando coletadas de frutos negros a negros deiscentes, ou quando coletadas de árvores com menor e médio diâmetros, ou quando tratadas com água quente a 80ºC até esfriar, ou com ácido sulfúrico por ½ ou 1 minuto com ou sem paina. Os tratamentos com ácido tem a vantagem de quebrar a dormência da semente e dissolver a paina. As sementes recém colhidas e germinadas não apresentaram dormência tegumentar.The objective of this study was to evaluate the germination of "pau-de-balsa" (Ochroma lagopus Sw., Bombacaceae seed as a function of maturation stages of fruits, the germination of seeds harvested from trees with different diameters at height breast (DBH, and the germination of seed with different treatments to break dormancy. In the first experiment, the germination of seeds

  11. Identification of active erosion areas and areas at risk by remote sensing: an example in the Esera Isabena watershed, Central Spanish Pyrenees

    International Nuclear Information System (INIS)

    The identification of eroded areas at basin scale can be very useful for environmental planning and can help to reduce land degradation and sediments yield. In this paper remote sensing technique are used to discriminate eroded areas and areas at risk in a badlands landscape developed on Eocene marls. In the Esera Isabena watershed (Spanish Pyrenees). The spatial distribution, the scarce vegetal cover and the high level of erosion let a good visual and digital discrimination of badlands, as opposed to other land covers and surfaces. A maximum likelihood supervised method was used to discriminate heavily eroded areas (badlands) from scarce or densely vegetated lands. the classification distance was used to obtain thresholds for eroded areas and areas at risk. Two error statistics (sensitivity and specificity), where used to determine the most adequate threshold values. The resulting map shows that most areas at risk are located surrounding the badlands areas. (Author) 8 refs.

  12. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  13. Interior West Watershed Management

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1981-01-01

    Habitat type classification systems are reviewed for potential use in watershed management. Information on climate, soils, and vegetation related to the classifications are discussed. Possible cooperative applications of vegetation and habitat type classifications to watershed management are explored.

  14. Assessment of Watershed Technologies

    OpenAIRE

    Lim Suan, Medel P.

    1999-01-01

    Dealing with various topics such as watershed classification, computer simulation and modeling and computer application in watershed research, this paper assembles and summarizes technologies that are currently being used or have potential for application in the Philippines. This is in the hope of helping watershed managers, planners and researchers.

  15. Triterpenes, Phenols, and Other Constituents from the leaves of Ochroma pyramidale(Balsa Wood, Bombacaceae). Preferred Conformations of 8-C-b-D-Glucopyranosyl-apigenin (vitexin)

    OpenAIRE

    Erika Vázquez; Esteban M. Martínez; Juan Antonio Cogordán; Guillermo Delgado

    2002-01-01

    Lupeol, oleanolic acid, stigmasterol, b-sitosterol, b- sitosteryl-b-D-glucopyranoside, catechin, epi-catechin, and 8-C-b-Dglucopyranosylapigenin (vitexin) were isolated from the acetonic extract of the leaves of Ochroma pyramidale(balsa wood, Bombacaceae), a tree noted by its exceedingly light wood. 1H and 13C NMR of 8-C-b-D-glucopyranosyl-apigenin (vitexin) at room temperature exhibited doubling of some signals, suggesting the presence of atropisomers. 1H NMR spectra at 70 °C showed one set ...

  16. EL GÉNERO FICUS (MORACEAE) EN LA PROVINCIA BIOGEOGRÁFICA DE LA DEPRESIÓN DEL BALSAS, MÉXICO

    OpenAIRE

    NAHÚ GONZÁLEZ-CASTAÑEDA; GUADALUPE CORNEJO-TENORIO; GUILLERMO IBARRA-MANRÍQUEZ

    2010-01-01

    Con base en colectas de campo, revisión de literatura florística y taxonómica, así como en la revisión de ejemplares depositados en diversos herbarios se registraron 11 especies de Ficus (Moraceae) en la Provincia Biogeográfica de la Depresión del Balsas. Las especies registradas pertenecen a los subgéneros Pharmacosycea (F. insipida y F. maxima) y Urostigma (F. citrifolia, F. cotinifolia, F. crocata, F. membranacea, F. obtusifolia, F. pertusa, F. petiolaris, F. pringlei y F. velutina), y en ...

  17. Effects of Recent Debris Flows on Stream Ecosystems and Food Webs in Small Watersheds in the Central Klamath Mountains, NW California

    Science.gov (United States)

    Cover, M. R.; de La Fuente, J.

    2008-12-01

    Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.

  18. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region

    OpenAIRE

    Cooley, Michael B.; Quiñones, Beatriz; Oryang, David; Mandrell, Robert E.; Gorski, Lisa

    2014-01-01

    Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over 2 years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC), Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from...

  19. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  20. Probability of Unmixed Young Groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    This raster data set delineates the predicted probability of unmixed young groundwater (defined using chlorofluorocarbon-11 concentrations and tritium activities) in groundwater in the Eagle River watershed valley-fill aquifer, Eagle County, North-Central Colorado, 2006-2007. This data set was developed by a cooperative project between the U.S. Geological Survey, Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority. This project was designed to evaluate potential land-development effects on groundwater and surface-water resources so that informed land-use and water management decisions can be made. This groundwater probability map and its associated probability maps were developed as follows: (1) A point data set of wells with groundwater quality and groundwater age data was overlaid with thematic layers of anthropogenic (related to human activities) and hydrogeologic data by using a geographic information system to assign each well values for depth to groundwater, distance to major streams and canals, distance to gypsum beds, precipitation, soils, and well depth. These data then were downloaded to a statistical software package for analysis by logistic regression. (2) Statistical models predicting the probability of elevated nitrate concentrations, the probability of unmixed young water (using chlorofluorocarbon-11 concentrations and tritium activities), and the probability of elevated volatile organic compound concentrations were developed using logistic regression techniques. (3) The statistical models were entered into a GIS and the probability map was constructed.

  1. Bottomland Hardwood Forest Influence on Floodplain Hydrology and Stream Bank Stability in an Urbanizing Watershed of the Central U.S

    Science.gov (United States)

    Hubbart, J. A.; Zell, C.; Huang, D.

    2012-12-01

    /yr respectively. The greatest average depth of erosion occurred during the winter season (44.7 mm), followed by summer (13.1 mm) and spring (6.3 mm) and fall with the lowest average erosion depth (1.1 mm). Results demonstrate the potential benefit of sustaining or re-establishing floodplain forests to enhance soil infiltration capacity, soil storage capacity, floodwave attenuation, and consumptive water use, thereby reducing flooding and mitigating stormwater runoff problems in rapidly developing urban environments. In addition, results hold important implications for land-use managers wishing to reduce bank erosion and improve land-use practices, water quality and aquatic natural resource sustainability in dynamic urbanizing watersheds.

  2. Watershed-based systems

    OpenAIRE

    Walker, S; Mostaghimi, S.

    2009-01-01

    Metadata only record This chapter discusses the application of adaptive watershed management strategies and their importance to maintaining water supply. The watershed, which is an area of land that drains to a particular point or outlet, can be any size and is physically governed by topography. Thoroughly understanding these physical properties is essential to formulating an effective management plan for a watershed. In turn, proper management can improve and maintain soil quality and wat...

  3. Two new species of the bee genus Peponapis, with a key to the North and Central American species (Hymenoptera: Apidae: Eucerini)

    OpenAIRE

    Ricardo Ayala; Terry Griswold

    2012-01-01

    Two new species of squash bees, Peponapis pacifica Ayala and Griswold sp. n. and P. parkeri Griswold and Ayala sp. n., are described and illustrated. Peponapis pacifica is oligolectic on flowers of Schizocarpum longisepalum (Cucurbitaceae) endemic to Mexico, where it is found in the tropical dry forest along the Pacific Coast, between Sonora and Chiapas and in the Balsas River basin; and P. parkeri is known only from the Pacific slope of Costa Rica. A key for the North and Central American sp...

  4. Physical and chemical data from two water-quality surveys of streams in the Lewisville Lake watershed, north-central Texas, 1984 and 1985

    Science.gov (United States)

    Gain, W. Scott

    1989-01-01

    Twenty-nine sites on streams flowing to Lewisville Lake in north-central Texas were sampled in each of two synoptic (same day) water-quality surveys. The first survey was performed in March 1984 under relatively low-flow conditions and the second was performed in March 1985 under somewhat higher flow conditions. Data are presented for instantaneous measurements of discharge, specific conductance, pH, water temperature, dissolved oxygen, total organic carbon, nitrite-plus-nitrate nitrogen, ammonium-plus-organic nitrogen, total nitrogen, and total phosphorus. Area-based instantaneous yields for discharge, total nitrogen, and total phosphorus were calculated and are displayed graphically showing the rank of each site and the areal distribution of ranks. (USGS)

  5. Fecal Contamination of Groundwater in a Small Rural Dryland Watershed in Central Chile Contaminación Fecal en Agua Subterránea en una Pequeña Cuenca de Secano Rural en Chile Central

    Directory of Open Access Journals (Sweden)

    Mariela Valenzuela

    2009-06-01

    Full Text Available Research on microbiological groundwater quality was conducted in Chile in a rural watershed that has almost no other water source. Forty-two wells were randomly selected and levels of indicator bacteria - total coliforms (TC, fecal coliforms (FC, and fecal streptococci (FS - were repeatedly measured during the four seasons of 2005. The aim of this study was to characterize microbiological groundwater quality, relate indicator levels to certain watershed features and management characteristics which are likely to affect water quality. The dynamics of seasonal temporal contamination was determined with statistical analyses of indicator organism concentrations. Nonparametric tests were used to analyze relationships between bacterial indicators in well water and other variables. TC, FC, and FS were found in all samples indicating the wells had been contaminated with human and animal fecal material. The frequency distribution of microorganisms fitted a logistic distribution. The concentrations appeared to be temporal and levels varied between seasons with higher concentrations in winter. The cause of contamination could be linked to the easy access of domestic animals to the wells and to the permeable well casing material. Local precipitation runoff directly influenced the bacterial concentrations found in the wells.Se realizó una investigación de la calidad microbiológica de las aguas subterráneas en una cuenca rural chilena. En esta cuenca prácticamente no había otra fuente de agua disponible. En 42 pozos seleccionados al azar, se midieron niveles de bacterias indicadoras en cuatro temporadas distintas durante el año 2005. Las bacterias incluyeron coliformes totales (TC, coliformes fecales (FC y Estreptococos fecales (FS. El objetivo fue caracterizar la calidad microbiológica del agua subterránea y relacionar los indicadores con ciertas propiedades y el manejo de la cuenca que pueden afectar la calidad del agua. La dinámica temporal de la

  6. Two new species of the bee genus Peponapis, with a key to the North and Central American species (Hymenoptera: Apidae: Eucerini) Dos especies nuevas de abejas del género Peponapis, con una clave para las especies de América del Norte y Central (Hymenoptera: Apidae: Eucerini)

    OpenAIRE

    Ricardo Ayala; Terry Griswold

    2012-01-01

    Two new species of squash bees, Peponapis pacifica Ayala and Griswold sp. n. and P. parkeri Griswold and Ayala sp. n., are described and illustrated. Peponapis pacifica is oligolectic on flowers of Schizocarpum longisepalum (Cucurbitaceae) endemic to Mexico, where it is found in the tropical dry forest along the Pacific Coast, between Sonora and Chiapas and in the Balsas River basin; and P. parkeri is known only from the Pacific slope of Costa Rica. A key for the North and Central American sp...

  7. WATERSHED INFORMATION NETWORK

    Science.gov (United States)

    Resource Purpose:The Watershed Information Network is a set of about 30 web pages that are organized by topic. These pages access existing databases like the American Heritage Rivers Services database and Surf Your Watershed. WIN in itself has no data or data sets.L...

  8. Developing a Watershed Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  9. Maasin Watershed Rehabilitation Project

    OpenAIRE

    Iloilo City

    2007-01-01

    Metadata only record "Iloilo city government had great interest in preserving the main source of water for the city and the Maasin municipality wanted support to manage the watershed reserve. Degradation of the watershed is seen as the cause of increasing water scarcity and frequent floods. PES-1 (Payments for Environmental Services Associate Award)

  10. Bees (Hymenoptera: Apidae present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103 Bees (Hymenoptera: Apidae present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103

    Directory of Open Access Journals (Sweden)

    Deodoro Magno Brighenti

    2010-11-01

    Full Text Available The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the family Apidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Africanized bees that fed on the nectar of this flower was compared to those that fed on 50% aqueous solution of honey. Forty flowers were analyzed, and 949 individuals of the orders Hymenoptera (98.1%, Hemiptera (0.95%, Coleoptera (0.74% and Diptera (0.21% were collected. Most Hymenoptera individuals were bees of the genera Partamona and Trigona (677 individuals, which were considered of constant occurrence. Flowers producing up to 16.7 nectar mL were found. The nectar diet contained 16.44% of total sugar, and resulted in low survival of the bees in laboratory (31.32 ± 2.37 hours, compared to a diet of 50% aqueous solution of honey (112.32 ± 2.03 hours.The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the family Apidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Africanized bees that fed on the nectar of this flower was compared to those that fed on 50% aqueous solution of honey. Forty flowers were analyzed, and 949 individuals of the orders Hymenoptera (98.1%, Hemiptera (0.95%, Coleoptera (0.74% and Diptera (0.21% were collected. Most Hymenoptera individuals were bees of the

  11. The role of episodic fire-related debris flows on long-term (103-104) sediment yields in the Middle Fork Salmon River Watershed, in central Idaho

    Science.gov (United States)

    Riley, K. E.; Pierce, J. L.; Hopkins, A.

    2010-12-01

    Episodic fire-related debris flows contribute large amounts of sediment and large woody debris to streams. This study evaluates fire-related sedimentation from small steep tributaries of the Middle Fork Salmon River (MFSR) in central Idaho to evaluate the timing, frequency, and magnitude of episodic fire-related sedimentation on long-term (10 3-10 4) sediment yields. The MFSR lies within the Northern Rocky Mountains and encompasses a range of ecosystems including high elevation (~3,000 -1,700 m) subalpine pine and spruce forests, mid-elevation (2650 - 1130 m) montane Douglas-fir and ponderosa pine-dominated forests and low elevation (~ 1,800 - 900 m) sagebrush steppe. Recent debris flow events in tributaries of the MFSR appear to primarily result from increased surface runoff, rilling, and progressive sediment bulking following high severity fires. This study estimates: 1) the volume of sediment delivered by four recent (1997-2008) fire-related debris flow events using real time kinematic GPS surveys, and 2) the timing of Holocene fire-related debris flow events determined by 14C dating charcoal fragments preserved in buried burned soils and within fire-related deposits. Our measured volumes of the four recent debris flow events are compared to two empirically derived volume estimates based on remotely sensed spatial data (burn severity and slope), measured geometric data (longitudinal profile, cross sectional area, flow banking angle), and precipitation records. Preliminary stratigraphic profiles in incised alluvial fans suggest that a large percentage of alluvial fan thickness is composed of fire-related deposits suggesting fire-related hillslope erosion is a major process delivering sediment to alluvial fans and to the MFSR. Fire-related deposits from upper basins compose ~71% of total alluvial fan thickness, while fire-related deposits from lower basins make up 36% of alluvial fan thickness. However, lower basins are less densely vegetated with small diameter

  12. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region.

    Science.gov (United States)

    Cooley, Michael B; Quiñones, Beatriz; Oryang, David; Mandrell, Robert E; Gorski, Lisa

    2014-01-01

    Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over 2 years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC), Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from 1386 samples was 11%; 110 samples (8%) contained E. coli O157:H7 with the highest prevalence occurring close to cattle operations. Non-O157 STEC isolates represented major clinical O-types and 57% contained both shiga toxin types 1 and 2 and intimin. Multiple Locus Variable Number Tandem Repeat Analysis of STEC isolates indicated prevalent strains during the period of study. Notably, Salmonella was present at high levels throughout the sampling region with 65% prevalence in 1405 samples resulting in 996 isolates with slightly lower prevalence in late autumn. There were 2, 8, and 14 sites that were Salmonella-positive over 90, 80, and 70% of the time, respectively. The serotypes identified most often were 6,8:d:-, Typhimurium, and Give. Interestingly, analysis by Pulsed Field Gel Electrophoresis indicated persistence and transport of pulsotypes in the region over several years. In this original study of L. monocytogenes in the region prevalence was 43% of 1405 samples resulting in 635 individual isolates. Over 85% of the isolates belonged to serotype 4b with serotypes 1/2a, 1/2b, 3a, 4d with 4e representing the rest, and there were 12 and 2 sites that were positive over 50 and 80% of the time, respectively. Although surface water is not directly used for irrigation in this region, transport to the produce can occur by other means. This environmental survey assesses initial contamination levels toward an understanding of transport leading to produce recalls or outbreaks. PMID

  13. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  14. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  15. Hydrochemical and isotopic patterns in a calc-alkaline Cu- and Au-rich arid Andean basin: The Elqui River watershed, North Central Chile

    International Nuclear Information System (INIS)

    Highlights: ► Major ions are provided by rock weathering and NaCl recycling. ► Aridity and cal-alkaline lithology effects abate acid drainage. ► Factors affecting hydrochemistry in mineral rich zone are addressed. ► Stable isotopes confirm the meteoric origin of groundwaters. ► High sulfate contents are explained by widespread sulfide minerals. - Abstract: The geochemistry of surface water and groundwater from the Elqui River basin, North-Central Chile, was studied in spring 2007 and fall 2008 to obtain a general understanding of the factors and mechanisms controlling the water chemistry of steep rivers located in mineral-rich, arid to semi arid zones. Besides its uniform intermediate igneous lithology, this basin is known for acid drainage and high As contents in the El Indio Au–Cu–As district, in its Andean head. Abundant tailings deposits are present in the middle part of the basin, where agricultural activities are important. According to the results, the chemical and isotopic composition of the Elqui basin surface water and groundwater is related to uniform calc-alkaline lithology and the major polluting system of the chemically reactive, but closed El Indio mining district. The resulting compositional imprints in surface and ground-water are, (a) high SO4 levels, reaching about 1000 mg/L in the Toro River water, directly draining the mining area; (b) a major depletion of Fe and pollutant metals in surface water after the confluence of the Toro and La Laguna rivers; (c) similar chemical composition of surface and ground-waters that differ in H and O isotopic composition, reflecting the effect of differential evaporation processes downstream of the Puclaro dam; and (d) seasonal variations of Fe, Mn, Cu and Zn in surface water. In contrast, the groundwater chemistry exhibits moderate seasonal changes, mainly in HCO3- content. In spite of the acid drainage pollution, water quality is adequate for human consumption and irrigation. This is a

  16. Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

    OpenAIRE

    Cousty, Jean; Bertrand, Gilles; Najman, Laurent; Couprie, Michel

    2010-01-01

    International audience We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: the first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a n...

  17. A Combined Modeling Approach to Evaluate Water Quality Benefits of Riparian Buffers in the Jobos Bay Watershed

    Science.gov (United States)

    The Jobos Bay Watershed, located in south-central Puerto Rico, is a tropical Conservation Effects Assessment Project (CEAP) Special Emphasis Watershed. The purpose of CEAP is to quantify environmental benefits of conservation practices and includes field and watershed modeling. In Jobos Bay, the goa...

  18. Watersheds in disordered media

    Science.gov (United States)

    Andrade, Joséi, Jr.; Araújo, Nuno; Herrmann, Hans; Schrenk, Julian

    2015-02-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics of disordered systems. This review initially surveys the origin and definition of a watershed line in a geomorphological framework to subsequently introduce its basic geometrical and physical properties. Results on statistical properties of watersheds obtained from artificial model landscapes generated with long-range correlations are presented and shown to be in good qualitative and quantitative agreement with real landscapes.

  19. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  20. Evaluating watershed management projects:

    OpenAIRE

    Kerr, John; Chung, Kimberly

    2001-01-01

    Watershed projects play an increasingly important role in managing soil and water resources throughout the world. Research is needed to ensure that new projects draw upon lessons from their predecessors' experiences. However, the technical and social complexities of watershed projects make evaluation difficult. Quantitative and qualitative evaluation methods, which traditionally have been used separately, both have strengths and weaknesses. Combining them can make evaluation more effective, p...

  1. Multiagent distributed watershed management

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  2. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY: Commodity Credit Corporation and... program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The Commodity Credit Corporation (CCC... Watershed Initiative for agricultural producers in the Chesapeake Bay watershed in the States of...

  3. Watershed Boundaries, Yadkin County watersheds, Published in 1999, Yadkin County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset as of 1999. It is described as 'Yadkin County watersheds'. Data by this publisher are often provided in State Plane coordinate...

  4. Francisella philomiragia, bacteria asociada con altas mortalidades en salmones del Atlántico (Salmo salar cultivados en balsas-jaulas en el lago Llanquihue Francisella philomiragia, a bacteria associated with high mortalities in Atlantic salmon (Salmo salar cage-farmed in Llanquihue lake

    Directory of Open Access Journals (Sweden)

    H Bohle

    2009-01-01

    Full Text Available Francisella philomiragia fue aislada de salmón del Atlántico cultivado en balsas-jaulas en el lago Llanquihue con brotes de una enfermedad granulomatosa con altas tasas de morbilidad y mortalidad acumuladas entre 5% a 20%. Los aislados bacterianos tienen 100% similitud con F. philomiragia ssp noatunensis o F. piscicida aislado de bacalao en Noruega, 99% de similitud con Francisella sp. detectado en tilapia en Asia y Centroamérica y 99% de similitud con la especie tipo F. philomiragia por análisis filogenético del gen 16s rDNA.Francisella philomiragia was isolated from Atlantic salmon cage-farmed in the Llanquihue lake with outbreaks of a granulomatous disease, with high rates of morbidity and an accumulated mortalities between 5% to 20%. The isolates had 100% similarity with F. philomiragia ssp noatunensis or F. piscicida isolated in Atlantic cod, 99% similarity with Francisella sp. detected in tilapia from Asia and Central America and 99% of similarity with the reference strain F. philomiragia through 16s rDNA phylogenetic analysis.

  5. Avaliação de desempenho ambiental em uma balsa guindaste e de lançamento – BGL

    Directory of Open Access Journals (Sweden)

    Hélio Soibelman

    2009-06-01

    -para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Com o objetivo de auxiliar os gestores de Meio Ambiente de embarcações de obras submarinas na avaliação do desempenho de seus Sistemas de Gestão, e com fundamentação nos princípios da norma ABNT NBR ISO 14001:2004 (Sistema de Gestão Ambiental, bem como em criteriosa pesquisa bibliográfica, o presente trabalho, apresenta uma metodologia que se baseia no que preceitua o item Planejamento da ABNT NBR ISO 14001:2004 de que os objetivos, as metas ambientais e seus indicadores devem estar diretamente relacionados aos aspectos e impactos significativos. Foi realizada uma pesquisa de campo com a finalidade de demonstrar a aplicabilidade da metodologia criada. Esta pesquisa foi desenvolvida em uma Balsa Guindaste e de Lançamento (BGL, utilizada em obras de engenharia. Vale ressaltar que a BGL é um ativo muito importante da empresa estudada, pois ela, além de atuar em lançamentos de dutos rígidos para escoar a produção de óleo e gás, também atua em instalações de plataformas e de grandes estruturas submarinas.

  6. Realities of the Watershed Management Approach: The Magat Watershed Experience

    OpenAIRE

    Elazegui, Dulce D.; Combalicer, Edwin A.

    2004-01-01

    This paper aims to showcase the experience of the Magat watershed in the implementation of the watershed management approach. Magat watershed was declared as a forest-reservation area through Proclamation No. 573 on June 26, 1969 because of its great importance to human survival and environmental balance in the region. The Magat case demonstrates the important role that ‘champions’ like the local government unit (LGU) could play in managing the country’s watersheds. With the Nueva Viscaya pro...

  7. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    OpenAIRE

    Zeyuan Qiu

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  8. FAST WATERSHED-BASED DILATION

    OpenAIRE

    Jakub Smołka

    2014-01-01

    A watershed-based region growing image segmentation algorithm requires a fast watershed-based dilation implementation for effective operation. This paper presents a new way for watershed image representation and uses this representation for effective implementation of dilation. Methods for improving the algorithm speed are discussed. Presented solutions may also be used for solving other problems where fast set summation is required.

  9. Spatio-temporal Dynamics of Land-use and Land-cover Change: A Multi-agent Simulation Model and Its Application to an Upland Watershed in Central Vietnam

    Science.gov (United States)

    Le, Q.; Vlek, P. L.; Park, S.

    2005-12-01

    flexible interactions among human and landscape agents, and monitors consequent land-use changes and associated socio-economic dynamics. The model was applied in a watershed of about 100 km2 in A-Luoi district, Central Vietnam. Spatially explicit data were obtained from Landsat ETM images, thematic maps, an extensive forest inventory, and an intensive household survey. Field data were used for calibrating agent's parameters and develop an initial database for simulation runs. Scenarios of land-use changes under different policy options on forest protection zoning, agrochemical subsidies and agricultural extension were generated to evaluate the consequences of such policy interventions. Preliminary simulation runs for 10 different policy options suggest that reducing the current proportion of protected area from 90% to 50% and increasing the enforcement of protection, together with the provision of extension services for a third of the total population, and subsidizing 5% of the population with agrochemicals ($US 16 household-1 year-1) would, on average, increase per capita gross income by 15% and significantly reduce forest degradation compared to the scenario based on the status quo (i.e., the policy settings of 2002).

  10. Integrated Resource Management at a Watershed Scale

    Science.gov (United States)

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.

    2014-12-01

    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur

  11. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  12. Watershed Planning within a Quantitative Scenario Analysis Framework.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-01-01

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation. PMID:27501287

  13. Development of the University of Delaware Experimental Watershed Project

    Science.gov (United States)

    Campagnini, J. L.; Kauffman, G. J.; Corrozi, M.; Bower, J.

    2001-05-01

    In 2000, a team of University of Delaware undergraduate and graduate students developed the University of Delaware Experimental Watershed Project with a grant from the Delaware Water Resources Center. The University of Delaware (UD) is a land- and sea-grant institution in Newark, Delaware and is perched along the Atlantic seaboard's fall line. A critical mass of UD faculty and students in water resources and related disciplines are interested in the development of an experimental watershed on campus to provide (1) interdisciplinary undergraduate, graduate and faculty research opportunities, and (2) an outdoor education laboratory. Using GIS and field reconnaissance techniques, the three students delineated two small experimental watershed regions respectively located in the Piedmont and Coastal Plain provinces of the White Clay Creek Wild and Scenic River Valley on the UD campus. The Piedmont watershed drains 416 acres of the northern area of campus while the Coastal Plain watershed drains 896 acres including the central and southern sections of campus. The students then developed an ArcView GIS atlas integrating geology, soils, topography, land use, and impervious cover layers with a rating system for water quality and habitat characteristics to issue a "report-card" assessing each watershed's overall health. The White Clay Creek Wild and Scenic River Valley is an ideal on campus location for an outdoor education and research laboratory because of its manageable scale, the diversity of its characteristic land uses and physical environment, and above all its accessibility for students, faculty, researchers, and the public.

  14. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  15. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  16. Conservação e vigor de sementes de pau-de-balsa (Ochroma pyramidale Conservation and vigour of balsawood seeds (Ochroma pyramidale

    Directory of Open Access Journals (Sweden)

    Antonio Moçambite Pinto

    2004-01-01

    Full Text Available Ochroma pyramidale, Bombacaceae, conhecida popularmente como pau-de-balsa, é utilizada para construção de jangadas, balsas, salva-vidas, bóias, brinquedos e na fabricação de papel e celulose. O objetivo deste estudo foi definir um método de acondicionamento de sementes de O. pyramidale, visando a conservação da viabilidade e vigor destas para sua utilização e comercialização em épocas de baixa produção. Sementes de O. pyramidale foram embaladas em sacos de papel tipo kraft e sacos de plástico (0,10 mm e armazenadas em ambiente de laboratório (22ºC e 65% U.R., câmara úmida (5ºC e 86% U.R. e câmara seca (15ºC e 40% U.R.. A percentagem de germinação, teor de água e vigor das sementes foram avaliados no início e após períodos de armazenamento. Todos os tratamentos testados foram favoráveis para manutenção do vigor das sementes por 120 dias de armazenamento. As melhores condições de armazenamento para manter a viabilidade por até 400 dias foram: sacos de papel (76,5% de germinação e sacos plásticos (65,5% de germinação em câmara seca, e sacos plásticos em condições de laboratório (63,5% de germinação.Balsawood (Ochroma pyramidale, Bombacaceae is used for construction of rafts, floats, life-savers, buoys, toys and for paper and cellulose production. The objective of this study was to determine a seed storage method for O. pyramidale to conserve seed viability and vigour for use and commercialization during seasonal shortages. Seeds were put in paper (Kraft and plastic bags (0.10 mm, and stored in three environmental conditions: laboratory (22ºC and 65% relative humidity, humid chamber (5ºC and 86% RH and dry chamber (15ºC and 40% RH. Germination percentage, moisture content and vigour of seeds were evaluated at the beginning of the experiment and after the storage periods. All treatments maintained seed vigour for 120 days of storage. The best storage conditions to maintain seed viability for a 400

  17. WATERSHED MANAGEMENT RESEARCH TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The Urban Watershed Management Branch researches, develops, and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the risk management aspects of WWF research.One...

  18. New trends in watershed management and protection

    International Nuclear Information System (INIS)

    I would like to present some new environmental technologies by shoving restoration projects that are currently being implemented in the eastern United States that require this co-operation for successful implementation. The environmental technologies that will be discussed include the use of existing or constructed wetlands to treat surface and groundwater impacted in contaminants from various sources. The main goal of these type projects are to provide a low-cost and effective treatment for existing pollution problems. Many of these projects are initiated by civic associations (or NGOs) that wanted to improve the state of environment in their area. Because everyone has the responsibility to a clean environment in which they live, NGOs, state government, business, and local citizens, and local citizens worked closely together to solve problems in their watersheds. These projects are only examples of what is being done in the United States. However, I would like also to discuss what projects exist in eastern Slovakia, and others that could be started in Slovakia that improve relationships between MGOs and the state and local governmental decision-making process, with the ultimate goal to improve water quality in the Danube watershed in the future. There are severe environmental technologies that can be applied to improve the water quality of rivers throughout the Danube watershed, such as treatment of wastewater using wetland vegetation, and treatment of acid-mine drainage. In April 1996, NGO People and Water in co-operation with the village governments of the Upper Torysa River watershed started the project Villages for the 3 rd millennium in the Carpathian Euro-Region. One of the main goals of this project is to introduce new environmental technologies in the rural communities of the Upper Torysa River area. Since people trust their eyes than their ears. It is important to initiate practical, pilot projects to convince citizens and governments that these low

  19. Optimizing Watershed Management by Coordinated Operation of Storing Facilities

    Science.gov (United States)

    Anghileri, Daniela; Castelletti, Andrea; Pianosi, Francesca; Soncini-Sessa, Rodolfo; Weber, Enrico

    2013-04-01

    Water storing facilities in a watershed are very often operated independently one to another to meet specific operating objectives, with no information sharing among the operators. This uncoordinated approach might result in upstream-downstream disputes and conflicts among different water users, or inefficiencies in the watershed management, when looked at from the viewpoint of an ideal central decision-maker. In this study, we propose an approach in two steps to design coordination mechanisms at the watershed scale with the ultimate goal of enlarging the space for negotiated agreements between competing uses and improve the overall system efficiency. First, we compute the multi-objective centralized solution to assess the maximum potential benefits of a shift from a sector-by-sector to an ideal fully coordinated perspective. Then, we analyze the Pareto-optimal operating policies to gain insight into suitable strategies to foster cooperation or impose coordination among the involved agents. The approach is demonstrated on an Alpine watershed in Italy where a long lasting conflict exists between upstream hydropower production and downstream irrigation water users. Results show that a coordination mechanism can be designed that drive the current uncoordinated structure towards the performance of the ideal centralized operation.

