WorldWideScience

Sample records for central balsas watershed

  1. DETERMINATION OF AGRICULTURAL POTENTIAL BY GEO SPATIAL MODELING AND MULTI CRITERIA ANALYSIS FOR “BALSAS MEZCALA” WATERSHED

    Directory of Open Access Journals (Sweden)

    Anastacio Espejel-García

    2015-07-01

    Full Text Available The use of geographic information systems (GIS facilitates the modeling of specific information allowing faster, lower costs and accuracy for the planning of the agricultural activities for large territories. The objective for this paper was to use GIS as a support for the approach of the land use potential for the “Balsas Mezcala” watershed; for this purpose the multi criteria analysis was used, that allows to consider decision make issues with multiples objectives and considering the following criteria: geo-pedological (geomorphology and soil, climatology (thermal models and rainfall and the edapho-climatological requirements of the crops, the “Balsas Mezcala” hydrological region was chosen as the study area; through cartographic material the area was delimited and climate information was obtained from weather stations, geographic information and the data bases was collected from many different government agencies (INEGI, SEMARNAT, CONABIO, CONAGUA, IMTA, such information was processed in the ArcGIS software version 10.2.2, to obtained the geodatabases and geo spatial matrix which served as a cartographic input for the multi criteria analysis. The result of this investigation is a system that from geo spatial matrix and vectorial data originates raster dataset, same that were submitted to a modeling process with geo statistical algorithms, with that from a structure language, identify the potential zones with the highest aptness level, through the variable attributes that assign a weighted value using the methodology proposed by the United States Department of Agriculture (USDA in 1971 and taken by Food and Agriculture Organization of the United Nations (FAO for case studies since 1977 as an Agro-ecological Zoning System (AEZ. The result of the modeling of the soil aptness level in the watershed are 4 classes with 6 levels of aptness (very apt, apt, moderately apt, little apt, very little apt, unapt: Lands with irrigation potential

  2. A balsa violin

    Science.gov (United States)

    Waltham, Chris

    2009-01-01

    Almost half a century ago John Schelleng determined the scaling rules that show how violins can be made from nontraditional materials. These principles suggest that balsa wood may be a possible, if unlikely, construction material. To test this idea, a balsa violin was constructed and found to be playable. Its vibrational behavior is shown to be in agreement with Schelleng's scaling rules. The instrument was not difficult to build, and its construction can be repeated by anyone of moderate skill with a chisel and sandpaper and access to an audio frequency analysis program. The reward is a tactile appreciation for the vibrational behavior of materials and the physics of musical instruments that is difficult to gain otherwise.

  3. Watershed Central: Harnessing a social media tool to organize local technical knowledge and find the right watershed resources for your watershed

    Science.gov (United States)

    Watershed Central was developed to be a bridge between sharing and searching for information relating to watershed issues. This is dependent upon active user support through additions and updates to the Watershed Central Wiki. Since the wiki is user driven, the content and applic...

  4. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Directory of Open Access Journals (Sweden)

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  5. Balsa Tower Walls Brave "Big Buster"

    Science.gov (United States)

    Granlund, George

    2008-01-01

    Like many technology teachers, the author, a technology education teacher at Arthur Hill High School in Saginaw, Michigan, tries to stretch his budget by "milking" each student activity for maximum benefit. In the technology department, they use balsa wood towers to teach the basics of structural engineering. To get the most from their materials,…

  6. Composition and structure of balsa (Ochroma pyramidale) wood

    OpenAIRE

    Borrega, Marc; Ahvenainen, Patrik; Serimaa, Ritva; Gibson, Lorna

    2014-01-01

    Balsa, with its low density and relatively high mechanical properties, is frequently used as the core in structural sandwich panels, in applications ranging from wind turbine blades to racing yachts. Here, both the cellular and cell wall structure of balsa are described, to enable multi-scale modeling and an improved understanding of its mechanical properties. The cellular structure consists of fibers (66–76 %), rays (20–25 %) and vessels (3–9 %). The density of balsa ranges from roughly 60 t...

  7. O Crescimento de duas espécies florestais pioneiras, pau-de-balsa (Ochroma lagopus Sw.) e caroba (Jacaranda copaia D. Don), usadas para recuperação de áreas degradadas pela agricultura na Amazônia Central, Brasil Growth of two forest pioneer species, pau-de-balsa (Ochroma lagopus Sw.) e caroba (Jacaranda copaia D. Don), used for rehabilitation of degraded areas from agriculture in Central Amazon, Brazil

    OpenAIRE

    Antenor Pereira Barbosa; Moacir Alberto Assis Campos; Paulo de Tarso Barbosa Sampaio; Shozo Nakamura; Cláudio de Queiroz Blair Gonçalves

    2003-01-01

    O objetivo deste trabalho foi estudar o crescimento das espécies florestais pioneiras pau-de-balsa (Ochroma lagopus Sw.) e caroba (Jacaranda copaia D. Don) para a recuperação de áreas degradadas pela agricultura. Na área, situada no km 120 da BR-174, tinha sido plantado mandioca e banana e abandonada há 8 anos, formando uma capoeira de porte baixo e rala. O experimento foi instalado em maio/98, com e sem gradagem da área. O espaçamento foi de 3x3m, em covas de 20 cm (diâmetro) x 30 cm (profun...

  8. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m2, and occurred 2 to 3 hours after the end of the pool fire. (author)

  9. O Crescimento de duas espécies florestais pioneiras, pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don, usadas para recuperação de áreas degradadas pela agricultura na Amazônia Central, Brasil Growth of two forest pioneer species, pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don, used for rehabilitation of degraded areas from agriculture in Central Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Antenor Pereira Barbosa

    2003-01-01

    Full Text Available O objetivo deste trabalho foi estudar o crescimento das espécies florestais pioneiras pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don para a recuperação de áreas degradadas pela agricultura. Na área, situada no km 120 da BR-174, tinha sido plantado mandioca e banana e abandonada há 8 anos, formando uma capoeira de porte baixo e rala. O experimento foi instalado em maio/98, com e sem gradagem da área. O espaçamento foi de 3x3m, em covas de 20 cm (diâmetro x 30 cm (profundidade, com adubação de 150g/cova de NPK (4-16-8 e calcário dolomítico na proporção de 3:1. Para a avaliação do crescimento, foram medidas a altura e o diâmetro das plantas aos 2 meses (julho/98 e a cada ano aproximadamente (junho/99, setembro/00 e maio/01. Os dados foram analisados através do delineamento inteiramente casualisado. A sobrevivência do pau-de-balsa foi maior em área gradeada (97,1% do que em area não gradeada (92,5%, após o primeiro ano do plantio; da caroba, foi cerca de 90% e sem diferenças entre as areas. A altura e diâmetro do pau-de-balsa, foram maiores em área gradeada, a partir do primeiro ano, chegando no terceiro ano a 11,85 m de altura e 11,42 cm de diâmetro. Na caroba, a diferença ocorreu a partir do segundo ano e no terceiro chegou a 8,37 m de altura e 11,18 cm de diâmetro. Além de outros fatores inerentes às espécies, o solo mais friável das áreas gradeadas, possibilitou um maior crescimento em altura e diâmetro das duas espécies estudadas.The objective of experiment was study the growth of pioneer forest species pau-de-balsa (Ochroma lagopus and caroba (Jacaranda copaia to rehabilitate degraded areas from agriculture. The experiment carried out at Br-174, km 120. After the use for cassava and banana plantations the area was abandoned for 8 years. The secondary forest that took place was of low height and sparse trees. The experiment was installed at may/98 and composed by harrowed and no harrowed

  10. Potential effects of climate change on streamflow for seven watersheds in eastern and central Montana

    Science.gov (United States)

    Chase, Katherine J.; Haj, Adel; Regan, R. Steven; Viger, Roland J.

    2016-01-01

    Study regionEastern and central Montana.Study focusFish in Northern Great Plains streams tolerate extreme conditions including heat, cold, floods, and drought; however changes in streamflow associated with long-term climate change may render some prairie streams uninhabitable for current fish species. To better understand future hydrology of these prairie streams, the Precipitation-Runoff Modeling System model and output from the RegCM3 Regional Climate model were used to simulate streamflow for seven watersheds in eastern and central Montana, for a baseline period (water years 1982–1999) and three future periods: water years 2021–2038 (2030 period), 2046–2063 (2055 period), and 2071–2088 (2080 period).New hydrological insights for the regionProjected changes in mean annual and mean monthly streamflow vary by the RegCM3 model selected, by watershed, and by future period. Mean annual streamflows for all future periods are projected to increase (11–21%) for two of the four central Montana watersheds: Middle Musselshell River and Cottonwood Creek. Mean annual streamflows for all future periods are projected to decrease (changes of −24 to −75%) for Redwater River watershed in eastern Montana. Mean annual streamflows are projected to increase slightly (2–15%) for the 2030 period and decrease (changes of −16 to −44%) for the 2080 period for the four remaining watersheds.

  11. Watershed Governance in South-Central Texas: Working from the Bottom up

    Science.gov (United States)

    Lopes, V. L.

    2014-12-01

    The purpose of this presentation is to introduce a set of key concepts that can guide the development of ecological governance systems and briefly describe a watershed ecological governance project in south-central Texas. Ecological governance is a form of governance embedding ecological principles and values in all levels of decision making and action, from the personal to the global. The model of ecological governance discussed here incorporates ideas and approaches that are already being put into practice in many watershed governance projects in the US and abroad; it is based on the premise that contemporary governance systems will continue to evolve in this direction, incorporating more and more of the features of ecological governance. The watershed governance project described here was devised to ensure that the long-term ecological integrity of a small urbanazing waterhed in south-central Texas is preserved and that the water quality standards are maintained for present and future generations. The ecological integrity of small spring-fed watersheds in Texas are under serious threat due to rapid urban development dependent on groundwater supplies, continued drilling of personal wells that are exempt from pumping regulation, and lack of adequate legal jurisdiction for managing development in rural and semi-rural areas. The watershed governance project was motivated by a firm belief of local stakeholders that watershed protection is an individual as well as a community responsibility, and the recognition that a balance between growth and protection is essential to maintain watershed integrity. It is concluded that whereas emergent systems of ecological governance struggle to succeed in an institutional context oriented towards the pursuit of self-interest and competition, their acceptance will happen more readily as ecological principles and values diffuses throughout modern society.

  12. Long-term agroecosystem research in the Central Mississippi River Basin: Goodwater Creek Experimental Watershed flow data

    Science.gov (United States)

    Flow monitoring in Goodwater Creek Experimental Watershed started in 1971 at three nested watersheds ranging from 12 to 73 km2 in drainage area. Since then, flow has been measured at 14 plots, 3 fields, and 12 additional stream sites ranging from 0.0034 to 6067 km2 in the Central Mississippi River B...

  13. The Probability Distribution of the Drought Parameters of the Central Anatolian Closed Watershed

    OpenAIRE

    KÖSE, Ömer

    2002-01-01

    In this research, first the various descriptions of drought were presented and then the statistical characteristics of drought parameters based on monthly data of four streams within the Central Anatolian Closed Watershed were analysed. These parameters are drought duration, drought severity and drought magnitude. The stationarity and randomness analyses of the drought parameters were performed. Trend analysis based upon Student's t-test was used for the stationarity analysis a...

  14. Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India

    Science.gov (United States)

    Singh, Ramesh; Garg, Kaushal K.; Wani, Suhas P.; Tewari, R. K.; Dhyani, S. K.

    2014-02-01

    Bundelkhand region of Central India is a hot spot of water scarcity, land degradation, poverty and poor socio-economic status. Impacts of integrated watershed development (IWD) interventions on water balance and different ecosystem services are analyzed in one of the selected watershed of 850 ha in Bundelkhand region. Improved soil, water and crop management interventions in Garhkundar-Dabar (GKD) watershed of Bundelkhand region in India enhanced ET to 64% as compared to 58% in untreated (control) watershed receiving 815 mm annual average rainfall. Reduced storm flow (21% vs. 34%) along with increased base flow (4.5% vs. 1.2%) and groundwater recharge (11% vs. 7%) of total rainfall received were recorded in treated watershed as compared to untreated control watershed. Economic Water productivity and total income increased from 2.5 to 5.0 INR m-3 and 11,500 to 27,500 INR ha-1 yr-1 after implementing integrated watershed development interventions in GKD watershed, respectively. Moreover IWD interventions helped in reducing soil loss more than 50% compared to control watershed. The results demonstrated that integrated watershed management practices addressed issues of poverty in GKD watershed. Benefit to cost ratio of project interventions was found three and pay back period within four years suggest economic feasibility to scale-up IWD interventions in Bundelkhend region. Scaling-up of integrated watershed management in drought prone rainfed areas with enabling policy and institutional support is expected to promote equity and livelihood along with strengthening various ecosystem services, however, region-specific analysis is needed to assess trade-offs for downstream areas along with onsite impact.

  15. Life Cycle Assessment of Greenhouse Gas Emissions from Dairy Production in a Central New York State Watershed

    Science.gov (United States)

    Johnson, M. S.

    2009-12-01

    Cumulative greenhouse gas emissions related to dairy production in the Fall Creek watershed of central New York State were calculated using a life-cycle approach for the period 1975-2001. Expressed as CO2 equivalents (CO2e), emissions include CO2, CH4 and N2O related to fertilizer manufacture and transport, bovine metabolism, volatilization and leaching losses from applied fertilizer, nitrogen dynamics in crop residues, among a myriad of sources. During the 1975-2001 period, dairy N production in the study area increased by over 20%, although crop N production in the watershed declined by 33%. This change was driven by consolidation within the dairy industry that also led to a six-fold increase in N in feed imports into the watershed during the same period. Cumulative GHG emissions related to dairy production in Fall Creek rose by about 20% over 1975-2001 to about 14,000 tons CO2e per year for the 326 km2 watershed by 2001. In 1975, about 90% of CO2e emissions related to dairy production in the Fall Creek watershed were emitted within the watershed. However, by 2001 over 50% of emissions were generated outside of the watershed, primarily as N2O emissions related to fertilizer used in the production of feed subsequently imported into Fall Creek watershed.

  16. Air Pollution and Watershed Research in the Central Sierra Nevada of California: Nitrogen and Ozone

    Directory of Open Access Journals (Sweden)

    Carolyn Hunsaker

    2007-01-01

    Full Text Available Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3 and nitrogenous (N air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100–2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  17. Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.

    Science.gov (United States)

    Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo

    2007-01-01

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  18. Historic impact of watershed change and sedimentation to reefs along west-central Guam

    Science.gov (United States)

    Prouty, Nancy G.; Storlazzi, Curt D.; McCutcheon, Amanda L.; Jenson, John W.

    2014-09-01

    Using coral growth parameters (extension, density, calcification rates, and luminescence) and geochemical measurements (barium to calcium rations; Ba/Ca) from coral cores collected in west-central Guam, we provide a historic perspective on sediment input to coral reefs adjacent to the Piti-Asan watershed. The months of August through December are dominated by increased coral Ba/Ca values, corresponding to the rainy season. With river water enriched in barium related to nearshore seawater, coral Ba/Ca ratios are presented as a proxy for input of fine-grained terrigenous sediment to the nearshore environment. The century-long Ba/Ca coral record indicates that the Asan fore reef is within the zone of impact from discharged sediments transported from the Piti-Asan watershed and has experienced increased terrestrial sedimentation since the 1940s. This abrupt shift in sedimentation occurred at the same time as both the sudden denudation of the landscape by military ordinance and the immediate subsequent development of the Asan area through the end of the war, from 1944 through 1945. In response to rapid input of sediment, as determined from coral Ba/Ca values, coral growth rates were reduced for almost two decades, while calcification rates recovered much more quickly. Furthermore, coral luminescence is decoupled from the Ba/Ca record, which is consistent with degradation of soil organic matter through disturbance by forest fires, suggesting a potential index of fire history and degradation of soil organic matter. These patterns were not seen in the cores from nearby reefs associated with watersheds that have not undergone the same degree of landscape denudation. Taken together, these records provide a valuable tool for understanding the compounding effects of land-use change on coral reef health.

  19. Historic impact of watershed change and sedimentation to reefs along west-central Guam

    Science.gov (United States)

    Prouty, Nancy G.; Storlazzi, Curt D.; McCutcheon, Amanda L.; Jenson, John W.

    2014-01-01

    Using coral growth parameters (extension, density, calcification rates, and luminescence) and geochemical measurements (barium to calcium rations; Ba/Ca) from coral cores collected in west-central Guam, we provide a historic perspective on sediment input to coral reefs adjacent to the Piti-Asan watershed. The months of August through December are dominated by increased coral Ba/Ca values, corresponding to the rainy season. With river water enriched in barium related to nearshore seawater, coral Ba/Ca ratios are presented as a proxy for input of fine-grained terrigenous sediment to the nearshore environment. The century-long Ba/Ca coral record indicates that the Asan fore reef is within the zone of impact from discharged sediments transported from the Piti-Asan watershed and has experienced increased terrestrial sedimentation since the 1940s. This abrupt shift in sedimentation occurred at the same time as both the sudden denudation of the landscape by military ordinance and the immediate subsequent development of the Asan area through the end of the war, from 1944 through 1945. In response to rapid input of sediment, as determined from coral Ba/Ca values, coral growth rates were reduced for almost two decades, while calcification rates recovered much more quickly. Furthermore, coral luminescence is decoupled from the Ba/Ca record, which is consistent with degradation of soil organic matter through disturbance by forest fires, suggesting a potential index of fire history and degradation of soil organic matter. These patterns were not seen in the cores from nearby reefs associated with watersheds that have not undergone the same degree of landscape denudation. Taken together, these records provide a valuable tool for understanding the compounding effects of land-use change on coral reef health.

  20. BALSA: integrated secondary analysis for whole-genome and whole-exome sequencing, accelerated by GPU

    Directory of Open Access Journals (Sweden)

    Ruibang Luo

    2014-06-01

    Full Text Available This paper reports an integrated solution, called BALSA, for the secondary analysis of next generation sequencing data; it exploits the computational power of GPU and an intricate memory management to give a fast and accurate analysis. From raw reads to variants (including SNPs and Indels, BALSA, using just a single computing node with a commodity GPU board, takes 5.5 h to process 50-fold whole genome sequencing (∼750 million 100 bp paired-end reads, or just 25 min for 210-fold whole exome sequencing. BALSA’s speed is rooted at its parallel algorithms to effectively exploit a GPU to speed up processes like alignment, realignment and statistical testing. BALSA incorporates a 16-genotype model to support the calling of SNPs and Indels and achieves competitive variant calling accuracy and sensitivity when compared to the ensemble of six popular variant callers. BALSA also supports efficient identification of somatic SNVs and CNVs; experiments showed that BALSA recovers all the previously validated somatic SNVs and CNVs, and it is more sensitive for somatic Indel detection. BALSA outputs variants in VCF format. A pileup-like SNAPSHOT format, while maintaining the same fidelity as BAM in variant calling, enables efficient storage and indexing, and facilitates the App development of downstream analyses. BALSA is available at: http://sourceforge.net/p/balsa.

  1. Natural Regeneration after Long-Term Bracken Fern Control with Balsa (Ochroma pyramidale in the Neotropics

    Directory of Open Access Journals (Sweden)

    Samuel I. Levy-Tacher

    2015-06-01

    Full Text Available In many parts of the Neotropics, deforested areas are often colonized by the highly competitive invasive bracken fern (Pteridium aquilinum, which inhabits naturally regenerated forests and successional forests on abandoned farmland. Within the tropical forest region of Chiapas in southern Mexico, we implemented an experiment in 2005 to out-compete bracken fern infestation and reduce or eliminate live bracken rhizomes using several treatments: Direct sowing of balsa seeds (Ochroma pyramidale; Malvaceae, a traditional Lacandon treatment of scattering balsa seeds, transplanting balsa seedlings, and a control treatment (without balsa. For each treatment, we applied three different bracken weeding frequencies: No weeding, biweekly weeding, and monthly weeding. In this study, we present data gathered four years after establishing the experiment regarding: Bracken fern rhizome biomass, balsa density, basal area, height, density, species richness of naturally regenerating vegetation for all treatments, and bracken weeding frequencies. We also evaluated the importance of balsa and its regenerative attributes in controlling bracken fern by correlating it with remaining belowground live rhizome biomass. Living rhizome biomass was completely eradicated in all treatments with biweekly and monthly weeding. Density and species richness of a naturally regenerated species were negatively correlated with bracken fern rhizome biomass, and the density of this species was highest in areas with no rhizome biomass. Although balsa tree stands are effective short-term solutions for controlling rhizome biomass, the success of natural regeneration following balsa establishment can be critical to long-term elimination of bracken fern.

  2. Surface Mining and Reclamation Effects on Flood Response of Watersheds in the Central Appalachian Plateau Region

    Science.gov (United States)

    Ferrari, J. R.; Lookingbill, T. R.; McCormick, B.; Townsend, P. A.; Eshleman, K. N.

    2009-01-01

    Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km2 watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

  3. Modelling streambank erosion potential using maximum entropy in a central Appalachian watershed

    Science.gov (United States)

    Pitchford, J.; Strager, M.; Riley, A.; Lin, L.; Anderson, J.

    2015-03-01

    We used maximum entropy to model streambank erosion potential (SEP) in a central Appalachian watershed to help prioritize sites for management. Model development included measuring erosion rates, application of a quantitative approach to locate Target Eroding Areas (TEAs), and creation of maps of boundary conditions. We successfully constructed a probability distribution of TEAs using the program Maxent. All model evaluation procedures indicated that the model was an excellent predictor, and that the major environmental variables controlling these processes were streambank slope, soil characteristics, bank position, and underlying geology. A classification scheme with low, moderate, and high levels of SEP derived from logistic model output was able to differentiate sites with low erosion potential from sites with moderate and high erosion potential. A major application of this type of modelling framework is to address uncertainty in stream restoration planning, ultimately helping to bridge the gap between restoration science and practice.

  4. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    Science.gov (United States)

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater

  5. Semiarid watershed response in central New Mexico and its sensitivity to climate variability and change

    Directory of Open Access Journals (Sweden)

    E. R. Vivoni

    2009-06-01

    Full Text Available Hydrologic processes in the semiarid regions of the Southwest United States are considered to be highly susceptible to variations in temperature and precipitation characteristics due to the effects of climate change. Relatively little is known about the potential impacts of climate change on the basin hydrologic response, namely streamflow, evapotranspiration and recharge, in the region. In this study, we present the development and application of a continuous, semi-distributed watershed model for climate change studies in semiarid basins of the Southwest US. Our objective is to capture hydrologic processes in large watersheds, while accounting for the spatial and temporal variations of climate forcing and basin properties in a simple fashion. We apply the model to the Río Salado basin in central New Mexico since it exhibits both a winter and summer precipitation regime and has a historical streamflow record for model testing purposes. Subsequently, we use a sequence of climate change scenarios that capture observed trends for winter and summer precipitation, as well as their interaction with higher temperatures, to perform long-term ensemble simulations of the basin response. Results of the modeling exercise indicate that precipitation uncertainty is amplified in the hydrologic response, in particular for processes that depend on a soil saturation threshold. We obtained substantially different hydrologic sensitivities for winter and summer precipitation ensembles, indicating a greater sensitivity to more intense summer storms as compared to more frequent winter events. In addition, the impact of changes in precipitation characteristics overwhelmed the effects of increased temperature in the study basin. Nevertheless, combined trends in precipitation and temperature yield a more sensitive hydrologic response throughout the year.

  6. Estuarine environments as rearing habitats for juvenile Coho Salmon in contrasting south-central Alaska watersheds

    Science.gov (United States)

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2013-01-01

    For Pacific salmon, estuaries are typically considered transitional staging areas between freshwater and marine environments, but their potential as rearing habitat has only recently been recognized. The objectives of this study were two-fold: (1) to determine if Coho Salmon Oncorhynchus kisutch were rearing in estuarine habitats, and (2) to characterize and compare the body length, age, condition, and duration and timing of estuarine occupancy of juvenile Coho Salmon between the two contrasting estuaries. We examined use of estuary habitats with analysis of microchemistry and microstructure of sagittal otoliths in two watersheds of south-central Alaska. Juvenile Coho Salmon were classified as estuary residents or nonresidents (recent estuary immigrants) based on otolith Sr : Ca ratios and counts of daily growth increments on otoliths. The estuaries differed in water source (glacial versus snowmelt hydrographs) and in relative estuarine and watershed area. Juvenile Coho Salmon with evidence of estuary rearing were greater in body length and condition than individuals lacking evidence of estuarine rearing. Coho Salmon captured in the glacial estuary had greater variability in body length and condition, and younger age-classes predominated the catch compared with the nearby snowmelt-fed, smaller estuary. Estuary-rearing fish in the glacial estuary arrived later and remained longer (39 versus 24 d of summer growth) during the summer than did fish using the snowmelt estuary. Finally, we observed definitive patterns of overwintering in estuarine and near shore environments in both estuaries. Evidence of estuary rearing and overwintering with differences in fish traits among contrasting estuary types refute the notion that estuaries function as only staging or transitional habitats in the early life history of Coho Salmon.

  7. Charlemagne's summit canal: an early medieval hydro-engineering project for passing the Central European Watershed.

    Science.gov (United States)

    Zielhofer, Christoph; Leitholdt, Eva; Werther, Lukas; Stele, Andreas; Bussmann, Jens; Linzen, Sven; Schneider, Michael; Meyer, Cornelius; Berg-Hobohm, Stefanie; Ettel, Peter

    2014-01-01

    The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water. PMID:25251589

  8. Charlemagne's summit canal: an early medieval hydro-engineering project for passing the Central European Watershed.

    Directory of Open Access Journals (Sweden)

    Christoph Zielhofer

    Full Text Available The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and in situ findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.

  9. OPTIMUM PARAMETER SELECTION FOR THE MORPHOMETRIC DESCRIPTION OF WATERSHEDS: A CASE STUDY OF CENTRAL NIGERIA

    Directory of Open Access Journals (Sweden)

    Solomon Olakunle Bilewu

    2015-09-01

    Full Text Available Hydrological models are very useful for predictions in many ungauged basins across the world. There are many hydrological models available for discharge data generation with different complexities and varied input parameter requirements. Studies have shown that models with many input parameters do not necessarily perform better than those with few input parameters. Basin morphometric parameters play significant roles in the conversion of rainfall to runoff and obtaining good estimates of these parameters for use in runoff models is sometime challenging as Inaccurate input into models can propagate errors and make the models to perform poorly. This study employs the method of principal component analysis to reduce the number of morphometric parameters required to run a runoff model without losing any major information. Parameters for five selected study basins in central Nigeria were measured and analysed. The result shows that three morphometric parameters (Fitness Ratio, Ruggedness Number and Watershed Eccentricity can adequately represent other parameters as an input into a runoff model for the basins. This reduces significantly the time and effort needed to compute all the parameters which in actual fact may not improve the quality or efficiency of the runoff model.

  10. Crown Jewel of the Fleet: Design, Construction, and Use of the Seagoing Balsa of the Pre-Columbian Andean Coast

    OpenAIRE

    Emanuel, Jeffrey Paul

    2012-01-01

    The seaworthiness of the balsa sailing raft, and the seafaring aptitude of those who built and sailed it, has been the subject of critically biased, often conflicting accounts over the nearly five centuries since contact. This paper objectively marshals historical evidence to recover the preColumbian design and construction of this ‘Crown Jewel’ of the coastal Andean fleet. Sailing balsas were constructed of balsa tree (ochroma spp.) trunks lashed together with henequen, covered with one or m...

  11. Hydrogeochemical cycling and chemical denudation in the Fort River Watershed, central Massachusetts: An appraisal of mass-balance studies

    Science.gov (United States)

    Yuretich, Richard F.; Batchelder, Gail L.

    1988-01-01

    The Fort River watershed in central Massachusetts receives precipitation with a composition similar to that in Hubbard Brook (New Hampshire), yet the average stream water chemistry is substantially different, showing higher pH and TDS. This is largely a function of bedrock and surficial geology, and chemical differences among small streams within the Fort River watershed are apparently controlled by the composition and thickness of the prevailing surficial cover. The surficial deposits determine groundwater and surface water flow paths, thereby affecting the resultant contact time with mineral matter and the chemistry of the runoff. Despite the rural setting, over 95% of the annual sodium and chloride in the streams comes from road salt; after correcting for this factor, cation denudation rates are about equal to those at Hubbard Brook. However, silica removal is occurring at a rate more than 30% greater in the Fort River. When climatic conditions in Hubbard Brook and Fort River are normalized, weathering rates appear consistently higher in the Fort River, reflecting differences in weathering processes (i.e., cation exchange and silicate breakdown) and hydrogeology. Because of uncertainties in mechanisms of cation removal from watersheds, the silica denudation rate may be a better index of weathering intensity.

  12. Hydrologic and Water Quality Assessment of Bioenergy Scenarios for the Boone River Watershed in North Central Iowa, U.S.

    Science.gov (United States)

    Gassman, P. W.

    2015-12-01

    he Boone River Watershed (BRW) is an intensively cropped region dominated by corn and soybean production that covers over 237,000 ha in north central Iowa. The BRW is reflective of both current Iowa cropping trends and elevated levels of nutrient pollution in streams. Nitrate losses are of particular concern, much of which escapes the cropland via subsurface tiles that drain the predominantly flat landscapes that characterize the watershed. Phosphorus export to stream systems in the BRW is also a problem of considerable concern. Questions have emerged as to the possible impacts of adopting cellulosic biofuel production systems in Iowa watersheds such as the BRW, which would be developed as function of corn stover removed after harvest or via the introduction of perennial biofuel crops such as switchgrass and miscanthus. In response, a modeling system been constructed for the watershed using the Soil and Water Assessment Tool (SWAT) model to address biofuel-related water quality and related issues. The specific version of SWAT (SWAT version 2012; Release 615) that is being used in the study features recent modifications made to the source code that corrected inaccuracies in previous codes in regards to simulating removal of corn stover and also the growth of switchgrass and miscanthus. In addition, updated crop growth parameters that more accurately represent the biomass production potential of switchgrass and miscanthus varieties being grown in the U.S. Corn Belt region are being used in this SWAT modeling system. The results of several scenarios are reported here that reflect future cellulosic biofuel scenarios based on 20%, 30% or 50% removal levels of corn stover or widespread adoption of switchgrass and/or miscanthus across much or all of the BRW. Both hydrologic and pollutant loss (sediment, nitrogen and phosphorus) losses are reported for all of the simulated scenarios.

  13. Runoff measurement and prediction for a watershed under natural vegetation in central Brazil

    Directory of Open Access Journals (Sweden)

    C. L. Silva

    1999-09-01

    Full Text Available This work aimed to measure and analyze total rainfall (P, rainfall intensity and five-day antecedent rainfall effects on runoff (R; to compare measured and simulated R values using the Soil Conservation Service Curve Number method (CN for each rainfall event; and to establish average R/P ratios for observed R values. A one-year (07/01/96 to 06/30/97 rainfall-runoff data study was carried out in the Capetinga watershed (962.4 ha, located at the Federal District of Brazil, 47° 52' longitude West and 15° 52' latitude South. Soils of the watershed were predominantly covered by natural vegetation. Total rainfall and runoff for the period were 1,744 and 52.5 mm, respectively, providing R/P of 3% and suggesting that watershed physical characteristics favored water infiltration into the soil. A multivariate regression analysis for 31 main rainfall-runoff events totaling 781.9 and 51.0 mm, respectively, indicated that the amount of runoff was only dependent upon rainfall volume. Simulated values of total runoff were underestimated about 15% when using CN method and an area-weighted average of the CN based on published values. On the other hand, when average values of CN were calculated for the watershed, total runoff was overestimated about 39%, suggesting that CN method shoud be used with care in areas under natural vegetation.

  14. Characterization of Amazon fibers of the peach palm, balsa, and babassu by XDR, TGA and NMR

    International Nuclear Information System (INIS)

    The aim of this work was to present the results by testing X-ray diffraction (XRD), thermogravimetric analysis (TG), nuclear magnetic resonance (NMR) and determining the moisture content of the peach palm, balsa and babassu fibers for assessing the feasibility of composite materials. The fibers of peach palm, balsa and babassu showed characteristic chemical structure of lignocellulosic material, and good thermal stability up to 220 deg C. The fiber with the highest crystallinity index (Ic) is the peach palm (72%) and the less crystalline is the babassu (37%), while the balsa fibers have Ic equal to 64%. The results have shown that these fibers can be used in the manufacture of composite materials. (author)

  15. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  16. Simulation of streamflow and the effects of brush management on water yields in the upper Guadalupe River watershed, south-central Texas, 1995-2010

    Science.gov (United States)

    Bumgarner, Johnathan R.; Thompson, Florence E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995–2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts.

  17. Summary statistics and graphical comparisons of historical hydrologic and water-quality data; Seco Creek Watershed, South-Central Texas

    Science.gov (United States)

    Brown, David W.; Slattery, Richard N.; Gilhousen, Jon R.

    1998-01-01

    The U.S. Geological Survey collected hydrologic (rainfall, streamflow, and reservoir content) and water-quality data in the Seco Creek watershed, south-central Texas. Most of the data from 15 sites were collected as part of a study in cooperation with the U.S. Department of Agriculture and the Texas State Soil and Water Conservation Board to evaluate the effects of agricultural best-management practices on surface- and ground-water quantity and quality in the 255-square-mile watershed. Nearly 400 best-management practices at 58 sites were implemented by landowners in the watershed during March 1990-September 1995. Most of the data are from the early 1990s, the period during and after implementation of best-management practices. Data from five sites include water quality and are summarized in tables and graphics in the text; and data from all 15 sites are summarized on a diskette. Maximum annual rainfall among the sites for which data are presented in the text (excluding one site) for the during-and-after-implementation period (March 1990-September 1995) was 53.27 inches in water year 1992. Maximum annual total streamflow among the sites for the period was 63,400 acre-feet, also in water year 1992. At the one site with water-quality data (under base-flow conditions) for both the before-implementation period and the during-and-after implementation period of best-management practices, percentiles (5, 25, 50, 75, 95) for specific conductance, nitrate concentration, and fecal coliform density were less for the during-and-after-implementation period than for the before-implementation period.

  18. Summary statistics and graphical comparisons of historical hydrologic and water-quality data, Seco Creek Watershed, South-Central Texas

    Science.gov (United States)

    Brown, David W.; Slattery, Richard N.; Gilhousen, Jon R.

    1998-01-01

    The U.S. Geological Survey collected hydrologic (rainfall, streamflow, and reservoir content) and water-quality data in the Seco Creek watershed, south-central Texas. Most of the data from 15 sites were collected as part of a study in cooperation with the U.S. Department of Agriculture and the Texas State Soil and Water Conservation Board to evaluate the effects of agricultural best-management practices on surface- and ground-water quantity and quality in the 255-square-mile watershed. Nearly 400 best-management practices at 58 sites were implemented by landowners in the watershed during March 1990-September 1995. Most of the data are from the early 1990s, the period during and after implementation of best-management practices. Data from five sites include water quality and are summarized in tables and graphics in the text; and data from all 15 sites are summarized on a diskette. Maximum annual rainfall among the sites for which data are presented in the text (excluding one site) for the during-and-after-implementation period (March 1990-September 1995) was 53.27 inches in water year 1992. Maximum annual total streamflow among the sites for the period was 63,400 acre-feet, also in water year 1992. At the one site with water-quality data (under base-flow conditions) for both the before-implementation period and the during-and-after implementation period of best-management practices, percentiles (5, 25, 50, 75, 95) for specific conductance, nitrate concentration, and fecal coliform density were less for the during-and-after-implementation period than for the before-implementation period.

  19. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    Science.gov (United States)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  20. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region - article no. W04407

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N. [University of Maryland, Frostburg, MD (United States)

    2009-04-15

    Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km{sup 2} watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

  1. Dom Export from Coastal Temperate Bog Forest Watersheds to Marine Ecosystems: Improving Understanding of Watershed Processes and Terrestrial-Marine Linkages on the Central Coast of British Columbia

    Science.gov (United States)

    Oliver, A. A.; Giesbrecht, I.; Tank, S. E.; Hunt, B. P.; Lertzman, K. P.

    2014-12-01

    The coastal temperate bog forests of British Columbia, Canada, export high amounts of dissolved organic matter (DOM) relative to the global average. Little is known about the factors influencing the quantity and quality of DOM exported from these forests or the role of this terrestrially-derived DOM in near-shore marine ecosystems. The objectives of this study are to better understand patterns and controls of DOM being exported from bog forest watersheds and its potential role in near-shore marine ecosystems. In 2013, the Kwakshua Watershed Ecosystems Study at Hakai Beach Institute (Calvert Island, BC) began year-round routine collection and analysis of DOM, nutrients, and environmental variables (e.g. conductivity, pH, temperature, dissolved oxygen) of freshwater grab samples from the outlets of seven watersheds draining directly to the ocean, as well as near-shore marine samples adjacent to freshwater outflows. Dissolved organic carbon (DOC) varied across watersheds (mean= 11.45 mg L-1, sd± 4.22) and fluctuated synchronously with seasons and storm events. In general, higher DOC was associated with lower specific UV absorbance (SUVA254; mean= 4.59 L mg-1 m-1, sd± 0.55). The relationship between DOC and SUVA254 differed between watersheds, suggesting exports in DOM are regulated by individual watershed attributes (e.g. landscape classification, flow paths) as well as precipitation. We are using LiDAR and other remote sensing data to examine watershed controls on DOC export. At near-shore marine sites, coupled CTD (Conductivity Temperature Depth) and optical measures (e.g. spectral slopes, slope ratios (SR), EEMs), showed a clear freshwater DOM signature within the system following rainfall events. Ongoing work will explore the relationship between bog forest watershed attributes and DOM flux and composition, with implications for further studies on biogeochemical cycling, carbon budgets, marine food webs, and climate change.

  2. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin

    2014-02-01

    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  3. Description of the physical environment an coal-mining history of West-Central Indiana, with emphasis on six small watersheds

    Science.gov (United States)

    Martin, Jeffrey D.; Crawford, Charles G.; Duwelius, Richard F.; Renn, Danny E.

    1990-01-01

    This report describes the physical and human environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds selected for study of the hydrologic effects of surface coal mining. The report summarizes information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal-mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana. Site-specific information is given on the morphology, geology, soils, land use, coal-mining history, and hydrologic instrumentation of the six watersheds, which are each less than 3 square miles in area.

  4. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    International Nuclear Information System (INIS)

    West-central Indiana is underlain by coal-bearing Pennsylvanian rocks. Nearly all of the area has been glaciated at least once and is characterized by wide flood plains and broad, flat uplands. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has > 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. More than 50,000 acres in west-central Indiana were disturbed by surface coal mining from 1941 through 1980. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and the unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Approximately one-half of the Pond Creek watershed is unmined,agricultural land. Soils are very well drained shaly silty loams that have formed on steeply sloping spoil banks. Both watersheds contain numerous impoundments of water and have enclosed areas that do not contribute surface runoff to streamflow. The ridges of mine spoil are covered with pine trees, but much of the soil surface is devoid of vegetation

  5. Probabilistic fatigue life of balsa cored sandwich composites subjected to transverse shear

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2015-01-01

    model are obtaining characteristic S–Ncurves corresponding to a given survival probability, and calibrating partial safety factorsfor material fatigue. The latter is demonstrated by a calibration performed using reliability analysis with the first-order reliability method. The measured variance in balsa...... shearproperties, for both static strength and fatigue failure, is higher than the variance normallyobserved in the properties for fiber-reinforced polymer composite laminates. This could be attributed to the fact that end-grain balsa wood is the product of a naturally occurringgrowth process, which cannot...... be controlled to the same extent as an industrial manufacturing processes. The large variance in the probabilistic model for fatigue life is reflected in the corresponding calibrated partial safety factors, which are higher thanthe factors usually associated with synthetic materials such as fiber...

  6. Natural Regeneration after Long-Term Bracken Fern Control with Balsa (Ochroma pyramidale) in the Neotropics

    OpenAIRE

    Samuel I. Levy-Tacher; Ivar Vleut; Francisco Román-Dañobeytia; James Aronson

    2015-01-01

    In many parts of the Neotropics, deforested areas are often colonized by the highly competitive invasive bracken fern (Pteridium aquilinum), which inhabits naturally regenerated forests and successional forests on abandoned farmland. Within the tropical forest region of Chiapas in southern Mexico, we implemented an experiment in 2005 to out-compete bracken fern infestation and reduce or eliminate live bracken rhizomes using several treatments: Direct sowing of balsa seeds (Ochroma pyramidale...

  7. Precipitation and runoff simulations of select perennial and ephemeral watersheds in the middle Carson River basin, Eagle, Dayton, and Churchill Valleys, west-central Nevada

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2011-01-01

    The effect that land use may have on streamflow in the Carson River, and ultimately its impact on downstream users can be evaluated by simulating precipitation-runoff processes and estimating groundwater inflow in the middle Carson River in west-central Nevada. To address these concerns, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, began a study in 2008 to evaluate groundwater flow in the Carson River basin extending from Eagle Valley to Churchill Valley, called the middle Carson River basin in this report. This report documents the development and calibration of 12 watershed models and presents model results and the estimated mean annual water budgets for the modeled watersheds. This part of the larger middle Carson River study will provide estimates of runoff tributary to the Carson River and the potential for groundwater inflow (defined here as that component of recharge derived from percolation of excess water from the soil zone to the groundwater reservoir). The model used for the study was the U.S. Geological Survey's Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Models were developed for 2 perennial watersheds in Eagle Valley having gaged daily mean runoff, Ash Canyon Creek and Clear Creek, and for 10 ephemeral watersheds in the Dayton Valley and Churchill Valley hydrologic areas. Model calibration was constrained by daily mean runoff for the 2 perennial watersheds and for the 10 ephemeral watersheds by limited indirect runoff estimates and by mean annual runoff estimates derived from empirical methods. The models were further constrained by limited climate data adjusted for altitude differences using annual precipitation volumes estimated in a previous study. The calibration periods were water years 1980-2007 for Ash Canyon Creek, and water years 1991-2007 for Clear Creek. To

  8. Presence of nonylphenol ethoxylate surfactants in a watershed in central Mexico and removal from domestic sewage in a treatment wetland.

    Science.gov (United States)

    Belmont, Marco A; Ikonomou, Michael; Metcalfe, Chris D

    2006-01-01

    The Texcoco River in central Mexico is polluted with domestic wastewater as a result of discharges of untreated or inadequately treated sewage. Since nonylphenol ethoxylate (NPEO) surfactants and their intermediate degradation products such as nonylphenol (NP) and NP mono- and diethoxylate (NP1EO, NP2EO) have been found in domestic wastewater and in surface waters near wastewater discharges in industrialized countries, the Texcoco River was sampled to determine whether these compounds were present. The results indicated that NPEOs were present at very high concentrations (> 100 microg/L) in the lower reaches of the Texcoco River, but unlike rivers in industrialized countries, relatively low concentrations of intermediate degradation products, including NP1EO, NP2EO, and NP, were present. The presence and fate of NPEOs compounds in wastewater treatment plants have been studied only in conventional treatment systems in industrialized countries. In this study, the fate of these compounds was studied in a pilot-scale treatment wetland constructed in the small community of Santa Maria Nativitas in the Texcoco River watershed. The treatment wetland removed > 75% of NPEOs from the domestic wastewater, but the greatest proportion of removal occurred in parts of the treatment wetland where sedimentation existed. This is the first report of NPEO compounds in the water resources of a developing country. These data indicate that construction of low-cost and technologically simple treatment wetlands may be one solution to reducing the impacts of contaminants from domestic sewage in developing countries, such as Mexico.

  9. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt

    Directory of Open Access Journals (Sweden)

    N. Ohlanders

    2013-03-01

    Full Text Available Central Chile is an economically important region for which water supply is dependent on snow- and ice melt. Nevertheless, the relative contribution of water supplied by each of those two sources remains largely unknown. This study represents the first attempt to estimate the region's water balance using stable isotopes of water in streamflow and its sources. Isotopic ratios of both H and O were monitored during one year in a high-altitude basin with a moderate glacier cover (11.5%. We found that the steep altitude gradient of the studied catchment caused a corresponding gradient in snowpack isotopic composition and that this spatial variation had a profound effect on the temporal evolution of streamflow isotopic composition during snowmelt. Glacier melt and snowmelt contributions to streamflow in the studied basin were determined using a quantitative analysis of the isotopic composition of streamflow and its sources, resulting in a glacier melt contribution of 50–90% for the unusually dry melt year of 2011/2012. This suggests that in (La Niña years with little precipitation, glacier melt is an important water source for central Chile. Predicted decreases in glacier melt due to global warming may therefore have a negative long-term impact on water availability in the Central Andes. The pronounced seasonal pattern in streamflow isotope composition and its close relation to the variability in snow cover and discharge presents a potentially powerful tool to relate discharge variability in mountainous, melt-dominated catchments with related factors such as contributions of sources to streamflow and snowmelt transit times.

  10. FLUCTUACIONES ECONÓMICAS PREHISPÁNICAS EN LA CUENCA DEL RÍO BALSAS, MÉXICO (Prehispanic Economic Fluctuations in the Balsas River Basin, Mexico

    Directory of Open Access Journals (Sweden)

    Pascual Izquierdo-Egea

    2014-07-01

    Full Text Available Aplicando el método de valoración contextual al análisis del registro funerario de la cuenca del río Balsas, México, podemos aislar las fluctuaciones económicas y los cambios sociales prehispánicos codificados en la composición de los ajuares mortuorios. Entre los relevantes resultados obtenidos, destaca que el colapso de las antiguas civilizaciones mesoamericanas —Teotihuacan, Monte Albán o la maya clásica— aparezca perfectamente reflejado en las ofrendas de los entierros del periodo Clásico Tardío. ENGLISH: By applying the contextual valuation method to the analysis of the mortuary record in the Balsas River basin, Mexico, we can isolate the prehispanic economic fluctuations and social changes encoded in the composition of grave goods. Among the relevant results obtained, highlights that the collapse of ancient Mesoamerican civilizations (Teotihuacan, Monte Alban and the Maya Classic appears perfectly reflected in the offerings of Late Classic burials.

  11. Description of the physical environment and coal-mining history of west-central Indiana, with emphasis on six small watersheds

    Science.gov (United States)

    Martin, J.D.; Crawford, Charles G.; Duwelius, R.F.; Renn, D.E.

    1987-01-01

    Information on the geology, geomorphology, soils, climate, hydrology, water use, land use, population, and coal mining history of Clay, Owen, Sullivan, and Vigo Counties in Indiana is summarized. Site-specific information is given on the morphology , geology, soils, land use, coal mining history, and hydrologic instrumentation of the six watersheds which are each less than 3 sq mi in area. The Wabash, White, and Eel Rivers are the major drainages in west-central Indiana. Average annual precipitation is about 39.5 in/yr and average annual runoff is about 13 in/yr. The most productive aquifers are confined or unconfined outwash aquifers located along the major rivers. Bedrock aquifers are regionally insignificant but are the sole source of groundwater for areas that lack outwash, alluvium, or sand and gravel lenses in till. Indiana has more than 17 billion short tons of recoverable coal reserves; about 11% can be mined by surface methods. Almost half of Indiana 's surface reserves are in Clay, Owen, Sullivan, and Vigo Counties. More than 50,000 acres in west-central Indiana have been disturbed by surface coal mining from 1941 through 1980. Big Slough and Hooker Creek are streams that drain unmined, agricultural watersheds. Row-crop corn and soybeans are the principal crops. Soils are moderately well drained silt loams, and the watersheds well developed dendritic drainage systems. Unnamed tributaries drain mined and reclaimed watersheds. Ridges of mine spoil have been graded to a gently rolling topography. Soils are well drained and consist of 6 to 12 inches of silt-loam topsoil that was stockpiled and then replaced over shale and sandstone fragments of the graded mine spoil. Grasses and legumes form the vegetative cover in each watershed. Pond Creek and an unnamed tributary to Big Branch are streams that drain mined and unreclaimed watersheds. Soils are very well drained shaly silty loams that have formed on steeply sloping banks. Both watersheds contain numerous

  12. Boundary of the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This vector data set delineates the approximate boundary of the Eagle River watershed valley-fill aquifer (ERWVFA). This data set was developed by a cooperative...

