WorldWideScience

Sample records for centimeter wavelength radio

  1. A Simple Orthomode Transducer for Centimeter to Submillimeter Wavelengths

    Science.gov (United States)

    Dunning, A.; Srikanth, S.; Kerr, A. R.

    2009-04-01

    We describe a simple orthomode transducer suitable for operation from centimeter to submillimeter wavelengths with appropriate scaling. It is fabricated as a split-block assembly with all waveguides in the same plane, and requires no septum or polarizing wires. The OMT operates over a 1.3:1 frequency band, narrower than a full waveguide band (typically 1.5:1). For a WR-10 version of the OMT, covering 78-102 GHz, the polarization isolation is > 37 dB and the return loss at the rectangular waveguide ports > 24 dB. The practical upper frequency for this design is probably limited by the precision of alignment that can be achieved between the block halves, which affects the polarization isolation.

  2. Comets at radio wavelengths

    CERN Document Server

    Crovisier, Jacques; Colom, Pierre; Biver, Nicolas

    2016-01-01

    Comets are considered as the most primitive objects in the Solar System. Their composition provides information on the composition of the primitive solar nebula, 4.6 Gyr ago. The radio domain is a privileged tool to study the composition of cometary ices. Observations of the OH radical at 18 cm wavelength allow us to measure the water production rate. A wealth of molecules (and some of their isotopologues) coming from the sublimation of ices in the nucleus have been identified by observations in the millimetre and submillimetre domains. We present an historical review on radio observations of comets, focusing on the results from our group, and including recent observations with the Nan\\c{c}ay radio telescope, the IRAM antennas, the Odin satellite, the Herschel space observatory, ALMA, and the MIRO instrument aboard the Rosetta space probe.

  3. The Crab Pulsar at Centimeter Wavelengths: I. Ensemble Characteristics

    CERN Document Server

    Hankins, T H; Eilek, J A

    2015-01-01

    We have observed the pulsar in the Crab Nebula at high radio frequencies and high time resolution. We present continuously sampled data at 640-ns time resolution, and individual bright pulses recorded at down to 0.25-ns time resolution. Combining our new data with previous data from our group and from the literature shows the dramatic changes in the pulsar's radio emission between low and high radio frequencies. Below about 5 GHz the mean profile is dominated by the bright Main Pulse and Low-Frequency Interpulse. Everything changes, however, above about 5 GHz; the Main Pulse disappears, the mean profile of the Crab pulsar is dominated by the High-Frequency Interpulse (which is quite different from its low-frequency counterpart) and the two High-Frequency Components. We present detailed observational characteristics of these different components which future models of the pulsar's magnetosphere must explain.

  4. THE CRAB PULSAR AT CENTIMETER WAVELENGTHS. I. ENSEMBLE CHARACTERISTICS

    Energy Technology Data Exchange (ETDEWEB)

    Hankins, T. H.; Eilek, J. A., E-mail: thankins@aoc.nrao.edu [Physics Department, New Mexico Tech, Socorro, NM 87801 (United States); Jones, G.

    2015-04-01

    We have observed the pulsar in the Crab Nebula at high radio frequencies and high time resolution. We present continuously sampled data at 640 ns time resolution and individual bright pulses recorded at down to 0.25 ns time resolution. Combining our new data with previous data from our group and from the literature shows the dramatic changes in the pulsar’s radio emission between low and high radio frequencies. Below about 5 GHz the mean profile is dominated by the bright Main Pulse and Low-Frequency Interpulse. Everything changes, however, above about 5 GHz; the Main Pulse disappears and the mean profile of the Crab pulsar is dominated by the High-Frequency Interpulse (which is quite different from its low-frequency counterpart) and the two High-Frequency Components. We present detailed observational characteristics of these different components which future models of the pulsar’s magnetosphere must explain.

  5. The centimeter radio continuum from IRC + 10216 and other late-type stars with mass-loss envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. (Chalmers Univ. of Tech., Goeteborg (SE). Inst. of Theoretical Physics); Claussen, M.J. (Hulburt (E.O.) Center for Space Research, Washington, DC (US)); Sahai, R.; Claussen, M.J.; Masson, C.R. (California Inst. of Tech., Pasadena CA (US). Owens Valley Radio Observatory)

    1989-08-01

    We report the discovery of continuum emission at 1.5 and 2 cm from the late-type carbon star IRC + 10216 (CW Leo). We discuss various mechanisms for the production of the centimeter continuum emission from IRC + 10216. We find that the combination of emission from circumstellar dust (with a constant emissivity index) and a stellar black-body cannot account for the observed radio fluxes, given current estimates of the long-wavelength dust emissivity index. This leads to possible implications for the centimeter dust emissivity or the evolutionary status of this object. The results of a survey of 1.5 cm emission from a list of late-type stars (and proto-planetary nebulae) with extensive mass-loss envelopes, are reported.

  6. The radio environment of the 21 Centimeter Array: RFI detection and mitigation

    CERN Document Server

    Huang, Yan; Zheng, Qian; Gu, Jun-Hua; Xu, Haiguang

    2016-01-01

    Detection and mitigation of radio frequency interference (RFI) is the first and also the key step for data processing in radio observations, especially for ongoing low frequency radio experiments towards the detection of the cosmic dawn and epoch of reionization (EoR). In this paper we demonstrate the technique and efficiency of RFI identification and mitigation for the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of EoR. For terrestrial, man-made RFI, we concentrate mainly on a statistical approach by identifying and then excising non-Gaussian signatures, in the sense that the extremely weak cosmic signal is actually buried under thermal and therefore Gaussian noise. We also introduce the so-called visibility correlation coefficient instead of conventional visibility, which allows a further suppression of rapidly time-varying RFI. Finally, we briefly discuss removals of the sky RFI, the leakage of sidelobes from off-field strong radio sources with time-invarian...

  7. Radio Sources in the NCP Region Observed with the 21 Centimeter Array

    CERN Document Server

    Zheng, Qian; Johnston-Hollitt, Melanie; Gu, Jun-Hua; Xu, Haiguang

    2016-01-01

    We present a catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12 h observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ~ 4 arcmin. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indicies for the detected sources. To reduce the complexity of interferometric imaging from the so-called 'w' term and ionospheric effect, the present analyses are restricted to the east-west baselines within 1500 km only. The 624 radio sources are found within 5 degrees around the NCP down to ~ 10 mJy with a completeness of roughly 80%. Our source counts are compared, and also exhibit a good agreement with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ~ ...

  8. Radio Wavelength Transients: Current and Emerging Prospects

    CERN Document Server

    Lazio, J

    2008-01-01

    Known classes of radio wavelength transients range from the nearby--stellar flares and radio pulsars--to the distant Universe--\\gamma-ray burst afterglows. Hypothesized classes of radio transients include analogs of known objects, e.g., extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, prompt emission from \\gamma-ray bursts, evaporating black holes, and transmitters from other civilizations. A number of instruments and facilities are either under construction or in early observational stages and are slated to become available in the next few years. With a combination of wide fields of view and wavelength agility, the detection and study of radio transients will improve immensely.

  9. Detecting fast radio bursts at decametric wavelengths

    CERN Document Server

    Rajwade, Kaustubh

    2016-01-01

    Fast radio bursts (FRBs) are highly dispersed, sporadic radio pulses that are likely extragalactic in nature. Here we investigate the constraints on the source population from surveys carried out at frequencies $<1$~GHz. All but one FRB has so far been discovered in the 1--2~GHz band, but new and emerging instruments look set to become valuable probes of the FRB population at sub-GHz frequencies in the near future. In this paper, we consider the impacts of free-free absorption and multi-path scattering in our analysis via a number of different assumptions about the intervening medium. We consider previous low frequency surveys alongwith an ongoing survey with the University of Technology digital backend for the Molonglo Observatory Synthesis Telescope (UTMOST) as well as future observations with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the Hydrogen Intensity and Real-Time Analysis Experiment (HIRAX). We predict that CHIME and HIRAX will be able to observe $\\sim$ 30 or more FRBs per da...

  10. Detecting fast radio bursts at decametric wavelengths

    Science.gov (United States)

    Rajwade, K. M.; Lorimer, D. R.

    2017-02-01

    Fast radio bursts (FRBs) are highly dispersed, sporadic radio pulses which are likely extragalactic in nature. Here, we investigate the constraints on the source population from surveys carried out at frequencies <1 GHz. All but one FRB has so far been discovered in the 1-2 GHz band, but new and emerging instruments look set to become valuable probes of the FRB population at sub-GHz frequencies in the near future. In this paper, we consider the impacts of free-free absorption and multipath scattering in our analysis via a number of different assumptions about the intervening medium. We consider previous low-frequency surveys along with an ongoing survey with University of Technology digital backend for the Molonglo Observatory Synthesis Telescope (UTMOST) as well as future observations with the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX). We predict that CHIME and HIRAX will be able to observe ˜30 or more FRBs per day, even in the most extreme scenarios where free-free absorption and scattering can significantly impact the fluxes below 1 GHz. We also show that UTMOST will detect 1-2 FRBs per month of observations. For CHIME and HIRAX, the detection rates also depend greatly on the assumed FRB distance scale. Some of the models we investigated predict an increase in the FRB flux as a function of redshift at low frequencies. If FRBs are truly cosmological sources, this effect may impact future surveys in this band, particularly if the FRB population traces the cosmic star formation rate.

  11. Radio emission of the sun at millimeter wavelengths

    Science.gov (United States)

    Nagnibeda, V. G.; Piotrovich, V. V.

    This review article deals with the radio emission originating from different solar atmospheric regions - the quiet solar atmosphere, active regions and solar flares. All experimental data of the quiet Sun brightness temperature at the region of 0.1 - 20 mm wavelength are summarized. The quiet Sun brightness distributions across the disk and values of the solar radio radius are reviewed. The properties of the sources of sunspot-associated active region emission and radio brightness depression associated with Hα-filaments are considered in comparison with observations at centimetre and optical domains. The observational properties of millimetre wave bursts and their correlations with similar phenomena at other domains are reviewed. Special reference is devoted to nearly 100% correlation impulsive radio bursts with hard X-ray bursts. Existence of the fine temporal structure containing many spikes with time scales up to 10 ms as well as observations of quasi-periodic millisecond oscillations are discussed.

  12. Radio Recombination Lines at Decametre Wavelengths: Prospects for the Future

    CERN Document Server

    Peters, W M; Clarke, T E; Erickson, W C; Kassim, N E

    2010-01-01

    This paper considers the suitability of a number of emerging and future instruments for the study of radio recombination lines (RRLs) at frequencies below 200 MHz. These lines arise only in low-density regions of the ionized interstellar medium, and they may represent a frequency-dependent foreground for next-generation experiments trying to detect H I signals from the Epoch of Reionization and Dark Ages ("21-cm cosmology"). We summarize existing decametre-wavelength observations of RRLs, which have detected only carbon RRLs. We then show that, for an interferometric array, the primary instrumental factor limiting detection and study of the RRLs is the areal filling factor of the array. We consider the Long Wavelength Array (LWA-1), the LOw Frequency ARray (LOFAR), the low-frequency component of the Square Kilometre Array (SKA-lo), and a future Lunar Radio Array (LRA), all of which will operate at decametre wavelengths. These arrays offer digital signal processing, which should produce more stable and better ...

  13. Detection of 21 Centimeter HI Absorption at z = 0.78 in a Survey of Radio Continuum Sources

    CERN Document Server

    Darling, J; Haynes, M P; Bolatto, A D; Bower, G C; Darling, Jeremy; Giovanelli, Riccardo; Haynes, Martha P.; Bolatto, Alberto D.; Bower, Geoffrey C.

    2004-01-01

    We report the detection of a deep broad HI 21 cm absorption system at z = 0.78 toward the radio source [HB89] 2351+456 (4C+45.51) at z = 1.992. The HI absorption was identified in a blind spectral line survey conducted at the Green Bank Telescope spanning 0.63 8.5 K, this system is by definition a damped Ly alpha absorption system (N(HI) >= 2 x 10^20 cm^-2). The line is unusually broad, with a FWHM of 53 km/s and a full span of 163 km/s, suggesting a physically extended HI gas structure. Radio surveys identify damped Ly alpha systems in a manner that bypasses many of the selection effects present in optical/UV surveys, including dust extinction and the atmospheric cutoff for z < 1.65. The smooth broad profile of this HI 21 cm absorption system is similar to the z = 0.89 HI absorption toward PKS 1830-211, which suggests that the absorber toward [HB89] 2351+456 is also a gravitational lens and a molecular absorption system. However, very long baseline interferometry and Hubble Space Telescope observations s...

  14. The Allen Telescope Array Twenty-centimeter Survey - A 690-Square-Degree, 12-Epoch Radio Dataset - I: Catalog and Long-Duration Transient Statistics

    CERN Document Server

    Croft, Steve; Ackermann, Rob; Atkinson, Shannon; Backer, Don; Backus, Peter; Barott, William C; Bauermeister, Amber; Blitz, Leo; Bock, Douglas; Bradford, Tucker; Cheng, Calvin; Cork, Chris; Davis, Mike; DeBoer, Dave; Dexter, Matt; Dreher, John; Engargiola, Greg; Fields, Ed; Fleming, Matt; Forster, James R; Gutierrez-Kraybill, Colby; Harp, Gerry; Helfer, Tamara; Hull, Chat; Jordan, Jane; Jorgensen, Susanne; Keating, Garrett; Kilsdonk, Tom; Law, Casey; van Leeuwen, Joeri; Lugten, John; MacMahon, Dave; McMahon, Peter; Milgrome, Oren; Pierson, Tom; Randall, Karen; Ross, John; Shostak, Seth; Siemion, Andrew; Smolek, Ken; Tarter, Jill; Thornton, Douglas; Urry, Lynn; Vitouchkine, Artyom; Wadefalk, Niklas; Welch, Jack; Werthimer, Dan; Whysong, David; Williams, Peter K G; Wright, Melvyn

    2010-01-01

    We present the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch (12 visits), 690 square degree radio image and catalog at 1.4GHz. The survey is designed to detect rare, very bright transients as well as to verify the capabilities of the ATA to form large mosaics. The combined image using data from all 12 ATATS epochs has RMS noise sigma = 3.94mJy / beam and dynamic range 180, with a circular beam of 150 arcsec FWHM. It contains 4408 sources to a limiting sensitivity of S = 20 mJy / beam. We compare the catalog generated from this 12-epoch combined image to the NRAO VLA Sky Survey (NVSS), a legacy survey at the same frequency, and find that we can measure source positions to better than ~20 arcsec. For sources above the ATATS completeness limit, the median flux density is 97% of the median value for matched NVSS sources, indicative of an accurate overall flux calibration. We examine the effects of source confusion due to the effects of differing resolution between ATATS and NVSS on our abi...

  15. The Allen Telescope Array Twenty-centimeter Survey -- A 700-Square-Degree, Multi-Epoch Radio Dataset -- II: Individual Epoch Transient Statistics

    CERN Document Server

    Croft, Steve; Keating, Garrett; Law, Casey; Whysong, David; Williams, Peter K G; Wright, Melvyn

    2011-01-01

    We present our second paper on the Allen Telescope Array Twenty-centimeter Survey (ATATS), a multi-epoch, ~700 sq. deg. radio image and catalog at 1.4 GHz. The survey is designed to detect rare, bright transients as well as to commission the ATA's wide-field survey capabilities. ATATS explores the challenges of multi-epoch transient and variable source surveys in the domain of dynamic range limits and changing (u,v) coverage. Here we present images made using data from the individual epochs, as well as a revised image combining data from all ATATS epochs. The combined image has RMS noise 3.96 mJy / beam, with a circular beam of 150 arcsec FWHM. The catalog, generated using a false detection rate algorithm, contains 4984 sources, and is >90% complete to 37.9 mJy. The catalogs generated from snapshot images of the individual epochs contain between 1170 and 2019 sources over the 564 sq. deg. area in common to all epochs. The 90% completeness limits of the single epoch catalogs range from 98.6 to 232 mJy. We comp...

  16. Deconvolution of images in centimeter-band radio astronomy for the exploitation of new radio interferometers: characterization of non thermal components in galaxy clusters

    Science.gov (United States)

    Dabbech, A.

    2015-04-01

    Within the framework of the preparation for the Square Kilometre Array (SKA), that is the world largest radio telescope, new imaging challenges has to be conquered. The data acquired by SKA will have to be processed on real time because of their huge rate. In addition, thanks to its unprecedented resolution and sensitivity, SKA images will have very high dynamic range over wide fields of view. Hence, there is an urgent need for the design of new imaging techniques that are robust and efficient and fully automated. The goal of this thesis is to develop a new technique aiming to reconstruct a model image of the radio sky from the radio observations. The method have been designed to estimate images with high dynamic range with a particular attention to recover faint extended emission usually completely buried in the PSF sidelobes of the brighter sources and the noise. We propose a new approach, based on sparse representations, called MORESANE. The radio sky is assumed to be a summation of sources, considered as atoms of an unknown synthesis dictionary. These atoms are learned using analysis priors from the observed image. Results obtained on realistic simulations show that MORESANE is very promising in the restoration of radio images; it is outperforming the standard tools and very competitive with the newly proposed methods in the literature. MORESANE is also applied on simulations of observations using the SKA1 with the aim to investigate the detectability of the intracluster non thermal component. Our results indicate that these diffuse sources, characterized by very low surface brightness will be investigated up to the epoch of massive cluster formation with the SKA.

  17. Unusual Solar Radio Burst Observed at Decameter Wavelengths

    Science.gov (United States)

    Melnik, V. N.; Brazhenko, A. I.; Konovalenko, A. A.; Rucker, H. O.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Panchenko, M.; Stanislavskyy, A. A.

    2014-01-01

    An unusual solar burst was observed simultaneously by two decameter radio telescopes UTR-2 (Kharkov, Ukraine) and URAN-2 (Poltava, Ukraine) on 3 June 2011 in the frequency range of 16 - 28 MHz. The observed radio burst had some unusual properties, which are not typical for the other types of solar radio bursts. Its frequency drift rate was positive (about 500 kHz s-1) at frequencies higher than 22 MHz and negative (100 kHz s-1) at lower frequencies. The full duration of this event varied from 50 s up to 80 s, depending on the frequency. The maximum radio flux of the unusual burst reached ≈103 s.f.u. and its polarization did not exceed 10 %. This burst had a fine frequency-time structure of unusual appearance. It consisted of stripes with the frequency bandwidth 300 - 400 kHz. We consider that several accompanied radio and optical events observed by SOHO and STEREO spacecraft were possibly associated with the reported radio burst. A model that may interpret the observed unusual solar radio burst is proposed.

  18. Millimeter wavelength spectroscopy of trace atmospheric constituents from the Five College Radio Astronomy Observatory

    Science.gov (United States)

    Huguenin, G. R.; Irvine, W. M.

    1978-01-01

    The Five College Radio Astronomy Observatory system, located in western Massachusetts, is described. It is suggested that high sensitivity in the three-millimeter wavelength band facilitates detection and monitoring of a number of trace molecules in the earth's atmosphere as well as astonomical observation at radio wavelengths. Line formation and radiative transfer in the earth's atmosphere are discussed, and the receiver sensitivity is considered.

  19. Multi-Timescale Radio Observations of Multi-Wavelength GRBs

    Science.gov (United States)

    Van der Horst, Alexander

    2016-07-01

    Gamma-ray bursts are a broadband phenomenon, with emission detected across the electromagnetic spectrum from low-frequency radio waves to high-energy gamma-rays. Besides this extremely broad spectral range, they are also observed over a very large range of timescales, from millisecond variability in gamma-rays to the afterglows at radio frequencies that can sometimes be observed for years after the initial gamma-ray trigger. Our current understanding of gamma-ray bursts is based on these multi-frequency and multi-timescale observations. In this talk I will show the role that radio observations have played and will play in putting together a broadband picture of the physics behind the observed emission, the progenitors, and their environment. I will highlight some recent discoveries and developments, in particular the searches for early radio emission within the first minutes after gamma-ray triggers; the increasing number of radio-detected, optically dark bursts; and the possibilities that several new and upgraded radio observatories offer to obtain a better understanding of the macro- and microphysics behind these enigmatic phenomena.

  20. A New Solar Radio Emission Component Observed at Hectometric Wavelengths

    Science.gov (United States)

    Reiner, M.; Kaiser, M.; Fainberg, J.