  20. SPECIFIC DEGRADATION OF WATERSHEDS

    Institute of Scientific and Technical Information of China (English)

    Boubacar KANE; Pierre Y.JULIEN

    2007-01-01

    An extensive database of reservoir sedimentation surveys throughout continental United States is compiled and analyzed to determine specific degradation SD relationships as function of mean annual rainfall R, drainage area A, and watershed slope S. The database contains 1463 field measurements and specific degradation relationships are defined as function of A, R and S. Weak trends and significant variability in the data are noticeable. Specific degradation measurements are log normally distributed with respect to R, A, and S and 95% confidence intervals are determined accordingly. The accuracy of the predictions does not significantly increase as more independent variables are added to the regression analyses.

  1. Runoff processes and small watersheds

    International Nuclear Information System (INIS)

    Full text: Small watersheds are a fundamental landscape unit for quantifying inputs and outputs of water, sediment and nutrients. Small watersheds have been used historically for defining runoff processes and flood response to storm precipitation. Early conceptualizations of runoff production during the International Hydrological Decade in the 1960s focused on the importance and movement of event water as overland flow to the stream channel. Use of mass balance mixing models using stable isotope tracers in the 1970s and 1980s directly challenged early ideas of where water goes when it rains, residence time of catchment waters and flow paths of subsurface runoff towards the stream. These data showed that the majority of water in the stream during a precipitation event was water that existed in the watershed prior to the event. While credible physical mechanisms of old water mobilization have only been defined in the past decade, stable isotope tracer approaches are now mature enough to offer new potential for informing new model structures of how small watersheds work. Isotope tracer data in small watersheds and mass balance separations also represent new ways of validating and calibrating watershed models. This presentation will chronicle the use of isotope tracers in small watersheds and provide examples of how these data can be used in models of runoff processes and for providing valuable input for water resource management at larger basin scales. (author)

  2. Watershed Boundaries - MO 2015 Metro No Discharge Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for streams listed in Table F - Metropolitan No-Discharge Streams of the Water...

  3. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    OpenAIRE

    Surendra Kumar Chandniha; M. L Kansal; G. Anvesh

    2014-01-01

    In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and en...

  4. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  5. Values, Watersheds and Justification

    DEFF Research Database (Denmark)

    Wiberg, Katrina

    2015-01-01

    systems of water provision, sewagesystems etc. Under conditions of climate change this ‘undergrounding’ approach has shown its limitations. In extreme weather conditions water is ‘resurfacing’ which creates both problems and a new condition of HOW in urban landscapes. Problems of water cannot be ‘buried......The aim of this paper is to articulate and present some arguments for the following main hypothesis concerning the handling of water (HOW) in the urban landscapes of our times of climate change. During industrialism water in urban areas to a very high degree was handled by ‘undergrounding’ it in......’ anymore; they also have to be handled at surface levels. This has two interconnected implications: firstly, watersheds gains new importance for HOW at surface-levels, and secondly, such surfacing of water problems leads to a rise in the potential levels of value-disputes and conflicts of interest...

  6. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  7. ¿Héroe cultural o víctima expiatoria? innovaciones técnicas y transgresión social entre los nahuas del alto balsas (México)1

    OpenAIRE

    Hémond, Aline

    2013-01-01

    Note portant sur l’auteur Introducción Desde los años 60, la región nahua de la cuenca alta del río Balsas vive al ritmo de la producción artesanal turística. Actualmente, más de 12 000 personas, distribuidas en siete comunidades y organizadas en talleres familiares y escuelas artísticas, pintan sobre papel amate, cerámica y peces de madera. La “epopeya” artesanal de aquella región se inició en la década de los años 50 con una sola familia en el pueblo de Ameyaltepec, la cual empezó a dibujar...

  8. Composición, estructura y diversidad de la comunidad arbórea del bosque tropical caducifolio en Tziritzícuaro, Depresión del Balsas, Michoacán, México

    OpenAIRE

    Moisés Méndez-Toribio; Juan Martínez-Cruz; Jorge Cortés-Flores; Francisco Javier Rendón-Sandoval; Guillermo Ibarra-Manríquez

    2014-01-01

    Se describe la composición, estructura y diversidad de los árboles del bosque tropical caducifolio en Tziritzícuaro, municipio de La Huacana, en la Depresión del Balsas, Michoacán. Se censaron todos los árboles enraizados dentro de 36 parcelas de 100 m 2 (0.36 ha) con un diámetro a la altura del pecho (DAP) 1 cm. Se registraron 78 especies, incluidas en 50 géneros y 24 familias. La familia Fabaceae fue la más importante respecto a su número de especies (24), géneros (14) e individuos (274). ...

  9. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    Science.gov (United States)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  10. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    Science.gov (United States)

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  11. SIR2005-5073_CBRWM_watersheds

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is an ArcGIS dataset depicting watershed segments in the Chesapeake Bay Watershed and adjacent states of New York, Pennsylvania, Maryland, West Virginia,...

  12. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  13. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  14. The Watershed Algorithm for Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    OU Yan; LIN Nan

    2007-01-01

    This article introduced the watershed algorithm for the segmentation, illustrated the segmation process by implementing this algorithm. By comparing with another three related algorithm, this article revealed both the advantages and drawbacks of the watershed algorithm.

  15. Analysis of Hollinshed watershed using GIS software

    OpenAIRE

    Hipp, Michael.

    1999-01-01

    CIVINS The objective of this study is to apply GIS and storm water modeling software to develop an accurate hydrologic model of the Hollinshed watershed. Use of GIS will allow the user to quickly change the land use of specific areas within in the watershed to determine the hydrologic effects throughout the watershed using the storm water model. Specific objectives were to: (1) develop a GIS database for the Hollinshed watershed; (2) Develop an appropriate link/ node diagram and correspond...

  16. User participation in watershed management and research:

    OpenAIRE

    Johnson, Nancy; Ravnborg, Helle Munk; Westermann, Olaf; Probst, Kirsten

    2001-01-01

    Many watershed development projects around the world have performed poorly because they failed to take into account the needs, constraints, and practices of local people. Participatory watershed management—in which users help to define problems, set priorities, select technologies and policies, and monitor and evaluate impacts—is expected to improve performance. User participation in watershed management raises new questions for watershed research, including how to design appropriate mechanis...

  17. Water and Poverty in Two Colombian Watersheds

    OpenAIRE

    Nancy Johnson; James Garcia; Jorge E. Rubiano; Marcela Quintero; Ruben Dario Estrada; Esther Mwangi; Adriana Morena; Alexandra Peralta; Sara Granados

    2009-01-01

    Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Result...

  18. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  19. Watershed Education for Broadcast Meteorologists

    Science.gov (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  20. Two new species of the bee genus Peponapis, with a key to the North and Central American species (Hymenoptera: Apidae: Eucerini Dos especies nuevas de abejas del género Peponapis, con una clave para las especies de América del Norte y Central (Hymenoptera: Apidae: Eucerini

    Directory of Open Access Journals (Sweden)

    Ricardo Ayala

    2012-06-01

    Full Text Available Two new species of squash bees, Peponapis pacifica Ayala and Griswold sp. n. and P. parkeri Griswold and Ayala sp. n., are described and illustrated. Peponapis pacifica is oligolectic on flowers of Schizocarpum longisepalum (Cucurbitaceae endemic to Mexico, where it is found in the tropical dry forest along the Pacific Coast, between Sonora and Chiapas and in the Balsas River basin; and P. parkeri is known only from the Pacific slope of Costa Rica. A key for the North and Central American species of Peponapis is provided.Se describen e ilustran 2 especies nuevas de abejas, Peponapis pacifica Ayala and Griswold sp. n. y P. parkeri Griswold and Ayala sp. n. De éstas, P. pacifica es oligoléctica sobre flores de Schizocarpum longisepalum (Cucurbitaceae, endémica de México, con distribución asociada al bosque tropical caducifolio a lo largo de la vertiente del Pacífico entre Sonora y Chiapas y en la Cuenca del río Balsas; P. parkeri es conocida sólo para la vertiente del Pacífico de Costa Rica. Se incluye una clave para las especies de América del norte y central.

  1. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    Science.gov (United States)

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  2. Discover a Watershed: The Everglades.

    Science.gov (United States)

    Robinson, George B.; And Others

    This publication is designed for both classroom teachers and nonformal educators of young people in grades 6 through 12. It can provide a 6- to 8-week course of study on the watershed with students participating in activities as they are ordered in the guide, or activities may be used in any order with educators selecting those appropriate for the…

  3. Watershed Boundaries - WATERSHEDS_HUC11__USGS_IN: Watersheds, 11-digit Hydrologic Units, in Indiana, (Derived from US Geological Survey, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WATERSHEDS_HUC11_USGS_IN is a polygon shapefile showing the boundaries of watersheds in Southwestern Indiana. Watersheds are noted by a 11-digit hydrologic unit....

  4. Discussion on the Landscape Pattern Change of Watershed

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bin

    2006-01-01

    Evaluating the transition of landscape can understand that ecosystem processes are being influenced by disturbance. For this reason, it is essential that using appropriate mapping techniques and quantitative methods to assess landscape condition within different disturbance regimes. Landscape metrics were calculated for segmented areas of homogeneous land use in watershed to allow understanding and characterization of ecosystem.Chen-yu-lan watershed, located in the central of Taiwan, is a sensitivity area for disaster such as earthquakes and typhoons. In this study we focus on how the natural disaster affect landscape pattern. The study shows that landscape metrics can measure the effect of typhoon and earthquake disturbance regime. The analysis shows that evaluating landscape transition can contribute more detailed information for managing ecosystem.

  5. Political Reform at Watershed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    How to promote the reform of political institutions is one of the thorny issues facing China.The recent publication of the first book systematically illustrating the overall plan of the reform of China’s political institutions,Storming the Fortress:A Research Report on the Reform of China’s Political Institutions After the 17th Party Congress (abbreviated as Storming the Fortress) has attracted a lot of public attention.Besides the sensitive topic,the identities of the authors also con- tribute to the book’s bestselling.Most authors of the book are from the Party School of the Central Committee of the Communist Party of China (CPC),an important think tank of the CPC.Because of this many people believe that the book represents the official standpoint.Beijing Review reporter Feng Jianhua conducted an interview with Professor Zhou Tianyong,Chief Compiler of the book and Deputy Director of the Research Office of the Party School of the CPC Central Committee.

  6. Prevalence of Shiga toxin Producing Escherichia coli, Salmonella enterica and Listeria monocytogenes at Public Access Watershed Sites in a California Central Coast Agricultural Region

    Directory of Open Access Journals (Sweden)

    Michael B Cooley

    2014-03-01

    Full Text Available Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over two years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC, Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from 1,386 samples was 11%; 110 samples (8% contained E. coli O157:H7 with the highest prevalence occurring close to cattle operations. Non-O157 STEC isolates represented major clinical O-types and 57% contained both shiga toxin types 1 and 2 and intimin. Multiple Locus Variable Number Tandem Repeat Analysis of STEC isolates indicated prevalent strains during the period of study. Notably, Salmonella was present at high levels throughout the sampling region with 65% prevalence in 1,405 samples resulting in 996 isolates with slightly lower prevalence in late autumn. There were 2, 8 and 14 sites that were Salmonella-positive over 90%, 80% and 70% of the time, respectively. The serotypes identified most often were 6,8:d:-, Typhimurium, and Give. Interestingly, analysis by Pulsed Field Gel Electrophoresis indicated persistence and transport of pulsotypes in the region over several years. In this original study of L. monocytogenes in the region prevalence was 43% of 1,405 samples resulting in 635 individual isolates. Over 85% of the isolates belonged to serotype 4b with serotypes 1/2a, 1/2b, 3a, 4d with 4e representing the rest, and there were 12 and 2 sites that were positive over 50% and 80% of the time, respectively. Although surface water is not directly used for irrigation in this region, transport to the produce can occur by other means. This environmental survey assesses initial contamination levels towards an understanding of transport leading to produce

  7. Realities of the Watershed Management Approach: The Manupali Watershed Experience

    OpenAIRE

    Rola, Agnes C.; Suminguit, Vel J.; Sumbalan, Antonio T.

    2004-01-01

    Local research in the Manupali watershed, with about 60% of its land area belonging to the upland municipality of Lantapan, Bukidnon, found that water quantity and quality declined due to soil erosion and domestic waste contamination. As population grows and agriculture becomes more integrated to the market, water deterioration is projected to worsen. Both economic and environmental sustainability then depend on the following management bodies: 1) the management of the Mt. Kitanglad range, th...

  8. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  9. Soils of Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lietzke, D.A.

    1994-01-01

    The soil survey of Walker Branch Watershed (WBW) utilized the most up-to-date knowledge of soils, geology, and geohydrology in building the soils data base needed to reinterpret past research and to begin new research in the watershed. The soils of WBW were also compared with soils mapped elsewhere along Chestnut Ridge on the Oak Ridge Reservation to (1) establish whether knowledge obtained elsewhere could be used within the watershed, (2) determine whether there were any soils restricted to the watershed, and (3) evaluate geologic formation lateral variability. Soils, surficial geology, and geomorphology were mapped at a scale of 1:1200 using a paper base map having 2-ft contour intervals. Most of the contours seemed to reasonably represent actual landform configurations, except for dense wooded areas. For example, the very large dolines or sinkholes were shown on the contour base map, but numerous smaller ones were not. In addition, small drainageways and gullies were often not shown. These often small but important features were located approximately as soil mapping progressed. WBW is underlain by dolostones of the Knox Group, but only a very small part of the surface area contains outcroppings of rock and most outcrops were located in the lower part. Soil mapping revealed the presence of both ancient alluvium and ancient colluvium deposits, not recognized in previous soil surveys, that have been preserved in high-elevation stable portions of present-day landforms. An erosional geomorphic process of topographic inversion requiring several millions of years within the Pleistocene is necessary to bring about the degree of inversion that is expressed in the watershed. Indeed, some of these ancient alluvial and colluvial remnants may date back into the Tertiary. Also evident in the watershed, and preserved in the broad, nearly level bottoms of dolines, are multiple deposits of silty material either devoid or nearly devoid of coarse fragments. Recent research

  10. Environmental Management of Agricultural Watersheds

    OpenAIRE

    Golubev, G.N.

    1983-01-01

    It is well known that agricultural activity has a considerable influence on hydrological processes such as run-off and its regime, erosion and sedimentation, transport of dissolved chemicals, etc. But the influence goes beyond hydrology. Water just plays the role of an agent or carrier in geoecosystems. That is why we have chosen the watershed as a natural territorial unit where the components are united by hydrological processes. The policy usually adopted for normal agricultural dev...

  11. Nitrogen Losses in Runoff from Row-cropped Watersheds: Environmental Benefits of Native Prairie Filter Strips

    Science.gov (United States)

    Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R. K.; Tomer, M. D.

    2011-12-01

    Loss of nitrogen in runoff from agricultural landscapes is a serious problem in the Midwestern United States due to inappropriate/intensive management practices. Among other best management practices, vegetative filter strips have been effectively adopted to reduce pollutant transport with agricultural runoff. In this study, twelve ephemeral watersheds at the Neal Smith National Wildlife Refuge in Central Iowa were used to evaluate the effectiveness of native prairie filter strips (NPFS) in reducing total nitrogen (TN) and nitrate-N (NO3-N) loss from row-cropped watersheds. Small amounts of NPFS were incorporated at different locations within the watersheds in fall 2006 using a balanced incomplete block design. A no-till 2-yr corn-soybean rotation was adopted in nonperennial areas since spring 2007. Each watershed was instrumented with an H-flume, a flow-monitoring device, and an ISCO water sampler in 2007. Runoff samples during the growing season between 2007 and 2010 were analyzed for TN and NO3-N concentrations for each individual rainfall event. The 4-year mean annual TN loss for watersheds with NPFS was 6.9 kg ha-1, approximately 85% lower than TN loss from 100% row-cropped watersheds (47.7 kg ha-1). Mean annual NO3-N loss during the growing season was 4.2 and 1.3 kg ha-1 for the watersheds with and without NPFS, respectively. The results of this study suggest that incorporation of small amounts of NPFS within annual rowcrop systems could greatly reduce TN and NO3-N loss from agricultural watersheds.

  12. DEVELOPING A SERVICE-LEARNING PROGRAM FOR WATERSHED MANAGEMENT: Lessons from the Stroubles Creek Watershed Initiative

    OpenAIRE

    de Leon, Raymond F.

    2002-01-01

    There has been a growing interest and support by many state and local programs to address aquatic resource protection and restoration at a watershed level. The desire by many programs to implement watershed management programs has become more than just a need, rather a necessity to ensure suitable water resources. However, many challenges arise when developing and sustaining watershed programs. One such challenge is that watershed programs are resource intensive. These programs require si...

  13. Realities of Watershed Management in the Philippines: The Case of the Iloilo-Maasin Watershed

    OpenAIRE

    Francisco, Herminia A.; Salas, Jessica C.

    2004-01-01

    The paper analyzed the presence or absence of elements needed to have an effective system of watershed management in the Maasin Watershed, Iloilo Province. IT concluded that: a) both the legal and institutional structures needed support watershed management effort are in place; b) there is evidence of a strong social capital existing in the upland and lowland communities; c) there is an adequate level of technical capital investment to sustainably manage the watershed; and d) there is suffici...

  14. FARMERS’ MOTIVATIONS FOR ADOPTING MANAGEMENT PRACTICES IN THE GOODWATER CREEK EXPERIMENTAL WATERSHED

    Science.gov (United States)

    The purpose of this work was to evaluate farm operator opinions relative to soil and water conservation practices in the Goodwater Creek Watershed in Central Missouri. This study reveals the outcome of structured interviews conducted with 25 farm operators within the Conservation Effects Assessment...

  15. Report on the projected future climate of the Fort Cobb Watershed, Oklahoma

    Science.gov (United States)

    This report provides technical information on projected climate change and associated monotonic trends of precipitation and air temperature at the ARS Fort Cobb Experimental Watershed in west-central Oklahoma. The report is an attachment to the full report of the multi-location project MLP 464: “Est...

  16. Integrated watershed management: a planning methodology for construction of new dams in Ethiopia

    NARCIS (Netherlands)

    Bezuayehu, Tefera; Stroosnijder, L.

    2007-01-01

    Integrated watershed management (IWM) is emerging as an alternative to the centrally planned and sectoral approaches that currently characterize the planning process for dam construction in Ethiopia. This report clarifies the concept of IWM, and reviews the major social, environmental and economic p

  17. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  18. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  19. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  20. Community-Based Integrated Watershed Management

    Institute of Scientific and Technical Information of China (English)

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  1. Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data

    Science.gov (United States)

    Zawadzki, Jaroslaw; Kędzior, Mateusz

    2016-03-01

    Monitoring of temporal and spatial soil moisture variability is an important issue, both from practical and scientific point of view. It is well known that passive, L-band, radiometric measurements provide best soil moisture estimates. Unfortunately as it was observed during Soil Moisture and Ocean Salinity (SMOS) mission, which was specially dedicated to measure soil moisture, these measurements suffer significant data loss. It is caused mainly by radio frequency interference (RFI) which strongly contaminates Central Europe and even in particularly unfavorable conditions, might prevent these data from being used for regional or watershed scale analysis. Nevertheless, it is highly awaited by researchers to receive statistically significant information on soil moisture over the area of a big watershed. One of such watersheds, the Odra (Oder) river watershed, lies in three European countries - Poland, Germany and the Czech Republic. The area of the Odra river watershed is equal to 118,861 km2 making it the second most important river in Poland as well as one of the most significant one in Central Europe. This paper examines the SMOS soil moisture data in the Odra river watershed in the period from 2010 to 2012. This attempt was made to check the possibility of assessing, from the low spatial resolution observations of SMOS, useful information that could be exploited for practical aims in watershed scale, for example, in water storage models even while moderate RFI takes place. Such studies, performed over the area of a large watershed, were recommended by researchers in order to obtain statistically significant results. To meet these expectations, Centre Aval de Traitement des Donnes SMOS (CATDS), 3-days averaged data, together with Global Land Data Assimilation System (GLDAS) National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab (NOAH) model 0.25 soil moisture values were used for statistical analyses and mutual

  2. Panama Canal Watershed Experiment- Agua Salud Project

    Science.gov (United States)

    Stallard, Robert F.; Ogden, Fred L.; Elsenbeer, Helmut; Hall, Jefferson S.

    2010-01-01

    The Agua Salud Project utilizes the Panama Canal’s (Canal) central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. The Canal was one of the great engineering projects in the world. Completed in 1914, after almost a decade of concerted effort, its 80 km length greatly shortened the voyage between the Atlantic and Pacific Oceans. An entire class of ships, the Panamax, has been constructed to maximize the amount of cargo that can be carried in a Canal passage. In today’s parlance, the Canal is a “green” operation, powered largely by water (Table 1). The locks, three pairs on each end with a net lift of 27 meters, are gravity fed. For each ton of cargo that is transferred from ocean to ocean, about 13 tons of water (m3) are used. Lake Gatún forms much of the waterway in the Canal transect. Hydroelectricity is generated at the Gatún dam, whenever there is surplus water, and at Madden Dam (completed in 1936) when water is transferred from Lake Alhajuela to Lake Gatún. The Canal watershed is the source of drinking water for Panama City and Colon City, at either end of the Canal, and numerous towns in between.

  3. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  4. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences betw

  5. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  6. Watershed Management: Lessons from Common Property Theory

    Directory of Open Access Journals (Sweden)

    John Kerr

    2007-10-01

    Full Text Available Watershed development is an important component of rural development and natural resource management strategies in many countries. A watershed is a special kind of common pool resource: an area defined by hydrological linkages where optimal management requires coordinated use of natural resources by all users. Management is difficult because natural resources comprising the watershed system have multiple, conflicting uses, so any given management approach will spread benefits and costs unevenly among users. To address these challenges, watershed approaches have evolved from more technocratic to a greater focus on social organization and participation. However, the latter cannot necessarily be widely replicated. In addition, participatory approaches have worked better at a small scale, but hydrological relationships cover a larger scale and some projects have faced tradeoffs in choosing between the two. Optimal approaches for future efforts are not clear, and theories from common property research do not support the idea that complex watershed management can succeed everywhere. Solutions may include simplifying watershed projects, pursuing watershed projects where conditions are favorable, and making other investments elsewhere, including building the organizational capacity that can facilitate watershed management.

  7. Uncertainty Consideration in Watershed Scale Models

    Science.gov (United States)

    Watershed scale hydrologic and water quality models have been used with increasing frequency to devise alternative pollution control strategies. With recent reenactment of the 1972 Clean Water Act’s TMDL (total maximum daily load) component, some of the watershed scale models are being recommended ...

  8. Retrospect and prospect of watershed hydrological model

    Institute of Scientific and Technical Information of China (English)

    B.CHEN; Z.F.YANG; 等

    2001-01-01

    A brief review is presented of the development of watershed hydrological models,COnventional Hydrological Model,Grey Hydrological Model,Digital Hydrological Model and Intelligent Hydrological Model are analyzed.The Frameworks of Fuzzy Cognitive Hydrological Model and Integrated Digital Watershed Hydrological Model are presented.

  9. 36 CFR 251.35 - Petersburg watershed.

    Science.gov (United States)

    2010-07-01

    ... Forest timber (36 CFR part 223). In any removal of timber from the watershed, the Forest Supervisor shall... 36 CFR 261.1b. (e) The Forest Supervisor of the Stikine Area of the Tongass National Forest may... 36 Parks, Forests, and Public Property 2 2010-07-01 2010-07-01 false Petersburg watershed....

  10. Watershed Conservation Management Planning Using AGNPS

    Science.gov (United States)

    A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending best management practices to agricultural producers. The environmental benefits of these practices have not been widely quantified at the watershed scale, which would require extens...

  11. Prioritization of sub-watersheds based on morphometric analysis using geospatial technique in Piperiya watershed, India

    Science.gov (United States)

    Chandniha, Surendra Kumar; Kansal, Mitthan Lal

    2014-11-01

    Hydrological investigation and behavior of watershed depend upon geo-morphometric characteristics of catchment. Morphometric analysis is commonly used for development of regional hydrological model of ungauged watershed. A critical valuation and assessment of geo-morphometric constraints has been carried out. Prioritization of watersheds based on water plot capacity of Piperiya watershed has been evaluated by linear, aerial and relief aspects. Morphometric analysis has been attempted for prioritization for nine sub-watersheds of Piperiya watershed in Hasdeo river basin, which is a tributary of the Mahanadi. Sub-watersheds are delineated by ArcMap 9.3 software as per digital elevation model (DEM). Assessment of drainages and their relative parameters such as stream order, stream length, stream frequency, drainage density, texture ratio, form factor, circulatory ratio, elongation ratio, bifurcation ratio and compactness ratio has been calculated separately for each sub-watershed using the Remote Sensing (RS) and Geospatial techniques. Finally, the prioritized score on the basis of morphometric behavior of each sub-watershed is assigned and thereafter consolidated scores have been estimated to identify the most sensitive parameters. The analysis reveals that stream order varies from 1 to 5; however, the first-order stream covers maximum area of about 87.7 %. Total number of stream segment of all order is 1,264 in the watershed. The study emphasizes the prioritization of the sub-watersheds on the basis of morphometric analysis. The final score of entire nine sub-watersheds is assigned as per erosion threat. The sub-watershed with the least compound parameter value was assigned as highest priority. However, the sub-watersheds has been categorized into three classes as high (4.1-4.7), medium (4.8-5.3) and low (>5.4) priority on the basis of their maximum (6.0) and minimum (4.1) prioritized score.

  12. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    International Nuclear Information System (INIS)

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring 222Rn as a tracer. The first of the two stages was solving a mass-balance equation for 222Rn around a stream reach of interest in order to calculate Rnq, the 222Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rnq to the measured 222Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach

  13. Analysis of water quality in the Blue River watershed, Colorado, 1984 through 2007

    Science.gov (United States)

    Bauch, Nancy J.; Miller, Lisa D.; Yacob, Sharon

    2014-01-01

    Water quality of streams, reservoirs, and groundwater in the Blue River watershed in the central Rocky Mountains of Colorado has been affected by local geologic conditions, historical hard-rock metal mining, and recent urban development. With these considerations, the U.S. Geological Survey, in cooperation with the Summit Water Quality Committee, conducted a study to compile historical water-quality data and assess water-quality conditions in the watershed. To assess water-quality conditions, stream data were primarily analyzed from October 1995 through December 2006, groundwater data from May 1996 through September 2004, and reservoir data from May 1984 through November 2007. Stream data for the Snake River, upper Blue River, and Tenmile Creek subwatersheds upstream from Dillon Reservoir and the lower Blue River watershed downstream from Dillon Reservoir were analyzed separately. (The complete abstract is provided in the report)

  14. Francisella philomiragia, bacteria asociada con altas mortalidades en salmones del Atlántico (Salmo salar) cultivados en balsas-jaulas en el lago Llanquihue Francisella philomiragia, a bacteria associated with high mortalities in Atlantic salmon (Salmo salar) cage-farmed in Llanquihue lake

    OpenAIRE

    H Bohle; Tapia, E.; A Martínez; M Rozas; Figueroa, A.; Bustos, P.

    2009-01-01

    Francisella philomiragia fue aislada de salmón del Atlántico cultivado en balsas-jaulas en el lago Llanquihue con brotes de una enfermedad granulomatosa con altas tasas de morbilidad y mortalidad acumuladas entre 5% a 20%. Los aislados bacterianos tienen 100% similitud con F. philomiragia ssp noatunensis o F. piscicida aislado de bacalao en Noruega, 99% de similitud con Francisella sp. detectado en tilapia en Asia y Centroamérica y 99% de similitud con la especie tipo F. philomiragia por anál...

  15. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  16. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    Science.gov (United States)

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  17. 7 CFR 622.11 - Eligible watershed projects.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Eligible watershed projects. 622.11 Section 622.11..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed projects. (a) To be eligible for Federal assistance, a watershed project must: (1) Meet the definition of...

  18. Variability of the radiative index of dryness in an Appalachian watershed

    International Nuclear Information System (INIS)

    The radiative index of dryness, β (i.e., the ratio of seasonal sums of net radiation to those of the latent heat of precipitation) was used to characterize spatial and temporal variability of moisture conditions in a central Appalachian watershed during 35 growing seasons (1948–1982). The mean seasonal value of the index for the watershed and the whole study period was 1.2: year-to-year seasonal values fluctuated from 0.72 for the wet growing season of 1956 to 1.80 for the dry growing season of 1959. The highest values of the index were observed on south-west facing upper slopes at the northern boundary of the watershed, and the lowest values at the bottom of the watershed. The seasonal coefficient of variation of the index in the watershed was 36%. The highest monthly values of the index, reaching up to 2.94, were observed on the upper south-west facing slopes in June 1966. The correlation between β and corresponding basal area increment was poor. However, the average basal area increment during years with seasonal β > 1.5 was up to 29% less than the 35-year average. (author)

  19. Land Cover Vegetation Changes and Hydrology in Central Texas

    Science.gov (United States)

    Banta, J. R.; Slattery, R.

    2013-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing changes in land cover vegetation (removing the woody vegetation and allowing native grasses to reestablish in the area, commonly referred to as brush management), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal agencies, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and potential groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Results indicate there are differences in the hydrologic budget and water quality between the reference and treatment watersheds, as well as between pre- and post-brush management periods.

  20. Hydrologic Effects of Brush Management in Central Texas

    Science.gov (United States)

    Banta, J. R.; Slattery, R.

    2011-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing brush management practices (removing the woody vegetation and allowing native grasses to reestablish in the area), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal cooperators, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Preliminary results indicate there are differences in the hydrologic budget as well as water quality between the watersheds during pre- and post-treatment periods.

  1. LEAST-COST WATERSHED MANAGEMENT SOLUTIONS: USING GIS DATA IN ECONOMIC MODELING OF A WATERSHED

    OpenAIRE

    Ancev, Tihomir; Stoecker, Arthur L.

    2003-01-01

    Phosphorus pollution from excessive litter application causes eutorphication of lakes in the Eucha-Spavinaw watershed in eastern Oklahoma and western Arkansas. Consequent algal blooms impair the taste of municipal water supply drawn from the watershed. The paper shows how GIS data based biophysical modeling can be used to derive spatially optimal, least-cost allocation of management practices to reduce phosphorus runoff in the watershed. Transportation activities were added to the model so th...

  2. Statewide Watershed Management Effects on Local Watershed Groups: A Comparison of Wisconsin, Kentucky, and Virginia

    OpenAIRE

    Gorder, Joel Steven

    2001-01-01

    While there are no federal mandates for states to establish watershed management frameworks, many states see the benefits of doing so and have established such approaches. The main advantage of statewide watershed management over traditional resource management is the cost effectiveness and the formation of integrated solutions to water quality problems. Statewide watershed frameworks provide a geographic focus and partnerships in order to develop comprehensive solutions...

  3. Development of watershed compensation programs

    International Nuclear Information System (INIS)

    British Columbia Hydro is developing fish and wildlife watershed compensation programs to address water license requirements of recent hydroelectric developments and outstanding issues associated with older projects. Historically, no funding was provided for environmental impacts. In more recent times, a one-time payment was made to the appropriate government agencies. With no long-term commitment by B.C. Hydro, fish and wildlife resource needs were often not addressed, leading to the degradation or loss of the resource and the perception that B.C. Hydro was not addressing its responsibilities with respect to other water users. B.C. Hydro's activities are reviewed with respect to developing ongoing fisheries compensation or mitigation programs through trust funds that ensure a long term commitment towards replacing or improving, and maintaining fish resources associated with B.C. Hydro's hydroelectric developments. 2 figs

  4. Southern Watersheds Common Reedgrass Project Progress Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Southern Watersheds includes the drainages of the Northwest River, the North Landing River, and Back Bay in the southeastern corner of Virginia. Common...

  5. Southern Watersheds Common Reedgrass Monitoring Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Southern Watersheds Common Reedgrass Project is an interagency effort to increase public awareness of the common reedgrass problem, demonstrate effective...