  13. Characterization of Amazon fibers of the peach palm, balsa, and babassu by XDR, TGA and NMR; Caracterizacao das fibras amazonicas de pupunha, babacu e balsa atraves de DRX, TG e RMN

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Maria A.; Marconcini, Jose M., E-mail: mariaalice@cnpdia.embrapa.br [Embrapa Instrumentacao, Sao Carlos-SP (Brazil); Morelli, Carolina L.; Marinelli, Alessandra L.; Bretas, Rosario E.S. [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil)

    2011-07-01

    The aim of this work was to present the results by testing X-ray diffraction (XRD), thermogravimetric analysis (TG), nuclear magnetic resonance (NMR) and determining the moisture content of the peach palm, balsa and babassu fibers for assessing the feasibility of composite materials. The fibers of peach palm, balsa and babassu showed characteristic chemical structure of lignocellulosic material, and good thermal stability up to 220 deg C. The fiber with the highest crystallinity index (Ic) is the peach palm (72%) and the less crystalline is the babassu (37%), while the balsa fibers have Ic equal to 64%. The results have shown that these fibers can be used in the manufacture of composite materials. (author)

  14. Estimation of streamflow gains and losses in the lower San Antonio River watershed, south-central Texas, 2006-10

    Science.gov (United States)

    Lizarraga, Joy S.; Wehmeyer, Loren L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, investigated streamflow gains and losses during 2006-10 in the lower San Antonio River watershed in south-central Texas. Streamflow gains and losses were estimated using 2006-10 continuous streamflow records from 11 continuous streamflow-gaging stations, and discrete streamflow measurements made at as many as 20 locations on the San Antonio River and selected tributaries during four synoptic surveys during 2006-7. From the continuous streamflow records, the greatest streamflow gain on the lower San Antonio River occurred in the reach from Falls City, Tex., to Goliad, Tex. The greatest streamflow gain on Cibolo Creek during 2006-10 occurred in the reach from near Saint Hedwig, Tex., to Sutherland Springs, Tex. The San Antonio River between Floresville, Tex., and Falls City was the only reach that had an estimated streamflow loss during 2006-10. During all four synoptic streamflow measurement surveys, the only substantially flowing tributary reach to the main stem of the lower San Antonio River was Cibolo Creek. Along the main stem of the lower San Antonio River, verifiable gains larger than the potential measurement error were estimated in two of the four synoptic streamflow measurement surveys. These gaining reaches occurred in the two most downstream reaches of the San Antonio River between Goliad and Farm Road (FM) 2506 near Fannin, Tex., and between FM 2506 near Fannin to near McFaddin. There were verifiable gains in streamflow in Cibolo Creek, between La Vernia, Tex., and the town of Sutherland Springs during all four surveys, estimated at between 4.8 and 14 ft3/s.

  15. Aquatic biological communities and associated habitats at selected sites in the Big Wood River Watershed, south-central Idaho, 2014

    Science.gov (United States)

    MacCoy, Dorene E.; Short, Terry M.

    2016-09-28

    Assessments of streamflow (discharge) parameters, water quality, physical habitat, and biological communities were completed between May and September 2014 as part of a monitoring program in the Big Wood River watershed of south-central Idaho. The sampling was conducted by the U.S. Geological Survey in cooperation with Blaine County, Trout Unlimited, the Nature Conservancy, and the Wood River Land Trust to help identify the status of aquatic resources at selected locations in the watershed. Information in this report provides a basis with which to evaluate and monitor the long-term health of the Big Wood River and its major tributaries. Sampling sites were co-located with existing U.S. Geological Survey streamgaging stations: three on the main stem Big Wood River and four on the North Fork Big Wood River (North Fork), Warm Springs Creek (Warm Sp), Trail Creek (Trail Ck), and East Fork Big Wood River (East Fork) tributaries.The analytical results and quality-assurance information for water quality, physical habitat, and biological community samples collected at study sites during 2 weeks in September 2014 are summarized. Water-quality data include concentrations of major nutrients, suspended sediment, dissolved oxygen, and fecal-coliform bacteria. To assess the potential effects of nutrient enrichment on algal growth, concentrations of periphyton biomass (chlorophyll-a and ash free dry weight) in riffle habitats were determined at each site. Physical habitat parameters include stream channel morphology, habitat volume, instream structure, substrate composition, and riparian vegetative cover. Biological data include taxa richness, abundance, and stream-health indicator metrics for macroinvertebrate and fish communities. Statistical summaries of the water-quality, habitat, and biological data are provided along with discussion of how these findings relate to the health of aquatic resources in the Big Wood River watershed.Seasonal discharge patterns using statistical

  16. Aquatic biological communities and associated habitats at selected sites in the Big Wood River Watershed, south-central Idaho, 2014

    Science.gov (United States)

    MacCoy, Dorene E.; Short, Terry M.

    2016-09-28

    Assessments of streamflow (discharge) parameters, water quality, physical habitat, and biological communities were completed between May and September 2014 as part of a monitoring program in the Big Wood River watershed of south-central Idaho. The sampling was conducted by the U.S. Geological Survey in cooperation with Blaine County, Trout Unlimited, the Nature Conservancy, and the Wood River Land Trust to help identify the status of aquatic resources at selected locations in the watershed. Information in this report provides a basis with which to evaluate and monitor the long-term health of the Big Wood River and its major tributaries. Sampling sites were co-located with existing U.S. Geological Survey streamgaging stations: three on the main stem Big Wood River and four on the North Fork Big Wood River (North Fork), Warm Springs Creek (Warm Sp), Trail Creek (Trail Ck), and East Fork Big Wood River (East Fork) tributaries.The analytical results and quality-assurance information for water quality, physical habitat, and biological community samples collected at study sites during 2 weeks in September 2014 are summarized. Water-quality data include concentrations of major nutrients, suspended sediment, dissolved oxygen, and fecal-coliform bacteria. To assess the potential effects of nutrient enrichment on algal growth, concentrations of periphyton biomass (chlorophyll-a and ash free dry weight) in riffle habitats were determined at each site. Physical habitat parameters include stream channel morphology, habitat volume, instream structure, substrate composition, and riparian vegetative cover. Biological data include taxa richness, abundance, and stream-health indicator metrics for macroinvertebrate and fish communities. Statistical summaries of the water-quality, habitat, and biological data are provided along with discussion of how these findings relate to the health of aquatic resources in the Big Wood River watershed.Seasonal discharge patterns using statistical

  17. Coptoborus ochromactonus, n. sp. (Coleoptera: Curculionidae: Scolytinae), an emerging pest of cultivated balsa (Malvales: Malvaceae) in Ecuador.

    Science.gov (United States)

    Stilwell, Abby R; Smith, Sarah M; Cognato, Anthony I; Martinez, Malena; Flowers, R Wills

    2014-04-01

    A new species of xyleborine ambrosia beetle has been found to attack balsa, Ochroma pyramidale (Cavanilles ex Lamarck) Urban, in Ecuador. Coptoborus ochromactonus Smith & Cognato is described and its biology is reported. Large-scale surveys were conducted between 2006 and 2009, and observational studies were carried out between 2010 and 2013 in Ecuadorian commercial plantations to determine life history and host preference characteristics. C. ochromactonus attacked balsa between 1.5 and 3 yr in age. Successful attacks were more prevalent in smaller diameter trees and unhealthy trees. In general, attacks and beetle-caused mortality were more prevalent during the dry summer months when trees were under more moisture and light stress. Fungal mycelia were consistently observed coating beetle galleries and are likely the true damaging agent to balsa trees. PMID:24772549

  18. Bees (Hymenoptera: Apidae) present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 = Abelhas (Hymenoptera: Apidae) associadas às flores do pau-de-balsa Ochroma lagopus Swartz, 1788

    OpenAIRE

    Carla Regina Guimarães Brighenti; Deodoro Magno Brighenti

    2010-01-01

    The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the familyApidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Af...

  19. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland

    Directory of Open Access Journals (Sweden)

    Smarzyńska Karolina

    2016-06-01

    Full Text Available Soil and Water Assessment Tool (SWAT ver. 2005 was applied to study water balance and nitrogen load pathways in a small agricultural watershed in the lowlands of central Poland. The natural flow regime of the Zgłowiączka River was strongly modified by human activity (deforestation and installation of a subsurface drainage system to facilitate stable crop production. SWAT was calibrated for daily and monthly discharge and monthly nitrate nitrogen load. Model efficiency was tested using manual techniques (subjective and evaluation statistics (objective. Values of Nash–Sutcliffe efficiency coefficient (NSE, coefficient of determination (R2 and percentage of bias for daily/monthly discharge simulations and monthly load indicated good or very good fit of simulated discharge and nitrate nitrogen load to the observed data set. Model precision and accuracy of fit was proved in validation. The calibrated and validated SWAT was used to assess water balance and nitrogen fluxes in the watershed. According to the results, the share of tile drainage in water yield is equal to 78%. The model analysis indicated the most significant pathway of NO3-N to surface waters in the study area, namely the tile drainage combined with lateral flow. Its share in total NO3-N load amounted to 89%. Identification of nitrogen fluxes in the watershed is crucial for decision makers in order to manage water resources and to implement the most effective measures to limit diffuse pollution from arable land to surface waters.

  20. Hydrology, Water Quality, and Surface- and Ground-Water Interactions in the Upper Hillsborough River Watershed, West-Central Florida

    Science.gov (United States)

    Trommer, J.T.; Sacks, L.A.; Kuniansky, E.L.

    2007-01-01

    A study of the Hillsborough River watershed was conducted between October 1999 through September 2003 to characterize the hydrology, water quality, and interaction between the surface and ground water in the highly karstic uppermost part of the watershed. Information such as locations of ground-water recharge and discharge, depth of the flow system interacting with the stream, and water quality in the watershed can aid in prudent water-management decisions. The upper Hillsborough River watershed covers a 220-square-mile area upstream from Hillsborough River State Park where the watershed is relatively undeveloped. The watershed contains a second order magnitude spring, many karst features, poorly drained swamps, marshes, upland flatwoods, and ridge areas. The upper Hillsborough River watershed is subdivided into two major subbasins, namely, the upper Hillsborough River subbasin, and the Blackwater Creek subbasin. The Blackwater Creek subbasin includes the Itchepackesassa Creek subbasin, which in turn includes the East Canal subbasin. The upper Hillsborough River watershed is underlain by thick sequences of carbonate rock that are covered by thin surficial deposits of unconsolidated sand and sandy clay. The clay layer is breached in many places because of the karst nature of the underlying limestone, and the highly variable degree of confinement between the Upper Floridan and surficial aquifers throughout the watershed. Potentiometric-surface maps indicate good hydraulic connection between the Upper Floridan aquifer and the Hillsborough River, and a poorer connection with Blackwater and Itchepackesassa Creeks. Similar water level elevations and fluctuations in the Upper Floridan and surficial aquifers at paired wells also indicate good hydraulic connection. Calcium was the dominant ion in ground water from all wells sampled in the watershed. Nitrate concentrations were near or below the detection limit in all except two wells that may have been affected by

  1. Simulation of streamflow, evapotranspiration, and groundwater recharge in the lower San Antonio River Watershed, South-Central Texas, 2000-2007

    Science.gov (United States)

    Lizarraga, Joy S.; Ockerman, Darwin J.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, the Evergreen Underground Water Conservation District, and the Goliad County Groundwater Conservation District, configured, calibrated, and tested a watershed model for a study area consisting of about 2,150 square miles of the lower San Antonio River watershed in Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties in south-central Texas. The model simulates streamflow, evapotranspiration (ET), and groundwater recharge using rainfall, potential ET, and upstream discharge data obtained from National Weather Service meteorological stations and USGS streamflow-gaging stations. Additional time-series inputs to the model include wastewater treatment-plant discharges, withdrawals for cropland irrigation, and estimated inflows from springs. Model simulations of streamflow, ET, and groundwater recharge were done for 2000-2007. Because of the complexity of the study area, the lower San Antonio River watershed was divided into four subwatersheds; separate HSPF models were developed for each subwatershed. Simulation of the overall study area involved running simulations of the three upstream models, then running the downstream model. The surficial geology was simplified as nine contiguous water-budget zones to meet model computational limitations and also to define zones for which ET, recharge, and other water-budget information would be output by the model. The model was calibrated and tested using streamflow data from 10 streamflow-gaging stations; additionally, simulated ET was compared with measured ET from a meteorological station west of the study area. The model calibration is considered very good; streamflow volumes were calibrated to within 10 percent of measured streamflow volumes. During 2000-2007, the estimated annual mean rainfall for the water-budget zones ranged from 33.7 to 38.5 inches per year; the estimated annual mean rainfall for the entire

  2. Processes and trends of the land use change in Aksu watershed in the central Asia from 1960 to 2008

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Land use change (LUC) in trans-boundary watersheds is of great importance to environmental assessment. The Aksu River is the largest trans-boundary river crossing Kyrgyzstan and China,but there was little information on the LUC of the watershed. We quantitatively investigated the processes and trends of its LUC by using analytic models based on the land use data derived from the remote sensing images and topographic maps. The LUC was in the quasi-balanced status with a slight difference between the loss and the gain of the area for most land use types during the period of 1960-1990,whereas transferred to the unbalanced status with significant difference between the loss and gain of the area during the period of 1990-2008. At the same time,land conversion direction changed from two-way transition to one-way transition for the most land use types. The integrated rate of net change of land use during the period of 1990-2008 is 2.1 times of that during the period of 1960-1990. Information on the processes and trends of LUC is valuable for better understanding the environmental changes across the whole trans-boundary watershed,and helpful to decision-making management for Kyrgyzstan and China.

  3. Groundwater Quality, Age, and Probability of Contamination, Eagle River Watershed Valley-Fill Aquifer, North-Central Colorado, 2006-2007

    Science.gov (United States)

    Rupert, Michael G.; Plummer, L. Niel

    2009-01-01

    The Eagle River watershed is located near the destination resort town of Vail, Colorado. The area has a fastgrowing permanent population, and the resort industry is rapidly expanding. A large percentage of the land undergoing development to support that growth overlies the Eagle River watershed valley-fill aquifer (ERWVFA), which likely has a high predisposition to groundwater contamination. As development continues, local organizations need tools to evaluate potential land-development effects on ground- and surface-water resources so that informed land-use and water management decisions can be made. To help develop these tools, the U.S. Geological Survey (USGS), in cooperation with Eagle County, the Eagle River Water and Sanitation District, the Town of Eagle, the Town of Gypsum, and the Upper Eagle Regional Water Authority, conducted a study in 2006-2007 of the groundwater quality, age, and probability of contamination in the ERWVFA, north-central Colorado. Ground- and surface-water quality samples were analyzed for major ions, nutrients, stable isotopes of hydrogen and oxygen in water, tritium, dissolved gases, chlorofluorocarbons (CFCs), and volatile organic compounds (VOCs) determined with very low-level laboratory methods. The major-ion data indicate that groundwaters in the ERWVFA can be classified into two major groups: groundwater that was recharged by infiltration of surface water, and groundwater that had less immediate recharge from surface water and had elevated sulfate concentrations. Sulfate concentrations exceeded the USEPA National Secondary Drinking Water Regulations (250 milligrams per liter) in many wells near Eagle, Gypsum, and Dotsero. The predominant source of sulfate to groundwater in the Eagle River watershed is the Eagle Valley Evaporite, which is a gypsum deposit of Pennsylvanian age located predominantly in the western one-half of Eagle County.

  4. Cicatih Watershed

    OpenAIRE

    CIFOR

    2007-01-01

    On the 15 of March, IPB and CIFOR organized a workshop as an initial effort to invite all stakeholders of CICATIH watershed (Sukabumi - West Java) to discuss potentials and constrains in protecting the watershed and improving the quality of life of the people residing within the watershed. PES-1 (Payments for Environmental Services Associate Award)

  5. Watershed Seasons

    Science.gov (United States)

    Endreny, Anna

    2007-01-01

    All schools are located in "watersheds," land that drains into bodies of water. Some watersheds, like the one which encompasses the school discussed in this article, include bodies of water that are walking distance from the school. The watershed cited in this article has a brook and wetland within a several-block walk from the school. This…

  6. Sediment and discharge yields within a minimally disturbed, headwater watershed in North Central Pennsylvania, USA, with an emphasis on Superstorm Sandy

    Science.gov (United States)

    Maloney, Kelly O.; Shull, Dustin R.

    2015-01-01

    We estimated discharge and suspended sediment (SS) yield in a minimally disturbed watershed in North Central Pennsylvania, USA, and compared a typical storm (September storm, 4.80 cm) to a large storm (Superstorm Sandy, 7.47 cm rainfall). Depending on branch, Sandy contributed 9.7–19.9 times more discharge and 11.5–37.4 times more SS than the September storm. During the September storm, the upper two branches accounted for 60.6% of discharge and 88.8% of SS at Lower Branch; during Sandy these percentages dropped to 36.1% for discharge and 30.1% for SS. The branch with close proximity roads had over two-three times per area SS yield than the branch without such roads. Hysteresis loops showed typical clockwise patterns for the September storm and more complicated patterns for Sandy, reflecting the multipeak event. Estimates of SS and hysteresis in minimally disturbed watersheds provide useful information that can be compared spatially and temporally to facilitate management.

  7. Vegetation Control in the Long-term Self-stabilisation of the Liangzhou Oasis of the Upper Shiyang River Watershed of West-central Gansu, NW China

    Science.gov (United States)

    Bourque, Charles; Hassan, Quazi

    2010-05-01

    Oases are special ecological systems that naturally oppose the encroachment of deserts by staying moist. Oases provide important habitat refugia for plants, animals, and humans alike. Oases in NW China account for only about 5% of the total land area of the region, but give shelter and feed about 95% of the area's growing population. It has been proposed by many scientists and observers of desertification in NW China that rapid economic development in the area is largely unsustainable and is occurring at the very detriment of the oases. This presentation explores the relationship between vegetation in the Liangzhou Oasis in the Upper Shiyang River Watershed (USRW) of west-central Gansu, China, and within-watershed precipitation, soil water storage, and oasis self-support. Oases along the base of the Qilian Mountains receive a significant portion of their water supply (> 90%) from surface and subsurface flow originating from the Qilian Mountains. Investigation of vegetation control on oasis-water conditions in the USRW is based on an application of a process model of soil-water hydrology. The model is used to simulate long-term soil water content in the Liangzhou Oasis as a function of (i) monthly composites of MODIS images of land surface and mean air temperature, (ii) spatiotemporal calculations of monthly precipitation and relative humidity generated with the assistance of genetic algorithms, and (iii) an 80-m resolution digital elevation model of the area. Modelled removal of vegetation is shown to affect within-watershed precipitation and soil water storage by reducing the exchange of water vapour from the land surface to the air, increasing the air's lifting condensation level by promoting drier air conditions, and causing the high-intensity precipitation band in the Qilian Mountains to weaken and to be displaced upward in the watershed, leading to an overall reduction in soil water in the Liangzhou Oasis. Feedback mechanisms of oasis self-support introduced

  8. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    Science.gov (United States)

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  9. Significance of silica in identifying the processes affecting groundwater chemistry in parts of Kali watershed, Central Ganga Plain, India

    Science.gov (United States)

    Khan, Arina; Umar, Rashid; Khan, Haris Hasan

    2015-03-01

    Chemical geothermometry using silica was employed in the present study to estimate the sub-surface groundwater temperature and the corresponding depth of the groundwater in parts of Kali watershed in Bulandshahr and Aligarh district. 42 groundwater samples each were collected from borewells during pre-monsoon and post-monsoon season 2012 and analysed for all major ions and silica. Silica values in the area range from 18.72 to 50.64 mg/l in May 2012 and from 18.89 to 52.23 mg/l in November 2012. Chalcedony temperature >60 °C was deduced for five different locations in each season, which corresponds to a depth of more than 1,000 metres. Spatial variation of silica shows high values along a considerable stretch of River Kali, during pre-monsoon season. Relationship of silica with Total Dissolved Solids and Chloride was established to infer the role of geogenic and anthropogenic processes in solute acquisition. It was found that both water-rock interaction and anthropogenic influences are responsible for the observed water chemistry.

  10. Growth and production of Donax striatus (Bivalvia: Donacidae) from Las Balsas beach, Gibara, Cuba.

    Science.gov (United States)

    Ocaña, Frank A

    2015-09-01

    Clams of the genus Donax are worldwide the dominating group of the invertebrate community on sandy beaches. They are primary consumers that provide a significant abundance and biomass to the ecosystem. In the Caribbean, Donax striatus has an important role for nature and human, nonetheless studies on the population dynamics of this beach clam are scarce and no information exists on secondary production of this species. Growth parameters and secondary production of D. striatus were estimated from February 2008 to November 2009 at Las Balsas beach, Northeastern Cuba, in order to provide basic information for management purposes. In each month 45 samples were taken by means of a PVC corer of 0.025 m2 area and sieved with a 1 mm mesh. Animals were measured and weighted with and without shell. A total of 5 471 specimens were collected during the sampling period. Shell length ranged from 2.7-33.3 mm. Growth parameters estimated from length frequency data were L∞ = 36.1 mm, K= 0.8/yr and t0= 0.2/yr. The growth performance resulted in values of Φ'= 3.02. Life span was 2.4 yrs and mortality rate was 3.07 /yr. In 2008, mean abundance of D. striatus ranged between 17.1 - 770.7 ind./m2. In 2009 the lowest mean abundance was 34.4 and the highest was 892.5 ind./m2. During 2009 biomass and production was more than twice higher in comparison with 2008. Individual production showed highest values in the 24 mm shell size (3.74 g/m2.yr) and 25 mm (0.71 g/m2.yr), considering mass with shell and without shell, respectively. During 2009 abundance of individuals with 15 mm shell length or more increased resulting in higher biomass and production, compared to 2008. Using the conversion factor of wet mass to ash free dry mass (AFDM), annual production ranged between 2.87-6.11 g AFDM/m2.yr, resulting in a turnover rate (P/B) between 5.11 and 3.47 in 2008 and 2009, respectively. The rapid growth and high turnover rate of D. striatus suggest a rapid recovery of the population. These

  11. Growth and production of Donax striatus (Bivalvia: Donacidae) from Las Balsas beach, Gibara, Cuba.

    Science.gov (United States)

    Ocaña, Frank A

    2015-09-01

    Clams of the genus Donax are worldwide the dominating group of the invertebrate community on sandy beaches. They are primary consumers that provide a significant abundance and biomass to the ecosystem. In the Caribbean, Donax striatus has an important role for nature and human, nonetheless studies on the population dynamics of this beach clam are scarce and no information exists on secondary production of this species. Growth parameters and secondary production of D. striatus were estimated from February 2008 to November 2009 at Las Balsas beach, Northeastern Cuba, in order to provide basic information for management purposes. In each month 45 samples were taken by means of a PVC corer of 0.025 m2 area and sieved with a 1 mm mesh. Animals were measured and weighted with and without shell. A total of 5 471 specimens were collected during the sampling period. Shell length ranged from 2.7-33.3 mm. Growth parameters estimated from length frequency data were L∞ = 36.1 mm, K= 0.8/yr and t0= 0.2/yr. The growth performance resulted in values of Φ'= 3.02. Life span was 2.4 yrs and mortality rate was 3.07 /yr. In 2008, mean abundance of D. striatus ranged between 17.1 - 770.7 ind./m2. In 2009 the lowest mean abundance was 34.4 and the highest was 892.5 ind./m2. During 2009 biomass and production was more than twice higher in comparison with 2008. Individual production showed highest values in the 24 mm shell size (3.74 g/m2.yr) and 25 mm (0.71 g/m2.yr), considering mass with shell and without shell, respectively. During 2009 abundance of individuals with 15 mm shell length or more increased resulting in higher biomass and production, compared to 2008. Using the conversion factor of wet mass to ash free dry mass (AFDM), annual production ranged between 2.87-6.11 g AFDM/m2.yr, resulting in a turnover rate (P/B) between 5.11 and 3.47 in 2008 and 2009, respectively. The rapid growth and high turnover rate of D. striatus suggest a rapid recovery of the population. These

  12. Tecnologia alternativa para a quebra de dormência das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae) Alternative technology for breaking dormancy of balsa wood (Ochroma lagopus Sw., Bombacaceae) seeds

    OpenAIRE

    Antenor P. Barbosa; Paulo de .T. B. Sampaio; Moacir. A. A. Campos; Vânia P. Varela; Cláudia de Q. B. Gonçalves; Shigeo Iida

    2004-01-01

    Este trabalho, teve como objetivo estudar a germinação das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae) em diferentes estágios de maturação aparente dos frutos; a germinação das sementes provenientes de árvores com diferentes diâmetros a altura do peito (DAP) e a germinação das sementes tratadas para quebra de dormência. No primeiro experimento, avaliou-se a germinação das sementes dos frutos verdes, verdosos (verde amarelado), negros (fruto fechado) e negros deiscentes (fruto ...

  13. Conservação e vigor de sementes de pau-de-balsa (Ochroma pyramidale) Conservation and vigour of balsawood seeds (Ochroma pyramidale)

    OpenAIRE

    Antonio Moçambite Pinto; Mario Takao Inoue; Antonio Carlos Nogueira

    2004-01-01

    Ochroma pyramidale, Bombacaceae, conhecida popularmente como pau-de-balsa, é utilizada para construção de jangadas, balsas, salva-vidas, bóias, brinquedos e na fabricação de papel e celulose. O objetivo deste estudo foi definir um método de acondicionamento de sementes de O. pyramidale, visando a conservação da viabilidade e vigor destas para sua utilização e comercialização em épocas de baixa produção. Sementes de O. pyramidale foram embaladas em sacos de papel tipo kraft e sacos de plástico...

  14. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  15. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns.

  16. Statistical study to identify the key factors governing ground water recharge in the watersheds of the arid Central Asia.

    Science.gov (United States)

    Zhu, Binq-Qi; Wang, Yue-Ling

    2016-01-01

    Understanding the source and recharge of ground waters is of great significance to our knowledge in hydrological cycles in arid environments over the world. Northern Xinjiang in northwestern China is a significant repository of information relating to the hydrological evolution and climatic changes in central Asia. In this study, two multivariate statistical techniques, hierarchical cluster analysis (HCA) and principal component analysis (PCA), were used to assess the ground water recharge and its governing factors, with the principal idea of exploring the above techniques to utilize all available hydrogeochemical variables in the quality assessment, which are not considered in the conventional techniques like Stiff and Piper diagrams. Q-mode HCA and R-mode PCA were combined to partition the water samples into seven major water clusters (C1-C7) and three principal components (PC1-PC3, PC1 salinity, PC2 hydroclimate, PC3 contaminant). The water samples C1 + C4 were classified as recharge area waters (Ca-HCO3 water), C2 + C3 as transitional zone waters (Ca-Mg-HCO3-SO4 water), and C5 + C6 + C7 as discharge area waters (Na-SO4 water). Based on the Q-mode PCA scores, three groups of geochemical processes influencing recharge regimes were identified: geogenic (i.e., caused by natural geochemical processes), geomorphoclimatic (caused by topography and climate), and anthropogenic (caused by ground water contamination). It is proposed that differences in recharge mechanism and ground water evolution, and possible bedrock composition difference, are responsible for the chemical genesis of these waters. These will continue to influence the geochemistry of the northern Xinjiang drainage system for a long time due to its steady tectonics and arid climate. This study proved that the chemistry differentiation of ground water can effectively support the identification of ground water recharge and evolution patterns. PMID:26718947

  17. Probability of Elevated Nitrate Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated nitrate concentrations in groundwater in the Eagle River watershed valley-fill aquifer, Eagle...

  18. Probability of Elevated Volatile Organic Compound (VOC) Concentrations in Groundwater in the Eagle River Watershed Valley-Fill Aquifer, Eagle County, North-Central Colorado, 2006-2007

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This raster data set delineates the predicted probability of elevated volatile organic compound (VOC) concentrations in groundwater in the Eagle River watershed...

  19. Soil properties in different types of Eucalypt Plantations in a small forested watershed, north-central Portugal

    Science.gov (United States)

    Santos, J. M.; van Beersum, S.; van Hall, I.; Bernard-Jannin, L.; Rial-Rivas, M. E.; Nunes, J. P.; Keizer, J. J.

    2012-04-01

    The main aim of the HIDRIA project is to improve the knowledge and understanding of factors and processes that determine the hydrological behaviour of forested foothills in the Caramulo mountain range, North-Central Portugal. The changes from natural forest cover to Eucalyptus plantations in the last decades in Portugal is present in Serra de Cima catchment, one of the four experimental catchments monitored within the framework of the project. The objectives of the present study are to determine the effects of these changes on soil properties, and to improve the parameterization of the SWAT model to simulate the impact of land-use changes associated with forestry practices on hydrological processes. The study catchment (Serra de Cima) is located in the Águeda Basin, draining the foothills of the Caramulo mountains east of Águeda (40°36'N, -8°20'E). The climate is wet Mediterranean with a mean annual precipitation of about 1600 mm at 445 m a.s.l. Soils are generally Umbric Leptosols (pine forest (27% of the total area). Eucalypts are managed as Short Rotation Coppices, with each stand growing during 30-36 years; trees are cut every 10-12 years and stems re-grow from roots afterwards. The eucalypt stands in the study area differ in tree age, undergoing their first, second or third rotations. Climate, soil moisture and streamflow are monitored at the catchment. The presentation will focus on the results of a field campaign done on June 2011 to characterize soil and vegetation properties for six points on eucalypt stands in different stages of growth, as well as pine stands. The parameters sampled in this campaign were selected based on a sensitivity analysis of the SWAT model, and included: tree density and diameter; Leaf Area Index (LAI); ground cover; profile description; dry bulk density; texture and rock content; organic matter content; intensity of Soil Water Repellency (Molarity of Ethanol Droplet test); and near-saturated hydraulic conductivity (mini

  20. Standard practice for acoustic emission examination of pressurized containers made of fiberglass reinforced plastic with balsa wood cores

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice covers guidelines for acoustic emission (AE) examinations of pressurized containers made of fiberglass reinforced plastic (FRP) with balsa cores. Containers of this type are commonly used on tank trailers for the transport of hazardous chemicals. 1.2 This practice is limited to cylindrical shape containers, 0.5 m [20 in.] to 3 m [120 in.] in diameter, of sandwich construction with balsa wood core and over 30 % glass (by weight) FRP skins. Reinforcing material may be mat, roving, cloth, unidirectional layers, or a combination thereof. There is no restriction with regard to fabrication technique or method of design. 1.3 This practice is limited to containers that are designed for less than 0.520 MPa [75.4 psi] (gage) above static pressure head due to contents. 1.4 This practice does not specify a time interval between examinations for re-qualification of a pressure container. 1.5 This practice is used to determine if a container is suitable for service or if follow-up NDT is needed before that...

  1. Lithologic and hydrologic controls of mixed alluvial-bedrock channels in flood-prone fluvial systems: bankfull and macrochannels in the Llano River watershed, central Texas, USA

    Science.gov (United States)

    Heitmuller, Frank T.; Hudson, Paul F.; Asquith, William H.

    2015-01-01

    The rural and unregulated Llano River watershed located in central Texas, USA, has a highly variable flow regime and a wide range of instantaneous peak flows. Abrupt transitions in surface lithology exist along the main-stem channel course. Both of these characteristics afford an opportunity to examine hydrologic, lithologic, and sedimentary controls on downstream changes in channel morphology. Field surveys of channel topography and boundary composition are coupled with sediment analyses, hydraulic computations, flood-frequency analyses, and geographic information system mapping to discern controls on channel geometry (profile, pattern, and shape) and dimensions along the mixed alluvial-bedrock Llano River and key tributaries. Four categories of channel classification in a downstream direction include: (i) uppermost ephemeral reaches, (ii) straight or sinuous gravel-bed channels in Cretaceous carbonate sedimentary zones, (iii) straight or sinuous gravel-bed or bedrock channels in Paleozoic sedimentary zones, and (iv) straight, braided, or multithread mixed alluvial–bedrock channels with sandy beds in Precambrian igneous and metamorphic zones. Principal findings include: (i) a nearly linear channel profile attributed to resistant bedrock incision checkpoints; (ii) statistically significant correlations of both alluvial sinuosity and valley confinement to relatively high f (mean depth) hydraulic geometry values; (iii) relatively high b (width) hydraulic geometry values in partly confined settings with sinuous channels upstream from a prominent incision checkpoint; (iv) different functional flow categories including frequently occurring events (flood magnitude and noncohesive sandy sediments that collectively minimize development of alluvial bankfull indicators. Collectively, these findings indicate that mixed alluvial–bedrock channels exhibit first-order lithologic controls (lithologic resistance and valley confinement) of channel geometry, second

  2. Evaluation of mechanical properties and low velocity impact characteristics of balsa wood and urethane foam applied to impact limiter of nuclear spent fuel shipping cask

    International Nuclear Information System (INIS)

    The paper aims to evaluate the low velocity impact responses and mechanical properties of balsa wood and urethane foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5J. The experimental results showed that both the urethane foam and the balsa wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask

  3. CZO perspective in Central Africa : The Lopé watershed, Lopé National Park, Ogooué River basin, Gabon.

    Science.gov (United States)

    Braun, J. J.; Jeffery, K.; Koumba Pambo, A. F.; Paiz, M. C.; Richter, D., Jr.; John, P.; Jerome, G.

    2015-12-01

    Critical Zone Observatories (CZO) in equatorial regions are seldom (see e. g. http://www.czen.org/, USA and http://rnbv.ipgp.fr/, France). The equatorial zone of Central Africa is almost free of them with the exception of the CZO of the Upper Nyong river basin (organic-rich river on the lateritic plateau of South Cameroon; SO BVET, http://bvet.omp.obs-mip.fr/). On both sides of the Equator line, the Ogooué River Basin (215,000 km2) stretches on about 80% of the total area of Gabon and drains various geological and morpho-pedological contexts and feeds the sedimentation areas of the Central African passive margin (Guillochaux et al., 2014). The Upper Ogooué (up to Lambaréné) drains the stepped planation surface of the Congo craton while the Lower Ogooué drains Mesozoic and Cenozoic sedimentary terrains. The climate is equatorial (Pmean = 2500 mm/yr; Tmean = 26 °; %humidity > 80%). Continuous hydro-climatic chronicles exist for the period 1953-1974 (managed by ORSTOM, now IRD). The runoff at Lambaréné (92% of the basin area) is very high (714 mm/yr). With a rural density of 1 inhabitant/km2, it is one of the last largely pristine tropical forested ecosystems on the Planet. In addition, the basin will be, in the coming decades, the theatre of important anthropogenic changes (dams, agriculture, mining, urbanisation, …). However, a conservation plan with an ambitious sustainable development policy is set up. This plan articulates the environmental issues related to the emergence of the country. Because of these characteristics, the basin offers ideal conditions for studying the changes in equatorial region of hydro-climate, weathering/erosion regimes and regolith production based on morpho-pedological contexts and associated physical, chemical and biological processes. It is thus germane to launch an integrated CZO initiative at both regional scale and local scale. At the regional scale, we plan to reactivate some of the hydro-climatic stations located on the

  4. Bees (Hymenoptera: Apidae) present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103 Bees (Hymenoptera: Apidae) present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103

    OpenAIRE

    Deodoro Magno Brighenti; Carla Regina Guimarães Brighenti

    2010-01-01

    The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the family Apidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the A...

  5. Water-quality data and Escherichia coli predictions for selected karst catchments of the upper Duck River watershed in central Tennessee, 2007–10

    Science.gov (United States)

    Murphy, Jennifer; Farmer, James; Layton, Alice

    2016-06-13

    The U.S. Geological Survey, in cooperation with the Tennessee Duck River Development Agency, monitored water quality at several locations in the upper Duck River watershed between October 2007 and September 2010. Discrete water samples collected at 24 sites in the watershed were analyzed for water quality, and Escherichia coli (E. coli) and enterococci concentrations. Additional analyses, including the determination of anthropogenic-organic compounds, bacterial concentration of resuspended sediment, and bacterial-source tracking, were performed at a subset of sites. Continuous monitoring of streamflow, turbidity, and specific conductance was conducted at seven sites; a subset of sites also was monitored for water temperature and dissolved oxygen concentration. Multiple-regression models were developed to predict instantaneous E. coli concentrations and loads at sites with continuous monitoring. This data collection effort, along with the E. coli models and predictions, support analyses of the relations among land use, bacteria source and transport, and basin hydrology in the upper Duck River watershed.

  6. Density-dependent regulation of brook trout population dynamics along a core-periphery distribution gradient in a central Appalachian watershed.

    Directory of Open Access Journals (Sweden)

    Brock M Huntsman

    Full Text Available Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3-60 km(2 and long-term average densities ranging from 0.335-0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to

  7. Density-dependent regulation of brook trout population dynamics along a core-periphery distribution gradient in a central Appalachian watershed.

    Science.gov (United States)

    Huntsman, Brock M; Petty, J Todd

    2014-01-01

    Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3-60 km(2) and long-term average densities ranging from 0.335-0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for

  8. A Geochemical Mass-Balance Method for Base-Flow Separation, Upper Hillsborough River Watershed, West-Central Florida, 2003-2005 and 2009

    Science.gov (United States)

    Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.

    2010-01-01

    Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water

  9. Using airborne thermal infrared imagery and helicopter EM conductivity to locate mine pools and discharges in the Kettle Creek watershed, north-central Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Love, E. (Shaw Environmental, Monroeville, PA); Hammack, R.W.; Harbert, W.P. (Univ. of Pittsburgh); Sams, J.I.; Veloski, G.A.; Ackman, T.E.

    2005-11-01

    The Kettle Creek watershed contains 50–100-year-old surface and underground coal mines that are a continuing source of acid mine drainage (AMD). To characterize the mining-altered hydrology of this watershed, an airborne reconnaissance was conducted in 2002 using airborne thermal infrared imagery (TIR) and helicopter-mounted electromagnetic (HEM) surveys. TIR uses the temperature differential between surface water and groundwater to locate areas where groundwater emerges at the surface. TIR anomalies located in the survey included seeps and springs, as well as mine discharges. In a follow-up ground investigation, hand-held GPS units were used to locate 103 of the TIR anomalies. Of the sites investigated, 26 correlated with known mine discharges, whereas 27 were previously unknown. Seven known mine discharges previously obscured from TIR imagery were documented. HEM surveys were used to delineate the groundwater table and also to locate mine pools, mine discharges, and groundwater recharge zones. These surveys located 12 source regions and flow paths for acidic, metal-containing (conductive) mine drainage; areas containing acid-generating mine spoil; and areas of groundwater recharge and discharge, as well as identifying potential mine discharges previously obscured from TIR imagery by nondeciduous vegetation. Follow-up ground-based electromagnetic surveys verified the results of the HEM survey. Our study suggests that airborne reconnaissance can make the remediation of large watersheds more efficient by focusing expensive ground surveys on small target areas.

  10. Bees (Hymenoptera: Apidae present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 = Abelhas (Hymenoptera: Apidae associadas às flores do pau-de-balsa Ochroma lagopus Swartz, 1788

    Directory of Open Access Journals (Sweden)

    Carla Regina Guimarães Brighenti

    2010-10-01

    Full Text Available The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the familyApidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Africanized bees that fed on the nectar of this flower was compared to those that fed on 50% aqueous solution of honey. Forty flowers were analyzed, and 949 individuals of the orders Hymenoptera (98.1%, Hemiptera (0.95%, Coleoptera (0.74% and Diptera (0.21% were collected. Most Hymenoptera individuals were bees of the genera Partamona and Trigona (677 individuals, which were considered of constant occurrence. Flowers producing up to 16.7 nectar mL were found. The nectar diet contained 16.44% of total sugar, and resulted in low survival of the bees in laboratory (31.32 . 2.37 hours, compared to a diet of 50% aqueous solution of honey (112.32 .2.03 hours.A flor do pau-de-balsa produz cerca de 10 a 15 mL de néctar, útil na atração de polinizadores, uma vez que o gênero Ochroma é incapaz de fazer autofecundação. É observada intensa mortalidade de abelhas em suas flores. Objetivou-se realizar o levantamento da frequência e constância de mortalidade de indivíduos da família Apidae, sendo os dados levantados no período de junho a agosto de 2008 em Lavras, MinasGerais, Brasil. Além disso, avaliou-se a sobrevivência de abelhas africanizadas alimentadas com o néctar desta flor quando comparados com aquelas alimentadas com solução aquosa de mel a 50%. Foram analisadas 40 flores e coletados 949 indivíduos das Ordens: Hymenoptera (98,1%, Hemiptera (0,95%, Coleoptera (0,74% e Diptera (0,21%. Dentre os himenópteros os mais frequentes foram dos g

  11. USING REMOTE SENSING MULTI-TEMPORAL IMAGE TO ANALYSE THE LAND USE CHANGES AND ITS IMPACT ON THE PEAK DISCHARGE IN GARANG WATERSHED CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Ahmad Cahyadi

    2013-03-01

    Full Text Available Perubahan penggunaan lahan di Kota Semarang akibat pertumbuhan penduduk dan aktivitas ekonomi telah menyebabkan terjadinya urban sprawl. Banjir rob, land subsidence, intrusi air laut dan tercemarnya air tanah di Kota Semarang Bagian Utara menyebabkan terjadinya perkembangan Kota Semarang dominan ke arah selatan. Hal ini menyebabkan perubahan penggunaan lahan dari lahan non terbangun menjadi lahan terbangun sehingga jumlah air hujan yang langsung menjadi limpasan akan semakin banyak. Hal ini akan menyebabkan bahaya banjir bandang di Kota Semarang semakin besar. Penelitian ini bertujuan untuk: (1 mengetahui perubahan lahan yang terjadi di DAS Garang selama tahun 1994 dan 2001, dan (2 mengetahui dampak perubahan penggunaan lahan terhadap besarnya debit puncak yang terjadi di DAS Garang. Data yang digunakan dalam penelitian ini adalah Citra Landsat TM tahun 1994, Citra Landsat ETM tahun 2001, dan Citra Alos AVNIR 2008, peta tanah DAS Garang, peta kemiringan lereng DAS Garang, peta jaringan sungai DAS Garang, dan data curah hujan harian Stasiun Ungaran tahun 1952 sampai dengan tahun 2009. Ditemukan bahwa luas lahan terbangun bertambah lebih dari dua kali lipat dari tahun 2001 sampai dengan 2008, lahan pertanian meningkat hampir 50% dan luas hutan mengalami penurunan dari tahun ke tahun. Namun demikian, debit puncak di DAS Garang tidak bertambah secara ekstrem meskipun mengalami sedikit perubahan. Change due to land use in the city of Semarang as an impact of population growth and economic activity has led to urban sprawl. Rob flooding, land subsidence, seawater intrusion and contamination of ground water in the northern part of Semarang lead to the development of the southern part. Consequently, this leads to changes in land use so that the amount of rain water runoff will increase. This may cause the danger of flash floods in the greater city of Semarang. This study were aimed to: (1 determine the changes that occur in the Garang watershed lands

  12. Riqueza y diversidad de especies leñosas del bosque tropical caducifolio El Tarimo, Cuenca del Balsas, Guerrero Richness and diversity of woody species in the tropical dry forest of El Tarimo, Cuenca del Balsas, Guerrero

    Directory of Open Access Journals (Sweden)

    Fernando Pineda-García

    2007-06-01

    Full Text Available Se describe la composición florística, la riqueza y la diversidad de especies de un bosque tropical caducifolio en la provincia florística Cuenca del Balsas, México. Se seleccionaron 4 sitios de 1000 m² cada uno, censándose los árboles, arbustos y lianas con d.a.p. >1 cm. En total se registraron 1456 individuos, pertenecientes a 82 especies, 56 géneros y 24 familias. Independientemente del sitio y de la forma de crecimiento, Leguminosae fue la familia con mayor número de especies y de individuos. Los géneros más diversos fueron Bursera (Burseraceae y Cordia (Boraginaceae con 9 y 4 especies, respectivamente. La riqueza entre los sitios varió de 43 a 55 especies y su similitud fue más alta en el nivel de familia que en el de especie. Los árboles fueron la forma de crecimiento con mayor riqueza de especies. Respectoa otros bosques tropicales caducifolios de México y del mundo, los sitios que se estudiaron en este bosque ocupan una posición baja en cuanto a sus valores de riqueza y estructura.Floristic composition, species richness, and diversity of the seasonally dry tropical forest in the floristic province of the Balsas Depression, México, is described. We sampled four 1,000 m² sites and recorded species and dbh of trees, shrubs and lianas >1 cm dbh. Data from 1,456 individuals were recorded, representing 82 species, 56 genera, and 24 families. Independently of site or growth form, Leguminosae was the family with the highest number of species and individuals. Bursera (Burseraceae and Cordia (Boraginaceae were the most speciose genera, with nine and four species, respectively. Species richness among sites ranged from 43-55 species and their similarity was higher at the family level than the species level. Trees had higher numbers of species than shrubs and lianas. Our results indicate that these forests have low values of species richness and structure attributes in relation with other tropical dry forests of Mexico and the world.

  13. Water flow pathway and the organic carbon discharge during rain storm events in a coniferous forested head watershed, Tokyo, central Japan

    Science.gov (United States)

    Moriizumi, Mihoko; Terajima, Tomomi

    2010-05-01

    The current intense discussion of the green house effect, that has been one of the main focuses on the carbon cycle in environmental systems of the earth, seems to be weakened the importance related to the effect of carbonic materials on substance movement in the aquatic environments; though it has just begun to be referred recently. Because dissolved organic carbon (DOC) in stream flows believes to play a main role of the carbon cycle in the fresh water environment, seasonal changes in DOC discharge were investigated in catchments with various scale and land use, especially in forested catchments which are one of the important sources of DOC. In order to understand the fundamental characteristics of the discharge of dissolved organic materials, stream flows, DOC, and fulvic acid like materials (FA) included in stream flows were measured in a coniferous forested head watershed. The watershed is located at the southeast edge of the Kanto mountain and is 40 km west of Tokyo with the elevation from 720 to 820 m and mean slope gradient of 38 degrees. Geology of the watershed is underlain by the sequence of mud and sand stones in Jurassic and the soil in the watershed is Cambisol (Inceptisols). The watershed composes of a dense cypress and cedar forest of 45 years old with poor understory vegetation. Observations were carried out for 6 rain storms of which the total precipitations ranged between 16.2 and 117.4 mm. The magnitude of the storms was classified into small, middle, and big events on the basis of the total precipitation of around 20, 40, and more than 70 mm. Stream flows were collected during the storm events by 1 hour interval and were passed through the 0.45 μm filters, and then the DOC concentrations in the flows were measured with a total organic carbon analyzer. The relative concentrations of fulvic acid (FA) in the flows were monitored with three dimensional excitations emission matrix fluorescence spectroscopy, because fulvic acid shows distinctive

  14. Tecnologia alternativa para a quebra de dormência das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae Alternative technology for breaking dormancy of balsa wood (Ochroma lagopus Sw., Bombacaceae seeds

    Directory of Open Access Journals (Sweden)

    Antenor P. Barbosa

    2004-01-01

    Full Text Available Este trabalho, teve como objetivo estudar a germinação das sementes de pau-de-balsa (Ochroma lagopus Sw., Bombacaceae em diferentes estágios de maturação aparente dos frutos; a germinação das sementes provenientes de árvores com diferentes diâmetros a altura do peito (DAP e a germinação das sementes tratadas para quebra de dormência. No primeiro experimento, avaliou-se a germinação das sementes dos frutos verdes, verdosos (verde amarelado, negros (fruto fechado e negros deiscentes (fruto aberto com painas expostas. No segundo, a germinação das sementes de árvores da mesma idade e com diferentes DAP's: pequeno (5,4 cm, médio (9,1 cm e grande (13,2 cm. No terceiro, a germinação das sementes com diferentes quebra de dormência: testemunha; água por 24 e 48 horas; água a 80ºC até esfriar; H2SO4 por ½ e 1 minuto com e sem paina; queima da paina em peneira metálica; e semeio de sementes com a paina. As sementes germinaram em gerbox sobre papel de filtro, em câmara de germinação, nas temperaturas de 20ºC, 30ºC e 25ºC, no primeiro, segundo e terceiro experimentos, respectivamente. As sementes de pau-de-balsa germinaram melhor e mais rápido quando coletadas de frutos negros a negros deiscentes, ou quando coletadas de árvores com menor e médio diâmetros, ou quando tratadas com água quente a 80ºC até esfriar, ou com ácido sulfúrico por ½ ou 1 minuto com ou sem paina. Os tratamentos com ácido tem a vantagem de quebrar a dormência da semente e dissolver a paina. As sementes recém colhidas e germinadas não apresentaram dormência tegumentar.The objective of this study was to evaluate the germination of "pau-de-balsa" (Ochroma lagopus Sw., Bombacaceae seed as a function of maturation stages of fruits, the germination of seeds harvested from trees with different diameters at height breast (DBH, and the germination of seed with different treatments to break dormancy. In the first experiment, the germination of seeds

  15. Does social capital improve watershed environmental governance?

    OpenAIRE

    Monteiro, Fernando

    2006-01-01

    International audience In Brazil, water management has been both sectored and centralized. In the 1990s, a series of state level reforms granted substantial participation to civil society and water users' organizations by incorporating Integrated Water Resourse Management principles and Watershed Committees as its guideline. However, its full implementation should produce quite different outcomes, understood as improved or poorer watershed environmental governance. That means that the key ...