    2003-04-01

    From May 17 to 22, 2002 a highly circularly polarized solar radio source was observed by the WAVES receivers on the Wind spacecraft. This unique event, which became quite intense and definite after May 19 and which was observed continuously for 6 days, was characterized by fine frequency structures, 1 to 2 hour amplitude periodicities, and a peaked frequency spectrum. Indeed, this emission has characteristics more typical of planetary emissions than of solar emissions. This is the only such event observed by Wind/WAVES in its 8 years of operation. (The only other example of an event of similar nature may have been observed more than 20 years ago by the ISEE-3 spacecraft.) The direction-finding analysis for this event indicates a relatively small radio source that may lie somewhere between 0.06 and 0.36 AU from the sun. The radiation from this event was very weak at the onset, being nearly an order of magnitude below the galactic background radiation level. It is speculated that this radio event may be a unique hectometric manifestation of a moving type IV burst. The radiation mechanism is unknown--possibilities include plasma emission, gyro-synchrotron, and cyclotron maser.

  1. The faint radio source population at 15.7 GHz - II. Multi-wavelength properties

    CERN Document Server

    Whittam, I H; Green, D A; Jarvis, M J; Vaccari, M

    2015-01-01

    A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions o...

  2. Extragalactic radio sources with sharply inverted spectrum at metre wavelengths

    CERN Document Server

    Gopal-Krishna,; Mhaskey, Mukul; Ranadive, Pritesh; Wiita, Paul J; Goyal, A; Kantharia, N G; Ishwara-Chandra, C H

    2014-01-01

    We present the first results of a systematic search for the rare extragalactic radio sources showing an inverted (integrated) spectrum, with spectral index $\\alpha \\ge +2.0$, a previously unexplored spectral domain. The search is expected to yield strong candidates for $\\alpha \\ge +2.5$, for which the standard synchrotron self-absorption (characterized by a single power-law energy distribution of relativistic electron population) would not be a plausible explanation, even in an ideal case of a perfectly homogeneous source of incoherent synchrotron radiation. Such sharply inverted spectra, if found, would require alternative explanations, e.g., free-free absorption, or non-standard energy distribution of relativistic electrons which differs from a power-law (e.g., Maxwellian). The search was carried out by comparing two sensitive low-frequency radio surveys made with sub-arcminute resolution, namely, the WISH survey at 352 MHz and TGSS/DR5 at 150 MHz. The overlap region between these two surveys contains 7056 ...

  3. 3.3 CM JVLA Observations of Transitional Disks: Searching for Centimeter Pebbles

    Science.gov (United States)

    Zapata, Luis A.; Rodríguez, Luis F.; Palau, Aina

    2017-01-01

    We present sensitive (rms-noises ∼4–25 μJy) and high angular resolution (∼1″–2″) 8.9 GHz (3.3 cm) Karl G. Jansky Very Large Array radio continuum observations of 10 presumed transitional disks associated with young low-mass stars. We report the detection of radio continuum emission in 5 out of the 10 objects (RXJ1615, UX Tau A, LkCa15, RXJ1633, and SR 24s). In the case of LkCa15, the centimeter emission is extended, and has a similar morphology to that of the transitional disk observed at millimeter wavelengths with an inner depression. For these five detections, we construct the spectral energy distributions from the centimeter to submillimeter wavelengths, and find that they can be well fitted with a single (RXJ1633 and UX Tau A) or a two-component power law (LkCa15, RXJ1615, and SR 24s). For the cases where a single power law fits the data well, the centimeter emission is likely produced by optically thin dust with large grains (i.e., centimeter-size pebbles) present in the transitional disks. For the cases where a double power law fits the data, the centimeter emission might be produced by the combination of photoevaporation and a free–free jet. We conclude that RXJ1633 and UX Tau A are excellent examples of transitional disks where the structure of the emission from centimeter/millimeter pebbles can be studied. In the other cases, some other physical emitting mechanisms are also important in the centimeter regime.

  4. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    CERN Document Server

    O'Gorman, Eamon; Brown, Alexander; Drake, Stephen; Richards, Anita M S

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths however, and previous observations have provided only a small number of modest S/N measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (Alpha Boo: K2 III) and Aldebaran (Alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for Alpha Boo. This is the first time ...

  5. Mars' radio spectrum and the flying dust.

    NARCIS (Netherlands)

    M. Roos-Serote; D.M. Stam; R.P. Fender

    2004-01-01

    Mars' radio spectrum at centimeter wavelengths is produced by thermal radiation from the surface and sub-surface. Observations at 2.8 cm made in the 1975 and 1978 show variations of its radio brightness as a function of longitude on the planet (Doherty et al. , ApJ 233, 1979). In addition, an overal

  6. 3.3 cm JVLA observations of transitional disks: searching for centimeter pebbles

    CERN Document Server

    Zapata, Luis A; Palau, Aina

    2016-01-01

    We present sensitive (rms-noises $\\sim$ 4 -- 25 $\\mu$Jy) and high angular resolution ($\\sim$1--2$"$) 8.9 GHz (3.3 cm) Karl G. Jansky Very Large Array (JVLA) radio continuum observations of 10 presumed transitional disks associated with young low-mass stars. We report the detection of radio continuum emission in 5 out of the 10 objects (RXJ1615, UX Tau A, LkCa15, RXJ1633, and SR24s). In the case of LkCa15, the centimeter emission is extended, and has a similar morphology to that of the transitional disk observed at mm wavelengths with an inner depression. For these five detections, we construct the Spectral Energy Distributions (SEDs) from the centimeter to submillimeter wavelengths, and find that they can be well fitted with a single (RXJ 1633 and UX Tau A) or a two component power-law (LkCa 15, RXJ 1615, and SR24s). For the cases where a single power-law fits well the data, the centimeter emission is likely produced by optically thin dust with large grains i.e. centimeter-size pebbles) present in the transit...

  7. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    Science.gov (United States)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.

  8. Design and construction of prototype radio antenna for shortest radio wavelengths

    Science.gov (United States)

    Leighton, R. B.

    1975-01-01

    A paraboloid radio antenna of 10.4 meters diameter, 0.41 meter focal length was constructed and its successful completion is described. The surface accuracy of the antenna is at least four times better than any existing antenna in its class size (50 micrometers rms). Antenna design specifications (i.e., for mounting, drive motors, honeycomb structures) are discussed and engineering drawings and photographs of antenna components are shown. The antenna will be used for millimeter-wave interferometry and sub-millimeter wave radiometry over a full frequency range (up to approximately 860 GHz). The antenna will also be moveable (for interferometric use) between reinforced concrete pads by rail. The effects of the weather and gravity on antenna performance are briefly discussed.

  9. High sensitive observations of the planetary radio emission in decameter wavelength

    Science.gov (United States)

    Litvinenko, Galina; Zakharenko, Vyacheslav; Rucker, Helmut; Konovalenko, Alexander; Shaposhnikov, Vladimir; Zarka, Philippe; Griessmeier, Jean-M.; Fisher, Georg; Vinogradov, Vladimir; Mylostna, Krystyna

    2013-04-01

    The progress of the ground-based low frequency radio astronomy has opened a new approach to the study of planetary radio emission in the solar system and beyond. This is manifested in the study of the Jupiter (detection of various types of the sporadic emission), of the Saturn (investigation of the electrostatic discharges emission, SED), as well as other planets and exoplanets. High efficiency decameter wavelength radio telescope UTR-2 and modern registration systems (effective area is more than 100 000 sq.m., instant frequency band is 8-33 MHz, dynamic range is about 90 dB, the frequency resolution is about 1 kHz, the temporal resolution is about 1 microsecond) allow for a new observation and detect many interesting phenomena. This includes the detection of superfine time-frequency structures and new types of the modulations effects in the Jovian radio emission, the detection of microsecond scales in the SED emission of the Saturn, and dispersion delay of the SED signals in the interplanetary medium. In addition, the described above method of observation of the planetary signals allowed for the first time to start ground-based searching radio emission from Uranus, Venus, Mars and exoplanets.

  10. A Highly Circularly Polarized Solar Radio Emission Component Observed at Hectometric Wavelengths

    Science.gov (United States)

    Reiner, M. J.; Kaiser, M. L.; Fainberg, J.; Bougeret, J.-L.

    2006-04-01

    We report here the observation of a rare solar radio event at hectometric wavelengths that was characterized by essentially 100% circularly polarized radiation and that was observed continuously for about six days, from May 17 to 23, 2002. This was the first time that a solar source with significantly polarized radiation was detected by the WAVES experiment on the Wind spacecraft. From May 19 to 22, the intense polarized radio emissions were characterized by quasi-periodic intensity variations with periods from one to two hours and with superposed drifting, narrowband, fine structures. The bandwidth of this radiation extended from about 400 kHz to 7 MHz, and the peak frequency of the frequency spectrum slowly decreased from 2 MHz to about 0.8 MHz over the course of four days. The radio source, at each frequency, was observed to slowly drift from east to west about the Sun, as viewed from the Earth and was estimated to lie between 26 and 82 R ⊙ ( R ⊙ = 696 000 km). We speculate that this unusual event may represent an interplanetary manifestation of a moving type IV burst and discuss possible radio emission mechanisms. The ISEE-3 spacecraft may possibly have detected a similar event some 26 years ago.

  11. Ghostly Glow Reveals a Hidden Class of Long-Wavelength Radio Emitters

    Science.gov (United States)

    2008-10-01

    (Washington, DC. 08)- A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected at the shorter wavelengths typically seen in these objects. The discovery implies that existing radio telescopes have missed a large population of these colliding objects. It also provides an important confirmation of the theoretical prediction that colliding galaxy clusters accelerate electrons and other particles to very high energies through the process of turbulent waves. The team revealed their findings in the October 16, 2008 edition of Nature. This new population of objects is most easily detected at long wavelengths. Professor Greg Taylor of the University of New Mexico and scientific director of the Long Wavelength Array (LWA) points out, "This result is just the tip of the iceberg. When an emerging suite of much more powerful low frequency telescopes, including the LWA in New Mexico, turn their views to the cosmos, the sky will 'light up' with hundreds or even thousands of colliding galaxy clusters." NRL has played a key role in promoting the development of this generation of new instruments and is currently involved with the development of the LWA. NRL radio astronomer and LWA Project Scientist Namir Kassim says "Our discovery of a previously hidden class of low frequency cluster-radio sources is particularly important since the study of galaxy clusters was a primary motivation for development of the LWA." The discovery of the emission in the galaxy cluster Abell 521 (or A521 for short) was made using the Giant Metrewave Radiotelescope (GMRT) in India, and its long wavelength nature was confirmed by the National Science Foundation's (NRAO) Very Large Array (VLA) radio telescope in New Mexico. The attached image shows the radio emission at a wavelength of 125cm in red superimposed on a blue image made from data taken by the

  12. Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    CERN Document Server

    Lazio, T J W; Lane, W M; Gross, C; Kassim, N E; Ray, P S; Wood, D; York, J A; Kerkhoff, A; Hicks, B; Polisensky, E; Stewart, K; Dalal, N Paravastu; Cohen, A S; Erickson, W C

    2010-01-01

    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more t...

  13. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars

    Science.gov (United States)

    Zakharenko, V. V.; Vasylieva, I. Y.; Konovalenko, A. A.; Ulyanov, O. M.; Serylak, M.; Zarka, P.; Grießmeier, J.-M.; Cognard, I.; Nikolaenko, V. S.

    2013-06-01

    The study of pulsars at the lowest radio frequencies observable from the ground (10-30 MHz) is complicated by strong interstellar (dispersion, scattering) and ionospheric (scintillation, refraction) propagation effects, as well as intense Galactic background noise and interference. However, it permits us to measure interstellar plasma parameters (the effects of which increase by a power of two to >4 times the wavelength), the spectrum and the pulse profile at low frequencies more accurately. Up to now, only ˜10 pulsars have been successfully detected at these frequencies. The recent upgrade of the receivers at the Ukrainian T-shaped Radio telescope, second modification (UTR-2) has increased its sensitivity and motivated a new search for pulsed radio emissions. In this work we carried out a survey of known pulsars with declination above -10°, period >0.1 s and dispersion measure (DM) < 30 pc cm-3, i.e. a sample of 74 sources. Our goal was either to detect pulsars not recorded before in the decametre range or to identify factors that prevent their detection. As a result, we have detected the radio emission of 40 pulsars, i.e. 55 per cent of the observed sample. For 30 of them, this was a first detection at these frequencies. Parameters of their average profiles have been calculated, including the intrinsic widening of the pulse (not due to interstellar scattering) with decreasing frequency. Furthermore, two pulsars beyond the selected DM (B0138+59 with DM ≈ 35 pc cm-3 and B0525+21 with DM ≈51 pc cm-3) were also detected. Our results indicate that there is still room to detect new transient and pulsed sources with low-frequency observations.

  14. Spatial Variations of the Synchrotron Spectrum Within Tycho’s Supernova Remnant (3C 10): A Spectral Tomography Analysis of Radio Observations at 20 and 90 Centimeter Wavelengths

    Science.gov (United States)

    2000-01-20

    individual ( Tycho ) 1. INTRODUCTION A new star observed by Tycho Brahe (1573) is now identi- Ðed as a supernova whose remnant (SNR) is 3C 10 (SN 1572... Tycho SNR, SNR 120.1]1.4 ; Lozinskaya 1992 and references therein). The explosion itself was mostly likely a Type Ia supernova, and the remnant seems...we adopted.3 Again, this procedure tends to reduce any spectral variations. However, as Reynoso et al. (1997) found, Tycho is not expanding

  15. Observations of Rotating Radio Transients with the First Station of the Long Wavelength Array

    CERN Document Server

    Taylor, G B; McCrackan, M; McLaughlin, M A; Miller, R; Karako-Argaman, C; Dowell, J; Schinzel, F K

    2016-01-01

    Rotating Radio Transients (RRATs) are a subclass of pulsars first identified in 2006 that are detected only in searches for single pulses and not through their time averaged emission. Here, we present the results of observations of 19 RRATs using the first station of the Long Wavelength Array (LWA1) at frequencies between 30 MHz and 88 MHz. The RRATs observed here were first detected in higher frequency pulsar surveys. Of the 19 RRATs observed, 2 sources were detected and their dispersion measures, periods, pulse profiles, and flux densities are reported and compared to previous higher frequency measurements. We find a low detection rate (11%), which could be a combination of the lower sensitivity of LWA1 compared to the higher frequency telescopes, and the result of scattering by the interstellar medium or a spectral turnover.

  16. The appearance of dusty H II blisters at radio and infrared wavelengths

    Science.gov (United States)

    Icke, V.; Gatley, I.; Israel, F. P.

    1980-01-01

    Detailed calculations for the observational appearance of nonspherical Stromgren regions at radio and infrared wavelengths are presented. The computations are made feasible by two assumptions, namely (1) no stellar photon leaves the solid angle within which it was emitted, and (2) the radiation spectrum can be represented by three delta functions corresponding to Lyman continuum, Lyman alpha, and softer radiation. These calculations are used to develop models for the H II blisters M17 A and 30 Doradus, and also first order parameters for a sample of other well-studied galactic H II regions. It is concluded that the observations are well explained by an ionizing object in a density gradient, without the need for peculiar dust properties or distribution.

  17. A multi-wavelength study of nuclear activity and environment of a low power radio galaxy CTD 86

    CERN Document Server

    Pandge, M B; Singh, K P; Patil, M K

    2012-01-01

    We present multiwavelength X-ray, optical and radio study of the Fanaroff & Riley class I radio galaxy CTD 86 based on \\xmm{}, \\rosat{}, Sloan Digital Sky Survey (SDSS), Vainu Bappu Telescope (VBT) observations and the Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey. X-ray emission from CTD 86 originates from two components - diffuse thermal emission from hot gas ($kT\\sim 0.9\\kev$, $n_e\\sim 10^{-3}{\\rm cm^{-3}}$, $L_X \\sim 5\\times10^{42}{\\rm ergs s^{-1}}$ and size $\\sim 186{\\rm kpc}$), and a central point source representing the active nucleus. The hot gaseous environment of CTD 86 is similar to those found in galaxy groups or bright early-type galaxies. We found no clear signature of radio-lobes interacting with the diffuse hot gas. X-ray emission from the active nucleus is well described by an intrinsically absorbed ($N_H \\sim 5.9\\times10^{22}{\\rm cm^{-2}}$) power law ($\\Gamma \\sim 1.5$) with a $2-10\\kev$ luminosity $L_X \\sim 2.1\\times10^{42}{\\rm ergs s^{-1}}$. CTD 86 has a weak optic...

  18. On the Visibility of Prominence Fine Structures at Radio Millimeter Wavelengths

    Science.gov (United States)

    Heinzel, P.; Berlicki, A.; Bárta, M.; Karlický, M.; Rudawy, P.

    2015-07-01

    Prominence temperatures have so far mainly been determined by analyzing spectral line shapes, which is difficult when the spectral lines are optically thick. The radio spectra in the millimeter range offer a unique possibility to measure the kinetic temperature. However, studies in the past used data with insufficient spatial resolution to resolve the prominence fine structures. The aim of this article is to predict the visibility of prominence fine structures in the submillimeter/millimeter (SMM) domain, to estimate their brightness temperatures at various wavelengths, and to demonstrate the feasibility and usefulness of future high-resolution radio observations of solar prominences with ALMA ( Atacama Large Millimeter-submillimeter Array). Our novel approach is the conversion of H coronagraphic images into microwave spectral images. We show that the spatial variations of the prominence brightness both in the H line and in the SMM domain predominantly depend on the line-of-sight emission measure of the cool plasma, which we derive from the integrated intensities of the observed H line. This relation also offers a new possibility to determine the SMM optical thickness from simultaneous H observations with high resolution. We also describe how we determine the prominence kinetic temperature from SMM spectral images. Finally, we apply the ALMA image-processing software Common Astronomy Software Applications (CASA) to our simulated images to assess what ALMA would detect at a resolution level that is similar to the coronagraphic H images used in this study. Our results can thus help in preparations of first ALMA prominence observations in the frame of science and technical verification tests.

  19. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    Science.gov (United States)

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes.

  20. The Chromospheric Solar Limb Brightening at Radio, Millimeter, Sub-millimeter, and Infrared Wavelengths

    CERN Document Server

    De la Luz, Victor

    2016-01-01

    Observations of the emission at radio, millimeter, sub-millimeter, and infrared wavelengths in the center of the solar disk validate the auto-consistence of semi-empirical models of the chromosphere. Theoretically, these models must reproduce the emission at the solar limb. In this work, we tested both the VALC and the C7 semi-empirical models by computing their emission spectrum in the frequency range from 2 GHz to 10 THz, at solar limb altitudes. We calculate the Sun's theoretical radii as well as their limb brightening. Non-Local Thermodynamic Equilibrium (NLTE) was computed for hydrogen, electron density, and H-. In order to solve the radiative transfer equation a 3D geometry was employed to determine the ray paths and Bremsstrahlung, H-, and inverse Bremsstrahlung opacity sources were integrated in the optical depth. We compared the computed solar radii with high resolution observations at the limb obtained by Clark (1994). We found that there are differences between observed and computed solar radii of ...

  1. Mach-Zehnder modulator modulated radio-over-fiber transmission system using dual wavelength linearization

    Science.gov (United States)

    Zhu, Ran; Hui, Ming; Shen, Dongya; Zhang, Xiupu

    2017-02-01

    In this paper, dual wavelength linearization (DWL) technique is studied to suppress odd and even order nonlinearities simultaneously in a Mach-Zehnder modulator (MZM) modulated radio-over-fiber (RoF) transmission system. A theoretical model is given to analyze the DWL employed for MZM. In a single-tone test, the suppressions of the second order harmonic distortion (HD2) and third order harmonic distortion (HD3) at the same time are experimentally verified at different bias voltages of the MZM. The measured spurious-free dynamic ranges (SFDRs) with respect to the HD2 and HD3 are improved simultaneously compared to using a single laser. The output P1 dB is also improved by the DWL technique. Moreover, a WiFi signal is transmitted in the RoF system to test the linearization for broadband signal. The result shows that more than 1 dB improvement of the error vector magnitude (EVM) is obtained by the DWL technique.

  2. The impact of SZ effect on cm-wavelength (1-30 GHz) observation of galaxy cluster radio relics

    CERN Document Server

    Basu, Kaustuv; Erler, Jens; Sommer, Martin

    2015-01-01

    (Abridged) Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power-law spectrum has been found, most noticeably in the famous 'Sausage' relic. In this paper, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed radio flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed radio fluxes can be diminished by a...