  6. Watershed Boundaries, Published in unknown, SWGRC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, was produced all or in part from Road Centerline Files information as of unknown. Data by this publisher are often provided in...

  7. Blob Objects Analysis Using Watershed Transformation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a novel method for overlapping or touching blob object ( particles ) segmentation. It is based on the watershed transformation, one of the most powerful image analysis tools provided by mathematical morphology. In this method, we first build the distance function of the blob image, and then extract the regional minima as markers, and finally the watershed transformation is performed. The applications of this algorithm illustrated using the examples of red blood cell segmentation and broken medicine pill detection.

  8. Sustainable Practices in Watershed Management: Global Experiences

    OpenAIRE

    Menon, Sudha

    2007-01-01

    Watershed management is considered by scholars as well as practitioners across the world as the most appropriate approach to ensure the preservation, conservation and sustainability of all land based resources and for improving the living conditions of the people in uplands and low lands. More over watershed management technologies have proven to be effective for mitigating erosion on sloping land, stabilizing landscapes, providing clean water, stabilizing and improving agrarian production sy...

  9. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  10. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    International Nuclear Information System (INIS)

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in μEq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m2/month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m2/month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs

  11. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Barchet, W.R.

    1991-11-01

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in {mu}Eq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m{sup 2}/month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m{sup 2}/month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs.

  12. Spate Irrigation Systems and Watershed Development in Eritrea: the case of Sheeb watershed

    NARCIS (Netherlands)

    Tesfai, M.H.

    2002-01-01

    This paper describes the interactions of the Spate Irrigation System (SIS) in Eritrea with their upper watersheds, as a case study in Sheeb watershed. The spate irrigation practices, among others, include techniques to harvest runoff water, sediments, and nutrients. A strong relationship exists betw

  13. Determining Sources of Fecal Pollution in the Blackwater River Watershed, Franklin County, Virginia

    OpenAIRE

    Bowman, Amy Marie

    2001-01-01

    Antibiotic resistance analysis (ARA) was used to determine sources of fecal pollution in the Blackwater River in South-central Virginia. The Department of Environmental Quality designated six segments as impaired due to high fecal coliform concentrations with non-point source (NPS) agriculture the suspected source of impairment. The Blackwater River watershed encompasses 72,000 ha of dairy, beef, and intensive production agriculture, abundant wildlife populations and many homes with onsite s...

  14. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    Science.gov (United States)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will

  15. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  16. DNR Watersheds - DNR Level 04 - HUC 08 - Majors

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of 81 watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Major Watersheds....

  17. US Forest Service Watershed Condition Class and Assessment Status 2011

    Data.gov (United States)

    US Forest Service, Department of Agriculture — The map contains the Watershed Condition Class and assessment status for the assessment year of 2011. The layer is symbolized by the Watershed Condition Class for...

  18. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  19. Development of a New Index for Integrating Landscape Patterns with Ecological Processes at Watershed Scale

    Institute of Scientific and Technical Information of China (English)

    CHEN Liding; TIAN Huiying; FU Bojie; ZHAO Xinfeng

    2009-01-01

    Understanding the relationship between landscape patterns and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been proposed but few directly incorporated ecological processes. In this paper, we developed a landscape index, namely, location-weighted landscape index (LWLI) to highlight the role of landscape type in ecological processes, such as nutrient losses and soil erosion. Within the framework of the Lorenz curve theory, we develop this index by integrating landscape pattern and point-based measurements at a watershed scale. The index can be used to characterize the contribution of landscape pattern to ecological processes (e.g. nutrient losses) with respect to a specific monitoring point in a watershed. Through a case study on nutrient losses in an agricultural area in northeastern China, we found that nutrient losses tended to be higher for a watershed with a higher LWLI value, and vice versa. It implied that LWLI can be used to evaluate the potential risk of nutrient losses or soil erosion by comparing their values across watersheds. In addition, this index can be extended to characterize ecological processes, such as the effect of landscape pattern on wildlife inhabitation and urban heat island effect. Finally, we discuss several problems that should be paid attention to when applying this index to a heterogeneous landscape site.

  20. Modeling flood reduction effects of low impact development at a watershed scale.

    Science.gov (United States)

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. PMID:26878221

  1. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  2. Ultrametric watersheds: a bijection theorem for hierarchical edge-segmentation

    CERN Document Server

    Najman, Laurent

    2010-01-01

    We study hierachical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical edgesegmentations. We end this paper by showing how the proposed framework allows to see constrained connectivity as a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.

  3. The steepest watershed: from graphs to images

    CERN Document Server

    Meyer, Fernand

    2012-01-01

    The watershed is a powerful tool for segmenting objects whose contours appear as crest lines on a gradient image. The watershed transform associates to a topographic surface a partition into catchment basins, defined as attraction zones of a drop of water falling on the relief and following a line of steepest descent. Unfortunately, catchment basins may overlap and do not form a partition. Moreover, current watershed algorithms, being shortsighted, do not correctly estimate the steepness of the downwards trajectories and overestimate the overlapping zones of catchment basins. An arbitrary division of these zones between adjacent catchment basin results in a poor localization of the contours. We propose an algorithm without myopia, which considers the total length of a trajectory for estimating its steepness. We first consider topographic surfaces defined on node weighted graphs. The graphs are pruned in order to eliminate all downwards trajectories which are not the steepest. An iterative algorithm with simpl...

  4. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry...... concentration facilitated conservation of entire ecosystems. We investigate the benefits that accrued through dynamic linkages of the hydrological cycle and groundwater aquifer system. This provides a clear example of the need to consider integrated watershed effects, industrial structure, and linkages in...... determining conservation policy. We incorporated remote-sensing data, expert opinion on current watershed quality, and a spatial economic and hydrological model of O`ahu’s freshwater use with reports of conservation activities from 1910–1960 to assess these benefits. We find a 2.3% annual increase in...

  5. Redistribution of cesium-137 in southeastern watersheds

    International Nuclear Information System (INIS)

    Sediment samples from 14 southeastern agricultural reservoirs and surface samples from representative soils from the contributing water shed areas were analyzed for 137Cs. The concentrations of 137Cs measured reflect the nature of the watershed, its cover, its use, and man's activities. Since the redistribution of 137Cs was assumed to result from soil erosion, recent erosion rates can be calculated from the measured 137Cs accumulations in sediments and from the decreases in the 137Cs calculated to have been deposited on upland soils. Measured concentrations of 137Cs ranged from 14 to 158 nCi/m2 in surface soils. As much as 525 nCi/m2 of 137Cs was measured in the deposited sediment profile. Watershed budgets for 137Cs were calculated for three representative watersheds using available sediment survey information and the measured 137Cs concentrations

  6. Watershed management program. Final environmental impact statement

    International Nuclear Information System (INIS)

    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  7. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  8. 76 FR 71936 - Upper Deckers Creek Watershed, Preston County, WV

    Science.gov (United States)

    2011-11-21

    ... Natural Resources Conservation Service Upper Deckers Creek Watershed, Preston County, WV AGENCY: Natural... notice that an environmental impact statement is being prepared for the Upper Deckers Creek Watershed... Domestic Assistance under No. 10.904--Watershed Protection and Flood Prevention--and is subject to...

  9. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    OpenAIRE

    ZAMFIR Andreea; Daniel SIMULESCU

    2011-01-01

    This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps s...

  10. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  11. Geographic information system/watershed model interface

    Science.gov (United States)

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  12. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  13. Estimación de evaporación en balsas de riego mediante el empleo de técnicas de teledetección. Estudio aplicado a la vertiente litoral sur de la Región de Murcia

    OpenAIRE

    Ibarra, Daniel; Martínez Salvador, Alberto; Conesa García, Carmelo; Belmonte Serrato, Francisco

    2014-01-01

    En las regiones áridas y semiáridas las pérdidas de agua por evaporación en balsas de regulación de riego pueden provocar pérdidas económicas importantes. La evaluación de tales pérdidas en la Región de Murcia, como en el resto del Sureste de la Península Ibérica, es de indudable utilidad dada la necesidad de optimizar sus escasas disponibilidades hídricas para el desarrollo de una agricultura tradicionalmente de alto rendimiento. En el presente estudio se aplican técnicas de teledetección pa...

  14. Efeitos de doses crescentes de calcário em solo Latossolo Amarelo na produção de mudas de pau-de-balsa (Ochroma lagopus sw., bombacaceae) Effects of the rising heat in Yellow Oxisoil in the production of silent wood rafts (Ochroma lagopus sw., bombacaceae)

    OpenAIRE

    Carlos Alberto Franco Tucci; Hedinaldo Narciso Lima; Aildo da Silva Gama; Heron Salazar Costa; Patricia Aparecida de Souza

    2010-01-01

    A produção de mudas de qualidade com adequado teor nutricional é fundamental para o desenvolvimento da planta e para a formação do sistema radicular, a qual apresentará melhor capacidade de adaptação ao novo local após o plantio. O objetivo deste trabalho foi avaliar o efeito de níveis crescentes de calcário na produção de mudas de pau-de-balsa. Os tratamentos foram constituídos de doses crescentes de corretivo e equivaleram a 0,0; 0,25; 0,5; 0,75; 1,0; 1,5 e 2,0 t ha-1 de calcário e o deline...

  15. EFFECTS OF HYDROGEOMORPHIC REGION, WATERSHED STORAGE, AND FOREST FRAGMENTATION ON WATERSHED EXPORTS

    Science.gov (United States)

    Turbidity was highest for South Shore streams overall, but exhibited a significant HGM x storage x fragmentation effect, with highest levels observed in South Shore low storage/high fragmentation watersheds.

  16. TESTING WATERSHED CLASSIFICATIONS RELEVANT TO BIOASSESSMENT, CONSERVATION PLANNING, AND WATERSHED RESTORATION

    Science.gov (United States)

    Objective: Our research is designed to test the effectiveness of a systematic approach for developing watershed classification schemes useful for environmental assessment and monitoring of aquatic ecosystems. In doing so, we will identify the specific wa...

  17. Watershed and ecosystem responses to invasive grass establishment and dominance across a desert grassland watershed

    Science.gov (United States)

    Hamerlynck, E.; Scott, R.; Polyakov, V.; Sugg, Z.; Moran, M. S.; Stone, J.; Nearing, M.

    2012-04-01

    Compared to aridland systems that have undergone rapid change in dominant vegetation growth form, the consequences to watershed and ecosystem processes following a shift in dominance between similar growth forms have not been well-studied. Following a five year drought period, strong summer monsoon rains in 2006 across the USDA-ARS Walnut Gulch Experimental Watershed near Tombstone, AZ, were accompanied by widespread native perennial grass mortality, a transient increase in annual forbs, followed by establishment and sustained dominance by the invasive South African bunchgrass, Lehmann lovegrass (Eragrostis lehmanniana) across a semiarid grassland watershed (Kendall grassland, WS#112). This loss of ecological diversity occurred across a watershed already instrumented for quantifying long-term climate, watershed, hill-slope, and ecosystem-level gas exchange. Salient findings from these data sets were: 1) annual watershed sediment discharge rapidly returned to pre-invasion levels following a large spike in 2006 that accounted for 65% of the total sediment yield summed over 35 years, 2) plot-level experimental runoff studies showed hill-slope sediment yields consistently doubled, as did growing season soil evaporation contributions to ET, and 3) the grassland was a carbon sink during dry conditions under lovegrass dominance. These findings show that while some aspects of watershed and ecosystem function rapidly re-established (i.e. sediment yield and net primary productivity), processes acting at lower spatial and temporal scales have been negatively impacted by lovegrass dominance. We believe these lower-order processes underlie the strong ecological effects associated with Lehmann lovegrass invasion, and may also accelerate landform processes and change the basic ecohydrological characteristics of semi-arid grassland watersheds.

  18. Engaging Pennsylvania Teachers in Watershed Education

    Science.gov (United States)

    Gruver, Joshua; Luloff, A. E.

    2008-01-01

    Water-resource scientists have become increasingly concerned about global water quality and quantity issues. Water and watershed education are now mandated topics for school-aged youth. Pennsylvania teachers lack consistent and accessible curricula to teach students about water quality and quantity. A mail survey administered in 2004 determined…

  19. A mean field approach to watershed hydrology

    Science.gov (United States)

    Bartlett, Mark; Porporato, Amilcare

    2016-04-01

    Mean field theory (also known as self-consistent field theory) is commonly used in statistical physics when modeling the space-time behavior of complex systems. The mean field theory approximates a complex multi-component system by considering a lumped (or average) effect for all individual components acting on a single component. Thus, the many body problem is reduced to a one body problem. For watershed hydrology, a mean field theory reduces the numerous point component effects to more tractable watershed averages, resulting in a consistent method for linking the average watershed fluxes to the local fluxes at each point. We apply this approach to the spatial distribution of soil moisture, and as a result, the numerous local interactions related to lateral fluxes of soil water are parameterized in terms of the average soil moisture. The mean field approach provides a basis for unifying and extending common event-based models (e.g. Soil Conservation Service curve number (SCS-CN) method) with more modern semi-distributed models (e.g. Variable Infiltration Capacity (VIC) model, the Probability Distributed (PDM) model, and TOPMODEL). We obtain simple equations for the fractions of the different source areas of runoff, the spatial variability of runoff, and the average runoff value (i.e., the so-called runoff curve). The resulting space time distribution of soil moisture offers a concise description of the variability of watershed fluxes.

  20. Morphometric analysis in basaltic Terrain of Central India using GIS techniques: a case study

    Science.gov (United States)

    Sahu, Nisha; Obi Reddy, G. P.; Kumar, Nirmal; Nagaraju, M. S. S.; Srivastava, Rajeev; Singh, S. K.

    2016-06-01

    Morphometric analysis is significant for investigation and management of the watershed. This study depicts the morphometric analysis of Miniwada Watershed in Nagpur district, Maharashtra, Central India using Geographic Information System (GIS) techniques, which has been carried out through measurement of various aspects like linear, aerial and relief aspects of watershed. The drainage network of the watershed was generated from Cartosat-I DEM (10 m) using ESRI Software ArcGIS (ver.10.2). The analysis reveals that drainage pattern is dendritic and the stream order in the watershed varies from 1 to 4. The total number of stream segments of all orders counted as 37, out of which the majority of orders (70.27 %) was covered by 1st order streams and 4th order stream segments covers only 2.70 %. The bifurcation ratio reflects the geological and tectonic characteristics of the watershed and estimated as 3.08. The drainage density of the watershed is 3.63 km/sq km and it indicates the closeness of spacing of channels. The systematic analysis of various parameters in GIS helps in better understanding the soil resources distribution, watersheds prioritization, planning and management.

  1. Reconstructing Historical Changes in Watersheds from Environmental Records: An Information Theory Approach

    Science.gov (United States)

    Guerrero, F. J.; Hatten, J. A.; Ruddell, B.; Penaranda, V.; Murillo, P.

    2015-12-01

    A 20% of the world's population is living in watersheds that suffer from water shortage. This situation has complex causes associated with historical changes in watersheds. However, disentangling the role of key drivers of water availability like climate change or land use practices is challenging. Part of the difficulty resides in that historical analysis is basically a process of empirical reconstruction from available environmental records (e.g. sediment cores or long-term hydrologic time series). We developed a mathematical approach, based on information theory, for historical reconstructions in watersheds. We analyze spectral entropies calculated directly or indirectly for sediment cores or long-term hydrologic time series respectively. Spectral entropy measures changes in Shannon's information of natural patterns (e.g. particle size distributions in lake bottoms or streamflow regimes) as they respond to different drivers. We illustrate the application of our approach with two case studies: a reconstruction of a time series of historical changes from a sediment core, and the detection of hydrologic alterations in watersheds associated to climate and forestry activities. In the first case we calculated spectral entropies from 700 sediment layers encompassing 1500 years of history in Loon Lake (Southern Oregon). In the second case, we calculated annual spectral entropies from daily discharge for the last 45 years in two experimental watersheds in the H. J. Andrews LTER site (Oregon Cascades). In Loon Lake our approach separated, without supervision, earthquakes from landslides and floods. It can also help to improve age models for sedimentary layers. At H. J. Andrews's sites our approach was able to identify hydrological alterations following a complete clear cut in 1975. It is also helpful to identify potential long-term impacts of these forestry activities, enhanced by climate change. Our results suggest that spectral entropy is central for translating between

  2. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  3. A review of watershed management experience

    International Nuclear Information System (INIS)

    A review of watershed management experience was conducted by Beak International Inc., under the auspices of the Ontario Ministry of the Environment, Executive Resource Group. The team assigned to this task conducted Internet searches, conducted interviews with targeted individuals and presented a number of examples of best practice in this field by different organizations. The selection was based on the results obtained from a questionnaire distributed to a number of organizations worldwide, and touched on the following topics: partners, types of resources/issues managed, reporting and monitoring, regulatory framework, and implementation. The short list included the United States Environmental Protection Agency (US EPA), Ohio, New Jersey, Washington, Australia, the United Kingdom as well as agencies in Ontario. The report identified the major characteristics of each of these leading jurisdictions as they relate to watershed management and how the lessons learned could be applied to the situation in Ontario. The key topics were: hydrologic cycle, biophysical units, ecosystem units, miner's canary, cumulative effects, quality of life, integrated resources management, and grass roots support. The conclusions reached indicated that an effective way of addressing issues related to water quality and allocation was through watershed management. A successful watershed planning and management program requires a clear legislative framework, as well as clear targets, monitoring programs and reporting requirements. All parties must be involved in the process of finding solutions to the problem of water quality impairment, considering the numerous causes ranging from industrial to agricultural and urban development. The support for funding and implementation relies heavily on public education and awareness programs. The use of water use surcharge on water/energy bills earmarked for watershed planning and management were successful in some jurisdictions. 8 refs., 2 tabs., 3

  4. Comparisons of remotely sensed and model-simulated soil moisture over a heterogenous watershed

    International Nuclear Information System (INIS)

    Soil moisture estimates from a distributed hydrologic model and two microwave airborne sensors (Push Broom Microwave Radiometer and Synthetic Aperture Radar) are compared with ground measurements on two different scales, using data collected during afield experiment over a 7.4-km 2 heterogeneous watershed located in central Pennsylvania. It is found that both microwave sensors and the hydrologic model successfully reflect the temporal variation of soil moisture. Watershed-averaged soil moistures estimated by the microwave sensors are in good agreement with ground measurements. The hydrologic model initialized by stream flow records yields estimates that are wetter than observations. The preliminary test of utilizing remotely sensed information as a feedback to correct the initial state of the hydrologic model shows promising results. (author)

  5. Oil in runoff from three watersheds: An update of an environmental concern

    International Nuclear Information System (INIS)

    Levels of oil were determined in runoff from three watersheds. Included were a commercial area (mainly an urban mall), a residential area (located in a central city), and a portion of a limited-access highway (228.6 m long). Personnel arrived at each site before runoff began, and samples were taken every 15 min for the first hour and every 30 min for the next 2 h, unless runoff stopped sooner than this. Rainfall also was measured, and cross section of flow and velocity of the water also were determined. Samples were analyzed for total and recoverable grease and oil, using a separatory funnel extraction. The highest mean concentration of oil was from the residential watershed (10.2 mg/l), but the lowest loading rate (0.24 g/0.405 ha/min) also was from the residential area

  6. Assessing Resilience in Stressed Watersheds

    Directory of Open Access Journals (Sweden)

    Kristine T. Nemec

    2014-03-01

    Full Text Available Although several frameworks for assessing the resilience of social-ecological systems (SESs have been developed, some practitioners may not have sufficient time and information to conduct extensive resilience assessments. We have presented a simplified approach to resilience assessment that reviews the scientific, historical, and social literature to rate the resilience of an SES with respect to nine resilience properties: ecological variability, diversity, modularity, acknowledgement of slow variables, tight feedbacks, social capital, innovation, overlap in governance, and ecosystem services. We evaluated the effects of two large-scale projects, the construction of a major dam and the implementation of an ecosystem recovery program, on the resilience of the central Platte River SES (Nebraska, United States. We used this case study to identify the strengths and weaknesses of applying a simplified approach to resilience assessment. Although social resilience has increased steadily since the predam period for the central Platte River SES, ecological resilience was greatly reduced in the postdam period as compared to the predam and ecosystem recovery program time periods.

  7. Wetland vegetation responses to liming an Adirondack watershed

    Energy Technology Data Exchange (ETDEWEB)

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  8. Factors influencing stream water transit times in tropical montane watersheds

    Science.gov (United States)

    Muñoz-Villers, L. E.; Geissert, D. R.; Holwerda, F.; McDonnell, J. J.

    2015-10-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs and related to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested watersheds (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2 year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from GIS analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTT ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form, land cover and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found at the smallest (0.1-1.5 km2) and the largest scales (14-34 km2). Interestingly, longest stream MTTs were found in the headwater cloud forest catchments.

  9. Diagnostic Systems Approach to Watershed Management

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to

  10. PROFILE: Management of Sedimentation in Tropical Watersheds.

    Science.gov (United States)

    NAGLE; FAHEY; LASSOIE

    1999-05-01

    / The sedimentation of reservoirs is a serious problem throughout the tropics, yet most attempts to control sedimentation in large river basins have not been very successful. Reliable information on erosion rates and sources of sediments has been lacking. In regions where geologically unstable terrain combines with high rainfall, natural erosion rates might be so high that the effects of human activity are limited. Estimates of natural erosion in these situations often have been poor because of the episodic nature of most erosion during large storms and because mass-wasting may supply much of the sediment. The predominance of mass-wasting in some watersheds can result in an unexpectedly high ratio of bedload to suspended load, shifting sedimentation to "live" rather than "dead" storage within reservoirs. Furthermore, the inappropriate use of the Universal Soil Loss Equation to assess the effectiveness of erosion control measures has led to inaccurate estimates of the sediment reduction benefits that could accrue to watershed treatment efforts. Although reducing erosion from cultivated areas is desirable for other reasons, efforts aimed at reducing reservoir sedimentation by controlling agricultural sources of erosion may have limited benefits if the principal sources are of natural origin or are associated with construction of the dams and reservoirs and with rural roads and trails. Finally, the most appropriate locations for watershed rehabilitation depend on the magnitude of temporary storage of colluvium and alluvium within the river basin: Where storage volume is large and residence time of sediment very long, reducing agricultural erosion may have limited impacts on sedimentation within the expected life of a reservoir. Systematic development and analysis of sediment budgets for representative watersheds is needed to address these limitations and thereby improve both the planning of river basin development schemes and the allocation of resources towards

  11. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  12. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    Directory of Open Access Journals (Sweden)

    Andreea ZAMFIR

    2011-03-01

    Full Text Available This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps showing the boundary of theOlteţ watershed. By overlapping the resulted maps, obtained with ArcGIS and QGIS, we found some small differences generated by the different way of working of each softwareinvolved in this study. We have also calculated a circularity coefficient for the Oltet watershed and the value obtained supports its elongated form and all the implication of it.

  13. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  14. Thermodynamic watershed hydrological model: Constitutive relationship

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The representative elementary watershed (REW) approach proposed by Reggiani et al. was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo-rated. The resultant ordinary differential equation set can simulate various hydro-logical processes in a physically reasonable way. However, constitutive and geo-metric relationships have not been developed for Tian et al.’s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo-metric relationships. The closed ordinary differential equation set with nine equa-tions was finally obtained.

  15. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  16. Payment schemes for environmental services in watersheds

    OpenAIRE

    Food and Agriculture Organization of the United Nations.‏ United Nations Development Programme

    2004-01-01

    Payment schemes for environmental services (PES) are innovative instruments for natural resources management which are increasingly being applied in Latin America. In a watershed context, PES schemes generally involve the implementation of market mechanisms to compensate upstream landowners in order to maintain or modify a particular land use that is affecting the availability and/or quality of the water resources for downstream users. The Regional Forum on Payment Schemes for Environmental S...

  17. Impacts of water surface area of watershed on design flood

    Institute of Scientific and Technical Information of China (English)

    Qing-hua ZHANG; Yan-fang DIAO; Jie DONG

    2014-01-01

    In order to analyze the impact of the water surface area of a watershed on the design flood, the watershed was classified into a land watershed and a water surface watershed for flood flow calculation at the same time interval. Then, the design flood of the whole watershed was obtained by adding the two flood flows together. Using this method, we calculated design floods with different water surface areas of three reservoirs and analyzed the impact of water surface area on the flood volume and peak flow. The results indicate that larger water surface areas lead to greater impacts on the flood volume and peak flow. For the same watershed area, the impact of water surface area on the flood volume and peak flow is positively proportional to the flood frequency, i.e., the higher the frequency, the greater the impact becomes.

  18. Citizen Participation in Collaborative Watershed Partnerships

    Science.gov (United States)

    Koehler, Brandi; Koontz, Tomas M.

    2008-02-01

    Collaborative efforts are increasingly being used to address complex environmental problems, both in the United States and abroad. This is especially true in the growing field of collaborative watershed management, where diverse stakeholders work together to develop and advance water-quality goals. Active citizen participation is viewed as a key component, yet groups often struggle to attract and maintain citizen engagement. This study examined citizen participation behavior in collaborative watershed partnerships by way of a written survey administered to citizen members of 12 collaborative watershed groups in Ohio. Results for the determination of who joins such groups were consistent with the dominant-status model of participation because group members were not demographically representative of the broader community. The dominant-status model, however, does not explain which members are more likely to actively participate in group activities. Instead, individual characteristics, including political activity, knowledge, and comfort in sharing opinions with others, were positively correlated with active participation. In addition, group characteristics, including government-based membership, rural location, perceptions of open communication, perceptions that the group has enough technical support to accomplish its goals, and perceived homogeneity of participant opinions, were positively correlated with active participation. Overall, many group members did not actively participate in group activities.

  19. Advances in Watershed Management: Modeling, Monitoring, and Assessment

    OpenAIRE

    Benham, B. L.; Yagow, G.; Chaubey, I.; Douglas-Mankin, K. R.

    2011-01-01

    This article introduces a special collection of nine articles that address a wide range of topics all related to improving the application of watershed management planning. The articles are grouped into two broadly defined categories.. modeling applications, and monitoring and assessment. The modeling application articles focus on one of two widely used watershed-scale water quality modeling packages: HSPF or SWAT The HSPF article assesses the model's robustness when applied to watersheds acr...

  20. Using GIS as a watershed management education tool

    OpenAIRE

    Williams, T. M.; English, W.R.; Lipscomb, Donald J.; Nickel, Christopher S,

    2002-01-01

    Global Information Systems, including the capacity of these systems to store and manipulate data, have found great utility in analyzing spatial information. The spatial information that is most useful to watershed managers includes accounting of land-use practices that both damage and enhance water quality in watersheds. The capacity of GIS to present data visually is very helpful when trying to educate those concerned with watershed management issues.

  1. Watershed responses to Amazon soya bean cropland expansion and intensification

    OpenAIRE

    Neill, Christopher; Coe, Michael T.; Riskin, Shelby H.; Krusche, Alex V.; Elsenbeer, Helmut; Macedo, Marcia N.; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A.; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A.

    2013-01-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compar...

  2. The Watershed Transform: Definitions, Algorithms and Parallelization Strategies

    OpenAIRE

    Roerdink, Jos B. T. M.; Meijster, Arnold

    2000-01-01

    The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the literature. The need to distinguish between definition, algorithm specification and algorithm implementation is pointed out. Various examples are given which illustrate differences between watershed tra...

  3. Bundling ecosystem services in the Panama Canal watershed

    OpenAIRE

    Simonit, Silvio; Perrings, Charles

    2013-01-01

    Land cover change in watersheds affects the supply of a number of ecosystem services, including water supply, the production of timber and nontimber forest products, the provision of habitat for forest species, and climate regulation through carbon sequestration. The Panama Canal watershed is currently being reforested to protect the dry-season flows needed for Canal operations. Whether reforestation of the watershed is desirable depends on its impacts on all services. We develop a spatially ...

  4. Predicting Watershed Ecosystems Through Targeted Local Land Use Policies

    OpenAIRE

    Langpap, Christian; Hascic, Ivan; Wu, Junjie

    2006-01-01

    Land-use change is arguably the most pervasive socioeconomic force driving the change and degradation of watershed ecosystems. This paper combines an econometric model of land use choice with three models of watershed health indicators (conventional water pollution, toxic water pollution, and the number of aquatic species at risk) to examine the effects of land use policies on watershed ecosystems through their effect on land use choice. The analysis is conducted using parcel-level data from ...

  5. Understanding toxicity at the watershed scale : design of the Syncrude Sandhill Fen watershed research project

    International Nuclear Information System (INIS)

    Fens are peat-accumulating wetlands with a water table consisting of mineral-rich ground or surface water. This study discussed the construction of a fen-type reclaimed wetland constructed in a post-mining oil sands landscape. Syncrude Canada's Sandhill fen watershed project represents the first attempt at constructing a fen wetland in the oil sands region. The wetland and its watershed will be constructed on a soft tailings deposit. The design basis for the fen and watershed was developed by a team of researchers and scientists. The aim of the fen design was to control the salinity caused by tailings consolidation and seepage over time. Methods of mitigating potentially toxic effects from salinity were discussed.

  6. 77 FR 55796 - Sand Lick Fork Watershed Restoration Project; Daniel Boone National Forest, KY

    Science.gov (United States)

    2012-09-11

    ... Forest Service Sand Lick Fork Watershed Restoration Project; Daniel Boone National Forest, KY AGENCY... Sand Lick Fork Watershed Restoration Project involves activities to improve water quality and reduce... watersheds to ensure water quality supports designated beneficial uses. Residential and community...

  7. Tennessee Hollow Watershed in the Presidio: Science Education Partnership

    Science.gov (United States)

    Berry, W. B.; Kern, D.

    2007-12-01

    Planning for restoration of the Tennessee Hollow watershed in the Presidio of San Francisco, an urban national park, has been used in teaching and research in environmental science courses at University of California Berkeley for several years. Scientists and staff with the Urban Watershed Project, The National Park Service, and the Presidio Trust have collaborated with UC Berkeley faculty and students in discussing the watershed restoration and the first steps in implementation of it. Scientists come to the Berkeley campus to talk to classes about the geology, hydrology, and features of the vegetation of the watershed as well as the many aspects of "daylighting" a creek buried in a culvert many tens of feet under soil and other forms of landfill. The many social and political issues involved in implementing restoration are also presented and discussed. Students are conducted through the watershed by Urban Watershed staff not only to view the several features of the watershed but also to obtain data for individual studies. Students have made water quality analyses of the creek waters. Students have worked collaboratively with Urban Watershed staff in developing studies of the watershed that will be of use in future education programs and also in developing features that may interest visitors to the national park.

  8. Initial Ecosystem Development in an Artificial Watershed

    Science.gov (United States)

    Huettl, R.; Koegel-Knabner, I.; Zeyer, J.