  16. Identification of active erosion areas and areas at risk by remote sensing: an example in the Esera Isabena watershed, Central Spanish Pyrenees

    Energy Technology Data Exchange (ETDEWEB)

    Alatorre, L. C.; Begueria, S.; Vicente Serrano, S. M.

    2009-07-01

    The identification of eroded areas at basin scale can be very useful for environmental planning and can help to reduce land degradation and sediments yield. In this paper remote sensing technique are used to discriminate eroded areas and areas at risk in a badlands landscape developed on Eocene marls. In the Esera Isabena watershed (Spanish Pyrenees). The spatial distribution, the scarce vegetal cover and the high level of erosion let a good visual and digital discrimination of badlands, as opposed to other land covers and surfaces. A maximum likelihood supervised method was used to discriminate heavily eroded areas (badlands) from scarce or densely vegetated lands. the classification distance was used to obtain thresholds for eroded areas and areas at risk. Two error statistics (sensitivity and specificity), where used to determine the most adequate threshold values. The resulting map shows that most areas at risk are located surrounding the badlands areas. (Author) 8 refs.

  17. Adopt Your Watershed

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adopt Your Watershed is a Website that encourages stewardship of the nation's water resources and serves as a national inventory of local watershed groups and...

  18. Interior West Watershed Management

    OpenAIRE

    United States Department of Agriculture, Forest Service

    1981-01-01

    Habitat type classification systems are reviewed for potential use in watershed management. Information on climate, soils, and vegetation related to the classifications are discussed. Possible cooperative applications of vegetation and habitat type classifications to watershed management are explored.

  19. Triterpenes, Phenols, and Other Constituents from the leaves of Ochroma pyramidale(Balsa Wood, Bombacaceae). Preferred Conformations of 8-C-b-D-Glucopyranosyl-apigenin (vitexin)

    OpenAIRE

    Erika Vázquez; Esteban M. Martínez; Juan Antonio Cogordán; Guillermo Delgado

    2002-01-01

    Lupeol, oleanolic acid, stigmasterol, b-sitosterol, b- sitosteryl-b-D-glucopyranoside, catechin, epi-catechin, and 8-C-b-Dglucopyranosylapigenin (vitexin) were isolated from the acetonic extract of the leaves of Ochroma pyramidale(balsa wood, Bombacaceae), a tree noted by its exceedingly light wood. 1H and 13C NMR of 8-C-b-D-glucopyranosyl-apigenin (vitexin) at room temperature exhibited doubling of some signals, suggesting the presence of atropisomers. 1H NMR spectra at 70 °C showed one set ...

  20. EL GÉNERO FICUS (MORACEAE) EN LA PROVINCIA BIOGEOGRÁFICA DE LA DEPRESIÓN DEL BALSAS, MÉXICO

    OpenAIRE

    NAHÚ GONZÁLEZ-CASTAÑEDA; GUADALUPE CORNEJO-TENORIO; GUILLERMO IBARRA-MANRÍQUEZ

    2010-01-01

    Con base en colectas de campo, revisión de literatura florística y taxonómica, así como en la revisión de ejemplares depositados en diversos herbarios se registraron 11 especies de Ficus (Moraceae) en la Provincia Biogeográfica de la Depresión del Balsas. Las especies registradas pertenecen a los subgéneros Pharmacosycea (F. insipida y F. maxima) y Urostigma (F. citrifolia, F. cotinifolia, F. crocata, F. membranacea, F. obtusifolia, F. pertusa, F. petiolaris, F. pringlei y F. velutina), y en ...

  1. Assessment of Watershed Technologies

    OpenAIRE

    Lim Suan, Medel P.

    1999-01-01

    Dealing with various topics such as watershed classification, computer simulation and modeling and computer application in watershed research, this paper assembles and summarizes technologies that are currently being used or have potential for application in the Philippines. This is in the hope of helping watershed managers, planners and researchers.

  2. Effects of groundwater levels and headwater wetlands on streamflow in the Charlie Creek basin, Peace River watershed, west-central Florida

    Science.gov (United States)

    Lee, T.M.; Sacks, L.A.; Hughes, J.D.

    2010-01-01

    The Charlie Creek basin was studied from April 2004 to December 2005 to better understand how groundwater levels in the underlying aquifers and storage and overflow of water from headwater wetlands preserve the streamflows exiting this least-developed tributary basin of the Peace River watershed. The hydrogeologic framework, physical characteristics, and streamflow were described and quantified for five subbasins of the 330-square mile Charlie Creek basin, allowing the contribution of its headwaters area and tributary subbasins to be separately quantified. A MIKE SHE model simulation of the integrated surface-water and groundwater flow processes in the basin was used to simulate daily streamflow observed over 21 months in 2004 and 2005 at five streamflow stations, and to quantify the monthly and annual water budgets for the five subbasins including the changing amount of water stored in wetlands. Groundwater heads were mapped in Zone 2 of the intermediate aquifer system and in the Upper Floridan aquifer, and were used to interpret the location of artesian head conditions in the Charlie Creek basin and its relation to streamflow. Artesian conditions in the intermediate aquifer system induce upward groundwater flow into the surficial aquifer and help sustain base flow which supplies about two-thirds of the streamflow from the Charlie Creek basin. Seepage measurements confirmed seepage inflow to Charlie Creek during the study period. The upper half of the basin, comprised largely of the Upper Charlie Creek subbasin, has lower runoff potential than the lower basin, more storage of runoff in wetlands, and periodically generates no streamflow. Artesian head conditions in the intermediate aquifer system were widespread in the upper half of the Charlie Creek basin, preventing downward leakage from expansive areas of wetlands and enabling them to act as headwaters to Charlie Creek once their storage requirements were met. Currently, the dynamic balance between wetland

  3. Alteration of As-bearing phases in a small watershed located on a high grade arsenic-geochemical anomaly (French Massif Central)

    Energy Technology Data Exchange (ETDEWEB)

    Bossy, A. [Universite de Limoges, GRESE EA 4330, F.S.T., 123 av. Albert Thomas, 87060 Limoges cedex (France); Grosbois, C., E-mail: cecile.grosbois@univ-tours.fr [Universite de Limoges, GRESE EA 4330, F.S.T., 123 av. Albert Thomas, 87060 Limoges cedex (France)] [Universite Francois Rabelais de Tours, UMR 6113 CNRS ISTO, Parc de Grandmont, 37000 Tours cedex (France); Beauchemin, S. [Natural Resources Canada, CANMET-MMSL, 555 Booth, Ottawa, K1A 0G1 (Canada); Courtin-Nomade, A. [Universite de Limoges, GRESE EA 4330, F.S.T., 123 av. Albert Thomas, 87060 Limoges cedex (France); Hendershot, W. [McGill University, 21 111 Lakeshore, Ste Anne-de-Bellevue, H9X 3V9 (Canada); Bril, H. [Universite de Limoges, GRESE EA 4330, F.S.T., 123 av. Albert Thomas, 87060 Limoges cedex (France)

    2010-12-15

    Research highlights: {yields} Characterization of As-carriers at a microscale by in-situ techniques in a soil profile. {yields} Decrease of As content from the saprolite to the surface horizon during pedogenesis. {yields} As was initially associated to Ba-rich pharmacosiderite in the saprolite. {yields} As was then in goethite, hematite, ferrihydrite-type and aluminosilicates . - Abstract: At a watershed scale, sediments and soil weathering exerts a control on solid and dissolved transport of trace elements in surface waters and it can be considered as a source of pollution. The studied subwatershed (1.5 km{sup 2}) was located on an As-geochemical anomaly. The studied soil profile showed a significant decrease of As content from 1500 mg kg{sup -1} in the 135-165 cm deepest soil layer to 385 mg kg{sup -1} in the upper 0-5 cm soil layer. Directly in the stream, suspended matter and the <63 {mu}m fraction of bed sediments had As concentrations greater than 400 mg kg{sup -1}. In all these solid fractions, the main representative As-bearing phases were determined at two different observation scales: bulk analyses using X-ray absorption structure spectroscopy (XAS) and microanalyses using scanning electron microscope (SEM) and associated electron probe microanalyses (EPMA), as well as micro-Raman spectroscopy and synchrotron-based micro-scanning X-ray diffraction ({mu}SXRD) characterization. Three main As-bearing phases were identified: (i) arsenates (mostly pharmacosiderite), the most concentrated phases As in both the coherent weathered bedrock and the 135-165 cm soil layer but not observed in the river solid fraction, (ii) Fe-oxyhydroxides with in situ As content up to 15.4 wt.% in the deepest soil layer, and (iii) aluminosilicates, the least concentrated As carriers. The mineralogical evolution of As-bearing phases in the soil profile, coupled with the decrease of bulk As content, may be related to pedogenesis processes, suggesting an evolution of arsenates into As

  4. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region

    OpenAIRE

    Cooley, Michael B.; Quiñones, Beatriz; Oryang, David; Mandrell, Robert E.; Gorski, Lisa

    2014-01-01

    Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over 2 years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC), Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from...

  5. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  6. Bottomland Hardwood Forest Influence on Floodplain Hydrology and Stream Bank Stability in an Urbanizing Watershed of the Central U.S

    Science.gov (United States)

    Hubbart, J. A.; Zell, C.; Huang, D.

    2012-12-01

    /yr respectively. The greatest average depth of erosion occurred during the winter season (44.7 mm), followed by summer (13.1 mm) and spring (6.3 mm) and fall with the lowest average erosion depth (1.1 mm). Results demonstrate the potential benefit of sustaining or re-establishing floodplain forests to enhance soil infiltration capacity, soil storage capacity, floodwave attenuation, and consumptive water use, thereby reducing flooding and mitigating stormwater runoff problems in rapidly developing urban environments. In addition, results hold important implications for land-use managers wishing to reduce bank erosion and improve land-use practices, water quality and aquatic natural resource sustainability in dynamic urbanizing watersheds.

  7. Two new species of the bee genus Peponapis, with a key to the North and Central American species (Hymenoptera: Apidae: Eucerini)

    OpenAIRE

    Ricardo Ayala; Terry Griswold

    2012-01-01

    Two new species of squash bees, Peponapis pacifica Ayala and Griswold sp. n. and P. parkeri Griswold and Ayala sp. n., are described and illustrated. Peponapis pacifica is oligolectic on flowers of Schizocarpum longisepalum (Cucurbitaceae) endemic to Mexico, where it is found in the tropical dry forest along the Pacific Coast, between Sonora and Chiapas and in the Balsas River basin; and P. parkeri is known only from the Pacific slope of Costa Rica. A key for the North and Central American sp...

  8. Watershed-based systems

    OpenAIRE

    Walker, S; Mostaghimi, S.

    2009-01-01

    Metadata only record This chapter discusses the application of adaptive watershed management strategies and their importance to maintaining water supply. The watershed, which is an area of land that drains to a particular point or outlet, can be any size and is physically governed by topography. Thoroughly understanding these physical properties is essential to formulating an effective management plan for a watershed. In turn, proper management can improve and maintain soil quality and wat...

  9. Physical and chemical data from two water-quality surveys of streams in the Lewisville Lake watershed, north-central Texas, 1984 and 1985

    Science.gov (United States)

    Gain, W. Scott

    1989-01-01

    Twenty-nine sites on streams flowing to Lewisville Lake in north-central Texas were sampled in each of two synoptic (same day) water-quality surveys. The first survey was performed in March 1984 under relatively low-flow conditions and the second was performed in March 1985 under somewhat higher flow conditions. Data are presented for instantaneous measurements of discharge, specific conductance, pH, water temperature, dissolved oxygen, total organic carbon, nitrite-plus-nitrate nitrogen, ammonium-plus-organic nitrogen, total nitrogen, and total phosphorus. Area-based instantaneous yields for discharge, total nitrogen, and total phosphorus were calculated and are displayed graphically showing the rank of each site and the areal distribution of ranks. (USGS)

  10. Bees (Hymenoptera: Apidae present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103 Bees (Hymenoptera: Apidae present in the flowers of the balsa wood Ochroma lagopus Swartz, 1788 - doi: 10.4025/actascibiolsci.v32i4.7103

    Directory of Open Access Journals (Sweden)

    Deodoro Magno Brighenti

    2010-11-01

    Full Text Available The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the family Apidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Africanized bees that fed on the nectar of this flower was compared to those that fed on 50% aqueous solution of honey. Forty flowers were analyzed, and 949 individuals of the orders Hymenoptera (98.1%, Hemiptera (0.95%, Coleoptera (0.74% and Diptera (0.21% were collected. Most Hymenoptera individuals were bees of the genera Partamona and Trigona (677 individuals, which were considered of constant occurrence. Flowers producing up to 16.7 nectar mL were found. The nectar diet contained 16.44% of total sugar, and resulted in low survival of the bees in laboratory (31.32 ± 2.37 hours, compared to a diet of 50% aqueous solution of honey (112.32 ± 2.03 hours.The flower of balsa wood holds about 10 to 15 mL of nectar, which helps attracting pollinating agents, since the genus Ochroma is incapable of self-fertilization. However, a high mortality of bees is observed in these flowers. The present study investigated the frequency and constancy of mortality of the individuals of the family Apidae that fed on nectar from the balsa wood. Data was gathered from June to August 2008, in Lavras – Minas Gerais State, Brazil. In addition, the survival of the Africanized bees that fed on the nectar of this flower was compared to those that fed on 50% aqueous solution of honey. Forty flowers were analyzed, and 949 individuals of the orders Hymenoptera (98.1%, Hemiptera (0.95%, Coleoptera (0.74% and Diptera (0.21% were collected. Most Hymenoptera individuals were bees of the

  11. Two new species of the bee genus Peponapis, with a key to the North and Central American species (Hymenoptera: Apidae: Eucerini) Dos especies nuevas de abejas del género Peponapis, con una clave para las especies de América del Norte y Central (Hymenoptera: Apidae: Eucerini)

    OpenAIRE

    Ricardo Ayala; Terry Griswold

    2012-01-01

    Two new species of squash bees, Peponapis pacifica Ayala and Griswold sp. n. and P. parkeri Griswold and Ayala sp. n., are described and illustrated. Peponapis pacifica is oligolectic on flowers of Schizocarpum longisepalum (Cucurbitaceae) endemic to Mexico, where it is found in the tropical dry forest along the Pacific Coast, between Sonora and Chiapas and in the Balsas River basin; and P. parkeri is known only from the Pacific slope of Costa Rica. A key for the North and Central American sp...

  12. Fecal Contamination of Groundwater in a Small Rural Dryland Watershed in Central Chile Contaminación Fecal en Agua Subterránea en una Pequeña Cuenca de Secano Rural en Chile Central

    Directory of Open Access Journals (Sweden)

    Mariela Valenzuela

    2009-06-01

    Full Text Available Research on microbiological groundwater quality was conducted in Chile in a rural watershed that has almost no other water source. Forty-two wells were randomly selected and levels of indicator bacteria - total coliforms (TC, fecal coliforms (FC, and fecal streptococci (FS - were repeatedly measured during the four seasons of 2005. The aim of this study was to characterize microbiological groundwater quality, relate indicator levels to certain watershed features and management characteristics which are likely to affect water quality. The dynamics of seasonal temporal contamination was determined with statistical analyses of indicator organism concentrations. Nonparametric tests were used to analyze relationships between bacterial indicators in well water and other variables. TC, FC, and FS were found in all samples indicating the wells had been contaminated with human and animal fecal material. The frequency distribution of microorganisms fitted a logistic distribution. The concentrations appeared to be temporal and levels varied between seasons with higher concentrations in winter. The cause of contamination could be linked to the easy access of domestic animals to the wells and to the permeable well casing material. Local precipitation runoff directly influenced the bacterial concentrations found in the wells.Se realizó una investigación de la calidad microbiológica de las aguas subterráneas en una cuenca rural chilena. En esta cuenca prácticamente no había otra fuente de agua disponible. En 42 pozos seleccionados al azar, se midieron niveles de bacterias indicadoras en cuatro temporadas distintas durante el año 2005. Las bacterias incluyeron coliformes totales (TC, coliformes fecales (FC y Estreptococos fecales (FS. El objetivo fue caracterizar la calidad microbiológica del agua subterránea y relacionar los indicadores con ciertas propiedades y el manejo de la cuenca que pueden afectar la calidad del agua. La dinámica temporal de la

  13. Developing a Watershed Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  14. Maasin Watershed Rehabilitation Project

    OpenAIRE

    Iloilo City

    2007-01-01

    Metadata only record "Iloilo city government had great interest in preserving the main source of water for the city and the Maasin municipality wanted support to manage the watershed reserve. Degradation of the watershed is seen as the cause of increasing water scarcity and frequent floods. PES-1 (Payments for Environmental Services Associate Award)

  15. The role of episodic fire-related debris flows on long-term (103-104) sediment yields in the Middle Fork Salmon River Watershed, in central Idaho

    Science.gov (United States)

    Riley, K. E.; Pierce, J. L.; Hopkins, A.

    2010-12-01

    Episodic fire-related debris flows contribute large amounts of sediment and large woody debris to streams. This study evaluates fire-related sedimentation from small steep tributaries of the Middle Fork Salmon River (MFSR) in central Idaho to evaluate the timing, frequency, and magnitude of episodic fire-related sedimentation on long-term (10 3-10 4) sediment yields. The MFSR lies within the Northern Rocky Mountains and encompasses a range of ecosystems including high elevation (~3,000 -1,700 m) subalpine pine and spruce forests, mid-elevation (2650 - 1130 m) montane Douglas-fir and ponderosa pine-dominated forests and low elevation (~ 1,800 - 900 m) sagebrush steppe. Recent debris flow events in tributaries of the MFSR appear to primarily result from increased surface runoff, rilling, and progressive sediment bulking following high severity fires. This study estimates: 1) the volume of sediment delivered by four recent (1997-2008) fire-related debris flow events using real time kinematic GPS surveys, and 2) the timing of Holocene fire-related debris flow events determined by 14C dating charcoal fragments preserved in buried burned soils and within fire-related deposits. Our measured volumes of the four recent debris flow events are compared to two empirically derived volume estimates based on remotely sensed spatial data (burn severity and slope), measured geometric data (longitudinal profile, cross sectional area, flow banking angle), and precipitation records. Preliminary stratigraphic profiles in incised alluvial fans suggest that a large percentage of alluvial fan thickness is composed of fire-related deposits suggesting fire-related hillslope erosion is a major process delivering sediment to alluvial fans and to the MFSR. Fire-related deposits from upper basins compose ~71% of total alluvial fan thickness, while fire-related deposits from lower basins make up 36% of alluvial fan thickness. However, lower basins are less densely vegetated with small diameter

  16. Prevalence of shiga toxin producing Escherichia coli, Salmonella enterica, and Listeria monocytogenes at public access watershed sites in a California Central Coast agricultural region.

    Science.gov (United States)

    Cooley, Michael B; Quiñones, Beatriz; Oryang, David; Mandrell, Robert E; Gorski, Lisa

    2014-01-01

    Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over 2 years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC), Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from 1386 samples was 11%; 110 samples (8%) contained E. coli O157:H7 with the highest prevalence occurring close to cattle operations. Non-O157 STEC isolates represented major clinical O-types and 57% contained both shiga toxin types 1 and 2 and intimin. Multiple Locus Variable Number Tandem Repeat Analysis of STEC isolates indicated prevalent strains during the period of study. Notably, Salmonella was present at high levels throughout the sampling region with 65% prevalence in 1405 samples resulting in 996 isolates with slightly lower prevalence in late autumn. There were 2, 8, and 14 sites that were Salmonella-positive over 90, 80, and 70% of the time, respectively. The serotypes identified most often were 6,8:d:-, Typhimurium, and Give. Interestingly, analysis by Pulsed Field Gel Electrophoresis indicated persistence and transport of pulsotypes in the region over several years. In this original study of L. monocytogenes in the region prevalence was 43% of 1405 samples resulting in 635 individual isolates. Over 85% of the isolates belonged to serotype 4b with serotypes 1/2a, 1/2b, 3a, 4d with 4e representing the rest, and there were 12 and 2 sites that were positive over 50 and 80% of the time, respectively. Although surface water is not directly used for irrigation in this region, transport to the produce can occur by other means. This environmental survey assesses initial contamination levels toward an understanding of transport leading to produce recalls or outbreaks. PMID

  17. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  18. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  19. Ampliación de la distribución y presencia de una colonia reproductiva de la guacamaya verde (Ara militaris en el alto Balsas de Guerrero, México Range expansion and reproductive colony of the Military Macaw (Ara militaris in the upper Balsas basin, Guerrero, México

    Directory of Open Access Journals (Sweden)

    Víctor H. Jiménez-Arcos

    2012-09-01

    Full Text Available Se registra una población y colonia reproductora de guacamaya verde (Ara militaris en el alto Balsas de Guerrero. La colonia se ubica en el bosque tropical seco de la localidad de Papalutla, al margen del río Atoyac, en el extremo noreste del estado. A lo largo de 4 años de conteos (n= 20, se registró una abundancia de 22.7 ± 2.8 individuos. Este registro confirma que la guacamaya verde aún se reproduce en Guerrero y amplía en aproximadamente 100 km hacia el extremo noreste del estado su distribución conocida.We report a new population of green macaw (Ara militaris to the Mexican state of Guerrero. The colony is located besides the Atoyac River, in the dry tropical forest of Papalutla, in the far northeast corner of the state. Along 4 years of counts (n= 20, an abundance of 22.7 ± 2.8 individuals has been registered. This report is relevant because it is the first record of a resident colony of green macaw in the upper Balsas basin, extending its known distribution range to the northwestern limit of Guerrero.

  20. Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds

    OpenAIRE

    Cousty, Jean; Bertrand, Gilles; Najman, Laurent; Couprie, Michel

    2010-01-01

    International audience We recently introduced the watershed cuts, a notion of watershed in edge-weighted graphs. In this paper, our main contribution is a thinning paradigm from which we derive three algorithmic watershed cut strategies: the first one is well suited to parallel implementations, the second one leads to a flexible linear-time sequential implementation whereas the third one links the watershed cuts and the popular flooding algorithms. We state that watershed cuts preserve a n...

  1. A Combined Modeling Approach to Evaluate Water Quality Benefits of Riparian Buffers in the Jobos Bay Watershed

    Science.gov (United States)

    The Jobos Bay Watershed, located in south-central Puerto Rico, is a tropical Conservation Effects Assessment Project (CEAP) Special Emphasis Watershed. The purpose of CEAP is to quantify environmental benefits of conservation practices and includes field and watershed modeling. In Jobos Bay, the goa...

  2. Source identification of petroleum hydrocarbons in soil and sediments from Iguaçu River Watershed, Paraná, Brazil using the CHEMSIC method (CHEMometric analysis of Selected Ion Chromatograms).

    Science.gov (United States)

    Gallotta, Fabiana D C; Christensen, Jan H

    2012-04-27

    A chemometric method based on principal component analysis (PCA) of pre-processed and combined sections of selected ion chromatograms (SICs) is used to characterise the hydrocarbon profiles in soil and sediment from Araucária, Guajuvira, General Lúcio and Balsa Nova Municipalities (Iguaçu River Watershed, Paraná, Brazil) and to indicate the main sources of hydrocarbon pollution. The study includes 38 SICs of polycyclic aromatic compounds (PACs) and four of petroleum biomarkers in two separate analyses. The most contaminated samples are inside the Presidente Getúlio Vargas Refinery area. These samples represent a petrogenic pattern and different weathering degrees. Samples from outside the refinery area are either less or not contaminated, or contain mixtures of diagenetic, pyrogenic and petrogenic inputs where different proportions predominate. The locations farthest away from industrial activity (Balsa Nova) contains the lowest levels of PAC contamination. There are no evidences to conclude positive matches between the samples from outside the refinery area and the Cusiana spilled oil.

  3. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  4. Evaluating watershed management projects:

    OpenAIRE

    Kerr, John; Chung, Kimberly

    2001-01-01

    Watershed projects play an increasingly important role in managing soil and water resources throughout the world. Research is needed to ensure that new projects draw upon lessons from their predecessors' experiences. However, the technical and social complexities of watershed projects make evaluation difficult. Quantitative and qualitative evaluation methods, which traditionally have been used separately, both have strengths and weaknesses. Combining them can make evaluation more effective, p...

  5. Avaliação de desempenho ambiental em uma balsa guindaste e de lançamento – BGL

    Directory of Open Access Journals (Sweden)

    Hélio Soibelman

    2009-06-01

    -para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Com o objetivo de auxiliar os gestores de Meio Ambiente de embarcações de obras submarinas na avaliação do desempenho de seus Sistemas de Gestão, e com fundamentação nos princípios da norma ABNT NBR ISO 14001:2004 (Sistema de Gestão Ambiental, bem como em criteriosa pesquisa bibliográfica, o presente trabalho, apresenta uma metodologia que se baseia no que preceitua o item Planejamento da ABNT NBR ISO 14001:2004 de que os objetivos, as metas ambientais e seus indicadores devem estar diretamente relacionados aos aspectos e impactos significativos. Foi realizada uma pesquisa de campo com a finalidade de demonstrar a aplicabilidade da metodologia criada. Esta pesquisa foi desenvolvida em uma Balsa Guindaste e de Lançamento (BGL, utilizada em obras de engenharia. Vale ressaltar que a BGL é um ativo muito importante da empresa estudada, pois ela, além de atuar em lançamentos de dutos rígidos para escoar a produção de óleo e gás, também atua em instalações de plataformas e de grandes estruturas submarinas.

  6. Francisella philomiragia, bacteria asociada con altas mortalidades en salmones del Atlántico (Salmo salar cultivados en balsas-jaulas en el lago Llanquihue Francisella philomiragia, a bacteria associated with high mortalities in Atlantic salmon (Salmo salar cage-farmed in Llanquihue lake

    Directory of Open Access Journals (Sweden)

    H Bohle

    2009-01-01

    Full Text Available Francisella philomiragia fue aislada de salmón del Atlántico cultivado en balsas-jaulas en el lago Llanquihue con brotes de una enfermedad granulomatosa con altas tasas de morbilidad y mortalidad acumuladas entre 5% a 20%. Los aislados bacterianos tienen 100% similitud con F. philomiragia ssp noatunensis o F. piscicida aislado de bacalao en Noruega, 99% de similitud con Francisella sp. detectado en tilapia en Asia y Centroamérica y 99% de similitud con la especie tipo F. philomiragia por análisis filogenético del gen 16s rDNA.Francisella philomiragia was isolated from Atlantic salmon cage-farmed in the Llanquihue lake with outbreaks of a granulomatous disease, with high rates of morbidity and an accumulated mortalities between 5% to 20%. The isolates had 100% similarity with F. philomiragia ssp noatunensis or F. piscicida isolated in Atlantic cod, 99% similarity with Francisella sp. detected in tilapia from Asia and Central America and 99% of similarity with the reference strain F. philomiragia through 16s rDNA phylogenetic analysis.

  7. Multiagent distributed watershed management

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  8. 75 FR 11837 - Chesapeake Bay Watershed Initiative

    Science.gov (United States)

    2010-03-12

    ... Commodity Credit Corporation Chesapeake Bay Watershed Initiative AGENCY: Commodity Credit Corporation and... program funds for the Chesapeake Bay Watershed Initiative. SUMMARY: The Commodity Credit Corporation (CCC... Watershed Initiative for agricultural producers in the Chesapeake Bay watershed in the States of...

  9. Realities of the Watershed Management Approach: The Magat Watershed Experience

    OpenAIRE

    Elazegui, Dulce D.; Combalicer, Edwin A.

    2004-01-01

    This paper aims to showcase the experience of the Magat watershed in the implementation of the watershed management approach. Magat watershed was declared as a forest-reservation area through Proclamation No. 573 on June 26, 1969 because of its great importance to human survival and environmental balance in the region. The Magat case demonstrates the important role that ‘champions’ like the local government unit (LGU) could play in managing the country’s watersheds. With the Nueva Viscaya pro...

  10. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    OpenAIRE

    Zeyuan Qiu

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  11. Watershed Ecohydrology: How Do Vegetation Patterns and Climate Affect Watershed Storage and Connectivity?

    Science.gov (United States)

    Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.

    2015-12-01

    Topography and soils have long been recognized as mediators of runoff source areas, but the effect of vegetation patterns on subsurface throughflow is less well understood. While numerous studies have shown that vegetation removal generally leads to increases in streamflow, few studies have examined the intersection between patterns of evapotranspiration and topographically driven patterns of throughflow generation and connectivity. We applied a parsimonious but spatially distributed watershed modeling framework (WECOH: Watershed ECOHydrology Model) to a snow dominated watershed in central Montana to elucidate how different vegetation scenarios and climate forcing can affect the temporal evolution of storage distributions and watershed connectivity. We derived spatially distributed snowmelt and rainfall input from two NRCS SNOTEL sites located in the experimental watershed and actual evapotranspiration from a co-located eddy-covariance tower. We generated different vegetation scenarios to simulate forest harvesting and compared streamflow response, spatial distribution of storage, and runoff source areas across scenarios. Our work aims at better understanding how the intersection of vegetation and topography mediates hydrologic response.

  12. FAST WATERSHED-BASED DILATION

    OpenAIRE

    Jakub Smołka

    2014-01-01

    A watershed-based region growing image segmentation algorithm requires a fast watershed-based dilation implementation for effective operation. This paper presents a new way for watershed image representation and uses this representation for effective implementation of dilation. Methods for improving the algorithm speed are discussed. Presented solutions may also be used for solving other problems where fast set summation is required.

  13. Modelling potential landscape sediment delivery due to projected soybean expansion: a scenario study of the Balsas sub-basin, Cerrado, Maranhão state, Brazil.

    Science.gov (United States)

    Barreto, Larissa; Schoorl, Jeroen M; Kok, Kasper; Veldkamp, Tom; Hass, Adriani

    2013-01-30

    In Brazil, agriculture expansion is taking place primarily in the Cerrado ecosystems. With the aim of supporting policy development and protecting the natural environment at relevant hotspots, a scenario study was conducted that concerned not only land-use change, but also the resulting effects on erosion and deposition. This coupled approach helped to evaluate potential landscape impacts of the land-use scenarios. In the study area, the Balsas sub-basin in Maranhão State, a model chain was used to model plausible future soybean expansion locations (CLUE-S model) and resulting sediment mobilization patterns (LAPSUS model) for a business-as-usual scenario. In the scenario, more erosion occurred in areas where the conversion of natural vegetation into soybean cultivation is likely to take place, but the generated sediments tended to accumulate mainly within the conversion areas, thus limiting the offsite effects of the increased erosion. These results indicated that when agricultural expansion is kept away from rivers, Cerrado conversion will have only a limited impact on the sediment loads of local rivers. Where land-use changes are most concentrated are coincident with areas where more new sediments are generated (higher erosion) and where more sediments are re-deposited.

  14. Spatio-temporal Dynamics of Land-use and Land-cover Change: A Multi-agent Simulation Model and Its Application to an Upland Watershed in Central Vietnam

    Science.gov (United States)

    Le, Q.; Vlek, P. L.; Park, S.

    2005-12-01

    flexible interactions among human and landscape agents, and monitors consequent land-use changes and associated socio-economic dynamics. The model was applied in a watershed of about 100 km2 in A-Luoi district, Central Vietnam. Spatially explicit data were obtained from Landsat ETM images, thematic maps, an extensive forest inventory, and an intensive household survey. Field data were used for calibrating agent's parameters and develop an initial database for simulation runs. Scenarios of land-use changes under different policy options on forest protection zoning, agrochemical subsidies and agricultural extension were generated to evaluate the consequences of such policy interventions. Preliminary simulation runs for 10 different policy options suggest that reducing the current proportion of protected area from 90% to 50% and increasing the enforcement of protection, together with the provision of extension services for a third of the total population, and subsidizing 5% of the population with agrochemicals ($US 16 household-1 year-1) would, on average, increase per capita gross income by 15% and significantly reduce forest degradation compared to the scenario based on the status quo (i.e., the policy settings of 2002).

  15. When Everything Changes: Mountaintop Mining Effects on Watershed Hydrology

    Science.gov (United States)

    Nippgen, F.; Ross, M. R.; McGlynn, B. L.; Bernhardt, E. S.

    2015-12-01

    Mountaintop removal coal mining (MTM) in the Central Appalachians has expanded over the last 40 years to cover ~7% of this mountainous landscape. MTM operations remove mountaintops and ridges with explosives and machinery to access underlying coal seams. Much of this crushed rock overburden is subsequently deposited into nearby valleys, creating valley fills that often bury headwater streams. In contrast to other disturbances such as forest clear-cutting, perturbations from MTM can extend hundreds of meters deep into the critical zone and completely reshape landscapes. Despite the expansiveness and intensity of the disturbance, MTM has only recently begun to receive focused attention from the hydrologic community and the effect of MTM on the hydrology of impacted watersheds is still not well understood. We are using a two-pronged approach consisting of GIS analysis to quantify spoil volumes and landscape change, together with empirical analysis and modeling of rainfall and runoff data collected in two sets of paired watersheds. We seek to investigate how MTM affects basic hydrologic metrics, including storm peakflows, runoff response times, baseflow, statistics of flow duration curves, and longer-term water balances. Each pair consists of a mined and an unmined watershed; the first set contains headwater streams (size ~100ha), the second set consists of 3rd order streams, draining ~3500ha. Mining covers ~ 95% of the headwater watershed, and 40% of the 3rd-order watershed. Initial GIS analysis indicates that the overburden moved during the mining process could be up to three times greater than previously estimated. Storm runoff peaks in the mined watersheds were muted as compared to the unmined watersheds and runoff ratios were reduced by up to 75% during both wet and dry antecedent conditions. The natural reference watersheds were highly responsive while the additional storage in the mined watersheds led to decreased peak flows during storms and enhanced baseflow

  16. Allegheny County Watershed Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the 52 isolated sub-Watersheds of Allegheny County that drain to single point on the main stem rivers. Created by 3 Rivers 2nd Nature based...

  17. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  18. Conservação e vigor de sementes de pau-de-balsa (Ochroma pyramidale Conservation and vigour of balsawood seeds (Ochroma pyramidale

    Directory of Open Access Journals (Sweden)

    Antonio Moçambite Pinto

    2004-01-01

    Full Text Available Ochroma pyramidale, Bombacaceae, conhecida popularmente como pau-de-balsa, é utilizada para construção de jangadas, balsas, salva-vidas, bóias, brinquedos e na fabricação de papel e celulose. O objetivo deste estudo foi definir um método de acondicionamento de sementes de O. pyramidale, visando a conservação da viabilidade e vigor destas para sua utilização e comercialização em épocas de baixa produção. Sementes de O. pyramidale foram embaladas em sacos de papel tipo kraft e sacos de plástico (0,10 mm e armazenadas em ambiente de laboratório (22ºC e 65% U.R., câmara úmida (5ºC e 86% U.R. e câmara seca (15ºC e 40% U.R.. A percentagem de germinação, teor de água e vigor das sementes foram avaliados no início e após períodos de armazenamento. Todos os tratamentos testados foram favoráveis para manutenção do vigor das sementes por 120 dias de armazenamento. As melhores condições de armazenamento para manter a viabilidade por até 400 dias foram: sacos de papel (76,5% de germinação e sacos plásticos (65,5% de germinação em câmara seca, e sacos plásticos em condições de laboratório (63,5% de germinação.Balsawood (Ochroma pyramidale, Bombacaceae is used for construction of rafts, floats, life-savers, buoys, toys and for paper and cellulose production. The objective of this study was to determine a seed storage method for O. pyramidale to conserve seed viability and vigour for use and commercialization during seasonal shortages. Seeds were put in paper (Kraft and plastic bags (0.10 mm, and stored in three environmental conditions: laboratory (22ºC and 65% relative humidity, humid chamber (5ºC and 86% RH and dry chamber (15ºC and 40% RH. Germination percentage, moisture content and vigour of seeds were evaluated at the beginning of the experiment and after the storage periods. All treatments maintained seed vigour for 120 days of storage. The best storage conditions to maintain seed viability for a 400

  19. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  20. Watershed Planning within a Quantitative Scenario Analysis Framework.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-01-01

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation. PMID:27501287

  1. Ghana Watershed Prototype Products

    Science.gov (United States)

    ,

    2007-01-01

    Introduction/Background A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  2. Exploring an innovative watershed management approach: From feasibility to sustainability

    International Nuclear Information System (INIS)

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  3. Exploring an innovative watershed management approach: From feasibility to sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Said, A. [Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL 33620 (United States); Sehlke, G. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Stevens, D.K.; Sorensen, D.; Walker, W.; Hardy, T. [Civil and Environmental Department, Utah State University, Logan, UT 84321 (United States); Glover, T. [Economics Department, Utah State University, Logan, UT 84321 (United States)

    2006-10-15

    Watershed management is dedicated to solving watershed problems on a sustainable basis. Managing watershed development on a sustainable basis usually entails a balance between the needs of humans and nature, both in the present and in the future. From a watershed or water resources development basis, these problems can be classified into five general categories: lack of water quantity, deterioration in water quality, ecological impacts, weak public participation, and weak economic value. The first three categories can be combined to make up physical sustainability while the last two categories can be defined as social and economic sustainability. Therefore, integrated watershed management should be designed to achieve physical sustainability utilizing, to the greatest extent possible, public participation in an economically viable manner. This study demonstrates an innovative approach using scientific, social, and motivational feasibilities that can be used to improve watershed management. Scientific feasibility is tied to the nature of environmental problems and the scientific means to solve them. Social feasibility is associated with public participation. Motivational feasibility is related to economic stimulation for the stakeholders to take actions. The ecological impacts, lack of water quantity and deterioration in water quality are problems that need scientific means in order to improve watershed health. However, the implementation of these means is typically not achievable without the right public participation. In addition, public participation is typically accelerated by economic motivation for the stakeholders to use the resources in a manner that improves watershed health. The Big Lost River in south-central Idaho has been used as an illustration for implementing scientific, social and motivational feasibilities and in a manner that can achieve sustainability relative to water resources management. However, the same approach can be used elsewhere after

  4. Assessments of Water Quality in Mississippi Delta Lake Watersheds

    Science.gov (United States)

    This paper summarizes watershed scale research by USDA-ARS National Sedimentation Laboratory scientists on the effects of conservation management on water quality and ecology in oxbow lakes of the Mississippi Delta Region, USA. The Mississippi Delta Region is located in the central portion of the U...

  5. WATERSHED MANAGEMENT RESEARCH TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The Urban Watershed Management Branch researches, develops, and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the risk management aspects of WWF research.One...

  6. New trends in watershed management and protection

    International Nuclear Information System (INIS)

    I would like to present some new environmental technologies by shoving restoration projects that are currently being implemented in the eastern United States that require this co-operation for successful implementation. The environmental technologies that will be discussed include the use of existing or constructed wetlands to treat surface and groundwater impacted in contaminants from various sources. The main goal of these type projects are to provide a low-cost and effective treatment for existing pollution problems. Many of these projects are initiated by civic associations (or NGOs) that wanted to improve the state of environment in their area. Because everyone has the responsibility to a clean environment in which they live, NGOs, state government, business, and local citizens, and local citizens worked closely together to solve problems in their watersheds. These projects are only examples of what is being done in the United States. However, I would like also to discuss what projects exist in eastern Slovakia, and others that could be started in Slovakia that improve relationships between MGOs and the state and local governmental decision-making process, with the ultimate goal to improve water quality in the Danube watershed in the future. There are severe environmental technologies that can be applied to improve the water quality of rivers throughout the Danube watershed, such as treatment of wastewater using wetland vegetation, and treatment of acid-mine drainage. In April 1996, NGO People and Water in co-operation with the village governments of the Upper Torysa River watershed started the project Villages for the 3 rd millennium in the Carpathian Euro-Region. One of the main goals of this project is to introduce new environmental technologies in the rural communities of the Upper Torysa River area. Since people trust their eyes than their ears. It is important to initiate practical, pilot projects to convince citizens and governments that these low

  7. SPECIFIC DEGRADATION OF WATERSHEDS

    Institute of Scientific and Technical Information of China (English)

    Boubacar KANE; Pierre Y.JULIEN

    2007-01-01

    An extensive database of reservoir sedimentation surveys throughout continental United States is compiled and analyzed to determine specific degradation SD relationships as function of mean annual rainfall R, drainage area A, and watershed slope S. The database contains 1463 field measurements and specific degradation relationships are defined as function of A, R and S. Weak trends and significant variability in the data are noticeable. Specific degradation measurements are log normally distributed with respect to R, A, and S and 95% confidence intervals are determined accordingly. The accuracy of the predictions does not significantly increase as more independent variables are added to the regression analyses.

  8. Modeling the Dynamic Water Resource Needs of California's Coastal Watersheds

    Science.gov (United States)

    Alford, C.

    2009-12-01

    Many watersheds face formidable water supply challenges when it comes to managing water availability to meet diverse water supply and ecosystem management objectives. California’s central coast watersheds are no exception, and both the scarcity of water resources during drier water years and mandates to establish minimum instream flows for salmon habitat have prompted interests in reassessing water management strategies for several of these watersheds. Conventional supply-oriented hydrologic models, however, are not adequate to fully investigate and describe the reciprocal implications of surface water demands for human use and the maintenance of instream flows for salmon habitat that vary both temporally and spatially within a watershed. In an effort to address this issue I developed a coastal watershed management model based on the San Gregorio watershed utilizing the Water Evaluation and Planning (WEAP) system, which permits demand-side prioritization at a time step interval and spatial resolution that captures functional supply and demand relationships. Physiographic input data such as soil type, land cover, elevation, habitat, and water demand sites were extrapolated at a sub-basin level in a GIS. Time-series climate data were collected and processed utilizing the Berkeley Water Center Data Cube at daily time steps for the period 1952 through September 2009. Recent synoptic flow measurements taken at seven tributary sites during the 2009 water year, water depth measured by pressure transducers at six sites within the watershed from September 2005 through September 2009, and daily gauge records from temporary gauges installed in 1981 were used to assess the hydrologic patterns of sub-basins and supplement historic USGS gauge flow records. Empirical functions were used to describe evapotranspiration, surface runoff, sub-surface runoff, and deep percolation. Initial model simulations carried out under both dry and wet water year scenarios were able to capture

  9. Watershed Boundaries - MO 2015 Metro No Discharge Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for streams listed in Table F - Metropolitan No-Discharge Streams of the Water...

  10. Values, Watersheds and Justification

    DEFF Research Database (Denmark)

    Wiberg, Katrina

    2015-01-01

    systems of water provision, sewagesystems etc. Under conditions of climate change this ‘undergrounding’ approach has shown its limitations. In extreme weather conditions water is ‘resurfacing’ which creates both problems and a new condition of HOW in urban landscapes. Problems of water cannot be ‘buried......The aim of this paper is to articulate and present some arguments for the following main hypothesis concerning the handling of water (HOW) in the urban landscapes of our times of climate change. During industrialism water in urban areas to a very high degree was handled by ‘undergrounding’ it in......’ anymore; they also have to be handled at surface levels. This has two interconnected implications: firstly, watersheds gains new importance for HOW at surface-levels, and secondly, such surfacing of water problems leads to a rise in the potential levels of value-disputes and conflicts of interest...

  11. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    OpenAIRE

    Surendra Kumar Chandniha; M. L Kansal; G. Anvesh

    2014-01-01

    In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and en...

  12. Watershed Sustainability Index Assessment of a Watershed in Chhattisgarh, India

    Directory of Open Access Journals (Sweden)

    Surendra Kumar Chandniha

    2014-08-01

    Full Text Available In order to achieve continuous sustainable development in a watershed, it is desired that natural resources such as water are assessed and utilized efficiently. Generally, water resources are assessed considering watershed as a unit. Since the water requirements and availability varies in space and time, it is desired to manage the water resources so as to satisfy the demand on sustainable basis. Further, in order to achieve sustainability, it is necessary to consider social, economic and environment aspects of water resources. However it is difficult to bring all these indicators on a single platform. In this study, a watershed sustainability index (WSI which integrates the hydrology, environment, life and policy (HELP has been suggested for Piperiya watershed in Chhattisgarh state of India. This watershed has an area of about 2400km2 and is part of Hasdeo river basin which is located in Koriya district of Chhattisgarh. Further, the majority of population in the area is tribal and illiterate. Providing safe and adequate water to the masses is a challenge in this area. The District has numerous hill ranges with rocky geological formation having steep slope. The district faces an acute water shortage for drinking as well as irrigation. Further, the area has number of coal mines and coal washing plants, which contaminate the surface water as well as groundwater. Thus, the availability of safe and fresh water is quite limited. It has been noticed that the WSI for this watershed is about 0.60, which is moderate level of sustainability. In order to improve the water sustainability in this watershed, a watershed management framework and its utilizationhas been elaborated.

  13. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  14. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  15. Composición, estructura y diversidad de la comunidad arbórea del bosque tropical caducifolio en Tziritzícuaro, Depresión del Balsas, Michoacán, México

    OpenAIRE

    Moisés Méndez-Toribio; Juan Martínez-Cruz; Jorge Cortés-Flores; Francisco Javier Rendón-Sandoval; Guillermo Ibarra-Manríquez

    2014-01-01

    Se describe la composición, estructura y diversidad de los árboles del bosque tropical caducifolio en Tziritzícuaro, municipio de La Huacana, en la Depresión del Balsas, Michoacán. Se censaron todos los árboles enraizados dentro de 36 parcelas de 100 m 2 (0.36 ha) con un diámetro a la altura del pecho (DAP) 1 cm. Se registraron 78 especies, incluidas en 50 géneros y 24 familias. La familia Fabaceae fue la más importante respecto a su número de especies (24), géneros (14) e individuos (274). ...

  16. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    OpenAIRE

    Hélio Nóbile Diniz; José Eloi Guimarães Campos; Getulio Teixeira Batista; Tatiana Diniz Gonçalves; Marcelo dos Santos Targa

    2007-01-01

    This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate sc...

  17. Hydrologic response and watershed sensitivity to climate warming in California's Sierra Nevada.

    Directory of Open Access Journals (Sweden)

    Sarah E Null

    Full Text Available This study focuses on the differential hydrologic response of individual watersheds to climate warming within the Sierra Nevada mountain region of California. We describe climate warming models for 15 west-slope Sierra Nevada watersheds in California under unimpaired conditions using WEAP21, a weekly one-dimensional rainfall-runoff model. Incremental climate warming alternatives increase air temperature uniformly by 2 degrees, 4 degrees, and 6 degrees C, but leave other climatic variables unchanged from observed values. Results are analyzed for changes in mean annual flow, peak runoff timing, and duration of low flow conditions to highlight which watersheds are most resilient to climate warming within a region, and how individual watersheds may be affected by changes to runoff quantity and timing. Results are compared with current water resources development and ecosystem services in each watershed to gain insight into how regional climate warming may affect water supply, hydropower generation, and montane ecosystems. Overall, watersheds in the northern Sierra Nevada are most vulnerable to decreased mean annual flow, southern-central watersheds are most susceptible to runoff timing changes, and the central portion of the range is most affected by longer periods with low flow conditions. Modeling results suggest the American and Mokelumne Rivers are most vulnerable to all three metrics, and the Kern River is the most resilient, in part from the high elevations of the watershed. Our research seeks to bridge information gaps between climate change modeling and regional management planning, helping to incorporate climate change into the development of regional adaptation strategies for Sierra Nevada watersheds.

  18. Geology and mineral resources of the Southwestern and South-Central Wyoming Sagebrush Focal Area, Wyoming, and the Bear River Watershed Sagebrush Focal Area, Wyoming and Utah: Chapter E in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Wilson, Anna B.; Hayes, Timothy S.; Benson, Mary Ellen; Yager, Douglas B.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; Parks, Heather L.; Rockwell, Barnaby W.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the Southwestern and South-Central Wyoming and Bear River Watershed, Wyoming and Utah, SFAs.

  19. Climate Variability Impacts on Watershed Nutrient Delivery and Reservoir Production

    Science.gov (United States)

    White, J. D.; Prochnow, S. J.; Zygo, L. M.; Byars, B. W.