  3. The MOJAVE Chandra Sample: A Correlation Study of Blazars and Radio Galaxies in X-ray and Radio Wavelengths

    Science.gov (United States)

    Hogan, Brandon Scott

    2011-05-01

    The Chandra X-ray observatory has increased the quality and number of detections the X-ray regime since its launch in 1999. It is an important tool for studying the jets which are associated with Active Galactic Nuclei (AGN) and their possible emission mechanisms. The MOJAVE Chandra Sample (MCS) is a sample of 27 AGN which have been selected from the radio flux-limited MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) sample. The objects contained in the MOJAVE sample are traditionally associated with relativistically beamed jets that have small viewing angles. The MCS was created to study the correlation of X-ray and radio emission on kiloparsec scales. The complete sample is made up of all MOJAVE Fanaroff & Riley type II objects which have over 100 mJy of extended radio emission at 1.4 GHz and a radio structure of at least 3" in extent. Chandra observations have revealed X-ray and radio correlation in 21 of the 27 jets, bringing the detection rate to ˜78%. The selection criteria provides a quantitative method of discovering new X-ray jets associated with AGN from radio observations. The X-ray morphologies are usually well correlated with the radio emission, except for the sources which show extreme bending on the kiloparsec scale. The emission mechanism for these relativistically beamed quasars and radio galaxies can be interpreted as inverse Compton scattering off of the cosmic microwave background by the electrons in the jets (IC/CMB). The emission mechanism is reinforced by spectral energy distributions (SED) which model the emission mechanisms for sources with sufficient X-ray, optical, and radio data available. I have explored the effects of jet bending and jet deceleration in conjunction with the inverse Compton emission model and used different scenarios to derive best fit viewing angles and bulk Lorentz factors, which were calculated by using the superluminal speeds along with parameters that were derived from the IC/CMB model. The range of

  4. Analysis of the flare stars radio bursts parameters at the decameter wavelengths

    Science.gov (United States)

    Konovalenko, A. A.; Koliadin, V. L.; Boiko, A. I.; Zarka, Ph.; Griessmeier, J.-M.; Denis, L.; Coffre, A.; Rucker, H. O.; Zaitsev, V. V.; Litvinenko, G. V.; Melnik, V. N.; Stanislavsky, A. A.; Stepkin, S. V.; Mukha, D. V.; Brazhenko, A.; Leitzinger, M.; Odret, P.; Scherf, M.

    2012-09-01

    Detection of decameter sporadic radio emission from flare stars AD Leonis and EV Lacertae were carried out with UTR-2 radio telescope in the range of 16.5- 33 MHz during 2011 observational campaign. Criterion to discriminate particular events from stars and continuous sources in the main beam (ON) and two diverted beams (OFF), where true events should not appear, are discussed.

  5. Coherent Detection of Wavelength Division Multiplexed Phase-Modulated Radio-over-Fibre Signals

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2008-01-01

    A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km.......A WDM phase-modulated Radio-over-Fibre link using digital coherent detection is experimentally demonstrated. 3 times 50 Mb/s WDM transmission of a BPSK modulated 5 GHz RF carrier is achieved over 25 km....

  6. The Amateur Radio Club: want to be on the same wavelength?

    CERN Multimedia

    2008-01-01

    We all know about cosmic background radiation, but most of us are probably less familiar with other forms of radio signals at CERN. Here’s an opportunity to discover the CERN Amateur Radio Club (CARC) - callsign F6KAR - which is currently installing a new shortwave antenna. Two-way communications between radio stations are followed up with written confirmations, known as QSL cards, bearing the radio operators’ callsigns. The CARC’s collection contains more than 10 000 cards from all over the world. You don’t have to be NASA and have the most advanced technology to be able to contact space! The amateur radio enthusiasts of the CARC ably demonstrated this in 2005, when they succeeded in communicating with the International Space Station (ISS). The link-up was part of a school project in which thirty children came to CERN to find out about amateur radio and were given the opportunity to ask the astronauts a series of questions. ...

  7. Radio Wavelength Constraints on the Sources of the Far Infrared Background

    CERN Document Server

    Haarsma, D B

    1998-01-01

    The cosmic far infrared background detected recently by the COBE-DIRBE team is presumably due, in large part, to the far infrared (FIR) emission from all galaxies. We take the well-established correlation between FIR and radio luminosity for individual galaxies and apply it to the FIR background. We find that these sources make up about half of the extragalactic radio background, the other half being due to AGN. This is in agreement with other radio observations, which leads us to conclude that the FIR-radio correlation holds well for the very faint sources making up the FIR background, and that the FIR background is indeed due to star-formation activity (not AGN or other possible sources). If these star-forming galaxies have a radio spectral index between 0.4 and 0.8, and make up 40 to 60% of the extragalactic radio background, we find that they have redshifts between roughly 1 and 2, in agreement with recent estimates by Madau et al. of the redshift of peak star-formation activity. We compare the observed e...

  8. A possible FRB/GRB connection: towards a multi-wavelength campaign to unveil the nature of Fast Radio Bursts

    CERN Document Server

    Zhang, Bing

    2013-01-01

    The physical nature of Fast Radio Bursts (FRBs), a new type of cosmological transients discovered recently, is not known. It has been suggested that FRBs can be produced when a spinning supra-massive neutron star loses centrifugal support and collapses to a black hole. Here we suggest that such implosions can happen in supra-massive neutron stars shortly (hundreds to thousands of seconds) after their births, and an observational signature of such implosions may have been observed in the X-ray afterglows of some long and short gamma-ray bursts (GRBs). Within this picture, a small fraction of FRBs would be physically connected to GRBs. We discuss possible multi-wavelength electromagnetic signals and gravitational wave signals that might be associated with FRBs, and propose an observational campaign to unveil the physical nature of FRBs. In particular, we strongly encourage a rapid radio follow-up observation of GRBs starting from 100 s after GRB triggers.

  9. Space-based Aperture Array For Ultra-Long Wavelength Radio Astronomy

    CERN Document Server

    Rajan, Raj Thilak; Bentum, Mark; Klein-Wolt, Marc; Belien, Frederik; Arts, Michel; Saks, Noah; van der Veen, Alle-Jan

    2015-01-01

    The past decade has seen the rise of various radio astronomy arrays, particularly for low-frequency observations below 100MHz. These developments have been primarily driven by interesting and fundamental scientific questions, such as studying the dark ages and epoch of re-ionization, by detecting the highly red-shifted 21cm line emission. However, Earth-based radio astronomy below frequencies of 30MHz is severely restricted due to man-made interference, ionospheric distortion and almost complete non-transparency of the ionosphere below 10MHz. Therefore, this narrow spectral band remains possibly the last unexplored frequency range in radio astronomy. A straightforward solution to study the universe at these frequencies is to deploy a space-based antenna array far away from Earths' ionosphere. Various studies in the past were principally limited by technology and computing resources, however current processing and communication trends indicate otherwise. We briefly present the achievable science cases, and dis...

  10. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2009-01-01

    The recent years have seen breathtaking progress in technology, especially in the receiver and digital technologies relevant for radio astronomy, which has at the same time advanced to shorter wavelengths. This is the updated and completely revised 5th edition of the most used introductory text in radio astronomy. It presents a unified treatment of the entire field from centimeter to sub-millimeter wavelengths. Topics covered include instruments, sensitivity considerations, observational methods and interpretations of the data recorded with both single dishes and interferometers. This text is useful to both students and experienced practicing astronomers. Besides making major updates and additions throughout the book, the authors have re-organized a number of chapters to more clearly separate basic theory from rapidly evolving practical aspects. Further, problem sets have been added at the end of each chapter.

  11. Search of the radio emission from flare stars at decameter wavelengths

    Science.gov (United States)

    Boiko, A. I.; Konovalenko, A. A.; Koliadin, V. L.; Melnik, V. N.

    2012-11-01

    Observations of the two M-dwarf flare stars (AD Leonis and EV Lacertae), which were carried out with the radio telescope UTR-2 (Kharkiv, Ukraine) in the range of 16.5-33 MHz, are presented. 167 events of radio emission from AD Leo and 73 events from EV Lac were detected in the period of 2010-2011. These events were considered as stellar emission in ON-OFF regime of observations. The morphology of the probable events in the form of bursts from flare stars is considered and frequency drift rates, durations and fluxes of the bursts are analysed.

  12. The repeating Fast Radio Burst FRB 121102: Multi-wavelength observations and additional bursts

    CERN Document Server

    Scholz, P; Hessels, J W T; Chatterjee, S; Cordes, J M; Kaspi, V M; Wharton, R S; Bassa, C G; Bogdanov, S; Camilo, F; Crawford, F; Deneva, J; van Leeuwen, J; Lynch, R; Madsen, E C; McLaughlin, M A; Mickaliger, M; Parent, E; Patel, C; Ransom, S M; Seymour, A; Stairs, I H; Stappers, B W; Tendulkar, S P

    2016-01-01

    We report on radio and X-ray observations of the only known repeating Fast Radio Burst (FRB) source, FRB 121102. We have detected six additional radio bursts from this source: five with the Green Bank Telescope at 2 GHz, and one at 1.4 GHz at the Arecibo Observatory for a total of 17 bursts from this source. All have dispersion measures consistent with a single value ($\\sim559$ pc cm$^{-3}$) that is three times the predicted maximum Galactic value. The 2-GHz bursts have highly variable spectra like those at 1.4 GHz, indicating that the frequency structure seen across the individual 1.4 and 2-GHz bandpasses is part of a wideband process. X-ray observations of the FRB 121102 field with the Swift and Chandra observatories show at least one possible counterpart; however, the probability of chance superposition is high. A radio imaging observation of the field with the Jansky Very Large Array at 1.6 GHz yields a 5$\\sigma$ upper limit of 0.3 mJy on any point-source continuum emission. This upper limit, combined wit...

  13. Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    Science.gov (United States)

    2010-10-01

    been observed from brown dwarfs (Hallinan et al. 2007) and formerly radio- quiet magnetars ( Camilo et al. 2006); single or highly intermittent pulses...O., Bacelar, J., et al. 2010, A&A, in press Burke-Spolaor, S., & Bailes, M. 2010, MNRAS, 402, 855 Camilo , F., Ransom, S. M., Halpern, J. P., Reynolds

  14. The first multi-wavelength campaign of AXP 4U 0142+61 from radio to hard X-rays

    CERN Document Server

    Den Hartog, P R; Hermsen, W; Rea, N; Durant, M; Stappers, B; Kaspi, V M; Dib, R

    2006-01-01

    For the first time a quasi-simultaneous multi-wavelength campaign has been performed on an Anomalous X-ray Pulsar from the radio to the hard X-ray band. 4U 0142+61 was an INTEGRAL target for 1 Ms in July 2005. During these observations it was also observed in the X-ray band with Swift and RXTE, in the optical and NIR with Gemini North and in the radio with the WSRT. In this paper we present the source-energy distribution. The spectral results obtained in the individual wave bands do not connect smoothly; apparently components of different origin contribute to the total spectrum. Remarkable is that the INTEGRAL hard X-ray spectrum (power-law index 0.79 +/- 0.10) is now measured up to an energy of ~230 keV with no indication of a spectral break. Extrapolation of the INTEGRAL power-law spectrum to lower energies passes orders of magnitude underneath the NIR and optical fluxes, as well as the low ~30 microJy (2 sigma) upper limit in the radio band.

  15. An Eruptive Hot-Channel Structure Observed at Metric Wavelength as a Moving Type-IV Solar Radio Burst

    CERN Document Server

    Vasanth, V; Feng, Shiwei; Ma, Suli; Du, Guohui; Song, Hongqiang; Kong, Xiangliang; Wang, Bing

    2016-01-01

    Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structure in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($\\sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structu...

  16. Observations of solar radio emissions in meter wavelengths carried by CALLISTO-BR

    Science.gov (United States)

    Fernandes, F. C. R.; Silva, R. D. C.; Sodré, Z. A. L.; Costa, J. E. R.; Sawant, H. S.

    2012-04-01

    Two Callisto-type (Compound Astronomical Low-cost Low frequency Instrument for Spectroscopy and Transportable Observatory) spectrographs are in operation in Cachoeira Paulista, Brazil, since 2010. The CALLISTO-BR integrates the e-Callisto network consisting of several radio spectrographs distributed around the world, for provide continuous monitoring (24 hours) of the solar activity in the meter frequency range of 45 - 870 MHz. The solar radio emissions observations carried out by Callisto can be used as a diagnostic of several physical processes on the Sun. Here, we present the observations of several bursts recorded by CALLISTO-BR, such as type I bursts associated with a long lasting noise storm, recorded on March 30, 2010 in the typical frequency band around 200 MHz; a group of normal drifting type III bursts recorded in March 31, 2010 and also in February 15, 2011 and a rarely observed broadband (~180 - 800 MHz) continuum emission presenting positive frequency drifting (from low to high frequencies), suggesting the source is moving towards photosphere. Observations of type II and type IV bursts were also recorded. Details of these and many other solar radio emissions recorded by CALLISTO-BR will be presented and their implications for the solar activity and space weather investigations will be discussed.

  17. The impact of the SZ effect on cm-wavelength (1-30 GHz) observations of galaxy cluster radio relics

    Science.gov (United States)

    Basu, Kaustuv; Vazza, Franco; Erler, Jens; Sommer, Martin

    2016-07-01

    Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power law spectrum has been found, most noticeably in the famous "Sausage" relic. Such spectral steepening is seen as an evidence for non-standard relic models, such as ones requiring seed electron population with a break in their energy spectrum. In this paper, however, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed synchrotron flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed synchrotron fluxes can be diminished by a factor of several from their true values. At higher redshift the contamination gets stronger due to the redshift independence of the SZ effect. Interferometric observations are not immune to this contamination, since the change in the SZ signal occurs roughly at the same length scale as the synchrotron emission, although there the flux loss is less severe than single-dish observations. Besides presenting this warning to observers, we suggest that the negative contribution from the SZ effect can be regarded as one of the best evidence for the physical association between radio relics and shock waves. We present a simple analytical approximation for the synchrotron-to-SZ flux ratio, based on a theoretical radio relic model that connects the nonthermal emission to the thermal gas properties

  18. DISCOVERY OF A METER-WAVELENGTH RADIO TRANSIENT IN THE SWIRE DEEP FIELD: 1046+59

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, T. R.; Kassim, N. E. [US Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States); Hyman, S. D. [Department of Physics and Engineering, Sweet Briar College, Sweet Briar, VA 24595 (United States); Lazio, T. J. W., E-mail: ted.jaeger.ctr@nrl.navy.mill [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91106 (United States)

    2012-04-15

    We report the results of a low frequency radio variability and slow transient search using archival observations from the Very Long Array. We selected six 325 MHz radio observations from the spring of 2006, each centered on the Spitzer-Space-Telescope Wide-area Infrared Extragalactic Survey (SWIRE) Deep Field: 1046+59. Observations were spaced between one day to three months, with a typical single-epoch peak flux sensitivity below 0.2 mJy beam{sup -1} near the field pointing center. We describe the observation parameters, data post-processing, and search methodology used to identify variable and transient emission. Our search revealed multiple variable sources and the presence of one, day-scale transient event with no apparent astronomical counterpart. This detection implies a transient rate of 1 {+-} 1 event per 6.5 deg{sup 2} per 72 observing hours in the direction of 1046+59 and an isotropic transient surface density {Sigma} = 0.12 deg{sup -2}at 95% confidence for sources with average peak flux density higher than 2.1 mJy over 12 hr.

  19. The Crab Pulsar at Centimeter Wavelengths II: Single Pulses

    CERN Document Server

    Hankins, T H; Jones, G

    2016-01-01

    We have carried out new, high-frequency, high-time-resolution observations of the Crab pulsar. Combining these with our previous data, we characterize bright single pulses associated with the Main Pulse, both the Low-Frequency and High-Frequency Interpulses, and the two High-Frequency Components. Our data include observations at frequencies ranging from 1 to 43 GHz with time resolution down to a fraction of a nanosecond. We find at least two types of emission physics are operating in this pulsar. Both Main Pulses and Low-Frequency Interpulses, up to about 10 GHz, are characterized by nanoshot emission - overlapping clumps of narrow-band nanoshots, each with its own polarization signature. High-Frequency Interpulses, between 5 and 30 GHz, are characterized by spectral band emission - linearly polarized emission containing about 30 proportionately spaced spectral bands. We cannot say whether the longer-duration High-Frequency Component pulses are due to a scattering process, or if they come from yet another typ...

  20. A molecular survey of comet C/2014 Q2 (Lovejoy) at radio wavelengths

    Science.gov (United States)

    Biver, N.; Moreno, R.; Boissier, J.; Lis, D.; Bockelée-Morvan, D.; Crovisier, J.; Colom, P.; Paubert, G.; Milam, S.; Sandqvist, Aa; Hjalmarson, A.; Lundin, S.; Karlsson, T.; Battelino, M.; Frisk, U.; Murtagh, D.; Nordh, L.

    2015-10-01

    Comet C/2014 Q2 (Lovejoy) is a long period Oort Cloud comet (original orbital period = 11030 years, inclination = 80.3°) which passed perihelion at 1.290 AU from the Sun on 30 January 2015. It brightened very quickly as it approached the Sun and the Earth (perigee at 0.469 AU on 7 January 2015) to reach naked eye visibility (m1 = 4) and a total production rate approaching QH2O = 1030 molec.s-1. This comet was intrinsically the most active comet since C/1995 O1 (Hale-Bopp) and we triggered targetof- opportunity observations with the IRAM-30m, NOEMA, ALMA, CSO, Nançay and Odin radiotelescopes. The water outgassing was monitored via observations of the OH radical at 18-cm with the Nançay radiotelescope from December to March 2015. Observations of H2O and H18 2 O with the Odin submillimeter space telescope were carried out between 30 January and 03 February. The comet was observed with the IRAM-30m radiotelescope in Spain on January 13.8, 15.8 and 16.8, with some complementary observations on January 23.7, 24.7, 25.7 and 26.7 under good weather. One objective was to support the ALMA program 2013.1.00686.T (PI S. Milam). It was also observed with NOEMA (25.8 and 28.8 January, PI J. Boissier) and shortly with CSO on February 13.3 and 16.3 UT. We will present here the analysis of the IRAM data set, which is the most sensitive survey of the molecular content of a comet ever obtained since comet Hale- Bopp. We covered #48 GHz of the 1mm band (Fig.1) enabling the detection of over 20 molecules plus radicals and isotopologues. We will present themeasuredmolecular abundances and sensitive upper limits obtained on a number of complex molecules and of particular (prebiotic) interest. The comet seems relatively depleted in organic molecules compared to our sample of comets investigated at submillimeter wavelengths ([6, 1, 2, 3, 4, 5]).

  1. A multi-wavelength study of the radio source G296.7-0.9: confirmation as a Galactic supernova remnant

    CERN Document Server

    Robbins, W J; Murphy, T; Reeves, S; Green, A J

    2011-01-01

    We present a multi-wavelength study of the radio source G296.7-0.9. This source has a bilateral radio morphology, a radio spectral index of -0.5 +/- 0.1, sparse patches of linear polarisation, and thermal X-rays with a bright arc near the radio boundary. Considering these characteristics, we conclude that G296.7-0.9 is a supernova remnant (SNR). The age and morphology of the SNR in the context of its environment suggest that the source is co-located with an HII region, and that portions of the shock front have broken out into a lower density medium. We see no evidence for a neutron star or pulsar wind nebula associated with SNR G296.7-0.9.

  2. The Dynamic Radio Sky: An Opportunity for Discovery

    CERN Document Server

    Lazio, J; Bower, G C; Cordes, J; Croft, S; Hyman, S; Law, C; McLaughlin, M

    2009-01-01

    The time domain of the sky has been only sparsely explored. Nevertheless, recent discoveries from limited surveys and serendipitous discoveries indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have found not-yet identified radio transients without optical or high-energy hosts. In addition to the known classes of radio transients, possible other classes of objects include extrapolations from known classes and exotica such as orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, magnetars, and transmissions from extraterrestrial civilizations. Over the next decade, meter- and centimeter-wave radio telescopes with improved sensitivity, wider fields of view, and flexible digital signal processing will be able to explore radio transient parameter...

  3. MULTI-WAVELENGTH OBSERVATIONS OF THE RADIO MAGNETAR PSR J1622-4950 AND DISCOVERY OF ITS POSSIBLY ASSOCIATED SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gemma E.; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics A29, The University of Sydney, NSW 2006 (Australia); Slane, Patrick O.; Drake, Jeremy J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rea, Nanda [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell, 2a planta, 08193, Bellaterra, Barcelona (Spain); Kaplan, David L. [Department of Physics, University of Wisconsin, Milwaukee, WI 53201 (United States); Posselt, Bettina [Department of Astronomy and Astrophysics, Pennsylvania State University, PA 16802 (United States); Levin, Lina; Bailes, Matthew; Ramesh Bhat, N. D. [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, VIC 3122 (Australia); Johnston, Simon; Burke-Spolaor, Sarah [Australia Telescope National Facility, CSIRO Astronomy and Space Science, P.O. Box 76, Epping, NSW 1710 (Australia); Murray, Stephen S. [Department of Physics and Astronomy, John Hopkins University, Baltimore, MD 21218 (United States); Brogan, Crystal L. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Bates, Samuel [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom); Benjamin, Robert A. [Department of Physics, University of Wisconsin, Whitewater, WI 53190 (United States); Burgay, Marta; D' Amico, Nichi; Esposito, Paolo [INAF/Osservatorio Astronomico di Cagliari, 09012 Capoterra (Italy); Chakrabarty, Deepto, E-mail: g.anderson@physics.usyd.edu.au [MIT Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); and others

    2012-05-20

    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of {approx}50 over 3.7 years, decaying exponentially with a characteristic time of {tau} = 360 {+-} 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nature and which could possibly be a previously undiscovered supernova remnant (SNR). If G333.9+0.0 is an SNR then the estimates of its size and age, combined with the close proximity and reasonable implied velocity of PSR J1622-4950, suggest that these two objects could be physically associated.