    2008-12-01

    Watersheds are often used as a base for ecosystem research. However, boundaries and inner structures of natural watersheds are often insufficiently known and have to be explored indirectly e.g. by means of geophysical methods. Therefore, important parts of the system often remain 'black boxes'. In addition, natural systems are characterized by huge complexity and heterogeneity. To overcome these disadvantages artificially created watersheds may play an important role in ecosystem research. They offer the chance to investigate systems with well defined boundary conditions and inner structures. Furthermore, artificial watersheds might be an important link between lysimeter research and investigations at the landscape scale. The artificial catchment "Chicken Creek" ('Huehnerwasser') is one of the world's largest man-made catchments for scientific purposes. It was established in 2005 with an area of 6 ha (450 m x 150 m) including a small lake. The site is located in the Eastern German lignite mining district near Cottbus, about 150 km southeast of Berlin. The watershed was constructed by Vattenfall Europe Mining AG as the operator of the still active lignite open-cast mine Welzow-South. Construction work was done by means of large mining machines in co-operation with the Brandenburg University of Technology at Cottbus. The inner structure of this new landscape element is relatively simple: A clay layer was dumped as a barrier for seepage water overlaid by a 3 m sandy layer consisting of Quaternary substrate from Pleistocene sediments. The surface of the site has been flattened and the area was fenced to prevent disturbances. Neither amelioration nor any reclamation measures were carried out afterwards. The site has been left for an unrestricted natural succession. In 2007 the Transregional Collaborative Research Centre (SFB/TRR 38) as a joint project between 3 Universities (BTU Cottbus, TU Munich and ETH Zurich) was launched and is funded by the German Research

  9. Suspended sediment yield in Texas watersheds

    Science.gov (United States)

    Coonrod, Julia Ellen Allred

    The Texas Water Development Board collected suspended sediment samples across the state of Texas for approximately 60 years. Until this research, no comprehensive analysis of the data had been conducted. This study compiles the suspended sediment data along with corresponding streamflow and rainfall. GIS programs are developed which characterize watersheds corresponding to the sediment gauging stations. The watersheds are characterized according to topography, climate, soils, and land use. All of the data is combined to form several SAS data sets which can subsequently be analyzed using regression. Annual data for all of the stations across the state are classified temporally and spatially to determine trends in the sediment yield. In general, the suspended sediment load increases with increasing runoff but no correlation exists with rainfall. However, the annual average rainfall can be used to classify the watersheds according to climate, which improves the correlation between sediment load and runoff. The watersheds with no dams have higher sediment loads than watersheds with dams. Dams in the drier parts of Texas reduce the sediment load more than dams in the wetter part of the state. Sediment rating curves are developed separately for each basin in Texas. All but one of the curves fall into a band which varies by about two orders of magnitude. The study analyzes daily time series data for the Lavaca River near Edna station. USGS data are used to improve the sediment rating curve by the addition of physically related variables and interaction terms. The model can explain an additional 41% of the variability in sediment concentration compared to a simple bivariate regression of sediment load and flow. The TWDB daily data for the Lavaca River near Edna station are used to quantify temporal trends. There is a high correlation between sediment load and flowrate for the Lavaca River. The correlation can be improved by considering a flow-squared term and by

  10. Groundwater Supported Evapotranspiration within Glaciated Watersheds under Conditions of Climate Change

    Science.gov (United States)

    Person, M. A.; Winter, T. C.; Rosenberry, D. O.; Cohen, D.; Gutowski, W. J.; Dahlstrom, D.; Roy, P.; Emi, I.; Zabielski, V.; Wrigth, H.; Nieber, J.; Daannen, R.

    2004-05-01

    We analyze the effects of geology and geomorphology on surface water/groundwater interactions, evapotranspiration, and runoff generation under conditions of long-term climate change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, as well as saturated/unsaturated mathematical modeling. Analysis of historical water table (1970-1993) and lake level (1924--2002) records indicate that larger amplitude, longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to climatic fluctuations. Under dust-bowl type climatic conditions, lake and water table levels fell by as much as 2-4 meters in the uplands but by only a meter in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake core records indicate that Moody lake, located near the confluence of the Crow Wing and Mississippi rivers fell by as much as 4 meters between about 4400 and 7000 yr BP. During the same time period, water levels in Lake Mina, located near the watershed divide near Alexandria, MN, fell by about 15 m. These findings are consistent with analytical calculations that indicate that the response time and magnitude of water table and lake level fluctuations will be greatest near the water table divide of large watersheds. A sensitivity analysis was carried out using a transient saturated-unsaturated hydrologic model (HYDRAT2D) to study how aquifer hydraulic conductivity, land surface topography and watershed size can influence watertable fluctuations, westlands formation, evapotranspiration, and runoff. The models were run by recycling relatively wet (1985, 87 cm annual precipitation) climatic record over a period of 10 years followed by 20 years of a dryer (1976, 38~cm precipitation) and warmer climate record. Model results indicated that aquifer-supported evapotranspiration accounted for as much as 12 % (10 cm) of evapotranspiration. The highest hydraulic

  11. Infusing interdisciplinary place-based watershed research into K-12 curricula and university collaborations

    Science.gov (United States)

    Pratt-Sitaula, B.; Gazis, C.; Kurtz, M.; Quitadamo, I.; Wagner, R.

    2007-12-01

    Central Washington University has started a five-year NSF-funded GK-12 project to bring the study of our local river - The Yakima - into 5-11th grade science classes. Faculty members from Geological Sciences have teamed with others from Biology, Chemistry, and Resource Management to develop the Yakima WATERS Project (Watershed Activities To Enhance Research in Schools). This interdisciplinary outreach project teams graduate students with local teachers to bring authentic watershed research into the curriculum. The interdisciplinary research themes are: Riparian Ecology and Biodiversity; Water Chemistry and Quality; Geomorphology and Climate Change; and Changes in Land and Water Use. The Yakima Watershed contains several communities that are traditionally underrepresented in science - Native American, Hispanic, and rural populations. One of the key outcomes we will assess is whether a place-based science study such as this is successful in improving minority students' science scores and whether graduate students from underrepresented groups can be attracted and retained in STEM graduate programs. The project is in its early stages, so results of K-12 student science achievement are not yet available. One unexpected, but positive preliminary result is the possibility of further interdisciplinary research that may stem from the close project-driven interactions between people of different STEM subjects. Faculty members, graduate students, and teachers often fail to interact with members of other departments, but through Project activities support networks are forming and ideas for further research are being developed.

  12. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    Directory of Open Access Journals (Sweden)

    Hélio Nóbile Diniz

    2007-08-01

    Full Text Available This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate scales. The second part proposes the graphic criteria for the integrated representation of the major parameters of overlaying aquifers. The third part demonstrates the importance of the data basis for the hydro geologic cartography, i.e., the contribution of each theme such as soil, geology, slope, climate and land use, when appropriately integrated. The fourth part discusses the selection and the integration of the main information layers for the Rio da Palma watershed using a Geographic Information System (GIS. On the fifth part, the result of the integration of the porous domain with the fractured domain aquifer information layers is shown and, finally, the potential infiltration and recharge map of the studied area, elaborated from the integration of overlapping of the data basis information layers is presented and discussed. In general, in the studied area, regions with high infiltration potential prevail where human interference is still moderate. Large portions of low infiltration potential are either associated with high slopes, with shallow soils (Cambissolos or else with urban constructions.

  13. Sources and species of cryptosporidium oocysts in the Wachusett Reservoir watershed.

    Science.gov (United States)

    Jellison, Kristen L; Hemond, Harold F; Schauer, David B

    2002-02-01

    Understanding the behavior of Cryptosporidium oocysts in the environment is critical to developing improved watershed management practices for protection of the public from waterborne cryptosporidiosis. Analytical methods of improved specificity and sensitivity are essential to this task. We developed a nested PCR-restriction fragment length polymorphism assay that allows detection of a single oocyst in environmental samples and differentiates the human pathogen Cryptosporidium parvum from other Cryptosporidium species. We tested our method on surface water and animal fecal samples from the Wachusett Reservoir watershed in central Massachusetts. We also directly compared results from our method with those from the immunofluorescence microscopy assay recommended in the Information Collection Rule. Our results suggest that immunofluorescence microscopy may not be a reliable indicator of public health risk for waterborne cryptosporidiosis. Molecular and environmental data identify both wildlife and dairy farms as sources of oocysts in the watershed, implicate times of cold water temperatures as high-risk periods for oocyst contamination of surface waters, and suggest that not all oocysts in the environment pose a threat to public health. PMID:11823192

  14. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.; Hemond, H. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Mulholland, P. (Oak Ridge National Lab., TN (United States))

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  15. Statewide Watershed Protection and Local Implementation: A Comparison of Washington, Minnesota, and Oregon

    OpenAIRE

    Holst, David J.

    1999-01-01

    Abstract In 1991 EPA embraced the watershed protection approach for environmental management. EPA defines watershed protection as â a strategy for effectively protecting and restoring aquatic ecosystems and protecting human health.â To encourage statewide watershed protection, EPA developed the â Statewide Watershed Protection Approachâ document, which is designed to aid states in developing their own watershed protection program. The watershed protection approach is n...

  16. ANALISIS OF STREAM DISCHARGE OF MICRO WATERSHED AND ITS UTILIZATION POTENTIAL

    OpenAIRE

    Hunggul Y.S.H. Nugroho

    2015-01-01

    Trough understanding of hydrology characteristic of watershed, water resource can be  managed for wider goals such as economic, social, and sustainainable utilization.  In fact, current watershed managements have more been focused  on erosion, sedimentation, drought, and flood control and less attention paid on fulfilling the need of upper watershed inhabitat on water yield.  The research of Micro Watershed was conducted in three Micro Watersheds as representation of priority watersheds in So...

  17. Zonation of flood production potential in Kabutar Ali Chai watershed using SCS model

    Science.gov (United States)

    Jananeh, Keristineh

    2015-04-01

    watershed were estimated experimentally using the SCS method, based on which, A3 and A4 sub-basins have the highest peak discharge (15.55 and 19.44, respectively), which can be one of the flood production factors in this watershed. Meanwhile, the A1 sub-basin in the southern end of the watershed has the lowest peak discharge with low flood production potential. Finally, considering the runoff height and discharge, as well as the determined CN number, the flood production potential was calculated for 2, 5, 10, 25, 50 and 100 year return periods. According to the these flood-potential maps, A3 sub-basin shows high flood risk in its northern, central and southern parts. A2 and A4 sub-basins have lower flood risk, respectively, and the A1 sub-basin shows the lowest flood potential, which is due to the presence of permeable alluvial sediments and the widening of the stream bed. It was also revealed that the land slope is not the sole effective factor in flood production, but lithology and vegetation are also efficient.

  18. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  19. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    Science.gov (United States)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  20. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology

    Science.gov (United States)

    Driscoll, J. M.

    2015-12-01

    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  1. Wetland Soil Carbon in a Watershed Context for the Prairie Pothole Region.

    Science.gov (United States)

    Phillips, Rebecca L; Ficken, Cari; Eken, Mikki; Hendrickson, John; Beeri, Ofer

    2016-01-01

    Wetland restoration in the Prairie Pothole Region (PPR) often involves soil removal to enhance water storage volume and/or remove seedbanks of invasive species. Consequences of soil removal could include loss of soil organic carbon (SOC), which is important to ecosystem functions such as water-holding capacity and nutrient retention needed for plant re-establishment. We used watershed position and surface flow pathways to classify wetlands into headwater or network systems to address two questions relevant to carbon (C) cycling and wetland restoration practices: (i) Do SOC stocks and C mineralization rates vary with landscape position in the watershed (headwater vs. network systems) and land use (restored vs. native prairie grasslands)? (ii) How might soil removal affect plant emergence? We addressed these questions using wetlands at three large (?200 ha) study areas in the central North Dakota PPR. We found the cumulative amount of C mineralization over 90 d was 100% greater for network than headwater systems, but SOC stocks were similar, suggesting greater C inputs beneath wetlands connected by higher-order drainage lines are balanced by greater rates of C turnover. Land use significantly affected SOC, with greater stocks beneath native prairie than restored grasslands for both watershed positions. Removal of mineral soil negatively affected plant emergence. This watershed-based framework can be applied to guide restoration designs by (i) weighting wetlands based on surface flow connectivity and contributing area and (ii) mapping the effects of soil removal on plant and soil properties for network and headwater wetland systems in the PPR. PMID:26828193

  2. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  3. Efeitos de doses crescentes de calcário em solo Latossolo Amarelo na produção de mudas de pau-de-balsa (Ochroma lagopus sw., bombacaceae Effects of the rising heat in Yellow Oxisoil in the production of silent wood rafts (Ochroma lagopus sw., bombacaceae

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Franco Tucci

    2010-09-01

    Full Text Available A produção de mudas de qualidade com adequado teor nutricional é fundamental para o desenvolvimento da planta e para a formação do sistema radicular, a qual apresentará melhor capacidade de adaptação ao novo local após o plantio. O objetivo deste trabalho foi avaliar o efeito de níveis crescentes de calcário na produção de mudas de pau-de-balsa. Os tratamentos foram constituídos de doses crescentes de corretivo e equivaleram a 0,0; 0,25; 0,5; 0,75; 1,0; 1,5 e 2,0 t ha-1 de calcário e o delineamento experimental utilizado foi o de blocos casualizados com cinco repetições. As características avaliadas foram: altura da planta; diâmetro do colo, matéria seca da parte aérea, matéria seca total, relação raiz/parte aérea, teores totais de macronutrientes nas plantas (N, P, K, Ca, Mg e S. Os resultados demonstraram que a prática de calagem como fator de correção do solo usado no substrato favoreceu todas as características de crescimento avaliadas na produção de mudas de pau-de-balsa. A correção do solo influenciou positivamente a absorção de Ca, Mg e S, por outro lado, não apresentou efeitos estatisticamente significativos para a absorção de N, P e K.The production of quality rafts with appropriate nutritional tenor is fundamental for plant development and for forming of root systems, which present best ability to adapt to new locations after plantation. The goal of this work was to evaluate the effect of rising heat levels in the production of silent wood rafts. The treatment was constituted by rising doses of correction and was equal to 0.0; 0.25; 0.5; 0.75; 1.0; 1.5, and 2.0 t ha-1 of lime and the experimental detail used was of blocks, repeating five times. The characteristics evaluated were: plant height; diameter, dry material of the aerial part, root relation/aerial part, content of macronutrients in the plants (N, P, K, Ca, Mg and S. The results demonstrate that the practice of liming as a soil correction

  4. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    OpenAIRE

    Cui, X; Liu, S; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan ...

  5. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reaches of Minjiang River watershed in China

    OpenAIRE

    Cui, X; Liu, S; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed, located in the upper reach of the Yangtze River basin, plays a strategic role in the environmental protection and economic and social well-being for both the watershed and the entire Yangtze River basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-T...

  6. A Simple Hydrological Simulation Tool for Watershed Planning and Application to a Brazilian Watershed

    Science.gov (United States)

    Hydrological modeling of watersheds is a convenient and easy way to evaluate the effects of changing land-use or management strategies on erosion, stream flow and sediment yield for various purposes such as designing downstream structures or impoundments, or implementing strategies to control soil e...

  7. Debris flow run off simulation and verification ‒ case study of Chen-You-Lan Watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    M.-L. Lin

    2005-01-01

    Full Text Available In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the study area. Sensitivity study of parameters used in the numerical model was conducted and adjustments were made empirically. The micro-geomorphic database of Chui-Sue river watershed was generated and analyzed to understand the terrain variations caused by the debris flow. Based on the micro-geomorphic analysis, the debris deposition in the Chui-Sue river watershed in the downstream area, and the position and volume of debris deposition were determined. The simulated results appeared to agree fairly well with the results of micro-geomorphic study of the area when not affected by other inflow rivers, and the trends of debris distribution in the study area appeared to be fairly consistent.

  8. Influence of hydraulic and geomorphologic components of a semi-arid watershed on depleted-uranium transport

    International Nuclear Information System (INIS)

    Investigations were undertaken to determine the fate and transport of depleted uranium away from high explosive firing sites at Los Alamos National Laboratory in north-central New Mexico. Investigations concentrated on a small, semi-arid watershed which drains 5 firing sites. Sampling for uranium in spring/summer/fall runoff, snowmelt runoff, in fallout, and in soil and in sediments revealed that surface water is the main transport mechanism. Although the watershed is less than 8 km2, flow discontinuity was observed between the divide and the outlet; flow discontinuity occurs in semi-arid and arid watersheds, but was unexpected at this scale. This region, termed a discharge sink, is an area where all flow infiltrates and all sediment, including uranium, deposits during nearly all flow events; it is estimated that the discharge sink has provided the locale for uranium detention during the last 23 years. Mass balance calculations indicate that over 90% of uranium expended still remains at or nearby the firing sites. Leaching experiments determined that uranium can rapidly dissolve from the solid phase. It is postulated that precipitation and runoff which percolate vertically through uranium-contaminated soil and sediment are capable of transporting uranium in the dissolved phase to deeper strata. This may be the key transport mechanism which moves uranium out of the watershed

  9. Modeling effectiveness of management practices for flood mitigation using GIS spatial analysis functions in Upper Cilliwung watershed

    Science.gov (United States)

    Darma Tarigan, Suria

    2016-01-01

    Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.

  10. On regreening and degradation in Sahelian watersheds.

    Science.gov (United States)

    Kaptué, Armel T; Prihodko, Lara; Hanan, Niall P

    2015-09-29

    Over many decades our understanding of the impacts of intermittent drought in water-limited environments like the West African Sahel has been influenced by a narrative of overgrazing and human-induced desertification. The desertification narrative has persisted in both scientific and popular conception, such that recent regional-scale recovery ("regreening") and local success stories (community-led conservation efforts) in the Sahel, following the severe droughts of the 1970s-1980s, are sometimes ignored. Here we report a study of watershed-scale vegetation dynamics in 260 watersheds, sampled in four regions of Senegal, Mali, and Niger from 1983-2012, using satellite-derived vegetation indices as a proxy for net primary production. In response to earlier controversy, we first examine the shape of the rainfall-net primary production relationship and how it impacts conclusions regarding greening or degradation. We conclude that the choice of functional relationship has little quantitative impact on our ability to infer greening or degradation trends. We then present an approach to analyze changes in long-term (decade-scale) average rain-use efficiency (an indicator of slowly responding vegetation structural changes) relative to changes in interannual-scale rainfall sensitivity (an indicator of landscape ability to respond rapidly to rainfall variability) to infer trends in greening/degradation of the watersheds in our sample regions. The predominance of increasing rain-use efficiency in our data supports earlier reports of a "greening" trend across the Sahel. However, there are strong regional differences in the extent and direction of change, and in the apparent role of changing woody and herbaceous components in driving those temporal trends. PMID:26371296

  11. Sources and transport of nitrogen in arid urban watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Rebecca L.; Turnbull, Laura; Earl, Stevan; Grimm, Nancy B.; Riha, Krystin M.; Michalski, Greg; Lohse, Kathleen; Childers, Daniel L.

    2014-06-03

    Urban watersheds are often sources of nitrogen (N) to downstream systems, contributing to poor water quality. However, it is unknown which components (e.g., land cover and stormwater infrastructure type) of urban watersheds contribute to N export and which may be sites of retention. In this study we investigated which watershed characteristics control N sourcing, biogeochemical processing of nitrate (NO3–) during storms, and the amount of rainfall N that is retained within urban watersheds. We used triple isotopes of NO3– (δ15N, δ18O, and Δ17O) to identify sources and transformations of NO3– during storms from 10 nested arid urban watersheds that varied in stormwater infrastructure type and drainage area. Stormwater infrastructure and land cover—retention basins, pipes, and grass cover—dictated the sourcing of NO3– in runoff. Urban watersheds can be strong sinks or sources of N to stormwater depending on the proportion of rainfall that leaves the watershed as runoff, but we found no evidence that denitrification occurred during storms. Our results suggest that watershed characteristics control the sources and transport of inorganic N in urban stormwater but that retention of inorganic N at the timescale of individual runoff events is controlled by hydrologic, rather than biogeochemical, mechanisms.

  12. Watershed Management Policies and Institutional Mechanisms: A Critical Review

    OpenAIRE

    Javier, Jesus A.

    1999-01-01

    While most government efforts are directed toward watershed conservation, its management has remained challenging and complex. This short article argues for reconsideration of existing policies and regulations. It also pushes for a long-term comprehensive national strategy to address several watershed management concerns.

  13. The Watershed Transform : Definitions, Algorithms and Parallelization Strategies

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    2000-01-01

    The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the liter

  14. McKenzie River Focus Watershed Coordination: Fiscal Year 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John; Davis-Born, Renee

    1998-01-01

    This report summarizes accomplishments made by the McKenzie River Focus Watershed Council in the areas of coordination and administration during Fiscal Year 1998. Coordination and administration consists of tasks associated with Focus Watershed Council staffing, project management, and public outreach.

  15. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    Science.gov (United States)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in

  16. Surface runoff in the Itaim Watershed

    Directory of Open Access Journals (Sweden)

    Getulio Teixeira Batista

    2007-06-01

    Full Text Available This paper describes a work done in the Itaim watershed at Taubaté, SP, and had the objective of estimating the surface runoff based on the Curve-Number (CN method in area with vegetation cover of grassland (Brachiaria Decumbens, that prevails in this watershed. The surface runoff was estimated using three different methods: 1st values of accumulated Infiltration (IAc obtained in the field were used, considered as the Potential Infiltration (S, which varied from 15.37 mm to 51.88 mm with an average value of 23.46 mm. With those measured infiltration rates and using the maximum precipitation values for Taubaté, SP, with duration time of 3 hours: P = 54.4; 70.3; 80.8; 86.7; 90.9; 94.1 and 103.9 mm, respectively, for the return times, Tr = 2, 5, 10, 15, 25, 50 and 100 years, the following values of surface runoff were generated: 34.83; 49.33; 59.14; 64.71; 68.69; 71.73 and 81.10 mm, respectively; In the 2nd method it was considered that the prevailing vegetation cover of the watershed was Dirty Pasture (Pasture with regrowth of natural vegetation and therefore, a value of CN = 75 was used and generated a potential infiltration, S = 84,7 mm and resulted in surface runoff values that varied from 11 to 44 mm; In the 3rd method, the value of CN was considered equal to 66.57. This value was calculated weighting the contribution of all land use cover classes of the watershed, and as a result a higher value of potential infiltration, S = 127 mm, was obtained. Consequently, the surface runoff values were 5.33; 11.64; 16.72; 19.83; 22.16; 23.98 and 29.83 mm, respectively. Therefore, the comparison with the results obtained by the two Curve-Number methods (conventional and weighted allowed to be concluded that the Curve-Number method applied in a conventional way underestimated the surface runoff in the studied area. However, results indicate that it is possible to use this method for surface runoff estimates as long as adjustments based on potential

  17. Floristic study of Zangelanlo watershed (Khorassan, Iran)

    OpenAIRE

    Mohammad Sadegh Amiri; Parham Jabbarzadeh

    2011-01-01

    Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research,...

  18. Assessing streamflow sensitivity in a complex watershed

    OpenAIRE

    RAHMAN Kazi

    2013-01-01

    Half of the world’s population depends on fresh water that originates from mountains. In the present-day, it is apparent that climate change will affect these mountain water resources. Therefore, some crucial questions are often raised: Will mountain rivers continue to provide the same amount of fresh water as they have in the past? Have there been any changes in the hydrological regime of mountainous watersheds? Is there a chance that the flow magnitude and timing will change? In order to an...

  19. It's all about Balance: Using a watershed model to evaluate costs, benefits and tradeoffs for Monponsett Ponds watershed

    Science.gov (United States)

    As part of an EPA Region 1 RARE project, EPA Region 1 reached out to towns in the Taunton River watershed to identify those interested in testing new version of EPA watershed management tool (WMOST version 2)and found Halifax, MA in need of assistance in dealing with a suite of w...

  20. Watershed Boundaries, watershed, sub-watershed, for stormwater engineering, Published in 1996, 1:2400 (1in=200ft) scale, City of Fort Wayne.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Field Observation information as of 1996. It is described...

  1. Land Use Change and Hydrologic Processes in High-Elevation Tropical Watersheds of the Northern Andes

    Science.gov (United States)

    Avery, W. A.; Riveros-Iregui, D. A.; Covino, T. P.; Peña, C.

    2013-12-01

    The humid tropics cover one-fifth of the Earth's land surface and generate the greatest amount of runoff of any biome globally, but remain poorly understood and understudied. Humid tropical regions of the northern and central Andes have experienced greater anthropogenic land-use/land-cover (LULC) change than nearly any other high mountain system in the world. Vast expanses of this region are currently undergoing rapid transformation to farmland for production of potatoes and pasture for cattle grazing. Although the humid tropics have some of the highest runoff ratios, precipitation, and largest river flows in the world, there is a lack of scientific literature that addresses hydrologic processes in these regions and very few field observations are available to inform management strategies to ensure the sustainability of water resources of present and future generations. We seek to improve understanding of hydrologic processes and feedbacks in the humid tropics using existing and new information from two high-elevation watersheds that span a LULC gradient in the Andes Mountains of Colombia. One site is located in the preserved Chingaza Natural National Park in Central Colombia (undisturbed). The second site is located ~60 km to the northwest and has experienced considerable LULC change over the last 40 years. Combined, these watersheds deliver over 80% of the water resources to Bogotá and neighboring communities. These watersheds have similar climatological characteristics (including annual precipitation), but have strong differences in LULC which result in substantial differences in hydrologic response and streamflow dynamics. We present an overview of many of the pressing issues and effects that land degradation and climate change are posing to the long-term sustainability of water resources in the northern Andes. Our overarching goal is to provide process-based knowledge that will be useful to prevent, mitigate, or respond to future water crises along the Andean

  2. PDE Based Algorithms for Smooth Watersheds.

    Science.gov (United States)

    Hodneland, Erlend; Tai, Xue-Cheng; Kalisch, Henrik

    2016-04-01

    Watershed segmentation is useful for a number of image segmentation problems with a wide range of practical applications. Traditionally, the tracking of the immersion front is done by applying a fast sorting algorithm. In this work, we explore a continuous approach based on a geometric description of the immersion front which gives rise to a partial differential equation. The main advantage of using a partial differential equation to track the immersion front is that the method becomes versatile and may easily be stabilized by introducing regularization terms. Coupling the geometric approach with a proper "merging strategy" creates a robust algorithm which minimizes over- and under-segmentation even without predefined markers. Since reliable markers defined prior to segmentation can be difficult to construct automatically for various reasons, being able to treat marker-free situations is a major advantage of the proposed method over earlier watershed formulations. The motivation for the methods developed in this paper is taken from high-throughput screening of cells. A fully automated segmentation of single cells enables the extraction of cell properties from large data sets, which can provide substantial insight into a biological model system. Applying smoothing to the boundaries can improve the accuracy in many image analysis tasks requiring a precise delineation of the plasma membrane of the cell. The proposed segmentation method is applied to real images containing fluorescently labeled cells, and the experimental results show that our implementation is robust and reliable for a variety of challenging segmentation tasks. PMID:26625408

  3. Predicting watershed acidification under alternate rainfall conditions

    International Nuclear Information System (INIS)

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, USA using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soilwater flux will result in larger increases in soil-adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distributions of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading. 29 refs., 7 figs., 4 tabs

  4. Biogeochemistry of a treeline watershed, northwestern Alaska

    Science.gov (United States)

    Stottlemyer, R.

    2001-01-01

    Since 1950, mean annual temperatures in northwestern Alaska have increased. Change in forest floor and soil temperature or moisture could alter N mineralization rates, production of dissolved organic carbon (DOC) and organic nitrogen (DON), and their export to the aquatic ecosystem. In 1990, we began study of nutrient cycles in the 800-ha Asik watershed, located at treeline in the Noatak National Preserve, northwestern Alaska. This paper summarizes relationships between topographic aspect, soil temperature and moisture, inorganic and organic N pools, C pools, CO2 efflux, growing season net N mineralization rates, and stream water chemistry. Forest floor (O2) C/N ratios, C pools, temperature, and moisture were greater on south aspects. More rapid melt of the soil active layer (zone of annual freeze-thaw) and permafrost accounted for the higher moisture. The O2 C and N content were correlated with moisture, inorganic N pools, CO2 efflux, and inversely with temperature. Inorganic N pools were correlated with temperature and CO2 efflux. Net N mineralization rates were positive in early summer, and correlated with O2 moisture, temperature, and C and N pools. Net nitrification rates were inversely correlated with moisture, total C and N. The CO2 efflux increased with temperature and moisture, and was greater on south aspects. Stream ion concentrations declined and DOC increased with discharge. Stream inorganic nitrogen (DIN) output exceeded input by 70%. Alpine stream water nitrate (NO-3) and DOC concentrations indicated substantial contributions to the watershed DIN and DOC budgets.

  5. Hydroelectricity production and forest conservation in watersheds.

    Science.gov (United States)

    Guo, Zhongwei; Li, Yiming; Xiao, Xiangming; Zhang, Lin; Gan, Yaling

    2007-09-01

    Globally, particularly in developing countries, hydroelectricity production and economic growth occur together with ecosystem/biodiversity conservation in watersheds. There is a relationship between hydroelectricity production and ecosystem/biodiversity conservation in watersheds, centering on the supply and demand for ecosystem services of river water flow regulation and sediment retention. Here we show that, in the upper reach of the Yangtze River, hydroelectricity production of Three Gorges Hydroelectric Power Plant can form a beneficial relationship with forest conservation through the paid use (compensating residents for their cooperation in the conservation) of ecosystem services launched by the National Natural Forest Protection Project. This interaction can provide additional incentives to encourage local communities' long-term cooperation in conserving and protecting the restored forest ecosystems. Hydroelectricity plants also obtain benefits from this interaction. The industrialization of ecosystem services supply provides an operational framework for this beneficial interaction. Sustainable forest ecosystem conservation will require developing new institutions and policies and must involve local communities in the conservation and protection of their local forests. PMID:17913122

  6. Interdecadal trends of sediment discharge in mountain watersheds in Japan

    Science.gov (United States)

    Koi, Takashi; Hotta, Norifumi; Suzuki, Masakazu

    2010-05-01

    After sediment production, such as by a landslide, some sediment immediately discharges from the basin outlet. However, part of the sediment remains in the basin, to be removed and re-deposited by subsequent rainfall and flooding before finally being discharged. Such sediment dynamics occur at various timescales, depending on the frequency and magnitude of sediment production and the various agents of sediment transport. Thus, interdecadal trends of sediment discharge differ by watershed. Understanding sediment dynamics over longer timescales is important for studies of geomorphological processes and for basin management. This study examined factors associated with interdecadal sediment discharge by comparing two mountain watersheds in Japan. The study sites were the Nakagawagawa watershed (39 km2) in the Kanto district, where widespread landslides were induced by a catastrophic earthquake (M 7.9) in 1923, and the Dogawa watershed (81 km2) in the Kyushu district, where heavy rainfall events (continuous rainfall of over 1000 mm) have repeatedly triggered landslides. Long-term reservoir sedimentation data were available for both watersheds, covering 25 years in the Nakagawagawa watershed and 53 years in the Dogawa watershed. Although both watersheds had high sediment yield (103 m3km-2year-1 order) for their decadal averages, the interdecadal time series showed different waveform trends. The waveform of the Nakagawagawa watershed was nearly constant over 25 years. The waveform of the Dogawa watershed showed interdecadal fluctuation over 50 years. These waveforms were distinguished according to the difference between maximum and minimum sediment yields of the N-year moving average. Annual sediment discharges roughly corresponded with the rainfall magnitude, yet rainfall was not a main factor controlling interdecadal variability of sediment discharge. These sediment dynamics can be discussed from the perspective of temporarily stored sediment. In the Nakagawagawa

  7. Quality of dissolved organic matter (DOM) in watershed compartments for a forested mid-Atlantic watershed

    Science.gov (United States)

    Singh, S.; Inamdar, S. P.; Finger, N.; Mitchell, M. J.; Levia, D. F.; Scott, D.; Bais, H.