    2005-05-01

    Reservoirs in agricultural dominated watersheds tend to exhibit pulse-system behavior especially if located in climates dominated by summer convective precipitation inputs. Concentration and bulk mass of nutrient and sediment inputs into reservoir systems vary in terms of timing and magnitude of delivery from watershed sources to reservoirs under these climate conditions. Reservoir management often focuses on long-term average inputs without considering short and long-term impacts of variation in loading. In this study we modeled a watershed-reservoir system to assess how climate variability affects reservoir primary production through shifts in external loading and internal recycling of limiting nutrients. The Bosque watershed encompasses 423,824 ha in central Texas which delivers water to Lake Waco, a 2900 ha reservoir that is the primary water source for the city of Waco and surrounding areas. Utilizing the Soil Water Assessment Tool for the watershed and river simulations and the CE-Qual-2e model for the reservoir, hydrologic and nutrient dynamics were simulated for a 10 year period encompassing two ENSO cycles. The models were calibrated based on point measurement of water quality attributes for a two year time period. Results indicated that watershed delivery of nutrients was affected by the presence and density of small flood-control structure in the watershed. However, considerable nitrogen and phosphorus loadings were derived from soils in the upper watershed which have had long-term waste-application from concentrated animal feeding operations. During El Niño years, nutrient and sediment loads increased by 3 times above non-El Niño years. The simulated response within the reservoir to these nutrient and sediment loads had both direct and indirect. Productivity evaluated from chlorophyll a and algal biomass increased under El Niño conditions, however species composition shifts were found with an increase in cyanobacteria dominance. In non-El Niño years

  20. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  1. ASSESSMENT AND MANAGEMENT OF WATERSHED MICROBIAL CONTAMINANTS

    Science.gov (United States)

    Numerous sources of infectious disease causing microorganisms exist in watersheds and can impact recreational and drinking water quality. Organisms of concern include bacteria, viruses, and parasites. The watershed manager is challenged to limit human contact with pathogens, limi...

  2. SIR2005-5073_CBRWM_watersheds

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This is an ArcGIS dataset depicting watershed segments in the Chesapeake Bay Watershed and adjacent states of New York, Pennsylvania, Maryland, West Virginia,...

  3. The Watershed Algorithm for Image Segmentation

    Institute of Scientific and Technical Information of China (English)

    OU Yan; LIN Nan

    2007-01-01

    This article introduced the watershed algorithm for the segmentation, illustrated the segmation process by implementing this algorithm. By comparing with another three related algorithm, this article revealed both the advantages and drawbacks of the watershed algorithm.

  4. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  5. Critical sampling points methodology: case studies of geographically diverse watersheds.

    Science.gov (United States)

    Strobl, Robert O; Robillard, Paul D; Debels, Patrick

    2007-06-01

    Only with a properly designed water quality monitoring network can data be collected that can lead to accurate information extraction. One of the main components of water quality monitoring network design is the allocation of sampling locations. For this purpose, a design methodology, called critical sampling points (CSP), has been developed for the determination of the critical sampling locations in small, rural watersheds with regard to total phosphorus (TP) load pollution. It considers hydrologic, topographic, soil, vegetative, and land use factors. The objective of the monitoring network design in this methodology is to identify the stream locations which receive the greatest TP loads from the upstream portions of a watershed. The CSP methodology has been translated into a model, called water quality monitoring station analysis (WQMSA), which integrates a geographic information system (GIS) for the handling of the spatial aspect of the data, a hydrologic/water quality simulation model for TP load estimation, and fuzzy logic for improved input data representation. In addition, the methodology was purposely designed to be useful in diverse rural watersheds, independent of geographic location. Three watershed case studies in Pennsylvania, Amazonian Ecuador, and central Chile were examined. Each case study offered a different degree of data availability. It was demonstrated that the developed methodology could be successfully used in all three case studies. The case studies suggest that the CSP methodology, in form of the WQMSA model, has potential in applications world-wide.

  6. Water and Poverty in Two Colombian Watersheds

    OpenAIRE

    Nancy Johnson; James Garcia; Jorge E. Rubiano; Marcela Quintero; Ruben Dario Estrada; Esther Mwangi; Adriana Morena; Alexandra Peralta; Sara Granados

    2009-01-01

    Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Result...

  7. Analysis of Hollinshed watershed using GIS software

    OpenAIRE

    Hipp, Michael.

    1999-01-01

    CIVINS The objective of this study is to apply GIS and storm water modeling software to develop an accurate hydrologic model of the Hollinshed watershed. Use of GIS will allow the user to quickly change the land use of specific areas within in the watershed to determine the hydrologic effects throughout the watershed using the storm water model. Specific objectives were to: (1) develop a GIS database for the Hollinshed watershed; (2) Develop an appropriate link/ node diagram and correspond...

  8. User participation in watershed management and research:

    OpenAIRE

    Johnson, Nancy; Ravnborg, Helle Munk; Westermann, Olaf; Probst, Kirsten

    2001-01-01

    Many watershed development projects around the world have performed poorly because they failed to take into account the needs, constraints, and practices of local people. Participatory watershed management—in which users help to define problems, set priorities, select technologies and policies, and monitor and evaluate impacts—is expected to improve performance. User participation in watershed management raises new questions for watershed research, including how to design appropriate mechanis...

  9. Grays River Watershed Geomorphic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Geist, David R

    2005-04-30

    This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: The effects of historical and current land use practices on erosion and sedimentation within the channel network The ways in which these effects have influenced the sediment budget of the upper watershed The resulting responses in the main stem Grays River upstream of State Highway 4 The past and future implications for salmon habitat.

  10. Watershed Education for Broadcast Meteorologists

    Science.gov (United States)

    Lamos, J. P.; Sliter, D.; Espinoza, S.; Spangler, T. C.

    2006-12-01

    The National Environmental Education and Training Organization (NEETF) published a report in 2005 that summarized the findings of ten years of NEETF and Roper Research. The report stated, "Our years of data from Roper surveys show a persistent pattern of environmental ignorance even among the most educated and influential members of society." Market research has also shown that 80% of television viewers list the weather as the primary reason for watching the local news. Broadcast meteorologists, with a broader understanding of environmental and related sciences have an opportunity to use their weathercasts to inform the public about the environment and the factors that influence environmental health. As "station scientists," broadcast meteorologists can use the weather, and people's connection to it, to broaden their understanding of the environment they live in. Weather and watershed conditions associated with flooding and drought have major human and environmental impacts. Increasing the awareness of the general public about basic aspects of the hydrologic landscape can be an important part of mitigating the adverse effects of too much or too little precipitation, and of protecting the environment as well. The concept of a watershed as a person's natural neighborhood is a very important one for understanding hydrologic and environmental issues. Everyone lives in a watershed, and the health of a watershed is the result of the interplay between weather and human activity. This paper describes an online course to give broadcast meteorologists a basic understanding of watersheds and how watersheds are impacted by weather. It discusses how to convey watershed science to a media- savvy audience as well as how to model the communication of watershed and hydrologic concepts to the public. The course uses a narrative, story-like style to present its content. It is organized into six short units of instruction, each approximately 20 minutes in duration. Each unit is

  11. Two new species of the bee genus Peponapis, with a key to the North and Central American species (Hymenoptera: Apidae: Eucerini Dos especies nuevas de abejas del género Peponapis, con una clave para las especies de América del Norte y Central (Hymenoptera: Apidae: Eucerini

    Directory of Open Access Journals (Sweden)

    Ricardo Ayala

    2012-06-01

    Full Text Available Two new species of squash bees, Peponapis pacifica Ayala and Griswold sp. n. and P. parkeri Griswold and Ayala sp. n., are described and illustrated. Peponapis pacifica is oligolectic on flowers of Schizocarpum longisepalum (Cucurbitaceae endemic to Mexico, where it is found in the tropical dry forest along the Pacific Coast, between Sonora and Chiapas and in the Balsas River basin; and P. parkeri is known only from the Pacific slope of Costa Rica. A key for the North and Central American species of Peponapis is provided.Se describen e ilustran 2 especies nuevas de abejas, Peponapis pacifica Ayala and Griswold sp. n. y P. parkeri Griswold and Ayala sp. n. De éstas, P. pacifica es oligoléctica sobre flores de Schizocarpum longisepalum (Cucurbitaceae, endémica de México, con distribución asociada al bosque tropical caducifolio a lo largo de la vertiente del Pacífico entre Sonora y Chiapas y en la Cuenca del río Balsas; P. parkeri es conocida sólo para la vertiente del Pacífico de Costa Rica. Se incluye una clave para las especies de América del norte y central.

  12. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    Science.gov (United States)

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  13. Discover a Watershed: The Everglades.

    Science.gov (United States)

    Robinson, George B.; And Others

    This publication is designed for both classroom teachers and nonformal educators of young people in grades 6 through 12. It can provide a 6- to 8-week course of study on the watershed with students participating in activities as they are ordered in the guide, or activities may be used in any order with educators selecting those appropriate for the…

  14. Watershed Boundaries - WATERSHEDS_HUC11__USGS_IN: Watersheds, 11-digit Hydrologic Units, in Indiana, (Derived from US Geological Survey, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — WATERSHEDS_HUC11_USGS_IN is a polygon shapefile showing the boundaries of watersheds in Southwestern Indiana. Watersheds are noted by a 11-digit hydrologic unit....

  15. Discussion on the Landscape Pattern Change of Watershed

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bin

    2006-01-01

    Evaluating the transition of landscape can understand that ecosystem processes are being influenced by disturbance. For this reason, it is essential that using appropriate mapping techniques and quantitative methods to assess landscape condition within different disturbance regimes. Landscape metrics were calculated for segmented areas of homogeneous land use in watershed to allow understanding and characterization of ecosystem.Chen-yu-lan watershed, located in the central of Taiwan, is a sensitivity area for disaster such as earthquakes and typhoons. In this study we focus on how the natural disaster affect landscape pattern. The study shows that landscape metrics can measure the effect of typhoon and earthquake disturbance regime. The analysis shows that evaluating landscape transition can contribute more detailed information for managing ecosystem.

  16. Political Reform at Watershed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    How to promote the reform of political institutions is one of the thorny issues facing China.The recent publication of the first book systematically illustrating the overall plan of the reform of China’s political institutions,Storming the Fortress:A Research Report on the Reform of China’s Political Institutions After the 17th Party Congress (abbreviated as Storming the Fortress) has attracted a lot of public attention.Besides the sensitive topic,the identities of the authors also con- tribute to the book’s bestselling.Most authors of the book are from the Party School of the Central Committee of the Communist Party of China (CPC),an important think tank of the CPC.Because of this many people believe that the book represents the official standpoint.Beijing Review reporter Feng Jianhua conducted an interview with Professor Zhou Tianyong,Chief Compiler of the book and Deputy Director of the Research Office of the Party School of the CPC Central Committee.

  17. Prevalence of Shiga toxin Producing Escherichia coli, Salmonella enterica and Listeria monocytogenes at Public Access Watershed Sites in a California Central Coast Agricultural Region

    Directory of Open Access Journals (Sweden)

    Michael B Cooley

    2014-03-01

    Full Text Available Produce contaminated with enteric pathogens is a major source of foodborne illness in the United States. Lakes, streams, rivers, and ponds were sampled with Moore swabs bi-monthly for over two years at 30 locations in the vicinity of a leafy green growing region on the Central California Coast and screened for Shiga toxin producing Escherichia coli (STEC, Salmonella enterica, and Listeria monocytogenes to evaluate the prevalence and persistence of pathogen subtypes. The prevalence of STEC from 1,386 samples was 11%; 110 samples (8% contained E. coli O157:H7 with the highest prevalence occurring close to cattle operations. Non-O157 STEC isolates represented major clinical O-types and 57% contained both shiga toxin types 1 and 2 and intimin. Multiple Locus Variable Number Tandem Repeat Analysis of STEC isolates indicated prevalent strains during the period of study. Notably, Salmonella was present at high levels throughout the sampling region with 65% prevalence in 1,405 samples resulting in 996 isolates with slightly lower prevalence in late autumn. There were 2, 8 and 14 sites that were Salmonella-positive over 90%, 80% and 70% of the time, respectively. The serotypes identified most often were 6,8:d:-, Typhimurium, and Give. Interestingly, analysis by Pulsed Field Gel Electrophoresis indicated persistence and transport of pulsotypes in the region over several years. In this original study of L. monocytogenes in the region prevalence was 43% of 1,405 samples resulting in 635 individual isolates. Over 85% of the isolates belonged to serotype 4b with serotypes 1/2a, 1/2b, 3a, 4d with 4e representing the rest, and there were 12 and 2 sites that were positive over 50% and 80% of the time, respectively. Although surface water is not directly used for irrigation in this region, transport to the produce can occur by other means. This environmental survey assesses initial contamination levels towards an understanding of transport leading to produce

  18. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production.

  19. Realities of the Watershed Management Approach: The Manupali Watershed Experience

    OpenAIRE

    Rola, Agnes C.; Suminguit, Vel J.; Sumbalan, Antonio T.

    2004-01-01

    Local research in the Manupali watershed, with about 60% of its land area belonging to the upland municipality of Lantapan, Bukidnon, found that water quantity and quality declined due to soil erosion and domestic waste contamination. As population grows and agriculture becomes more integrated to the market, water deterioration is projected to worsen. Both economic and environmental sustainability then depend on the following management bodies: 1) the management of the Mt. Kitanglad range, th...

  20. Fort Cobb Reservoir Watershed, Oklahoma and Thika River Watershed, Kenya Twinning Pilot Project

    Science.gov (United States)

    Moriasi, D.; Steiner, J.; Arnold, J.; Allen, P.; Dunbar, J.; Shisanya, C.; Gathenya, J.; Nyaoro, J.; Sang, J.

    2007-12-01

    The Fort Cobb Reservoir Watershed (FCRW) (830 km2) is a watershed within the HELP Washita Basin, located in Caddo and Washita Counties, OK. It is also a benchmark watershed under USDA's Conservation Effects Assessment Project, a national project to quantify environmental effects of USDA and other conservation programs. Population in south-western Oklahoma, in which FCRW is located, is sparse and decreasing. Agricultural focuses on commodity production (beef, wheat, and row crops) with high costs and low margins. Surface and groundwater resources supply public, domestic, and irrigation water. Fort Cobb Reservoir and contributing stream segments are listed on the Oklahoma 303(d) list as not meeting water quality standards based on sedimentation, trophic level of the lake associated with phosphorus loads, and nitrogen in some stream segments in some seasons. Preliminary results from a rapid geomorphic assessment results indicated that unstable stream channels dominate the stream networks and make a significant but unknown contribution to suspended-sediment loadings. Impairment of the lake for municipal water supply, recreation, and fish and wildlife are important factors in local economies. The Thika River Watershed (TRW) (867 km2) is located in central Kenya. Population in TRW is high and increasing, which has led to a poor land-population ratio with population densities ranging from 250 people/km2 to over 500 people/km2. The poor land-population ratio has resulted in land sub-division, fragmentation, over- cultivation, overgrazing, and deforestation which have serious implications on soil erosion, which poses a threat to both agricultural production and downstream reservoirs. Agricultural focuses mainly on subsistence and some cash crops (dairy cattle, corn, beans, coffee, floriculture and pineapple) farming. Surface and groundwater resources supply domestic, public, and hydroelectric power generation water. Thika River supplies 80% of the water for the city of

  1. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    Science.gov (United States)

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    watersheds in the Central Mississippi, Ohio, and Lower Mississippi River basins. With 90% confidence, only a few watersheds can be reliably placed into the highest 150 category; however, many more watersheds can be removed from consideration as not belonging to the highest 150 category. Results from this ranking procedure provide robust information on watershed nutrient yields that can benefit management efforts to reduce nutrient loadings to downstream coastal waters, such as the Gulf of Mexico, or to local receiving streams and reservoirs.

  2. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  3. DEVELOPING A SERVICE-LEARNING PROGRAM FOR WATERSHED MANAGEMENT: Lessons from the Stroubles Creek Watershed Initiative

    OpenAIRE

    de Leon, Raymond F.

    2002-01-01

    There has been a growing interest and support by many state and local programs to address aquatic resource protection and restoration at a watershed level. The desire by many programs to implement watershed management programs has become more than just a need, rather a necessity to ensure suitable water resources. However, many challenges arise when developing and sustaining watershed programs. One such challenge is that watershed programs are resource intensive. These programs require si...

  4. Realities of Watershed Management in the Philippines: The Case of the Iloilo-Maasin Watershed

    OpenAIRE

    Francisco, Herminia A.; Salas, Jessica C.

    2004-01-01

    The paper analyzed the presence or absence of elements needed to have an effective system of watershed management in the Maasin Watershed, Iloilo Province. IT concluded that: a) both the legal and institutional structures needed support watershed management effort are in place; b) there is evidence of a strong social capital existing in the upland and lowland communities; c) there is an adequate level of technical capital investment to sustainably manage the watershed; and d) there is suffici...

  5. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  6. Nitrogen Losses in Runoff from Row-cropped Watersheds: Environmental Benefits of Native Prairie Filter Strips

    Science.gov (United States)

    Zhou, X.; Helmers, M. J.; Asbjornsen, H.; Kolka, R. K.; Tomer, M. D.

    2011-12-01

    Loss of nitrogen in runoff from agricultural landscapes is a serious problem in the Midwestern United States due to inappropriate/intensive management practices. Among other best management practices, vegetative filter strips have been effectively adopted to reduce pollutant transport with agricultural runoff. In this study, twelve ephemeral watersheds at the Neal Smith National Wildlife Refuge in Central Iowa were used to evaluate the effectiveness of native prairie filter strips (NPFS) in reducing total nitrogen (TN) and nitrate-N (NO3-N) loss from row-cropped watersheds. Small amounts of NPFS were incorporated at different locations within the watersheds in fall 2006 using a balanced incomplete block design. A no-till 2-yr corn-soybean rotation was adopted in nonperennial areas since spring 2007. Each watershed was instrumented with an H-flume, a flow-monitoring device, and an ISCO water sampler in 2007. Runoff samples during the growing season between 2007 and 2010 were analyzed for TN and NO3-N concentrations for each individual rainfall event. The 4-year mean annual TN loss for watersheds with NPFS was 6.9 kg ha-1, approximately 85% lower than TN loss from 100% row-cropped watersheds (47.7 kg ha-1). Mean annual NO3-N loss during the growing season was 4.2 and 1.3 kg ha-1 for the watersheds with and without NPFS, respectively. The results of this study suggest that incorporation of small amounts of NPFS within annual rowcrop systems could greatly reduce TN and NO3-N loss from agricultural watersheds.

  7. Integrated watershed management: a planning methodology for construction of new dams in Ethiopia

    NARCIS (Netherlands)

    Bezuayehu, Tefera; Stroosnijder, L.

    2007-01-01

    Integrated watershed management (IWM) is emerging as an alternative to the centrally planned and sectoral approaches that currently characterize the planning process for dam construction in Ethiopia. This report clarifies the concept of IWM, and reviews the major social, environmental and economic p

  8. FARMERS’ MOTIVATIONS FOR ADOPTING MANAGEMENT PRACTICES IN THE GOODWATER CREEK EXPERIMENTAL WATERSHED

    Science.gov (United States)

    The purpose of this work was to evaluate farm operator opinions relative to soil and water conservation practices in the Goodwater Creek Watershed in Central Missouri. This study reveals the outcome of structured interviews conducted with 25 farm operators within the Conservation Effects Assessment...

  9. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  10. Elevation - LiDAR Survey Minnehaha Creek, MN Watershed

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — LiDAR Bare-Earth Grid - Minnehaha Creek Watershed District. The Minnehaha Creek watershed is located primarily in Hennepin County, Minnesota. The watershed covers...

  11. Community-Based Integrated Watershed Management

    Institute of Scientific and Technical Information of China (English)

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  12. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  13. Soil moisture variability over Odra watershed: Comparison between SMOS and GLDAS data

    Science.gov (United States)

    Zawadzki, Jaroslaw; Kędzior, Mateusz

    2016-03-01

    Monitoring of temporal and spatial soil moisture variability is an important issue, both from practical and scientific point of view. It is well known that passive, L-band, radiometric measurements provide best soil moisture estimates. Unfortunately as it was observed during Soil Moisture and Ocean Salinity (SMOS) mission, which was specially dedicated to measure soil moisture, these measurements suffer significant data loss. It is caused mainly by radio frequency interference (RFI) which strongly contaminates Central Europe and even in particularly unfavorable conditions, might prevent these data from being used for regional or watershed scale analysis. Nevertheless, it is highly awaited by researchers to receive statistically significant information on soil moisture over the area of a big watershed. One of such watersheds, the Odra (Oder) river watershed, lies in three European countries - Poland, Germany and the Czech Republic. The area of the Odra river watershed is equal to 118,861 km2 making it the second most important river in Poland as well as one of the most significant one in Central Europe. This paper examines the SMOS soil moisture data in the Odra river watershed in the period from 2010 to 2012. This attempt was made to check the possibility of assessing, from the low spatial resolution observations of SMOS, useful information that could be exploited for practical aims in watershed scale, for example, in water storage models even while moderate RFI takes place. Such studies, performed over the area of a large watershed, were recommended by researchers in order to obtain statistically significant results. To meet these expectations, Centre Aval de Traitement des Donnes SMOS (CATDS), 3-days averaged data, together with Global Land Data Assimilation System (GLDAS) National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab (NOAH) model 0.25 soil moisture values were used for statistical analyses and mutual

  14. Elk River Watershed - Flood Study

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. Potential flooding from just under 100 (2009 NPRI Reviewed Facility Data Release, Environment Canada) toxic tailings ponds located in Canada increase risk to human safety and the environment. One such geotechnical failure spilt billions of litres of toxic tailings into the Fraser River watershed, British Columbia, when a tailings pond dam breach occurred in August 2014. Damaged and washed out roadways cut access to essential services as seen by the extensive floods that occurred in Saskatchewan and Manitoba in July 2014, and in Southern Alberta in 2013. Recovery efforts from events such as these can be lengthy, and have substantial social and economic impacts both in loss of revenue and cost of repair. The objective of this study is to investigate existing conditions in the Elk River watershed and model potential future hydrological changes that can increase flood risk hazards. By analyzing existing hydrology, meteorology, land cover, land use, economic, and settlement patterns a baseline is established for existing conditions in the Elk River watershed. Coupling the Generate Earth Systems Science (GENESYS) high-resolution spatial hydrometeorological model with flood hazard analysis methodology, high-resolution flood vulnerability base line maps are created using historical climate conditions. Further work in 2015 will examine possible impacts for a range of climate change and land use change scenarios to define changes to future flood risk and vulnerability.

  15. Panama Canal Watershed Experiment- Agua Salud Project

    Science.gov (United States)

    Stallard, Robert F.; Ogden, Fred L.; Elsenbeer, Helmut; Hall, Jefferson S.

    2010-01-01

    The Agua Salud Project utilizes the Panama Canal’s (Canal) central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. The Canal was one of the great engineering projects in the world. Completed in 1914, after almost a decade of concerted effort, its 80 km length greatly shortened the voyage between the Atlantic and Pacific Oceans. An entire class of ships, the Panamax, has been constructed to maximize the amount of cargo that can be carried in a Canal passage. In today’s parlance, the Canal is a “green” operation, powered largely by water (Table 1). The locks, three pairs on each end with a net lift of 27 meters, are gravity fed. For each ton of cargo that is transferred from ocean to ocean, about 13 tons of water (m3) are used. Lake Gatún forms much of the waterway in the Canal transect. Hydroelectricity is generated at the Gatún dam, whenever there is surplus water, and at Madden Dam (completed in 1936) when water is transferred from Lake Alhajuela to Lake Gatún. The Canal watershed is the source of drinking water for Panama City and Colon City, at either end of the Canal, and numerous towns in between.

  16. CONSIDERAÇÕES SOBRE A APROPRIAÇÃO DO ESPAÇO MARANHENSE PELO AGRONEGÓCIO DA SOJA: a ideologia do desenvolvimento e a acumulação de terras na microrregião dos Gerais de Balsas

    Directory of Open Access Journals (Sweden)

    Sávio José Dias Rodrigues

    2011-08-01

    Full Text Available This paper aims to analyze the expansion of soybean agribusiness in the micro-region of Gerais de Balsas andincreased poverty. Reflection on the production of space in modern farming of soybeans, the production relationsof agribusiness. We seek some notes for the debate about the speech that carries on agribusiness developmentfor the region, from documents of the state, and especially of public investors, such as BNDES. This searchpoints that in Maranhão for one side the IDH, per capita income and the PIB increased, in the other side happeneda concentration of the lands and income for the big agribusiness, in detriment of the impoverishment and theexpulsion of peasantry.

  17. Francisella philomiragia, bacteria asociada con altas mortalidades en salmones del Atlántico (Salmo salar) cultivados en balsas-jaulas en el lago Llanquihue Francisella philomiragia, a bacteria associated with high mortalities in Atlantic salmon (Salmo salar) cage-farmed in Llanquihue lake

    OpenAIRE

    H Bohle; Tapia, E.; A Martínez; M Rozas; Figueroa, A.; Bustos, P.

    2009-01-01

    Francisella philomiragia fue aislada de salmón del Atlántico cultivado en balsas-jaulas en el lago Llanquihue con brotes de una enfermedad granulomatosa con altas tasas de morbilidad y mortalidad acumuladas entre 5% a 20%. Los aislados bacterianos tienen 100% similitud con F. philomiragia ssp noatunensis o F. piscicida aislado de bacalao en Noruega, 99% de similitud con Francisella sp. detectado en tilapia en Asia y Centroamérica y 99% de similitud con la especie tipo F. philomiragia por anál...

  18. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  19. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences betw

  20. Retrospect and prospect of watershed hydrological model

    Institute of Scientific and Technical Information of China (English)

    B.CHEN; Z.F.YANG; 等

    2001-01-01

    A brief review is presented of the development of watershed hydrological models,COnventional Hydrological Model,Grey Hydrological Model,Digital Hydrological Model and Intelligent Hydrological Model are analyzed.The Frameworks of Fuzzy Cognitive Hydrological Model and Integrated Digital Watershed Hydrological Model are presented.

  1. Uncertainty Consideration in Watershed Scale Models

    Science.gov (United States)

    Watershed scale hydrologic and water quality models have been used with increasing frequency to devise alternative pollution control strategies. With recent reenactment of the 1972 Clean Water Act’s TMDL (total maximum daily load) component, some of the watershed scale models are being recommended ...

  2. Mercury cycling in terrestrial watersheds

    Science.gov (United States)

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  3. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  4. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    International Nuclear Information System (INIS)

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring 222Rn as a tracer. The first of the two stages was solving a mass-balance equation for 222Rn around a stream reach of interest in order to calculate Rnq, the 222Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rnq to the measured 222Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach

  5. Analysis of water quality in the Blue River watershed, Colorado, 1984 through 2007

    Science.gov (United States)

    Bauch, Nancy J.; Miller, Lisa D.; Yacob, Sharon

    2014-01-01

    Water quality of streams, reservoirs, and groundwater in the Blue River watershed in the central Rocky Mountains of Colorado has been affected by local geologic conditions, historical hard-rock metal mining, and recent urban development. With these considerations, the U.S. Geological Survey, in cooperation with the Summit Water Quality Committee, conducted a study to compile historical water-quality data and assess water-quality conditions in the watershed. To assess water-quality conditions, stream data were primarily analyzed from October 1995 through December 2006, groundwater data from May 1996 through September 2004, and reservoir data from May 1984 through November 2007. Stream data for the Snake River, upper Blue River, and Tenmile Creek subwatersheds upstream from Dillon Reservoir and the lower Blue River watershed downstream from Dillon Reservoir were analyzed separately. (The complete abstract is provided in the report)

  6. Biogeochemical and Hydrological Controls on Mercury and Methylmercury in First Order Coastal Plain Watersheds of the Chesapeake Bay

    Science.gov (United States)

    Heyes, A.; Gilmour, C. C.; Bell, J. T.; Butera, D.; McBurney, A. W.

    2015-12-01

    Over the past 7 years we made use of the long-term research site at the Smithsonian Environmental Research Center (SERC) in central Maryland to study the fluxes of mercury (Hg) and methylmercury (MeHg) in three small first-order mid-Atlantic coastal plain watersheds. One watershed is entirely forested, one watershed is primarily agriculture with a forested stream buffer, and one watershed is mixed land use but contains a beaver produced wetland pond. Our initial goals were to assess watershed Hg yields in the mid-Atlantic and to establish a baseline prior to implementation of Hg emissions controls. All three studied watersheds produced relatively high yields of Hg, with the greatest yield coming from the forested watershed. Our initial evaluation of three watersheds showed that MeHg production and flux could also be high, but varied dramatically among watersheds and across years and seasons. During each year we observed episodic MeHg production in the spring and sometimes during prolonged high-flow storm events in the fall. The observed spring maxima of MeHg release coincided with development of anoxia in riparian groundwater. MeHg accumulation in riparian groundwater began once nitrate was depleted and either iron accumulation or sulfate depletion of groundwater began. We propose the presence of nitrate was modulating MeHg production through the suppression of sulfate and iron reducers and perhaps methanogens. As sulfate is not limiting in any of the watersheds owing to the sediments marine origin, we hypothesize the depletion of nitrate allows sulfate reducing bacteria to now utilize available carbon. Although wetlands are generally thought of as the primary zones of MeHg production in watersheds, shallow riparian groundwaters very close to the stream appear to play that role in SERC Coastal Plain watersheds. We hypothesize that the balance between nitrate, sulfate and other microbial electron acceptors in watersheds is a major control on MeHg production. Land

  7. 7 CFR 622.11 - Eligible watershed projects.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Eligible watershed projects. 622.11 Section 622.11..., DEPARTMENT OF AGRICULTURE WATER RESOURCES WATERSHED PROJECTS Qualifications § 622.11 Eligible watershed projects. (a) To be eligible for Federal assistance, a watershed project must: (1) Meet the definition of...

  8. Variability of the radiative index of dryness in an Appalachian watershed

    International Nuclear Information System (INIS)

    The radiative index of dryness, β (i.e., the ratio of seasonal sums of net radiation to those of the latent heat of precipitation) was used to characterize spatial and temporal variability of moisture conditions in a central Appalachian watershed during 35 growing seasons (1948–1982). The mean seasonal value of the index for the watershed and the whole study period was 1.2: year-to-year seasonal values fluctuated from 0.72 for the wet growing season of 1956 to 1.80 for the dry growing season of 1959. The highest values of the index were observed on south-west facing upper slopes at the northern boundary of the watershed, and the lowest values at the bottom of the watershed. The seasonal coefficient of variation of the index in the watershed was 36%. The highest monthly values of the index, reaching up to 2.94, were observed on the upper south-west facing slopes in June 1966. The correlation between β and corresponding basal area increment was poor. However, the average basal area increment during years with seasonal β > 1.5 was up to 29% less than the 35-year average. (author)

  9. LEAST-COST WATERSHED MANAGEMENT SOLUTIONS: USING GIS DATA IN ECONOMIC MODELING OF A WATERSHED

    OpenAIRE

    Ancev, Tihomir; Stoecker, Arthur L.

    2003-01-01

    Phosphorus pollution from excessive litter application causes eutorphication of lakes in the Eucha-Spavinaw watershed in eastern Oklahoma and western Arkansas. Consequent algal blooms impair the taste of municipal water supply drawn from the watershed. The paper shows how GIS data based biophysical modeling can be used to derive spatially optimal, least-cost allocation of management practices to reduce phosphorus runoff in the watershed. Transportation activities were added to the model so th...

  10. Statewide Watershed Management Effects on Local Watershed Groups: A Comparison of Wisconsin, Kentucky, and Virginia

    OpenAIRE

    Gorder, Joel Steven

    2001-01-01

    While there are no federal mandates for states to establish watershed management frameworks, many states see the benefits of doing so and have established such approaches. The main advantage of statewide watershed management over traditional resource management is the cost effectiveness and the formation of integrated solutions to water quality problems. Statewide watershed frameworks provide a geographic focus and partnerships in order to develop comprehensive solutions...

  11. Mercury in Indiana watersheds: retrospective for 2001-2006

    Science.gov (United States)

    Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.

    2010-01-01

    exceeded the 0.3 milligram per kilogram (mg/kg) U.S. Environmental Protection Agency (USEPA) methylmercury criterion in 12.4 percent of the 1,731 samples. The median wet-weight concentration in the fish-tissue samples was 0.13 mg/kg, and the maximum was 1.07 mg/kg. A coarse-scale analysis of all fish-tissue data in each watershed and a fine-scale analysis of data within 5 kilometers (km) of the downstream end of each watershed showed similar results overall. Mercury concentrations in fish-tissue samples were highest in the White River watershed in southern Indiana and the Fall Creek watershed in central Indiana. In fish-tissue samples within 5 km of the downstream end of a watershed, the USEPA methylmercury criterion was exceeded by 45 percent of mercury concentrations from the White River watershed and 40 percent of the mercury concentration from the Fall Creek watershed. A clear relation between mercury concentrations in fish-tissue samples and methylmercury concentrations in water was not observed in the data from watersheds in Indiana. Average annual atmospheric mercury wet-deposition rates were mapped with data at 156 locations in Indiana and four surrounding states for 2001-2006. These maps revealed an area in southeastern Indiana with high mercury wet-deposition rates-from 15 to 19 micrograms per square meter per year (ug/m2/yr). Annual atmospheric mercury dry-deposition rates were estimated with an inferential method by using concentrations of mercury species in air samples at three locations in Indiana. Mercury dry deposition-rates were 5.6 to 13.6 ug/m2/yr and were 0.49 to 1.4 times mercury wet-deposition rates. Total mercury concentrations were detected in 96 percent of 402 samples of wastewater effluent from 50 publicly owned treatment works in the watersheds; the median concentration was 3.0 ng/L, and the maximum was 88 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 12 percent exceeded the 12-n

  12. Land Cover Vegetation Changes and Hydrology in Central Texas

    Science.gov (United States)

    Banta, J. R.; Slattery, R.

    2013-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing changes in land cover vegetation (removing the woody vegetation and allowing native grasses to reestablish in the area, commonly referred to as brush management), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal agencies, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and potential groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Results indicate there are differences in the hydrologic budget and water quality between the reference and treatment watersheds, as well as between pre- and post-brush management periods.

  13. Hydrologic Effects of Brush Management in Central Texas

    Science.gov (United States)

    Banta, J. R.; Slattery, R.

    2011-12-01

    Encroachment of woody vegetation into traditional savanna grassland ecosystems in central Texas has largely been attributed to land use practices of settlers, most notably overgrazing and fire suppression. Implementing brush management practices (removing the woody vegetation and allowing native grasses to reestablish in the area), could potentially change the hydrology in a watershed. The U.S. Geological Survey, in cooperation with several local, State, and Federal cooperators, studied the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in the Honey Creek State Natural Area in Comal County, Tex. Two adjacent watersheds of 104 and 159 hectares were used in a paired study. Rainfall, streamflow, evapotranspiration (Bowen ratio method), and water quality data were collected in both watersheds. Using a hydrologic mass balance approach, rainfall was allocated to surface-water runoff, evapotranspiration, and groundwater recharge. Groundwater recharge was not directly measured, but estimated as the residual of the hydrologic mass balance. After hydrologic data were collected in both watersheds for 3 years, approximately 80 percent of the woody vegetation (ashe juniper) was selectively removed from the 159 hectare watershed (treatment watershed). Brush management was not implemented in the other (reference) watershed. Hydrologic data were collected in both watersheds for six years after brush management implementation. The resulting data were examined for differences in the hydrologic budget between the reference and treatment watersheds as well as between pre- and post-brush management periods to assess effects of the treatment. Preliminary results indicate there are differences in the hydrologic budget as well as water quality between the watersheds during pre- and post-treatment periods.

  14. Southern Watersheds Common Reedgrass Monitoring Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Southern Watersheds Common Reedgrass Project is an interagency effort to increase public awareness of the common reedgrass problem, demonstrate effective...

  15. Watershed Boundaries, Published in unknown, SWGRC.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, was produced all or in part from Road Centerline Files information as of unknown. Data by this publisher are often provided in...

  16. Southern Watersheds Common Reedgrass Project Progress Report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Southern Watersheds includes the drainages of the Northwest River, the North Landing River, and Back Bay in the southeastern corner of Virginia. Common...

  17. Watershed impervious cover relative to stream location

    Data.gov (United States)

    U.S. Environmental Protection Agency — Estimates of watershed (12-digit huc) impervious cover and impervious cover near streams and water body shorelines for three dates (2001, 2006, 2011) using NLCD...

  18. New York City watershed case study

    OpenAIRE

    Government of New York City

    2006-01-01

    Metadata only record Due to degradation of New Your City's water source areas, their water has dropped below EPA standards. The cost of developing a filtration plant was estimated along with the cost of restoring the watershed's natural purification abilities. The cost of restoring the watershed's natural purification ability was found to be a fraction of what it would cost to construct and maintain a filtration plant. The city is now using funds to purchase and halt development, compensat...

  19. Blob Objects Analysis Using Watershed Transformation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a novel method for overlapping or touching blob object ( particles ) segmentation. It is based on the watershed transformation, one of the most powerful image analysis tools provided by mathematical morphology. In this method, we first build the distance function of the blob image, and then extract the regional minima as markers, and finally the watershed transformation is performed. The applications of this algorithm illustrated using the examples of red blood cell segmentation and broken medicine pill detection.

  20. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  1. Spate Irrigation Systems and Watershed Development in Eritrea: the case of Sheeb watershed

    NARCIS (Netherlands)

    Tesfai, M.H.

    2002-01-01

    This paper describes the interactions of the Spate Irrigation System (SIS) in Eritrea with their upper watersheds, as a case study in Sheeb watershed. The spate irrigation practices, among others, include techniques to harvest runoff water, sediments, and nutrients. A strong relationship exists betw

  2. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    International Nuclear Information System (INIS)

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in μEq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m2/month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m2/month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs

  3. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Barchet, W.R.

    1991-11-01

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in {mu}Eq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m{sup 2}/month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m{sup 2}/month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs.

  4. Anopheline (Diptera:Culicidae) breeding in a traditional tank-based village ecosystem in north central Sri Lanka

    DEFF Research Database (Denmark)

    Amerasinghe, F P; Konradsen, F; Fonseka, K T;

    1997-01-01

    A 13-mo survey of immature anopheline mosquitoes breeding in surface water habitats was done at Mahameegaswewa village within the Huruluwewa watershed in north central Sri Lanka as part of a multidisciplinary study on malaria epidemiology. The watershed is representative of the ancient small tank...

  5. Determining Sources of Fecal Pollution in the Blackwater River Watershed, Franklin County, Virginia

    OpenAIRE

    Bowman, Amy Marie

    2001-01-01

    Antibiotic resistance analysis (ARA) was used to determine sources of fecal pollution in the Blackwater River in South-central Virginia. The Department of Environmental Quality designated six segments as impaired due to high fecal coliform concentrations with non-point source (NPS) agriculture the suspected source of impairment. The Blackwater River watershed encompasses 72,000 ha of dairy, beef, and intensive production agriculture, abundant wildlife populations and many homes with onsite s...

  6. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  7. USDA-ARS Southeast Watershed Laboratory at Tifton, GA:Index Site Design for the Suwannee Basin

    Science.gov (United States)

    Bosch, D.; Strickland, T.; Sheridan, J.; Lowrance, R.; Truman, C.; Hubbard, R.; Potter, T.; Wauchope, D.; Vellidis, G.; Thomas, D.

    2001-12-01

    The Southeast Watershed Hydrology Research Center (SEWHRC) was established in 1966 by order of the U.S. Senate "to identify and characterize those elements that control the flow of water from watersheds in the southeast". A 129 sq.mi. area within the headwaters of Little River Watershed (LRW) in central south Georgia was instrumented to provide data for evaluating and characterizing Coastal Plain hydrologic processes and for development and testing of prediction methodologies for use in ungaged watersheds in regions of low topographic relief. Pesticide analytical capabilities were added in 1976, and inorganic chemistry and sediment transport research were expanded. In 1980, the Center was renamed as the Southeast Watershed Research Laboratory (SEWRL), and laboratories were constructed for nutrient analysis and soil physics. A pesticide analysis laboratory was constructed in 1987. In the early 1990s, a hydraulics laboratory was established for sediment and chemical transport studies, and research on riparian buffers was expanded. The SEWRL research program continues to focus on hydrologic and environmental concerns. Major components of the program are hydrology, pesticides behavior, buffer systems, animal waste management, erosion, remote sensing of watershed condition, and relationships between site-specific agricultural management (BMPs) and small-to-large watershed response. SEWRL's program will be expanded over the next five years to include two additional watersheds comparable in size and instrumentation to the LRW; nesting the LRW within the full Little River drainage and subsequently...all three watersheds within the full Suwannee Basin; and mapping and quantifying irrigation water removals within the Suwannee Basin. We will instrument the three intensive study watersheds and the full Suwannee Basin to provide real-time characterization of precipitation, soil moisture, hydrologic flow, and water quality at a range of spatial and temporal scales. We will

  8. SUSTAINABLE URBAN TECHNOLOGIES TEAM (URBAN WATERSHED MANAGEMENT BRANCH - WSWRD)

    Science.gov (United States)

    The National Risk Management Research Laboratory's Urban Watershed Management Branch researches, develops and evaluates technologies, practices, and systems to manage risks to human health and ecosystems from Wet Weather Flow (WWF) sources in urban watersheds. The focus is on the...

  9. US Forest Service Watershed Condition Class and Assessment Status 2011

    Data.gov (United States)

    US Forest Service, Department of Agriculture — The map contains the Watershed Condition Class and assessment status for the assessment year of 2011. The layer is symbolized by the Watershed Condition Class for...

  10. DNR Watersheds - DNR Level 04 - HUC 08 - Majors

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of 81 watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Major Watersheds....

  11. How Sustainable is Participatory Watershed Development in India?

    NARCIS (Netherlands)

    Bouma, J.; Soest, van D.P.; Bulte, E.H.

    2007-01-01

    Watershed conservation is widely recognized as a major strategy for rural development throughout the developing world. In India, the apparent success of participatory approaches to watershed development resulted in a decentralization of project planning, implementation, and management to local commu

  12. Application of watershed modeling system (WMS) for integrated management of a watershed in Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Baloch, Mansoor Ahmed; Dikerler, Teoman; Varol, Evren; Akbulut, Neslihan; Tanik, Aysegul

    2006-01-01

    Watershed models, that enable the quantification of current and future pollution loading impacts, are essential tools to address the functions and conflicts faced in watershed planning and management. In this study, the Watershed Modeling System (WMS) version 7.1 was used for the delineation of boundaries of Koycegiz Lake-Dalyan Lagoon watershed located in the southwest of Turkey at the Mediterranean Sea coast. A Digital Elevation Model (DEM) was created for one of the major streams of the watershed, namely, Kargicak Creek by using WMS, and DEM data were further used to extract stream networks and delineate the watershed boundaries. Typical properties like drainage areas, characteristic length and slope of sub-drainage areas have also been determined to be used as model inputs in hydrological and diffuse pollution modeling. Besides, run-off hydrographs for the sub-drainages have been calculated using the Rational Method, which produces valuable data for calculating the time variable inflow and input pollution loads to be further utilized in the future water quality models of the Creek. Application of WMS in the study has shown that, it is capable to visualize the results in establishing watershed management strategies.

  13. Modeling flood reduction effects of low impact development at a watershed scale.

    Science.gov (United States)

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas.

  14. Development of a New Index for Integrating Landscape Patterns with Ecological Processes at Watershed Scale

    Institute of Scientific and Technical Information of China (English)

    CHEN Liding; TIAN Huiying; FU Bojie; ZHAO Xinfeng

    2009-01-01

    Understanding the relationship between landscape patterns and ecological processes has been a central yet challenging research theme in landscape ecology. Over the past decades, many landscape metrics have been proposed but few directly incorporated ecological processes. In this paper, we developed a landscape index, namely, location-weighted landscape index (LWLI) to highlight the role of landscape type in ecological processes, such as nutrient losses and soil erosion. Within the framework of the Lorenz curve theory, we develop this index by integrating landscape pattern and point-based measurements at a watershed scale. The index can be used to characterize the contribution of landscape pattern to ecological processes (e.g. nutrient losses) with respect to a specific monitoring point in a watershed. Through a case study on nutrient losses in an agricultural area in northeastern China, we found that nutrient losses tended to be higher for a watershed with a higher LWLI value, and vice versa. It implied that LWLI can be used to evaluate the potential risk of nutrient losses or soil erosion by comparing their values across watersheds. In addition, this index can be extended to characterize ecological processes, such as the effect of landscape pattern on wildlife inhabitation and urban heat island effect. Finally, we discuss several problems that should be paid attention to when applying this index to a heterogeneous landscape site.

  15. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  16. Modeling flood reduction effects of low impact development at a watershed scale.

    Science.gov (United States)

    Ahiablame, Laurent; Shakya, Ranish

    2016-04-15

    Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. PMID:26878221

  17. Ultrametric watersheds: a bijection theorem for hierarchical edge-segmentation

    CERN Document Server

    Najman, Laurent

    2010-01-01

    We study hierachical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical edgesegmentations. We end this paper by showing how the proposed framework allows to see constrained connectivity as a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.

  18. The steepest watershed: from graphs to images

    CERN Document Server

    Meyer, Fernand

    2012-01-01

    The watershed is a powerful tool for segmenting objects whose contours appear as crest lines on a gradient image. The watershed transform associates to a topographic surface a partition into catchment basins, defined as attraction zones of a drop of water falling on the relief and following a line of steepest descent. Unfortunately, catchment basins may overlap and do not form a partition. Moreover, current watershed algorithms, being shortsighted, do not correctly estimate the steepness of the downwards trajectories and overestimate the overlapping zones of catchment basins. An arbitrary division of these zones between adjacent catchment basin results in a poor localization of the contours. We propose an algorithm without myopia, which considers the total length of a trajectory for estimating its steepness. We first consider topographic surfaces defined on node weighted graphs. The graphs are pruned in order to eliminate all downwards trajectories which are not the steepest. An iterative algorithm with simpl...

  19. Watershed management program. Final environmental impact statement

    International Nuclear Information System (INIS)

    Under the Northwest Power Act, BPA is responsible for mitigating the loss of fish and wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian tribes, state agencies property owners, private conservation groups, and Federal agencies. Future watershed management actions with potential environmental impacts are expected to include in-channel modifications and fish habitat enhancement structures; riparian restoration and other vegetation management techniques; agricultural management techniques for crop irrigation, animal facilities, and grazing; road, forest, urban area, and recreation management techniques; mining reclamation; and similar watershed conservation actions. BPA needs to ensure that individual watershed management projects are planned and carried out with appropriate consistency across projects, jurisdictions, and ecosystems, as well as over time

  20. Wind River Watershed Restoration: 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Patrick J.

    2001-09-01

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  1. Efeitos de doses crescentes de calcário em solo Latossolo Amarelo na produção de mudas de pau-de-balsa (Ochroma lagopus sw., bombacaceae) Effects of the rising heat in Yellow Oxisoil in the production of silent wood rafts (Ochroma lagopus sw., bombacaceae)

    OpenAIRE

    Carlos Alberto Franco Tucci; Hedinaldo Narciso Lima; Aildo da Silva Gama; Heron Salazar Costa; Patricia Aparecida de Souza

    2010-01-01

    A produção de mudas de qualidade com adequado teor nutricional é fundamental para o desenvolvimento da planta e para a formação do sistema radicular, a qual apresentará melhor capacidade de adaptação ao novo local após o plantio. O objetivo deste trabalho foi avaliar o efeito de níveis crescentes de calcário na produção de mudas de pau-de-balsa. Os tratamentos foram constituídos de doses crescentes de corretivo e equivaleram a 0,0; 0,25; 0,5; 0,75; 1,0; 1,5 e 2,0 t ha-1 de calcário e o deline...

  2. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    OpenAIRE

    ZAMFIR Andreea; Daniel SIMULESCU

    2011-01-01

    This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps s...

  3. Watershed Boundaries, Watershed Boundaries, Published in 2002, 1:4800 (1in=400ft) scale, Iredell County GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:4800 (1in=400ft) scale as of 2002. It is described as 'Watershed Boundaries'. Data by this publisher are often...

  4. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  5. 76 FR 71936 - Upper Deckers Creek Watershed, Preston County, WV

    Science.gov (United States)

    2011-11-21

    ... Natural Resources Conservation Service Upper Deckers Creek Watershed, Preston County, WV AGENCY: Natural... notice that an environmental impact statement is being prepared for the Upper Deckers Creek Watershed... Domestic Assistance under No. 10.904--Watershed Protection and Flood Prevention--and is subject to...