  4. Multi-wavelength Observations of the Radio Magnetar PSR J1622-4950 and Discovery of its Possibly Associated Supernova Remnant

    CERN Document Server

    Anderson, Gemma E; Slane, Patrick O; Rea, Nanda; Kaplan, David L; Posselt, Bettina; Levin, Lina; Johnston, Simon; Murray, Stephen S; Brogan, Crystal L; Bailes, Matthew; Bates, Samuel; Benjamin, Robert A; Bhat, N D Ramesh; Burgay, Marta; Burke-Spolaor, Sarah; Chakrabarty, Deepto; D'Amico, Nichi; Drake, Jeremy J; Esposito, Paolo; Grindlay, Jonathan E; Hong, Jaesub; Israel1, G L; Keith, Michael J; Kramer, Michael; Lazio, T Joseph W; Lee, Julia C; Mauerhan, Jon C; Milia, Sabrina; Possenti, Andrea; Stappers, Ben; Steeghs, Danny T H

    2012-01-01

    We present multi-wavelength observations of the radio magnetar PSR J1622-4950 and its environment. Observations of PSR J1622-4950 with Chandra (in 2007 and 2009) and XMM (in 2011) show that the X-ray flux of PSR J1622-4950 has decreased by a factor of ~50 over 3.7 years, decaying exponentially with a characteristic time of 360 +/- 11 days. This behavior identifies PSR J1622-4950 as a possible addition to the small class of transient magnetars. The X-ray decay likely indicates that PSR J1622-4950 is recovering from an X-ray outburst that occurred earlier in 2007, before the 2007 Chandra observations. Observations with the Australia Telescope Compact Array show strong radio variability, including a possible radio flaring event at least one and a half years after the 2007 X-ray outburst that may be a direct result of this X-ray event. Radio observations with the Molonglo Observatory Synthesis Telescope reveal that PSR J1622-4950 is 8' southeast of a diffuse radio arc, G333.9+0.0, which appears non-thermal in nat...

  5. The road to OLFAR - a roadmap to interferometric long-wavelength radio astronomy using miniaturized distributed space systems

    NARCIS (Netherlands)

    Engelen, Steven; Quillien, Kevin A.; Verhoeven, Chris; Noroozi, Arash; Sundaramoorthy, Prem; Veen, van der Alle-Jan; Rajan, Raj Thilak; Boonstra, Albert-Jan; Bentum, Mark; Meijerink, Arjan; Budianu, Alex

    2013-01-01

    The Orbiting Low Frequency Antennas for Radio Astronomy (OLFAR) project aims to develop a space-based low frequency radio telescope that will explore the universe's so-called dark ages, map the interstellar medium, and discover planetary and solar bursts in other solar systems. The telescope, compos

  6. The radio-on-fiber-wavelength-division-multiplexed-passive-optical network (WDM-RoF-PON) for wireless and wire layout with linearly-polarized dual-wavelength fiber laser and carrier reusing

    Science.gov (United States)

    Ji, Wei; Chang, Jun

    2013-07-01

    In this paper, we design a WDM-RoF-PON based on linearly-polarized dual-wavelength fiber laser and CSRZ-DPSK, which can achieve wire-line and wireless access synchronously. With the CSRZ-DPSK modulation, the wireless access in ONU can save RF source and the frequency of radio carrier can be controlled by OLT. The dual-wavelength fiber laser is the union light source of WDM-PON with polarization multiplexing. By the RSOA and downstream light source reusing, the ONU can save omit laser source and makes the WDM-PON to be colorless. The networking has the credible transmission property, including wireless access and fiber transmission. The networking also has excellent covering range.

  7. Radio physics of the sun; Proceedings of the Symposium, University of Maryland, College Park, Md., August 7-10, 1979

    Science.gov (United States)

    Kundu, M. R. (Editor); Gergely, T. E.

    1980-01-01

    Papers are presented in the areas of the radio characteristics of the quiet sun and active regions, the centimeter, meter and decameter wavelength characteristics of solar bursts, space observations of low-frequency bursts, theoretical interpretations of solar active regions and bursts, joint radio, visual and X-ray observations of active regions and bursts, and the similarities of stellar radio characteristics to solar radio phenomena. Specific topics include the centimeter and millimeter wave characteristics of the quiet sun, radio fluctuations arising upon the transit of shock waves through the transition region, microwave, EUV and X-ray observations of active region loops and filaments, interferometric observations of 35-GHz radio bursts, emission mechanisms for radio bursts, the spatial structure of microwave bursts, observations of type III bursts, the statistics of type I bursts, and the numerical simulation of type III bursts. Attention is also given to the theory of type IV decimeter bursts, Voyager observations of type II and III bursts at kilometric wavelengths, radio and whitelight observations of coronal transients, and the possibility of obtaining radio observations of current sheets on the sun.

  8. Radio-selected Galaxies in Very Rich Clusters at z < 0.25 I. Multi-wavelength Observations and Data Reduction Techniques

    CERN Document Server

    Morrison, G E; Ledlow, M J; Keel, W C; Hill, J M; Voges, W; Herter, T L

    2002-01-01

    Radio observations were used to detect the `active' galaxy population within rich clusters of galaxies in a non-biased manner that is not plagued by dust extinction or the K-correction. We present wide-field radio, optical (imaging and spectroscopy), and ROSAT All-Sky Survey (RASS) X-ray data for a sample of 30 very rich Abell (R > 2) cluster with z 2E22 W/Hz) galaxy population within these extremely rich clusters for galaxies with M_R 5 M_sun/yr) and active galactic nuclei (AGN) populations contained within each cluster. Archival and newly acquired redshifts were used to verify cluster membership for most (~95%) of the optical identifications. Thus we can identify all the starbursting galaxies within these clusters, regardless of the level of dust obscuration that would affect these galaxies being identified from their optical signature. Cluster sample selection, observations, and data reduction techniques for all wavelengths are discussed.

  9. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    CERN Document Server

    Herzog, Andreas; Middelberg, Enno; Spitler, Lee R; Leipski, Christian; Parker, Quentin A

    2015-01-01

    Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts >=2. This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS and on the potential link between IFRS and high-redshift radio galaxies (HzRGs). A sample of six IFRS was observed with the Herschel Space Observatory between 100 um and 500 um. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. All six observed IFRS were undetected in all five Herschel far-infrared ...

  10. Detection of Fast Radio Variability of Radio Objects with Continuous Optical Spectra

    Science.gov (United States)

    Pustilnik, S. A.

    The results of the search for rapid variability (T > 1 day) in centimeter range using RATAN-600 in 14 radio objects with contiuous optical spectra are given. In 9 of them, namely 0109+224, 0139-097, 0300+471, 0306+102, 0754+100, 0818-128, 0823-223, 1034-293 and 1538+149 the rapid variability is detected at the wavelengths either 3.9 or 8.2 cm with the confidence probability > 0.98. The conclusion is reached on the close correlation of the presence of the rapid radiovariability and the relative power of non-thermal optical continuum.

  11. Infrared-faint radio sources remain undetected at far-infrared wavelengths. Deep photometric observations using the Herschel Space Observatory

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Spitler, L. R.; Leipski, C.; Parker, Q. A.

    2015-08-01

    Context. Showing 1.4 GHz flux densities in the range of a few to a few tens of mJy, infrared-faint radio sources (IFRS) are a type of galaxy characterised by faint or absent near-infrared counterparts and consequently extreme radio-to-infrared flux density ratios up to several thousand. Recent studies showed that IFRS are radio-loud active galactic nuclei (AGNs) at redshifts ≳2, potentially linked to high-redshift radio galaxies (HzRGs). Aims: This work explores the far-infrared emission of IFRS, providing crucial information on the star forming and AGN activity of IFRS. Furthermore, the data enable examining the putative relationship between IFRS and HzRGs and testing whether IFRS are more distant or fainter siblings of these massive galaxies. Methods: A sample of six IFRS was observed with the Herschel Space Observatory between 100 μm and 500 μm. Using these results, we constrained the nature of IFRS by modelling their broad-band spectral energy distribution (SED). Furthermore, we set an upper limit on their infrared SED and decomposed their emission into contributions from an AGN and from star forming activity. Results: All six observed IFRS were undetected in all five Herschel far-infrared channels (stacking limits: σ = 0.74 mJy at 100 μm, σ = 3.45 mJy at 500 μm). Based on our SED modelling, we ruled out the following objects to explain the photometric characteristics of IFRS: (a) known radio-loud quasars and compact steep-spectrum sources at any redshift; (b) starburst galaxies with and without an AGN and Seyfert galaxies at any redshift, even if the templates were modified; and (c) known HzRGs at z ≲ 10.5. We find that the IFRS analysed in this work can only be explained by objects that fulfil the selection criteria of HzRGs. More precisely, IFRS could be (a) known HzRGs at very high redshifts (z ≳ 10.5); (b) low-luminosity siblings of HzRGs with additional dust obscuration at lower redshifts; (c) scaled or unscaled versions of Cygnus A at any

  12. 5 GHz 200 Mbit/s radio over polymer fibre link with envelope detection at 650 nm wavelength

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Jensen, Jesper Bevensee; Yu, Xianbin;

    2008-01-01

    All-optical envelope detection of a 5 GHz 200 Mbit/s modulated radio frequency signal is achieved using a 650 nm resonant cavity light emitting diode. Error-free transmission is achieved over a 50 m-long link of 1 mm diameter graded index polymer optical fibre (POF). The presented system has...... potential applications in low cost and low complexity short range wireless and wireline POF-based transmission links....

  13. RADIO FLARES FROM GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Kopač, D.; Mundell, C. G.; Kobayashi, S.; Virgili, F. J. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Harrison, R. [Department of Astrophysics, School of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv (Israel); Japelj, J.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana (Slovenia); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, I-44122 Ferrara (Italy); Melandri, A., E-mail: D.Kopac@ljmu.ac.uk [INAF/Brera Astronomical Observatory, via Bianchi 46, I-23807, Merate (Italy)

    2015-06-20

    We present predictions of centimeter and millimeter radio emission from reverse shocks (RSs) in the early afterglows of gamma-ray bursts (GRBs) with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy, and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parameterization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. and Melandri et al. in which the typical frequency of the RS was suggested to lie at radio rather than optical wavelengths at early times, we show that the brightest and most distinct RS radio signatures are detectable up to 0.1–1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later optical peaks, high isotropic energies, lower circumburst medium densities, and at observing frequencies that are less prone to synchrotron self-absorption effects—typically above a few GHz. Given recent detections of polarized prompt gamma-ray and optical RS emission, we suggest that detection of polarized radio/millimeter emission will unambiguously confirm the presence of low-frequency RSs at early time.

  14. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    Science.gov (United States)

    Hota, Ananda; Konar, C.; Stalin, C. S.; Vaddi, Sravani; Mohanty, Pradeepta K.; Dabhade, Pratik; Dharmik Bhoga, Sai Arun; Rajoria, Megha; Sethi, Sagar

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny's Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and

  15. Tracking Galaxy Evolution Through Low-Frequency Radio Continuum Observations using SKA and Citizen-Science Research using Multi-Wavelength Data

    Indian Academy of Sciences (India)

    Ananda Hota; C. Konar; C. S. Stalin; Sravani Vaddi; Pradeepta K. Mohanty; Pratik Dabhade; Sai Arun Dharmik Bhoga; Megha Rajoria; Sagar Sethi

    2016-12-01

    We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and

  16. Back to the future: science and technology directions for radio telescopes of the twenty-first century

    Science.gov (United States)

    Cordes, James M.

    2009-08-01

    The early days of radio astronomy showed incredibly diverse experimentation in ways to sample the electromagnetic spectrum at radio wavelengths. In addition to obtaining adequate sensitivity by building large collection areas, a primary goal also was to achieve sufficient angular resolution to localize radio sources for multi-wavelength identification. This led to many creative designs and the invention of aperture synthesis and VLBI. Some of the basic telescope types remain to the present day, now implemented across the entire radio spectrum from wavelengths of tens of meters to submillimeter wavelengths. In recent years, as always, there is still the drive for greater sensitivity but a primary goal is now to achieve very large fields of view to complement high resolution and frequency coverage, leading to a new phase of experimentation. This is the “back to the future” aspect of current research and development for next-generation radio telescopes. In this paper I summarize the scientific motivations for development of new technology and telescopes since about 1990 and going forward for the next decade and longer. Relevant elements include highly optimized telescope optics and feed antenna designs, innovative fabrication methods for large reflectors and dipole arrays, digital implementations, and hardware vs. software processing. The emphasis will be on meter and centimeter wavelength telescopes but I include a brief discussion of millimeter wavelengths to put the longer wavelength enterprises into perspective. I do not discuss submillimeter wavelengths because they are covered in other papers.

  17. Type IIP Supernova SN 2004et: A Multi-Wavelength Study in X-Ray, Optical and Radio

    CERN Document Server

    Misra, Kuntal; Chandra, Poonam; Bhattacharya, D; Ray, Alak K; Sagar, Ram; Lewin, Walter H G

    2007-01-01

    We present X-ray, broad band optical and low frequency radio observations of the bright type IIP supernova SN 2004et. The \\cxo observed the supernova at three epochs, and the optical coverage spans a period of $\\sim$ 470 days since explosion. The X-ray emission softens with time, and we characterise the X-ray luminosity evolution as $\\Lx \\propto t^{-0.4}$. We use the observed X-ray luminosity to estimate a mass-loss rate for the progenitor star of $\\sim \\ee{2}{-6} M_\\odot \\mathrm{yr}^{-1}$. The optical light curve shows a pronounced plateau lasting for about 110 days. Temporal evolution of photospheric radius and color temperature during the plateau phase is determined by making black body fits. We estimate the ejected mass of $^{56}$Ni to be 0.06 $\\pm$ 0.03 M$_\\odot$. Using the expressions of Litvinova & Nad\\"{e}zhin (1985) we estimate an explosion energy of (0.98 $\\pm$ 0.25) $\\times 10^{51}$ erg. We also present a single epoch radio observation of SN 2004et. We compare this with the predictions of the m...

  18. Novel wavelength division multiplex-radio over fiber-passive optical network architecture for multiple access points based on multitone generation and triple sextupling frequency

    Science.gov (United States)

    Cheng, Guangming; Guo, Banghong; Liu, Songhao; Huang, Xuguang

    2014-01-01

    An innovative wavelength division multiplex-radio over fiber-passive optical network architecture for multiple access points (AP) based on multitone generation and triple sextupling frequency is proposed and demonstrated. A dual-drive Mach-Zehnder modulator (DD-MZM) is utilized to realize the multitone generation. Even sidebands are suppressed to make the adjacent frequency separation twice the frequency of the local oscillator by adjusting the modulation voltage of the DD-MZM. Due to adopting three fiber Bragg gratings to reflect the unmodulated sidebands for uplink communications source free at optical network unit (ONU), is achieved. The system can support at least three APs at one ONU simultaneously with a 30 km single-mode fiber (SMF) transmission and 5 Gb/s data rate both for uplink and downlink communications. The theoretical analysis and simulation results show the architecture has an excellent performance and will be a promising candidate in future hybrid access networks.

  19. All-optical frequency downconversion technique utilizing a four-wave mixing effect in a single semiconductor optical amplifier for wavelength division multiplexing radio-over-fiber applications.

    Science.gov (United States)

    Kim, Hyoung-Jun; Song, Jong-In

    2012-03-26

    An all-optical frequency downconversion utilizing a four-wave mixing effect in a single semiconductor optical amplifier (SOA) was experimentally demonstrated for wavelength division multiplexing (WDM) radio-over-fiber (RoF) applications. Two WDM optical radio frequency (RF) signals having 155 Mbps differential phase shift keying (DPSK) data at 28.5 GHz were simultaneously down-converted to two WDM optical intermediate frequency (IF) signals having an IF frequency of 4.5 GHz by mixing with an optical local oscillator (LO) signal having a LO frequency of 24 GHz in the SOA. The bit-error-rate (BER) performance of the RoF up-links with different optical fiber lengths employing all-optical frequency downconversion was investigated. The receiver sensitivity of the RoF up-link with a 6 km single mode fiber and an optical IF signal in an optical double-sideband format was approximately -8.5 dBm and the power penalty for simultaneous frequency downconversion was approximately 0.63 dB. The BER performance showed a strong dependence on the fiber length due to the fiber dispersion. The receiver sensitivity of the RoF up-link with the optical IF signal in the optical single-sideband format was reduced to approximately -17.4 dBm and showed negligible dependence on the fiber length.

  20. Workshop on Satellite Power Systems (SPS) effects on optical and radio astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, G.M.; Ekstrom, P.A. (eds.)

    1980-04-01

    The impacts of the SPS on astronomy were concluded to be: increased sky brightness, reducing the effective aperture of terrestrial telescopes; microwave leakage radiation causing erroneous radioastronomical signals; direct overload of radioastronomical receivers at centimeter wavelengths; and unintentional radio emissions associated with massive amounts of microwave power or with the presence of large, warm structures in orbit causing the satellites to appear as individual stationary radio sources; finally, the fixed location of the geostationary satellite orbits would result in fixed regions of the sky being unusable for observations. (GHT)

  1. Remote beating of parallel or orthogonally polarized dual-wavelength optical carriers for 5G millimeter-wave radio-over-fiber link.

    Science.gov (United States)

    Wang, Huai-Yung; Chi, Yu-Chieh; Lin, Gong-Ru

    2016-08-08

    A novel millimeter-wave radio over fiber (MMW-RoF) link at carrier frequency of 35-GHz is proposed with the use of remotely beating MMW generation from reference master and injected slave colorless laser diode (LD) carriers at orthogonally polarized dual-wavelength injection-locking. The slave colorless LD supports lasing one of the dual-wavelength master modes with orthogonal polarizations, which facilitates the single-mode direct modulation of the quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data. Such an injected single-carrier encoding and coupled dual-carrier transmission with orthogonal polarization effectively suppresses the cross-heterodyne mode-beating intensity noise, the nonlinear modulation (NLM) and four-wave mixing (FWM) sidemodes during injection locking and fiber transmission. In 25-km single-mode fiber (SMF) based wireline system, the dual-carrier under single-mode encoding provides baseband 24-Gbit/s 64-QAM OFDM transmission with an error vector magnitude (EVM) of 8.8%, a bit error rate (BER) of 3.7 × 10-3, a power penalty of wireless transmission, the beat MMW carrier at 35 GHz can deliver the passband 16-QAM OFDM at 4 Gbit/s to show corresponding EVM and BER of 15.5% and 1.4 × 10-3, respectively, after 25-km SMF and 1.6-m free-space transmission.

  2. Radio flares from gamma-ray bursts

    CERN Document Server

    Kopac, D; Kobayashi, S; Virgili, F J; Harrison, R; Japelj, J; Guidorzi, C; Melandri, A; Gomboc, A

    2015-01-01

    We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB properties, such as peak optical brightness and time, isotropic equivalent gamma-ray energy and redshift, we simulate radio light curves in a framework generalized for any circumburst medium structure and including a parametrization of the shell thickness regime that is more realistic than the simple assumption of thick- or thin-shell approximations. Building on earlier work by Mundell et al. (2007) and Melandri et al. (2010) in which the typical frequency of the reverse shock was suggested to lie at radio, rather than optical wavelengths at early times, we show that the brightest and most distinct reverse-shock radio signatures are detectable up to 0.1 -- 1 day after the burst, emphasizing the need for rapid radio follow-up. Detection is easier for bursts with later opt...

  3. ALMA Science Verification Data: Millimeter Continuum Polarimetry of the Bright Radio Quasar 3C 286

    CERN Document Server

    Nagai, H; Paladino, R; Hull, C L H; Cortes, P; Moellenbrock, G; Fomalont, E; Asada, K; Hada, K

    2016-01-01

    We present full-polarization observations of the compact, steep-spectrum radio quasar 3C~286 made with the ALMA at 1.3~mm. These are the first full-polarization ALMA observations, which were obtained in the framework of Science Verification. A bright core and a south-west component are detected in the total intensity image, similar to previous centimeter images. Polarized emission is also detected toward both components. The fractional polarization of the core is about 17\\%, this is higher than the fractional polarization at centimeter wavelengths, suggesting that the magnetic field is even more ordered in the millimeter radio core than it is further downstream in the jet. The observed polarization position angle (or EVPA) in the core is $\\sim$\\,$39^{\\circ}$, which confirms the trend that the EVPA slowly increases from centimeter to millimeter wavelengths. With the aid of multi-frequency VLBI observations, we argue that this EVPA change is associated with the frequency-dependent core position. We also report ...