    2010-12-01

    Catchment exports of dissolved organic matter (DOM) in streamflow can be influenced by multiple sources, which, may vary with hydrologic conditions or seasons. Thus, understanding the concentrations and quality of DOM for potential watershed sources is critical to assessing the dynamics of DOM. We investigated the quality of DOM across various watershed sources in a 12 ha forested watershed located in the Piedmont region of the mid-Atlantic USA. Sampling was performed over a two-year time period (2008-2009) and included: rainfall, throughfall, litter-leachate, soil water, riparian and wetland waters, seeps, stream runoff, and shallow and deep groundwaters. DOM constituents were characterized using ultraviolet (UV) absorption and PARAFAC modeling of fluorescence excitation emission matrices (EEMs). Specific indices that were used include: UV absorption coefficient at 254nm (a254), specific UV absorbance at 254nm (SUVA254), spectral slope ratio (SR), humification index (HIX), fluorescence index (FI), biological index (BIX), and percent humic-like and protein-like components. Our results indicated that of all the watershed DOM sources litter-leachate had the highest aromatic (high values of a254, SUVA, % C5) and humic (high HIX) content. Aromatic and humic content of DOM then decreased with soil depth with lowest values for deep groundwaters and seeps. In addition, the SR index indicated a decrease in molecular weight of DOM with soil depth. Taken together, these indices suggest that the aromatic and high molecular weight fractions of DOM were preferentially removed by sorption as runoff water percolated through the soil profile. While throughfall was less aromatic than litter-leachate, it was more aromatic than the other watershed compartments. The aromatic and humic content of soil and stream water was intermediate between litter-leachate and deep groundwaters. In contrast to the trend in aromatic DOM, the % of protein-like DOM component increased with soil depth

  8. Investigation of accuracy of CORINE 2006 land cover data used in watershed studies

    Directory of Open Access Journals (Sweden)

    Ayhan Ateşoğlu

    2016-01-01

    Full Text Available There have been many studies concerning the use of sustainable natural resources. The planning concerning the results of watershed-based studies is made for the future. The issue to be considered in these studies, is obtaining accurate data. The most important data of the studies in the watershed basin is obtaining land cover/use data. Land cover / land classification done by using remote sensing and GIS and monitoring the change periodically are both easy and economical. To this end, CORINE (Coordination of Information on the Environment land cover program was initiated by The European Commission (CEC. The accuracy of CORINE 2006 land cover data was evaluated using high resolution Google Earth data in two separate test areas located in the Black Sea and Central Anatolia region. Random 5000 points for each test area were assigned to classes according to the CORINE classification method using Google Earth and were compared with the CORINE 2006 data. The accuracy of first test area in Black Sea region was calculated as 51.80% the accuracy of second test area in Central Anatolia region was calculated as 55.32%. For each test area, CORINE 2006 data has not been found to be up to date and has been detected to have low accuracy.

  9. Watershed responses to Amazon soya bean cropland expansion and intensification.

    Science.gov (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales. PMID:23610178

  10. Watershed management for water supply in developing world city

    Institute of Scientific and Technical Information of China (English)

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  11. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    Science.gov (United States)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities

  12. Investigating the sources of sediment in a Canadian agricultural watershed using a colour-based fingerprinting technique

    Science.gov (United States)

    Barthod, Louise; Lobb, David; Owens, Philip; Martinez-Carreras, Nuria; Koiter, Alexander; Petticrew, Ellen; McCullough, Gregory

    2014-05-01

    The development of beneficial management practises to minimize adverse impacts of agriculture on soil and water quality requires information on the sources of sediment at the watershed scale. Sediment fingerprinting allows for the determination of sediment sources and apportionment of their contribution within a watershed, using unique physical, radiochemical or biogeochemical properties, or fingerprints, of the potential sediment sources. The use of sediment colour as a fingerprint is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. This technique is currently being utilized to determine sediment sources within the South Tobacco Creek Watershed, an agricultural watershed located in the Canadian prairies (south-central Manitoba). Suspended sediment and potential source (topsoil, channel bank and shale bedrock material) samples were collected between 2009 and 2011 at six locations along the main stem of the creek. Sample colour was quantified from diffuse reflectance spectrometry measurements over the visible wavelength range using a spectroradiometer (ASD Field Spec Pro, 400-2500 nm). Sixteen colour coefficients were derived from several colour space models (CIE XYZ, CIE xyY, CIE Lab, CIE Luv, CIE Lch, Landsat RGB, Redness Index). The individual discrimination power of the colour coefficients, after passing several prerequisite tests (e.g., linearly additive behaviour), was assessed using discriminant function analysis. A stepwise discriminant analysis, based on the Wilk's lambda criterion, was then performed in order to determine the best-suited colour coefficient fingerprints which maximized the discrimination between the potential sources. The selected fingerprints classified the source samples in the correct category 86% of the time. The misclassification is due to intra-source variability and source overlap which can lead to higher uncertainty in sediment source apportionment. The selected fingerprints

  13. NEW DEVELOPMENTS IN CENTRAL ASIAN MASS MEDIA RESEARCH

    OpenAIRE

    Freedman, Eric; Shafer, Richard

    2011-01-01

    The end of the Cold War represented an apparent victory for NATO, capitalism, free enterprise, and democracy over the Warsaw Pact, Marxism-Leninist communism, and the Russian-Soviet empire. In 1991, five newly independent republics of Central Asia (Kazakhstan, Kyrgyzstan, Turkmenistan, Tajikistan, and Uzbekistan) emerged from the wreckage of that watershed event. Each new government proclaimed its commitment to free enterprise economic systems and democratic governance. Western democracies, n...

  14. Europa central

    Directory of Open Access Journals (Sweden)

    Karel BARTOSEK

    2010-02-01

    Full Text Available La investigación francesa continúa interesándose por Europa Central. Desde luego, hay límites a este interés en el ambiente general de mi nueva patria: en la ignorancia, producto del largo desinterés de Francia por este espacio después de la Segunda Guerra Mundial, y en el comportamiento y la reflexión de la clase política y de los medios de comunicación (una anécdota para ilustrar este ambiente: durante la preparación de nuestro coloquio «Refugiados e inmigrantes de Europa Central en el movimiento antifascista y la Resistencia en Francia, 1933-1945», celebrado en París en octubre de 1986, el problema de la definición fue planteado concreta y «prácticamente». ¡Y hubo entonces un historiador eminente, para quién Alemania no formaría parte de Europa Central!.

  15. LANDSLIDE POTENTIALITY OF THE TSENGWEN RESERVOIR WATERSHED,TAIWAN,CHINA

    Institute of Scientific and Technical Information of China (English)

    Chin-yu LEE

    2004-01-01

    To recognize the geographical characteristics of the landslide areas will be helpful for the watershed management in the reservoir watershed.According to the quantitative analysis,we'll take different scores and weighting for the potential parameters of the landslide areas in the Tsengwen reservoir watershed,and in the meanwhile,we'll extract the different factors,including the slope,aspect,altitude,soil and geological textures etc.,and the results shown as maximum one-day rainfall,ratio of forests and average relief is the most affecting parameters on the potential risk map of landslide areas.

  16. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  17. A Disjoint Set Algorithm for the Watershed Transform

    OpenAIRE

    Meijster, Arnold; Roerdink, Jos B. T. M.; Theodoridis, S.; Pitas, I.; Stouraitis, A; Kalouptsidis, N

    1998-01-01

    In this paper the implementation of a watershed transform based on Tarjan’s Union-Find algorithm is described. The algorithm computes the watershed as defined previously. The algorithm consists of two stages. In the first stage the image to be segmented is transformed into a lower complete image, using a FIFO-queue algorithm. In the second stage, the watershed of the lower complete image is computed. In this stage no FIFO-queues are used. This feature makes parallel implementation of the wate...

  18. Hydrogeochemical characteristics of the River Sava watershed in Slovenia

    OpenAIRE

    Tjaša Kanduč; Nives Ogrinc

    2007-01-01

    The River Sava is a typical HCO3- – Ca2+ – Mg2+ River. Total alkalinity increases in the part of the watershed composed of carbonate and clastic rocks, which are less resistant to weathering processes. Ca2+/Mg2+ ratios are around 2 in the carbonate part of the watershed and increase in the watershed composed of carbonate and clastic rocks, indicating dissolution of calcite with magnesium. According to PHREEQC for Windows calculations, the River Sava and its tributaries are oversaturated with ...

  19. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  20. Linking watershed protection and water consumption: WTP by domestic water users in Ho Chi Minh City

    OpenAIRE

    Ha, Dang Thanh

    2008-01-01

    In many watersheds of Asia, the demand for water is increasing while the supply of water is challenging due to on-going deforestation and watershed degradation. To ensure a stable supply of water for satisfying this growing demand, the protection of watershed is critical. Vietnam also faces similar situation, particularly in the Dong Nai watershed where high population growth, rapid industrialization, agricultural production, and economic growth are putting tremendous pressure on this watersh...

  1. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  2. Coupling stable isotope and satellite to inform a snow accumulation and melt model for data poor, semi-arid watersheds

    Science.gov (United States)

    Hublart, Paul; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe; Hevía, Andres

    2016-04-01

    At the most basic level watersheds catch, store, and release water. In semi-arid northern central Chile (29°-32°) snow and glacier melt dominate these basic hydrological stages. In this region precipitation is typically limited to three to five events per year that falls as snow in the High Cordillera at elevations above 3000 m a.s.l. The rugged topography and steep gradient makes snowfall rates highly variable in space and time. Despite its critical importance for water supply, high elevation meteorological data and measurements of snowpack are scarce due to limited winter access above 3000 m a.s.l. Due to the critically limited understanding of catch, store, and release processes most conceptual watershed models for this region remain speculative, are prone to over-parameterization, and greatly inhibits hydrological prediction in the region. Focused on two headwater watersheds of the Elqui River basin (1615-6040 m a.s.l., 429-566 km2) this study couples stable isotope and Moderate Resolution Imaging Spectrometer (MODIS) data to develop an improved conceptual model of how semi-arid mountain watersheds catch, store, and release water. MODIS snow-cover and land surface temperature data are used to inform an enhanced temperature-index Snow Accumulation and Melt (SAM) model. The use of remotely-sensed temperature data as input to this model is evaluated by comparison with an interpolated dataset derived from a few available meteorological stations. The outputs from the SAM model are used as inputs to a conceptual catchment model including two water stores (one standing for surface/subsurface processes and the other for deeper groundwater storage). The model is calibrated and evaluated from a Bayesian perspective using discharge data measured at the catchment outlets over a 15-year period (2000-2015). Stable isotope data collected during 2015-2016 is applied to better constrain model outputs. The combination of MODIS-based and isotope-based information proves very

  3. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Science.gov (United States)

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. PMID:23603774

  4. Watershed services: who pays and for what?

    Energy Technology Data Exchange (ETDEWEB)

    Porras, Ina; Grieg-Gran, Maryanne

    2007-08-15

    There is increasing interest in using payments to promote sound watershed management. Schemes range from small pilot projects involving just five families to a massive Chinese project that aims to reach 15 million farmers. The expectation is that such schemes will help to resolve problems such as declining water flows, flooding and deteriorating water quality by bringing in new funding from water users, the private sector in particular, and by providing incentives for sustainable management to those closest to natural resources. A review of active and proposed schemes in developing nations shows, however, that most schemes still depend on donor or government funding, and few are driven by water users. Meanwhile, evidence of benefits remains patchy.

  5. The Second Lebanon War as a Watershed

    Directory of Open Access Journals (Sweden)

    Gabriel Siboni

    2009-10-01

    Full Text Available Wars are difficult and traumatic, and as such, their impact goes well beyond their immediate time frame and the people directly involved. In this sense, the Second Lebanon War is not unusual. In hindsight, and in light of the thoughtful analyses presented at this conference, it seems that the most prominent phenomenon about the Second Lebanon War is the fact that it was a watershed – a pivotal moment in which different processes ceased, accelerated, or significantly changed direction. This is true at the personal level regarding the people who took part in the war on the Israeli and Lebanese sides; at the organizational level regarding both the IDF and Hizbollah; at the state level regarding both Israel and Lebanon; and on the regional level regarding Iran and the various Arab states, especially Saudi Arabia, Egypt, and Syria.

  6. Integrated watershed planning across jurisdictional boundaries

    Science.gov (United States)

    Watts, A. W.; Roseen, R.; Stacey, P.; Bourdeau, R.

    2014-12-01

    We will present the foundation for an Coastal Watershed Integrated Plan for three communities in southern New Hampshire. Small communities are often challenged by complex regulatory requirements and limited resources, but are wary of perceived risks in engaging in collaborative projects with other communities. Potential concerns include loss of control, lack of resources to engage in collaboration, technical complexity, and unclear benefits. This project explores a multi-town subwatershed application of integrated planning across jurisdictional boundaries that addresses some of today's highest priority water quality issues: wastewater treatment plant upgrades for nutrient removal; green infrastructure stormwater management for developing and re-developing areas; and regional monitoring of ecosystem indicators in support of adaptive management to achieve nutrient reduction and other water quality goals in local and downstream waters. The project outcome is a collaboratively-developed inter-municipal integrated plan, and a monitoring framework to support cross jurisdictional planning and assess attainment of water quality management goals. This research project has several primary components: 1) assessment of initial conditions, including both the pollutant load inputs and the political, economic and regulatory status within each community, 2) a pollutant load model for point and non-point sources, 3) multi-criteria evaluation of load reduction alternatives 4) a watershed management plan optimized for each community, and for Subwatersheds combining multiple communities. The final plan will quantify the financial and other benefits/drawbacks to each community for both inter municipal and individual pollution control approaches. We will discuss both the technical and collaborative aspects of the work, with lessons learned regarding science to action, incorporation of social, economic and water quality assessment parameters, and stakeholder/researcher interaction.

  7. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    Science.gov (United States)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small

  8. USGS Watershed Boundary Dataset (WBD) Stewardship Plan Objectives for FY15 from The National Map - National Geospatial Data Asset (NGDA) Watershed Boundary Dataset (WBD)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — U.S. Geological Survey, Department of the Interior - The annual Watershed Boundary Dataset (WBD) stewardship plan is to maintain watershed boundary data through...

  9. 2005 Kansas Land Cover Patterns, Level I, Kansas River Watershed

    Data.gov (United States)

    Kansas Data Access and Support Center — The Upper Kansas River Watershed Land Cover Patterns map represents Phase 1 of a two-phase mapping initiative occurring over a three-year period as part of a...

  10. Possible climate change evidence in ten Mexican watersheds

    Science.gov (United States)

    Mateos, Efrain; Santana, Julio-Sergio; Montero-Martínez, Martin J.; Deeb, Alejandro; Grunwaldt, Alfred

    2016-02-01

    This paper suggests possible evidence of climate change in Mexico at the watershed level, based solely on historical data. The official Mexican climate dataset was used to find the best set of stations for each watershed. Maximum and minimum temperatures and rainfall in ten watersheds are analyzed from 1970 to 2009. Maximum temperature trends show a significant increment in most of these watersheds. Furthermore, Daily Temperature Range (DTR) exhibits a positive trend (increments), thus implying an increase in temperature extremes. This study also shows that the difference between maximum and minimum monthly temperature trends is negatively correlated with monthly precipitation trends. As a result, land-use and land-cover changes could be the main drivers of climate change in the region.

  11. 2011 FEMA Lidar: Chemung Watershed (NY) (AOI 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data was acquired by Tuck Mapping Solutions, Inc. (TMSI) for the Chemung Watershed and broken down into two AOIs based on the level of processing performed on...

  12. Baseline Contaminants Investigation of the Patoka River Watershed, Southwest Indiana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment and fish tissue samples were collected from various locations within the Patoka River watershed (PRW) as part of the U.S. Fish and Wildlife Service's...

  13. Fish Creek Watershed Lake Classification; NPRA, Alaska, 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This study focuses on the development of a 20 attribute lake cover classification scheme for the Fish Creek Watershed (FCW), which is located in the National...

  14. Summit to Sea Characterization of Coastal Watersheds - Puerto Rico 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Characterization of Coastal Watershed for Puerto Rico, Culebra Island and Vieques Island, is a GIS products suite consisting of layers derived from diverse...

  15. Watershed Boundaries, Published in unknown, Person County GIS/IT.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, was produced all or in part from Field Survey/GPS information as of unknown. Data by this publisher are often provided in State...

  16. Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed

    Science.gov (United States)

    Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy

    2015-09-01

    Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.

  17. Laser altimeter measurements at Walnut Gulch Watershed, Arizona

    International Nuclear Information System (INIS)

    Measurements of landscape surface roughness properties are necessary for understanding many watershed processes. This paper reviews the use of an airborne laser altimeter to measure topography and surface roughness properties of the landscape at Walnut Gulch Watershed in Arizona. Airborne laser data were used to measure macro and micro topography as well as canopy topography, height, cover, and distribution. Macro topography of landscape profiles for segments up to 5 km (3 mi) were measured and were in agreement with available topographic maps but provided more detail. Gullies and stream channel cross-sections and their associated floodplains were measured. Laser measurements of vegetation properties (height and cover) were highly correlated with ground measurements. Landscape segments for any length can be used to measure these landscape roughness properties. Airborne laser altimeter measurements of landscape profiles can provide detailed information on watershed surface properties for improving the management of watersheds. (author)

  18. EAARL Topography--Potato Creek Watershed, Georgia, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation...

  19. Hydrography - MO 2014 Outstanding National Resource Water Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for waters listed in Table D - Outstanding National Resource Waters of the Water...

  20. Watersheds, waterfalls, on edge or node weighted graphs

    CERN Document Server

    Meyer, Fernand

    2012-01-01

    We present an algebraic approach to the watershed adapted to edge or node weighted graphs. Starting with the flooding adjunction, we introduce the flooding graphs, for which node and edge weights may be deduced one from the other. Each node weighted or edge weighted graph may be transformed in a flooding graph, showing that there is no superiority in using one or the other, both being equivalent. We then introduce pruning operators extract subgraphs of increasing steepness. For an increasing steepness, the number of never ascending paths becomes smaller and smaller. This reduces the watershed zone, where catchment basins overlap. A last pruning operator called scissor associates to each node outside the regional minima one and only one edge. The catchment basins of this new graph do not overlap and form a watershed partition. Again, with an increasing steepness, the number of distinct watershed partitions contained in a graph becomes smaller and smaller. Ultimately, for natural image, an infinite steepness le...

  1. Catalog of Federal Funding Sources for Watershed Protection

    Data.gov (United States)

    U.S. Environmental Protection Agency — Catalog of Federal Funding Sources for Watershed Protection Web site is a searchable database of financial assistance sources (grants, loans) available to fund a...

  2. Walnut Creek Watershed Restoration and Water Quality Monitoring Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this project is to establish a nonpoint source monitoring program in relation to the watershed habitat restoration and agricultural...

  3. MANGANESE BIOGEOCHEMISTRY IN A SMALL ADIRONDACK FORESTED LAKE WATERSHED.

    Science.gov (United States)

    Shanley, James B.

    1986-01-01

    In September and October 1981, manganese (Mn) concentrations and pH were intensively monitored in a small forested lake watershed in the west-central Adirondack Mountains, New York, during two large acidic storms (each approximately 5 cm rainfall, pH 4. 61 and 4. 15). The data were evaluated to identify biogeochemical pathways of Mn and to assess how these pathways are altered by acidic atmospheric inputs. Concentrations of Mn averaged 1. 1 mu g/L in precipitation and increased to 107 mu g/L in canopy throughfall, the enrichment reflecting active biological cycling of Mn. Rain pH and throughfall Mn were negatively correlated, suggesting that foliar leaching of Mn was enhanced by rainfall acidity. The pulse-like input of Mn to the forest floor in the high initial concentrations in throughfall (approximately 1000 mu g/L) did not affect Mn concentrations in soil water ( less than 20 mu g/L) or groundwater (usually less than 40 mu g/L), which varied little with time. In the inlet stream, Mn concentrations remained constant at 48 mu g/L as discharge varied from 1. 1 to 96 L/s. Manganese was retained in the vegetative cycle and regulated in the stream by adsorption in the soil organic horizon. The higher Mn levels in the stream may be linked to its high acidity (pH 4. 2-4. 3). Mixing of Mn-rich stream water with neutral lake water (pH 7. 0) caused precipitation of Mn and deposition in lake sediment.

  4. Factors influencing stream baseflow transit times in tropical montane watersheds

    Science.gov (United States)

    Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.

    2016-04-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.

  5. Potlatch River Watershed Restoration, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Stinson, Kenneth

    2003-09-01

    The project's goal is to improve instream fish habitat in the Potlatch River and the lower Clearwater River through comprehensive watershed planning, implementation of best management practices and expanded water quality and fish habitat monitoring. This proposal has two primary objectives: (1) complete the Potlatch River watershed implementation plan; and, (2) augment existing monitoring efforts in the Potlatch River to broaden the water quality and fish resource data baseline.

  6. Vertical Collective Action: Addressing Vertical Asymmetries in Watershed Management

    OpenAIRE

    Cárdenas, Juan-Camilo; Rodriguez, Luz Angela; Johnson, Nancy

    2015-01-01

    Watersheds and irrigation systems have the characteristic of connecting people vertically by water flows. The location of users along these systems defines their role in the provision and appropriation of water which adds complexity to the potential for cooperation. Verticality thus imposes a challenge to collective action. This paper presents the results of field experiments conducted in four watersheds of Colombia (South America) and Kenya (East Africa) to study the role that location plays...

  7. Segmentation of Medical Image using Clustering and Watershed Algorithms

    OpenAIRE

    M. C.J. Christ; R. M. S. Parvathi

    2011-01-01

    Problem statement: Segmentation plays an important role in medical imaging. Segmentation of an image is the division or separation of the image into dissimilar regions of similar attribute. In this study we proposed a methodology that integrates clustering algorithm and marker controlled watershed segmentation algorithm for medical image segmentation. The use of the conservative watershed algorithm for medical image analysis is pervasive because of its advantages, such as always being able to...

  8. Trend analysis in a Brazilian watershed with high water demand

    Science.gov (United States)

    Groppo, Juliano; Cristaldo, Mariana; Pellegrino, Giampaollo

    2015-04-01

    In recent decades the development of urban, industrial and agricultural activities, has led to a significant increase in water demand and decrease in both water quantity and quality in worldwide. The "Paracatu Watershed" is located in Southeast Brazil, one of most developed region in Brazil. The irrigation is the main water use with more than 70% of total demand and the watershed already suffers with water availability and conflicts tend to increase. Trends analysis is an important for the environmental diagnosis in watersheds, allowing evaluate how water bodies are responding through the years the growing anthropogenic interventions. In this studied we analyzed the 6 streamflow and 12 rainfall stations of the "Paracatu Watershed", in the period from 1965 to 2011. The Mann Kendall and Pettitt test were used to trends analysis and abrupt changes in the mean, respectively. The methodology is divided in graphical analysis and application of trend tests, where initially an exploratory analysis of data is performed, followed by confirmation through statistical tests. The results showed negative trend but non-significant (95%) and non-significant abrupt change in rainfall and streamflow (minimum, maximum and mean). Despite no significant trends, the population and irrigation growth plus climate changes tends to decrease the water availability in the watershed. This watershed already suffer from the water problem, and if to keep increasing consumption in the watershed for urban supply and irrigation plus the possible impacts of climatic changes, without prior and appropriate planning, which can be obtained, the population could suffer more problems regarding of water in the future. The solutions must be proposed to help the watershed, with use crop resistant to decrease the irrigation and increase the efficiency of irrigation and population awareness. Appropriate planning and polices are essential to ensure water for future.

  9. Methodology for a stormwater sensitive urban watershed design

    Science.gov (United States)

    Romnée, Ambroise; Evrard, Arnaud; Trachte, Sophie

    2015-11-01

    In urban stormwater management, decentralized systems are nowadays worldwide experimented, including stormwater best management practices. However, a watershed-scale approach, relevant for urban hydrology, is almost always neglected when designing a stormwater management plan with best management practices. As a consequence, urban designers fail to convince public authorities of the actual hydrologic effectiveness of such an approach to urban watershed stormwater management. In this paper, we develop a design oriented methodology for studying the morphology of an urban watershed in terms of sustainable stormwater management. The methodology is a five-step method, firstly based on the cartographic analysis of many stormwater relevant indicators regarding the landscape, the urban fabric and the governance. The second step focuses on the identification of many territorial stakes and their corresponding strategies of a decentralized stormwater management. Based on the indicators, the stakes and the strategies, the third step defines many spatial typologies regarding the roadway system and the urban fabric system. The fourth step determines many stormwater management scenarios to be applied to both spatial typologies systems. The fifth step is the design of decentralized stormwater management projects integrating BMPs into each spatial typology. The methodology aims to advise urban designers and engineering offices in the right location and selection of BMPs without given them a hypothetical unique solution. Since every location and every watershed is different due to local guidelines and stakeholders, this paper provide a methodology for a stormwater sensitive urban watershed design that could be reproduced everywhere. As an example, the methodology is applied as a case study to an urban watershed in Belgium, confirming that the method is applicable to any urban watershed. This paper should be helpful for engineering and design offices in urban hydrology to define a

  10. Management and Cost of Watershed Reforestation: The Pantabangan and Magat

    OpenAIRE

    Galvez, Jose A.

    1984-01-01

    Experiences of the National Irrigation Administration in its reforestation of the Pantabangan and Magat watersheds are presented in this paper, as it identifies the basic requirements of a successful reforestation program for denuded areas. The problems encountered in the implementation of the Watershed Management and Erosion Control Projects as well as the factors that significantly affected the success or failure of the project are identified.

  11. Streamflow simulation methods for ungauged and poorly gauged watersheds

    OpenAIRE

    Loukas, A.; Vasiliades, L.

    2014-01-01

    Rainfall–runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well-established hydrological model, the University of British Columbia (UBC) watershed model, is selected and applied in five different river basins located in Canada, Cyprus, and Pakistan. Catchments from cold, temperate, continental, and semiarid climate zones are included to demonstrate the procedures developed. Two methodologies for streamflow modelling are prop...

  12. Application of Watershed Dimensionless Half Profiles for Climate Recognition

    OpenAIRE

    Marzieh Foroutan; Mazda Kompanizare

    2013-01-01

    DEM analysis and profile extraction being used for finding many changes and phenomena in different regions, in this study dimensionless transverse half profile in two areas with different climates, in Fars province, Iran, were analyzed and compared. DEM data from 10 m intervals for 268 profiles selected from Jooyom and Doroodzan watersheds with respective warm arid and cold semi-arid climates. Profiles were selected from along main channels in each watershed with an average distance of 100 m....

  13. Streamflow simulation methods for ungauged and poorly gauged watersheds

    OpenAIRE

    Loukas, A.; Vasiliades, L.

    2014-01-01

    Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well established hydrological model, the UBC watershed model, is selected and applied in five different river basins located in Canada, Cyprus and Pakistan. Catchments from cold, temperate, continental and semiarid climate zones are included to demonstrate the develop procedures. Two methodologies for streamflow modelling are proposed and analysed. T...

  14. Integrated simulation of runoff and groundwater in forest wetland watersheds

    OpenAIRE

    Gen-wei CHENG; Zhong-bo YU; Li, Chang-Sheng; Huang, Yong

    2008-01-01

    Abstract: A Distributed Forest Wetland Hydrologic Model (DFWHM) was constructed and used to examine water dynamics in the different climates of three different watersheds (a cold region, a sub-tropic region, and a large-scale watershed). A phenological index was used to represent the seasonal and species changes of the tree canopy while processes of snow packing, soil freezing, and snow and ice thawing were also included in the simulation. In the cold region, the simulated fall of the gro...

  15. Watershed sediment yield modeling for data scarce areas

    OpenAIRE

    Habtamu Itefa Geleta

    2011-01-01

    The sustainability and service life of reservoirs depends on the amount of sediment storage. Reservoir sedimentation is a critical problem in reducing the service life of dams. The sedimentation problem is the consequence of watersheds sediment supply to the river networks and then to the reservoir. River bank sediment deposition is another consequence of excess sediment supply from the upstream watersheds. The deposition of sediment on bank of a river causes change in flow regime and as resu...

  16. Nitrate mass balance in the Padež stream watershed

    OpenAIRE

    Česnik, Katarina

    2014-01-01

    Graduation thesis analyzes changes in nitrate mass balance in a forested watersheds. The nitrate mass balance changes occur manly because of hydrological and biogeochemical mechanisms. The studied area, the Padež stream watershed, is mainly covered with forest. Between years 2006 and 2007 the hydrometeorological conditions and streamwater chemistry of Padež stream were continuously monitored. The differences in streamwater nitrate concentrations and nitrate concentrations in precipitations an...

  17. Geographically isolated wetlands and watershed hydrology: A modified model analysis

    Science.gov (United States)

    Evenson, Grey R.; Golden, Heather E.; Lane, Charles R.; D'Amico, Ellen

    2015-10-01

    Geographically isolated wetlands (GIWs) are defined as wetlands that are completely surrounded by uplands. While GIWs are therefore spatially isolated, field-based studies have observed a continuum of hydrologic connections between these systems and other surface waters. Yet few studies have quantified the watershed-scale aggregate effects of GIWs on downstream hydrology. Further, existing modeling approaches to evaluate GIW effects at a watershed scale have utilized conceptual or spatially disaggregated wetland representations. Working towards wetland model representations that use spatially explicit approaches may improve current scientific understanding concerning GIW effects on the downstream hydrograph. The objective of this study was to quantify the watershed-scale aggregate effects of GIWs on downstream hydrology while emphasizing a spatially explicit representation of GIWs and GIW connectivity relationships. We constructed a hydrologic model for a ∼202 km2 watershed in the Coastal Plain of North Carolina, USA, a watershed with a substantial population of GIWs, using the Soil and Water Assessment Tool (SWAT). We applied a novel representation of GIWs within the model, facilitated by an alternative hydrologic response unit (HRU) definition and modifications to the SWAT source code that extended the model's "pothole" representation. We then executed a series of scenarios to assess the downstream hydrologic effect of various distributions of GIWs within the watershed. Results suggest that: (1) GIWs have seasonally dependent effects on baseflow; (2) GIWs mitigate peak flows; and (3) The presence of GIWs on the landscape impacts the watershed water balance. This work demonstrates a means of GIW simulation with improved spatial detail while showing that GIWs, in-aggregate, have a substantial effect on downstream hydrology in the studied watershed.

  18. Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia

    OpenAIRE

    Mutlu Ozdogan; Benjamin F. Zaitchik; Belay Simane

    2013-01-01

    Tropical highland regions are experiencing rapid climate change. In these regions the adaptation challenge is complicated by the fact that elevation contrasts and dissected topography produce diverse climatic conditions that are often accompanied by significant ecological and agricultural diversity within a relatively small region. Such is the case for the Choke Mountain watersheds, in the Blue Nile Highlands of Ethiopia. These watersheds extend from tropical alpine environments at over 4000 ...

  19. Influence of storm magnitude and watershed size on runoff nonlinearity

    Science.gov (United States)

    Lee, Kwan Tun; Huang, Jen-Kuo

    2016-06-01

    The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.

  20. Optimal allocation of watershed management cost among different water users

    Institute of Scientific and Technical Information of China (English)

    Wang Zanxin; Margaret M.Calderon

    2006-01-01

    The issue of water scarcity highlights the importance of watershed management. A sound watershed management should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (Mus) or marginal products (MPs) of water are equal. The value of Mus or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non-consumable, the watershed manager produces the quantity of water in which the sum of Mus and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of Mus and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.