  6. A COMPARATIVE STUDY ON CALIBRATION METHODS OF NASH’S RAINFALL-RUNOFF MODEL TO AMMAMEH WATERSHED, IRAN

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2008-06-01

    Full Text Available Increasing importance of watershed management during last decades highlighted the need for sufficient data and accurate estimation of rainfall and runoff within watersheds. Therefore, various conceptual models have been developed with parameters based on observed data. Since further investigations depend on these parameters, it is important to accurately estimate them. This study by utilizing various methods, tries to estimate Nash rainfall-runoff model parameters and then evaluate the reliability of parameter estimation methods; moment, least square error, maximum likelihood, maximum entropy and genetic algorithm. Results based on a case study on the data from Ammameh watershed in Central Iran, indicate that the genetic algorithm method, which has been developed based on artificial intelligence, more accurately estimates Nash’s model parameters.

  7. EFFECTS OF HYDROGEOMORPHIC REGION, WATERSHED STORAGE, AND FOREST FRAGMENTATION ON WATERSHED EXPORTS

    Science.gov (United States)

    Turbidity was highest for South Shore streams overall, but exhibited a significant HGM x storage x fragmentation effect, with highest levels observed in South Shore low storage/high fragmentation watersheds.

  8. Impacts of water surface area of watershed on design flood

    OpenAIRE

    Zhang, Qing-Hua; Yan-fang DIAO; Dong, Jie

    2014-01-01

    In order to analyze the impact of the water surface area of a watershed on the design flood, the watershed was classified into a land watershed and a water surface watershed for flood flow calculation at the same time interval. Then, the design flood of the whole watershed was obtained by adding the two flood flows together. Using this method, we calculated design floods with different water surface areas of three reservoirs and analyzed the impact of water surface area on the flood volume an...

  9. Modeling global nutrient export from watersheds

    NARCIS (Netherlands)

    Kroeze, C.; Bouwman, A.F.; Seitzinger, S.

    2012-01-01

    We describe how global models can be used to analyze past and future trends in nutrient export from watersheds and how such models can be used to analyze causes and effects of coastal eutrophication. Future nutrient inputs to coastal waters may be higher than today, and nutrient ratios may depart fr

  10. Watershed Conservation in the Long Run

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    We studied unanticipated long-run outcomes of conservation activities that occurred in forested watersheds on O`ahu, Hawaii, in the early twentieth century. The initial general impetus for the conservation activities was to improve irrigation surface water flow for the sugar industry. Industry co...

  11. Engaging Pennsylvania Teachers in Watershed Education

    Science.gov (United States)

    Gruver, Joshua; Luloff, A. E.

    2008-01-01

    Water-resource scientists have become increasingly concerned about global water quality and quantity issues. Water and watershed education are now mandated topics for school-aged youth. Pennsylvania teachers lack consistent and accessible curricula to teach students about water quality and quantity. A mail survey administered in 2004 determined…

  12. A mean field approach to watershed hydrology

    Science.gov (United States)

    Bartlett, Mark; Porporato, Amilcare

    2016-04-01

    Mean field theory (also known as self-consistent field theory) is commonly used in statistical physics when modeling the space-time behavior of complex systems. The mean field theory approximates a complex multi-component system by considering a lumped (or average) effect for all individual components acting on a single component. Thus, the many body problem is reduced to a one body problem. For watershed hydrology, a mean field theory reduces the numerous point component effects to more tractable watershed averages, resulting in a consistent method for linking the average watershed fluxes to the local fluxes at each point. We apply this approach to the spatial distribution of soil moisture, and as a result, the numerous local interactions related to lateral fluxes of soil water are parameterized in terms of the average soil moisture. The mean field approach provides a basis for unifying and extending common event-based models (e.g. Soil Conservation Service curve number (SCS-CN) method) with more modern semi-distributed models (e.g. Variable Infiltration Capacity (VIC) model, the Probability Distributed (PDM) model, and TOPMODEL). We obtain simple equations for the fractions of the different source areas of runoff, the spatial variability of runoff, and the average runoff value (i.e., the so-called runoff curve). The resulting space time distribution of soil moisture offers a concise description of the variability of watershed fluxes.

  13. 36 CFR 251.35 - Petersburg watershed.

    Science.gov (United States)

    2010-07-01

    ... Federal employees, holders of Forest Service contracts, or Forest Service agents; (2) The operation, maintenance, and improvement of the municipal water system by Federal and State officials and employees of the... Ranger. (d) Unauthorized entrance upon lands within the watershed is subject to punishment as provided...

  14. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

  15. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  16. Reconstructing Historical Changes in Watersheds from Environmental Records: An Information Theory Approach

    Science.gov (United States)

    Guerrero, F. J.; Hatten, J. A.; Ruddell, B.; Penaranda, V.; Murillo, P.

    2015-12-01

    A 20% of the world's population is living in watersheds that suffer from water shortage. This situation has complex causes associated with historical changes in watersheds. However, disentangling the role of key drivers of water availability like climate change or land use practices is challenging. Part of the difficulty resides in that historical analysis is basically a process of empirical reconstruction from available environmental records (e.g. sediment cores or long-term hydrologic time series). We developed a mathematical approach, based on information theory, for historical reconstructions in watersheds. We analyze spectral entropies calculated directly or indirectly for sediment cores or long-term hydrologic time series respectively. Spectral entropy measures changes in Shannon's information of natural patterns (e.g. particle size distributions in lake bottoms or streamflow regimes) as they respond to different drivers. We illustrate the application of our approach with two case studies: a reconstruction of a time series of historical changes from a sediment core, and the detection of hydrologic alterations in watersheds associated to climate and forestry activities. In the first case we calculated spectral entropies from 700 sediment layers encompassing 1500 years of history in Loon Lake (Southern Oregon). In the second case, we calculated annual spectral entropies from daily discharge for the last 45 years in two experimental watersheds in the H. J. Andrews LTER site (Oregon Cascades). In Loon Lake our approach separated, without supervision, earthquakes from landslides and floods. It can also help to improve age models for sedimentary layers. At H. J. Andrews's sites our approach was able to identify hydrological alterations following a complete clear cut in 1975. It is also helpful to identify potential long-term impacts of these forestry activities, enhanced by climate change. Our results suggest that spectral entropy is central for translating between

  17. Morphometric analysis in basaltic Terrain of Central India using GIS techniques: a case study

    Science.gov (United States)

    Sahu, Nisha; Obi Reddy, G. P.; Kumar, Nirmal; Nagaraju, M. S. S.; Srivastava, Rajeev; Singh, S. K.

    2016-06-01

    Morphometric analysis is significant for investigation and management of the watershed. This study depicts the morphometric analysis of Miniwada Watershed in Nagpur district, Maharashtra, Central India using Geographic Information System (GIS) techniques, which has been carried out through measurement of various aspects like linear, aerial and relief aspects of watershed. The drainage network of the watershed was generated from Cartosat-I DEM (10 m) using ESRI Software ArcGIS (ver.10.2). The analysis reveals that drainage pattern is dendritic and the stream order in the watershed varies from 1 to 4. The total number of stream segments of all orders counted as 37, out of which the majority of orders (70.27 %) was covered by 1st order streams and 4th order stream segments covers only 2.70 %. The bifurcation ratio reflects the geological and tectonic characteristics of the watershed and estimated as 3.08. The drainage density of the watershed is 3.63 km/sq km and it indicates the closeness of spacing of channels. The systematic analysis of various parameters in GIS helps in better understanding the soil resources distribution, watersheds prioritization, planning and management.

  18. Oil in runoff from three watersheds: An update of an environmental concern

    International Nuclear Information System (INIS)

    Levels of oil were determined in runoff from three watersheds. Included were a commercial area (mainly an urban mall), a residential area (located in a central city), and a portion of a limited-access highway (228.6 m long). Personnel arrived at each site before runoff began, and samples were taken every 15 min for the first hour and every 30 min for the next 2 h, unless runoff stopped sooner than this. Rainfall also was measured, and cross section of flow and velocity of the water also were determined. Samples were analyzed for total and recoverable grease and oil, using a separatory funnel extraction. The highest mean concentration of oil was from the residential watershed (10.2 mg/l), but the lowest loading rate (0.24 g/0.405 ha/min) also was from the residential area

  19. Assessing Resilience in Stressed Watersheds

    Directory of Open Access Journals (Sweden)

    Kristine T. Nemec

    2014-03-01

    Full Text Available Although several frameworks for assessing the resilience of social-ecological systems (SESs have been developed, some practitioners may not have sufficient time and information to conduct extensive resilience assessments. We have presented a simplified approach to resilience assessment that reviews the scientific, historical, and social literature to rate the resilience of an SES with respect to nine resilience properties: ecological variability, diversity, modularity, acknowledgement of slow variables, tight feedbacks, social capital, innovation, overlap in governance, and ecosystem services. We evaluated the effects of two large-scale projects, the construction of a major dam and the implementation of an ecosystem recovery program, on the resilience of the central Platte River SES (Nebraska, United States. We used this case study to identify the strengths and weaknesses of applying a simplified approach to resilience assessment. Although social resilience has increased steadily since the predam period for the central Platte River SES, ecological resilience was greatly reduced in the postdam period as compared to the predam and ecosystem recovery program time periods.

  20. Wetland vegetation responses to liming an Adirondack watershed

    Energy Technology Data Exchange (ETDEWEB)

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  1. Diagnostic Systems Approach to Watershed Management

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to

  2. Small watershed response to porous rock check dams in a semiarid watershed

    Science.gov (United States)

    Nichols, Mary; Polyakov, Viktor; Nearing, Mark

    2016-04-01

    Rock check dams are used throughout the world as technique for mitigating erosion problems on degraded lands. Increasingly, they are being used in restoration efforts on rangelands in the southwestern US, however, their impact on watershed response and channel morphology is not well quantified. In 2008, 37 porous rock structures were built on two small (4.0 and 3.1 ha) instrumented watersheds on an alluvial fan at the base of the Santa Rita Mountains in southern Arizona, USA. 35 years of historical rainfall and runoff, and sediment data are available to compare with 7 years of data collected after check dam construction. In addition, post construction measurements of channel geometry and longitudinal channel profiles were compared with pre-construction measurements to characterize the impact of check dams on sediment retention and channel morphology. The primary impact of the check dams is was retention of channel sediment and reduction in channel gradient; however response varied between the proximal watersheds with 80% of the check dams on one of the watersheds filled to 100% of their capacity after 7 runoff seasons. In addition, initial impact on precipitation runoff ratios is was not persistent. The contrasting watershed experiences lower sediment yields and only 20% of the check dams on this watershed are were filled to capacity and continue to influence runoff during small events. Within the watersheds the mean gradient of the channel reach immediately upstream of the structures has been reduced by 35% (from 0.061 to 0.039) and 34% on (from 0.071 to 0.047).

  3. Social Exclusion in Watershed Development: Evidence From the Indo-German Watershed Development Project in Maharashtra

    Directory of Open Access Journals (Sweden)

    Eshwer Kale

    2011-09-01

    Full Text Available The concept of social exclusion is context-specific and there is no uniform paradigm of exclusion across the world. This paper attempts to analyse exclusion of resource-poor groups in watershed development programmes in the Indian context. It aims to explore excluded community groups from the perspective of people’s equal opportunity and equal access to newly generated economic benefits in watershed development programmes. The paper also traces the determinant factors responsible for denial and exclusion of resource-poor groups and describes the detailed processes involved in their exclusion from institutional and livelihood opportunities in watershed programmes. At the same time, the paper also explores suggestions and views of resource-poor groups about their meaningful social inclusion in watershed programme. The Gadiwat Indo-German Watershed Development Project in Aurangabad district in the State of Maharashtra is studied in detail in terms of its social, economic and political realities through mix-method and multi-stakeholder approaches. The key findings of the paper are that landownership, caste, gender, membership in village institutions and/or watershed institutions or close relationship with members, as well as the limitations of the programme guidelines, are the major determinants of institutional inclusion and the extent of resulting economic benefits. The exclusion of resource-poor groups mainly takes the form of their exclusion from institutional representation. In order to promote meaningful social inclusion of resource-poor groups, there is need for a more livelihood-oriented focus and their equal representation and participation in watershed institutions.

  4. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  5. Automatic delineation of a watershed using a DEM. Case study – The Oltet watershed

    Directory of Open Access Journals (Sweden)

    Andreea ZAMFIR

    2011-03-01

    Full Text Available This paper aims to present some solutions for automatic delineation of a watershed. In order to find this study’s applicability in the geographical reality, we decided that the river whose watershed will be delineated to be Oltet river. Automatic delineation of the Olteţ watershed was carried out comparatively, using two softwares, ArcGIS Desktop 9.3 andQuantum GIS 1.7.0 Wroclaw, and it based on a SRTM digital elevation model of 90 m. After using GIS techniques, there have resulted two maps showing the boundary of theOlteţ watershed. By overlapping the resulted maps, obtained with ArcGIS and QGIS, we found some small differences generated by the different way of working of each softwareinvolved in this study. We have also calculated a circularity coefficient for the Oltet watershed and the value obtained supports its elongated form and all the implication of it.

  6. Thermodynamic watershed hydrological model: Constitutive relationship

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The representative elementary watershed (REW) approach proposed by Reggiani et al. was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo-rated. The resultant ordinary differential equation set can simulate various hydro-logical processes in a physically reasonable way. However, constitutive and geo-metric relationships have not been developed for Tian et al.’s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo-metric relationships. The closed ordinary differential equation set with nine equa-tions was finally obtained.

  7. Thermodynamic watershed hydrological model: Constitutive relationship

    Institute of Scientific and Technical Information of China (English)

    TIAN FuQiang; HU HePing; LEI ZhiDong

    2008-01-01

    The representative elementary watershed (REW) approach proposed by Reggiani et al. Was the first attempt to develop scale adaptable equations applicable directly at the macro scale. Tian et al. Extended the initial definition of REW for simulating the energy related processes, and re-organized the deriving procedure of balance equations so that additional sub-regions and substances could be easily incorpo- rated. The resultant ordinary differential equation set can simulate various hydro- logical processes in a physically reasonable way. However, constitutive and geo- metric relationships have not been developed for Tian et al.'s equation set, which are necessary for the thermodynamic watershed hydrological model to apply in hydrological modeling practice. In this work, the constitutive equations for mass exchange terms and momentum exchange terms were developed as well as geo- metric relationships. The closed ordinary differential equation set with nine equations was finally obtained.

  8. Nitrogen fate and Transport in Diverse Agricultural Watersheds

    Science.gov (United States)

    Essaid, H.; McCarthy, K. A.; Baker, N. T.

    2010-12-01

    Nitrogen mass budgets have been estimated for ten agricultural watersheds located in a range of hydrologic settings in order to understand the factors controlling the fate of nitrogen applied at the surface. The watersheds, study areas of the Agricultural Chemical Sources, Transport and Fate study of the U.S. Geological Survey National Water Quality Assessment Program, are located in Indiana (IN), Iowa (IA), Maryland (MD), Nebraska (NE), Mississippi (MS) and Washington (WA). They range in size from 7 to 1254 km2, with four of the watersheds nested within larger watersheds. Surface water outflow (normalized to watershed area) ranged from 4 to 83 cm/yr. Crops planted include corn, soybean, small grains, rice, cotton, orchards and vegetables. “Surplus nitrogen” was determined for each watershed by subtracting estimates of crop uptake and volatilization from estimates of nitrogen input from atmospheric deposition, plant fixation, and fertilizer and manure applications for the period from 1987 to 2004. This surplus nitrogen is transported though the watershed via surface and subsurface flow paths, while simultaneously undergoing transformations (such as denitrification and in-stream processing) that result in less export of nitrogen from the watershed. Surface-water discharge and concentration data were used to estimate the export of nitrogen from the watersheds (groundwater outflow from the watersheds was minimal). Subtracting nitrogen export from surplus nitrogen provides an estimate of the net amount of nitrogen removal occurring during internal watershed transport. Watershed average nitrogen surplus ranged from 6 to 49 kg-N/ha. The more permeable and/or greater water flux watersheds (MD, NE, and WA) tended to have larger surplus nitrogen, possibly due to less crop uptake caused by greater leaching and runoff of nitrogen. Almost all of the surplus nitrogen in the low permeability (MS) and tile drained watersheds (IA, IN) was exported from the watershed with

  9. Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique

    Science.gov (United States)

    Pinto, Domingos; Shrestha, Sangam; Babel, Mukand S.; Ninsawat, Sarawut

    2015-02-01

    Groundwater plays an important role for socio-economic development of Comoro watershed in Timor Leste. Despite the significance of groundwater for sustainable development, it has not always been properly managed in the watershed. Therefore, this study seeks to identify groundwater potential zones in the Comoro watershed, using geographical information systems and remote sensing and analytic hierarchy process technique. The groundwater potential zones thus obtained were divided into five classes and validated with the recorded bore well yield data. It was found that the alluvial plain in the northwest along the Comoro River has very high groundwater potential zone which covers about 5.4 % (13.5 km2) area of the watershed. The high groundwater potential zone was found in the eastern part and along the foothills and covers about 4.8 % (12 km2) of the area; moderate zone covers about 2.0 % (5 km2) of the area and found in the higher elevation of the alluvial plain. The poor and very poor groundwater potential zone covers about 87.8 % (219.5 km2) of the watershed. The hilly terrain located in the southern and central parts of the study area has a poor groundwater potential zone due to higher degree of slope and low permeability of conglomerate soil type. The demarcation of groundwater potential zones in the Comoro watershed will be helpful for future planning, development and management of the groundwater resources.

  10. Payment schemes for environmental services in watersheds

    OpenAIRE

    Food and Agriculture Organization of the United Nations.‏ United Nations Development Programme

    2004-01-01

    Payment schemes for environmental services (PES) are innovative instruments for natural resources management which are increasingly being applied in Latin America. In a watershed context, PES schemes generally involve the implementation of market mechanisms to compensate upstream landowners in order to maintain or modify a particular land use that is affecting the availability and/or quality of the water resources for downstream users. The Regional Forum on Payment Schemes for Environmental S...

  11. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  12. Impacts of water surface area of watershed on design flood

    Directory of Open Access Journals (Sweden)

    Qing-hua ZHANG

    2014-01-01

    Full Text Available In order to analyze the impact of the water surface area of a watershed on the design flood, the watershed was classified into a land watershed and a water surface watershed for flood flow calculation at the same time interval. Then, the design flood of the whole watershed was obtained by adding the two flood flows together. Using this method, we calculated design floods with different water surface areas of three reservoirs and analyzed the impact of water surface area on the flood volume and peak flow. The results indicate that larger water surface areas lead to greater impacts on the flood volume and peak flow. For the same watershed area, the impact of water surface area on the flood volume and peak flow is positively proportional to the flood frequency, i.e., the higher the frequency, the greater the impact becomes.

  13. Citizen Participation in Collaborative Watershed Partnerships

    Science.gov (United States)

    Koehler, Brandi; Koontz, Tomas M.

    2008-02-01

    Collaborative efforts are increasingly being used to address complex environmental problems, both in the United States and abroad. This is especially true in the growing field of collaborative watershed management, where diverse stakeholders work together to develop and advance water-quality goals. Active citizen participation is viewed as a key component, yet groups often struggle to attract and maintain citizen engagement. This study examined citizen participation behavior in collaborative watershed partnerships by way of a written survey administered to citizen members of 12 collaborative watershed groups in Ohio. Results for the determination of who joins such groups were consistent with the dominant-status model of participation because group members were not demographically representative of the broader community. The dominant-status model, however, does not explain which members are more likely to actively participate in group activities. Instead, individual characteristics, including political activity, knowledge, and comfort in sharing opinions with others, were positively correlated with active participation. In addition, group characteristics, including government-based membership, rural location, perceptions of open communication, perceptions that the group has enough technical support to accomplish its goals, and perceived homogeneity of participant opinions, were positively correlated with active participation. Overall, many group members did not actively participate in group activities.

  14. Understanding toxicity at the watershed scale : design of the Syncrude Sandhill Fen watershed research project

    International Nuclear Information System (INIS)

    Fens are peat-accumulating wetlands with a water table consisting of mineral-rich ground or surface water. This study discussed the construction of a fen-type reclaimed wetland constructed in a post-mining oil sands landscape. Syncrude Canada's Sandhill fen watershed project represents the first attempt at constructing a fen wetland in the oil sands region. The wetland and its watershed will be constructed on a soft tailings deposit. The design basis for the fen and watershed was developed by a team of researchers and scientists. The aim of the fen design was to control the salinity caused by tailings consolidation and seepage over time. Methods of mitigating potentially toxic effects from salinity were discussed.

  15. Advances in Watershed Management: Modeling, Monitoring, and Assessment

    OpenAIRE

    Benham, B. L.; Yagow, G.; Chaubey, I.; Douglas-Mankin, K. R.

    2011-01-01

    This article introduces a special collection of nine articles that address a wide range of topics all related to improving the application of watershed management planning. The articles are grouped into two broadly defined categories.. modeling applications, and monitoring and assessment. The modeling application articles focus on one of two widely used watershed-scale water quality modeling packages: HSPF or SWAT The HSPF article assesses the model's robustness when applied to watersheds acr...

  16. Predicting Watershed Ecosystems Through Targeted Local Land Use Policies

    OpenAIRE

    Langpap, Christian; Hascic, Ivan; Wu, Junjie

    2006-01-01

    Land-use change is arguably the most pervasive socioeconomic force driving the change and degradation of watershed ecosystems. This paper combines an econometric model of land use choice with three models of watershed health indicators (conventional water pollution, toxic water pollution, and the number of aquatic species at risk) to examine the effects of land use policies on watershed ecosystems through their effect on land use choice. The analysis is conducted using parcel-level data from ...

  17. Watershed responses to Amazon soya bean cropland expansion and intensification

    OpenAIRE

    Neill, Christopher; Coe, Michael T.; Riskin, Shelby H.; Krusche, Alex V.; Elsenbeer, Helmut; Macedo, Marcia N.; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A.; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A.

    2013-01-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compar...

  18. The Watershed Transform: Definitions, Algorithms and Parallelization Strategies

    OpenAIRE

    Roerdink, Jos B. T. M.; Meijster, Arnold

    2000-01-01

    The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the literature. The need to distinguish between definition, algorithm specification and algorithm implementation is pointed out. Various examples are given which illustrate differences between watershed tra...

  19. Bundling ecosystem services in the Panama Canal watershed

    OpenAIRE

    Simonit, Silvio; Perrings, Charles

    2013-01-01

    Land cover change in watersheds affects the supply of a number of ecosystem services, including water supply, the production of timber and nontimber forest products, the provision of habitat for forest species, and climate regulation through carbon sequestration. The Panama Canal watershed is currently being reforested to protect the dry-season flows needed for Canal operations. Whether reforestation of the watershed is desirable depends on its impacts on all services. We develop a spatially ...

  20. Efeitos de doses crescentes de calcário em solo Latossolo Amarelo na produção de mudas de pau-de-balsa (Ochroma lagopus sw., bombacaceae Effects of the rising heat in Yellow Oxisoil in the production of silent wood rafts (Ochroma lagopus sw., bombacaceae

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Franco Tucci

    2010-09-01

    Full Text Available A produção de mudas de qualidade com adequado teor nutricional é fundamental para o desenvolvimento da planta e para a formação do sistema radicular, a qual apresentará melhor capacidade de adaptação ao novo local após o plantio. O objetivo deste trabalho foi avaliar o efeito de níveis crescentes de calcário na produção de mudas de pau-de-balsa. Os tratamentos foram constituídos de doses crescentes de corretivo e equivaleram a 0,0; 0,25; 0,5; 0,75; 1,0; 1,5 e 2,0 t ha-1 de calcário e o delineamento experimental utilizado foi o de blocos casualizados com cinco repetições. As características avaliadas foram: altura da planta; diâmetro do colo, matéria seca da parte aérea, matéria seca total, relação raiz/parte aérea, teores totais de macronutrientes nas plantas (N, P, K, Ca, Mg e S. Os resultados demonstraram que a prática de calagem como fator de correção do solo usado no substrato favoreceu todas as características de crescimento avaliadas na produção de mudas de pau-de-balsa. A correção do solo influenciou positivamente a absorção de Ca, Mg e S, por outro lado, não apresentou efeitos estatisticamente significativos para a absorção de N, P e K.The production of quality rafts with appropriate nutritional tenor is fundamental for plant development and for forming of root systems, which present best ability to adapt to new locations after plantation. The goal of this work was to evaluate the effect of rising heat levels in the production of silent wood rafts. The treatment was constituted by rising doses of correction and was equal to 0.0; 0.25; 0.5; 0.75; 1.0; 1.5, and 2.0 t ha-1 of lime and the experimental detail used was of blocks, repeating five times. The characteristics evaluated were: plant height; diameter, dry material of the aerial part, root relation/aerial part, content of macronutrients in the plants (N, P, K, Ca, Mg and S. The results demonstrate that the practice of liming as a soil correction

  1. Initial Ecosystem Development in an Artificial Watershed

    Science.gov (United States)

    Huettl, R.; Koegel-Knabner, I.; Zeyer, J.

    2008-12-01

    Watersheds are often used as a base for ecosystem research. However, boundaries and inner structures of natural watersheds are often insufficiently known and have to be explored indirectly e.g. by means of geophysical methods. Therefore, important parts of the system often remain 'black boxes'. In addition, natural systems are characterized by huge complexity and heterogeneity. To overcome these disadvantages artificially created watersheds may play an important role in ecosystem research. They offer the chance to investigate systems with well defined boundary conditions and inner structures. Furthermore, artificial watersheds might be an important link between lysimeter research and investigations at the landscape scale. The artificial catchment "Chicken Creek" ('Huehnerwasser') is one of the world's largest man-made catchments for scientific purposes. It was established in 2005 with an area of 6 ha (450 m x 150 m) including a small lake. The site is located in the Eastern German lignite mining district near Cottbus, about 150 km southeast of Berlin. The watershed was constructed by Vattenfall Europe Mining AG as the operator of the still active lignite open-cast mine Welzow-South. Construction work was done by means of large mining machines in co-operation with the Brandenburg University of Technology at Cottbus. The inner structure of this new landscape element is relatively simple: A clay layer was dumped as a barrier for seepage water overlaid by a 3 m sandy layer consisting of Quaternary substrate from Pleistocene sediments. The surface of the site has been flattened and the area was fenced to prevent disturbances. Neither amelioration nor any reclamation measures were carried out afterwards. The site has been left for an unrestricted natural succession. In 2007 the Transregional Collaborative Research Centre (SFB/TRR 38) as a joint project between 3 Universities (BTU Cottbus, TU Munich and ETH Zurich) was launched and is funded by the German Research

  2. Suspended sediment yield in Texas watersheds

    Science.gov (United States)

    Coonrod, Julia Ellen Allred

    The Texas Water Development Board collected suspended sediment samples across the state of Texas for approximately 60 years. Until this research, no comprehensive analysis of the data had been conducted. This study compiles the suspended sediment data along with corresponding streamflow and rainfall. GIS programs are developed which characterize watersheds corresponding to the sediment gauging stations. The watersheds are characterized according to topography, climate, soils, and land use. All of the data is combined to form several SAS data sets which can subsequently be analyzed using regression. Annual data for all of the stations across the state are classified temporally and spatially to determine trends in the sediment yield. In general, the suspended sediment load increases with increasing runoff but no correlation exists with rainfall. However, the annual average rainfall can be used to classify the watersheds according to climate, which improves the correlation between sediment load and runoff. The watersheds with no dams have higher sediment loads than watersheds with dams. Dams in the drier parts of Texas reduce the sediment load more than dams in the wetter part of the state. Sediment rating curves are developed separately for each basin in Texas. All but one of the curves fall into a band which varies by about two orders of magnitude. The study analyzes daily time series data for the Lavaca River near Edna station. USGS data are used to improve the sediment rating curve by the addition of physically related variables and interaction terms. The model can explain an additional 41% of the variability in sediment concentration compared to a simple bivariate regression of sediment load and flow. The TWDB daily data for the Lavaca River near Edna station are used to quantify temporal trends. There is a high correlation between sediment load and flowrate for the Lavaca River. The correlation can be improved by considering a flow-squared term and by

  3. Groundwater Supported Evapotranspiration within Glaciated Watersheds under Conditions of Climate Change

    Science.gov (United States)

    Person, M. A.; Winter, T. C.; Rosenberry, D. O.; Cohen, D.; Gutowski, W. J.; Dahlstrom, D.; Roy, P.; Emi, I.; Zabielski, V.; Wrigth, H.; Nieber, J.; Daannen, R.

    2004-05-01

    We analyze the effects of geology and geomorphology on surface water/groundwater interactions, evapotranspiration, and runoff generation under conditions of long-term climate change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, as well as saturated/unsaturated mathematical modeling. Analysis of historical water table (1970-1993) and lake level (1924--2002) records indicate that larger amplitude, longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to climatic fluctuations. Under dust-bowl type climatic conditions, lake and water table levels fell by as much as 2-4 meters in the uplands but by only a meter in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake core records indicate that Moody lake, located near the confluence of the Crow Wing and Mississippi rivers fell by as much as 4 meters between about 4400 and 7000 yr BP. During the same time period, water levels in Lake Mina, located near the watershed divide near Alexandria, MN, fell by about 15 m. These findings are consistent with analytical calculations that indicate that the response time and magnitude of water table and lake level fluctuations will be greatest near the water table divide of large watersheds. A sensitivity analysis was carried out using a transient saturated-unsaturated hydrologic model (HYDRAT2D) to study how aquifer hydraulic conductivity, land surface topography and watershed size can influence watertable fluctuations, westlands formation, evapotranspiration, and runoff. The models were run by recycling relatively wet (1985, 87 cm annual precipitation) climatic record over a period of 10 years followed by 20 years of a dryer (1976, 38~cm precipitation) and warmer climate record. Model results indicated that aquifer-supported evapotranspiration accounted for as much as 12 % (10 cm) of evapotranspiration. The highest hydraulic

  4. Infusing interdisciplinary place-based watershed research into K-12 curricula and university collaborations

    Science.gov (United States)

    Pratt-Sitaula, B.; Gazis, C.; Kurtz, M.; Quitadamo, I.; Wagner, R.

    2007-12-01

    Central Washington University has started a five-year NSF-funded GK-12 project to bring the study of our local river - The Yakima - into 5-11th grade science classes. Faculty members from Geological Sciences have teamed with others from Biology, Chemistry, and Resource Management to develop the Yakima WATERS Project (Watershed Activities To Enhance Research in Schools). This interdisciplinary outreach project teams graduate students with local teachers to bring authentic watershed research into the curriculum. The interdisciplinary research themes are: Riparian Ecology and Biodiversity; Water Chemistry and Quality; Geomorphology and Climate Change; and Changes in Land and Water Use. The Yakima Watershed contains several communities that are traditionally underrepresented in science - Native American, Hispanic, and rural populations. One of the key outcomes we will assess is whether a place-based science study such as this is successful in improving minority students' science scores and whether graduate students from underrepresented groups can be attracted and retained in STEM graduate programs. The project is in its early stages, so results of K-12 student science achievement are not yet available. One unexpected, but positive preliminary result is the possibility of further interdisciplinary research that may stem from the close project-driven interactions between people of different STEM subjects. Faculty members, graduate students, and teachers often fail to interact with members of other departments, but through Project activities support networks are forming and ideas for further research are being developed.

  5. Sources and species of cryptosporidium oocysts in the Wachusett Reservoir watershed.

    Science.gov (United States)

    Jellison, Kristen L; Hemond, Harold F; Schauer, David B

    2002-02-01

    Understanding the behavior of Cryptosporidium oocysts in the environment is critical to developing improved watershed management practices for protection of the public from waterborne cryptosporidiosis. Analytical methods of improved specificity and sensitivity are essential to this task. We developed a nested PCR-restriction fragment length polymorphism assay that allows detection of a single oocyst in environmental samples and differentiates the human pathogen Cryptosporidium parvum from other Cryptosporidium species. We tested our method on surface water and animal fecal samples from the Wachusett Reservoir watershed in central Massachusetts. We also directly compared results from our method with those from the immunofluorescence microscopy assay recommended in the Information Collection Rule. Our results suggest that immunofluorescence microscopy may not be a reliable indicator of public health risk for waterborne cryptosporidiosis. Molecular and environmental data identify both wildlife and dairy farms as sources of oocysts in the watershed, implicate times of cold water temperatures as high-risk periods for oocyst contamination of surface waters, and suggest that not all oocysts in the environment pose a threat to public health. PMID:11823192

  6. Field studies of streamflow generation using natural and injected tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.; Hemond, H. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Mulholland, P. [Oak Ridge National Lab., TN (United States)

    1992-05-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate Rn{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and volatilization from, the study reach. The second stage involved quantitative comparison of Rn{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach.

  7. Methodology for generation of hydrogeologic maps: rio da Palma watershed case study, DF, Brazil

    Directory of Open Access Journals (Sweden)

    Hélio Nóbile Diniz

    2007-08-01

    Full Text Available This paper had the objective of developing a methodology to support the management of water resources, based on hydro geological cartography, tested for the hydro geologic conditions of a watershed located at Central Brazil. Results show two major products: a hydro geologic, and a potential infiltration and recharge maps of the high course of the Rio da Palma watershed. This paper is presented in six parts. The first one discusses the map’s elements, essential thematic maps and appropriate scales. The second part proposes the graphic criteria for the integrated representation of the major parameters of overlaying aquifers. The third part demonstrates the importance of the data basis for the hydro geologic cartography, i.e., the contribution of each theme such as soil, geology, slope, climate and land use, when appropriately integrated. The fourth part discusses the selection and the integration of the main information layers for the Rio da Palma watershed using a Geographic Information System (GIS. On the fifth part, the result of the integration of the porous domain with the fractured domain aquifer information layers is shown and, finally, the potential infiltration and recharge map of the studied area, elaborated from the integration of overlapping of the data basis information layers is presented and discussed. In general, in the studied area, regions with high infiltration potential prevail where human interference is still moderate. Large portions of low infiltration potential are either associated with high slopes, with shallow soils (Cambissolos or else with urban constructions.

  8. Statewide Watershed Protection and Local Implementation: A Comparison of Washington, Minnesota, and Oregon

    OpenAIRE

    Holst, David J.

    1999-01-01

    Abstract In 1991 EPA embraced the watershed protection approach for environmental management. EPA defines watershed protection as â a strategy for effectively protecting and restoring aquatic ecosystems and protecting human health.â To encourage statewide watershed protection, EPA developed the â Statewide Watershed Protection Approachâ document, which is designed to aid states in developing their own watershed protection program. The watershed protection approach is n...

  9. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    Science.gov (United States)

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  10. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    Science.gov (United States)

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices. PMID:26784287

  11. Assessment of surface-water quantity and quality, Eagle River watershed, Colorado, 1947-2007

    Science.gov (United States)

    Williams, Cory A.; Moore, Jennifer L.; Richards, Rodney J.

    2011-01-01

    From the early mining days to the current tourism-based economy, the Eagle River watershed (ERW) in central Colorado has undergone a sequence of land-use changes that has affected the hydrology, habitat, and water quality of the area. In 2000, the USGS, in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, City of Colorado Springs, Colorado Springs Utilities, and Denver Water, initiated a retrospective analysis of surface-water quantity and quality in the ERW.

  12. Application of the Precipitation Runoff Modeling System to measure impacts of forest fire on watershed hydrology

    Science.gov (United States)

    Driscoll, J. M.

    2015-12-01

    Precipitation in the southwestern United States falls primarily in areas of higher elevation. Drought conditions over the past five years have limited snowpack and rainfall, increasing the vulnerability to and frequency of forest fires in these montane regions. In June 2012, the Little Bear fire burned approximately 69 square miles (44,200 acres) in high-elevation forests of the Rio Hondo headwater catchments, south-central New Mexico. Burn severity was high or moderate on 53 percent of the burn area. The Precipitation Runoff Modeling System (PRMS) is a publically-available watershed model developed by the U.S. Geological Survey (USGS). PRMS data are spatially distributed using a 'Geospatial Fabric' developed at a national scale to define Hydrologic Response Units (HRUs), based on topography and points of interest (such as confluences and streamgages). The Little Bear PRMS study area is comprised of 22 HRUs over a 587 square-mile area contributing to the Rio Hondo above Chavez Canyon streamgage (USGS ID 08390020), in operation from 2008 to 2014. Model input data include spatially-distributed climate data from the National Aeronautics and Space Administration (NASA) DayMet and land cover (such as vegetation and soil properties) data from the USGS Geo Data Portal. Remote sensing of vegetation over time has provided a spatial distribution of recovery and has been applied using dynamic parameters within PRMS on the daily timestep over the study area. Investigation into the source and timing of water budget components in the Rio Hondo watershed may assist water planners and managers in determining how the surface-water and groundwater systems will react to future land use/land cover changes. Further application of PRMS in additional areas will allow for comparison of streamflow before and following wildfire conditions, and may lead to better understanding of the changes in watershed-scale hydrologic processes in the Southwest through post-fire watershed recovery.

  13. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide

  14. Wetland Soil Carbon in a Watershed Context for the Prairie Pothole Region.

    Science.gov (United States)

    Phillips, Rebecca L; Ficken, Cari; Eken, Mikki; Hendrickson, John; Beeri, Ofer

    2016-01-01

    Wetland restoration in the Prairie Pothole Region (PPR) often involves soil removal to enhance water storage volume and/or remove seedbanks of invasive species. Consequences of soil removal could include loss of soil organic carbon (SOC), which is important to ecosystem functions such as water-holding capacity and nutrient retention needed for plant re-establishment. We used watershed position and surface flow pathways to classify wetlands into headwater or network systems to address two questions relevant to carbon (C) cycling and wetland restoration practices: (i) Do SOC stocks and C mineralization rates vary with landscape position in the watershed (headwater vs. network systems) and land use (restored vs. native prairie grasslands)? (ii) How might soil removal affect plant emergence? We addressed these questions using wetlands at three large (?200 ha) study areas in the central North Dakota PPR. We found the cumulative amount of C mineralization over 90 d was 100% greater for network than headwater systems, but SOC stocks were similar, suggesting greater C inputs beneath wetlands connected by higher-order drainage lines are balanced by greater rates of C turnover. Land use significantly affected SOC, with greater stocks beneath native prairie than restored grasslands for both watershed positions. Removal of mineral soil negatively affected plant emergence. This watershed-based framework can be applied to guide restoration designs by (i) weighting wetlands based on surface flow connectivity and contributing area and (ii) mapping the effects of soil removal on plant and soil properties for network and headwater wetland systems in the PPR. PMID:26828193

  15. Seasonal isotope hydrology of a coffee agroforestry watershed in Costa Rica

    Science.gov (United States)

    Welsh Unwala, K.; Boll, J.; Roupsard, O.

    2014-12-01

    Improved information of seasonal variations in watershed hydrology in the tropics can strengthen models and understanding of hydrology of these areas. Seasonality in the tropics produces rainy seasons versus dry seasons, leading to different hydrologic and water quality processes throughout the year. We questioned whether stable isotopes in water can be used to trace the seasonality in this region, despite experiencing a "drier" season, such as in a Tropical Humid location. This study examines the fluctuations of stable isotope compositions (δ18O and δD) in water balance components in a small (agroforestry watershed located in central Costa Rica on the Caribbean side. Samples were collected in precipitation, groundwater, and stream water for more than two years, across seasons and at an hourly frequency during storm events to better characterize spatial and temporal variations of the isotopic composition and of the respective contribution of surface and deeper groundwater to streamflow in the watershed. Isotope composition in precipitation ranged from -18.5 to -0.3‰ (∂18O) and -136.4 to 13.7‰ (∂D), and data indicate that atmospheric moisture cycling plays an important role in this region. A distinct seasonality was observed in monthly-averaged data between enriched dry season events as compared with the rainy season events. Streamflow data indicate that a deep groundwater system contributes significantly to baseflow, although a shallow, spring-driven system also contributes to stream water within the watershed. During storm events, precipitation contributes to stormflow in the short-term, confirming the role of superficial runoff. These results indicate that isotopes are helpful to partition the water balance even in a Tropical Humid situation where the rainfall seasonality is weak.

  16. Dissolved Organic Carbon and Optical Properties as Indicators of Trihalomethane Formation Potential in an Agricultural Watershed

    Science.gov (United States)

    Pellerin, B. A.; Bergamaschi, B. A.; Spencer, R. G.

    2006-12-01

    Elevated concentrations of dissolved organic carbon (DOC) in the Sacramento-San Joaquin Delta waters may result in the formation of high levels of carcinogenic disinfection byproducts such as trihalomethane during drinking water treatment. The importance of Central Valley agricultural lands as sources of DOC and THM- precursors upstream of the Delta is presently unknown. We are quantifying contributions of DOC and THM- precursors from the Willow Slough watershed, a 425 km2 agriculturally-dominated catchment. During 2006, water samples were collected weekly at the mouth of the watershed and analyzed for DOC concentrations, optical properties (UV absorbance and fluorescence), and trihalomethane formation potential (THMFP). Additional synoptic samples were collected seasonally (winter, spring, summer) from 16 watershed locations and analyzed for optical properties, DOC concentrations, and THMFP. DOC concentrations generally ranged from approximately 2 to 4 mg/L at the watershed outlet during winter and spring, but increased weekly to 8 mg/L following the onset of irrigation. The THMFP at the mouth of the water was correlated with DOC concentration (r2 = 0.87), with higher concentrations during high discharge events and lower concentrations during summer and prolonged rain-free periods. In addition, the species of THM varied between high and low-flow periods, with THM formation dominated by brominated species during low- flow periods and chlorinated species during rainfall-runoff events. Optical characterization of DOC via UV absorbance and fluorescence suggests changes in DOC composition between high- and low-flow periods, likely reflective of changing sources and flowpaths of runoff.

  17. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    Science.gov (United States)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  18. Hydrologic resilience of a Canadian Foothills watershed to forest harvest

    Science.gov (United States)

    Goodbrand, Amy; Anderson, Axel

    2016-04-01

    Recent investigations of long-term hydrometeorological, groundwater, and streamflow data from watersheds on the eastern slopes of the Canadian Rocky Mountains showed the streamflow regime was resilient to forest harvest. These watersheds had low levels of harvest relative to their size and a large area of sparsely vegetated alpine talus slopes and exposed bedrock; an area shown to generate the majority of runoff for streamflow. In contrast, watersheds located in the foothills of the Rocky Mountains are of lower relief and typically have harvestable timber throughout the watershed; therefore, these watersheds may be more sensitive to forest disturbance and have increased potential for streamflow response. This project assesses the hydrologic resilience of an Alberta Foothills watershed to forest harvest using a 23-year dataset from the Tri-Creeks Experimental Watershed (Tri-Creeks). Tri-Creeks has been the site of intensive streamflow, groundwater, snow accumulation, and precipitation observations from 1967 - 1990. During the early 1980s, forestry experiments were conducted to compare the effects of timber harvest and riparian buffers, and the effectiveness of timber harvesting ground rules in protecting fisheries and maintaining water resources within three sub-watersheds: Eunice (16.8 km2; control); Deerlick (15.2 km2; 36% streamside timber removal); and, Wampus (28.3 km2; 37% clear-cut). Statistical analyses were used to compare the pre-and post-harvest ratios of treatment to control sub-watershed runoff for: water year, monthly (April - October), snowmelt peak flow, and low flow (10th percentile streamflow) periods as an assessment of hydrologic resilience to forest harvest. The only significant post-harvest change was an increase in water yield during May at Wampus (Mann-Whitney (MW), pforest harvest. We hypothesize on the processes and characteristics that result in this watershed to exhibit greater resilience compared to other forested watersheds.

  19. A Simple Hydrological Simulation Tool for Watershed Planning and Application to a Brazilian Watershed

    Science.gov (United States)

    Hydrological modeling of watersheds is a convenient and easy way to evaluate the effects of changing land-use or management strategies on erosion, stream flow and sediment yield for various purposes such as designing downstream structures or impoundments, or implementing strategies to control soil e...

  20. Debris flow run off simulation and verification ‒ case study of Chen-You-Lan Watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    M.-L. Lin

    2005-01-01

    Full Text Available In 1996 typhoon Herb struck the central Taiwan area, causing severe debris flow in many subwatersheds of the Chen-You-Lan river watershed. More severe cases of debris flow occurred following Chi-Chi earthquake, 1999. In order to identify the potentially affected area and its severity, the ability to simulate the flow route of debris is desirable. In this research numerical simulation of debris flow deposition process had been carried out using FLO-2D adopting Chui-Sue river watershed as the study area. Sensitivity study of parameters used in the numerical model was conducted and adjustments were made empirically. The micro-geomorphic database of Chui-Sue river watershed was generated and analyzed to understand the terrain variations caused by the debris flow. Based on the micro-geomorphic analysis, the debris deposition in the Chui-Sue river watershed in the downstream area, and the position and volume of debris deposition were determined. The simulated results appeared to agree fairly well with the results of micro-geomorphic study of the area when not affected by other inflow rivers, and the trends of debris distribution in the study area appeared to be fairly consistent.

  1. Implementing watershed investment programs to restore fire-adapted forests for watershed services

    Science.gov (United States)

    Springer, A. E.

    2013-12-01

    Payments for ecosystems services and watershed investment programs have created new solutions for restoring upland fire-adapted forests to support downstream surface-water and groundwater uses. Water from upland forests supports not only a significant percentage of the public water supplies in the U.S., but also extensive riparian, aquatic, and groundwater dependent ecosystems. Many rare, endemic, threatened, and endangered species are supported by the surface-water and groundwater generated from the forested uplands. In the Ponderosa pine forests of the Southwestern U.S., post Euro-American settlement forest management practices, coupled with climate change, has significantly impacted watershed functionality by increasing vegetation cover and associated evapotranspiration and decreasing runoff and groundwater recharge. A large Collaborative Forest Landscape Restoration Program project known as the Four Forests Restoration Initiative is developing landscape scale processes to make the forests connected to these watersheds more resilient. However, there are challenges in financing the initial forest treatments and subsequent maintenance treatments while garnering supportive public opinion to forest thinning projects. A solution called the Flagstaff Watershed Protection Project is utilizing City tax dollars collected through a public bond to finance forest treatments. Exit polling from the bond election documented the reasons for the 73 % affirmative vote on the bond measure. These forest treatments have included in their actions restoration of associated ephemeral stream channels and spring ecosystems, but resources still need to be identified for these actions. A statewide strategy for developing additional forest restoration resources outside of the federal financing is being explored by state and local business and governmental leaders. Coordination, synthesis, and modeling supported by a NSF Water Sustainability and Climate project has been instrumental in

  2. McKenzie River Focus Watershed Coordination: Fiscal Year 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John; Davis-Born, Renee

    1998-01-01

    This report summarizes accomplishments made by the McKenzie River Focus Watershed Council in the areas of coordination and administration during Fiscal Year 1998. Coordination and administration consists of tasks associated with Focus Watershed Council staffing, project management, and public outreach.

  3. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  4. Watershed Management Policies and Institutional Mechanisms: A Critical Review

    OpenAIRE

    Javier, Jesus A.

    1999-01-01

    While most government efforts are directed toward watershed conservation, its management has remained challenging and complex. This short article argues for reconsideration of existing policies and regulations. It also pushes for a long-term comprehensive national strategy to address several watershed management concerns.

  5. The Watershed Transform : Definitions, Algorithms and Parallelization Strategies

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    2000-01-01

    The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the liter

  6. Predictability of Biogeochemical Responses in Engineered Watersheds

    Science.gov (United States)

    Yaeger, M. A.; Voepel, H. E.; Basu, N. B.; Rao, P. C.; Donner, S. D.; Packman, A. I.