  4. AURA - A radio frequency extension to IceCube

    CERN Document Server

    Ruckman, L

    2008-01-01

    The excellent radio frequency transparency of cold polar ice, combined with the coherent Cherenkov emission produced by neutrino-induced showers when viewed at wavelengths longer than a few centimeters, has spurred considerable interest in a large-scale radio-wave neutrino detector array. The AURA (Askaryan Under-ice Radio Array) experimental effort, within the IceCube collaboration, seeks to take advantage of the opportunity presented by IceCube drilling through 2010 to establish the radio frequency technology needed to achieve 100-1000 km^3 effective volumes. In the 2006-2007 Austral summer 3 deep in-ice radio frequency (RF) clusters were deployed at depths of 1300m and 300m on top of the IceCube strings. Additional 3 clusters will be deployed in the Austral summer of 2008-2009. Verification and calibration results from the current deployed clusters are presented, and the detector design and performances are discussed. Augmentation of IceCube with large-scale 1000km^3sr radio and acoustic arrays would exten...

  5. Radio emission from RS CVn binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Doiron, D.J.

    1984-01-01

    The RS CVn binary stellar systems UX Ari, HR 1099, AR Lac, HR 5110, II Peg, lambda And, and SZ Psc were investigated by use of radio interferometry during the period from July 1982 through August 1983. Interferometry took two forms: Very Large Array (VLA) observations and Very Long Baseline Interferometry (VLBI). The VLA observations determined the characteristic polarization and flux behavior of the centimeter wavelength radio emission. The observed spectral index was near zero during quiescent periods, rising to between 0.5 and 1.0 during active periods. No net linear polarization is observed to a limit of 1.7%. This is expected since the Faraday depth of thermal electrons deduced from x-ray observations is approx. 10/sup 5/. Circular polarization is observed to be less than 20% at all frequencies often with a helicity reversal between 1.6 GHz and 5 GHz. The VLBI observations have shown that the brightness temperatures are often T/sub B/ approx.> 10/sup 10/ /sup 0/K and size sources smaller than or comparable to the overall size of the binary system. These data are consistent with incoherent gyrosynchrotron emission from mildly relativistic electrons which are optically thick to their own radiation at 1.6 GHz and optically thin at 5 GHz and above. The spectral behavior suggests that the radio emission is due to a power-law distribution of electrons.

  6. Tracking galaxy evolution through low frequency radio continuum observations using SKA and Citizen-science Research using Multi-wavelength data

    CERN Document Server

    Hota, Ananda; Stalin, C S; Vaddi, Sravani; Mohanty, Pradeepta K; Dabhade, Pratik; Bhoga, Sai Arun Dharmik; Rajoria, Megha; Sethi, Sagar

    2016-01-01

    We present a review on galaxy black hole co-evolution through merger, star formation and AGN-jet feedback. We highlight results on transitional galaxies (e.g. NGC1482, NGC6764, NGC3801, Speca, RAD-18 etc.) which has data from Giant Meterwave Radio Telescope (GMRT) and other sub-mm, IR, optical, UV and X-ray telescopes. The `smoking gun' relic-evidences of past AGN-jet feedback which is believed to have quenched star formation in transitional galaxies are still missing. Relic radio lobes, as old as a few hundred Myr, can be best detected at low radio frequencies with the GMRT, LOFAR and in future SKA. However, similar relic evidences of quasar activities, known as `Hanny's Voorwerp' discovered by Galaxy Zoo in optical data, are only around a few tens of thousand years old. More discoveries are needed to match these time-scales with time since the decline of star formation in transitional galaxies. Such faint fuzzy relic emissions in optical and angular-scale sensitive radio interferometric images can be discov...

  7. Synergetic use of millimeter and centimeter wavelength radars for retrievals of cloud and rainfall parameters

    Directory of Open Access Journals (Sweden)

    S. Y. Matrosov

    2010-01-01

    Full Text Available A remote sensing approach for simultaneous retrievals of cloud and rainfall parameters in the vertical column above the US Department of Energy's (DOE Climate Research Facility at the Tropical Western Pacific (TWP Darwin site in Australia is described. This approach uses vertically pointing measurements from a DOE Ka-band radar and scanning measurements from a nearby C-band radar pointing toward the TWP Darwin site. Rainfall retrieval constraints are provided by data from a surface impact disdrometer. The approach is applicable to stratiform precipitating cloud systems when a separation between the liquid hydrometeor layer, which contains rainfall and liquid water clouds, and the ice hydrometeor layer is provided by the radar bright band. Absolute C-band reflectivities and Ka-band vertical reflectivity gradients in the liquid layer are used for retrievals of the mean layer rain rate and cloud liquid water path (CLWP. C-band radar reflectivities are also used to estimate ice water path (IWP in regions above the melting layer. The retrieval uncertainties of CLWP and IWP for typical stratiform precipitation systems are about 500–800 g m−2 (for CLWP and a factor of 2 (for IWP. The CLWP retrieval uncertainties increase with rain rate, so retrievals for higher rain rates may be impractical. The expected uncertainties of layer mean rain rate retrievals are around 20%, which, in part, is due to constraints available from the disdrometer data. The applicability of the suggested approach is illustrated for two characteristic events observed at the TWP Darwin site during the wet season of 2007. A future deployment of W-band radars at the DOE tropical Climate Research Facilities can improve CLWP estimate accuracies and provide retrievals for a wider range of stratiform precipitating cloud events.

  8. Design and Calibration of a Cryogenic Blackbody Calibrator at Centimeter Wavelengths

    CERN Document Server

    Kogut, A J; Fixsen, D J; Limon, M; Mirel, P G A; Levin, S; Seiffert, M; Lubin, P M

    2004-01-01

    We describe the design and calibration of an external cryogenic blackbody calibrator used for the first two flights of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) instrument. The calibrator consists of a microwave absorber weakly coupled to a superfluid liquid helium bath. Half-wave corrugations viewed 30 deg off axis reduce the return loss below -35 dB. Ruthenium oxide resistive thermometers embedded within the absorber monitor the temperature across the face of the calibrator. The thermal calibration transfers the calibration of a reference thermometer to the flight thermometers using the flight thermometer readout system. Data taken near the superfluid transition in 8 independent calibrations 4 years apart agree within 0.3 mK, providing an independent verification of the thermometer calibration at temperatures near that of the cosmic microwave background.

  9. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  10. Electromagnetic coupling to centimeter-scale mechanical membrane resonators via RF cylindrical cavities

    Science.gov (United States)

    Martinez, Luis A.; Castelli, Alessandro R.; Delmas, William; Sharping, Jay E.; Chiao, Raymond

    2016-11-01

    We present experimental and theoretical results for the excitation of a mechanical oscillator via radiation pressure with a room-temperature system employing a relatively low-(Q) centimeter-size mechanical oscillator coupled to a relatively low-Q standard three-dimensional radio-frequency (RF) cavity resonator. We describe the forces giving rise to optomechanical coupling using the Maxwell stress tensor and show that nanometer-scale displacements are possible and experimentally observable. The experimental system is composed of a 35 mm diameter silicon nitride membrane sputtered with a 300 nm gold conducting film and attached to the end of a RF copper cylindrical cavity. The RF cavity is operated in its {{TE}}011 mode and amplitude modulated on resonance with the fundamental drum modes of the membrane. Membrane motion is monitored using an unbalanced, non-zero optical path difference, optically filtered Michelson interferometer capable of measuring sub-nanometer displacements.

  11. Multi-wavelength study of the star-formation in the S237 H II region

    CERN Document Server

    Dewangan, L K; Zinchenko, I; Janardhan, P; Luna, A

    2016-01-01

    We present a detailed multi-wavelength study of observations from X-ray, near-infrared to centimeter wavelengths to probe the star formation processes in the S237 region. Multi-wavelength images trace an almost sphere-like shell morphology of the region, which is filled with the 0.5--2 keV X-ray emission. The region contains two distinct environments - a bell-shaped cavity-like structure containing the peak of 1.4 GHz emission at center, and elongated filamentary features without any radio detection at edges of the sphere-like shell - where {\\it Herschel} clumps are detected. Using the 1.4 GHz continuum and $^{12}$CO line data, the S237 region is found to be excited by a radio spectral type of B0.5V star and is associated with an expanding H{\\sc ii} region. The photoionized gas appears to be responsible for the origin of the bell-shaped structure. The majority of molecular gas is distributed toward a massive {\\it Herschel} clump (M$_{clump}$ $\\sim$260 M$_{\\odot}$), which contains the filamentary features and ...

  12. The Radio Jet Associated with the Multiple V380 Ori System

    CERN Document Server

    Rodriguez, L F; Carrasco-Gonzalez, C; Anglada, G; Trejo, A

    2016-01-01

    The giant Herbig-Haro object 222 extends over $\\sim$6$'$ in the plane of the sky, with a bow shock morphology. The identification of its exciting source has remained uncertain over the years. A non-thermal radio source located at the core of the shock structure was proposed to be the exciting source. However, Very Large Array studies showed that the radio source has a clear morphology of radio galaxy and a lack of flux variations or proper motions, favoring an extragalactic origin. Recently, an optical-IR study proposed that this giant HH object is driven by the multiple stellar system V380 Ori, located about 23$'$ to the SE of HH 222. The exciting sources of HH systems are usually detected as weak free-free emitters at centimeter wavelengths. Here we report the detection of an elongated radio source associated with the Herbig Be star or with its close infrared companion in the multiple V380 Ori system. This radio source has the characteristics of a thermal radio jet and is aligned with the direction of the g...

  13. Growth of centimeter-sized C60 single crystals

    Institute of Scientific and Technical Information of China (English)

    李宏年; 徐亚伯; 张建华; 何丕模; 李海洋; 吴太权; 鲍世宁

    2001-01-01

    C60 single crystals larger than one centimeter in size are grown with vapor method by nucleation control and by a proper time-dependent temperature process which allows only one nucleus growing larger and larger. X-ray diffraction patterns exhibit the high quality of the sample. As an example of the applications of large single C60 crystals,svnchrotron radiation photoemission spectra are measured to investigate the fine structure of valence bands of C60 crystals.

  14. Six Years of Fermi-LAT and Multi-wavelength Monitoring of the Broad-Line Radio Galaxy 3C 120: Jet Dissipation at Sub-parsec Scales from the Central Engine

    CERN Document Server

    Tanaka, Y T; Inoue, Y; Cheung, C C; Stawarz, L; Fukazawa, Y; Gurwell, M A; Tahara, M; Kataoka, J; Itoh, R

    2014-01-01

    We present multi-wavelength monitoring results for the broad-line radio galaxy 3C 120 in the MeV/GeV, sub-millimeter, and 43 GHz bands over six years. Over the past two years, Fermi-LAT sporadically detected 3C 120 with high significance and the 230 GHz data also suggest an enhanced activity of the source. After the MeV/GeV detection from 3C 120 in MJD 56240-56300, 43 GHz VLBA monitoring revealed a brightening of the radio core, followed by the ejection of a superluminal knot. Since we observed the gamma-ray and VLBA phenomena in temporal proximity to each other, it is naturally assumed that they are physically connected. This assumption was further supported by the subsequent observation that the 43 GHz core brightened again after a second gamma-ray flare around MJD 56560. We can then infer that the MeV/GeV emission took place inside an unresolved 43 GHz core of 3C 120 and that the jet dissipation occurred at sub-parsec distances from the central black hole, if we take the distance of the 43 GHz core from th...

  15. Dust tori in radio galaxies

    NARCIS (Netherlands)

    van der Wolk, G.; Barthel, P. D.; Peletier, R. F.; Pel, J. W.

    2010-01-01

    Aims: We investigate the quasar - radio galaxy unification scenario and detect dust tori within radio galaxies of various types. Methods: Using VISIR on the VLT, we acquired sub-arcsecond (~0.40 arcsec) resolution N-band images, at a wavelength of 11.85 μm, of the nuclei of a sample of 27 radio gala

  16. Different evolutionary stages in massive star formation. Centimeter continuum and H2O maser emission with ATCA

    CERN Document Server

    Sanchez-Monge, A; Cesaroni, R; Fontani, F; Brand, J; Molinari, S; Testi, L; Burton, M

    2012-01-01

    We present ATCA observations of the H2O maser line and radio continuum at 18.0GHz and 22.8GHz, toward a sample of 192 massive star forming regions containing several clumps already imaged at 1.2mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (likely tracing thermal free-free emission) in sources at different evolutionary stages, using the evolutionary classifications proposed by Palla et al (1991) and Molinari et al (2008). We used the recently comissioned CABB backend at ATCA obtaining images with 20arcsec resolution in the 1.3cm continuum and H2O maser emission, in all targets. For the evolutionary analysis of the sources we used the millimeter continuum emission from Beltran et al (2006) and the infrared emission from the MSX Point Source Catalogue. We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45mJy/beam. Most of the fields show a single radio continuum source, while in 20% of them we identify mu...

  17. Compact Centimeter and Millimeter Sources in NGC 6334 I(N): OB Stars in the Making?

    CERN Document Server

    Rodríguez, L F; Ho, P T P; Rodriguez, Luis F.; Zapata, Luis A.; Ho, Paul T. P.

    2006-01-01

    We present sensitive, high angular resolution 1.3 cm and 7 mm observations of the massive core NGC 6334 I(N), a region known to be undergoing massive star formation. At 1.3 cm we detect three sources, of which two had been previously detected at centimeter or millimeter wavelengths. At 7 mm we detect four sources. We suggest that three of these sources are subcomponents of the millimeter source SMA 1, that at these wavelengths is the dominant source in the region. The fourth 7 mm source appears to be associated with the relatively isolated source SMA 6. In all four 7 mm sources, the continuum emission is arising from structures of dimensions in the order of 1000 AU for which we estimate masses of order a few solar masses. We interpret these 7 mm sources as massive circumstellar disks that, however, surround stars or compact small stellar groups that at present have masses comparable to those of the disks but that may be accreting on their way to become massive stars.

  18. Six Years of Fermi-LAT and Multi-Wavelength Monitoring of the Broad-Line Radio Galaxy 3c 120: Jet Dissipation At Sub-Parsec Scales from the Central Engine

    Science.gov (United States)

    Tanaka, Y. T.; Doi, A.; Inoue, Y.; Cheung, C. C.; Stawarz, L.; Fukazawa, Y.; Gurwell, M. A.; Tahara, M.; Kataoka, J.; Itoh, R.

    2015-02-01

    We present multi-wavelength monitoring results for the broad-line radio galaxy 3C 120 in the MeV/GeV, sub-millimeter, and 43 GHz bands over 6 yr. Over the past 2 yr, the Fermi-Large Area Telescope sporadically detected 3C 120 with high significance and the 230 GHz data also suggest an enhanced activity of the source. After the MeV/GeV detection from 3C 120 in MJD 56240-56300, 43 GHz Very Long Baseline Array (VLBA) monitoring revealed a brightening of the radio core, followed by the ejection of a superluminal knot. Since we observed the γ-ray and VLBA phenomena in temporal proximity to each other, it is naturally assumed that they are physically connected. This assumption was further supported by the subsequent observation that the 43 GHz core brightened again after a γ-ray flare occurred around MJD 56560. We can then infer that the MeV/GeV emission took place inside an unresolved 43 GHz core of 3C 120 and that the jet dissipation occurred at sub-parsec distances from the central black hole (BH), if we take the distance of the 43 GHz core from the central BH as ˜0.5 pc, as previously estimated from the time lag between X-ray dips and knot ejections. Based on our constraints on the relative locations of the emission regions and energetic arguments, we conclude that the γ rays are more favorably produced via the synchrotron self-Compton process, rather than inverse Compton scattering of external photons coming from the broad line region or hot dusty torus. We also derived the electron distribution and magnetic field by modeling the simultaneous broadband spectrum.

  19. SIX YEARS OF FERMI-LAT AND MULTI-WAVELENGTH MONITORING OF THE BROAD-LINE RADIO GALAXY 3C 120: JET DISSIPATION AT SUB-PARSEC SCALES FROM THE CENTRAL ENGINE

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y. T. [Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526 (Japan); Doi, A.; Inoue, Y.; Stawarz, L. [Institute of Space and Astronautical Science, JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Fukazawa, Y.; Itoh, R. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Gurwell, M. A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Tahara, M.; Kataoka, J., E-mail: ytanaka@hep01.hepl.hiroshima-u.ac.jp [Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan)

    2015-01-30

    We present multi-wavelength monitoring results for the broad-line radio galaxy 3C 120 in the MeV/GeV, sub-millimeter, and 43 GHz bands over 6 yr. Over the past 2 yr, the Fermi-Large Area Telescope sporadically detected 3C 120 with high significance and the 230 GHz data also suggest an enhanced activity of the source. After the MeV/GeV detection from 3C 120 in MJD 56240–56300, 43 GHz Very Long Baseline Array (VLBA) monitoring revealed a brightening of the radio core, followed by the ejection of a superluminal knot. Since we observed the γ-ray and VLBA phenomena in temporal proximity to each other, it is naturally assumed that they are physically connected. This assumption was further supported by the subsequent observation that the 43 GHz core brightened again after a γ-ray flare occurred around MJD 56560. We can then infer that the MeV/GeV emission took place inside an unresolved 43 GHz core of 3C 120 and that the jet dissipation occurred at sub-parsec distances from the central black hole (BH), if we take the distance of the 43 GHz core from the central BH as ∼0.5 pc, as previously estimated from the time lag between X-ray dips and knot ejections. Based on our constraints on the relative locations of the emission regions and energetic arguments, we conclude that the γ rays are more favorably produced via the synchrotron self-Compton process, rather than inverse Compton scattering of external photons coming from the broad line region or hot dusty torus. We also derived the electron distribution and magnetic field by modeling the simultaneous broadband spectrum.

  20. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    Science.gov (United States)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  1. Collision experiments between centimeter-sized protoplanetesimals in microgravity

    Science.gov (United States)

    Whizin, Akbar; Colwell, Joshua E.; Dove, Adrienne; Brisset, Julie; Cruz, Roberto; Foster, Zach

    2016-10-01

    In the early stages of planet formation in a protoplanetary disk the first coalescing bodies are weakly bound. Conditions in the disk, such as the presence of gas (drag), make further growth through centimeter and meter sized bodies difficult. For centimeter-sized aggregates self-gravity is almost non-existent and electrostatic surface forces such as van der Waals-type forces play a critical role in holding loosely bound rubble-piles together during their early formation. In order to understand how aggregates of this size grow we study the mechanical strengths, material, and collisional properties of cm-sized aggregates. The collisional outcomes between two aggregates can be determined by a set of definable collision parameters and experimental constraints on these parameters will aid in astrophysical models of planet formation. We have carried out a series of microgravity laboratory experiments in which we collide a pair of weakly bound aggregates together. In our free-fall chamber we collide two 3-cm aggregates together at collision velocities ranging from 50 to 220 cm/s and with pressure ~1 mbar. The aggregates are made of mm-sized silica bead particles and require internal cohesion to avoid fragmentation above modest collision speeds, which is supplied by adding H2O (later dehydrated) and between 0 - 0.1 g of a well-mixed liquid adhesive to simulate surface forces and bonds between particles. We measure the compressive strengths of the aggregates (0.5 - 10 kPa), find their coefficients of restitution (CoR), and determine their bouncing and fragmentation thresholds, over a range of velocities and internal strengths. We observed collisional outcomes such as bouncing, erosion (mass-loss), and fragmentation of the aggregates. We find the CoR of the aggregates to have a mean of 0.11 ± 0.1 with no dependence on velocity or strength. Impact velocities above ~2 m/s resulted in fragmentation of our aggregates, higher than the ~1 m/s threshold for porous dust aggregates

  2. Pre- and Post-burst Radio Observations of the Class 0 Protostar HOPS 383 in Orion

    CERN Document Server

    Galván-Madrid, Roberto; Liu, Hauyu B; Costigan, Gráinne; Palau, Aina; Zapata, Luis A; Loinard, Laurent; .,

    2015-01-01

    There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a $\\times 35$ mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Radio jets at centimeter wavelengths are often the only way of tracing the jets from embedded protostars. We searched the Very Large Array archive for the available observations of the radio counterpart of HOPS 383. The data show that the radio flux of HOPS 383 varies only mildly from January 1998 to December 2014, staying at the level of $\\sim 200$ to 300 $\\mu$Jy in the X band ($\\sim 9$ GHz), with a typical uncertainty of 10 to 20 $\\mu$Jy in each measurement. We interpret the absence of a radio burst as suggesting that accretion and ejection enhancements d...