  1. Landscape position influences microbial composition and function via redistribution of soil water across a watershed.

    Science.gov (United States)

    Du, Zhe; Riveros-Iregui, Diego A; Jones, Ryan T; McDermott, Timothy R; Dore, John E; McGlynn, Brian L; Emanuel, Ryan E; Li, Xu

    2015-12-01

    Subalpine forest ecosystems influence global carbon cycling. However, little is known about the compositions of their soil microbial communities and how these may vary with soil environmental conditions. The goal of this study was to characterize the soil microbial communities in a subalpine forest watershed in central Montana (Stringer Creek Watershed within the Tenderfoot Creek Experimental Forest) and to investigate their relationships with environmental conditions and soil carbonaceous gases. As assessed by tagged Illumina sequencing of the 16S rRNA gene, community composition and structure differed significantly among three landscape positions: high upland zones (HUZ), low upland zones (LUZ), and riparian zones (RZ). Soil depth effects on phylogenetic diversity and β-diversity varied across landscape positions, being more evident in RZ than in HUZ. Mantel tests revealed significant correlations between microbial community assembly patterns and the soil environmental factors tested (water content, temperature, oxygen, and pH) and soil carbonaceous gases (carbon dioxide concentration and efflux and methane concentration). With one exception, methanogens were detected only in RZ soils. In contrast, methanotrophs were detected in all three landscape positions. Type I methanotrophs dominated RZ soils, while type II methanotrophs dominated LUZ and HUZ soils. The relative abundances of methanotroph populations correlated positively with soil water content (R = 0.72, P < 0.001) and negatively with soil oxygen (R = -0.53, P = 0.008). Our results suggest the coherence of soil microbial communities within and differences in communities between landscape positions in a subalpine forested watershed that reflect historical and contemporary environmental conditions. PMID:26431971

  2. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    Science.gov (United States)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  3. Landcare on the Poverty-Protection Interface in an Asian Watershed

    Directory of Open Access Journals (Sweden)

    Victor B. Amoroso

    2002-06-01

    Full Text Available Serious methodological and policy hurdles constrain effective natural resource management that alleviates poverty while protecting environmental services in tropical watersheds. We review the development of an approach that integrates biodiversity conservation with agroforestry development through the active involvement of communities and their local governments near the Kitanglad Range Natural Park in the Manupali watershed, central Mindanao, the Philippines. Agroforestry innovations were developed to suit the biophysical and socioeconomic conditions of the buffer zone. These included practices for tree farming and conservation farming for annual cropping on slopes. Institutional innovations improved resource management, resulting in an effective social contract to protect the natural biodiversity of the park. The production of fruit and timber trees dramatically increased, re-establishing tree cover in the buffer zone. Natural vegetative contour strips were installed on several hundred sloping farms. Soil erosion and runoff declined, and the buffer strips increased maize yields by an average of 0.5 t/ha on hill-slope farms. The scientific knowledge base guided the development and implementation of a natural resource management plan for the municipality of Lantapan. A dynamic grass-roots movement of farmer-led Landcare groups evolved in the villages near the park boundary, which had a significant impact on conservation in both the natural and managed ecosystems. Encroachment in the natural park was reduced by 95% in 3 yr. The local Landcare groups also restored stream-corridor vegetation. This integrated approach has been recognized as a national model for the local management of natural resources and watersheds in the Philippines. Currently, the collaborating institutions are evolving a negotiation support system to resolve the interactions between the three management domains: the park, the ancestral domain claim, and the municipalities. This

  4. Long-term environmental research: the upper washita river experimental watersheds, oklahoma, USA.

    Science.gov (United States)

    Steiner, Jean L; Starks, Patrick J; Garbrecht, Jurgen D; Moriasi, Daniel N; Zhang, Xunchang; Schneider, Jeanne M; Guzman, Jorge A; Osei, Edward

    2014-07-01

    Water is central to life and earth processes, connecting physical, biological, chemical, ecological, and economic forces across the landscape. The vast scope of hydrologic sciences requires research efforts worldwide and across a wide range of disciplines. While hydrologic processes and scientific investigations related to sustainable agricultural systems are based on universal principles, research to understand processes and evaluate management practices is often site-specific to achieve a critical mass of expertise and research infrastructure to address spatially, temporally, and ecologically complex systems. In the face of dynamic climate, market, and policy environments, long-term research is required to understand and predict risks and possible outcomes of alternative scenarios. This special section describes the USDA-ARS's long-term research (1961 to present) in the Upper Washita River basin of Oklahoma. Data papers document datasets in detail (weather, hydrology, physiography, land cover, and sediment and nutrient water quality), and associated research papers present analyses based on those data. This living history of research is presented to engage collaborative scientists across institutions and disciplines to further explore complex, interactive processes and systems. Application of scientific understanding to resolve pressing challenges to agriculture while enhancing resilience of linked land and human systems will require complex research approaches. Research areas that this watershed research program continues to address include: resilience to current and future climate pressures; sources, fate, and transport of contaminants at a watershed scale; linked atmospheric-surface-subsurface hydrologic processes; high spatiotemporal resolution analyses of linked hydrologic processes; and multiple-objective decision making across linked farm to watershed scales. PMID:25603071

  5. Watershed Boundaries, watersheds- marathon county, Published in unknown, 1:24000 (1in=2000ft) scale, Marathon County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of unknown. It is described as...

  6. Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

  7. Chinese Policies and Practices regarding Payments for Ecological Services in Watersheds

    Institute of Scientific and Technical Information of China (English)

    Liu Guihuan; Zhang Huiyuan; Wan Jun

    2008-01-01

    Watersheds provide a variety of ecological services including soil and water conservation,carbon sequestration and biodiversity protection.However,activities in a fast-growing economy significantly impact the supply and demand of these watershed services.To mitigate these impacts,the concept of payment for environmental and ecosystem services from watersheds has emerged in global academic and policy circles.The governments and academic communities in China have increasingly described payments for ecological services from watersheds with the concept of watershed eco-compensation as it is urgent to protect watershed ecosystems.Watershed eco-compensation has proved to be one of the most economically effective means of solving environmental problems of watersheds to be adopted by the Chinese government.This paper presents an objective analysis of the Chinese market for watershed ecosystem services,including supply and demand for the services.It also summarizes Chinese policies on watershed eco-compensation,including relevant laws and regulations and fiscal policies.In addition,it presents a review of Chinese practices in watershed eco-compensation,including the analysis of an ecological construction project in Westem China,inter-provincial watershed cco-compensation practices and plans,and payment for ecological services at the provincial and small watershed levels.Finally,it summarizes the key components of the process of payment in Chinese watershed eco-compensation.This discussion forms the basis of concluding suggestions for ecosystem services compensation and ecological protection in the large scale river basin.

  8. Morphometric Analysis and Micro-watershed Prioritization of Peruvanthanam Sub-watershed, the Manimala River Basin, Kerala, South India

    OpenAIRE

    Balan VB Rekha; A.V. George; Rita, M

    2011-01-01

    Morphometric analysis is important in any hydrological investigation and it is inevitable in development and management of drainage basin. A critical evaluation and assessment of morphometric parameters and prioritization of micro-watersheds based on water holding capacity of Peruvanthanam sub-watershed have been achieved through measurement of linear, aerial and relief aspects of basins by using remote sensing and GIS techniques, and it necessitates preparation of a detailed drainage map. Fo...

  9. Applying Physically Representative Watershed Modelling to Assess Peak and Low Flow Response to Timber Harvest: Application for Watershed Assessments

    Science.gov (United States)

    MacDonald, R. J.; Anderson, A.; Silins, U.; Craig, J. R.

    2014-12-01

    Forest harvesting, insects, disease, wildfire, and other disturbances can combine with climate change to cause unknown changes to the amount and timing of streamflow from critical forested watersheds. Southern Alberta forest and alpine areas provide downstream water supply for agriculture and water utilities that supply approximately two thirds of the Alberta population. This project uses datasets from intensely monitored study watersheds and hydrological model platforms to extend our understanding of how disturbances and climate change may impact various aspects of the streamflow regime that are of importance to downstream users. The objectives are 1) to use the model output of watershed response to disturbances to inform assessments of forested watersheds in the region, and 2) to investigate the use of a new flexible modelling platform as a tool for detailed watershed assessments and hypothesis testing. Here we applied the RAVEN hydrological modelling framework to quantify changes in key hydrological processes driving peak and low flows in a headwater catchment along the eastern slopes of the Canadian Rocky Mountains. The model was applied to simulate the period from 2006 to 2011 using data from the Star Creek watershed in southwestern Alberta. The representation of relevant hydrological processes was verified using snow survey, meteorological, and vegetation data collected through the Southern Rockies Watershed Project. Timber harvest scenarios were developed to estimate the effects of cut levels ranging from 20 to 100% over a range of elevations, slopes, and aspects. We quantified changes in the timing and magnitude of low flow and high flow events during the 2006 to 2011 period. Future work will assess changes in the probability of low and high flow events using a long-term meteorological record. This modelling framework enables relevant processes at the watershed scale to be accounted in a physically robust and computational efficient manner. Hydrologic

  10. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  11. Use of remote sensing to link watershed land use change and wetland vegetation response in a California coastal watershed

    OpenAIRE

    Kelly, N. Maggi; Byrd, Kristin B.

    2005-01-01

    While Elkhorn Slough wetlands are protected by a State ecological reserve and NOAA research reserve, intensified farming in the watershed has led to high soil erosion rates and sedimentation into the slough, where several sediment fans have formed at the base of slopes. The goal of this study was to determine how watershed land use change (i.e., increasing agriculture) and associated sedimentation over 30 years influenced changes in salt marsh soil physical properties, and in turn, plant comp...

  12. Ponds' water balance and runoff of endorheic watersheds in the Sahel

    Science.gov (United States)

    Gal, Laetitia; Grippa, Manuela; Kergoat, Laurent; Hiernaux, Pierre; Mougin, Eric; Peugeot, Christophe

    2015-04-01

    The Sahel has been characterized by a severe rainfall deficit since the mid-twentieth century, with extreme droughts in the early seventies and again in the early eighties. These droughts have strongly impacted ecosystems, water availability, fodder resources, and populations living in these areas. However, an increase of surface runoff has been observed during the same period, such as higher "summer discharge" of Sahelian's rivers generating local floods, and a general increase in pond's surface in pastoral areas of central and northern Sahel. This behavior, less rain but more surface runoff is generally referred to as the "Sahelian paradox". Various hypotheses have been put forward to explain this paradoxical situation. The leading role of increase in cropped areas, often cited for cultivated Sahel, does not hold for pastoral areas in central and northern Sahel. Processes such as degradation of vegetation subsequent to the most severe drought events, soils erosion and runoff concentration on shallow soils, which generate most of the water ending up in ponds, seem to play an important role. This still needs to be fully understood and quantified. Our study focuses on a model-based approach to better understand the hydrological changes that affected the Agoufou watershed (Gourma, Mali), typical of the central, non-cultivated Sahel. Like most of the Sahelian basins, the Agoufou watershed is ungauged. Therefore we used indirect data to provide the information required to validate a rainfall-runoff model approach. The pond volume was calculated by combining in-situ water level measurements with pond's surface estimations derived by remote sensing. Using the pond's water balance equation, the variations of pond volume combined to estimates of open water bodies' evaporation and infiltration determined an estimation for the runoff supplying the pond. This estimation highlights a spectacular runoff increase over the last sixty years on the Agoufou watershed. The runoff

  13. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    Science.gov (United States)

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). PMID:26186465

  14. Linking geomorphologic knowledge, RS and GIS techniques for analyzing land cover and land use change: a multitemporal study in the Cointzio watershed, Mexico

    Directory of Open Access Journals (Sweden)

    Manuel E. Mendoza

    2013-04-01

    Full Text Available It is well-established that changes in land cover and land use (LCLU are relevant to current local and global changes that are directly linked with food security, human health, urbanization, biodiversity, trans-border migration, environmental refuges, water and soil quality, runoff and sedimentation rates, and other processes. This paper examines LCLU change processes within the Cointzio watershed (Central Mexico. The analysis covers a 28-year time period from 1975 to 2003. LCLU changes were deduced from multi-temporal remote sensing analyses (1975, 1986, 1996, 2000 and 2003. Nearly all of the LCLU changes experienced in the Cointzio watershed occurred during the 1986-1996 period. Half of the 665 km2 of the watershed have changed during this period, in what corresponds to a ten-fold increase in the rate of change as compared to the 1975-1986 and 1996-2003 periods. These massive changes are probably related to the Immigration Reform and Control Act (IRCA of 1986, which limited the transit of undocumented Mexican workers to the United States of America. The methodology applied in this research constitutes a low-cost alternative for evaluating the impact of LCLU change in watersheds. The magnitude of land use change differed during the periods of analyses in the watershed, functional zones and geoforms. The methodological approach applied in this analysis integrates standard procedures to evaluate land cover and land use change in watersheds. Due to the practical value of the results, the data and information generated during the analysis have been made available to local authorities.

  15. Integrating operational watershed and coastal models for the Iberian Coast: Watershed model implementation - A first approach

    Science.gov (United States)

    Brito, David; Campuzano, F. J.; Sobrinho, J.; Fernandes, R.; Neves, R.

    2015-12-01

    River discharges and loads are essential inputs to coastal seas, and thus for coastal seas modelling, and their properties are the result of all activities and policies carried inland. For these reasons main rivers were object of intense monitoring programs having been generated some important amount of historical data. Due to the decline in the Portuguese hydrometric network and in order to quantify and forecast surface water streamflow and nutrients to coastal areas, the MOHID Land model was applied to the Western Iberia Region with a 2 km horizontal resolution and to the Iberian Peninsula with 10 km horizontal resolution. The domains were populated with land use and soil properties and forced with existing meteorological models. This approach also permits to understand how the flows and loads are generated and to forecast their values which are of utmost importance to perform coastal ocean and estuarine forecasts. The final purpose of the implementation is to obtain fresh water quantity and quality that could be used to support management decisions in the watershed, reservoirs and also to estuaries and coastal areas. A process oriented model as MOHID Land is essential to perform this type of simulations, as the model is independent of the number of river catchments. In this work, the Mohid Land model equations and parameterisations were described and an innovative methodology for watershed modelling is presented and validated for a large international river, the Tagus River, and the largest national river of Portugal, the Mondego River. Precipitation, streamflow and nutrients modelling results for these two rivers were compared with observations near their coastal outlet in order to evaluate the model capacity to represent the main watershed trends. Finally, an annual budget of fresh water and nutrient transported by the main twenty five rivers discharging in the Portuguese coast is presented.

  16. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  17. Rangeland degradation in two watersheds of Lebanon

    International Nuclear Information System (INIS)

    A complex and rugged nature characterizes the Lebanese mountains.The climatic pattern prevailing in the country, deforestation and man made erosion caused increased rangeland degradation. The purpose of this study was to monitor two contrasting watersheds, representing the Lebanese agro-ecological zones, to analyze the vegetation dynamics and trace the state of rangeland degradation. The Kfarselouane (205 km2) and Aarsal (316.7 km2) watersheds are located in the Lebanon and Anti-Lebanon mountain chain and characterized by sub humid and semi-arid climate respectively.Using multitemporal spot vegetation images between 1999 and 2005 to analyze the normalized differential vegetation index (NDVI) revealed some improvement of the vegetation cover over recent years in Kfaselouane with a steady state in Aarsal. The NDVI trend curve inclines in spring and declines in summer and fall. Judging by the time scale amplitude change and highest magnitude between the peak and lower NDVI level in Aarsal, an increased vulnerability to drought is observed in the dry Lebanese areas. Comparing land cover/use in Aarsal area between 1962 and 2000 using aerial photos and large resolution Indian satellite images (IRS) showed wood fragmentation and slight increase of the degenerated forest cover from 1108 ha to 1168 ha. Landuse change was accompanied by a simultaneous increase of cultivated lands (mostly fruit trees) from 932 ha to 4878 ha with absence of soil conservation and water harvesting practices. On the contrary, grasslands decreased from 29581 ha to 25000 ha. In Kfarselouane, the area of grassland was invaded by forestland where rangeland decreased from 8073 ha to 3568 ha and woodland increased from 5766 ha to 11800 ha. Forest expansion occurred even at the account of unproductive land which decreased from 2668 ha to 248 ha, while cultivated lands did not reveal any substantial change. Based on animals' seasonal feeding pattern, a mismatch between land carrying capacity and grazing

  18. Hydrological modelling in sandstone rocks watershed

    Science.gov (United States)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of

  19. DECENTRALIZED STORMWATER MANAGEMENT: RETROFITTING HOMES, RESTORING WATERSHEDS

    Science.gov (United States)

    Stormwater runoff from impervious surfaces in urban and suburban areas has led to human safety risks and widespread stream ecosystem impairment. While centralized stormwater management can minimize large fluctuations in stream flows and flooding risk to urban areas, this approac...

  20. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  1. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    J. C. Chen

    2013-04-01

    Full Text Available This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N was also investigated via image analysis and/or field investigation. The relationship between N and RI was analysed. Higher RI of a rainfall event would trigger a larger number of debris flows. This paper also discusses the effects of the Chi-Chi earthquake (CCE on this relationship and on debris flow initiation. The results showed that the critical RI for debris flow initiation had significant variations and was significantly lower in the years immediately following the CCE of 1999, but appeared to revert to the pre-earthquake condition about five years later. Under the same extreme rainfall event of RI = 365 cm2 h−1, the value of N in the CCE-affected period could be six times larger than that in the non-CCE-affected periods.

  2. An analysis of urban development and its environmental impact on the Tampa Bay watershed

    Science.gov (United States)

    Xian, G.; Crane, M.; Su, J.

    2007-01-01

    Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed. ?? 2006 Elsevier Ltd. All rights reserved.

  3. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  4. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    International Nuclear Information System (INIS)

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L-1, with a mean of 10.4 ng L-1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L-1, with a mean of 2.5 ng L-1. Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L-1 with particulate Hg concentrations ranging through 47-170 ng g-1, with a mean of 99 ng g-1. Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO3- concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erie

  5. Influence of climate variability on land degradation (desertification) in the watershed of the upper Paraíba River

    Science.gov (United States)

    Alves, Telma Lucia Bezerra; de Azevedo, Pedro Vieira; Costa dos Santos, Carlos Antonio

    2015-11-01

    The study aimed to evaluate the influence of the rainfall and aridity index variability on the process of land degradation (desertification) in order to establish the current degree of increase or decrease in dryness in the watershed of the upper Paraíba River. It included all or part of 18 municipalities, distributed in the western and eastern Cariri regions of Paraíba state. The monthly average values of reference evapotranspiration according to Penman-Monteith method were applied in the annual hydrological balance for obtaining the annual time series of the aridity index for the period from 1950 to 2013. The Mann-Kendall test (MK) was used for trend identification in the annual time series of rainfall and aridity index, at a significance level of α = 0.05. The slope of the trends was obtained by Sen's method, and the values of rainfall, aridity index, and statistics MK were spatially kriging, to generate thematic maps. The results indicate an increase in rainfall and reduced dryness in the watershed of the upper Paraíba River, conditions that do not contribute to trigger the process of land degradation (desertification), indicating that the cause of this environmental problem is not climatic. Thus, it can be suggested that the observed manifestations of land degradation (desertification) derive much of human than climatic actions. However, there is a trend of increasing dryness and reducing rainfall in the central portion of the watershed, with stronger core in the location of Camalaú. The spatial distribution of rainfall and aridity index shows that minimum values of rainfall coincide with maximum values of the aridity index. Higher values of rainfall were observed in the northwestern portion of the watershed, while the northeast and southeast portions had the lower rainfall values, with the strongest core in the locality of Cabaceiras. The eastern sector of the watershed has high dryness, unlike the western sector, rainier, with minimum values of dryness

  6. A geo-referenced modeling environment for ecosystem risk assessment: organophosphate pesticides in an agriculturally dominated watershed.

    Science.gov (United States)

    Luo, Yuzhou; Zhang, Minghua

    2009-01-01

    A geo-referenced modeling system was developed in this study to investigate the spatiotemporal variability of pesticide distributions and associated ecosystem risks. In the modeling system, pesticide fate and transport processes in soil-canopy system were simulated at field scale by the pesticide root zone model (PRZM). Edge-of-field mass fluxes were up-scaled with a spatially distributed flow-routing model to predict pesticide contaminations in surface water. The developed model was applied to the field conditions of the Orestimba Creek watershed, an agriculturally-dominated area in California's Central Valley during 1990 through 2006, with the organophosphate insecticides diazinon and chlorpyrifos as test agents. High concentrations of dissolved pesticides were predicted at the watershed outlet during the irrigation season of April through November, due to the intensive pesticide use and low stream flow. Concentration violations, according to the California aquatic life criteria, were observed for diazinon before 2001, and for chlorpyrifos during the entire simulation period. Predicted pesticide exposure levels showed potential adverse effects on certain genera of sensitive aquatic invertebrates in the ecosystem of the Orestimba Creek. Modeling assessments were conducted to identify the factors governing spatial patterns and seasonal trends on pesticide distribution and contamination potentials to the studied aquatic ecosystem. Areas with high pesticide yields to surface water were indicated for future research and additional studies focused on monitoring and mitigation efforts within the watershed. Improved irrigation techniques and management practices were also suggested to reduce the violations of pesticide concentrations during irrigation seasons. PMID:19244487

  7. Floristic study of Zangelanlo watershed (Khorassan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Amiri

    2011-01-01

    Full Text Available Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research, 64 families, 238 genera and 286 species were identified among which 8 species were endemic to Iran. The largest plant family was Asteraceae with 40 genera and 51 species and the largest genus was Astragalus of Fabaceae with 7 species. Hemicryptophytes, therophytes and cryptophytes were the most frequent life forms 114 species (39.87%, 89 species (31.12% and 44 species (15.38%, respectively. High percentage of Hemicryptophytes indicated that the area had a cold mountain climate. Irano – Turanian plants were the most frequent chorotype of the area with 146 species (51.05%.

  8. Streamflow simulation methods for ungauged and poorly gauged watersheds

    Directory of Open Access Journals (Sweden)

    A. Loukas

    2014-02-01

    Full Text Available Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well established hydrological model, the UBC watershed model, is selected and applied in five different river basins located in Canada, Cyprus and Pakistan. Catchments from cold, temperate, continental and semiarid climate zones are included to demonstrate the develop procedures. Two methodologies for streamflow modelling are proposed and analysed. The first method uses the UBC watershed model with a universal set of parameters for water allocation and flow routing, and precipitation gradients estimated from the available annual precipitation data as well as from regional information on the distribution of orographic precipitation. This method is proposed for watersheds without streamflow gauge data and limited meteorological station data. The second hybrid method proposes the coupling of UBC watershed model with artificial neural networks (ANNs and is intended for use in poorly gauged watersheds which have limited streamflow measurements. The two proposed methods have been applied to five mountainous watersheds with largely varying climatic, physiographic and hydrological characteristics. The evaluation of the applied methods is based on combination of graphical results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results show that the first method satisfactorily simulates the observed hydrograph assuming that the basins are ungauged. When limited streamflow measurements are available, the coupling of ANNs with the regional non-calibrated UBC flow model components is considered a successful alternative method over the conventional calibration of a hydrological model based on the employed evaluation criteria for streamflow modelling and flood frequency estimation.

  9. Watershed, river and lake modeling through environmental radioactivity

    International Nuclear Information System (INIS)

    Progress has been made in the use of natural as well as man made environmental radionuclides, e.g., 210Pb and 137Cs, to quantify lake sediment dating and soil erosion, respectively. However, the modeling of soil erosion and pollutant transport from watershed to fluvial systems is still in its infantry state. The naturally occurring environmental radionuclides like 210Pb and 7Be can be readily used to test the authenticity of a mathematical model as these radionuclides have constant depositional flux and can be quantitatively measured on the watershed surface as well as in the river and lake waters. After testing the capability of a model to simulate the concentration of 210Pb and 7Be in watershed soil and in aquatic systems, the model can be used to predict the removal of man made pollutants, like 90Sr, 137Cs, 239+240Pu, pesticides, fertilizers, herbicides or any other pollutants from watershed area to fluvial system. In this book a 3-Box model is developed and applied to quantify the soil erosion in the light of naturally occurring radionuclides 7Be and 210Pb. The 3-Box model is subsequently applied to determine the transport of 90Sr, 137Cs and 239+240Pu from watersheds to rivers and lakes. The 3-Box model describes the time dependent partitioning of pollutants among three boxes: the watershed, waters and the bottom sediments of the aquatic body. This book is intended for environmental scientists and engineers who are pursuing pathway of the pollutant in aquatic systems. The book will also be useful for the professional engaged in the management of watersheds, rivers and lakes. (author)

  10. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  11. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian

  12. Synthesis of Watershed and Ecosystem Responses to Lehmann Lovegrass Invasion in a SE Arizona Desert Grassland Watershed

    Science.gov (United States)

    Hamerlynck, E. P.; Scott, R. L.; Polyakov, V.; Sugg, Z.; Moran, S. M.; Stone, J.; Nearing, M.

    2011-12-01

    Compared to aridland systems that have undergone rapid change in dominant vegetation growth form, the responses of watershed and ecosystem processes to a shift in dominance of similar growth forms have not been well-studied. Following a prolonged drought period (2000-2005) at the Walnut Gulch Experimental Watershed's Kendall grassland site (WS#112), near Tombstone, AZ, strong summer monsoon rains in 2006 were accompanied by widespread mortality most native perennial grasses, a transient increase in annual forbs, followed by establishment and sustained dominance by a single perennial grass, the invasive bunchgrass, Lehmann lovegrass (Eragrostis lehmanniana). This loss of ecological diversity occurred across a watershed already instrumented for quantifying long-term climate, watershed, hill-slope, and ecosystem-level gas exchange processes. Salient findings from these data sets were: 1) annual watershed sediment discharge rapidly returned to pre-invasion levels following a large spike in 2006 that accounted for 65% of the total sediment yield summed over 35 years, 2) plot-level experimental runoff studies showed hill-slope sediment yields consistently doubled, as did growing season soil evaporation contributions to ET, and 3) the grassland was a carbon sink during dry conditions under lovegrass dominance. These findings show that while some aspects of overall watershed and ecosystem function were not strongly affected (i.e. sediment yield and net primary productivity), processes acting at lower spatial and temporal scales have been negatively impacted by lovegrass dominance. We believe these lower-order processes underlie the strong ecological effects associated with Lehmann lovegrass invasion, and will also eventually alter landform processes and change the basic ecohydrological characteristics of desert grassland watersheds.

  13. Influence of storm magnitude and watershed size on runoff nonlinearity

    Indian Academy of Sciences (India)

    Kwan Tun Lee; Jen-Kuo Huang

    2016-06-01

    The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude andwatershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfallrunoffdynamic process and the second type is with respect to a Power-law relation between peakdischarge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was firstdemonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation ofthe watershed unit hydrograph (UH) using two linear hydrological models shows that the peak dischargeand time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intentionof deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast,the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensitywithout relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity.Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainagearea was investigated by analyzing the variation of Power-law exponent. The results demonstrate thatthe scaling nonlinearity is particularly significant for a watershed having larger area and subjecting toa small-size of storm. For three study watersheds, a large tributary that contributes relatively greatdrainage area or inflow is found to cause a transition break in scaling relationship and convert the scalingrelationship from linearity to nonlinearity.

  14. Hydrologic data for an investigation of the Smith River Watershed through water year 2010

    Science.gov (United States)

    Nilges, Hannah L.; Caldwell, Rodney R.

    2012-01-01

    Hydrologic data collected through water year 2010 and compiled as part of a U.S. Geological Survey study of the water resources of the Smith River watershed in west-central Montana are presented in this report. Tabulated data presented in this report were collected at 173 wells and 65 surface-water sites. Figures include location maps of data-collection sites and hydrographs of streamflow. Digital data files used to construct the figures, hydrographs, and data tables are included in the report. Data collected by the USGS are also stored in the USGS National Water Information System database and are available through the USGS National Water Information System Water Data for Montana Web page at http://waterdata.usgs.gov/mt/nwis/.

  15. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; Weijden, C.H. van der

    2012-01-01

    Weathering rate models designed for watersheds combine chemical data of discharging waters with morphologic and hydrologic parameters of the catchments. At the spring watershed scale, evaluation of morphologic parameters is subjective due to difficulties in conceiving the catchment geometry. Besides

  16. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    Science.gov (United States)

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  17. Application of PCARES in locating the soil erosion Hotspots in the Manupali River Watershed

    OpenAIRE

    Paningbatan, E.

    2004-01-01

    In this presentation the author covers: GIS mapping of land attributes, dynamic modeling of soil erosion at watershed scale using PCARES (Predicting Catchment Runoff and Soil Erosion for Sustainability), identifying soil erosion "hotspots" in the Manupali River watershed

  18. Watershed-based natural research management: Lessons from projects in the Andean region

    OpenAIRE

    Sowell, A.R.

    2009-01-01

    This Undergraduate Honors Thesis focuses on how different factors affect the success of a watershed management project and lessons learned from projects in the Andean Region. LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  19. ANALISIS OF STREAM DISCHARGE OF MICRO WATERSHED AND ITS UTILIZATION POTENTIAL

    Directory of Open Access Journals (Sweden)

    Hunggul Y.S.H. Nugroho

    2015-05-01

    Full Text Available Trough understanding of hydrology characteristic of watershed, water resource can be  managed for wider goals such as economic, social, and sustainainable utilization.  In fact, current watershed managements have more been focused  on erosion, sedimentation, drought, and flood control and less attention paid on fulfilling the need of upper watershed inhabitat on water yield.  The research of Micro Watershed was conducted in three Micro Watersheds as representation of priority watersheds in South Sulawesi  namely Mamasa, Saddang, and Jeneberang. The aim was to find out stream discharge pattern of those three Micro Watershed related to precipitation, landuse and its utilization potential for local community.  The results showed that the more extensive forest cover, the better water yield and the higher its utilization potential . Concerning to precipitation and water yield, the three micro watersheds have the potentially to be source of water for irigation and household consumption.

  20. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  1. Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.

  2. A Study of Disaster Adaptation Behavior and Risk Communication for watershed Area Resident - the Case of Kaoping River Watershed in Taiwan

    Science.gov (United States)

    Te Pai, Jen; Chen, Yu-Yun; Huang, Kuan-Hua

    2016-04-01

    Along with the global climate change, the rainfall patterns become more centralized and cause natural disasters more frequently and heavily. Residents in river watersheds area are facing high risk of natural disasters and severe impacts, especially in Taiwan. From the experience of Typhoon Morakot in 2009, we learned that poor risk communication between the governments and the households and communities would lead to tremendous loss of property and life. Effective risk communication can trigger action to impending and current events. On the other hand, it can also build up knowledge on hazards and risks and encourage adaptation behaviors. Through the participation and cooperation of different stakeholders in disaster management, can reduce vulnerability, enhance adaptive capacity, improve the interaction between different stakeholders and also avoid conflicts. However, in Taiwan there are few studies about how households and communities perceive flood disaster risks, the process of risk communications between governments and households, or the relationship between risk communication and adaptation behaviors. Therefore, this study takes household and community of Kaoping River Watershed as study area. It aims to identify important factors in the process of disaster risk communication and find out the relationship between risk communication and adaptation behaviors. A framework of risk communication process was established to describe how to trigger adaptation behaviors and encourage adaptation behaviors with risk communication strategies. An ISM model was utilized to verify the framework by using household questionnaire survey. Moreover, a logit choice model was build to test the important factors for effective risk communication and adaption behavior. The result of this study would provide governments or relevant institutions suggestions about risk communication strategies and adaptation strategies to enhance the adaptive capacity of households and reduce the

  3. Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States

    International Nuclear Information System (INIS)

    This study investigates the long-term trends in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. The seasonal Mann–Kendall trend test was performed on monthly precipitation, runoff and runoff coefficient data from 1950 to 2009 obtained from 62 urban watersheds covering 21 major urban centers in the United States. The results indicate that only five out of 21 urban centers in the United States showed an uptrend in precipitation. Twelve urban centers showed an uptrend in runoff coefficient. However, six urban centers did not show any trend in runoff coefficient, and three urban centers showed a significant downtrend. The highest rate of change in precipitation, runoff and runoff coefficient was observed in the Houston urban watershed. Based on the results obtained, we also attributed plausible causes for the trends. Our analysis indicated that while a human only influence is observed in most of the urban watersheds, a combined climate and human influence is observed in the central United States. (letter)

  4. Soil macropores: Control on infiltration, hillslope and surface hydrology on a reclaimed surface-mined watershed

    International Nuclear Information System (INIS)

    The hydrologic response of a surface-mined watershed in central Pennsylvania is controlled by rapid macropore flow within the unsaturated man-made topsoil. Newly reclaimed surface-mined watersheds in central Pennsylvania exhibit low steady-state infiltration rates (1--2 cm/hr) and produce runoff dominated by infiltration-excess overland flow. However, within four years after reclamation, infiltration rates on some mine surfaces approach premined rates (8 cm/hr). As infiltration rate increases, the volume of infiltrated water increases, but the total porosity of minesoil matrix remains constant. There is little change in the surface discharge volume, indicating that infiltrated water continues to contribute to the basin surface discharge by the processes of throughflow and return flow. Throughflow in the topsoil horizon occurs in rapid response to rainfall input, producing large volumes of water with throughflow rates closely related to rainfall rates and with throughflow peaks following rainfall peaks by only minutes. Increased return flow alters the shape of the surface runoff hydrograph by slightly lagging behind infiltration excess overland flow. These changes in the shape of the surface runoff hydrograph reduce the potential for severe gully erosion on the reclaimed site. In addition, throughflow water remains predominantly in the topsoil horizon, and therefore has limited contact with potentially acid-producing backfill. Better understanding of macropore flow processes in reclaimed minesoils will help investigators evaluate past strategies and develop new reclamation techniques that will minimize the short-term surface erosional effects of mining and reclamation, while optimizing the long-term effluent and groundwater quality

  5. Watershed hydrology, network allometry and ecosystem structure

    Science.gov (United States)

    Rinaldo, A.