    2009-12-01

    Examining the impacts of large-scale human modifications of watersheds (e.g., land-use intensification for food production; hydrologic modification through extensive tile-drainage, etc.) on the hydrologic and biogeochemical responses, and ecological impacts at various scales has been the focus of monitoring and modeling studies over the past two decades. Complex interactions between hydrology and biogeochemistry and the need to predict responses across scales has led to the development of detailed process-based models that are computationally intensive and calibration-dependent. Our overall hypothesis is that human modifications and intensive management of these watersheds have led to more predictable responses, which are typical of engineered, less-complex systems rather than natural, complex systems. We examined monitoring data for nitrogen, phosphorous, silica and chloride in 25 large watersheds (10,000 km2 to 500,000 km2) in the Mississippi River Basin. This sparse dataset was complemented with nitrogen cycling and hydrology output from a whole-basin terrestrial and aquatic modeling system (IBIS-THMB). These sub-basins have diverse land uses, although agriculture still dominates (from ~30% to ~80%). Despite diversity in soils, geology, rainfall patterns, and land use, a linear relationship was observed between the annual cumulative discharge (Q; m3/yr) and the measured nitrate load (L; kg/yr). The slopes of these linear L-Q plots represent the flow-weighted annual average concentrations (Cf), and a linear L-Q relationship indicates an apparent “chemostatic” response of these large watersheds. Analysis of Mississippi River monitoring data for nitrate and IBIS-THMB simulations revealed that Cf is a strong function of land-use (eg, percent corn) that defines the chemical input function. The scatter around the L-Q plots was small for “endogenous” (generated from internal sources) solutes (eg, silica), intermediate for “hybrid” (contributions from both

  7. Surface runoff in the Itaim Watershed

    Directory of Open Access Journals (Sweden)

    Getulio Teixeira Batista

    2007-06-01

    Full Text Available This paper describes a work done in the Itaim watershed at Taubaté, SP, and had the objective of estimating the surface runoff based on the Curve-Number (CN method in area with vegetation cover of grassland (Brachiaria Decumbens, that prevails in this watershed. The surface runoff was estimated using three different methods: 1st values of accumulated Infiltration (IAc obtained in the field were used, considered as the Potential Infiltration (S, which varied from 15.37 mm to 51.88 mm with an average value of 23.46 mm. With those measured infiltration rates and using the maximum precipitation values for Taubaté, SP, with duration time of 3 hours: P = 54.4; 70.3; 80.8; 86.7; 90.9; 94.1 and 103.9 mm, respectively, for the return times, Tr = 2, 5, 10, 15, 25, 50 and 100 years, the following values of surface runoff were generated: 34.83; 49.33; 59.14; 64.71; 68.69; 71.73 and 81.10 mm, respectively; In the 2nd method it was considered that the prevailing vegetation cover of the watershed was Dirty Pasture (Pasture with regrowth of natural vegetation and therefore, a value of CN = 75 was used and generated a potential infiltration, S = 84,7 mm and resulted in surface runoff values that varied from 11 to 44 mm; In the 3rd method, the value of CN was considered equal to 66.57. This value was calculated weighting the contribution of all land use cover classes of the watershed, and as a result a higher value of potential infiltration, S = 127 mm, was obtained. Consequently, the surface runoff values were 5.33; 11.64; 16.72; 19.83; 22.16; 23.98 and 29.83 mm, respectively. Therefore, the comparison with the results obtained by the two Curve-Number methods (conventional and weighted allowed to be concluded that the Curve-Number method applied in a conventional way underestimated the surface runoff in the studied area. However, results indicate that it is possible to use this method for surface runoff estimates as long as adjustments based on potential

  8. Assessing streamflow sensitivity in a complex watershed

    OpenAIRE

    RAHMAN Kazi

    2013-01-01

    Half of the world’s population depends on fresh water that originates from mountains. In the present-day, it is apparent that climate change will affect these mountain water resources. Therefore, some crucial questions are often raised: Will mountain rivers continue to provide the same amount of fresh water as they have in the past? Have there been any changes in the hydrological regime of mountainous watersheds? Is there a chance that the flow magnitude and timing will change? In order to an...

  9. Floristic study of Zangelanlo watershed (Khorassan, Iran)

    OpenAIRE

    Mohammad Sadegh Amiri; Parham Jabbarzadeh

    2011-01-01

    Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research,...

  10. Phosphorus losses from an irrigated watershed in the Northwestern U.S.: Case study of the Upper Snake Rock Watershed

    Science.gov (United States)

    Watersheds utilizing surface water for irrigation often return a portion of the water to a water body. This irrigation return flow often includes sediment and nutrients that reduce the quality of the receiving water body. Research in the 82,000 ha Upper Snake Rock (USR) watershed from 2005 to 2008 s...

  11. Watershed Boundaries, watershed, sub-watershed, for stormwater engineering, Published in 1996, 1:2400 (1in=200ft) scale, City of Fort Wayne.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Field Observation information as of 1996. It is described...

  12. Predicting watershed acidification under alternate rainfall conditions

    International Nuclear Information System (INIS)

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, USA using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soilwater flux will result in larger increases in soil-adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distributions of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading. 29 refs., 7 figs., 4 tabs

  13. Land Use Change and Hydrologic Processes in High-Elevation Tropical Watersheds of the Northern Andes

    Science.gov (United States)

    Avery, W. A.; Riveros-Iregui, D. A.; Covino, T. P.; Peña, C.

    2013-12-01

    The humid tropics cover one-fifth of the Earth's land surface and generate the greatest amount of runoff of any biome globally, but remain poorly understood and understudied. Humid tropical regions of the northern and central Andes have experienced greater anthropogenic land-use/land-cover (LULC) change than nearly any other high mountain system in the world. Vast expanses of this region are currently undergoing rapid transformation to farmland for production of potatoes and pasture for cattle grazing. Although the humid tropics have some of the highest runoff ratios, precipitation, and largest river flows in the world, there is a lack of scientific literature that addresses hydrologic processes in these regions and very few field observations are available to inform management strategies to ensure the sustainability of water resources of present and future generations. We seek to improve understanding of hydrologic processes and feedbacks in the humid tropics using existing and new information from two high-elevation watersheds that span a LULC gradient in the Andes Mountains of Colombia. One site is located in the preserved Chingaza Natural National Park in Central Colombia (undisturbed). The second site is located ~60 km to the northwest and has experienced considerable LULC change over the last 40 years. Combined, these watersheds deliver over 80% of the water resources to Bogotá and neighboring communities. These watersheds have similar climatological characteristics (including annual precipitation), but have strong differences in LULC which result in substantial differences in hydrologic response and streamflow dynamics. We present an overview of many of the pressing issues and effects that land degradation and climate change are posing to the long-term sustainability of water resources in the northern Andes. Our overarching goal is to provide process-based knowledge that will be useful to prevent, mitigate, or respond to future water crises along the Andean

  14. Dissolved organic matter as an indicator of changing watersheds in northern rivers

    Science.gov (United States)

    Aiken, G.; Spencer, R.; Striegl, R.; Raymond, P. A.

    2009-12-01

    Responses of frozen soils to climate warming is of particular significance for understanding long term climate effects on global carbon cycling and carbon export by high latitude rivers. Monitoring climate effects on carbon cycling, however, is complicated by logistical and analytical challenges associated with spatially heterogeneous processes occurring over large watershed areas. Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit underutilized, indicators of watershed change. The chemical characteristics of DOM in rivers and lakes are the net result of source materials, watershed geochemistry, oxidative processes and hydrology within these systems and upstream basins. As the large reserves of organic carbon associated with frozen soils in the northern permafrost regions are mobilized by changes in soil microbial processes and hydrologic flow paths, it is anticipated that both the composition and flux of DOM will change in waters draining these soils. Here we present results that demonstrate the utility of assessing DOM composition and flux for gaining insight into processes controlling DOM in the Yukon River and its tributaries. The Yukon River Basin is a large, diverse ecosystem in northwestern Canada and central Alaska that is experiencing increasing temperatures, partial thawing of permafrost, drying of upland soils and changing wetland environments. In our analyses of this system, we have used DOM data in two ways to define carbon cycling and transport processes throughout the basin. First, analyses of chemical composition using DOM optical properties (UV-Vis absorbance, fluorescence), isotopic composition (14C), lignin phenol content and chromatographic fractionation have provided critical information related to spatial and temporal variations in DOM exported from watersheds throughout the basin that are driven by different processes. For instance, characterization data indicate that DOM currently exported from watersheds

  15. Quality of dissolved organic matter (DOM) in watershed compartments for a forested mid-Atlantic watershed

    Science.gov (United States)

    Singh, S.; Inamdar, S. P.; Finger, N.; Mitchell, M. J.; Levia, D. F.; Scott, D.; Bais, H.

    2010-12-01

    Catchment exports of dissolved organic matter (DOM) in streamflow can be influenced by multiple sources, which, may vary with hydrologic conditions or seasons. Thus, understanding the concentrations and quality of DOM for potential watershed sources is critical to assessing the dynamics of DOM. We investigated the quality of DOM across various watershed sources in a 12 ha forested watershed located in the Piedmont region of the mid-Atlantic USA. Sampling was performed over a two-year time period (2008-2009) and included: rainfall, throughfall, litter-leachate, soil water, riparian and wetland waters, seeps, stream runoff, and shallow and deep groundwaters. DOM constituents were characterized using ultraviolet (UV) absorption and PARAFAC modeling of fluorescence excitation emission matrices (EEMs). Specific indices that were used include: UV absorption coefficient at 254nm (a254), specific UV absorbance at 254nm (SUVA254), spectral slope ratio (SR), humification index (HIX), fluorescence index (FI), biological index (BIX), and percent humic-like and protein-like components. Our results indicated that of all the watershed DOM sources litter-leachate had the highest aromatic (high values of a254, SUVA, % C5) and humic (high HIX) content. Aromatic and humic content of DOM then decreased with soil depth with lowest values for deep groundwaters and seeps. In addition, the SR index indicated a decrease in molecular weight of DOM with soil depth. Taken together, these indices suggest that the aromatic and high molecular weight fractions of DOM were preferentially removed by sorption as runoff water percolated through the soil profile. While throughfall was less aromatic than litter-leachate, it was more aromatic than the other watershed compartments. The aromatic and humic content of soil and stream water was intermediate between litter-leachate and deep groundwaters. In contrast to the trend in aromatic DOM, the % of protein-like DOM component increased with soil depth

  16. Investigation of accuracy of CORINE 2006 land cover data used in watershed studies

    Directory of Open Access Journals (Sweden)

    Ayhan Ateşoğlu

    2016-01-01

    Full Text Available There have been many studies concerning the use of sustainable natural resources. The planning concerning the results of watershed-based studies is made for the future. The issue to be considered in these studies, is obtaining accurate data. The most important data of the studies in the watershed basin is obtaining land cover/use data. Land cover / land classification done by using remote sensing and GIS and monitoring the change periodically are both easy and economical. To this end, CORINE (Coordination of Information on the Environment land cover program was initiated by The European Commission (CEC. The accuracy of CORINE 2006 land cover data was evaluated using high resolution Google Earth data in two separate test areas located in the Black Sea and Central Anatolia region. Random 5000 points for each test area were assigned to classes according to the CORINE classification method using Google Earth and were compared with the CORINE 2006 data. The accuracy of first test area in Black Sea region was calculated as 51.80% the accuracy of second test area in Central Anatolia region was calculated as 55.32%. For each test area, CORINE 2006 data has not been found to be up to date and has been detected to have low accuracy.

  17. SWAT ASSESSMENT OF MANAGEMENT PRACTICES ON ATRAZINE LOSS IN THE GOOD WATER CREEK EXPERIMENTAL WATERSHED.

    Science.gov (United States)

    The Goodwater Creek Watershed is a subwatershed of the Mark Twain Lake watershed, an ARS-CEAP benchmark watershed in Northeast Missouri. This 7,250-ha watershed was selected for initial modeling because of its smaller size and the large hydrologic and climatologic dataset available. A SWAT model of ...

  18. Approaches to stream solute load estimation for solutes with varying dynamics from five diverse small watershed

    Science.gov (United States)

    Aulenbach, Brent T.; Burns, Douglas A.; Shanley, James B.; Yanai, Ruth D.; Bae, Kikang; Wild, Adam; Yang, Yang; Yi, Dong

    2016-01-01

    Estimating streamwater solute loads is a central objective of many water-quality monitoring and research studies, as loads are used to compare with atmospheric inputs, to infer biogeochemical processes, and to assess whether water quality is improving or degrading. In this study, we evaluate loads and associated errors to determine the best load estimation technique among three methods (a period-weighted approach, the regression-model method, and the composite method) based on a solute's concentration dynamics and sampling frequency. We evaluated a broad range of varying concentration dynamics with stream flow and season using four dissolved solutes (sulfate, silica, nitrate, and dissolved organic carbon) at five diverse small watersheds (Sleepers River Research Watershed, VT; Hubbard Brook Experimental Forest, NH; Biscuit Brook Watershed, NY; Panola Mountain Research Watershed, GA; and Río Mameyes Watershed, PR) with fairly high-frequency sampling during a 10- to 11-yr period. Data sets with three different sampling frequencies were derived from the full data set at each site (weekly plus storm/snowmelt events, weekly, and monthly) and errors in loads were assessed for the study period, annually, and monthly. For solutes that had a moderate to strong concentration–discharge relation, the composite method performed best, unless the autocorrelation of the model residuals was <0.2, in which case the regression-model method was most appropriate. For solutes that had a nonexistent or weak concentration–discharge relation (modelR2 < about 0.3), the period-weighted approach was most appropriate. The lowest errors in loads were achieved for solutes with the strongest concentration–discharge relations. Sample and regression model diagnostics could be used to approximate overall accuracies and annual precisions. For the period-weighed approach, errors were lower when the variance in concentrations was lower, the degree of autocorrelation in the concentrations was

  19. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  20. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  1. Watershed responses to Amazon soya bean cropland expansion and intensification.

    Science.gov (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales.

  2. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  3. Watershed responses to Amazon soya bean cropland expansion and intensification.

    Science.gov (United States)

    Neill, Christopher; Coe, Michael T; Riskin, Shelby H; Krusche, Alex V; Elsenbeer, Helmut; Macedo, Marcia N; McHorney, Richard; Lefebvre, Paul; Davidson, Eric A; Scheffler, Raphael; Figueira, Adelaine Michela e Silva; Porder, Stephen; Deegan, Linda A

    2013-06-01

    The expansion and intensification of soya bean agriculture in southeastern Amazonia can alter watershed hydrology and biogeochemistry by changing the land cover, water balance and nutrient inputs. Several new insights on the responses of watershed hydrology and biogeochemistry to deforestation in Mato Grosso have emerged from recent intensive field campaigns in this region. Because of reduced evapotranspiration, total water export increases threefold to fourfold in soya bean watersheds compared with forest. However, the deep and highly permeable soils on the broad plateaus on which much of the soya bean cultivation has expanded buffer small soya bean watersheds against increased stormflows. Concentrations of nitrate and phosphate do not differ between forest or soya bean watersheds because fixation of phosphorus fertilizer by iron and aluminium oxides and anion exchange of nitrate in deep soils restrict nutrient movement. Despite resistance to biogeochemical change, streams in soya bean watersheds have higher temperatures caused by impoundments and reduction of bordering riparian forest. In larger rivers, increased water flow, current velocities and sediment flux following deforestation can reshape stream morphology, suggesting that cumulative impacts of deforestation in small watersheds will occur at larger scales. PMID:23610178

  4. Watershed management for water supply in developing world city

    Institute of Scientific and Technical Information of China (English)

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  5. Hypsometric Analysis Using Geographical Information System of Gour River Watershed, Jabalpur, Madhya Pradesh, India

    Directory of Open Access Journals (Sweden)

    Shailesh Kumar Sharma

    2016-04-01

    Full Text Available Hypsometric analysis of drainage basins reveals the geological stage of watershed and is a measure of its maturity, indicating the susceptibility of the watershed to erosion. In the present study sub watersheds of Khurji Nala and Dala Nala watersheds which are tributaries of GourRiver located in Jabalpur district of Madhya Pradesh was considered as the case study area. The watersheds were delineated into sub watersheds and hypsometric analysis was carried out for all of them using the digital contour map, which was generated using Arc GIS. The hypsometric integral values of Khurji Nala and Dala Nala sub watersheds reveals that sub watershed 2 of Khurji Nala and sub watershed 7 of Dala Nala watershed should be given top priority for soil and water conservation.

  6. Investigating the sources of sediment in a Canadian agricultural watershed using a colour-based fingerprinting technique

    Science.gov (United States)

    Barthod, Louise; Lobb, David; Owens, Philip; Martinez-Carreras, Nuria; Koiter, Alexander; Petticrew, Ellen; McCullough, Gregory

    2014-05-01

    The development of beneficial management practises to minimize adverse impacts of agriculture on soil and water quality requires information on the sources of sediment at the watershed scale. Sediment fingerprinting allows for the determination of sediment sources and apportionment of their contribution within a watershed, using unique physical, radiochemical or biogeochemical properties, or fingerprints, of the potential sediment sources. The use of sediment colour as a fingerprint is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. This technique is currently being utilized to determine sediment sources within the South Tobacco Creek Watershed, an agricultural watershed located in the Canadian prairies (south-central Manitoba). Suspended sediment and potential source (topsoil, channel bank and shale bedrock material) samples were collected between 2009 and 2011 at six locations along the main stem of the creek. Sample colour was quantified from diffuse reflectance spectrometry measurements over the visible wavelength range using a spectroradiometer (ASD Field Spec Pro, 400-2500 nm). Sixteen colour coefficients were derived from several colour space models (CIE XYZ, CIE xyY, CIE Lab, CIE Luv, CIE Lch, Landsat RGB, Redness Index). The individual discrimination power of the colour coefficients, after passing several prerequisite tests (e.g., linearly additive behaviour), was assessed using discriminant function analysis. A stepwise discriminant analysis, based on the Wilk's lambda criterion, was then performed in order to determine the best-suited colour coefficient fingerprints which maximized the discrimination between the potential sources. The selected fingerprints classified the source samples in the correct category 86% of the time. The misclassification is due to intra-source variability and source overlap which can lead to higher uncertainty in sediment source apportionment. The selected fingerprints

  7. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia.

    Science.gov (United States)

    Park, Ji-Hyung; Duan, Lei; Kim, Bomchul; Mitchell, Myron J; Shibata, Hideaki

    2010-02-01

    An overview is provided of the potential effects of climate change on the watershed biogeochemical processes and surface water quality in mountainous watersheds of Northeast (NE) Asia that provide drinking water supplies for large populations. We address major 'local' issues with the case studies conducted at three watersheds along a latitudinal gradient going from northern Japan through the central Korean Peninsula and ending in southern China. Winter snow regimes and ground snowpack dynamics play a crucial role in many ecological and biogeochemical processes in the mountainous watersheds across northern Japan. A warmer winter with less snowfall, as has been projected for northern Japan, will alter the accumulation and melting of snowpacks and affect hydro-biogeochemical processes linking soil processes to surface water quality. Soils on steep hillslopes and rich in base cations have been shown to have distinct patterns in buffering acidic inputs during snowmelt. Alteration of soil microbial processes in response to more frequent freeze-thaw cycles under thinner snowpacks may increase nutrient leaching to stream waters. The amount and intensity of summer monsoon rainfalls have been increasing in Korea over recent decades. More frequent extreme rainfall events have resulted in large watershed export of sediments and nutrients from agricultural lands on steep hillslopes converted from forests. Surface water siltation caused by terrestrial export of sediments from these steep hillslopes is emerging as a new challenge for water quality management due to detrimental effects on water quality. Climatic predictions in upcoming decades for southern China include lower precipitation with large year-to-year variations. The results from a four-year intensive study at a forested watershed in Chongquing province showed that acidity and the concentrations of sulfate and nitrate in soil and surface waters were generally lower in the years with lower precipitation, suggesting year

  8. Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models

    Science.gov (United States)

    Robertson, Dale M.; Saad, David A.

    2011-01-01

    Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.

  9. Design of Water Discharge of Medewi Watershed Using Avswat Model

    Science.gov (United States)

    Pramana, Y. H.; Purwanto, B. P.

    2013-12-01

    Medewi watersheds is located in the southern of Bali Island and its estuary is located in Medewi Beach at Kabupaten Jembrana. The exact location of Medewi watersheds is between Desa Medewi and Desa Pulukan, Kecamatan Pekutatan, Kabupaten Jembrana. The watersheds itself, due to its strategic location is used as a territorial border between the two villages. Geographically, Medewi watersheds is between 114o48'00' - 114o50'00' east longitude and 08o20'00' - 08o26,5'00' south latitude. The main river of Medewi Watersheds is 25,64 km long and is classified as a continuous river, the width of the watersheds itself is measured 128,2 km2. Medewi watersheds have two tributaries which is Medaan watersheds and Pangliman watersheds, both watersheds' heads are located in Medewi Beach. Medewi watersheds is often flooded and brings heavy toll to its surrounding areas and citizen. Therefore, there is an urgent need to perform engineering techniques to overcome the aforementioned problem. However, there is a slight issue in the definition of water discharge plan in the location. The water discharge plan, which is used as a basis to prevent flooding, is often inaccurate. That is the reason why it is needed to build a model in order to accurately find out the amount of water discharge in the study location. Medewi watersheds' area usage is as follow: bushes (9,44%), forestation (77,10%), farm (7,76%), settlement (2,15%), irrigation field (1,64%), rainfed field (1,88%) and crops field (0,48%). The result of our modeling using ASVAT shows that the maximum water discharge is 149,9 m3/sec. The discharge is calibrated with the available water discharge data log. According to AWLR data, it is known that the largest discharge occurred on June 2nd, 2009 and measured at 147,9 m3/sec. Our conclusion is that the model used in this study managed to approach the field result with minimum error.

  10. LANDSLIDE POTENTIALITY OF THE TSENGWEN RESERVOIR WATERSHED,TAIWAN,CHINA

    Institute of Scientific and Technical Information of China (English)

    Chin-yu LEE

    2004-01-01

    To recognize the geographical characteristics of the landslide areas will be helpful for the watershed management in the reservoir watershed.According to the quantitative analysis,we'll take different scores and weighting for the potential parameters of the landslide areas in the Tsengwen reservoir watershed,and in the meanwhile,we'll extract the different factors,including the slope,aspect,altitude,soil and geological textures etc.,and the results shown as maximum one-day rainfall,ratio of forests and average relief is the most affecting parameters on the potential risk map of landslide areas.

  11. Identification and characterization of wetlands in the Bear Creek watershed

    International Nuclear Information System (INIS)

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation

  12. Identification and characterization of wetlands in the Bear Creek watershed

    Energy Technology Data Exchange (ETDEWEB)

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  13. A Disjoint Set Algorithm for the Watershed Transform

    OpenAIRE

    Meijster, Arnold; Roerdink, Jos B. T. M.; Theodoridis, S.; Pitas, I.; Stouraitis, A; Kalouptsidis, N

    1998-01-01

    In this paper the implementation of a watershed transform based on Tarjan’s Union-Find algorithm is described. The algorithm computes the watershed as defined previously. The algorithm consists of two stages. In the first stage the image to be segmented is transformed into a lower complete image, using a FIFO-queue algorithm. In the second stage, the watershed of the lower complete image is computed. In this stage no FIFO-queues are used. This feature makes parallel implementation of the wate...

  14. Trout Creek, Oregon Watershed Assessment; Findings, Condition Evaluation and Action Opportunities, 2002 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Runyon, John

    2002-08-01

    The purpose of the assessment is to characterize historical and current watershed conditions in the Trout Creek Watershed. Information from the assessment is used to evaluate opportunities for improvements in watershed conditions, with particular reference to improvements in the aquatic environment. Existing information was used, to the extent practicable, to complete this work. The assessment will aid the Trout Creek Watershed Council in identifying opportunities and priorities for watershed restoration projects.

  15. Linking watershed protection and water consumption: WTP by domestic water users in Ho Chi Minh City

    OpenAIRE

    Ha, Dang Thanh

    2008-01-01

    In many watersheds of Asia, the demand for water is increasing while the supply of water is challenging due to on-going deforestation and watershed degradation. To ensure a stable supply of water for satisfying this growing demand, the protection of watershed is critical. Vietnam also faces similar situation, particularly in the Dong Nai watershed where high population growth, rapid industrialization, agricultural production, and economic growth are putting tremendous pressure on this watersh...

  16. NEW DEVELOPMENTS IN CENTRAL ASIAN MASS MEDIA RESEARCH

    OpenAIRE

    Freedman, Eric; Shafer, Richard

    2011-01-01

    The end of the Cold War represented an apparent victory for NATO, capitalism, free enterprise, and democracy over the Warsaw Pact, Marxism-Leninist communism, and the Russian-Soviet empire. In 1991, five newly independent republics of Central Asia (Kazakhstan, Kyrgyzstan, Turkmenistan, Tajikistan, and Uzbekistan) emerged from the wreckage of that watershed event. Each new government proclaimed its commitment to free enterprise economic systems and democratic governance. Western democracies, n...

  17. Ecosystem Classification in the Central Rocky Mountains, Utah

    OpenAIRE

    Kusbach, Antonin; Klinka, Karel; Van Miegroet, Helga; Long, James

    2009-01-01

    Currently there is no comprehensive terrestrial ecosystem classification for the Central Rocky Mountains of the United States. Fundamentals of the British Columbian biogeoclimatic classification system, together with elements of the Daubenmire habitat type, Mueggler community type, and the USDA Forest Service Terrestrial Ecological Unit Inventory approaches, were used to develop a classification of ecosystems in a montane-subalpine watershed (10,000 ha, 2,000 - 3,000 m elevation) in northern ...

  18. Impact of watershed topography on hyporheic exchange

    Science.gov (United States)

    Caruso, Alice; Ridolfi, Luca; Boano, Fulvio

    2016-08-01

    Among the interactions between surface water bodies and aquifers, hyporheic exchange has been recognized as a key process for nutrient cycling and contaminant transport. Even though hyporheic exchange is strongly controlled by groundwater discharge, our understanding of the impact of the regional groundwater flow on hyporheic fluxes is still limited because of the complexity arising from the multi-scale nature of these interactions. In this work, we investigate the role of watershed topography on river-aquifer interactions by way of a semi-analytical model, in which the landscape topography is used to approximate the groundwater head distribution. The analysis of a case study shows how the complex topographic structure is the direct cause of a substantial spatial variability of the aquifer-river exchange. Groundwater upwelling along the river corridor is estimated and its influence on the hyporheic zone is discussed. In particular, the fragmentation of the hyporeic corridor induced by groundwater discharge at the basin scale is highlighted.

  19. Watershed services: who pays and for what?

    Energy Technology Data Exchange (ETDEWEB)

    Porras, Ina; Grieg-Gran, Maryanne

    2007-08-15

    There is increasing interest in using payments to promote sound watershed management. Schemes range from small pilot projects involving just five families to a massive Chinese project that aims to reach 15 million farmers. The expectation is that such schemes will help to resolve problems such as declining water flows, flooding and deteriorating water quality by bringing in new funding from water users, the private sector in particular, and by providing incentives for sustainable management to those closest to natural resources. A review of active and proposed schemes in developing nations shows, however, that most schemes still depend on donor or government funding, and few are driven by water users. Meanwhile, evidence of benefits remains patchy.

  20. The Second Lebanon War as a Watershed

    Directory of Open Access Journals (Sweden)

    Gabriel Siboni

    2009-10-01

    Full Text Available Wars are difficult and traumatic, and as such, their impact goes well beyond their immediate time frame and the people directly involved. In this sense, the Second Lebanon War is not unusual. In hindsight, and in light of the thoughtful analyses presented at this conference, it seems that the most prominent phenomenon about the Second Lebanon War is the fact that it was a watershed – a pivotal moment in which different processes ceased, accelerated, or significantly changed direction. This is true at the personal level regarding the people who took part in the war on the Israeli and Lebanese sides; at the organizational level regarding both the IDF and Hizbollah; at the state level regarding both Israel and Lebanon; and on the regional level regarding Iran and the various Arab states, especially Saudi Arabia, Egypt, and Syria.

  1. Coupling stable isotope and satellite to inform a snow accumulation and melt model for data poor, semi-arid watersheds

    Science.gov (United States)

    Hublart, Paul; Sproles, Eric; Soulsby, Chris; Tetzlaff, Doerthe; Hevía, Andres

    2016-04-01

    At the most basic level watersheds catch, store, and release water. In semi-arid northern central Chile (29°-32°) snow and glacier melt dominate these basic hydrological stages. In this region precipitation is typically limited to three to five events per year that falls as snow in the High Cordillera at elevations above 3000 m a.s.l. The rugged topography and steep gradient makes snowfall rates highly variable in space and time. Despite its critical importance for water supply, high elevation meteorological data and measurements of snowpack are scarce due to limited winter access above 3000 m a.s.l. Due to the critically limited understanding of catch, store, and release processes most conceptual watershed models for this region remain speculative, are prone to over-parameterization, and greatly inhibits hydrological prediction in the region. Focused on two headwater watersheds of the Elqui River basin (1615-6040 m a.s.l., 429-566 km2) this study couples stable isotope and Moderate Resolution Imaging Spectrometer (MODIS) data to develop an improved conceptual model of how semi-arid mountain watersheds catch, store, and release water. MODIS snow-cover and land surface temperature data are used to inform an enhanced temperature-index Snow Accumulation and Melt (SAM) model. The use of remotely-sensed temperature data as input to this model is evaluated by comparison with an interpolated dataset derived from a few available meteorological stations. The outputs from the SAM model are used as inputs to a conceptual catchment model including two water stores (one standing for surface/subsurface processes and the other for deeper groundwater storage). The model is calibrated and evaluated from a Bayesian perspective using discharge data measured at the catchment outlets over a 15-year period (2000-2015). Stable isotope data collected during 2015-2016 is applied to better constrain model outputs. The combination of MODIS-based and isotope-based information proves very

  2. Integrated watershed planning across jurisdictional boundaries

    Science.gov (United States)

    Watts, A. W.; Roseen, R.; Stacey, P.; Bourdeau, R.

    2014-12-01

    We will present the foundation for an Coastal Watershed Integrated Plan for three communities in southern New Hampshire. Small communities are often challenged by complex regulatory requirements and limited resources, but are wary of perceived risks in engaging in collaborative projects with other communities. Potential concerns include loss of control, lack of resources to engage in collaboration, technical complexity, and unclear benefits. This project explores a multi-town subwatershed application of integrated planning across jurisdictional boundaries that addresses some of today's highest priority water quality issues: wastewater treatment plant upgrades for nutrient removal; green infrastructure stormwater management for developing and re-developing areas; and regional monitoring of ecosystem indicators in support of adaptive management to achieve nutrient reduction and other water quality goals in local and downstream waters. The project outcome is a collaboratively-developed inter-municipal integrated plan, and a monitoring framework to support cross jurisdictional planning and assess attainment of water quality management goals. This research project has several primary components: 1) assessment of initial conditions, including both the pollutant load inputs and the political, economic and regulatory status within each community, 2) a pollutant load model for point and non-point sources, 3) multi-criteria evaluation of load reduction alternatives 4) a watershed management plan optimized for each community, and for Subwatersheds combining multiple communities. The final plan will quantify the financial and other benefits/drawbacks to each community for both inter municipal and individual pollution control approaches. We will discuss both the technical and collaborative aspects of the work, with lessons learned regarding science to action, incorporation of social, economic and water quality assessment parameters, and stakeholder/researcher interaction.

  3. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds.

    Science.gov (United States)

    Zhang, Hua; Huang, Guo H; Wang, Dunling; Zhang, Xiaodong; Li, Gongchen; An, Chunjiang; Cui, Zheng; Liao, Renfei; Nie, Xianghui

    2012-03-15

    Eutrophication of small prairie reservoirs presents a major challenge in water quality management and has led to a need for predictive water quality modeling. Studies are lacking in effectively integrating watershed models and reservoir models to explore nutrient dynamics and eutrophication pattern. A water quality model specific to small prairie water bodies is also desired in order to highlight key biogeochemical processes with an acceptable degree of parameterization. This study presents a Multi-level Watershed-Reservoir Modeling System (MWRMS) to simulate hydrological and biogeochemical processes in small prairie watersheds. It integrated a watershed model, a hydrodynamic model and an eutrophication model into a flexible modeling framework. It can comprehensively describe hydrological and biogeochemical processes across different spatial scales and effectively deal with the special drainage structure of small prairie watersheds. As a key component of MWRMS, a three-dimensional Willows Reservoir Eutrophication Model (WREM) is developed to addresses essential biogeochemical processes in prairie reservoirs and to generate 3D distributions of various water quality constituents; with a modest degree of parameterization, WREM is able to meet the limit of data availability that often confronts the modeling practices in small watersheds. MWRMS was applied to the Assiniboia Watershed in southern Saskatchewan, Canada. Extensive efforts of field work and lab analysis were undertaken to support model calibration and validation. MWRMS demonstrated its ability to reproduce the observed watershed water yield, reservoir water levels and temperatures, and concentrations of several water constituents. Results showed that the aquatic systems in the Assiniboia Watershed were nitrogen-limited and sediment flux played a crucial role in reservoir nutrient budget and dynamics. MWRMS can provide a broad context of decision support for water resources management and water quality

  4. Using Streamwater Chemistry in Flowpath Analysis of Large-Scale Forested Watersheds Near Stowe, VT: Developed vs. Undeveloped Watersheds

    Science.gov (United States)

    Zinni, B. J.; Wemple, B. C.; Lini, A.; James, S. B.

    2004-05-01

    The analysis of flowpaths in small alpine watersheds has provided insight into the interrelationships between overall streamwater chemistry and the various flowpaths contributing to it. The purpose of this study is to determine whether the methods used in determining the flowpaths of small watersheds are applicable in a large-scale watershed. The two sites being studied are in the Mt. Mansfield region of Vermont. They are the Ranch Brook (9.6km2) and West Branch (11.7km2) watersheds. The techniques being implemented include the isotopic characterization of streamwater samples following a precipitation event, basic streamwater chemistry data and their relationship to stream discharge, and the determination of endmembers to the overall streamwater chemistry. Analysis of stream chemistry data suggests that up to three end members contribute to run-off production in both watersheds. A second aspect of this study is a comparison of the two watersheds. These watersheds are similar in all aspects except for the amount of development within each. Ranch Brook is undeveloped forestland while West Branch encompasses an alpine ski resort. Elevated chloride concentrations in the managed watershed suggest the possibility of contamination due to the application of road-salt. Initial oxygen isotope data suggests different flowpath patterns during snowmelt events, which may be the result of the impacts of ski trails and artificial snow on the West Branch site. These two sites provide the unique opportunity to determine impacts of ski development on the streamwater chemistry of alpine watersheds. Future plans include sampling of potential end members such as soilwater, groundwater and snowpack and analysis of additional isotopic data in order to constrain our assessment of flowpaths contributing to the runoff in these basins.

  5. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  6. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    Science.gov (United States)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small

  7. Watershed Boundaries, Watershed, Published in 2005, 1:4800 (1in=400ft) scale, LaCrosse County Zoning Planning & Land Information.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:4800 (1in=400ft) scale as of 2005. It is described as 'Watershed'. Data by this publisher are often provided in...

  8. USGS Watershed Boundary Dataset (WBD) Stewardship Plan Objectives for FY17 from The National Map - National Geospatial Data Asset (NGDA) Watershed Boundary Dataset (WBD)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — U.S. Geological Survey, Department of the Interior - The annual Watershed Boundary Dataset (WBD) stewardship plan is to maintain watershed boundary data through...

  9. Walnut Creek Watershed Restoration and Water Quality Monitoring Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The primary objective of this project is to establish a nonpoint source monitoring program in relation to the watershed habitat restoration and agricultural...

  10. Summit to Sea Characterization of Coastal Watersheds - Puerto Rico 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Characterization of Coastal Watershed for Puerto Rico, Culebra Island and Vieques Island, is a GIS products suite consisting of layers derived from diverse...

  11. DECISION SUPPORT FRAMEWORK FOR STORMWATER MANAGEMENT IN URBAN WATERSHEDS

    Science.gov (United States)

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) is developing a decision support system for placement of BMPs at strategic locations in urban watersheds. This tool wil...

  12. 2005 Kansas Land Cover Patterns, Level I, Kansas River Watershed

    Data.gov (United States)

    Kansas Data Access and Support Center — The Upper Kansas River Watershed Land Cover Patterns map represents Phase 1 of a two-phase mapping initiative occurring over a three-year period as part of a...

  13. Laser altimeter measurements at Walnut Gulch Watershed, Arizona

    International Nuclear Information System (INIS)

    Measurements of landscape surface roughness properties are necessary for understanding many watershed processes. This paper reviews the use of an airborne laser altimeter to measure topography and surface roughness properties of the landscape at Walnut Gulch Watershed in Arizona. Airborne laser data were used to measure macro and micro topography as well as canopy topography, height, cover, and distribution. Macro topography of landscape profiles for segments up to 5 km (3 mi) were measured and were in agreement with available topographic maps but provided more detail. Gullies and stream channel cross-sections and their associated floodplains were measured. Laser measurements of vegetation properties (height and cover) were highly correlated with ground measurements. Landscape segments for any length can be used to measure these landscape roughness properties. Airborne laser altimeter measurements of landscape profiles can provide detailed information on watershed surface properties for improving the management of watersheds. (author)

  14. 2011 FEMA Lidar: Chemung Watershed (NY) (AOI 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — LiDAR data was acquired by Tuck Mapping Solutions, Inc. (TMSI) for the Chemung Watershed and broken down into two AOIs based on the level of processing performed on...

  15. Watershed Boundaries, Published in unknown, Person County GIS/IT.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, was produced all or in part from Field Survey/GPS information as of unknown. Data by this publisher are often provided in State...

  16. Possible climate change evidence in ten Mexican watersheds

    Science.gov (United States)

    Mateos, Efrain; Santana, Julio-Sergio; Montero-Martínez, Martin J.; Deeb, Alejandro; Grunwaldt, Alfred

    2016-02-01

    This paper suggests possible evidence of climate change in Mexico at the watershed level, based solely on historical data. The official Mexican climate dataset was used to find the best set of stations for each watershed. Maximum and minimum temperatures and rainfall in ten watersheds are analyzed from 1970 to 2009. Maximum temperature trends show a significant increment in most of these watersheds. Furthermore, Daily Temperature Range (DTR) exhibits a positive trend (increments), thus implying an increase in temperature extremes. This study also shows that the difference between maximum and minimum monthly temperature trends is negatively correlated with monthly precipitation trends. As a result, land-use and land-cover changes could be the main drivers of climate change in the region.

  17. Hydrography - MO 2014 Outstanding National Resource Water Watersheds (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This feature class contains watersheds associated with Missouri's use designations for waters listed in Table D - Outstanding National Resource Waters of the Water...

  18. Baseline Contaminants Investigation of the Patoka River Watershed, Southwest Indiana

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment and fish tissue samples were collected from various locations within the Patoka River watershed (PRW) as part of the U.S. Fish and Wildlife Service's...

  19. Fish Creek Watershed Lake Classification; NPRA, Alaska, 2016

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This study focuses on the development of a 20 attribute lake cover classification scheme for the Fish Creek Watershed (FCW), which is located in the National...

  20. EAARL Topography--Potato Creek Watershed, Georgia, 2010

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A digital elevation model (DEM) of a portion of the Potato Creek watershed in Georgia was produced from remotely sensed, geographically referenced elevation...

  1. Watersheds, waterfalls, on edge or node weighted graphs

    CERN Document Server

    Meyer, Fernand

    2012-01-01

    We present an algebraic approach to the watershed adapted to edge or node weighted graphs. Starting with the flooding adjunction, we introduce the flooding graphs, for which node and edge weights may be deduced one from the other. Each node weighted or edge weighted graph may be transformed in a flooding graph, showing that there is no superiority in using one or the other, both being equivalent. We then introduce pruning operators extract subgraphs of increasing steepness. For an increasing steepness, the number of never ascending paths becomes smaller and smaller. This reduces the watershed zone, where catchment basins overlap. A last pruning operator called scissor associates to each node outside the regional minima one and only one edge. The catchment basins of this new graph do not overlap and form a watershed partition. Again, with an increasing steepness, the number of distinct watershed partitions contained in a graph becomes smaller and smaller. Ultimately, for natural image, an infinite steepness le...

  2. central t

    Directory of Open Access Journals (Sweden)

    Manuel R. Piña Monarrez

    2007-01-01

    Full Text Available Dado que la Regresión Ridge (RR, es una estimación sesgada que parte de la solución de la regresión de Mínimos Cuadrados (MC, es vital establecer las condiciones para las que la distribución central t de Student que se utiliza en la prueba de hipótesis en MC, sea también aplicable a la regresión RR. La prueba de este importante resultado se presenta en este artículo.

  3. Factors influencing stream baseflow transit times in tropical montane watersheds

    Science.gov (United States)

    Muñoz-Villers, Lyssette E.; Geissert, Daniel R.; Holwerda, Friso; McDonnell, Jeffrey J.

    2016-04-01

    Stream water mean transit time (MTT) is a fundamental hydrologic parameter that integrates the distribution of sources, flow paths, and storages present in catchments. However, in the tropics little MTT work has been carried out, despite its usefulness for providing important information on watershed functioning at different spatial scales in (largely) ungauged basins. In particular, very few studies have quantified stream MTTs or have related these to catchment characteristics in tropical montane regions. Here we examined topographic, land use/cover and soil hydraulic controls on baseflow transit times for nested catchments (0.1-34 km2) within a humid mountainous region, underlain by volcanic soil (Andisols) in central Veracruz (eastern Mexico). We used a 2-year record of bi-weekly isotopic composition of precipitation and stream baseflow data to estimate MTT. Land use/cover and topographic parameters (catchment area and form, drainage density, slope gradient and length) were derived from geographic information system (GIS) analysis. Soil water retention characteristics, and depth and permeability of the soil-bedrock interface were obtained from intensive field measurements and laboratory analysis. Results showed that baseflow MTTs ranged between 1.2 and 2.7 years across the 12 study catchments. Overall, MTTs across scales were mainly controlled by catchment slope and the permeability observed at the soil-bedrock interface. In association with topography, catchment form and the depth to the soil-bedrock interface were also identified as important features influencing baseflow MTTs. The greatest differences in MTTs were found both within groups of small (0.1-1.5 km2) and large (14-34 km2) catchments. Interestingly, the longest stream MTTs were found in the headwater cloud forest catchments.

  4. Potlatch River Watershed Restoration, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Stinson, Kenneth

    2003-09-01

    The project's goal is to improve instream fish habitat in the Potlatch River and the lower Clearwater River through comprehensive watershed planning, implementation of best management practices and expanded water quality and fish habitat monitoring. This proposal has two primary objectives: (1) complete the Potlatch River watershed implementation plan; and, (2) augment existing monitoring efforts in the Potlatch River to broaden the water quality and fish resource data baseline.

  5. Vertical Collective Action: Addressing Vertical Asymmetries in Watershed Management

    OpenAIRE

    Cárdenas, Juan-Camilo; Rodriguez, Luz Angela; Johnson, Nancy

    2015-01-01

    Watersheds and irrigation systems have the characteristic of connecting people vertically by water flows. The location of users along these systems defines their role in the provision and appropriation of water which adds complexity to the potential for cooperation. Verticality thus imposes a challenge to collective action. This paper presents the results of field experiments conducted in four watersheds of Colombia (South America) and Kenya (East Africa) to study the role that location plays...

  6. Segmentation of Medical Image using Clustering and Watershed Algorithms

    OpenAIRE

    M. C.J. Christ; R. M. S. Parvathi

    2011-01-01

    Problem statement: Segmentation plays an important role in medical imaging. Segmentation of an image is the division or separation of the image into dissimilar regions of similar attribute. In this study we proposed a methodology that integrates clustering algorithm and marker controlled watershed segmentation algorithm for medical image segmentation. The use of the conservative watershed algorithm for medical image analysis is pervasive because of its advantages, such as always being able to...

  7. Streamflow simulation methods for ungauged and poorly gauged watersheds

    OpenAIRE

    Loukas, A.; Vasiliades, L.

    2014-01-01

    Rainfall–runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well-established hydrological model, the University of British Columbia (UBC) watershed model, is selected and applied in five different river basins located in Canada, Cyprus, and Pakistan. Catchments from cold, temperate, continental, and semiarid climate zones are included to demonstrate the procedures developed. Two methodologies for streamflow modelling are prop...

  8. Application of Watershed Dimensionless Half Profiles for Climate Recognition

    OpenAIRE

    Marzieh Foroutan; Mazda Kompanizare

    2013-01-01

    DEM analysis and profile extraction being used for finding many changes and phenomena in different regions, in this study dimensionless transverse half profile in two areas with different climates, in Fars province, Iran, were analyzed and compared. DEM data from 10 m intervals for 268 profiles selected from Jooyom and Doroodzan watersheds with respective warm arid and cold semi-arid climates. Profiles were selected from along main channels in each watershed with an average distance of 100 m....

  9. Streamflow simulation methods for ungauged and poorly gauged watersheds

    OpenAIRE

    Loukas, A.; Vasiliades, L.

    2014-01-01

    Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well established hydrological model, the UBC watershed model, is selected and applied in five different river basins located in Canada, Cyprus and Pakistan. Catchments from cold, temperate, continental and semiarid climate zones are included to demonstrate the develop procedures. Two methodologies for streamflow modelling are proposed and analysed. T...

  10. Integrated simulation of runoff and groundwater in forest wetland watersheds

    OpenAIRE

    Gen-wei CHENG; Zhong-bo YU; Li, Chang-Sheng; Huang, Yong

    2008-01-01

    Abstract: A Distributed Forest Wetland Hydrologic Model (DFWHM) was constructed and used to examine water dynamics in the different climates of three different watersheds (a cold region, a sub-tropic region, and a large-scale watershed). A phenological index was used to represent the seasonal and species changes of the tree canopy while processes of snow packing, soil freezing, and snow and ice thawing were also included in the simulation. In the cold region, the simulated fall of the gro...

  11. Nitrate mass balance in the Padež stream watershed

    OpenAIRE

    Česnik, Katarina

    2014-01-01

    Graduation thesis analyzes changes in nitrate mass balance in a forested watersheds. The nitrate mass balance changes occur manly because of hydrological and biogeochemical mechanisms. The studied area, the Padež stream watershed, is mainly covered with forest. Between years 2006 and 2007 the hydrometeorological conditions and streamwater chemistry of Padež stream were continuously monitored. The differences in streamwater nitrate concentrations and nitrate concentrations in precipitations an...

  12. Methodology for a stormwater sensitive urban watershed design

    Science.gov (United States)

    Romnée, Ambroise; Evrard, Arnaud; Trachte, Sophie

    2015-11-01

    In urban stormwater management, decentralized systems are nowadays worldwide experimented, including stormwater best management practices. However, a watershed-scale approach, relevant for urban hydrology, is almost always neglected when designing a stormwater management plan with best management practices. As a consequence, urban designers fail to convince public authorities of the actual hydrologic effectiveness of such an approach to urban watershed stormwater management. In this paper, we develop a design oriented methodology for studying the morphology of an urban watershed in terms of sustainable stormwater management. The methodology is a five-step method, firstly based on the cartographic analysis of many stormwater relevant indicators regarding the landscape, the urban fabric and the governance. The second step focuses on the identification of many territorial stakes and their corresponding strategies of a decentralized stormwater management. Based on the indicators, the stakes and the strategies, the third step defines many spatial typologies regarding the roadway system and the urban fabric system. The fourth step determines many stormwater management scenarios to be applied to both spatial typologies systems. The fifth step is the design of decentralized stormwater management projects integrating BMPs into each spatial typology. The methodology aims to advise urban designers and engineering offices in the right location and selection of BMPs without given them a hypothetical unique solution. Since every location and every watershed is different due to local guidelines and stakeholders, this paper provide a methodology for a stormwater sensitive urban watershed design that could be reproduced everywhere. As an example, the methodology is applied as a case study to an urban watershed in Belgium, confirming that the method is applicable to any urban watershed. This paper should be helpful for engineering and design offices in urban hydrology to define a

  13. Management and Cost of Watershed Reforestation: The Pantabangan and Magat

    OpenAIRE

    Galvez, Jose A.

    1984-01-01

    Experiences of the National Irrigation Administration in its reforestation of the Pantabangan and Magat watersheds are presented in this paper, as it identifies the basic requirements of a successful reforestation program for denuded areas. The problems encountered in the implementation of the Watershed Management and Erosion Control Projects as well as the factors that significantly affected the success or failure of the project are identified.

  14. Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia

    OpenAIRE

    Mutlu Ozdogan; Benjamin F. Zaitchik; Belay Simane

    2013-01-01

    Tropical highland regions are experiencing rapid climate change. In these regions the adaptation challenge is complicated by the fact that elevation contrasts and dissected topography produce diverse climatic conditions that are often accompanied by significant ecological and agricultural diversity within a relatively small region. Such is the case for the Choke Mountain watersheds, in the Blue Nile Highlands of Ethiopia. These watersheds extend from tropical alpine environments at over 4000 ...