  3. Low-velocity collisions of centimeter-sized dust aggregates

    CERN Document Server

    Beitz, Eike; Blum, Jürgen; Meisner, Thorsten; Teiser, Jens; Wurm, Gerhard

    2011-01-01

    Collisions between centimeter- to decimeter-sized dusty bodies are important to understand the mechanisms leading to the formation of planetesimals. We thus performed laboratory experiments to study the collisional behavior of dust aggregates in this size range at velocities below and around the fragmentation threshold. We developed two independent experimental setups with the same goal to study the effects of bouncing, fragmentation, and mass transfer in free particle-particle collisions. The first setup is an evacuated drop tower with a free-fall height of 1.5 m, providing us with 0.56 s of microgravity time so that we observed collisions with velocities between 8 mm/s and 2 m/s. The second setup is designed to study the effect of partial fragmentation (when only one of the two aggregates is destroyed) and mass transfer in more detail. It allows for the measurement of the accretion efficiency as the samples are safely recovered after the encounter. Our results are that for very low velocities we found bounc...

  4. Radio and gamma-ray follow-up of the exceptionally high activity state of PKS 1510-089 in 2011

    CERN Document Server

    Orienti, M; D'Ammando, F; Giroletti, M; Kino, M; Nagai, H; Venturi, T; Dallacasa, D; Giovannini, G; Angelakis, E; Fuhrmann, L; Hovatta, T; Max-Moerbeck, W; Schinzel, F K; Akiyama, K; Hada, K; Honma, M; Niinuma, K; Gasparrini, D; Krichbaum, T P; Nestoras, I; Readhead, A C S; Richards, J L; Riquelme, D; Sievers, A; Ungerechts, H; Zensus, J A

    2012-01-01

    We investigate the radio and gamma-ray variability of the flat spectrum radio quasar PKS 1510-089 in the time range between 2010 November and 2012 January. In this period the source showed an intense activity, with two major gamma-ray flares detected in 2011 July and October. During the latter episode both the gamma-ray and the radio flux density reached their historical peak. Multiwavelength analysis shows a rotation of about 380 deg of the optical polarization angle close in time with the rapid and strong gamma-ray flare in 2011 July. An enhancement of the optical emission and an increase of the fractional polarization both in the optical and in radio bands is observed about three weeks later, close in time with another gamma-ray outburst. On the other hand, after 2011 September a huge radio outburst has been detected, first in the millimeter regime followed with some time delay at centimeter down to decimeter wavelengths. This radio flare is characterized by a rising and a decaying stage, in agreement with...

  5. Centimeter Cosmo-Skymed Range Measurements for Monitoring Ground Displacements

    Science.gov (United States)

    Fratarcangeli, F.; Nascetti, A.; Capaldo, P.; Mazzoni, A.; Crespi, M.

    2016-06-01

    The SAR (Synthetic Aperture Radar) imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR), based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano - Northern Italy), where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS), taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one) stable PS's are available around the

  6. Ionosphere and Radio Communication

    Indian Academy of Sciences (India)

    Saradi Bora

    2017-02-01

    The Earth's ionosphere consists of plasma produced by thephotoionization of thin upper atmospheric gases by UV raysand photons of short wavelength from the sun. The upperionosphere is used for radio communication and navigationas it reflects long, medium, as well as short radio waves. Sincesolar radiation is the main cause of the existence of ionosphere,any variation in the radiations can affect the entireradio communication system. This article attempts to brieflyintroduce the readers to the study of ionosphere in the contextof its use as a radio reflector, with particular reference toIndia.

  7. Prototype for Long Wavelength Array Sees First Light

    Science.gov (United States)

    2007-03-01

    and dark energy." Although radio astronomy was discovered at low frequencies (near 20 MHz, corresponding to wavelengths of 15 meters), well below the current FM band, astronomers quickly moved up to higher frequencies (centimeter wavelengths) in search of higher resolution and to escape the corrupting effects of the Earth's ionosphere, a region of charged particles between about 50 and 600 miles above the surface. The ionosphere, which can "bend" radio waves to produce long-distance reception of AM and short-wave radio signals, also causes distortions in radio telescope images in much the same way that atmospheric irregularities cause twinkling of stars. Ionospheric effects become much worse at low frequencies, but new imaging techniques developed at NRL and elsewhere have allowed the "ionospheric barrier" to be broken and enabled high-resolution astronomical imaging at these low frequencies for the first time. These new imaging techniques provide an improved view of not only the astronomical sky, but the Earth's ionosphere as well. The full LWA will generate richly detailed measurements of the ionosphere that will complement other ionospheric data sources. Understanding the ionosphere is critically important to the Department of Defense because of its effects on communications and navigation systems. The current prototype, referred to as the Long Wavelength Demonstrator Array (LWDA) to differentiate it from the larger LWA project, completed installation on the Plains of San Agustin in southwestern New Mexico in the fall of 2006. Funded by NRL and built by the Applied Research Laboratories of the University of Texas, Austin (ARL:UT), the telescope consists of 16 antennas connected to a suite of electronics that combine the signals from each antenna. Each antenna is only 4 feet tall and acts much like an old style television antenna, receiving radio waves from many different directions simultaneously. When combined, the data from the individual antennas is comparable

  8. CENTIMETER COSMO-SKYMED RANGE MEASUREMENTS FOR MONITORING GROUND DISPLACEMENTS

    Directory of Open Access Journals (Sweden)

    F. Fratarcangeli

    2016-06-01

    Full Text Available The SAR (Synthetic Aperture Radar imagery are widely used in order to monitor displacements impacting the Earth surface and infrastructures. The main remote sensing technique to extract sub-centimeter information from SAR imagery is the Differential SAR Interferometry (DInSAR, based on the phase information only. However, it is well known that DInSAR technique may suffer for lack of coherence among the considered stack of images. New Earth observation SAR satellite sensors, as COSMO-SkyMed, TerraSAR-X, and the coming PAZ, can acquire imagery with high amplitude resolutions too, up to few decimeters. Thanks to this feature, and to the on board dual frequency GPS receivers, allowing orbits determination with an accuracy at few centimetres level, the it was proven by different groups that TerraSAR-X imagery offer the capability to achieve, in a global reference frame, 3D positioning accuracies in the decimeter range and even better just exploiting the slant-range measurements coming from the amplitude information, provided proper corrections of all the involved geophysical phenomena are carefully applied. The core of this work is to test this methodology on COSMO-SkyMed data acquired over the Corvara area (Bolzano – Northern Italy, where, currently, a landslide with relevant yearly displacements, up to decimeters, is monitored, using GPS survey and DInSAR technique. The leading idea is to measure the distance between the satellite and a well identifiable natural or artificial Persistent Scatterer (PS, taking in account the signal propagation delays through the troposphere and ionosphere and filtering out the known geophysical effects that induce periodic and secular ground displacements. The preliminary results here presented and discussed indicate that COSMO-SkyMed Himage imagery appear able to guarantee a displacements monitoring with an accuracy of few centimetres using only the amplitude data, provided few (at least one stable PS’s are

  9. Detection of rapid radivariability of Radio Objects with Continuous Optical Spectra

    Science.gov (United States)

    Pustilnik, S. A.

    The results of the search for rapid variability (characteristic time of > 1 day) in centimeter range using RATAN-600 in 14 radio objects with continuous optical spectra are given. In 9 of them, namely 0109+224, 0139-097, 0300+471, 0306+102, 0754+100, 0818-128, 0823-223, 1034-293 and 1538+149, the rapid variability is detected at wavelengths either 3.9 or 8.2 cm with the confidence probability alpha > 0.98. The conclusion is reached on the close correlation of the presence of rapid radiovariability and the relative power of the non-thermal optical continuum. It is noted the the search for interstellar scintillations in centimeter range in the studied objects during the periods of their rapid variability could test the hypothesis about belonging these objects to the extragalactic class of BL Lac type objects. The proposals are expressed on the necessety of more carefull and complex investigation of the phenomenon of rapid variability.

  10. Towards the Long Wavelength Array

    Science.gov (United States)

    Kassim, N. E.; Erickson, W. C.

    2008-08-01

    Nearly three decades ago, the Very Large Array (VLA) opened the cm-wavelength radio sky to high-dynamic range imaging. By developing and exploiting new techniques to mitigate ionospheric phase fluctuations, the VLA 74 MHz system is providing the first sub-arcminute resolution view of the meter-wavelength radio universe. This technical innovation has inspired an emerging suite of much more powerful low-frequency instruments, including the Long Wavelength Array (LWA). The LWA, with its great collecting area (approaching one square kilometer at 20 MHz) and long baselines (up to 400 km), will surpass, by up to 2--3 orders of magnitude, the imaging power of any previous low-frequency interferometer. LWA science goals include Cosmic Evolution, the Acceleration of Relativistic Particles, Plasma Astrophysics, and Ionospheric & Space Weather Science. Because it will explore one of the last and most poorly investigated regions of the spectrum, the potential for unexpected new discoveries is high. For more on the LWA, see http://lwa.unm.edu. The LWA project is led by the University of New Mexico, and includes the Naval Research Laboratory, Applied Research Laboratories of U. Texas, Los Alamos National Laboratory, Virginia Tech, and U. Iowa, with cooperation from the National Radio Astronomy Observatory.

  11. The Population of Compact Radio Sources in the Orion Nebula Cluster

    CERN Document Server

    Forbrich, Jan; Menten, Karl M; Reid, Mark J; Chandler, Claire J; Rau, Urvashi; Bhatnagar, Sanjay; Wolk, Scott J; Meingast, Stefan

    2016-01-01

    We present a deep centimeter-wavelength catalog of the Orion Nebula Cluster (ONC), based on a 30h single-pointing observation with the Karl G. Jansky Very Large Array in its high-resolution A-configuration using two 1 GHz bands centered at 4.7 GHz and 7.3 GHz. A total of 556 compact sources were detected in a map with a nominal rms noise of 3 muJy/bm, limited by complex source structure and the primary beam response. Compared to previous catalogs, our detections increase the sample of known compact radio sources in the ONC by more than a factor of seven. The new data show complex emission on a wide range of spatial scales. Following a preliminary correction for the wideband primary-beam response, we determine radio spectral indices for 170 sources whose index uncertainties are less than +/-0.5. We compare the radio to the X-ray and near-infrared point-source populations, noting similarities and differences.

  12. Picosecond sources for sub-centimeter laser ranging

    Science.gov (United States)

    Krebs, Danny J.; Dallas, Joseph; Seery, Bernard D.

    1992-01-01

    Some of the tradeoffs involved in selecting a laser source for space-based laser ranging are outlined, and some of the recent developments in the laser field most relevant to space-based lasers for ranging and altimetry are surveyed. Laser pulse width and laser design are discussed. It is argued that, while doubled/tripled ND-host lasers are currently the best choice for laser ranging in two colors, they have the shortcoming that the atmospheric transmission at 355 nm is significantly poorer than it is at longer wavelengths which still have sufficient dispersion for two-color laser ranging. The life requirement appears to demand that laser diode pumping be used for space applications.

  13. Sub-millimeter to centimeter excess emission from the Magellanic Clouds. I. Global spectral energy distribution

    CERN Document Server

    Israel, F P; Raban, D; Reach, W T; Bot, C; Oonk, J B R; Ysard, N; Bernard, J P

    2010-01-01

    In order to reconstruct the global SEDs of the Magellanic Clouds over eight decades in spectral range, we combined literature flux densities representing the entire LMC and SMC respectively, and complemented these with maps extracted from the WMAP and COBE databases covering the missing the 23--90 GHz (13--3.2 mm) and the poorly sampled 1.25--250 THz (240--1.25 micron). We have discovered a pronounced excess of emission from both Magellanic Clouds, but especially the SMC, at millimeter and sub-millimeter wavelengths. We also determined accurate thermal radio fluxes and very low global extinctions for both LMC and SMC. Possible explanations are briefly considered but as long as the nature of the excess emission is unknown, the total dust masses and gas-to-dust ratios of the Magellanic Clouds cannot reliably be determined.

  14. Free-space wavelength-multiplexed optical scanner.

    Science.gov (United States)

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam.

  15. Phenomenology of magnetospheric radio emissions

    Science.gov (United States)

    Carr, T. D.; Desch, M. D.; Alexander, J. K.

    1983-01-01

    Jupiter has now been observed over 24 octaves of the radio spectrum, from about 0.01 MHz to 300,000 MHz. Its radio emissions fill the entire spectral region where interplanetary electromagnetic propagation is possible at wavelengths longer than infrared. Three distinct types of radiation are responsible for this radio spectrum. Thermal emission from the atmosphere accounts for virtually all the radiation at the high frequency end. Synchrotron emission from the trapped high-energy particle belt deep within the inner magnetosphere is the dominant spectral component from about 4000 to 40 MHz. The third class of radiation consists of several distinct components of sporadic low frequency emission below 40 MHz. The decimeter wavelength emission is considered, taking into account the discovery of synchrotron emission, radiation by high-energy electrons in a magnetic field, and the present status of Jovian synchrotron phenomenology. Attention is also given to the decameter and hectometer wavelength emission, and emissions at kilometric wavelengths.

  16. Radio Journalism.

    Science.gov (United States)

    Bittner, John R.; Bittner, Denise A.

    This book, a how-to-do-it guide for the novice and the professional alike, deals with several aspects of radio journalism: producing documentaries, preparing and announcing radio news, ethics and responsibility, regulation of radio journalism, and careers. It traces the history and growth of radio news, shows its impact on the public, and…

  17. Influence of Growth Parameters of Frequency-Radio Plasma Nitrogen Source on Extending Emission Wavelengths from 1.31 μm to 1.55 μm GaInNAs/GaAs Quantum Wells Grown by Molecular-Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    WU Dong-Hai; WU Rong-Han; NIU Zhi-Chuan; ZHANG Shi-Yong; NI Hai-Qiao; HE Zhen-Hong; ZHAO Huan; PENG Hong-Ling; YANG Xiao-Hong; HAN Qin

    2006-01-01

    @@ High (42.5%) indium content GaInNAs/GaAs quantum wells with room temperature emission wavelength from 1.3 μm to 1.5 μm range were successfully grown by Radio Frequency Plasma Nitrogen source assisted Molecular Beam Epitaxy. The growth parameters of plasma power and N2 flow rate were optimized systematically to improve the material quality. Photoluminescence and transmission electron microscopy measurements showed that the optical and crystal quality of the 1.54μm GaInNAs/GaAs QWs was kept as comparable as that in 1.31 μm.

  18. Pulsating Radio Sources near the Crab Nebula.

    Science.gov (United States)

    Staelin, D H; Reifenstein, E C

    1968-12-27

    Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

  19. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    Science.gov (United States)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  20. Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope

    Energy Technology Data Exchange (ETDEWEB)

    Lew, Bartosz; Kus, Andrzej [Toruń Centre for Astronomy, Nicolaus Copernicus University, ul. Gagarina 11, 87-100 Toruń (Poland); Birkinshaw, Mark [HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Wilkinson, Peter, E-mail: blew@astro.uni.torun.pl, E-mail: Mark.Birkinshaw@bristol.ac.uk, E-mail: peter.wilkinson@manchester.ac.uk, E-mail: ajk@astro.uni.torun.pl [Jodrell Bank Centre for Astrophysics, The University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom)

    2015-02-01

    We investigate the effectiveness of blind surveys for radio sources and galaxy cluster thermal Sunyaev-Zel'dovich effects (TSZEs) using the four-pair, beam-switched OCRA-f radiometer on the 32-m radio telescope in Poland. The predictions are based on mock maps that include the cosmic microwave background, TSZEs from hydrodynamical simulations of large scale structure formation, and unresolved radio sources. We validate the mock maps against observational data, and examine the limitations imposed by simplified physics. We estimate the effects of source clustering towards galaxy clusters from NVSS source counts around Planck-selected cluster candidates, and include appropriate correlations in our mock maps. The study allows us to quantify the effects of halo line-of-sight alignments, source confusion, and telescope angular resolution on the detections of TSZEs. We perform a similar analysis for the planned 100-m Hevelius radio telescope (RTH) equipped with a 49-beam radio camera and operating at frequencies up to 22 GHz.We find that RT32/OCRA-f will be suitable for small-field blind radio source surveys, and will detect 33{sup +17}{sub −11} new radio sources brighter than 0.87 mJy at 30 GHz in a 1 deg{sup 2} field at > 5σ CL during a one-year, non-continuous, observing campaign, taking account of Polish weather conditions. It is unlikely that any galaxy cluster will be detected at 3σ CL in such a survey. A 60-deg{sup 2} survey, with field coverage of 2{sup 2} beams per pixel, at 15 GHz with the RTH, would find <1.5 galaxy clusters per year brighter than 60 μJy (at 3σ CL), and would detect about 3.4 × 10{sup 4} point sources brighter than 1 mJy at 5σ CL, with confusion causing flux density errors ∼< 2% (20%) in 68% (95%) of the detected sources.A primary goal of the planned RTH will be a wide-area (π sr) radio source survey at 15 GHz. This survey will detect nearly 3 × 10{sup 5} radio sources at 5σ CL down to 1.3 mJy, and tens of galaxy

  1. RADIO FLARING FROM THE T6 DWARF WISEPC J112254.73+255021.5 WITH A POSSIBLE ULTRA-SHORT PERIODICITY

    Energy Technology Data Exchange (ETDEWEB)

    Route, Matthew; Wolszczan, Alexander, E-mail: mroute@purdue.edu, E-mail: alex@astro.psu.edu [Department of Astronomy and Astrophysics, the Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

    2016-04-20

    We present new results from a continuing 5 GHz search for flaring radio emission from a sample of L and T brown dwarfs, conducted with the 305 m Arecibo radio telescope. In addition to the previously reported flaring from the T6.5 dwarf 2MASS J10475385+212423, we have detected and confirmed circularly polarized flares from another T6 dwarf, WISEPC J112254.73+255021.5. Although the flares are sporadic, they appear to occur at a stable period of 0.288 hr. Given the current constraints, periods equal to its second and third subharmonic cannot be ruled out. The stability of this period over the eight-month timespan of observations indicates that, if real, it likely reflects the star’s rapid rotation. If confirmed, any of the three inferred periodicities would be much shorter than the shortest, 1.41 hr, rotation period of a brown dwarf measured so far. This finding would place a new observational constraint on the angular momentum evolution and rotational stability of substellar objects. The detection of radio emission from the sixth ∼1000 K dwarf further demonstrates that the coolest brown dwarfs and, possibly, young giant planets, can be efficiently investigated using radio observations at centimeter wavelengths as a tool.

  2. The Long Wavelength Array

    Science.gov (United States)

    Taylor, G. B.

    2006-08-01

    The Long Wavelength Array (LWA) will be a new, open, user-oriented astronomical instrument operating in the poorly explored window from 20-80 MHz at arcsecond level resolution and mJy level sensitivity. Key science drivers include (1) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays, supernova remnants, and pulsars; (2) the high redshift universe, including the most distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy; (3) planetary, solar, and space science, including space weather prediction and extra-solar planet searches; and (4) the radio transient universe: including the known (e.g., SNe, GRBs) and the unknown. Because the LWA will explore one of the last and least investigated regions of the spectrum, the potential for new discoveries, including new classes of physical phenomena, is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. Operated by the University of New Mexico on behalf of the South West Consortium (SWC) the LWA will also provide a unique training ground for the next generation of radio astronomers. Students may also put skills learned on the LWA to work in computer science, electrical engineering, and the communications industry, among others. The development of the LWA will follow a phased build, which benefits from lessons learned at each phase. Four university-based Scientific Testing and Evaluation (ST&E) teams with different areas of concentration (1. High resolution imaging and particle acceleration; 2. Wide field imaging and large scale structures; 3. Ionosphere, and 4. RFI suppression and transient detection) will provide the feedback needed to assure that science objectives are met as the build develops. Currently in its first year of construction funding, the LWA

  3. Radio Band Observations of Blazar Variability

    CERN Document Server

    Aller, Margo F; Hughes, Philip A

    2010-01-01

    The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging; such measurements, now available in all four Stokes parameters, together with theoretical simulations, identify the origin of radio band variability and probe the characteristics of the radio jet where the broadband blazar emission originates. Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part based on limited modeling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this picture by reproducing the observed centimeter-band variations observed more generally, and are of current interest since these shocks may play a role in the gamma-ray flaring detected by Fermi. Recent UMRAO multifrequency Stokes V studies of bright blazars identify the spec...

  4. Are the infrared-faint radio sources pulsars?

    Science.gov (United States)

    Cameron, A. D.; Keith, M.; Hobbs, G.; Norris, R. P.; Mao, M. Y.; Middelberg, E.