    2003-04-01

    The lecture covers recent advances relevant to watershed hydrology, in particular derived from the realm of data now available, covering a wide range of scales and objectively collected and analyzed. It is intended to summarize results that are, in the lecturer's opinion, crucial to our current understanding of a variety of issues. Key among them, landscape evolution models, models of the hydrologic response and, indeed a scientific challenge, ecosystem structure. In particular, a new allometric scaling law for loopless networks, confirmed through studies on rivers, exact network results and computer simulations, offers unique insight on a variety of phenomena, ranging from the ubiquity of the 'quarter-power' law in biology to the origin of scaling size spectra in marine microbial ecosystems, to the proper geomorphological description of a river basin and its hydrological implications. In a sense, networks are a byproduct of the hydrologic dynamics, and indeed can be shown to be related to ecosystem structure. Si parva licet, I will provide evidence suggesting that ensemble averaging of the allometric property (where individual realizations are different networks) leads to results in excellent accord with the known limit scaling of efficient and compact networks with remarkably little scatter with implications of somewhat general character. Such results complement recent work suggesting that scaling features are quite robust to geometrical fluctuations of network properties. Finally, I shall gather from the morphological analysis on river networks the potential for predicting the main characters of the hydrologic response in ungauged basins - a task of practical nature with many social implications, possibly relevant to the Session's aims.

  6. Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model

    OpenAIRE

    Asghar Besalatpour; M. Ali Hajabbasi; Shamsolah Ayoubi; Ahmad Jalalian

    2012-01-01

    A few areas in a large watershed might be more critical and responsible for high amount of runoff and soil losses. For an effective and efficient implementation of watershed management practices, identification of these critical areas is vital. In this study, we used the Soil and Water Assessment Tool (SWAT, 2009) to identify and prioritize the critical sub-basins in a highly mountainous watershed with imprecise and uncertain data (Bazoft watershed, southwestern Iran). Three different SWAT mo...

  7. Evaluation of land use plan in Citarum Hulu watershed considering environmental degradation of soil erosion

    OpenAIRE

    Dharma, Nyoman Gde Gita Yogi; Deguchi, Chikashi; Yoshitake, Tetsunobu

    2011-01-01

    The Citarum Hulu watershed is one of the most important watersheds in West Java, Indonesia; it supplies water to the Bandung Metropolitan Area. However, land use in the watershed has been changed and causes some environmental degradation, such as erosion and sedimentation that will affect the performance of water supply system. Another impact is accumulation of sedimentation in the river causing floods, landslides, etc. Therefore, watershed management requires integrated and comprehensive app...

  8. RUNOFF MODELLING FOR THE UPPER PART OF THE DWARKESWAR WATERSHED USING SATELLITE DATA AND GIS

    OpenAIRE

    Manisa Shit; Gopal Chandra Debnath

    2015-01-01

    This study was conducted for the upper part of the Dwarkeswar watershed, West Bengal, India. Geographic Information System (GIS) was used to arameters of the watershed from the remote sensing and field data. The Digital Elevation Model (DEM) was prepared using ASTERGDEM, contour map (Survey of India, 1:250000 scale) of the watershed. The GIS software was used to extract the topographic features and to delineate watershed and overland flow-paths from the DEM. Land use classification were...

  9. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  10. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  11. A Cosmic Watershed: the WVF Void Detection Technique

    CERN Document Server

    Platen, Erwin; Jones, Bernard J T

    2007-01-01

    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study c...

  12. Exact and approximate computations of watersheds on triangulated terrains

    DEFF Research Database (Denmark)

    Tsirogiannis, Konstantinos; de Berg, Mark

    2011-01-01

    The natural way of modeling water flow on a triangulated terrain is to make the fundamental assumption that water follows the direction of steepest descent (dsd). However, computing watersheds and other flow-related structures according to the dsd model in an exact manner is difficult: the dsd...... model implies that water does not necessarily follow terrain edges, which makes designing exact algorithms difficult and causes robustness problems when implementing them. As a result, existing software implementations for computing watersheds are inexact: they either assume a simplified flow model or...... they perform computations using inexact arithmetic, which leads to inexact and sometimes inconsistent results. We perform a detailed study of various issues concerning the exact or approximate computation of watersheds according to the dsd model. Our main contributions are the following. • We provide...

  13. Watershed, river and lake modeling through environmental radioactivity

    International Nuclear Information System (INIS)

    In this book a 3-Box model is developed and applied to quantify the soil erosion in the light of naturally occurring radionuclides 7Be and 210Pb. The 3-Box model is subsequently applied to determine the transport of 90Sr, 137Cs and 239+240Pu from watersheds to rivers and lakes. The 3-Box model describes the time dependent partitioning of pollutants among three boxes: the watershed, waters and the bottom sediments of the aquatic body. This book is intended for environmental scientists and engineers who are pursuing pathway of the pollutant in aquatic systems. The book will also be useful for the professional engaged in the management of watersheds, rivers and lakes. (author). 116 refs., 31 tabs., 159 figs

  14. Integrated hydrochemical and geophysical studies for assessment of groundwater pollution in basaltic settings in Central India.

    Science.gov (United States)

    Pujari, Paras R; Padmakar, C; SuriNaidu, L; Vaijnath, V U; Kachawe, Bhusan; Gurunadha Rao, V V S; Labhasetwar, P K

    2012-05-01

    The Pithampur Industrial sectors I, II, and III, located approximately, 45 km from Indore in Central India have emerged as one of the largest industrial clusters in the region. Various types of industries ranging from automobiles to chemicals and pharmaceuticals have been set up in the region since 1990. Most of the industries have effluent treatment plants (ETP) for treating wastewater before its disposal on land and/or in water body. The present study is an attempt to assess the groundwater quality in the watersheds surrounding these industrial sectors to develop the baseline groundwater quality in order to enable the policy makers to facilitate decisions on the development of industries in this region. The industries are located in two sub-watersheds, namely, Gambhir river sub-watershed and Chambal river sub-watershed. Geologically, the study area is located in the Deccan traps of Cretaceous to Paleocene age. The different basaltic flow units underlie clayey soils varying in thickness from 2-3 m. The aquifer is mostly of unconfined nature. Samples have been collected from a network of observation wells set up in the watersheds. The water quality analysis of the groundwater samples has been carried out six times during three hydrological cycles of 2004, 2005, and 2006. The results indicate that a few observation wells in the vicinity of the industrial clusters have very high TDS concentration and exceed the Bureau of Indian Standards (BIS) guideline for TDS concentration. The contamination of groundwater has been more severe in the Gambhir watershed as compared to the Chambal watershed. The presence of the impermeable clay layers has resulted in a slow migration of contaminants from the sources. The findings reveal that there is no significant groundwater contamination in the Pithampur industrial sectors except in the vicinity of the industrial clusters, which indicates that there is good environmental space available for the expansion of industrial units in

  15. The Agua Salud Project, Central Panama

    Science.gov (United States)

    Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.

    2007-12-01

    The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.

  16. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ... Office of the Secretary Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity... Cooperative Watershed Management Program whose goals are to improve water quality and ecological resilience and to reduce conflicts over water by managing local watersheds through collaborative conservation....

  17. Assessment of best management practice effects on metolachlor mitigation in an agricultural watershed

    Science.gov (United States)

    Beasley Lake watershed in the Mississippi Delta is a 915 ha intensively cultivated watershed (49-78% in row crop production) that was monitored for the herbicide metolachlor from 1998-2009. As part of the USDA Conservation Effects Assessment Program (CEAP), the watershed was assessed for the effecti...

  18. EXPERIMENTAL ACIDIFICATION CAUSES SOIL BASE-CATION DEPLETION AT THE BEAR BROOK WATERSHED IN MAINE

    Science.gov (United States)

    There is concern that changes in atmospheric deposition, climate, or land use have altered the biogeochemistry of forests causing soil base-cation depletion, particularly Ca. The Bear Brook Watershed in Maine (BBWM) is a paired watershed experiment with one watershed subjected to...

  19. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Science.gov (United States)

    2010-07-01

    ... watershed control requirements? 141.520 Section 141.520 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control Requirements for Unfiltered Systems § 141.520 Is my system subject to the updated watershed...

  20. 78 FR 13874 - Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to...

    Science.gov (United States)

    2013-03-01

    ... AGENCY Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Climate Change and Urban Development in 20 U.S. Watersheds AGENCY: Environmental Protection Agency (EPA... public comment period for the draft document titled Watershed Modeling to Assess the Sensitivity...

  1. 77 FR 33194 - Proposed Information Collection; Comment Request; Bay Watershed Education and Training Program...

    Science.gov (United States)

    2012-06-05

    ... Watershed Education and Training Program National Evaluation System AGENCY: National Oceanic and Atmospheric... This request is for a new information collection. The NOAA Office of Education's Bay Watershed... protect watersheds and related ocean, coastal, and Great Lakes ecosystems. B-WET currently funds...

  2. 76 FR 62758 - Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans

    Science.gov (United States)

    2011-10-11

    ... Forest Service Wallowa-Whitman and Umatilla National Forests, Oregon Granite Creek Watershed Mining Plans... of mining Plans of Operation in the Granite Creek Watershed Mining Plans analysis area on the Whitman... proposed mining Plans in the portions of the Granite Creek Watershed under their administration. As...

  3. 75 FR 38768 - Rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed, Ellis...

    Science.gov (United States)

    2010-07-06

    ... Mountain Creek Watershed, Ellis County, TX AGENCY: Natural Resources Conservation Service. ACTION: Notice... prepared for the rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed... authority of the Small Watershed Rehabilitation Amendments of 2000 (Section 313, Pub. L. 106- 472)....

  4. Economics of Integrated Watershed Management in the Presence of a Dam

    OpenAIRE

    Yoon Lee; Taeyeon Yoon; Farhed Shah

    2009-01-01

    A dynamic optimization framework is used to analyze integrated watershed management and suggest appropriate policies. Soil conservation, reservoir level sediment release, downstream water allocation and water quality are subject to control. Application of the model to the Aswan Dam watershed illustrates the need for international cooperation to manage shared watersheds.

  5. 77 FR 66578 - San Bernardino National Forest, Mountaintop Ranger District, CA, Santa Ana Watershed Hazardous...

    Science.gov (United States)

    2012-11-06

    ... Forest Service San Bernardino National Forest, Mountaintop Ranger District, CA, Santa Ana Watershed... acres around the Barton Flats area of the upper Santa Ana Watershed under the authority of the Healthy... organizational camps and recreational residence cabins on both NFS and private lands in the watershed,...

  6. Population information extraction in Chaohu watershed based on RS and GIS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It is always difficult to extract population information of small watershed during the region environment assessment. The report adopted compound areal interpolation to study the population in Chaohu watershed with the GIS technique and landuse interpretation data from remote sensing. The result indicated that the method is effective to extract population information of small watershed.

  7. Water Quality Response Times to Pasture Management Changes in Small and Large Watersheds

    Science.gov (United States)

    To interpret the effects of best management practices on water quality at a regional or large watershed scale likely response times at various scales must be known. Therefore, 4 small (<1 ha, 2.5 ac) watersheds, in rotational grazing studies at the North Appalachian Experimental Watershed (NAEW) nea...

  8. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  9. Hydrologic calibration of paired watersheds using a MOSUM approach

    Science.gov (United States)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-01

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1-3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14-15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash-Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  10. Hydrologic calibration of paired watersheds using a MOSUM approach

    Directory of Open Access Journals (Sweden)

    H. Ssegane

    2015-01-01

    Full Text Available Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment during the calibration (pre-treatment and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L. with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum, 14–15 year thinned loblolly pine with natural understory (control, and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  11. Hydrological characterization of watersheds in the Blue Nile Basin

    OpenAIRE

    S. G. Gebrehiwot; Ilstedt, U.; Gärdenas, A. I.; Bishop, K.

    2010-01-01

    We made a hydrological characterization of 32 watersheds (31–4350 km2) in the Blue Nile Basin, using data from a study of water and land resources in the Blue Nile Basin, Ethiopia published in 1964 by the US Bureau of Reclamation (USBR). The USBR document contains data on flow, climate, topography, geology, soil type, and land use for the period from 1959 to 1963. The aim of the study was to identify which combination of watershed variables best explain the variati...

  12. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    OpenAIRE

    S. G. Gebrehiwot; Ilstedt, U.; Gärdenas, A. I.; Bishop, K.

    2011-01-01

    Thirty-two watersheds (31–4350 km2), in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR) published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a...

  13. Investigating the Sources and Dynamics of Dissolved Organic Matter in an Agricultural Watershed in California (U.S.A.)

    Science.gov (United States)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Ingrum, T. D.; Pellerin, B. A.; Bergamaschi, B. A.

    2007-12-01

    Dissolved organic matter (DOM) is ubiquitous and plays critical roles in nutrient cycling, aquatic food webs and numerous other biogeochemical processes. Furthermore, various factors control the quality and quantity of DOM, including land use, soil composition, in situ production, microbial uptake and assimilation and hydrology. As a component of DOM, dissolved organic carbon (DOC) has been recently identified as a drinking water constituent of concern due to its propensity to form EPA-regulated carcinogenic compounds when disinfected for drinking water purposes. Therefore, understanding the sources, cycling and modification of DOC across various landscapes is of direct relevance to a wide range of studies. The Willow Slough watershed is located in the Central Valley of California (U.S.A.) and is characterized by both diverse geomorphology as well as land use. The watershed drains approximately 425 km2 and is bordered by Cache and Putah Creeks to the north and south. The study area in the watershed includes the eastern portion of the foothills of the inner Coast Range and the alluvial plain and encompasses diverse land uses, including orchards, viticulture, dairy, pasture and natural grasslands. The Willow Slough watershed represents a unique opportunity to examine DOC dynamics through multiple land uses and hydrologic flow paths that are common throughout California. Preliminary data show that DOC concentrations at the watershed mouth peak during winter storms and also increase gradually throughout the summer months during the agricultural irrigation season. The increasing DOC concentrations during the summer months may result from agricultural runoff and/or primary production in channel. In addition, initial results using the chromophoric DOM (CDOM) absorption coefficient and spectral slope parameters indicate seasonal differences in the composition of the DOM. Spectral slopes decreased during both the summer irrigation season and winter storms relative to winter

  14. Stream Bank Erosion Rates in Two Watersheds of the Central Claypan Region

    Science.gov (United States)

    Sedimentation of surface waters in the United States is a significant environmental concern. The objective of this research was to determine the effect of stream order, adjacent land use, and season on stream bank erosion rates. Study sites were established in 2007 and 2008 within Crooked and Otter ...

  15. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    OpenAIRE

    A. A. Onuchin; T. A. Burenina; N. V. Ziryukina; S. K. Farber

    2014-01-01

    In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological d...

  16. Forest use strategies in watershed management and restoration: application to three small mountain watersheds in Latin America

    Directory of Open Access Journals (Sweden)

    Juan Ángel Mintegui Aguirre

    2014-06-01

    Full Text Available The effect of forests on flow and flood lamination decreases as the magnitude and intensity of torrential events and the watershed surface increase, thus resulting negligible when extreme events affect large catchments. However the effect of forests is advantageous in case of major events, which occur more often, and is particularly effective in soil erosion control. As a result, forests have been extensively used for watershed management and restoration, since they regulate water and sediments cycles, preventing the degradation of catchments.

  17. The Challenging Topics and Future Directions of the Research in Limnology and Watershed Sciences

    Institute of Scientific and Technical Information of China (English)

    LengShuying; YangGuishan; LiuZhengwen; WuRuijin; SongChangqing

    2003-01-01

    Based on reviewing the problems in limnology and watershed sciences in meeting the national demands and the development of theories and methodology, this paper proposed some challeng-ing topics to the sciences, covering the process of lake evolution and the quantitative analysis of hu-man impacts, in-lake nutrient cycling an biogeo-chemical process, the process and mechanisms of material flow in lake-watershed system, digital watershed and the modeling of the surface pro-cess of lake-watershed, and ecosystem health and scientific management of lake- watershed.

  18. Analysis of Sediment Source of Watershed in Western Shanxi of the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    LIUHuifang; WEITianxing; ZHUQingke

    2004-01-01

    The paper analyzes the sediment source of watershed by means of studying watershed in westem Shanxi of the Losses Plateau. On the basis of watersheds classification, 7 typical watersheds were chosen and observed for 11 years. The result shows that the sediment at the small watershed mainly comes from gullies, which is 60% of the total sediment. Erosion modulus of valley (including gully head, gully bed, valley side) is 1.28-2.48 times as that of the area between channels(including hill slope and mound of the Loess Plateau). The main sediment source of slope erosion is cultivated land on slope without water and soil conservation measures.

  19. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What updated watershed control... People Additional Watershed Control Requirements for Unfiltered Systems § 141.521 What updated watershed... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium:...

  20. 75 FR 2860 - Clean Water Act Section 303(d): Call for Data for the Illinois River Watershed in Oklahoma and...

    Science.gov (United States)

    2010-01-19

    ... AGENCY Clean Water Act Section 303(d): Call for Data for the Illinois River Watershed in Oklahoma and... developing a watershed model for the Illinois River watershed in Oklahoma and Arkansas to address nutrient water quality impairments. The results of this watershed model may be used to develop one or more...

  1. Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: A comparison of HSPF and SMR

    Science.gov (United States)

    Johnson, M.S.; Coon, W.F.; Mehta, V.K.; Steenhuis, T.S.; Brooks, E.S.; Boll, J.

    2003-01-01

    Differences in the simulation of hydrologic processes by watershed models directly affect the accuracy of results. Surface runoff generation can be simulated as either: (1) infiltration-excess (or Hortonian) overland flow, or (2) saturation-excess overland flow. This study compared the Hydrological Simulation Program - FORTRAN (HSPF) and the Soil Moisture Routing (SMR) models, each representing one of these mechanisms. These two models were applied to a 102 km2 watershed in the upper part of the Irondequoit Creek basin in central New York State over a seven-year simulation period. The models differed in both the complexity of simulating snowmelt and baseflow processes as well as the detail in which the geographic information was preserved by each model. Despite their differences in structure and representation of hydrologic processes, the two models simulated streamflow with almost equal accuracy. Since streamflow is an integral response and depends mainly on the watershed water balance, this was not unexpected. Model efficiency values for the seven-year simulation period were 0.67 and 0.65 for SMR and HSPF, respectively. HSPF simulated winter streamflow slightly better than SMR as a result of its complex snowmelt routine, whereas SMR simulated summer flows better than HSPF as a result of its runoff and baseflow processes. An important difference between model results was the ability to predict the spatial distribution of soil moisture content. HSPF aggregates soil moisture content, which is generally related to a specific pervious land unit across the entire watershed, whereas SMR predictions of moisture content distribution are geographically specific and matched field observations reasonably well. Important is that the saturated area was predicted well by SMR and confirmed the validity of using saturation-excess mechanisms for this hillslope dominated watershed. ?? 2003 Elsevier B.V. All rights reserved.

  2. Geomorphometry through remote sensing and GIS for watershed management

    International Nuclear Information System (INIS)

    Application of remote sensing and GIS for effective determination of the quantitative description of drainage basin geometry for watershed management prioritization forms the theme of this paper. In the present study, each of the eight sub watersheds of Racherla watershed of Prakasam (District) Andhra Pradesh, have been studied in terms of the morphometric parameters -stream length, bifurcation ratio, length ratio, drainage density, stream frequency, texture ratio, form factor area, perimeter, circularity ratio, elongation ratio and sediment yield index. The prioritization of the eight sub watersheds is carried out considering morphometry and sediment yield index. Using IRS IC satellite imagery, a computerized database is created availing ARC / INFO software. The initial drainage map prepared from the survey of India toposheets was later unified with satellite imagery. The prioritization of sub sheds based on morphometry compared with sediment yield prioritization and found nearly same for the study area. The information obtained from all the thematic map is integrated and action plan is suggested for land and water resources development on a sustainable basis. (author)

  3. Economic Tools for Managing Nitrogen in Coastal Watersheds

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to...

  4. Dynamic phosphorus budget for lake-watershed ecosystems

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; GUO Huai-cheng; WANG Li-jing; DAI Yong-li; ZHANG Xiu-min; LI Zi-hai; HE Bin

    2006-01-01

    Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic(SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper.From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27%respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.

  5. A planning approach for agricultural watersheds using precision conservation

    Science.gov (United States)

    This brief article, written for a non-technical audience, discusses a recently-developed approach for watershed planning and nutrient reduction. The approach can help local stakeholders identify conservation practices that are locally preferred and determine how those practices can be distributed ac...

  6. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  7. Phosphorus load reduction goals for Feitsui Reservoir Watershed, Taiwan.

    Science.gov (United States)

    Chou, Wen-Shang; Lee, Tsu-Chuan; Lin, Jen-Yang; Yu, Shaw L

    2007-08-01

    The present paper describes an effort for developing the total maximum daily load (TMDL) for phosphorus and a load reduction strategy for the Feitsui Reservoir in Northern Taiwan. BASINS model was employed to estimate watershed pollutant loads from nonpoint sources (NPS) in the Feitsui Reservoir watershed. The BASINS model was calibrated using field data collected during a 2-year sampling period and then used to compute watershed pollutant loadings into the Feitsui Reservoir. The simulated results indicate that the average annual total phosphorus (TP) loading into the reservoir is 18,910 kg/year, which consists of non-point source loading of 16,003 kg/year, and point source loading of 2,907 kg/year. The Vollenweider mass balance model was used next to determine the degree of eutrophication under current pollutant loading and the load reduction needed to keep the reservoir from being eutrophic. It was estimated that Feitsui Reservoir can becoming of the oligotrophic state if the average annual TP loading is reduced by 37% or more. The results provide the basis on which an integrated control action plan for both point and nonpoint sources of pollution in the watershed can be developed. PMID:17171261

  8. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Science.gov (United States)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  9. Nitrogen management challenges in major watersheds of South America

    Science.gov (United States)

    Bustamante, Mercedes M. C.; Martinelli, Luiz Antonio; Pérez, Tibisay; Rasse, Rafael; Ometto, Jean Pierre H. B.; Siqueira Pacheco, Felipe; Rafaela Machado Lins, Silvia; Marquina, Sorena

    2015-06-01

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L-1 and 275 μg L-1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L-1 in La Plata Basin rivers and 2000 μg L-1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha-1 yr-1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region.

  10. Watershed Outreach Professionals' Behavior Change Practices, Challenges, and Needs

    Science.gov (United States)

    Kelly, Meghan; Little, Samuel; Phelps, Kaitlin; Roble, Carrie; Zint, Michaela

    2012-01-01

    This study investigated the practices, challenges, and needs of Chesapeake Bay watershed outreach professionals, as related to behavior change strategies and best outreach practices. Data were collected through a questionnaire e-mailed to applicants to the Chesapeake Bay Trust's environmental outreach grant program (n = 108, r = 56%). Almost all…

  11. Risk assessment of watershed erosion at Naesung Stream, South Korea.

    Science.gov (United States)

    Ji, Un; Velleux, Mark; Julien, Pierre Y; Hwang, Manha

    2014-04-01

    A three-tiered approach was used to assess erosion risks within the Nakdong River Basin in South Korea and included: (1) a screening based on topography and land use; (2) a lumped parameter analysis using RUSLE; and (3) a detailed analysis using TREX, a fully distributed watershed model. These tiers span a range of spatial and temporal scales, with each tier providing increasing detail and resolution. The first two tiers were applied to the entire Nakdong River Basin and the Naesung Stream watershed was identified as having the highest soil erosion risk and potential for sedimentation problems. For the third tier, the TREX watershed model simulated runoff, channel flow, soil erosion, and stream sediment transport in the Naesung Stream watershed at very high resolution. TREX was calibrated for surface flows and sediment transport, and was used to simulate conditions for a large design storm. Highly erosive areas were identified along ridgelines in several headwater areas, with the northeast area of Songriwon having a particularly high erosion potential. Design storm simulations also indicated that sediment deposition of up to 55 cm could occur. PMID:24548823

  12. Research data collection at the Reynolds Creek Experimental Watershed

    Science.gov (United States)

    To understand how variations in climate, land use, and land cover will impact water, ecosystem, and natural resources in snow-dominated regions we must have access to long-term hydrologic and climatic databases. Data from watersheds that include significant human activities, such as grazing, farmin...

  13. Sustaining the Earth's watersheds, agricultural research data system

    Science.gov (United States)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  14. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  15. Adarsha watershed in Kothapally: understanding the drivers of higher impact

    Directory of Open Access Journals (Sweden)

    TK Sreedevi

    2006-08-01

    Full Text Available A new science-based farmer participatory consortium model for efficient management of natural resources and for improving the livelihood of poor rural households was evaluated in Adarsha watershed, Kothapally, Ranga Reddy District, Andhra Pradesh, India by ICRISAT and partners. The salient impacts that resulted due to the implementation of this model were substantial reductions in runoff and soil loss, improvement in groundwater levels, reduction in pesticide usage, improvement in land cover, increase in productivity and high incomes to the farmers. Compared to the pre-project situation, average household incomes from crop production have doubled. The drivers of this success were: (i selection of the watershed on a demand driven basis; (ii higher farmer participation in the watershed program; (iii good local leadership; (iv integrated approach to watershed management; (v team effort and collective action by the consortium partners; (vi social vigilance and transparency in financial dealings; (vii increased confidence of the farmers; (viii choice of low-cost conservation structures that provide benefits to large segments of the community; (ix constant participatory monitoring; (x knowledge-based entry point activity; and (xi concerted local capacity building efforts by all the partners.

  16. Nitrogen management challenges in major watersheds of South America

    International Nuclear Information System (INIS)

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L−1 and 275 μg L−1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L−1 in La Plata Basin rivers and 2000 μg L−1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha−1 yr−1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region. (letter)

  17. Central Pain Syndrome

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Central Pain Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Central Pain Syndrome? Central pain syndrome is a neurological condition ...

  18. Effects of urbanization on groundwater evolution in an urbanizing watershed

    Science.gov (United States)

    Reyes, D.; Banner, J. L.; Bendik, N.

    2011-12-01

    The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and

  19. Integrating stakeholder values with multiple attributes to quantify watershed performance

    Science.gov (United States)

    Shriver, Deborah M.; Randhir, Timothy O.

    2006-08-01

    Integrating stakeholder values into the process of quantifying impairment of ecosystem functions is an important aspect of watershed assessment and planning. This study develops a classification and prioritization model to assess potential impairment in watersheds. A systematic evaluation of a broad set of abiotic, biotic, and human indicators of watershed structure and function was used to identify the level of degradation at a subbasin scale. Agencies and communities can use the method to effectively target and allocate resources to areas of greatest restoration need. The watershed performance measure (WPM) developed in this study is composed of three major components: (1) hydrologic processes (water quantity and quality), (2) biodiversity at a species scale (core and priority habitat for rare and endangered species and species richness) and landscape scale (impacts of fragmentation), and (3) urban impacts as assessed in the built environment (effective impervious area) and population effects (densities and density of toxic waste sites). Simulation modeling using the Soil and Water Assessment Tool (SWAT), monitoring information, and spatial analysis with GIS were used to assess each criterion in developing this model. Weights for attributes of potential impairment were determined through the use of the attribute prioritization procedure with a panel of expert stakeholders. This procedure uses preselected attributes and corresponding stakeholder values and is data intensive. The model was applied to all subbasins of the Chicopee River Watershed of western Massachusetts, an area with a mixture of rural, heavily forested lands, suburban, and urbanized areas. Highly impaired subbasins in one community were identified using this methodology and evaluated for principal forms of degradation and potential restoration policies and BMPs. This attribute-based prioritization method could be used in identifying baselines, prioritization policies, and adaptive community

  20. Genome-to-Watershed Predictive Understanding of Terrestrial Environments

    Science.gov (United States)

    Hubbard, S. S.; Agarwal, D.; Banfield, J. F.; Beller, H. R.; Brodie, E.; Long, P.; Nico, P. S.; Steefel, C. I.; Tokunaga, T. K.; Williams, K. H.

    2014-12-01

    Although terrestrial environments play a critical role in cycling water, greenhouse gasses, and other life-critical elements, the complexity of interactions among component microbes, plants, minerals, migrating fluids and dissolved constituents hinders predictive understanding of system behavior. The 'Sustainable Systems 2.0' project is developing genome-to-watershed scale predictive capabilities to quantify how the microbiome affects biogeochemical watershed functioning, how watershed-scale hydro-biogeochemical processes affect microbial functioning, and how these interactions co-evolve with climate and land-use changes. Development of such predictive capabilities is critical for guiding the optimal management of water resources, contaminant remediation, carbon stabilization, and agricultural sustainability - now and with global change. Initial investigations are focused on floodplains in the Colorado River Basin, and include iterative model development, experiments and observations with an early emphasis on subsurface aspects. Field experiments include local-scale experiments at Rifle CO to quantify spatiotemporal metabolic and geochemical responses to O2and nitrate amendments as well as floodplain-scale monitoring to quantify genomic and biogeochemical response to natural hydrological perturbations. Information obtained from such experiments are represented within GEWaSC, a Genome-Enabled Watershed Simulation Capability, which is being developed to allow mechanistic interrogation of how genomic information stored in a subsurface microbiome affects biogeochemical cycling. This presentation will describe the genome-to-watershed scale approach as well as early highlights associated with the project. Highlights include: first insights into the diversity of the subsurface microbiome and metabolic roles of organisms involved in subsurface nitrogen, sulfur and hydrogen and carbon cycling; the extreme variability of subsurface DOC and hydrological controls on carbon and

  1. Baseline Profile of Soil Samples from Upian River Watershed

    Directory of Open Access Journals (Sweden)

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  2. Nitrogen sink in a small forested watershed of subtropical China

    Institute of Scientific and Technical Information of China (English)

    Laiming Huang; Jinling Yang; Ganlin Zhang

    2011-01-01

    Global nitrogen (N) emission and deposition have been increased rapidly due to massive mobilization of N which may have longreaching impacts on ecosystems. Many agricultural and forest ecosystems have been identified as secondary N sources. In the present study, the input-output budget of inorganic N in a small forested watershed of subtropical China was investigated. Inorganic N wet deposition and discharge by stream water were monitored from March, 2007 to February, 2009. The concentrations and fluxes of inorganic N in wet precipitation and stream water and net retention of N were calculated. Global N input by dry deposition and biological fixation and N output by denitrification for forested watersheds elsewhere were reported as references to evaluate whether the studied forested watershed is a source or a sink for N. The results show that the inorganic N output by the stream water is mainly caused by NO3--N even though the input is dominated by NH4+-N. The mean flux of inorganic N input by wet precipitation and output by stream water is 1.672 and 0.537 g N/(m2·yr), respectively, which indicates that most of inorganic N input is retained in the forested watershed. Net retention of inorganic N reaches 1.135 g N/(m2·yr) considering wet precipitation as the main input and stream water as the main output. If N input by dry deposition and biological fixation and output by denitrification are taken into account, this subtropical forested watershed currently acts as a considerable sink for N, with a net sink ranging from 1.309 to 1.913 g N/(m2·yr)which may enhance carbon sequestration of the terrestrial ecosystem.