  15. Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2000-10-01

    The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

  16. Optimal allocation of watershed management cost among different water users

    Institute of Scientific and Technical Information of China (English)

    Wang Zanxin; Margaret M.Calderon

    2006-01-01

    The issue of water scarcity highlights the importance of watershed management. A sound watershed management should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (Mus) or marginal products (MPs) of water are equal. The value of Mus or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non-consumable, the watershed manager produces the quantity of water in which the sum of Mus and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of Mus and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.

  17. Influence of storm magnitude and watershed size on runoff nonlinearity

    Science.gov (United States)

    Lee, Kwan Tun; Huang, Jen-Kuo

    2016-06-01

    The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.

  18. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  19. Landscape position influences microbial composition and function via redistribution of soil water across a watershed.

    Science.gov (United States)

    Du, Zhe; Riveros-Iregui, Diego A; Jones, Ryan T; McDermott, Timothy R; Dore, John E; McGlynn, Brian L; Emanuel, Ryan E; Li, Xu

    2015-12-01

    Subalpine forest ecosystems influence global carbon cycling. However, little is known about the compositions of their soil microbial communities and how these may vary with soil environmental conditions. The goal of this study was to characterize the soil microbial communities in a subalpine forest watershed in central Montana (Stringer Creek Watershed within the Tenderfoot Creek Experimental Forest) and to investigate their relationships with environmental conditions and soil carbonaceous gases. As assessed by tagged Illumina sequencing of the 16S rRNA gene, community composition and structure differed significantly among three landscape positions: high upland zones (HUZ), low upland zones (LUZ), and riparian zones (RZ). Soil depth effects on phylogenetic diversity and β-diversity varied across landscape positions, being more evident in RZ than in HUZ. Mantel tests revealed significant correlations between microbial community assembly patterns and the soil environmental factors tested (water content, temperature, oxygen, and pH) and soil carbonaceous gases (carbon dioxide concentration and efflux and methane concentration). With one exception, methanogens were detected only in RZ soils. In contrast, methanotrophs were detected in all three landscape positions. Type I methanotrophs dominated RZ soils, while type II methanotrophs dominated LUZ and HUZ soils. The relative abundances of methanotroph populations correlated positively with soil water content (R = 0.72, P < 0.001) and negatively with soil oxygen (R = -0.53, P = 0.008). Our results suggest the coherence of soil microbial communities within and differences in communities between landscape positions in a subalpine forested watershed that reflect historical and contemporary environmental conditions. PMID:26431971

  20. Long-term environmental research: the upper washita river experimental watersheds, oklahoma, USA.

    Science.gov (United States)

    Steiner, Jean L; Starks, Patrick J; Garbrecht, Jurgen D; Moriasi, Daniel N; Zhang, Xunchang; Schneider, Jeanne M; Guzman, Jorge A; Osei, Edward

    2014-07-01

    Water is central to life and earth processes, connecting physical, biological, chemical, ecological, and economic forces across the landscape. The vast scope of hydrologic sciences requires research efforts worldwide and across a wide range of disciplines. While hydrologic processes and scientific investigations related to sustainable agricultural systems are based on universal principles, research to understand processes and evaluate management practices is often site-specific to achieve a critical mass of expertise and research infrastructure to address spatially, temporally, and ecologically complex systems. In the face of dynamic climate, market, and policy environments, long-term research is required to understand and predict risks and possible outcomes of alternative scenarios. This special section describes the USDA-ARS's long-term research (1961 to present) in the Upper Washita River basin of Oklahoma. Data papers document datasets in detail (weather, hydrology, physiography, land cover, and sediment and nutrient water quality), and associated research papers present analyses based on those data. This living history of research is presented to engage collaborative scientists across institutions and disciplines to further explore complex, interactive processes and systems. Application of scientific understanding to resolve pressing challenges to agriculture while enhancing resilience of linked land and human systems will require complex research approaches. Research areas that this watershed research program continues to address include: resilience to current and future climate pressures; sources, fate, and transport of contaminants at a watershed scale; linked atmospheric-surface-subsurface hydrologic processes; high spatiotemporal resolution analyses of linked hydrologic processes; and multiple-objective decision making across linked farm to watershed scales. PMID:25603071

  1. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    Science.gov (United States)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  2. Watershed Boundaries, Watershed, Published in Not Provided, 1:1200 (1in=100ft) scale, NC Emergency Management.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Field Survey/GPS information as of Not Provided. It is...

  3. Watershed Boundaries, Watersheds within Winnebago County, Published in 1994, 1:2400 (1in=200ft) scale, Winnebago County GIS.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:2400 (1in=200ft) scale, was produced all or in part from Orthoimagery information as of 1994. It is described as...

  4. Chinese Policies and Practices regarding Payments for Ecological Services in Watersheds

    Institute of Scientific and Technical Information of China (English)

    Liu Guihuan; Zhang Huiyuan; Wan Jun

    2008-01-01

    Watersheds provide a variety of ecological services including soil and water conservation,carbon sequestration and biodiversity protection.However,activities in a fast-growing economy significantly impact the supply and demand of these watershed services.To mitigate these impacts,the concept of payment for environmental and ecosystem services from watersheds has emerged in global academic and policy circles.The governments and academic communities in China have increasingly described payments for ecological services from watersheds with the concept of watershed eco-compensation as it is urgent to protect watershed ecosystems.Watershed eco-compensation has proved to be one of the most economically effective means of solving environmental problems of watersheds to be adopted by the Chinese government.This paper presents an objective analysis of the Chinese market for watershed ecosystem services,including supply and demand for the services.It also summarizes Chinese policies on watershed eco-compensation,including relevant laws and regulations and fiscal policies.In addition,it presents a review of Chinese practices in watershed eco-compensation,including the analysis of an ecological construction project in Westem China,inter-provincial watershed cco-compensation practices and plans,and payment for ecological services at the provincial and small watershed levels.Finally,it summarizes the key components of the process of payment in Chinese watershed eco-compensation.This discussion forms the basis of concluding suggestions for ecosystem services compensation and ecological protection in the large scale river basin.

  5. Applying Physically Representative Watershed Modelling to Assess Peak and Low Flow Response to Timber Harvest: Application for Watershed Assessments

    Science.gov (United States)

    MacDonald, R. J.; Anderson, A.; Silins, U.; Craig, J. R.

    2014-12-01

    Forest harvesting, insects, disease, wildfire, and other disturbances can combine with climate change to cause unknown changes to the amount and timing of streamflow from critical forested watersheds. Southern Alberta forest and alpine areas provide downstream water supply for agriculture and water utilities that supply approximately two thirds of the Alberta population. This project uses datasets from intensely monitored study watersheds and hydrological model platforms to extend our understanding of how disturbances and climate change may impact various aspects of the streamflow regime that are of importance to downstream users. The objectives are 1) to use the model output of watershed response to disturbances to inform assessments of forested watersheds in the region, and 2) to investigate the use of a new flexible modelling platform as a tool for detailed watershed assessments and hypothesis testing. Here we applied the RAVEN hydrological modelling framework to quantify changes in key hydrological processes driving peak and low flows in a headwater catchment along the eastern slopes of the Canadian Rocky Mountains. The model was applied to simulate the period from 2006 to 2011 using data from the Star Creek watershed in southwestern Alberta. The representation of relevant hydrological processes was verified using snow survey, meteorological, and vegetation data collected through the Southern Rockies Watershed Project. Timber harvest scenarios were developed to estimate the effects of cut levels ranging from 20 to 100% over a range of elevations, slopes, and aspects. We quantified changes in the timing and magnitude of low flow and high flow events during the 2006 to 2011 period. Future work will assess changes in the probability of low and high flow events using a long-term meteorological record. This modelling framework enables relevant processes at the watershed scale to be accounted in a physically robust and computational efficient manner. Hydrologic

  6. Valuing the effects of hydropower development on watershed ecosystem services: Case studies in the Jiulong River Watershed, Fujian Province, China

    Science.gov (United States)

    Wang, Guihua; Fang, Qinhua; Zhang, Luoping; Chen, Weiqi; Chen, Zhenming; Hong, Huasheng

    2010-02-01

    Hydropower development brings many negative impacts on watershed ecosystems which are not fully integrated into current decision-making largely because in practice few accept the cost and benefit beyond market. In this paper, a framework was proposed to valuate the effects on watershed ecosystem services caused by hydropower development. Watershed ecosystem services were classified into four categories of provisioning, regulating, cultural and supporting services; then effects on watershed ecosystem services caused by hydropower development were identified to 21 indicators. Thereafter various evaluation techniques including the market value method, opportunity cost approach, project restoration method, travel cost method, and contingent valuation method were determined and the models were developed to valuate these indicators reflecting specific watershed ecosystem services. This approach was applied to three representative hydropower projects (Daguan, Xizaikou and Tiangong) of Jiulong River Watershed in southeast China. It was concluded that for hydropower development: (1) the value ratio of negative impacts to positive benefits ranges from 64.09% to 91.18%, indicating that the negative impacts of hydropower development should be critically studied during its environmental administration process; (2) the biodiversity loss and water quality degradation (together accounting for 80-94%) are the major negative impacts on watershed ecosystem services; (3) the average environmental cost per unit of electricity is up to 0.206 Yuan/kW h, which is about three quarters of its on-grid power tariff; and (4) the current water resource fee accounts for only about 4% of its negative impacts value, therefore a new compensatory method by paying for ecosystem services is necessary for sustainable hydropower development. These findings provide a clear picture of both positive and negative effects of hydropower development for decision-makers in the monetary term, and also provide a

  7. Rangeland degradation in two watersheds of Lebanon

    International Nuclear Information System (INIS)

    A complex and rugged nature characterizes the Lebanese mountains.The climatic pattern prevailing in the country, deforestation and man made erosion caused increased rangeland degradation. The purpose of this study was to monitor two contrasting watersheds, representing the Lebanese agro-ecological zones, to analyze the vegetation dynamics and trace the state of rangeland degradation. The Kfarselouane (205 km2) and Aarsal (316.7 km2) watersheds are located in the Lebanon and Anti-Lebanon mountain chain and characterized by sub humid and semi-arid climate respectively.Using multitemporal spot vegetation images between 1999 and 2005 to analyze the normalized differential vegetation index (NDVI) revealed some improvement of the vegetation cover over recent years in Kfaselouane with a steady state in Aarsal. The NDVI trend curve inclines in spring and declines in summer and fall. Judging by the time scale amplitude change and highest magnitude between the peak and lower NDVI level in Aarsal, an increased vulnerability to drought is observed in the dry Lebanese areas. Comparing land cover/use in Aarsal area between 1962 and 2000 using aerial photos and large resolution Indian satellite images (IRS) showed wood fragmentation and slight increase of the degenerated forest cover from 1108 ha to 1168 ha. Landuse change was accompanied by a simultaneous increase of cultivated lands (mostly fruit trees) from 932 ha to 4878 ha with absence of soil conservation and water harvesting practices. On the contrary, grasslands decreased from 29581 ha to 25000 ha. In Kfarselouane, the area of grassland was invaded by forestland where rangeland decreased from 8073 ha to 3568 ha and woodland increased from 5766 ha to 11800 ha. Forest expansion occurred even at the account of unproductive land which decreased from 2668 ha to 248 ha, while cultivated lands did not reveal any substantial change. Based on animals' seasonal feeding pattern, a mismatch between land carrying capacity and grazing

  8. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  9. Integrating operational watershed and coastal models for the Iberian Coast: Watershed model implementation - A first approach

    Science.gov (United States)

    Brito, David; Campuzano, F. J.; Sobrinho, J.; Fernandes, R.; Neves, R.

    2015-12-01

    River discharges and loads are essential inputs to coastal seas, and thus for coastal seas modelling, and their properties are the result of all activities and policies carried inland. For these reasons main rivers were object of intense monitoring programs having been generated some important amount of historical data. Due to the decline in the Portuguese hydrometric network and in order to quantify and forecast surface water streamflow and nutrients to coastal areas, the MOHID Land model was applied to the Western Iberia Region with a 2 km horizontal resolution and to the Iberian Peninsula with 10 km horizontal resolution. The domains were populated with land use and soil properties and forced with existing meteorological models. This approach also permits to understand how the flows and loads are generated and to forecast their values which are of utmost importance to perform coastal ocean and estuarine forecasts. The final purpose of the implementation is to obtain fresh water quantity and quality that could be used to support management decisions in the watershed, reservoirs and also to estuaries and coastal areas. A process oriented model as MOHID Land is essential to perform this type of simulations, as the model is independent of the number of river catchments. In this work, the Mohid Land model equations and parameterisations were described and an innovative methodology for watershed modelling is presented and validated for a large international river, the Tagus River, and the largest national river of Portugal, the Mondego River. Precipitation, streamflow and nutrients modelling results for these two rivers were compared with observations near their coastal outlet in order to evaluate the model capacity to represent the main watershed trends. Finally, an annual budget of fresh water and nutrient transported by the main twenty five rivers discharging in the Portuguese coast is presented.

  10. Northern Watershed Change, Modeled Permafrost Temperatures in the Yukon River Watershed

    Science.gov (United States)

    Bryan, R.; Hinzman, L. D.

    2009-12-01

    Changes in the terrestrial hydrologic cycle in northern watersheds can be seen through permafrost warming. Furthermore, vegetation shifts occur with climate changes coupled with permafrost degradation. Permafrost warming is resultant from warming air temperatures and the collection of buffers between the atmosphere and the cryosphere: the active layer, snow, and vegetation. Our modeling methods combine a meteorological model with a permafrost temperature model in 1 km2 resolution in the 847,642 km2 Yukon River Watershed. The MicroMet model is a quasi-physically based model developed in 2006 by Liston & Elder to spatially interpolate irregularly spaced point meteorological data using known temperature-elevation, wind-topography, humidity-cloudiness, and radiation-cloud-topography relationships. We call on 1997-2007 data from 104 Integrated Surface Data meteorological stations and 100 grid points in a 5 best models ensemble A1B 2090-2100 projection. The Temperature at the Top of the Permafrost (TTOP) model is a numerical model for estimating the thermal state of permafrost. This model is attributed to Smith & Riseborough, 1996. TTOP relates more readily available near surface temperatures to temperatures at the depth of seasonal variation using user-defined landcover n-factors (to relate air temperature to soil surface temperature) and soil thermal conductivities (to simulate the propagation of heat through the active layer). TTOP simulates warm top of the permafrost temperatures for high soil thermal conductivity, land cover with high n-factor, and a high number of thawing degree-days/ year. Here we compare the present and future thermal stability of permafrost in the Yukon River Watershed.

  11. Linking geomorphologic knowledge, RS and GIS techniques for analyzing land cover and land use change: a multitemporal study in the Cointzio watershed, Mexico

    Directory of Open Access Journals (Sweden)

    Manuel E. Mendoza

    2013-04-01

    Full Text Available It is well-established that changes in land cover and land use (LCLU are relevant to current local and global changes that are directly linked with food security, human health, urbanization, biodiversity, trans-border migration, environmental refuges, water and soil quality, runoff and sedimentation rates, and other processes. This paper examines LCLU change processes within the Cointzio watershed (Central Mexico. The analysis covers a 28-year time period from 1975 to 2003. LCLU changes were deduced from multi-temporal remote sensing analyses (1975, 1986, 1996, 2000 and 2003. Nearly all of the LCLU changes experienced in the Cointzio watershed occurred during the 1986-1996 period. Half of the 665 km2 of the watershed have changed during this period, in what corresponds to a ten-fold increase in the rate of change as compared to the 1975-1986 and 1996-2003 periods. These massive changes are probably related to the Immigration Reform and Control Act (IRCA of 1986, which limited the transit of undocumented Mexican workers to the United States of America. The methodology applied in this research constitutes a low-cost alternative for evaluating the impact of LCLU change in watersheds. The magnitude of land use change differed during the periods of analyses in the watershed, functional zones and geoforms. The methodological approach applied in this analysis integrates standard procedures to evaluate land cover and land use change in watersheds. Due to the practical value of the results, the data and information generated during the analysis have been made available to local authorities.

  12. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    Science.gov (United States)

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). PMID:26186465

  13. A preliminary study of the Hg flux from selected Ohio watersheds to Lake Erie

    International Nuclear Information System (INIS)

    New measurements of riverine dissolved and particulate Hg fluxes into Lake Erie from 12 northern Ohio watersheds have been determined from samples collected in April 2002 and analyzed using ultra-clean techniques with cold-vapor atomic fluorescence spectrometry. Total Hg concentrations ranged through 2.5-18.5 ng L-1, with a mean of 10.4 ng L-1 with most Hg in particulate form. Dissolved Hg concentrations ranged through 0.8-4.3 ng L-1, with a mean of 2.5 ng L-1. Highest total Hg concentrations were observed in western rivers with primarily agricultural land use and eastern rivers with mixed land use in their watersheds. Total suspended solid concentrations ranged through 10-180 mg L-1 with particulate Hg concentrations ranging through 47-170 ng g-1, with a mean of 99 ng g-1. Particulate Hg was similar to published data for central Lake Erie bottom sediments but much lower than for bottom sediments in western Lake Erie. Total Hg concentrations were positively correlated with suspended sediment concentrations and negatively with dissolved NO3- concentrations. The total estimated annual Hg fluxes from these rivers into Lake Erie is estimated to be 85 kg, but because only one event was sampled during high flow conditions, this may be an overestimate. This is much lower than previous published estimates of riverine Hg input into Lake Erie

  14. Environmental modeling and exposure assessment of sediment-associated pyrethroids in an agricultural watershed.

    Directory of Open Access Journals (Sweden)

    Yuzhou Luo

    Full Text Available Synthetic pyrethroid insecticides have generated public concerns due to their increasing use and potential effects on aquatic ecosystems. A modeling system was developed in this study for simulating the transport processes and associated sediment toxicity of pyrethroids at coupled field/watershed scales. The model was tested in the Orestimba Creek watershed, an agriculturally intensive area in California' Central Valley. Model predictions were satisfactory when compared with measured suspended solid concentration (R(2 = 0.536, pyrethroid toxic unit (0.576, and cumulative mortality of Hyalella azteca (0.570. The results indicated that sediment toxicity in the study area was strongly related to the concentration of pyrethroids in bed sediment. Bifenthrin was identified as the dominant contributor to the sediment toxicity in recent years, accounting for 50-85% of predicted toxicity units. In addition, more than 90% of the variation on the annual maximum toxic unit of pyrethroids was attributed to precipitation and prior application of bifenthrin in the late irrigation season. As one of the first studies simulating the dynamics and spatial variability of pyrethroids in fields and instreams, the modeling results provided useful information on new policies to be considered with respect to pyrethroid regulation. This study suggested two potential measures to efficiently reduce sediment toxicity by pyrethroids in the study area: [1] limiting bifenthrin use immediately before rainfall season; and [2] implementing conservation practices to retain soil on cropland.

  15. An analysis of urban development and its environmental impact on the Tampa Bay watershed

    Science.gov (United States)

    Xian, G.; Crane, M.; Su, J.

    2007-01-01

    Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed. ?? 2006 Elsevier Ltd. All rights reserved.

  16. Contrasting watershed-scale trends in runoff and sediment yield complicate rangeland water resources planning

    Science.gov (United States)

    Berg, Matthew D.; Marcantonio, Franco; Allison, Mead A.; McAlister, Jason; Wilcox, Bradford P.; Fox, William E.

    2016-06-01

    Rangelands cover a large portion of the earth's land surface and are undergoing dramatic landscape changes. At the same time, these ecosystems face increasing expectations to meet growing water supply needs. To address major gaps in our understanding of rangeland hydrologic function, we investigated historical watershed-scale runoff and sediment yield in a dynamic landscape in central Texas, USA. We quantified the relationship between precipitation and runoff and analyzed reservoir sediment cores dated using cesium-137 and lead-210 radioisotopes. Local rainfall and streamflow showed no directional trend over a period of 85 years, resulting in a rainfall-runoff ratio that has been resilient to watershed changes. Reservoir sedimentation rates generally were higher before 1963, but have been much lower and very stable since that time. Our findings suggest that (1) rangeland water yields may be stable over long periods despite dramatic landscape changes while (2) these same landscape changes influence sediment yields that impact downstream reservoir storage. Relying on rangelands to meet water needs demands an understanding of how these dynamic landscapes function and a quantification of the physical processes at work.

  17. Characteristics of rainfall triggering of debris flows in the Chenyulan watershed, Taiwan

    Directory of Open Access Journals (Sweden)

    J. C. Chen

    2013-04-01

    Full Text Available This paper reports the variation in rainfall characteristics associated with debris flows in the Chenyulan watershed, central Taiwan, between 1963 and 2009. The maximum hourly rainfall Im, the maximum 24 h rainfall Rd, and the rainfall index RI (defined as the product RdIm were analysed for each rainfall event that triggered a debris flow within the watershed. The corresponding number of debris flows initiated by each rainfall event (N was also investigated via image analysis and/or field investigation. The relationship between N and RI was analysed. Higher RI of a rainfall event would trigger a larger number of debris flows. This paper also discusses the effects of the Chi-Chi earthquake (CCE on this relationship and on debris flow initiation. The results showed that the critical RI for debris flow initiation had significant variations and was significantly lower in the years immediately following the CCE of 1999, but appeared to revert to the pre-earthquake condition about five years later. Under the same extreme rainfall event of RI = 365 cm2 h−1, the value of N in the CCE-affected period could be six times larger than that in the non-CCE-affected periods.

  18. Floristic study of Zangelanlo watershed (Khorassan, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Amiri

    2011-01-01

    Full Text Available Zangelanlo watershed is located in Northeast of Iran, 28 km of Southeast of Daregaz between 37º13´ to 37º27´ north latitude and 59º8´ to 59º35´ east longitude. The surface area of the region is approximately 2482 ha. This area is mountainous with mean annual precipitation of about 412.7 mm. The mean maximum temperature is 20.8ºC in August and minimum temperature is -9ºC in January. The flora of the area was studied and life forms and chorotypes of the plants were identified. In this research, 64 families, 238 genera and 286 species were identified among which 8 species were endemic to Iran. The largest plant family was Asteraceae with 40 genera and 51 species and the largest genus was Astragalus of Fabaceae with 7 species. Hemicryptophytes, therophytes and cryptophytes were the most frequent life forms 114 species (39.87%, 89 species (31.12% and 44 species (15.38%, respectively. High percentage of Hemicryptophytes indicated that the area had a cold mountain climate. Irano – Turanian plants were the most frequent chorotype of the area with 146 species (51.05%.

  19. Streamflow simulation methods for ungauged and poorly gauged watersheds

    Directory of Open Access Journals (Sweden)

    A. Loukas

    2014-02-01

    Full Text Available Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well established hydrological model, the UBC watershed model, is selected and applied in five different river basins located in Canada, Cyprus and Pakistan. Catchments from cold, temperate, continental and semiarid climate zones are included to demonstrate the develop procedures. Two methodologies for streamflow modelling are proposed and analysed. The first method uses the UBC watershed model with a universal set of parameters for water allocation and flow routing, and precipitation gradients estimated from the available annual precipitation data as well as from regional information on the distribution of orographic precipitation. This method is proposed for watersheds without streamflow gauge data and limited meteorological station data. The second hybrid method proposes the coupling of UBC watershed model with artificial neural networks (ANNs and is intended for use in poorly gauged watersheds which have limited streamflow measurements. The two proposed methods have been applied to five mountainous watersheds with largely varying climatic, physiographic and hydrological characteristics. The evaluation of the applied methods is based on combination of graphical results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results show that the first method satisfactorily simulates the observed hydrograph assuming that the basins are ungauged. When limited streamflow measurements are available, the coupling of ANNs with the regional non-calibrated UBC flow model components is considered a successful alternative method over the conventional calibration of a hydrological model based on the employed evaluation criteria for streamflow modelling and flood frequency estimation.

  20. Streamflow simulation methods for ungauged and poorly gauged watersheds

    Science.gov (United States)

    Loukas, A.; Vasiliades, L.

    2014-07-01

    Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are developed in this study. A well-established hydrological model, the University of British Columbia (UBC) watershed model, is selected and applied in five different river basins located in Canada, Cyprus, and Pakistan. Catchments from cold, temperate, continental, and semiarid climate zones are included to demonstrate the procedures developed. Two methodologies for streamflow modelling are proposed and analysed. The first method uses the UBC watershed model with a universal set of parameters for water allocation and flow routing, and precipitation gradients estimated from the available annual precipitation data as well as from regional information on the distribution of orographic precipitation. This method is proposed for watersheds without streamflow gauge data and limited meteorological station data. The second hybrid method proposes the coupling of UBC watershed model with artificial neural networks (ANNs) and is intended for use in poorly gauged watersheds which have limited streamflow measurements. The two proposed methods have been applied to five mountainous watersheds with largely varying climatic, physiographic, and hydrological characteristics. The evaluation of the applied methods is based on the combination of graphical results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results show that the first method satisfactorily simulates the observed hydrograph assuming that the basins are ungauged. When limited streamflow measurements are available, the coupling of ANNs with the regional, non-calibrated UBC flow model components is considered a successful alternative method to the conventional calibration of a hydrological model based on the evaluation criteria employed for streamflow modelling and flood frequency estimation.

  1. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  2. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian

  3. Export and Metabolism of Carbon in Urban Watersheds: Climate Implications

    Science.gov (United States)

    Smith, R. M.; Kaushal, S.

    2014-12-01

    Rivers export and transform globally-significant quantities of carbon from watersheds to coastal ecosystems. Urbanization and climate change influence these fluxes by altering the hydrologic regime, water temperature, and anthropogenic sources of organic matter. Here, we quantify export and metabolism of carbon in highly urbanized, coastal watersheds, and evaluate the importance of physical drivers linked to climate and land use. Using a combination of discrete-samples, continuous water quality sensors, lab experiments, and modeling, we quantified rates of DOC, DIC, and CO2 export as well as changes in DOC quality and in-stream metabolism in four highly developed watersheds of the Chesapeake Bay over three years. Annual DOC and DIC exports from the four watersheds varied from 9 to 23 and 19 to 59 Kg ha-1yr-1 respectively. The range of daily CO2 concentrations was 0.01 to 2.6mg L-1, equivalent to between 0.37 and 53% of daily DOC export across all streams and dates. All sites were net-heterotrophic for the majority of the year (NEP0) during spring and early summer. There was a significant (Purban watersheds can export significant amounts of DOC, DIC, and CO2 to coastal zones. The influence of urbanization on coastal water quality and greenhouse gases may be exacerbated by climate change as temperatures and storm frequency continue to rise.

  4. Hydrological modeling of the Jiaoyi watershed (China) using HSPF model.

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001-2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R (2)), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin.

  5. Evolving Human Alteration of the Carbon Cycle: the Watershed Continuum

    Science.gov (United States)

    Kaushal, S.; Delaney Newcomb, K.; Newcomer Johnson, T.; Pennino, M. J.; Smith, R. M.; Beaulieu, J. J.; Belt, K.; Grese, M.; Blomquist, J.; Duan, S.; Findlay, S.; Likens, G.; Mayer, P. M.; Murthy, S.; Utz, R.; Yepsen, M.

    2014-12-01

    Watersheds experiencing land development are constantly evolving, and their biogeochemical signatures are expected to evolve across both space and time in drainage waters. We investigate how land development influences spatial and temporal evolution of the carbon cycle from small streams to major rivers in the Eastern U.S. Along the watershed continuum, we show that there is spatial evolution in: (1) the amount, chemical form, and bioavailability of carbon; (2) carbon retention/release at the reach scale; and (3) ecosystem metabolism of carbon from headwaters to coastal waters. Over shorter time scales, the interaction between land use and climate variability alters magnitude and frequency of carbon "pulses" in watersheds. Amounts and forms of carbon pulses in agricultural and urban watersheds respond similarly to climate variability due to headwater alteration and loss of ecosystem services to buffer runoff and temperature changes. Over longer time scales, land use change has altered organic carbon concentrations in tidal waters of Chesapeake Bay, and there have been increased bicarbonate alkalinity concentrations in rivers throughout the Eastern U.S. due to human activities. In summary, our analyses indicates that the form and reactivity of carbon have evolved over space and time along the watershed continuum with major implications for downstream ecosystem metabolism, biological oxygen demand, carbon dioxide production, and river alkalinization.

  6. Influence of storm magnitude and watershed size on runoff nonlinearity

    Indian Academy of Sciences (India)

    Kwan Tun Lee; Jen-Kuo Huang

    2016-06-01

    The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude andwatershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfallrunoffdynamic process and the second type is with respect to a Power-law relation between peakdischarge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was firstdemonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation ofthe watershed unit hydrograph (UH) using two linear hydrological models shows that the peak dischargeand time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intentionof deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast,the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensitywithout relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity.Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainagearea was investigated by analyzing the variation of Power-law exponent. The results demonstrate thatthe scaling nonlinearity is particularly significant for a watershed having larger area and subjecting toa small-size of storm. For three study watersheds, a large tributary that contributes relatively greatdrainage area or inflow is found to cause a transition break in scaling relationship and convert the scalingrelationship from linearity to nonlinearity.

  7. Hydrological Modeling of the Jiaoyi Watershed (China Using HSPF Model

    Directory of Open Access Journals (Sweden)

    Chang-An Yan

    2014-01-01

    Full Text Available A watershed hydrological model, hydrological simulation program-Fortran (HSPF, was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE, coefficient of correlation (R2, and the relative error (RE. The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin.

  8. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; Weijden, C.H. van der

    2012-01-01

    Weathering rate models designed for watersheds combine chemical data of discharging waters with morphologic and hydrologic parameters of the catchments. At the spring watershed scale, evaluation of morphologic parameters is subjective due to difficulties in conceiving the catchment geometry. Besides

  9. Application of PCARES in locating the soil erosion Hotspots in the Manupali River Watershed

    OpenAIRE

    Paningbatan, E.

    2004-01-01

    In this presentation the author covers: GIS mapping of land attributes, dynamic modeling of soil erosion at watershed scale using PCARES (Predicting Catchment Runoff and Soil Erosion for Sustainability), identifying soil erosion "hotspots" in the Manupali River watershed

  10. Toolkit of Available EPA Green Infrastructure Modeling Software: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...

  11. Watershed-based natural research management: Lessons from projects in the Andean region

    OpenAIRE

    Sowell, A.R.

    2009-01-01

    This Undergraduate Honors Thesis focuses on how different factors affect the success of a watershed management project and lessons learned from projects in the Andean Region. LTRA-3 (Watershed-based NRM for Small-scale Agriculture)

  12. A Study of Disaster Adaptation Behavior and Risk Communication for watershed Area Resident - the Case of Kaoping River Watershed in Taiwan

    Science.gov (United States)

    Te Pai, Jen; Chen, Yu-Yun; Huang, Kuan-Hua

    2016-04-01

    Along with the global climate change, the rainfall patterns become more centralized and cause natural disasters more frequently and heavily. Residents in river watersheds area are facing high risk of natural disasters and severe impacts, especially in Taiwan. From the experience of Typhoon Morakot in 2009, we learned that poor risk communication between the governments and the households and communities would lead to tremendous loss of property and life. Effective risk communication can trigger action to impending and current events. On the other hand, it can also build up knowledge on hazards and risks and encourage adaptation behaviors. Through the participation and cooperation of different stakeholders in disaster management, can reduce vulnerability, enhance adaptive capacity, improve the interaction between different stakeholders and also avoid conflicts. However, in Taiwan there are few studies about how households and communities perceive flood disaster risks, the process of risk communications between governments and households, or the relationship between risk communication and adaptation behaviors. Therefore, this study takes household and community of Kaoping River Watershed as study area. It aims to identify important factors in the process of disaster risk communication and find out the relationship between risk communication and adaptation behaviors. A framework of risk communication process was established to describe how to trigger adaptation behaviors and encourage adaptation behaviors with risk communication strategies. An ISM model was utilized to verify the framework by using household questionnaire survey. Moreover, a logit choice model was build to test the important factors for effective risk communication and adaption behavior. The result of this study would provide governments or relevant institutions suggestions about risk communication strategies and adaptation strategies to enhance the adaptive capacity of households and reduce the

  13. Watershed hydrology, network allometry and ecosystem structure

    Science.gov (United States)

    Rinaldo, A.

    2003-04-01

    The lecture covers recent advances relevant to watershed hydrology, in particular derived from the realm of data now available, covering a wide range of scales and objectively collected and analyzed. It is intended to summarize results that are, in the lecturer's opinion, crucial to our current understanding of a variety of issues. Key among them, landscape evolution models, models of the hydrologic response and, indeed a scientific challenge, ecosystem structure. In particular, a new allometric scaling law for loopless networks, confirmed through studies on rivers, exact network results and computer simulations, offers unique insight on a variety of phenomena, ranging from the ubiquity of the 'quarter-power' law in biology to the origin of scaling size spectra in marine microbial ecosystems, to the proper geomorphological description of a river basin and its hydrological implications. In a sense, networks are a byproduct of the hydrologic dynamics, and indeed can be shown to be related to ecosystem structure. Si parva licet, I will provide evidence suggesting that ensemble averaging of the allometric property (where individual realizations are different networks) leads to results in excellent accord with the known limit scaling of efficient and compact networks with remarkably little scatter with implications of somewhat general character. Such results complement recent work suggesting that scaling features are quite robust to geometrical fluctuations of network properties. Finally, I shall gather from the morphological analysis on river networks the potential for predicting the main characters of the hydrologic response in ungauged basins - a task of practical nature with many social implications, possibly relevant to the Session's aims.

  14. Comparison of Hydrologic Dynamics in Forested and Agricultural Sub-watersheds of a Large Mixed-use Prairie Watershed

    Science.gov (United States)

    Petzold, H.; Ali, G.

    2013-12-01

    The natural history of the Prairies includes the large-scale human modification of landscape biology and hydrology from first settlement to present. Forested land has been and continues to be lost and runoff is increasingly artificially drained in this intensively managed region. The impact of such modifications on hydrological dynamics has yet to be understood in such a way that measurable landscape alterations (i.e., area of forest loss, hydraulic capacity of artificial surface drains) can be linked to quantifiable alterations in event storm hydrographs or hydrological regimes. Here we focused on a large mixed-used watershed to compare the hydrological dynamics of forested sub-watersheds to those of neighboring deforested agricultural sub-watersheds within a similar geologic and pedologic setting. The chosen study site, the Catfish Creek watershed (CCW), drains a 600 km2 area located approximately 90 km north-east of Winnipeg (Manitoba, Canada) and has been extensively impacted by human activities including the continued clearing of forested land for cultivation. It is characterized as a low-relief, agro-forested watershed (~45% forest, ~40% crops, ~10% swamp, ~5% other). Surface runoff is managed in part by a network of artificial drains in both the forested and cultivated portions of this watershed. The lower CCW is naturally-vegetated by parkland forest and swamp. The eastern edge of the upper watershed is also forested and of greater relative relief; while to the west the landscape is dominated by intensive, large-scale agricultural operations on a near level landscape. Detailed topographic information was collected in 1 m LiDAR survey of the area. Through the spring of 2013, CCW was instrumented with thirteen water level recorders (15-minute frequency) and five weather stations (1-minute frequency) to monitor the precipitation-runoff dynamics from spring thaw to winter freeze-up. Water level gauging stations, 12 located in-stream and 1 located in swampland

  15. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  16. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  17. Evaluation of land use plan in Citarum Hulu watershed considering environmental degradation of soil erosion

    OpenAIRE

    Dharma, Nyoman Gde Gita Yogi; Deguchi, Chikashi; Yoshitake, Tetsunobu

    2011-01-01

    The Citarum Hulu watershed is one of the most important watersheds in West Java, Indonesia; it supplies water to the Bandung Metropolitan Area. However, land use in the watershed has been changed and causes some environmental degradation, such as erosion and sedimentation that will affect the performance of water supply system. Another impact is accumulation of sedimentation in the river causing floods, landslides, etc. Therefore, watershed management requires integrated and comprehensive app...

  18. RUNOFF MODELLING FOR THE UPPER PART OF THE DWARKESWAR WATERSHED USING SATELLITE DATA AND GIS

    OpenAIRE

    Manisa Shit; Gopal Chandra Debnath

    2015-01-01

    This study was conducted for the upper part of the Dwarkeswar watershed, West Bengal, India. Geographic Information System (GIS) was used to arameters of the watershed from the remote sensing and field data. The Digital Elevation Model (DEM) was prepared using ASTERGDEM, contour map (Survey of India, 1:250000 scale) of the watershed. The GIS software was used to extract the topographic features and to delineate watershed and overland flow-paths from the DEM. Land use classification were...

  19. Landscape change in an agricultural watershed: the effect of parcelization on riparian forest cover

    OpenAIRE

    R E Kleiman; Erickson, D. L.

    1996-01-01

    In this research we address factors contributing to landscape change in a midwestern (USA) watershed. Specifically, the relationship between the parcelization of agricultural land (ownership subdivisions) and changes in amounts of riparian forest cover are explored. The study area is the River Raisin Watershed in southeastern Michigan, which is typical of rural watersheds in the lower Great Lakes region. Two townships within the watershed were sampled from data spanning a 20-year time period....

  20. Small Reservoir Impact on Simulated Watershed-Scale Nutrient Yield

    Directory of Open Access Journals (Sweden)

    Shane J. Prochnow

    2007-01-01

    Full Text Available The soil and water assessment tool (SWAT is used to assess the influence of small upland reservoirs (PL566 on watershed nutrient yield. SWAT simulates the impact of collectively increasing and decreasing PL566 magnitudes (size parameters on the watershed. Totally removing PL566 reservoirs results in a 100% increase in total phosphorus and an 82% increase in total nitrogen, while a total maximum daily load (TMDL calling for a 50% reduction in total phosphorus can be achieved with a 500% increase in the magnitude of PL566s in the watershed. PL566 reservoirs capture agriculture pollution in surface flow, providing long-term storage of these constituents when they settle to the reservoir beds. A potential strategy to reduce future downstream nutrient loading is to enhance or construct new PL566 reservoirs in the upper basin to better capture agricultural runoff.

  1. A Cosmic Watershed: the WVF Void Detection Technique

    CERN Document Server

    Platen, Erwin; Jones, Bernard J T

    2007-01-01

    On megaparsec scales the Universe is permeated by an intricate filigree of clusters, filaments, sheets and voids, the Cosmic Web. For the understanding of its dynamical and hierarchical history it is crucial to identify objectively its complex morphological components. One of the most characteristic aspects is that of the dominant underdense Voids, the product of a hierarchical process driven by the collapse of minor voids in addition to the merging of large ones. In this study we present an objective void finder technique which involves a minimum of assumptions about the scale, structure and shape of voids. Our void finding method, the Watershed Void Finder (WVF), is based upon the Watershed Transform, a well-known technique for the segmentation of images. Importantly, the technique has the potential to trace the existing manifestations of a void hierarchy. The basic watershed transform is augmented by a variety of correction procedures to remove spurious structure resulting from sampling noise. This study c...

  2. Wind River Watershed restoration: 1999 annual report; ANNUAL

    International Nuclear Information System (INIS)

    This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey-Columbia River Research Lab (USGS-CRRL), and WA Department of Fish and Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination-Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring-Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment-Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration-Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education

  3. Hydrologic calibration of paired watersheds using a MOSUM approach

    Directory of Open Access Journals (Sweden)

    H. Ssegane

    2015-01-01

    Full Text Available Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment during the calibration (pre-treatment and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L. with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum, 14–15 year thinned loblolly pine with natural understory (control, and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  4. Mapping technological and biophysical capacities of watersheds to regulate floods

    Science.gov (United States)

    Mogollon, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances

  5. Hydrologic calibration of paired watersheds using a MOSUM approach

    Science.gov (United States)

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; Chescheir, G. M.; Appelboom, T.; Tollner, E. W.; Nettles, J. E.; Youssef, M. A.; Birgand, F.; Skaggs, R. W.

    2015-01-01

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1-3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14-15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash-Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.

  6. Best Management Practices in the CEAP Goodwater Creek Watershed: What, Where, Why, and How Much?

    Science.gov (United States)

    Continuation of conservation funding may depend upon demonstration that past funded projects have contributed to improvement of water quality or reduction of pollutant loadings from agricultural sources. In the Goodwater Creek watershed, a 7,250 ha sub-watershed of the Mark Twain Lake watershed in N...

  7. Assessment of best management practice effects on metolachlor mitigation in an agricultural watershed

    Science.gov (United States)

    Beasley Lake watershed in the Mississippi Delta is a 915 ha intensively cultivated watershed (49-78% in row crop production) that was monitored for the herbicide metolachlor from 1998-2009. As part of the USDA Conservation Effects Assessment Program (CEAP), the watershed was assessed for the effecti...

  8. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ... Cooperative Watershed Management Program whose goals are to improve water quality and ecological resilience... within the relevant watershed; and Otherwise meet the definition of a ``watershed group'' as described in... fulfilling the goals of the program by collaboratively improving water quality and ecological resilience,...

  9. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Science.gov (United States)

    2010-07-01

    ... watershed control requirements? 141.520 Section 141.520 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control Requirements for Unfiltered Systems § 141.520 Is my system subject to the updated watershed...

  10. 78 FR 13874 - Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to...

    Science.gov (United States)

    2013-03-01

    ... AGENCY Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Climate Change and Urban Development in 20 U.S. Watersheds AGENCY: Environmental Protection Agency (EPA... public comment period for the draft document titled Watershed Modeling to Assess the Sensitivity...

  11. 77 FR 33194 - Proposed Information Collection; Comment Request; Bay Watershed Education and Training Program...

    Science.gov (United States)

    2012-06-05

    ... Watershed Education and Training Program National Evaluation System AGENCY: National Oceanic and Atmospheric... This request is for a new information collection. The NOAA Office of Education's Bay Watershed... protect watersheds and related ocean, coastal, and Great Lakes ecosystems. B-WET currently funds...

  12. 75 FR 38768 - Rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed, Ellis...

    Science.gov (United States)

    2010-07-06

    ... Mountain Creek Watershed, Ellis County, TX AGENCY: Natural Resources Conservation Service. ACTION: Notice... prepared for the rehabilitation of Floodwater Retarding Structure No. 10 of the Mountain Creek Watershed... authority of the Small Watershed Rehabilitation Amendments of 2000 (Section 313, Pub. L. 106- 472)....

  13. Economics of Integrated Watershed Management in the Presence of a Dam

    OpenAIRE

    Yoon Lee; Taeyeon Yoon; Farhed Shah

    2009-01-01

    A dynamic optimization framework is used to analyze integrated watershed management and suggest appropriate policies. Soil conservation, reservoir level sediment release, downstream water allocation and water quality are subject to control. Application of the model to the Aswan Dam watershed illustrates the need for international cooperation to manage shared watersheds.

  14. Population information extraction in Chaohu watershed based on RS and GIS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    It is always difficult to extract population information of small watershed during the region environment assessment. The report adopted compound areal interpolation to study the population in Chaohu watershed with the GIS technique and landuse interpretation data from remote sensing. The result indicated that the method is effective to extract population information of small watershed.

  15. The Agua Salud Project, Central Panama

    Science.gov (United States)

    Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.

    2007-12-01

    The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.

  16. Integrated hydrochemical and geophysical studies for assessment of groundwater pollution in basaltic settings in Central India.

    Science.gov (United States)

    Pujari, Paras R; Padmakar, C; SuriNaidu, L; Vaijnath, V U; Kachawe, Bhusan; Gurunadha Rao, V V S; Labhasetwar, P K

    2012-05-01

    The Pithampur Industrial sectors I, II, and III, located approximately, 45 km from Indore in Central India have emerged as one of the largest industrial clusters in the region. Various types of industries ranging from automobiles to chemicals and pharmaceuticals have been set up in the region since 1990. Most of the industries have effluent treatment plants (ETP) for treating wastewater before its disposal on land and/or in water body. The present study is an attempt to assess the groundwater quality in the watersheds surrounding these industrial sectors to develop the baseline groundwater quality in order to enable the policy makers to facilitate decisions on the development of industries in this region. The industries are located in two sub-watersheds, namely, Gambhir river sub-watershed and Chambal river sub-watershed. Geologically, the study area is located in the Deccan traps of Cretaceous to Paleocene age. The different basaltic flow units underlie clayey soils varying in thickness from 2-3 m. The aquifer is mostly of unconfined nature. Samples have been collected from a network of observation wells set up in the watersheds. The water quality analysis of the groundwater samples has been carried out six times during three hydrological cycles of 2004, 2005, and 2006. The results indicate that a few observation wells in the vicinity of the industrial clusters have very high TDS concentration and exceed the Bureau of Indian Standards (BIS) guideline for TDS concentration. The contamination of groundwater has been more severe in the Gambhir watershed as compared to the Chambal watershed. The presence of the impermeable clay layers has resulted in a slow migration of contaminants from the sources. The findings reveal that there is no significant groundwater contamination in the Pithampur industrial sectors except in the vicinity of the industrial clusters, which indicates that there is good environmental space available for the expansion of industrial units in

  17. Hydrological characterization of watersheds in the Blue Nile Basin

    OpenAIRE

    S. G. Gebrehiwot; Ilstedt, U.; Gärdenas, A. I.; Bishop, K.

    2010-01-01

    We made a hydrological characterization of 32 watersheds (31–4350 km2) in the Blue Nile Basin, using data from a study of water and land resources in the Blue Nile Basin, Ethiopia published in 1964 by the US Bureau of Reclamation (USBR). The USBR document contains data on flow, climate, topography, geology, soil type, and land use for the period from 1959 to 1963. The aim of the study was to identify which combination of watershed variables best explain the variati...

  18. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    OpenAIRE

    S. G. Gebrehiwot; Ilstedt, U.; Gärdenas, A. I.; Bishop, K.

    2011-01-01

    Thirty-two watersheds (31–4350 km2), in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR) published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a...

  19. Exact and approximate computations of watersheds on triangulated terrains

    DEFF Research Database (Denmark)

    Tsirogiannis, Konstantinos; de Berg, Mark

    2011-01-01

    The natural way of modeling water flow on a triangulated terrain is to make the fundamental assumption that water follows the direction of steepest descent (dsd). However, computing watersheds and other flow-related structures according to the dsd model in an exact manner is difficult: the dsd...... implementation that computes watersheds on triangulated terrains following strictly the dsd model and using exact arithmetic, and we experimentally investigate its computational cost. Our experiments show that the algorithm cannot handle large data sets effectively, due to the bit-sizes needed in the exact...

  20. Addressing Scaling Affects in Forest Watersheds with WEPP Technology

    Science.gov (United States)

    Elliot, W.; Robichaud, P.; Foltz, R.

    2006-12-01

    The Water Erosion Prediction Project (WEPP) model is a physically based model developed over the past 20 years by the USDA Agriculture Research Service (ARS) and numerous other agencies and universities. The soil hydrologic properties are hydraulic conductivity for estimating surface infiltration, and in the current version of WEPP (version 2004.7), the clay content of the lowest layer to estimate conductivity for deep seepage. During the 1990s, Forest Service scientists used modified Purdue rainfall simulators to estimate saturated hydraulic conductivity on a number of forest conditions on 1 sq m plots. When validation of WEPP for forest conditions was carried out, it became apparent that hydraulic conductivity as measured by rainfall simulation was almost double what it should be when used at a hillslope scale (up to 20 ha). The reasons for this were not clear, although likely contributors were: the very dry soil conditions common in western forests during the field season, high rates of lateral flow beneath plot borders, and natural water repellency from organic materials. The current forest soils database for the WEPP interfaces now has saturated hydraulic conductivity value of 42 mm per hour for a sandy loam for an undisturbed forest, as compared to observed values of 35 to 82 mm per hour. When the WEPP technology was applied to forest watersheds ranging from 9 to 176 ha, the predicted runoff was much less than observed values. This was because even in small forested watersheds with steep slopes subsurface lateral flow dominates the runoff hydrology. A new version of WEPP is under development to incorporate this flow. When using this version of WEPP, a hydraulic conductivity value of 17.3 mm per hour was necessary for the 9 ha watershed that had been disturbed, compared to a value of 105 mm per hour for the 176 ha forested watershed. This scale effect shows that as area increases, conductivity necessarily decreases as the dominant runoff processes changes from

  1. Statistical approach for the estimation of watershed scale nitrate export: a case study from Melen watershed of Turkey

    Directory of Open Access Journals (Sweden)

    Akiner Muhammed Ernur

    2016-06-01

    Full Text Available Nutrient pollution such as nitrate (NO3− can cause water quality degradation in rivers used as a source of drinking water. This situation raises the question of how the nutrients have moved depending on many factors such as land use and anthropogenic sources. Researchers developed several nutrient export coefficient models depending on the aforementioned factors. To this purpose, statistical data including a number of factors such as historical water quality and land use data for the Melen Watershed were used. Nitrate export coefficients are estimates of the total load or mass of nitrate (NO3− exported from a watershed standardized to unit area and unit time (e.g. kg/km2/day. In this study, nitrate export coefficients for the Melen Watershed were determined using the model that covers the Frequentist and Bayesian approaches. River retention coefficient was determined and introduced into the model as an important variable.