    2011-07-01

    Infrared-faint radio sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50 per cent duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  5. Are the infrared-faint radio sources pulsars?

    CERN Document Server

    Keith, A D Cameron M J; Norris, R P; Mao, M Y; Middelberg, E

    2011-01-01

    Infrared-Faint Radio Sources (IFRS) are objects which are strong at radio wavelengths but undetected in sensitive Spitzer observations at infrared wavelengths. Their nature is uncertain and most have not yet been associated with any known astrophysical object. One possibility is that they are radio pulsars. To test this hypothesis we undertook observations of 16 of these sources with the Parkes Radio Telescope. Our results limit the radio emission to a pulsed flux density of less than 0.21 mJy (assuming a 50% duty cycle). This is well below the flux density of the IFRS. We therefore conclude that these IFRS are not radio pulsars.

  6. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on all-optical wavelength converter types based on semiconductor optical amplifiers....

  7. Wavelength converter technology

    DEFF Research Database (Denmark)

    Kloch, Allan; Hansen, Peter Bukhave; Poulsen, Henrik Nørskov;

    1999-01-01

    Wavelength conversion is important since it ensures full flexibility of the WDM network layer. Progress in optical wavelength converter technology is reviewed with emphasis on air-optical wavelength converter types based on semiconductor optical amplifiers....

  8. Compact Radio Sources in Orion: New Detections, Time Variability, and Objects in OMC-1S

    CERN Document Server

    Zapata, L A; Kurtz, S E; O'Dell, C R; Zapata, Luis A.; Rodriguez, Luis F.; Kurtz, Stanley E.

    2004-01-01

    We present the analysis of four 3.6 cm radio continuum archival observations of Orion obtained using the Very Large Array in its A-configuration, with $0\\rlap.{''}3$ angular resolution. The observations were made during the period 1994-1997. In a region of $4' \\times 4'$, we detect a total of 77 compact radio sources. Of the total of detected sources, 54 are detected in one or more of the individual observations and 36 of these show time variability (by more than 30%) between the observed epochs. A deep image made from averaging all data shows an additional 23 faint sources, in the range of 0.1 to 0.3 mJy. Of the total of 77 sources, 39 are new centimeter detections. However, only 9 of the 77 sources do not have a previously reported counterpart at near-infrared, optical, or X-ray wavelengths. In particular, we detect three faint sources in the OMC-1S region that may be related to the sources that power the multiple outflows that emanate from this part of the Orion nebula. %We discuss the nature of these sour...

  9. Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess

    CERN Document Server

    Bot, Caroline; Paradis, Déborah; Bernard, Jean-Philippe; Lagache, Guilaine; Israel, Frank P; Wall, William F

    2010-01-01

    Dust emission at submm to cm wavelengths is often simply the Rayleigh-Jeans tail of dust particles at thermal equilibrium and is used as a cold mass tracer in various environments including nearby galaxies. However, well-sampled spectral energy distributions of the nearby, star-forming Magellanic Clouds have a pronounced (sub-)millimeter excess (Israel et al., 2010). This study attempts to confirm the existence of such a millimeter excess above expected dust, free-free and synchrotron emission and to explore different possibilities for its origin. We model NIR to radio spectral energy distributions of the Magellanic Clouds with dust, free-free and synchrotron emission. A millimeter excess emission is confirmed above these components and its spectral shape and intensity are analysed in light of different scenarios: very cold dust, Cosmic Microwave Background (CMB) fluctuations, a change of the dust spectral index and spinning dust emission. We show that very cold dust or CMB fluctuations are very unlikely expl...

  10. Nanometers to centimeters: novel optical nano-antennas, with an eye to scaled production

    Science.gov (United States)

    James, Timothy D.; Cadusch, Jasper J.; Earl, Stuart K.; Panchenko, Evgeniy; Mulvaney, Paul; Davis, Timothy J.; Roberts, Ann

    2016-03-01

    Optical nano-antennas have been the focus of intense research recently due to their ability to manipulate electromagnetic radiation on a subwavelength scale, and there is major interest in such devices for a wide variety of applications in photonics, sensing, and imaging. Significant effort has been put into developing highly compact, novel, next-generation light sources, which have great potential in realizing efficient sub-wavelength single photon sources and enhanced biological and chemical sensors. We have developed a number of innovative optical antenna designs including elements of chiral metasurfaces for enabling circularly polarized emission from quantum sources, new designs derived from Radio Frequency (RF) elements for quantum source enhancement and directionality, and nanostructures for investigating plasmonic dark-modes that have the ability to significantly reduce the Q-factor of nano-antennas. A challenge, however, remains the development of a scalable nanofabrication technology. The capacity to mass-produce nano-antennas will have a considerable impact on the commercial viability of these devices, and greatly improve research throughput. Here we present recent progress in the development of scalable fabrication strategies for producing of nano-antennas and antenna arrays, along with slot based plasmonic optical devices.

  11. Dynamic Outer Loop Link Adaptation for the 5G Centimeter-Wave Concept

    DEFF Research Database (Denmark)

    Gatnau, Marta; Catania, Davide; Frederiksen, Frank;

    2015-01-01

    A 5th generation (5G) of wireless communication systems is expected to be introduced around 2020 to cope with a rapid increase of mobile data traffic. One of the main challenges of our envisioned 5G centimeter-wave concept is a large signal to interference plus noise ratio (SINR) variability, due...

  12. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Engelen, Steven; Bentum, Mark; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection belo

  13. Radio continuum jet in NGC 7479

    OpenAIRE

    Laine, Seppo; Beck, Rainer

    2008-01-01

    The barred galaxy NGC 7479 hosts a remarkable jet-like radio continuum feature: bright, 12-kpc long in projection, and hosting an aligned magnetic field. The degree of polarization is 6%-8% along the jet, and remarkably constant, which is consistent with helical field models. The radio brightness of the jet suggests strong interaction with the ISM and hence a location near the disk plane. We observed NGC 7479 at four wavelengths with the VLA and Effelsberg radio telescopes. The equipartition ...

  14. Radio archive

    OpenAIRE

    Street, Sean

    2008-01-01

    The Centre for Broadcasting History Research, in association with the\\ud British Universities Film and Video Council, is developing an online\\ud audio archive of UK commercial radio, from 1973 to 1992. Work produced\\ud before the Broadcasting Act 1990 represents a different ethos to the role\\ud commercial radio played, and subsequently,continues to play, in the UK.\\ud The change in commercial radio since this period is extraordinary. It is\\ud impossible for the young student of radio, born si...

  15. Radio Monitoring of Protoplanetary Discs

    Science.gov (United States)

    Ubach, C.; Maddison, S. T.; Wright, C. M.; Wilner, D. J.; Lommen, D. J. P.; Koribalski, B.

    2017-01-01

    Protoplanetary disc systems observed at radio wavelengths often show excess emission above that expected from a simple extrapolation of thermal dust emission observed at short millimetre wavelengths. Monitoring the emission at radio wavelengths can be used to help disentangle the physical mechanisms responsible for this excess, including free-free emission from a wind or jet, and chromospheric emission associated with stellar activity. We present new results from a radio monitoring survey conducted with Australia Telescope Compact Array over the course of several years with observation intervals spanning days, months and years, where the flux variability of 11 T Tauri stars in the Chamaeleon and Lupus star forming regions was measured at 7 and 15 mm and 3 and 6 cm. Results show that for most sources are variable to some degree at 7 mm, indicating the presence of emission mechanisms other than thermal dust in some sources. Additionally, evidence of grain growth to cm-sized pebbles was found for some sources that also have signs of variable flux at 7 mm. We conclude that multiple processes contributing to the emission are common in T Tauri stars at 7 mm and beyond, and that a detection at a single epoch at radio wavelengths should not be used to determine all processes contributing to the emission.

  16. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    CERN Document Server

    Banfield, J K; Willett, K W; Norris, R P; Rudnick, L; Shabala, S S; Simmons, B D; Snyder, C; Garon, A; Seymour, N; Middelberg, E; Andernach, H; Lintott, C J; Jacob, K; Kapinska, A D; Mao, M Y; Masters, K L; Jarvis, M J; Schawinski, K; Paget, E; Simpson, R; Klockner, H R; Bamford, S; Burchell, T; Chow, K E; Cotter, G; Fortson, L; Heywood, I; Jones, T W; Kaviraj, S; Lopez-Sanchez, A R; Maksym, W P; Polsterer, K; Borden, K; Hollow, R P; Whyte, L

    2015-01-01

    We present results from the first twelve months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170,000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses $1.4\\,$GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at $3.4\\,\\mu$m from the {\\it Wide-field Infrared Survey Explorer} (WISE) and at $3.6\\,\\mu$m from the {\\it Spitzer Space Telescope}. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is $>\\,75\\%$ consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects (QSOs), and l...

  17. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    Science.gov (United States)

    Medina, Carlos; Segura, José Carlos; De la Torre, Ángel

    2013-01-01

    This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF) of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA) scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse) less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm. PMID:23486218

  18. Ultrasound Indoor Positioning System Based on a Low-Power Wireless Sensor Network Providing Sub-Centimeter Accuracy

    Directory of Open Access Journals (Sweden)

    Ángel De la Torre

    2013-03-01

    Full Text Available This paper describes the TELIAMADE system, a new indoor positioning system based on time-of-flight (TOF of ultrasonic signal to estimate the distance between a receiver node and a transmitter node. TELIAMADE system consists of a set of wireless nodes equipped with a radio module for communication and a module for the transmission and reception of ultrasound. The access to the ultrasonic channel is managed by applying a synchronization algorithm based on a time-division multiplexing (TDMA scheme. The ultrasonic signal is transmitted using a carrier frequency of 40 kHz and the TOF measurement is estimated by applying a quadrature detector to the signal obtained at the A/D converter output. Low sampling frequencies of 17.78 kHz or even 12.31 kHz are possible using quadrature sampling in order to optimize memory requirements and to reduce the computational cost in signal processing. The distance is calculated from the TOF taking into account the speed of sound. An excellent accuracy in the estimation of the TOF is achieved using parabolic interpolation to detect of maximum of the signal envelope at the matched filter output. The signal phase information is also used for enhancing the TOF measurement accuracy. Experimental results show a root mean square error (rmse less than 2 mm and a standard deviation less than 0.3 mm for pseudorange measurements in the range of distances between 2 and 6 m. The system location accuracy is also evaluated by applying multilateration. A sub-centimeter location accuracy is achieved with an average rmse of 9.6 mm.

  19. Radio Eska Lodz, Commercial Radio As a Local Radio

    OpenAIRE

    Szews, Przemysław

    2015-01-01

    The article discusses aspects of network-based local radio using the example of Radio Eska Lodz. The author responds to questions about whether a commercial network radio station can fulfill the functions of local radio and on what this locality is actually based. In this respect, Radio Eska Lodz is characterized as part of the most popular commercial radio network in Poland. The introduction focuses on the process of transformation that local radio stations are undergoing, along with its gen...

  20. Dust tori in radio galaxies

    CERN Document Server

    van der Wolk, G; Peletier, R F; Pel, J W

    2009-01-01

    We investigate the validity of the quasar - radio galaxy unification scenario and determine the presence of dust tori among radio galaxies of various types. Actively accreting supermassive black holes in the centres of radio galaxies may be uncovered through their dust tori reradiating the optical and ultraviolet continuum in mid-infrared bands. Using VISIR on the VLT, we have obtained sub-arcsecond (~0.40") resolution N-band images, at a wavelength of 11.85 micron, of the nuclei of a sample of 27 radio galaxies of four types in the redshift range z=0.006-0.156. The sample consists of 8 edge-darkened, low-power Fanaroff-Riley class I (FR-I) radio galaxies, 6 edge-brightened, class II (FR-II) radio galaxies displaying low-excitation optical emission, 7 FR-IIs displaying high-excitation optical emission, and 6 FR-II broad emission line radio galaxies. Out of the sample of 27 objects, 10 nuclei are detected and several have constraining non-detections at 10 sigma sensitivities of 7 mJy. On the basis of the core ...

  1. Solar Radio

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists monitor the structure of the solar corona, the outer most regions of the Sun's atmosphere, using radio waves (100?s of MHz to 10?s of GHz). Variations in...

  2. Late specialization: the key to success in centimeters, grams, or seconds (cgs) sports

    DEFF Research Database (Denmark)

    Moesch, Karin Silvia; Elbe, Anne-Marie; Hauge, Marie-Louise Trier;

    2011-01-01

    and specializing later on during adolescence. Based on a Danish sample of 148 elite and 95 near-elite athletes from cgs sports (sports measured in centimeters, grams, or seconds), the present study investigates group differences concerning accumulated practice hours during the early stages of the career...... regime during late adolescence more than their near-elite peers. The involvement in other sports neither differs between the groups nor predicts success. It can be concluded that factors related to the organization of practice during the mid-teens seem to be crucial for international success within cgs...

  3. Ultra-low-power short-range radios

    CERN Document Server

    Chandrakasan, Anantha

    2015-01-01

    This book explores the design of ultra-low-power radio-frequency integrated circuits (RFICs), with communication distances ranging from a few centimeters to a few meters. Such radios have unique challenges compared to longer-range, higher-powered systems. As a result, many different applications are covered, ranging from body-area networks to transcutaneous implant communications and Internet-of-Things devices. A mix of introductory and cutting-edge design techniques and architectures which facilitate each of these applications are discussed in detail. Specifically, this book covers:.

  4. A CONCENTRATION OF CENTIMETER-SIZED GRAINS IN THE OPHIUCHUS IRS 48 DUST TRAP

    Energy Technology Data Exchange (ETDEWEB)

    Marel, N. van der; Pinilla, P.; Tobin, J.; Kempen, T. van [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands); Andrews, S.; Ricci, L.; Birnstiel, T., E-mail: nmarel@strw.leidenuniv.nl [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2015-09-01

    Azimuthally asymmetric dust distributions observed with the Atacama Large Millimeter/submillimeter Array (ALMA) in transition disks have been interpreted as dust traps. We present Very Large Array Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at a 0.″2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 ± 0.9 times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data are required for definitive confirmation.

  5. Centimeter spatial resolution of distributed optical fiber sensor for structural health monitoring

    Science.gov (United States)

    Zou, Lufan; Bao, Xiaoyi; Wan, Yidun; Ravet, Fabien; Chen, Liang

    2004-11-01

    We present a sensing principle of the coherent probe-pump based Brillouin sensor (CPPBBS) that offers a new method to achieve centimeter spatial resolution with high frequency resolution. A combination of continuous wave (cw) and pulse source as the probe (Stokes) beam and cw laser as the pump beam have resulted in stronger Brillouin interaction of Stokes and pump inside the pulse-length in the form of cw-pump and pulse-pump interactions. We find that the coherent portion inside the pulse-length of these two interactions due to the same phase has a very high Brillouin amplification. The Brillouin profile originating from the coherent interaction of pulse-pump with cw-pump results in high temperature and strain accuracy with centimeter resolution, which allows us to detect 1.5 cm out-layer crack on an optical ground wire (OPGW) cable. The out-layer damaged regions on an optical ground wire (OPGW) cable have been identified successfully by measuring the strain distributions every 5 cm using this technology. The stress increased to 127 kN which corresponds to more than 7500 micro-strain in the fibers. The locations of structural indentations comprising repaired and undamaged regions are found and distinguished using their corresponding strain data. The elongation of repaired region increases with time on the stress of 127 kN. These results are quantified in terms of the fiber orientation, stress, and behavior relative to undamaged sections.

  6. Wavelength conversion devices

    DEFF Research Database (Denmark)

    Mikkelsen, Benny; Durhuus, Terji; Jørgensen, Carsten

    1996-01-01

    system requirements. The ideal wavelength converter should be transparent to the bit rate and signal format and provide an unchirped output signal with both a high extinction ratio and a large signal-to-noise ratio. It should allow conversion to both shorter and longer wavelengths with equal performance...

  7. Faint Radio Sources and Star Formation History

    CERN Document Server

    Haarsma, D B; Windhorst, R A; Richards, E A; 10.1086/317225

    2010-01-01

    The centimeter-wave luminosity of local radio galaxies correlates well with their star formation rate. We extend this correlation to surveys of high-redshift radio sources to estimate the global star formation history. The star formation rate found from radio observations needs no correction for dust obscuration, unlike the values calculated from optical and ultraviolet data. Three deep radio surveys have provided catalogs of sources with nearly complete optical identifications and nearly 60% complete spectroscopic redshifts: the Hubble Deep Field and Flanking Fields at 12h+62d, the SSA13 field at 13h+42d, and the V15 field at 14h+52d. We use the redshift distribution of these radio sources to constrain the evolution of their luminosity function. The epoch dependent luminosity function is then used to estimate the evolving global star formation density. At redshifts less than one, our calculated star formation rates are significantly larger than even the dust-corrected optically-selected star formation rates;...

  8. Constraints on photoevaporation models from (lack of) radio emission in the Corona Australis protoplanetary disks

    CERN Document Server

    Galván-Madrid, Roberto; Manara, Carlo Felice; Forbrich, Jan; Pascucci, Ilaria; Carrasco-González, Carlos; Goddi, Ciriaco; Hasegawa, Yasuhiro; Takami, Michihiro; Testi, Leonardo; .,

    2014-01-01

    Photoevaporation due to high-energy stellar photons is thought to be one of the main drivers of protoplanetary disk dispersal. The fully or partially ionized disk surface is expected to produce free-free continuum emission at centimeter (cm) wavelengths that can be routinely detected with interferometers such as the upgraded Very Large Array (VLA). We use deep (rms noise down to 8 $\\mu$Jy beam$^{-1}$ in the field of view center) 3.5 cm maps of the nearby (130 pc) Corona Australis (CrA) star formation (SF) region to constrain disk photoevaporation models. We find that the radio emission from disk sources in CrA is surprisingly faint. Only 3 out of 10 sources within the field of view are detected, with flux densities of order $10^2$ $\\mu$Jy. However, a significant fraction of their emission is non-thermal. Typical upper limits for non-detections are $3\\sigma\\sim 60~\\mu$Jy beam$^{-1}$. Assuming analytic expressions for the free-free emission from extreme-UV (EUV) irradiation, we derive stringent upper limits to ...

  9. A MULTI-WAVELENGTH INVESTIGATION OF RCW175: AN H II REGION HARBORING SPINNING DUST EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Tibbs, C. T.; Compiegne, M.; Carey, S. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Paladini, R. [NASA Herschel Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Dickinson, C.; Davies, R. D.; Davis, R. J. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester M13 9PL (United Kingdom); Alves, M. I. R. [Institut d' Astrophysique Spatiale, Universite Paris Sud XI, Batiment 121, 91405 Orsay (France); Flagey, N. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Shenoy, S. [Space Science Division, NASA Ames Research Center, M/S 245-6, Moffett Field, CA 94035 (United States); Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Casassus, S. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Molinari, S.; Elia, D.; Pestalozzi, M.; Schisano, E., E-mail: ctibbs@ipac.caltech.edu [INAF-Istituto Fisica Spazio Interplanetario, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2012-08-01

    Using infrared, radio continuum, and spectral observations, we performed a detailed investigation of the H II region RCW175. We determined that RCW175, which actually consists of two separate H II regions, G29.1-0.7 and G29.0-0.6, is located at a distance of 3.2 {+-} 0.2 kpc. Based on the observations we infer that the more compact G29.0-0.6 is less evolved than G29.1-0.7 and was possibly produced as a result of the expansion of G29.1-0.7 into the surrounding interstellar medium. We compute a star formation rate for RCW175 of (12.6 {+-} 1.9) Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, and identified six possible young stellar object candidates within its vicinity. Additionally, we estimate that RCW175 contains a total dust mass of 215 {+-} 53 M{sub Sun }. RCW175 has previously been identified as a source of anomalous microwave emission (AME), an excess of emission at centimeter wavelengths often attributed to electric dipole radiation from the smallest dust grains. We find that the AME previously detected in RCW175 is not correlated with the smallest dust grains (polycyclic aromatic hydrocarbons or small carbonaceous dust grains), but rather with the exciting radiation field within the region. This is a similar result to that found in the Perseus molecular cloud, another region which harbors AME, suggesting that the radiation field may play a pivotal role in the production of this new Galactic emission mechanism. Finally, we suggest that these observations may hint at the importance of understanding the role played by the major gas ions in spinning dust models.