  3. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  4. A watershed model to integrate EO data

    Science.gov (United States)

    Jauch, Eduardo; Chambel-Leitao, Pedro; Carina, Almeida; Brito, David; Cherif, Ines; Alexandridis, Thomas; Neves, Ramiro

    2013-04-01

    MOHID LAND is a open source watershed model developed by MARETEC and is part of the MOHID Framework. It integrates four mediums (or compartments): porous media, surface, rivers and atmosphere. The movement of water between these mediums are based on mass and momentum balance equations. The atmosphere medium is not explicity simulated. Instead, it's used as boundary condition to the model through meteorological properties: precipitation, solar radiation, wind speed/direction, relative humidity and air temperature. The surface medium includes the overland runoff and vegetation growth processes and is simulated using a 2D grid. The porous media includes both the unsaturated (soil) and saturated zones (aquifer) and is simulated using a 3D grid. The river flow is simulated through a 1D drainage network. All these mediums are linked through evapotranspiration and flow exchanges (infiltration, river-soil growndwater flow, surface-river overland flow). Besides the water movement, it is also possible to simulate water quality processes and solute/sediment transport. Model setup include the definition of the geometry and the properties of each one of its compartments. After the setup of the model, the only continuous input data that MOHID LAND requires are the atmosphere properties (boundary conditions) that can be provided as timeseries or spacial data. MOHID LAND has been adapted the last 4 years under FP7 and ESA projects to integrate Earth Observation (EO) data, both variable in time and in space. EO data can be used to calibrate/validate or as input/assimilation data to the model. The currently EO data used include LULC (Land Use Land Cover) maps, LAI (Leaf Area Index) maps, EVTP (Evapotranspiration) maps and SWC (Soil Water Content) maps. Model results are improved by the EO data, but the advantage of this integration is that the model can still run without the EO data. This means that model do not stop due to unavailability of EO data and can run on a forecast mode

  5. Impacts of forest changes on hydrology: a case study of large watersheds in the upper reach of Yangtze River Basin

    OpenAIRE

    Cui, X; Liu, S; Wei, X.

    2012-01-01

    Quantifying the effects of forest changes on hydrology in large watersheds is important for designing forest or land management and adaptation strategies for watershed ecosystem sustainability. Minjiang River watershed located in the upper reach of the Yangtze River Basin plays a strategic role in environmental protection and economic and social wellbeing for both the watershed and the entire Yangtze Basin. The watershed lies in the transition zone from Sichuan Basin to Qinghai-Tibet Pla...

  6. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  7. Stream channel surface water - groundwater interactions in a fire impacted watershed

    Science.gov (United States)

    Russo, T. A.; Fisher, A. T.

    2010-12-01

    We are conducting a study of surface water - groundwater interactions within the Scott Creek watershed, a 4th order catchment of 76.6 km2 in central coastal California, to assess the impacts of fire on channel and riparian conditions. Scott Creek and its tributaries are valuable spawning habitat for Coho salmon and Steelhead trout. The Scott Creek watershed is located on the western (windward) side of the Santa Cruz Mountains, where the most intense precipitation falls from November to April, and includes a mixture of protected land and areas used for agriculture, grazing, and selective timber harvesting. 37% of the watershed was burned in a fire in August 2009, and we hypothesize that this could result in enhanced delivery of fine grained hill slope sediments to stream channels for several years post fire, reducing the extent of hyporheic exchange downstream of burned areas. This could reduce the survival rates of Coho and Steelhead redds (egg nests), which are dependent on surface water - groundwater exchange for regulation of water nutrient content and temperature. We are monitoring streambed seepage rates and hydraulic conductivity, and performing repeated tracer discharge experiments at three sites on Scott Creek, two within and one upstream of the area burned in the 2009 fire. Streambed seepage rates are calculated using a time series method applied to heat as a tracer, using naturally occurring diurnal changes in stream temperature, and extended to calculations of streambed hydraulic conductivity based on measured head gradients. Hyporheic exchange parameters are assessed using tracer breakthrough data, as fit by an optimized model of one-dimensional advection, dispersion and transient storage. Variations in hydrologic characteristics (e.g., transient storage area, exchange coefficient) over time at each site are being used to assess the magnitude and timing of channel modifications independent to, and associated with, the burning of catchment hill slopes

  8. Land use change and soil erosion in the Maotiao River watershed of Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    XU Yueqing; LUO Ding; PENG Jian

    2011-01-01

    Due to the extremely poor soil cover,a low soil-forming rate,and inappropriate intensive land use,soil erosion is a serious problem in Guizhou Province,which is located in the centre of the karst areas of Southwest China.In order to bring soil erosion under control and restore environment,the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province.This paper explored the relationship between land use and soil erosion in the Maotiao River watershed,a typical agricultural area with severe soil erosion in central Guizhou Province.In this study,we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973,Landsat TM data in 1990 and 2007.Soil erosion change characteristics from 1973 to 2007,and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment.The results indicate that changes in land use within the watershed have significantly affected soil erosion.From 1973 to 1990,dry farmland and rocky desertified land significantly increased.In contrast,shrubby land,other forestland and grassland significantly decreased,which caused accelerated soil erosion in the study area.This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs.Soil erosion also significantly varied among land-use types.Erosion was most serious in dry farmland and the lightest in paddy field.Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion,and conservation practices should be taken in these areas.The results of this study provide useful information for decision makers and planners to take sustainable land use

  9. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior

  10. Social-ecological Resilience of a Nuosu Community-linked Watershed, Southwest Sichuan, China

    Directory of Open Access Journals (Sweden)

    Sara Jo Shepler

    2010-12-01

    Full Text Available Farmers of the Nuosu Yi ethnic group in the Upper Baiwu watershed report reductions in the availability of local forest resources. A team of interdisciplinary scientists worked in partnership with this community to assess the type and extent of social-ecological change in the watershed and to identify key drivers of those changes. Here, we combine a framework for institutional analysis with resilience concepts to assess system dynamics and interactions among resource users, resources, and institutions over the past century. The current state of this system reflects a legacy of past responses to institutional disturbances initiated at the larger, national system scale. Beginning with the Communist Revolution in 1957 and continuing through the next two decades, centralized forest regulations imposed a mismatch between the scale of management and the scale of the ecological processes being managed. A newly implemented forest property rights policy is shifting greater control over the management of forest resources to individuals in rural communities. Collective forest users will be allowed to manage commodity forests for profit through the transfer of long-term leases to private contractors. Villagers are seeking guidance on how to develop sustainable and resilient forest management practices under the new policy, a responsibility returned to them after half a century and with less abundant and fewer natural resources, a larger and aggregated population, and greater influence from external forces. We assess the watershed’s current state in light of the past and identify future opportunities to strengthen local institutions for governance of forest resources.

  11. A Rainfall-Driven Hydrograph Simulation for a Claypan Watershed in Missouri

    Science.gov (United States)

    Al-Qudah, O. M.; Liu, F.

    2013-12-01

    Responses of stream flow hydrograph to intense rainfall events in small basins were previously investigated using a dimensionless theoretical model based on Darcy's law, which is expressed by a ratio of runoff to peak runoff as a function of time and a time-constant that represents the Darcian response to sharp rainfall-driven pulses on the head of the shallow groundwater system. In this study, the model was applied to a 72 km2 claypan watershed, Goodwater Creek Experimental Watershed (GCEW) in central Missouri, to understand how the claypan soil affects the response of stream hydrograph to rainfall events. Results from a number of storms ranging from 11 to 129 mm day-1 showed that the time-constant is about 1.3 days. Comparing to the previous studies, this value is comparable to that in the Ozark aquifer in southwest Missouri (1.5 days), but significantly greater than that in Meramec River, karst spring, and Big River, with 0.5, 0.4, and 0.14 days, respectively, where soils are dramatically different from GCEW. The modeled hydrograph at GCEW matched the measured one very well for the rising limb, but relatively poorly for the later part of the recession limb, where stream flow was over estimated by the model. The over-estimation may be primarily caused by rapid evapotranspiration occurring after rainfall events due to shallow-laying claypan layer (pan evaporation estimated to be 0.8-7 mm day-1 with an average of 4.6 mm day-1), as evapotranspiration is not considered as part of the model design. This result suggests the importance of claypan soil in regulating stream flow. Further work is needed to improve this simulation by coupling this model with a water balance model such as one embedded in soil and water assessment tools (SWAT).

  12. Anopheline (Diptera:Culicidae) breeding in a traditional tank-based village ecosystem in north central Sri Lanka

    DEFF Research Database (Denmark)

    Amerasinghe, F P; Konradsen, F; Fonseka, K T;

    1997-01-01

    A 13-mo survey of immature anopheline mosquitoes breeding in surface water habitats was done at Mahameegaswewa village within the Huruluwewa watershed in north central Sri Lanka as part of a multidisciplinary study on malaria epidemiology. The watershed is representative of the ancient small tank....... A clear progression in breeding habitat use from stream bed to tank bed and drainage area pools was seen in An. culicifacies during the premonsoon period. Environmental management measures to reduce or modify these habitats could potentially decrease malaria. transmission....

  13. To centralize or not to centralize?

    OpenAIRE

    Campbell, Andrew; Kunisch, Sven; Müller-Stewens, Günter

    2011-01-01

    The CEO's dilemma-were the gains of centralization worth the pain it could cause?-is a perennial one. Business leaders dating back at least to Alfred Sloan, who laid out GM's influential philosophy of decentralization in a series of memos during the 1920s, have recognized that badly judged centralization can stifle initiative, constrain the ability to tailor products and services locally, and burden business divisions with high costs and poor service.1 Insufficient centralization can deny bus...

  14. Consideration of Experimental Approaches in the Physical and Biological Sciences in Designing Long-Term Watershed Studies in Forested Landscapes

    Science.gov (United States)

    Stallard, R. F.

    2011-12-01

    The importance of biological processes in controlling weathering, erosion, stream-water composition, soil formation, and overall landscape development is generally accepted. The U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) Project in eastern Puerto Rico and Panama and the Smithsonian Tropical Research Institute (STRI) Panama Canal Watershed Experiment (PCWE) are landscape-scale studies based in the humid tropics where the warm temperatures, moist conditions, and luxuriant vegetation promote especially rapid biological and chemical processes - photosynthesis, respiration, decay, and chemical weathering. In both studies features of small-watershed, large-watershed, and landscape-scale-biology experiments are blended to satisfy the research needs of the physical and biological sciences. The WEBB Project has successfully synthesized its first fifteen years of data, and has addressed the influence of land cover, geologic, topographic, and hydrologic variability, including huge storms on a wide range of hydrologic, physical, and biogeochemical processes. The ongoing PCWE should provide a similar synthesis of a moderate-sized humid tropical watershed. The PCWE and the Agua Salud Project (ASP) within the PCWE are now addressing the role of land cover (mature forests, pasture, invasive-grass dominated, secondary succession, native species plantation, and teak) at scales ranging from small watersheds to the whole Panama Canal watershed. Biologists have participated in the experimental design at both watershed scales, and small (0.1 ha) to large (50 ha) forest-dynamic plots have a central role in interfacing between physical scientists and biologists. In these plots, repeated, high-resolution mapping of all woody plants greater than 1-cm diameter provides a description of population changes through time presumably reflecting individual life histories, interactions with other organisms and the influence of landscape processes and climate

  15. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    Science.gov (United States)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly

  16. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (Final Report)

    Science.gov (United States)

    Watershed modeling was conducted in 20 large, U.S. watersheds to assess the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading to a range of plausible mid-21st Century climate change and urban development scenarios in different regions of the nati...

  17. Landslides and sediment budgets in four watersheds in eastern Puerto Rico: Chapter F in Water quality and landscape processes of four watersheds in eastern Puerto Rico

    Science.gov (United States)

    Larsen, Matthew C.

    2012-01-01

    The low-latitude regions of the Earth are undergoing profound, rapid landscape change as forests are converted to agriculture to support growing population. Understanding the effects of these land-use changes requires analysis of watershed-scale geomorphic processes to better inform and manage this usually disorganized process. The investigation of hillslope erosion and the development of sediment budgets provides essential information for resource managers. Four small, montane, humid-tropical watersheds in the Luquillo Experimental Forest and nearby Río Grande de Loíza watershed, Puerto Rico (18° 20' N., 65° 45' W.), were selected to compare and contrast the geomorphic effects of land use and bedrock geology. Two of the watersheds are underlain largely by resistant Cretaceous volcaniclastic rocks but differ in land use and mean annual runoff: the Mameyes watershed, with predominantly primary forest cover and runoff of 2,750 millimeters per year, and the Canóvanas watershed, with mixed secondary forest and pasture and runoff of 970 millimeters per year. The additional two watersheds are underlain by relatively erodible granitic bedrock: the forested Icacos watershed, with runoff of 3,760 millimeters per year and the agriculturally developed Cayaguás watershed, with a mean annual runoff of 1,620 millimeters per year. Annual sediment budgets were estimated for each watershed using landslide, slopewash, soil creep, treethrow, suspended sediment, and streamflow data. The budgets also included estimates of sediment storage in channel beds, bars, floodplains, and in colluvial deposits. In the two watersheds underlain by volcaniclastic rocks, the forested Mameyes and the developed Canóvanas watersheds, landslide frequency (0.21 and 0.04 landslides per square kilometer per year, respectively), slopewash (5 and 30 metric tons per square kilometer per year), and suspended sediment yield (325 and 424 metric tons per square kilometer per year), were lower than in the

  18. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed

    Science.gov (United States)

    Oh, Neung-Hwan; Pellerin, Brian A.; Bachand, Philip A.M.; Hernes, Peter J.; Bachand, Sandra M.; Ohara, Noriaki; Kavvas, M. Levent; Bergamaschi, Brian A.; Horwath, William R.

    2013-01-01

    We investigated the role of land use/land cover and agriculture practices on stream dissolved organic carbon (DOC) dynamics in the Willow Slough watershed (WSW) from 2006 to 2008. The 415 km2watershed in the northern Central Valley, California is covered by 31% of native vegetation and the remaining 69% of agricultural fields (primarily alfalfa, tomatoes, and rice). Stream discharge and weekly DOC concentrations were measured at eight nested subwatersheds to estimate the DOC loads and yields (loads/area) using the USGS developed stream load estimation model, LOADEST. Stream DOC concentrations peaked at 18.9 mg L−1 during summer irrigation in the subwatershed with the highest percentage of agricultural land use, demonstrating the strong influence of agricultural activities on summer DOC dynamics. These high concentrations contributed to DOC yields increasing up to 1.29 g m−2 during the 6 month period of intensive agricultural activity. The high DOC yields from the most agricultural subwatershed during the summer irrigation period was similar throughout the study, suggesting that summer DOC loads from irrigation runoff would not change significantly in the absence of major changes in crops or irrigation practices. In contrast, annual DOC yields varied from 0.89 to 1.68 g m−2 yr−1 for the most agricultural watershed due to differences in winter precipitation. This suggests that variability in the annual DOC yields will be largely determined by the winter precipitation, which can vary significantly from year to year. Changes in precipitation patterns and intensities as well as agricultural practices have potential to considerably alter the DOC dynamics.

  19. Hydrological characterization of benchmark agricultural watersheds in India, Thailand, and Vietnam

    Directory of Open Access Journals (Sweden)

    P Pathak

    2006-08-01

    Full Text Available Executive Summary Water is one of the most critical resource and constraint in the semi-arid tropics (SAT. To minimize land degradation and sustain crop productivity in the SAT, management and efficient utilization of rainwater is important. Watershed-based resource utilization involves the optimum use of the area’sprecipitation for the improvement and stabilization of agriculture on the watershed through better water, soil, and crop management. More effective utilization of water for the production of crops canbe facilitated by one or more of the following means: (i in situ conservation of moisture; (ii proper drainage, collection, storage, and re-utilization of runoff; and (iii groundwater recovery from wells. For the proper development, conservation, and management of land and water resources, accurate information on surface and groundwater hydrology is crucial. Under the Asian Development Bank(ADB-supported project on integrated watershed management we studied the hydrological behavior of benchmark agricultural watersheds in India, Thailand, and Vietnam. From the five benchmarkwatersheds, the information on topography, rainfall, runoff, groundwater, and other relevant data were collected and analyzed.The hydrological data from the five benchmark watersheds in India, Thailand, and Vietnam clearly show the effectiveness of improved watershed technologies in reducing runoff volume and peakrunoff rate. The highest runoff volume of 433 mm (51% of seasonal rainfall was recorded from the Tad Fa watershed in Thailand, while the lowest runoff volume of 55 mm (7% of seasonal rainfall wasrecorded from the Adarsha watershed in Kothapally, India. The highest peak runoff rate of 0.235 m3 s-1ha-1 was recorded from the untreated watershed at Kothapally. Between the treated and untreatedwatersheds the maximum difference in runoff volume was recorded at Lalatora watershed in India(290 mm in untreated compared to 55 mm in treated watershed. Among the three

  20. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  1. Water Quality Analysis of Yosemite Creek Watershed, San Francisco, California

    Science.gov (United States)

    Davis, J. R.; Snow, M. K.; Aquino, A.; Huang, C.; Thai, A.; Yuen, C.

    2003-12-01

    Surface water quality in urban settings can become contaminated by anthropogenic inputs. Yosemite Creek watershed is situated on the east side of San Francisco near Bayview Hunters Point and provides an ideal location for water quality investigations in urban environments. Accordingly, students from Philip and Sala Burton High School monitored water quality at three locations for their physicochemical and biological characteristics. Water was tested for pH, dissolved oxygen, conductivity, total dissolved solids, salinity, and oxidation reduction potential. In addition, a Hach DR 850 digital colorimeter was utilized to measure chlorine, fluorine, nitrogen, phosphorous, and sulfate. The biological component was assessed via monitoring benthic macro invertebrates. Specifically, the presence of caddisfly (Trichoptera) were used to indicate low levels of contaminants and good water quality. Our results indicate that water quality and macro invertebrate populations varied spatially within the watershed. Further investigation is needed to pinpoint the precise location of contaminant inputs.

  2. Assessment of nitrate export from a high elevation watershed

    International Nuclear Information System (INIS)

    Nitrate leaching from forest soils can be detrimental to both the forest ecosystems and stream water quality. Nitrate moving through the soil transports plant nutrients and acidifying agents, hydrogen and aluminum, and can export them to streams. In the high elevation spruce-fir forests in the Great Smoky Mountains National Park (GRSM) nitrate has been found to be leaching from the rooting zone. Streams associated with these ecosystems are poorly buffered. Therefore rapid export of nitrate from the soils to the streams could lead to episodic acidification. The purpose of the Noland Divide watershed study is to assess the levels of nitrate export from the watershed to the streams and the potential impacts of the export to the ecosystem

  3. Vulnerability Resilience in the Major Watersheds of the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    Yong Jung

    2014-01-01

    Full Text Available Water resources management requires policy enforcement in a changing environment. Climate change must be considered in major watershed river restorations in Korea. The aim of river restorations is to provide better water resource control - now and in the future. To aid in policy making in the government sector, _ _ (VRIs with a Delphi survey method have been adopted to provide a possible reference. The Delphi survey offers prioritized vulnerability proxy variables based on expert opinions regarding the changing environment in terms of climate change and river restorations. The VRIs of watersheds were improved after river restorations, with the exception of some locations. However, when climate change was taken into consideration in the analysis of conditions after the restorations were completed, the results showed that governments need to provide better mitigation strategies to increase vulnerability resilience in the face of climate change.

  4. Assessment of morphotectonic properties of Mahan Tigrani watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Hosain Ramesht

    2011-10-01

    Full Text Available Tectonic geomorphology can be explained as the study of landforms produced by tectonic processes, or the application of geomorphic principles to the suggestion of tectonic problems. Tigrani's watershed is located in north part of hillside. Nayband Fault sub branch pass from the east of zone and kuhbanan fault from the north of zone supplies an appropriate theme for survey tectonic activities. For access to this aim geomorphic indexes contain Stream Length Gradient, Drainage Basin Shape Ratio, Ratio of Valley-floor with to Valley Height, Topographic Symmetry, Mountain Front Sinuosity and Asymmetry Factor with use of topographic maps, DEM, Arc GIS and Global mapper softwares have gained. The results of research which calculated with Iat index show west sub basin have medium tectonic activity (Iat=2, and east sub basin have high tectonic activity(Iat=1.5. Overall the results show that assessment of tectonic activities in Tigrani watershed this basin is active because of tectonic movements.

  5. Watershed Cerebral Infarction in a Patient with Acute Renal Failure

    Directory of Open Access Journals (Sweden)

    Ruya Ozelsancak

    2016-02-01

    Full Text Available Acute renal failure can cause neurologic manifestations such as mood swings, impaired concentration, tremor, stupor, coma, asterixis, dysarthria. Those findings can also be a sign of cerebral infarct. Here, we report a case of watershed cerebral infarction in a 70-year-old female patient with acute renal failure secondary to contrast administration and use of angiotensin converting enzyme inhibitor. Patient was evaluated with magnetic resonance imaging because of dysarthria. Magnetic resonance imaging revealed milimmetric acute ischemic lesion in the frontal and parietal deep white matter region of both cerebral hemisphere which clearly demonstrated watershed cerebral infarction affecting internal border zone. Her renal function returned to normal levels on fifth day of admission (BUN 32 mg/dl, creatinine 1.36 mg/dl and she was discharged. Dysarthria continued for 20 days.

  6. Transactions for watershed protection services in the Segara River basin

    OpenAIRE

    Government of Indonesia

    2007-01-01

    Metadata only record Although formal governmental programs have not made the best of links between upstream land managers and downstream water users, several financial arrangements for water and related environmental services have sprung up independently in the Segara basin. Several of these can be regarded as investments of basic social capital to promote sustainable use of water in the area. Important downstream buyers of watershed protection services are the regional drinking water comp...

  7. Thermal Pollution Mitigation in Cold Water Stream Watersheds Using Bioretention

    OpenAIRE

    Long, Daniel Lewis

    2011-01-01

    This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during ten controlled trials at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in average and peak te...

  8. Hydrological characterization of watersheds in the Blue Nile Basin

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot

    2010-07-01

    Full Text Available We made a hydrological characterization of 32 watersheds (31–4350 km2 in the Blue Nile Basin, using data from a study of water and land resources in the Blue Nile Basin, Ethiopia published in 1964 by the US Bureau of Reclamation (USBR. The USBR document contains data on flow, climate, topography, geology, soil type, and land use for the period from 1959 to 1963. The aim of the study was to identify which combination of watershed variables best explain the variation in the hydrological regime, with special focus to low flow and, what kind of land use low flow might benefit from. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between hydrologic variables (total flow, maximum flow, minimum flow, runoff coefficient, and low flow index and 30 potential watershed variables. We found that three groups of watershed variables – climate and topography, geology and soil, and land use had almost equal influence on the variation in the hydrologic variables (R2 values ranging from 0.3 to 0.5. The individual variables which were selected based on statistical significance from all groups of explanatory variables were better in explaining the variation. Low flow was positively correlated most strongly to wetland, wood land, rainfall, luvisols, and alluvial soils. Low flow was negatively correlated to grazing land, bush land, tuffs/basalts, eutric-vertisols and riverine forest. We concluded that low flow benefits from the land use types that preserve soil quality and water storage, such as wetland, savannah and woodland, while it was lower in land use resulting in soil degradation. Therefore it provides support to the theory that some land use such as grassland, can promote higher low flow

  9. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot

    2011-01-01

    Full Text Available Thirty-two watersheds (31–4350 km2, in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4. Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.

  10. Assessing pesticide pollution risk: from field to watershed

    OpenAIRE

    Houdart, Marie; Tixier, P.; Lassoudière, A.; Saudubray, F.

    2009-01-01

    Pesticides used for intensive agricultural production threaten the water resources of the French West Indies. For example, the pesticide chlordecone was used until the nineties in banana fields. Operational and simple tools are needed to assess the potential risk of pollution by pesticides. Here, we propose a method to assess the spatial variability of pollution risk on a watershed scale. This method proceeds in four steps: (1) surveying practices; (2) determining the pesticide load for each ...

  11. Integrated Modeling for Flood Hazard Mapping Using Watershed Modeling System

    OpenAIRE

    Seyedeh S. Sadrolashrafi; Thamer A. Mohamed; Ahmad R.B. Mahmud; Majid K. Kholghi; Amir Samadi

    2008-01-01

    In this stduy, a new framework which integrates the Geographic Information System (GIS) with the Watershed Modeling System (WMS) for flood modeling is developed. It also interconnects the terrain models and the GIS software, with commercial standard hydrological and hydraulic models, including HEC-1, HEC-RAS, etc. The Dez River Basin (about 16213 km2) in Khuzestan province, IRAN, is domain of study because of occuring frequent severe flash flooding. As a case of study, a major flood in autumn...

  12. Integrating Data from Geological Investigations into Urban Watershed Restoration Efforts

    Science.gov (United States)

    Kaufman, M.; Rogers, D.; Murray, K.

    2012-04-01

    To improve urban watershed restoration efforts, a framework for integrating the outputs from subsurface geological investigations into land use planning is developed. This framework synthesizes the data generated at the individual parcel scale, including a full inventory of water flows on the surface and within the subsurface, and the synergy between contaminant properties and the geological environment. Using a case study approach, over 3000 sites of environmental contamination were investigated in the heavily urbanized Rouge River watershed of southeastern Michigan, USA. Analysis of the remediation costs at these contaminated sites and the patterns of groundwater contamination strongly suggest that land use planning in this region has not incorporated the basic sciences of geology and geomorphology. At a broad geographical scale, the siting of cities near flowing water and their industries above vulnerable geology resulted in large extents of contamination that are costly to remediate. This historical process was complicated by the unplanned nature of urban sprawl, as industrial sites were located in areas of high groundwater vulnerability, and their spatial juxtaposition created unintended consequences by expanding the pathways for contamination transport. To help remedy this situation, it is recommended that urban watershed restoration efforts include groundwater vulnerability studies, and these studies should become a basic component of the land use planning process, much as environmental site assessments are for the real estate industry. Moreover, through source control, the parcel scale is where science-based landscape planning can most effectively aid in urban watershed restoration efforts and prevent further environmental damage to land being considered for new development or redevelopment.

  13. WATERSHED SELECTION FOR ENVIRONMENTAL REHABILITATION USING MULTICRITERIA ANALYSIS

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo da Silva Francisco

    2009-10-01

    Full Text Available The Anhumas creek watershed, in the region of Campinas, São Paulo State, Brazil, is degraded also as a result of unplanned land use of its riparian zones, considered Permanent Preservation Areas (APP. Therefore, river flow is unstable, promoting frequent flood damages, besides the lack of several environmental functions of its APPs. Environmental recovery of a degraded area requires a comprehensive effort, often multidisciplinary. Multicriterial analysis is a tool which allows gathering a diversity of attributes of the studied subject, weighing and valuating them, helping in the decision making effort. This work aims to apply two methods of multicriteria analysis to optimize the selection of a watershed for an environmental recovery study of APPs in the Anhumas watershed. The Anhumas watershed was divided in 7 sub-basins aiming the selection of one of those to implement an environmental planning study and to establish and rank areas that should be prioritized for recovery. Thirteen environmental criteria were selected for application of multicriteria analysis using the methods of Compromise Programming (PC and Cooperative Game Theory (CGT. Relevance of each criterion to the analysis was given by a questionnaire answered by specialists. Basin selection results showed no difference neither between PC and CGT nor between mean or mode used to standardize weights given by specialists. Multicriteria analysis was effective, but allowed enough flexibility for the decision maker (DM to adjust undesired analysis distortions. After DM adjustments, the priority basins were ranked as basins 4 > 7 > 5 > 6 > 2 > 3 > 1. Important procedures when carrying out such an analysis were to avoid conceptual overlapping among different criteria, to implement appropriate value judgment for each criterion and to use decision maker expertise to supplement weights obtained with specialists.

  14. Modeling reservoir sedimentation in the Agno watershed, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Ham, D.; Vasque, P. [Northwest Hydraulic Consultants, North Vancouver, BC (Canada); McLean, D. [Northwest Hydraulic Consultants, Nanaimo, BC (Canada); Valdez, T. [San Roque Power Corp., Makati City (Philippines)

    2008-07-01

    The exceptionally high sedimentation rate in the mountainous Agno River Watershed in the Philippines has affected dam operations on the Ambuklao and Binga reservoirs which were built in the late 1950s. In addition, sediment inflow scenarios have revealed that sedimentation will significantly reduce the total storage volume in the new San Roque facility which has been constructed downstream of those reservoirs. As such, watershed management plans will need to address conditions in the entire basin, not just the portion downstream of Binga Dam. Sediment will be deposited in the reservoir in the form of a delta front that will advance from the head of the reservoir towards the dam. Sedimentation in water reservoirs affects the utility to sustain power production, water supply and flood control objectives. It will likely be very difficult to reduce the sediment yield to any great degree by watershed restoration such as re-vegetation or tree planting. However, since sediment production from road-related slope failures appears to the main contributor to reservoir sedimentation, future developments in the basin related to road construction, mining activity and construction of new towns will need to adopt best management practices to avoid increased erosion or land disturbance. Empirical and analytic techniques were used in this study to assess sedimentation volumes and patterns, with particular emphasis on a GIS-based sediment yield model. The GIS model identified where sediment yield is greatest within the watershed, providing a means for developing sediment management and mitigation strategies that focus limited resources on key areas that give the highest rates of return. 25 refs., 3 tabs., 4 figs.

  15. Tropical Forest Landscape Fragmentation in Batang Toru Watershed, North Sumatra

    OpenAIRE

    Samsuri Samsuri; I Nengah Surati Jaya; Cecep Kusmana; Kukuh Murtilaksono

    2014-01-01

    Timber-based forest management is now shifting to as broader scope including ecosystem-based management. Timber-oriented forest management frequently affects the fragmentation of forest landscape. This paper defines the degree of forest landscape fragmentation in Batang Toru watershed, North Sumatra through indentification of correlation between forest landscape fragmentation and driving factors including biophysical and anthropogenic factors. Identification structure, pattern, and fragmentat...

  16. Panama canal watershed payment for environmental services project

    OpenAIRE

    IDIAP (Panamanian National Agricultural Research Institute); Montana State University; CIP; Food and Agriculture Organization

    2007-01-01

    Metadata only record The Panama canal produces around 15% of the Panama's gross domestic produce (GDP), and requires large quantities of water to function. The surrounding watershed has been subjected to large scale deforestation and an increase in the population. In order to reduce siltation and improve water storage capacity, this project will look at the feasibility of implementing a payment for environmental services project. It will examine land use alternatives and benefits, evaluate...

  17. Oued Zeroud watershed management and Sidi Saad Dam protection

    International Nuclear Information System (INIS)

    The Government of Tunisia has decided to construct the Qued Zeroud Dam to protect Kairouan from flooding, to irrigate 4,080 ha, and to maintain the groundwater supply. To prevent silting of the dam 100,000 ha of the Qued Zeroud watershed will undergo a conservation programme. Terraces, waterways and drop structures will be constructed and forage and tree plantations will be developed using Atriplex and cactus. Cultural and grazing practices will be controlled. (author)

  18. Community participation and implementation of water management instruments in watersheds

    OpenAIRE

    Mario Alejandro Perez Rincon; Mariza Guimarães Prota; Tadeu Fabricio Malheiros

    2013-01-01

    The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted ...

  19. Development of TMDL watershed implementation plan using Annualized AGNPS

    OpenAIRE

    Yuan, Yongping; Bingner, R.L.; Boydstun, J.

    2006-01-01

    Section 319 of the amended Federal Clean Water Act requires states to outline management plans for impaired water bodies to address non-point source pollution. When determining the priority for conservation measures within a watershed* for non-point source pollution control, models are valuable tools that can provide clues as to where potential sources of water pollution may be and which problems can most easily be corrected. The USDA Annualized Agricultural Non-Point Source Pollution model (...

  20. Determination of runoff curve number for small watershed

    OpenAIRE

    Heco, Damir

    2015-01-01

    Runoff curve number (CN) is a parameter used in hydrology for predicting runoff from rainfall excess, depending on the land use and soil type. Knowledge about the characteristics of the watershed and its ability to generate runoff from rainfall is one of the key research topics in hydrology. An important factor is the CN parameter. The CN parameter for the small catchment Mačkov graben was determined using four different approaches: commonly used empirical SCS method, which is ...