  2. Soil erosion and sediment fluxes analysis: a watershed study of the Ni Reservoir, Spotsylvania County, VA, USA.

    Science.gov (United States)

    Pope, Ian C; Odhiambo, Ben K

    2014-03-01

    Anthropogenic forces that alter the physical landscape are known to cause significant soil erosion, which has negative impact on surface water bodies, such as rivers, lakes/reservoirs, and coastal zones, and thus sediment control has become one of the central aspects of catchment management planning. The revised universal soil loss equation empirical model, erosion pins, and isotopic sediment core analyses were used to evaluate watershed erosion, stream bank erosion, and reservoir sediment accumulation rates for Ni Reservoir, in central Virginia. Land-use and land cover seems to be dominant control in watershed soil erosion, with barren land and human-disturbed areas contributing the most sediment, and forest and herbaceous areas contributing the least. Results show a 7 % increase in human development from 2001 (14 %) to 2009 (21.6 %), corresponding to an increase in soil loss of 0.82 Mg ha(-1) year(-1) in the same time period. (210)Pb-based sediment accumulation rates at three locations in Ni Reservoir were 1.020, 0.364, and 0.543 g cm(-2) year(-1) respectively, indicating that sediment accumulation and distribution in the reservoir is influenced by reservoir configuration and significant contributions from bedload. All three locations indicate an increase in modern sediment accumulation rates. Erosion pin results show variability in stream bank erosion with values ranging from 4.7 to 11.3 cm year(-1). These results indicate that urban growth and the decline in vegetative cover has increased sediment fluxes from the watershed and poses a significant threat to the long-term sustainability of the Ni Reservoir as urbanization continues to increase.

  3. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    OpenAIRE

    A. A. Onuchin; T. A. Burenina; N. V. Ziryukina; S. K. Farber

    2014-01-01

    In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological d...

  4. Stream Bank Erosion Rates in Two Watersheds of the Central Claypan Region

    Science.gov (United States)

    Sedimentation of surface waters in the United States is a significant environmental concern. The objective of this research was to determine the effect of stream order, adjacent land use, and season on stream bank erosion rates. Study sites were established in 2007 and 2008 within Crooked and Otter ...

  5. Stream primary producers relate positively to watershed natural gas measures in north-central Arkansas streams.

    Science.gov (United States)

    Austin, Bradley J; Hardgrave, Natalia; Inlander, Ethan; Gallipeau, Cory; Entrekin, Sally; Evans-White, Michelle A

    2015-10-01

    Construction of unconventional natural gas (UNG) infrastructure (e.g., well pads, pipelines) is an increasingly common anthropogenic stressor that increases potential sediment erosion. Increased sediment inputs into nearby streams may decrease autotrophic processes through burial and scour, or sediment bound nutrients could have a positive effect through alleviating potential nutrient limitations. Ten streams with varying catchment UNG well densities (0-3.6 wells/km(2)) were sampled during winter and spring of 2010 and 2011 to examine relationships between landscape scale disturbances associated with UNG activity and stream periphyton [chlorophyll a (Chl a)] and gross primary production (GPP). Local scale variables including light availability and water column physicochemical variables were measured for each study site. Correlation analyses examined the relationships of autotrophic processes and local scale variables with the landscape scale variables percent pasture land use and UNG metrics (well density and well pad inverse flow path length). Both GPP and Chl a were primarily positively associated with the UNG activity metrics during most sample periods; however, neither landscape variables nor response variables correlated well with local scale factors. These positive correlations do not confirm causation, but they do suggest that it is possible that UNG development can alleviate one or more limiting factors on autotrophic production within these streams. A secondary manipulative study was used to examine the link between nutrient limitation and algal growth across a gradient of streams impacted by natural gas activity. Nitrogen limitation was common among minimally impacted stream reaches and was alleviated in streams with high UNG activity. These data provide evidence that UNG may stimulate the primary production of Fayetteville shale streams via alleviation of N-limitation. Restricting UNG activities from the riparian zone along with better enforcement of best management practices should help reduce these possible impacts of UNG activities on stream autotrophic processes. PMID:26005749

  6. Forest use strategies in watershed management and restoration: application to three small mountain watersheds in Latin America

    Directory of Open Access Journals (Sweden)

    Juan Ángel Mintegui Aguirre

    2014-06-01

    Full Text Available The effect of forests on flow and flood lamination decreases as the magnitude and intensity of torrential events and the watershed surface increase, thus resulting negligible when extreme events affect large catchments. However the effect of forests is advantageous in case of major events, which occur more often, and is particularly effective in soil erosion control. As a result, forests have been extensively used for watershed management and restoration, since they regulate water and sediments cycles, preventing the degradation of catchments.

  7. The Challenging Topics and Future Directions of the Research in Limnology and Watershed Sciences

    Institute of Scientific and Technical Information of China (English)

    LengShuying; YangGuishan; LiuZhengwen; WuRuijin; SongChangqing

    2003-01-01

    Based on reviewing the problems in limnology and watershed sciences in meeting the national demands and the development of theories and methodology, this paper proposed some challeng-ing topics to the sciences, covering the process of lake evolution and the quantitative analysis of hu-man impacts, in-lake nutrient cycling an biogeo-chemical process, the process and mechanisms of material flow in lake-watershed system, digital watershed and the modeling of the surface pro-cess of lake-watershed, and ecosystem health and scientific management of lake- watershed.

  8. Analysis of Sediment Source of Watershed in Western Shanxi of the Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    LIUHuifang; WEITianxing; ZHUQingke

    2004-01-01

    The paper analyzes the sediment source of watershed by means of studying watershed in westem Shanxi of the Losses Plateau. On the basis of watersheds classification, 7 typical watersheds were chosen and observed for 11 years. The result shows that the sediment at the small watershed mainly comes from gullies, which is 60% of the total sediment. Erosion modulus of valley (including gully head, gully bed, valley side) is 1.28-2.48 times as that of the area between channels(including hill slope and mound of the Loess Plateau). The main sediment source of slope erosion is cultivated land on slope without water and soil conservation measures.

  9. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What updated watershed control... People Additional Watershed Control Requirements for Unfiltered Systems § 141.521 What updated watershed... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium:...

  10. Dynamic phosphorus budget for lake-watershed ecosystems

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; GUO Huai-cheng; WANG Li-jing; DAI Yong-li; ZHANG Xiu-min; LI Zi-hai; HE Bin

    2006-01-01

    Lake eutrophication caused by excess phosphorus (P) loading from point sources (PS) and nonpoint sources (NPS) is a persistent and serious ecological problem in China. A phosphorus budget, based on material flow analysis(MFA) and system dynamic(SD), is proposed and applied for the agriculture-dominated Qionghai Lake watershed located in southwestern China. The MFA-SD approach will not only cover the transporting process of P in the lake-watershed ecosystems, but also can deal with the changes of P budget due to the dynamics of watershed. P inflows include the fertilizer for agricultural croplands, soil losses, domestic sewage discharges, and the atmospheric disposition such as precipitation and dust sinking. Outflows are consisted of hydrologic export, water resources development, fishery and aquatic plants harvesting. The internal P recycling processes are also considered in this paper.From 1988 to 2015, the total P inflows for Lake Qionghai are in a rapid increase from 35.65 to 78.73 t/a, which results in the rising of P concentration in the lake. Among the total P load 2015, agricultural loss and domestic sewage account for 70.60% and 17.27%respectively, directly related to the rapid social-economic development and the swift urbanization. Future management programs designed to reduce P inputs must be put into practices in the coming years to ensure the ecosystem health in the watershed.

  11. Automated Geospatial Watershed Assessment Tool (AGWA) Poster Presentation

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA, see: www.tucson.ars.ag.gov/agwa or http://www.epa.gov/esd/land-sci/agwa/) is a GIS interface jointly developed by the USDA-Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona...

  12. Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    1999-12-01

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

  13. Economic Tools for Managing Nitrogen in Coastal Watersheds

    Science.gov (United States)

    Watershed managers are interested in using economics to communicate the value of estuarine resources to the wider community, determine the most cost-effective means to reduce nitrogen pollution, and evaluate the benefits of taking action to improve coastal ecosystems. We spoke to...

  14. Modeling subsurface contaminant reactions and transport at the watershed scale

    Energy Technology Data Exchange (ETDEWEB)

    Gwo, J.P.; Jardine, P.M.; D`Azevedo, E.F. [Oak Ridge National Lab., TN (United States); Wilson, G.V. [Desert Research Inst., Las Vegas, NV (United States). Water Resources Center

    1997-12-01

    The objectives of this research are: (1) to numerically examine the multiscale effects of physical and chemical mass transfer processes on watershed scale, variably saturated subsurface contaminant transport, and (2) to conduct numerical simulations on watershed scale reactive solute transport and evaluate their implications to uncertainty characterization and cost benefit analysis. Concurrent physical and chemical nonequilibrium caused by inter aggregate gradients of pressure head and solute concentration and intra-aggregate geochemical and microbiological processes, respectively, may arise at various scales and flowpaths. To this date, experimental investigations of these complex processes at watershed scale remain a challenge and numerical studies are often needed for guidance of water resources management and decision making. This research integrates the knowledge bases developed during previous experimental and numerical investigations at a proposed waste disposal site at the Oak Ridge National Laboratory to study the concurrent effects of physical and chemical nonequilibrium. Comparison of numerical results with field data indicates that: (1) multiregion, preferential flow and solute transport exist under partially saturated condition and can be confirmed theoretically, and that (2) mass transfer between pore regions is an important process influencing contaminant movement in the subsurface. Simulations of watershed scale, multi species reactive solute transport suggest that dominance of geochemistry and hydrodynamics may occur simultaneously at different locales and influence the movement of one species relative to another. Execution times on the simulations of the reactive solute transport model also indicate that the model is ready to assist the selection of important parameters for site characterization.

  15. Extraction of microcalcifications in digital mammograms using regional watershed

    OpenAIRE

    Bhajammanavar, Veena Mohan; Keong, Kwoh Chee; Krishnan, Shankur Muthu

    2000-01-01

    In this report, a novel technique is proposed for computer-aided automatic extraction of microcalcifications in a digital mammogram. First, the microcalcifications are detected by morphological filtering, followed by entropy-based thresholding. Next, the microcalcifications are segmented by computing regional watershed. The proposed automatic technique is designed to serve as a visual aid to radiologists. Its efficacy is demonstrated through experimental results.

  16. Hydrosedimentological modeling of watershed in southeast Brazil, using SWAT

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2010-08-01

    Full Text Available The quantitative evaluation of soil loss due to erosion, of water loss and of load sediments that reach water bodies is fundamental to the environmental planning of a watershed, contributing to the process of decision for best options for soil tillage and water quality maintenance. Estimates of these data have been accomplished throughout the world using empiric or conceptual models. Besides being economically viable in scenarios development, environmental models may contribute to the location of critical areas, leading to emergency contention operations caused by erosive processes. Among these models, we highlight the SWAT (Soil and Water Assessment Tool which was applied in São Bartolomeu watershed, located in the Zona da Mata, Minas Gerais state, southeastern Brazil, to identify areas of greater sensitivity to erosion considering the soil type and land use. To validate the model, 10 experimental plots were installed in the dominant crops of the watershed between 2006 and 2008, for monitoring the runoff and soil losses under natural rainfall. Field results and simulations showed the SWAT efficiency for sediment yield and soil losses estimations, as they are influenced by factors such as soil moisture, rainfall intensity, soil type and land use (dominated by Oxisols, Ultisols, Inceptisols and Entisols. These losses can be reduced significantly by improving crops management of. A simulation scenario replacing pastures cover by Eucalyptus was introduced, which significantly reduced soil loss in many parts of the watershed.

  17. Can Forest Transformation Help Reducing Floods in Forested Watersheds?

    DEFF Research Database (Denmark)

    Wahl, Niels Arne; Wöllecke, B.; Benz, O.;

    2005-01-01

    Former floodplains in many European countries increasingly suffer from serious floods due to intensified human activity. These floods have caused safety and ecological problems as well as they have resulted in economic losses in agricultural used watersheds. In this context, the influence...

  18. Variation in Soil Enzyme Activities in a Temperate Agroforestry Watershed

    Science.gov (United States)

    Integration of agroforestry and grass buffers into row crop watersheds improves overall environmental quality, including soil quality. The objective of this study was to examine management and landscape effects on soil carbon, soil nitrogen, microbial diversity, enzyme activity, and DNA concentrati...

  19. Statistical investigations into indicator bacteria concentrations in Houston metropolitan watersheds.

    Science.gov (United States)

    Desai, Anuradha M; Rifai, Hanadi; Helfer, Emil; Moreno, Norma; Stein, Ron

    2010-04-01

    Bacterial pollution in the Houston metropolitan area (Texas) watersheds was studied using statistical methods to determine the Escherichia coli levels and causes of their spatial and temporal variability. Houston bayous generally exhibit elevated E. coli concentrations. The more urban watersheds had higher concentration ranges and geometric means and had more spatial variation with higher overall ranges at downstream monitoring stations. They also were less sensitive to temperature variations and more strongly influenced by rainfall events. The median flow in the more urban bayous is predominantly wastewater. Frequent rainfall in the region, combined with relatively long travel times in the bayous, results in elevated bacterial levels in the bayous. Multiple regression models using water quality parameters were more representative on the segment level and not at the watershed level and may not be useful for predictions that rely on conventional water quality measures, particularly in urban watersheds, such as those studied here. Cluster analysis for the segments resulted in two distinct clusters differentiated by their developed land-use, population density, domestic animal density, and grassy land-use.

  20. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  1. Research data collection at the Reynolds Creek Experimental Watershed

    Science.gov (United States)

    To understand how variations in climate, land use, and land cover will impact water, ecosystem, and natural resources in snow-dominated regions we must have access to long-term hydrologic and climatic databases. Data from watersheds that include significant human activities, such as grazing, farmin...

  2. Sustaining the Earth's watersheds, agricultural research data system

    Science.gov (United States)

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  3. EAARL topography-Potato Creek watershed, Georgia, 2010

    Science.gov (United States)

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  4. A planning approach for agricultural watersheds using precision conservation

    Science.gov (United States)

    This brief article, written for a non-technical audience, discusses a recently-developed approach for watershed planning and nutrient reduction. The approach can help local stakeholders identify conservation practices that are locally preferred and determine how those practices can be distributed ac...

  5. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  6. Nitrogen management challenges in major watersheds of South America

    International Nuclear Information System (INIS)

    Urbanization and land use changes alter the nitrogen (N) cycle, with critical consequences for continental freshwater resources, coastal zones, and human health. Sewage and poor watershed management lead to impoverishment of inland water resources and degradation of coastal zones. Here we review the N contents of rivers of the three most important watersheds in South America: the Amazon, La Plata, and Orinoco basins. To evaluate potential impacts on coastal zones, we also present data on small- and medium-sized Venezuelan watersheds that drain into the Caribbean Sea and are impacted by anthropogenic activities. Median concentrations of total dissolved nitrogen (TDN) were 325 μg L−1 and 275 μg L−1 in the Amazon and Orinoco basins, respectively, increasing to nearly 850 μg L−1 in La Plata Basin rivers and 2000 μg L−1 in small northern Venezuelan watersheds. The median TDN yield of Amazon Basin rivers (approximately 4 kg ha−1 yr−1) was larger than TDN yields of undisturbed rivers of the La Plata and Orinoco basins; however, TDN yields of polluted rivers were much higher than those of the Amazon and Orinoco rivers. Organic matter loads from natural and anthropogenic sources in rivers of South America strongly influence the N dynamics of this region. (letter)

  7. Watershed Outreach Professionals' Behavior Change Practices, Challenges, and Needs

    Science.gov (United States)

    Kelly, Meghan; Little, Samuel; Phelps, Kaitlin; Roble, Carrie; Zint, Michaela

    2012-01-01

    This study investigated the practices, challenges, and needs of Chesapeake Bay watershed outreach professionals, as related to behavior change strategies and best outreach practices. Data were collected through a questionnaire e-mailed to applicants to the Chesapeake Bay Trust's environmental outreach grant program (n = 108, r = 56%). Almost all…

  8. The Role of Plants in the 238U-234U Disequilibria of Stream Waters: The Example of the Strengbach Watershed (Vosges, France)

    Science.gov (United States)

    Pierret, M.; Chbaaux, F.

    2004-12-01

    Recent TIMS or MC ICPMS analyses of U disequilibria in the dissolved load of stream and river waters have confirmed the potential of the U activity ratio in river waters as a specific tracer of chemical fluxes coming from rocks and soils (e.g., 1). These precise measurements have also outlined that occurrence of U activity ratios lower than one in dissolved load of river waters is not exceptional, especially at the scale of small watersheds. Such U values pose in turn the question of the real mechanisms controlling the supply of 234U-238U isotopes to the freshwaters. In order to address this question U activity ratios, Sr isotope ratios and the concentrations of major and some trace elements were analyzed in the different compartments of a small granitic watershed: the Strengbach environmental observatory (Vosges, France) ( http://ohge.u-strasbg.fr). In addition of the different streamwaters draining this watershed, the main horizons of weathering profiles, the associated soil solutions and the main tree species growing around were analyzed. The data confirm that the Strengbach stream water samples have generally U activity ratios lower than one and point out that soils solutions display a similar range of U and Sr variations. By contrast, tree and plant samples define different trends of variation in a plot of U activity ratios against Sr isotope ratios with, above all, U activity ratios systematically greater than one. These data show that trees and plants collected during this work cannot directly pomp their nutriments from soils and soil solutions sampled here, i.e. gravity solutions. They also suggest that, in this watershed, the plants, especially trees, play a central role in the weathering processes of rocks and minerals, and control a large part of the geochemical signature of the water samples collected on this watershed, including their U activity ratios. 1Riotte J and Chabaux F. (1999) GCA 63, 1263-1275.

  9. Effects of urbanization on groundwater evolution in an urbanizing watershed

    Science.gov (United States)

    Reyes, D.; Banner, J. L.; Bendik, N.

    2011-12-01

    The Jollyville Plateau Salamander (Eurycea tonkawae), a candidate species for listing under the Endangered Species Act, is endemic to springs and caves within the Bull Creek Watershed of Austin, Texas. Rapid urbanization endangers known populations of this salamander. Conservation strategies lack information on the extent of groundwater contamination from anthropogenic sources in this karst watershed. Spring water was analyzed for strontium (Sr) isotopes and major ions from sites classified as "urban" or "rural" based on impervious cover estimates. Previous studies have shown that the 87Sr/86Sr value of municipal water is significantly higher than values for natural streamwater, which are similar to those for the Cretaceous limestone bedrock of the region's watersheds. We investigate the application of this relationship to understanding the effects of urbanization on groundwater quality. The use of Sr isotopes as hydrochemical tracers is complemented by major ion concentrations, specifically the dominant ions in natural groundwater (Ca and HCO3) and the ions associated with the addition of wastewater (Na and Cl). To identify high priority salamander-inhabited springs for water quality remediation, we explore the processes controlling the chemical evolution of groundwater such as municipal water inputs, groundwater-soil interactions, and solution/dissolution reactions. 87Sr/86Sr values for water samples from within the watershed range from 0.70760 to 0.70875, the highest values corresponding to sites located in the urbanized areas of the watershed. Analyses of the covariation of Sr isotopes with major ion concentrations help elucidate controls on spring water evolution. Springs located in rural portions of the watershed have low 87Sr/86Sr, high concentrations of Ca and HCO3, and low concentrations of Na and Cl. This is consistent with small inputs of municipal water. Three springs located in urban portions of the watershed have high 87Sr/86Sr, low Ca and HCO3, and

  10. Central Pain Syndrome

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Central Pain Syndrome Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What is Central Pain Syndrome? Central pain syndrome is a neurological condition ...

  11. Central venous line - infants

    Science.gov (United States)

    CVL - infants; Central catheter - infants - surgically placed ... plastic tube that is put into a large vein in the chest. WHY IS A ... central catheter (PICC) or midline central catheter (MCC). A CVL ...

  12. Baseline Profile of Soil Samples from Upian River Watershed

    Directory of Open Access Journals (Sweden)

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  13. Integrating stakeholder values with multiple attributes to quantify watershed performance

    Science.gov (United States)

    Shriver, Deborah M.; Randhir, Timothy O.

    2006-08-01

    Integrating stakeholder values into the process of quantifying impairment of ecosystem functions is an important aspect of watershed assessment and planning. This study develops a classification and prioritization model to assess potential impairment in watersheds. A systematic evaluation of a broad set of abiotic, biotic, and human indicators of watershed structure and function was used to identify the level of degradation at a subbasin scale. Agencies and communities can use the method to effectively target and allocate resources to areas of greatest restoration need. The watershed performance measure (WPM) developed in this study is composed of three major components: (1) hydrologic processes (water quantity and quality), (2) biodiversity at a species scale (core and priority habitat for rare and endangered species and species richness) and landscape scale (impacts of fragmentation), and (3) urban impacts as assessed in the built environment (effective impervious area) and population effects (densities and density of toxic waste sites). Simulation modeling using the Soil and Water Assessment Tool (SWAT), monitoring information, and spatial analysis with GIS were used to assess each criterion in developing this model. Weights for attributes of potential impairment were determined through the use of the attribute prioritization procedure with a panel of expert stakeholders. This procedure uses preselected attributes and corresponding stakeholder values and is data intensive. The model was applied to all subbasins of the Chicopee River Watershed of western Massachusetts, an area with a mixture of rural, heavily forested lands, suburban, and urbanized areas. Highly impaired subbasins in one community were identified using this methodology and evaluated for principal forms of degradation and potential restoration policies and BMPs. This attribute-based prioritization method could be used in identifying baselines, prioritization policies, and adaptive community

  14. Nitrogen sink in a small forested watershed of subtropical China

    Institute of Scientific and Technical Information of China (English)

    Laiming Huang; Jinling Yang; Ganlin Zhang

    2011-01-01

    Global nitrogen (N) emission and deposition have been increased rapidly due to massive mobilization of N which may have longreaching impacts on ecosystems. Many agricultural and forest ecosystems have been identified as secondary N sources. In the present study, the input-output budget of inorganic N in a small forested watershed of subtropical China was investigated. Inorganic N wet deposition and discharge by stream water were monitored from March, 2007 to February, 2009. The concentrations and fluxes of inorganic N in wet precipitation and stream water and net retention of N were calculated. Global N input by dry deposition and biological fixation and N output by denitrification for forested watersheds elsewhere were reported as references to evaluate whether the studied forested watershed is a source or a sink for N. The results show that the inorganic N output by the stream water is mainly caused by NO3--N even though the input is dominated by NH4+-N. The mean flux of inorganic N input by wet precipitation and output by stream water is 1.672 and 0.537 g N/(m2·yr), respectively, which indicates that most of inorganic N input is retained in the forested watershed. Net retention of inorganic N reaches 1.135 g N/(m2·yr) considering wet precipitation as the main input and stream water as the main output. If N input by dry deposition and biological fixation and output by denitrification are taken into account, this subtropical forested watershed currently acts as a considerable sink for N, with a net sink ranging from 1.309 to 1.913 g N/(m2·yr)which may enhance carbon sequestration of the terrestrial ecosystem.

  15. Water cycle observations in forest watersheds of Cambodia

    Science.gov (United States)

    Shimizu, A.; Tamai, K.; Kabeya, N.; Shimizu, T.; Iida, S. I.

    2015-12-01

    The Lower Mekong River flows through Cambodia, where forests cover ~60% of the country and are believed to have a marked effect on the water cycle. These tropical seasonal forests in the Cambodian flat lands are very precious in the Indochinese Peninsula as few forests of this type remain. However, few hydrological observations have been conducted in these areas. In Cambodia, deciduous and evergreen forests make up 42% and 33% of the total forest area, respectively. We established experimental watersheds both in deciduous and evergreen forests containing meteorological observation towers in Cambodia and collected various observational data since 2003 (O'Krieng, deciduous forest watershed including a 30-m-high observation tower, 2,245 km2; Stung Chinit, evergreen forest watershed including a 60-m-high observation tower, 3,700 km2 including three small watersheds). The basic data from these sites included various kinds of information related to the composition of vegetation, soil characteristics, etc. Hydrologic data was collected and linked to the above data; the main hydrologic research results follow. The water budget for each watershed was determined using an observational rainfall and runoff dataset. The evapotranspiration rate in an evergreen forest was obtained using various observational methods including the Bowen energy-balance ratio and the bandpass eddy covariance method. The annual evapotranspiration of evergreen forests, estimated using the Bowen energy-balance ratio method and water balance, was about 1100-1200 mm, corresponding to 70-80% of annual rainfall. While considering the importance of the presence of evergreen forest, we conducted sap flow measurements to analyze the transpiration process that maintains water uptake through root systems that reach to depths exceeding 8 m. Characteristics of the evaporation from the forest floor that form an important element of the evaporation system were estimated in both evergreen and deciduous forests.

  16. Travel time analysis for a subsurface drained sub-watershed in Upper Big Walnut Creek Watershed, Ohio

    Science.gov (United States)

    Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...

  17. Field Studies of Streamflow Generation Using Natural and Injected Tracers on Bickford and Walker Branch Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Genereux, D.

    1992-01-01

    Field studies of streamflow generation were undertaken on two forested watersheds, the West Road subcatchment of Bickford Watershed in central Massachusetts and the West Fork of Walker Branch Watershed in eastern Tennessee. A major component of the research was development of a two-stage methodology for the use of naturally-occurring {sup 222}Rn as a tracer. The first of the two stages was solving a mass-balance equation for {sup 222}Rn around a stream reach of interest in order to calculate [Rn]{sub q}, the {sup 222}Rn content of the lateral inflow to the reach; a conservative tracer (chloride) and a volatile tracer (propane) were injected into the study stream to account for lateral inflow to, and {sup 222}Rn volatilization from, the study reach. The second stage involved quantitative comparison of [Rn]{sub q} to the measured {sup 222}Rn concentrations of different subsurface waters in order to assess how important these waters were in contributing lateral inflow to the stream reach. The method was first applied to a 34 m stream reach at Bickford during baseflow; results suggested that {ge} 70% of the lateral inflow could be considered vadose zone water (water which had been in a saturated zone for less than a few days), and the remainder ''soil groundwater'' or ''saturated zone water'' (which had a longer residence time in a soil saturated zone). The method was then applied to two stream reaches on the West Fork of Walker Branch over a wide range of flow conditions; four springs were also investigated. It was found that springwater and inflow to the stream could be viewed as a mixture of water from three end members: the two defined at Bickford (vadose zone water and soil groundwater) and a third (bedrock groundwater) to account for the movement of water through fractured dolomite bedrock. Calcium was used as a second naturally-occurring tracer to distinguish bedrock groundwater from the other two end members. The behavior

  18. Land use change and soil erosion in the Maotiao River watershed of Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    XU Yueqing; LUO Ding; PENG Jian

    2011-01-01

    Due to the extremely poor soil cover,a low soil-forming rate,and inappropriate intensive land use,soil erosion is a serious problem in Guizhou Province,which is located in the centre of the karst areas of Southwest China.In order to bring soil erosion under control and restore environment,the Chinese Government has initiated a serious of ecological rehabilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province.This paper explored the relationship between land use and soil erosion in the Maotiao River watershed,a typical agricultural area with severe soil erosion in central Guizhou Province.In this study,we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973,Landsat TM data in 1990 and 2007.Soil erosion change characteristics from 1973 to 2007,and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment.The results indicate that changes in land use within the watershed have significantly affected soil erosion.From 1973 to 1990,dry farmland and rocky desertified land significantly increased.In contrast,shrubby land,other forestland and grassland significantly decreased,which caused accelerated soil erosion in the study area.This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs.Soil erosion also significantly varied among land-use types.Erosion was most serious in dry farmland and the lightest in paddy field.Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion,and conservation practices should be taken in these areas.The results of this study provide useful information for decision makers and planners to take sustainable land use

  19. Social-ecological Resilience of a Nuosu Community-linked Watershed, Southwest Sichuan, China

    Directory of Open Access Journals (Sweden)

    Sara Jo Shepler

    2010-12-01

    Full Text Available Farmers of the Nuosu Yi ethnic group in the Upper Baiwu watershed report reductions in the availability of local forest resources. A team of interdisciplinary scientists worked in partnership with this community to assess the type and extent of social-ecological change in the watershed and to identify key drivers of those changes. Here, we combine a framework for institutional analysis with resilience concepts to assess system dynamics and interactions among resource users, resources, and institutions over the past century. The current state of this system reflects a legacy of past responses to institutional disturbances initiated at the larger, national system scale. Beginning with the Communist Revolution in 1957 and continuing through the next two decades, centralized forest regulations imposed a mismatch between the scale of management and the scale of the ecological processes being managed. A newly implemented forest property rights policy is shifting greater control over the management of forest resources to individuals in rural communities. Collective forest users will be allowed to manage commodity forests for profit through the transfer of long-term leases to private contractors. Villagers are seeking guidance on how to develop sustainable and resilient forest management practices under the new policy, a responsibility returned to them after half a century and with less abundant and fewer natural resources, a larger and aggregated population, and greater influence from external forces. We assess the watershed’s current state in light of the past and identify future opportunities to strengthen local institutions for governance of forest resources.

  20. Robust Representation of Integrated Surface-subsurface Hydrology at Watershed Scales

    Science.gov (United States)

    Painter, S. L.; Tang, G.; Collier, N.; Jan, A.; Karra, S.

    2015-12-01

    A representation of integrated surface-subsurface hydrology is the central component to process-rich watershed models that are emerging as alternatives to traditional reduced complexity models. These physically based systems are important for assessing potential impacts of climate change and human activities on groundwater-dependent ecosystems and water supply and quality. Integrated surface-subsurface models typically couple three-dimensional solutions for variably saturated flow in the subsurface with the kinematic- or diffusion-wave equation for surface flows. The computational scheme for coupling the surface and subsurface systems is key to the robustness, computational performance, and ease-of-implementation of the integrated system. A new, robust approach for coupling the subsurface and surface systems is developed from the assumption that the vertical gradient in head is negligible at the surface. This tight-coupling assumption allows the surface flow system to be incorporated directly into the subsurface system; effects of surface flow and surface water accumulation are represented as modifications to the subsurface flow and accumulation terms but are not triggered until the subsurface pressure reaches a threshold value corresponding to the appearance of water on the surface. The new approach has been implemented in the highly parallel PFLOTRAN (www.pflotran.org) code. Several synthetic examples and three-dimensional examples from the Walker Branch Watershed in Oak Ridge TN demonstrate the utility and robustness of the new approach using unstructured computational meshes. Representation of solute transport in the new approach is also discussed. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid

  1. To centralize or not to centralize?

    OpenAIRE

    Campbell, Andrew; Kunisch, Sven; Müller-Stewens, Günter

    2011-01-01

    The CEO's dilemma-were the gains of centralization worth the pain it could cause?-is a perennial one. Business leaders dating back at least to Alfred Sloan, who laid out GM's influential philosophy of decentralization in a series of memos during the 1920s, have recognized that badly judged centralization can stifle initiative, constrain the ability to tailor products and services locally, and burden business divisions with high costs and poor service.1 Insufficient centralization can deny bus...

  2. Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed

    Science.gov (United States)

    Scott, R.L.; Cable, W.L.; Huxman, T. E.; Nagler, P.L.; Hernandez, M.; Goodrich, D.C.

    2008-01-01

    Riparian evapotranspiration (ET) is a major component of the surface and subsurface water balance for many semiarid watersheds. Measurement or model-based estimates of ET are often made on a local scale, but spatially distributed estimates are needed to determine ET over catchments. In this paper, we document the ET that was quantified over 3 years using eddy covariance for three riparian ecosystems along the Upper San Pedro River of southeastern Arizona, USA, and we use a water balance equation to determine annual groundwater use. Riparian evapotranspiration and groundwater use for the watershed were then determined by using a calibrated, empirical model that uses 16-day, 250-1000 m remote-sensing products for the years of 2001-2005. The inputs for the model were derived entirely from the NASA MODIS sensor and consisted of the Enhanced Vegetation Index and land surface temperature. The scaling model was validated using subsets of the entire dataset (omitting different sites or years) and its capable performance for well-watered sites (MAD=0.32 mm day-1, R2=0.93) gave us confidence in using it to determine ET over the watershed. Three years of eddy covariance data for the riparian sites reveal that ET and groundwater use increased as woody plant density increased. Groundwater use was less variable at the woodland site, which had the greatest density of phreatophytes. Annual riparian groundwater use within the watershed was nearly constant over the study period despite an on-going drought. For the San Pedro alone, the amounts determined in this paper are within the range of most recently reported values that were derived using an entirely different approach. However, because of our larger estimates for groundwater use for the main tributary of the San Pedro, the watershed totals were higher. The approach presented here can provide riparian ET and groundwater use amounts that reflect real natural variability in phreatophyte withdrawals and improve the accuracy of a

  3. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine

    Science.gov (United States)

    Johnson, K.B.; Haines, T.A.; Kahl, J.S.; Norton, S.A.; Amirbahman, A.; Sheehan, K.D.

    2007-01-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 ??g/m2/year in Cadillac Brook watershed and 10.2 ??g/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 ??g/m2/year in Cadillac Brook watershed and 0.10 ??g/m2/year in Hadlock Brook watershed. ?? Springer Science + Business Media B.V. 2006.

  4. Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds (Final Report)

    Science.gov (United States)

    Watershed modeling was conducted in 20 large, U.S. watersheds to assess the sensitivity of streamflow, nutrient (nitrogen and phosphorus), and sediment loading to a range of plausible mid-21st Century climate change and urban development scenarios in different regions of the nati...

  5. The role of irrigation runoff and winter rainfall on dissolved organic carbon loads in an agricultural watershed

    Science.gov (United States)

    Oh, Neung-Hwan; Pellerin, Brian A.; Bachand, Philip A.M.; Hernes, Peter J.; Bachand, Sandra M.; Ohara, Noriaki; Kavvas, M. Levent; Bergamaschi, Brian A.; Horwath, William R.

    2013-01-01

    We investigated the role of land use/land cover and agriculture practices on stream dissolved organic carbon (DOC) dynamics in the Willow Slough watershed (WSW) from 2006 to 2008. The 415 km2watershed in the northern Central Valley, California is covered by 31% of native vegetation and the remaining 69% of agricultural fields (primarily alfalfa, tomatoes, and rice). Stream discharge and weekly DOC concentrations were measured at eight nested subwatersheds to estimate the DOC loads and yields (loads/area) using the USGS developed stream load estimation model, LOADEST. Stream DOC concentrations peaked at 18.9 mg L−1 during summer irrigation in the subwatershed with the highest percentage of agricultural land use, demonstrating the strong influence of agricultural activities on summer DOC dynamics. These high concentrations contributed to DOC yields increasing up to 1.29 g m−2 during the 6 month period of intensive agricultural activity. The high DOC yields from the most agricultural subwatershed during the summer irrigation period was similar throughout the study, suggesting that summer DOC loads from irrigation runoff would not change significantly in the absence of major changes in crops or irrigation practices. In contrast, annual DOC yields varied from 0.89 to 1.68 g m−2 yr−1 for the most agricultural watershed due to differences in winter precipitation. This suggests that variability in the annual DOC yields will be largely determined by the winter precipitation, which can vary significantly from year to year. Changes in precipitation patterns and intensities as well as agricultural practices have potential to considerably alter the DOC dynamics.

  6. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    Science.gov (United States)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  7. Assessment of morphotectonic properties of Mahan Tigrani watershed

    Directory of Open Access Journals (Sweden)

    Mohammad Hosain Ramesht

    2011-10-01

    Full Text Available Tectonic geomorphology can be explained as the study of landforms produced by tectonic processes, or the application of geomorphic principles to the suggestion of tectonic problems. Tigrani's watershed is located in north part of hillside. Nayband Fault sub branch pass from the east of zone and kuhbanan fault from the north of zone supplies an appropriate theme for survey tectonic activities. For access to this aim geomorphic indexes contain Stream Length Gradient, Drainage Basin Shape Ratio, Ratio of Valley-floor with to Valley Height, Topographic Symmetry, Mountain Front Sinuosity and Asymmetry Factor with use of topographic maps, DEM, Arc GIS and Global mapper softwares have gained. The results of research which calculated with Iat index show west sub basin have medium tectonic activity (Iat=2, and east sub basin have high tectonic activity(Iat=1.5. Overall the results show that assessment of tectonic activities in Tigrani watershed this basin is active because of tectonic movements.

  8. Vulnerability Resilience in the Major Watersheds of the Korean Peninsula

    Directory of Open Access Journals (Sweden)

    Yong Jung

    2014-01-01

    Full Text Available Water resources management requires policy enforcement in a changing environment. Climate change must be considered in major watershed river restorations in Korea. The aim of river restorations is to provide better water resource control - now and in the future. To aid in policy making in the government sector, _ _ (VRIs with a Delphi survey method have been adopted to provide a possible reference. The Delphi survey offers prioritized vulnerability proxy variables based on expert opinions regarding the changing environment in terms of climate change and river restorations. The VRIs of watersheds were improved after river restorations, with the exception of some locations. However, when climate change was taken into consideration in the analysis of conditions after the restorations were completed, the results showed that governments need to provide better mitigation strategies to increase vulnerability resilience in the face of climate change.

  9. Watershed Cerebral Infarction in a Patient with Acute Renal Failure

    Directory of Open Access Journals (Sweden)

    Ruya Ozelsancak

    2016-02-01

    Full Text Available Acute renal failure can cause neurologic manifestations such as mood swings, impaired concentration, tremor, stupor, coma, asterixis, dysarthria. Those findings can also be a sign of cerebral infarct. Here, we report a case of watershed cerebral infarction in a 70-year-old female patient with acute renal failure secondary to contrast administration and use of angiotensin converting enzyme inhibitor. Patient was evaluated with magnetic resonance imaging because of dysarthria. Magnetic resonance imaging revealed milimmetric acute ischemic lesion in the frontal and parietal deep white matter region of both cerebral hemisphere which clearly demonstrated watershed cerebral infarction affecting internal border zone. Her renal function returned to normal levels on fifth day of admission (BUN 32 mg/dl, creatinine 1.36 mg/dl and she was discharged. Dysarthria continued for 20 days.

  10. Watershed land use effects on lake water quality in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Anders; Trolle, Dennis; Søndergaard, Martin;

    2012-01-01

    Mitigating nutrient losses from anthropogenic nonpoint sources is today of particular importance for improving the water quality of numerous freshwater lakes worldwide. Several empirical relationships between land use and in-lake water quality variables have been developed, but they are often weak......), the strength in relationship (R2) between in-lake total nitrogen (TN) and total phosphorus (TP) concentrations and the proportion of agricultural land use in the watershed increased markedly, from 10–12% to 39–42% for deep lakes and from 10–12% to 21–23% for shallow lakes, with the highest increase for TN...... and implementation of near-water buffer zones. This study suggests that transport mechanisms within the whole catchment are important for the nutrient export to lakes. Hence, the whole watershed should be considered when managing nutrient loadings to lakes, and future policies should ideally target measures...

  11. Who's in Charge: Role Clarity in a Midwestern Watershed Group

    Science.gov (United States)

    Floress, Kristin; Prokopy, Linda Stalker; Ayres, Janet

    2011-10-01

    Studies of collaborative watershed groups show that effective leadership is an important factor for success. This research uses data from in-depth interviews and meeting observation to qualitatively examine leadership in a Midwestern collaborative watershed group operating with government funding. One major finding was a lack of role definition for volunteer steering-committee members. Lack of role clarity and decision-making processes led to confusion regarding project management authority among the group, paid project staff members, and agency personnel. Given the important role of government grants for funding projects to protect water quality, this study offers insight into leadership issues that groups with Clean Water Act Section 319 (h) funds may face and suggestions on how to resolve them.

  12. Transactions for watershed protection services in the Segara River basin

    OpenAIRE

    Government of Indonesia

    2007-01-01

    Metadata only record Although formal governmental programs have not made the best of links between upstream land managers and downstream water users, several financial arrangements for water and related environmental services have sprung up independently in the Segara basin. Several of these can be regarded as investments of basic social capital to promote sustainable use of water in the area. Important downstream buyers of watershed protection services are the regional drinking water comp...

  13. Flash flooding in small urban watersheds: Storm event hydrologic response

    Science.gov (United States)

    Yang, Long; Smith, James A.; Baeck, Mary Lynn; Zhang, Yan

    2016-06-01

    We analyze flash flooding in small urban watersheds, with special focus on the roles of rainfall variability, antecedent soil moisture, and urban storm water management infrastructure in storm event hydrologic response. Our results are based on empirical analyses of high-resolution rainfall and discharge observations over Harry's Brook watershed in Princeton, New Jersey, during 2005-2006, as well as numerical experiments with the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. We focus on two subwatersheds of Harry's Brook, a 1.1 km2 subwatershed which was developed prior to modern storm water management regulations, and a 0.5 km2 subwatershed with an extensive network of storm water detention ponds. The watershed developed prior to modern storm water regulations is an "end-member" in urban flood response, exhibiting a frequency of flood peaks (with unit discharge exceeding 1 m3 s-1 km-2) that is comparable to the "flashiest" watersheds in the conterminous U.S. Observational analyses show that variability in storm event water balance is strongly linked to peak rain rates at time intervals of less than 30 min and only weakly linked to antecedent soil moisture conditions. Peak discharge for both the 1.1 and 0.5 km2 subwatersheds are strongly correlated with rainfall rate averaged over 1-30 min. Hydrologic modeling analyses indicate that the sensitivity of storm event hydrologic response to spatial rainfall variability decreases with storm intensity. Temporal rainfall variability is relatively more important than spatial rainfall variability in representing urban flood response, especially for extreme storm events.

  14. IMPACT ASSESSMENT OF KITCHEN GARDENING TRAINING UNDER WATERSHED PROGRAMME

    OpenAIRE

    Tabinda Qaiser; Hassnain Shah; Sajida Taj; Murad Ali

    2013-01-01

    Kitchen Gardening Project is the revolutionary step to increase vegetables production as well as provision of cheap vegetables to the consumers. The main focus of the study was to assess the impact of kitchen gardening training given by Water Resources Research Institute (WRRI) under watershed project in Arokas and Ghoragali. Capacity building of rural women in Kitchen Gardening was the focus and twenty trainees of kitchen gardening were selected randomly from each location to assess the impa...

  15. Thermal Pollution Mitigation in Cold Water Stream Watersheds Using Bioretention

    OpenAIRE

    Long, Daniel Lewis

    2011-01-01

    This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during ten controlled trials at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in average and peak te...

  16. Panama canal watershed payment for environmental services project

    OpenAIRE

    IDIAP (Panamanian National Agricultural Research Institute); Montana State University; CIP; Food and Agriculture Organization

    2007-01-01

    Metadata only record The Panama canal produces around 15% of the Panama's gross domestic produce (GDP), and requires large quantities of water to function. The surrounding watershed has been subjected to large scale deforestation and an increase in the population. In order to reduce siltation and improve water storage capacity, this project will look at the feasibility of implementing a payment for environmental services project. It will examine land use alternatives and benefits, evaluate...

  17. Hydrological characterization of watersheds in the Blue Nile Basin

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot

    2010-07-01

    Full Text Available We made a hydrological characterization of 32 watersheds (31–4350 km2 in the Blue Nile Basin, using data from a study of water and land resources in the Blue Nile Basin, Ethiopia published in 1964 by the US Bureau of Reclamation (USBR. The USBR document contains data on flow, climate, topography, geology, soil type, and land use for the period from 1959 to 1963. The aim of the study was to identify which combination of watershed variables best explain the variation in the hydrological regime, with special focus to low flow and, what kind of land use low flow might benefit from. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between hydrologic variables (total flow, maximum flow, minimum flow, runoff coefficient, and low flow index and 30 potential watershed variables. We found that three groups of watershed variables – climate and topography, geology and soil, and land use had almost equal influence on the variation in the hydrologic variables (R2 values ranging from 0.3 to 0.5. The individual variables which were selected based on statistical significance from all groups of explanatory variables were better in explaining the variation. Low flow was positively correlated most strongly to wetland, wood land, rainfall, luvisols, and alluvial soils. Low flow was negatively correlated to grazing land, bush land, tuffs/basalts, eutric-vertisols and riverine forest. We concluded that low flow benefits from the land use types that preserve soil quality and water storage, such as wetland, savannah and woodland, while it was lower in land use resulting in soil degradation. Therefore it provides support to the theory that some land use such as grassland, can promote higher low flow

  18. Hydrological characterization of watersheds in the Blue Nile Basin, Ethiopia

    Directory of Open Access Journals (Sweden)

    S. G. Gebrehiwot

    2011-01-01

    Full Text Available Thirty-two watersheds (31–4350 km2, in the Blue Nile Basin, Ethiopia, were hydrologically characterized with data from a study of water and land resources by the US Department of Interior, Bureau of Reclamation (USBR published in 1964. The USBR document contains data on flow, topography, geology, soil type, and land use for the period 1959 to 1963. The aim of the study was to identify watershed variables best explaining the variation in the hydrological regime, with a special focus on low flows. Moreover, this study aimed to identify variables that may be susceptible to management policies for developing and securing water resources in dry periods. Principal Component Analysis (PCA and Partial Least Square (PLS were used to analyze the relationship between five hydrologic response variables (total flow, high flow, low flow, runoff coefficient, low flow index and 30 potential explanatory watershed variables. The explanatory watershed variables were classified into three groups: land use, climate and topography as well as geology and soil type. Each of the three groups had almost equal influence on the variation in hydrologic variables (R2 values ranging from 0.3 to 0.4. Specific variables from within each of the three groups of explanatory variables were better in explaining the variation. Low flow and low flow index were positively correlated to land use types woodland, dense wet forest and savannah grassland, whereas grazing land and bush land were negatively correlated. We concluded that extra care for preserving low flow should be taken on tuffs/basalts which comprise 52% of the Blue Nile Basin. Land use management plans should recognize that woodland, dense wet forest and savannah grassland can promote higher low flows, while grazing land diminishes low flows.

  19. EL68D Wasteway Watershed Land-Cover Generation

    Science.gov (United States)

    Ruhl, Sheila; Usery, E. Lynn; Finn, Michael P.

    2007-01-01

    Classification of land cover from Landsat Enhanced Thematic Mapper Plus (ETM+) for the EL68D Wasteway Watershed in the State of Washington is documented. The procedures for classification include use of two ETM+ scenes in a simultaneous unsupervised classification process supported by extensive field data collection using Global Positioning System receivers and digital photos. The procedure resulted in a detailed classification at the individual crop species level.

  20. Modeling reservoir sedimentation in the Agno watershed, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Ham, D.; Vasque, P. [Northwest Hydraulic Consultants, North Vancouver, BC (Canada); McLean, D. [Northwest Hydraulic Consultants, Nanaimo, BC (Canada); Valdez, T. [San Roque Power Corp., Makati City (Philippines)

    2008-07-01

    The exceptionally high sedimentation rate in the mountainous Agno River Watershed in the Philippines has affected dam operations on the Ambuklao and Binga reservoirs which were built in the late 1950s. In addition, sediment inflow scenarios have revealed that sedimentation will significantly reduce the total storage volume in the new San Roque facility which has been constructed downstream of those reservoirs. As such, watershed management plans will need to address conditions in the entire basin, not just the portion downstream of Binga Dam. Sediment will be deposited in the reservoir in the form of a delta front that will advance from the head of the reservoir towards the dam. Sedimentation in water reservoirs affects the utility to sustain power production, water supply and flood control objectives. It will likely be very difficult to reduce the sediment yield to any great degree by watershed restoration such as re-vegetation or tree planting. However, since sediment production from road-related slope failures appears to the main contributor to reservoir sedimentation, future developments in the basin related to road construction, mining activity and construction of new towns will need to adopt best management practices to avoid increased erosion or land disturbance. Empirical and analytic techniques were used in this study to assess sedimentation volumes and patterns, with particular emphasis on a GIS-based sediment yield model. The GIS model identified where sediment yield is greatest within the watershed, providing a means for developing sediment management and mitigation strategies that focus limited resources on key areas that give the highest rates of return. 25 refs., 3 tabs., 4 figs.