  10. Radio astronomy

    CERN Document Server

    Alder, Berni

    1975-01-01

    Methods in Computational Physics, Volume 14: Radio Astronomy is devoted to the role of the digital computer both as a control device and as a calculator in addressing problems related to galactic radio noise. This volume contains four chapters and begins with a technical description of the hardware and the special data-handling problems of using radioheliography, with an emphasis on a selection of observational results obtained with the Culgoora radioheliograph and their significance to solar physics and to astrophysics in general. The subsequent chapter examines interstellar dispersion, i

  11. Very high redshift radio galaxies

    Energy Technology Data Exchange (ETDEWEB)

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  12. An Update on Radio Supernovae

    Science.gov (United States)

    van Dyk, Schuyler D.; Sramek, Richard A.; Weiler, Kurt W.; Montes, Marcos J.; Panagia, Nino

    The radio emission from supernovae (SNe) is nonthermal synchrotron radiation of high brightness temperature, with a ``turn-on'' delay at longer wavelengths, power-law decline after maximum with index beta, and spectral index alpha asymptotically decreasing with time to a final, optically thin value. Radio supernovae (RSNe) are best described by the Chevalier (1982) ``mini-shell'' model, with modifications by Weiler \\etal\\ (1990). RSNe observations provide a valuable probe of the SN circumstellar environment and constraints on progenitor masses. We present a progress report on a number of recent RSNe, as well as on new behavior from RSNe 1979C and 1980K, and on RSNe as potential distance indicators. In particular, we present updated radio light curves for SN 1993J in M81.

  13. Envelope Soliton in Solar Radio Emission

    Institute of Scientific and Technical Information of China (English)

    WANG De-Yu; Wangde; G. P. Chernov

    2000-01-01

    Several envelope soliton fine structures have been observed in solar radio metric-wave emission. We present amodel of 1ongitudinal modulational instability to explain these fine structures. It is found that this instability canonly occur in the condition of sound velocity being larger than Alfven velocity in corona. Therefore, the envelopesoliton fine structures should display in the coronal region with high temperature and low magnetic field, whichcorresponds to the solar radio emission in the region of meter and decameter wavelength.

  14. Digitale radio

    NARCIS (Netherlands)

    Schiphorst, Roel; Zondervan, L.

    2007-01-01

    Als eerste in Europa heeft Nederland begin december 2006 de omschakeling van analoge naar digitale ethertelevisie gemaakt. Voor de analoge FM-radio is er ook een digitale variant, T-DAB. T-DAB staat voor 'Terrestrial Digital Audio Broadcasting'. Dit artikel gaat verder in op deze techniek en de veld

  15. Measuring beliefs in centimeters: private knowledge biases preschoolers' and adults' representation of others' beliefs.

    Science.gov (United States)

    Sommerville, Jessica A; Bernstein, Daniel M; Meltzoff, Andrew N

    2013-01-01

    A novel task, using a continuous spatial layout, was created to investigate the degree to which (in centimeters) 3-year-old children's (N = 63), 5-year-old children's (N = 60), and adults' (N = 60) own privileged knowledge of the location of an object biased their representation of a protagonist's false belief about the object's location. At all ages, participants' knowledge of the object's actual location biased their search estimates, independent of the attentional or memory demands of the task. Children's degree of bias correlated with their performance on a classic change-of-location false belief task, controlling for age. This task is a novel tool for providing a quantitative measurement of the degree to which self-knowledge can bias estimates of others' beliefs.

  16. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    Science.gov (United States)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  17. Satellite laser ranging experiment with sub-centimeter single-shot ranging precision at Shanghai Observatory

    Institute of Scientific and Technical Information of China (English)

    YANG; Fumin(杨福民); CHEN; Wanzhen(陈婉珍); ZHANG; Zhongping(张忠萍); CHEN; Juping(陈菊平); HU; Jingfu(扈荆夫); LI; Xin(李鑫); I.; Prochazka; K.; Hamal

    2003-01-01

    The Shanghai Astronomical Observatory, Chinese Academy of Sciences, incollaboration with the Czech Technical University, carried out the experiment of satellite laser ranging with sub-centimeter precision in Shanghai in August 2001. A pico-second event timer was used for the measurement of the time interval between the transmitted and returned laser pulses for Lageos 1, 2, Starlette, Stella, Topex/Poseiden and ERS-2 in coordination with the existing laser transmitting and receiving system at the Shanghai Observatory. The analysis of the measurement showed that the single-shot ranging precision with these satellites is 7-8 mm. In order to compare ranging precision, the existing ranging system has tracked simultaneously these satellites and obtained the ranging precision of 12-15 mm. It means that the ranging precision with the new system is 80% better thanthe existing system. The systematic biases with the existing system have also been checked in the experiment.

  18. The kpc-scale radio source population

    OpenAIRE

    Augusto, Pedro; Gonzalez-Serrano, J. Ignacio; Edge, Alastair C.; Gizani, Nectaria A. B.; Wilkinson, Peter N.; Perez-Fournon, Ismael

    1999-01-01

    We are conducting a multi-wavelength (radio, optical, and X-ray) observational campaign to classify, morphologically and physically, a sample of 55 flat-spectrum radio sources dominated by structure on kpc-scales. This sample contains 22 compact-/medium-sized symmetric object candidates, a class of objects thought to be the early stages of the evolution of radio galaxies. The vast majority of the remaining objects have core-plus-one-sided-jet structures, half of which present sharply bent jet...

  19. Nature of microstructure in pulsar radio emission

    CERN Document Server

    Machabeli, G Z; Melikidze, G I; Shapakidze, D; Machabeli, George; Khechinashvili, David; Melikidze, George; Shapakidze, David

    2000-01-01

    We present a model for microstructure in pulsar radio emission. We propose that micropulses result from the alteration of the radio wave generation region by nearly transverse drift waves propagating across the pulsar magnetic field and encircling the bundle of the open magnetic field lines. It is demonstrated that such waves can modify significantly curvature of these dipolar field lines. This in turn affects strongly fulfillment of the resonance conditions necessary for the excitation of radio waves. The time-scale of micropulses is therefore determined by the wavelength of drift waves. Main features of the microstructure are naturally explained in the frame of this model.

  20. Centimeter-deep tissue fluorescence microscopic imaging with high signal-to-noise ratio and picomole sensitivity

    CERN Document Server

    Cheng, Bingbing; Wei, Ming-Yuan; Pei, Yanbo; DSouza, Francis; Nguyen, Kytai T; Hong, Yi; Tang, Liping; Yuan, Baohong

    2015-01-01

    Fluorescence microscopic imaging in centimeter-deep tissue has been highly sought-after for many years because much interesting in vivo micro-information, such as microcirculation, tumor angiogenesis, and metastasis, may deeply locate in tissue. In this study, for the first time this goal has been achieved in 3-centimeter deep tissue with high signal-to-noise ratio (SNR) and picomole sensitivity under radiation safety thresholds. These results are demonstrated not only in tissue-mimic phantoms but also in actual tissues, such as porcine muscle, ex vivo mouse liver, ex vivo spleen, and in vivo mouse tissue. These results are achieved based on three unique technologies: excellent near infrared ultrasound-switchable fluorescence (USF) contrast agents, a sensitive USF imaging system, and an effective correlation method. Multiplex USF fluorescence imaging is also achieved. It is useful to simultaneously image multiple targets and observe their interactions. This work opens the door for future studies of centimeter...

  1. Three-Wave Resonance Modulation and Fine Structures in the Solar Short Centimeter Wave Bursts

    Institute of Scientific and Technical Information of China (English)

    王德焴; 吴洪敖; 秦至海

    1994-01-01

    A theoretical model is presented. We propose that when the radiation of solar radio bursts propagates outward as a pump wave through the conora, the three-wave resonance interaction would occur if the radio emission interacts with the MHD wave and scattering wave in the conora. This process induces a nonlinear modulation in the emission flux S. The statistical relations between the repetition rates R and S and between the modulation amplitude △S and S, observed from 1.36cm, 2cm and 3.2cm solar radio bursts could be well interpreted by this model under the conditions of imperfect matching and k2≠0. The appreciable difference in the modulation periods among the 2cm, 3.2cm and 1.36cm waves might be caused by the differences in the MHD waves joining in the modulation. Several theoretical expectations have been made from this model, which may be inspected in further observation.

  2. The Radio JOVE Project - Shoestring Radio Astronomy

    Science.gov (United States)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  3. Radio Recombination Lines at Decametre Wavelengths. Prospects for the Future

    Science.gov (United States)

    2010-09-15

    quantum number levels are a sensi- tive probe of the environments in which the atoms exist, provid- ing diagnostics such as temperature, density, and...measured simultaneously at different quantum numbers n in the same spectrum, can be used to constrain the physical prop- erties of the absorbing gas...25 Years of Investigation, 163, 189 Stepkin, S. V., Konovalenko, A. A., Kantharia, N. G., & Udaya Shankar , N. 2007, MNRAS, 374, 852 6 W. M. Peters et

  4. Millisecond solar radio bursts in the metric wavelength range

    CERN Document Server

    Magdalenić, J; Zlobec, P; Vršnak, B; 10.1063/1.2347982

    2010-01-01

    A study and classification of super-short structures (SSSs) recorded during metric type IV bursts is presented. The most important property of SSSs is their duration, at half power ranging from 4-50 ms, what is up to 10 times shorter than spikes at corresponding frequencies. The solar origin of the SSSs is confirmed by one-to-one correspondence between spectral recordings of Artemis-IV1 and high time resolution single frequency measurements of the TSRS2. We have divided the SSSs in the following categories: 1. Broad-Band SSSs: They were partitioned in two subcategories, the SSS-Pulses and Drifting SSSs; 2. Narrow-band: They appear either as Spike-Like SSSs or as Patch-Like SSSs; 3. Complex SSS: They consist of the absorption-emission segments and were morphologically subdivided into Rain-drop Bursts (narrow-band emission head and a broad-band absorption tail) and Blinkers.

  5. Radio Band Observations of Blazar Variability

    Indian Academy of Sciences (India)

    Margo F. Aller; Hugh D. Aller; Philip A. Hughes

    2011-03-01

    The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging. Such measurements now available in all four Stokes parameters, together with theoretical simulations, identify the origin of radio band variability and probe the characteristics of the radio jet where the broadband blazar emission originates. Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part, based on limited modelling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this picture by reproducing the observed centimeter-band variations observed more generally, and are of current interest since these shocks may play a role in the -ray flaring detected by Fermi. Recent UMRAO multifrequency Stokes V studies of bright blazars identify the spectral variability properties of circular polarization for the first time and demonstrate that polarity flips are relatively common. All-Stokes data are consistent with the production of circular polarization by linear-to-circular mode conversion in a region that is at least partially selfabsorbed. Detailed analysis of single-epoch, multifrequency, all-Stokes VLBA observations of 3C 279 support this physical picture and are best explained by emission from an electron-proton plasma.

  6. Space Telecommunications Radio System STRS Cognitive Radio

    Science.gov (United States)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  7. 30 pJ/b, 67 Mbps, Centimeter-to-Meter Range Data Telemetry With an IR-UWB Wireless Link.

    Science.gov (United States)

    Ebrazeh, Ali; Mohseni, Pedram

    2015-06-01

    This paper reports an energy-efficient, impulse radio ultra wideband (IR-UWB) wireless link operating in 3-5 GHz for data telemetry over centimeter-to-meter range distances at rates extended to tens of Mbps. The link comprises an all-digital, integrated transmitter (TX) fabricated in 90 nm 1P/9M CMOS that incorporates a waveform-synthesis pulse generator and a timing generator for on-off-keying (OOK) pulse modulation and phase scrambling. The link also incorporates an energy-detection receiver (RX) realized with commercial off-the-shelf (COTS) components that performs radio-frequency (RF) filtering, amplification, logarithmic power detection for data demodulation and automatic level control for robust operation in the presence of distance variations. Employing a miniaturized, UWB, chip antenna for the TX and RX, wireless transmission of pseudo-random binary sequence (PRBS) data at rates up to 50 Mbps over 10 cm-1 m is shown. Further, employing a high-gain horn antenna for the RX, wireless transmission of PRBS data at rates up to 67 Mbps over 50 cm-4 m is shown with a TX energy consumption of 30 pJ/b (i.e., power consumption of 2 mW) from 1.2 V. The measured bit error rate (BER) in both cases is < 10(-7) . Results from wireless recording of the background current of a carbon-fiber microelectrode (CFM) in one fast-scan cyclic voltammetry (FSCV) scan using the IR-UWB link are also included, exhibiting excellent match with those obtained from a conventional frequency-shift-keyed (FSK) link at ~433 MHz.

  8. On the Superluminal Motion of Radio-Loud AGNs

    Indian Academy of Sciences (India)

    Zhi-Bin Zhang; Yi-Zhen Zhang

    2011-03-01

    Apparent superluminal motion of different radio-loud AGNs are similarly related with beaming effect. The cosmological expanding effect would play no part in the superluminal motion of radio galaxies, BL Lacertae objects as well as quasars.Meanwhile, we confirm that estimates for apparent velocity app and Doppler boosting factor based on multi-wavelength combination and variability are comparable.

  9. Multi-Wavelength Observations of Supernova Remnants

    Science.gov (United States)

    Williams, B.

    2012-01-01

    Supernova remnants (SNRs) provide a laboratory for studying various astrophysical processes, including particle acceleration, thermal and non thermal emission processes across the spectrum, distribution of heavy elements, the physics of strong shock waves, and the progenitor systems and environments of supernovae. Long studied in radio and X-rays, the past decade has seen a dramatic increase in the detection and subsequent study of SNRs in the infrared and gamma-ray regimes. Understanding the evolution of SNRs and their interaction with the interstellar medium requires a multi-wavelength approach. I will review the various physical processes observed in SNRs and how these processes are intertwined. In particular, I will focus on X-ray and infrared observations, which probe two very different but intrinsically connected phases of the ISM: gas and dust. I will discuss results from multi-wavelength studies of several SNRs at various stages of evolution, including Kepler, RCW 86, and the Cygnus Loop.

  10. Early Radio and X-Ray Observations of the Youngest nearby Type Ia Supernova PTF 11kly (SN 2011fe)

    NARCIS (Netherlands)

    Horesh, Assaf; Kulkarni, S. R.; Fox, Derek B.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Quimby, Robert; Gal-Yam, Avishay; Cenko, Bradley; de Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil; Law, Nicholas M.; Poznanski, Dovi; Shara, Michael

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion

  11. Cassini Radio Occultation of Saturn's Rings: a Bayesian Approach to Particle Size Distribution Recovery

    Science.gov (United States)

    Wong, K. K.; Marouf, E. A.

    2004-12-01

    The radio occultation technique was first used to study Saturn's rings through their effects on quasi-monochromatic radio signals transmitted from Voyager 1 during its flyby of Saturn in 1980. Almost a quarter of a century later, Cassini is planned to conduct a more extensive set of radio occultation experiments during its tour of the Saturn system. Cassini enjoys the advantage of a wide range of ring viewing geometry as well as the unique new capability of simultaneously transmitting 0.94, 3.6 and 13 cm-wavelength coherent radio signals (Ka-, X-, and S-band, respectively). Observed extinction of the direct signal and time-sequence spectra (spectrogram) of the near-forward scattered signal can be used to infer the size distribution of particles of resolved ring features (among other objectives). The inference requires solving three distinct inversion problems to recover from the measurements: i) the multiply-scattered collective diffraction lobe of a resolved ring feature, ii) the first-order scattering contribution to the collective lobe, and iii) the corresponding particle size distribution. Although various classical regularization techniques may be used for this purpose, a subjective valuation of solution smoothness usually needs to be introduced. We investigate an alternative approach based on Bayesian function learning schemes which provides a rigorous probabilistic framework to address the tradeoff between data fit residuals and prior knowledge about the character of the solution. In contrast with the regularization approach, the Bayesian approach provides estimates of confidence intervals for the most-likely solution achieved, an important advantage. The approach is particularly adaptable to some Cassini occultations of relatively unfavorable alignment between contours of constant Doppler shift in the ring plane and circular boundaries of ring features, as the approach naturally "fuses" time-sequence of spectra each containing contributions from adjacent

  12. Tracing High Redshift Starformation in the Current and Next Generation of Radio Surveys

    CERN Document Server

    Seymour, Nick

    2009-01-01

    The current deepest radio surveys detect hundreds of sources per square degree below 0.1mJy. There is a growing consensus that a large fraction of these sources are dominated by star formation although the exact proportion has been debated in the literature. However, the low luminosity of these galaxies at most other wavelengths makes determining the nature of individual sources difficult. If future, deeper surveys performed with the next generation of radio instrumentation are to reap high scientific reward we need to develop reliable methods of distinguishing between radio emission powered by active galactic nuclei (AGN) and that powered by star formation. In particular, we believe that such discriminations should be based on purely radio, or relative to radio, diagnostics. These diagnostics include radio morphology, radio spectral index, polarisation, variability, radio luminosity and flux density ratios with non-radio wavelengths e.g. with different parts of the infrared (IR) regime. We discuss the advant...

  13. Wavelength conversion technology

    DEFF Research Database (Denmark)

    Stubkjær, Kristian

    1998-01-01

    Optical wavelength conversion is currently attracting much interest. This is because it enables full flexibility and eases management of WDM fibre networks. The tutorial will review existing and potential application areas. Examples of node architectures and network demonstrators that use wavelen...

  14. SPACeMAN -a Satellite to Actively Reduce Sub-Centimeter Debris

    Science.gov (United States)

    Knirsch, Uli

    In-orbit fragmentation events, whether accidental or intentional, are bound to increase the population of space debris. "Critical debris" ranging between 1 and 10mm are numerous and can be lethal to both satellites and inhabited structures. This in turn creates further debris, potentially leading to a chain reaction ("Kessler syndrome"). In first approximation, collecting sub-centimeter debris appears impractical since rendezvous maneuvers are prohibitively expensive in terms of delta v and hardware complexity. One possible solution is to fly a spacecraft with a small constant vertical thrust. As a result, it will move somewhat faster than other, passive objects in its orbit -such as space debris. This "non-Keplerian orbit" thus creates a small chance of accidental collision. The sPACeMAN is designed to withstand impacts, capturing the debris. Since the probability of capture is low, some active control, particularly of the vertical thrust, can be instituted. The sPACeMAN concept was developed to reduce the population of NaK droplets in critical orbits. However, it can be extended to other debris as well. Since its effectiveness is greatest in areas of relatively high population densities of space debris, it would be best suited for quick responses, such as after a fragmentation event.

  15. Fluxon Controlled Resistance Switching in Centimeter-Long Superconducting Galium-Indium Eutectic Nanowires

    Science.gov (United States)

    Zhao, Weiwei; Bischof, Jesse; Liu, Xin; Hutasoit, Jimmy; Fitzgibbons, Thomas; Wang, Lin; Cai, Zhonghou; Chen, Si; Hayes, John; Sazio, Pier; Liu, Chaoxing; Jain, Jainendra; Badding, John; Chan, Moses

    2014-03-01

    We observe unexpected hysteretic behavior in centimeter long quasi 1D nanowires of Ga-In eutectic in transport measurements in the presence of a magnetic field. In particular, in some parts of the phase diagram, the system can exist in one of two stable states with different resistances. We propose that the nonzero resistance occurs when a spontaneously nucleated Ga droplet along the length of the nanowire traps a superconducting fluxon and, thereby, triggers phase slips in a nearby Ga droplet. The Ga-In nanowires thus provide a platform wherein the resistance can be switched on and off by the addition of a single fluxon. The presence of pure Ga droplets in the Ga-In nanowire was confirmed by X-ray flourescence studies conducted in Advanced Photon Source. The long length of the nanowire increases the probability of a wire containing two nearby droplets. This work is supported by the Penn State Materials Research Science and Engineering Center, funded by the National Science Foundation (DMR 0820404) and by the Energy Frontier Research Center (DE-0001057), DOE.

  16. Radio pulsars and transients in the Galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Lazio, Joseph [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5351 (United States); Deneva, J S [Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 (United States); Bower, Geoffrey C [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Cordes, J M [Astronomy Department and NAIC, Cornell University, Ithaca, NY 14853 (United States); Hyman, Scott D [Department of Physics and Engineering, Sweet Briar College, Sweet Briar, VA 24595 (United States); Backer, D C [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Bhat, R [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn, Victoria 3122 (Australia); Chatterjee, S [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Demorest, P [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720 (United States); Ransom, S M [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vlemmings, W [Jodrell Bank Observatory, University of Manchester, Macclesfleld, Cheshire, SK11 9DL, UK (United Kingdom)

    2006-12-15

    Radio pulsars and transients provide powerful probes of the star formation history, interstellar medium, and gravitational potential of the Galactic center. Historical radio observations of the Galactic center have not emphasized the time domain aspect of observing this region. We summarize a series of recent searches for and observations of radio transients and pulsars that make use of two advances in technology. The first is the formation of large fields of view ({approx}> 1{sup 0}) at relatively longer wavelengths ({lambda} > 1 m), and the second is the construction of receivers and instruments capable of collecting data on microsecond time scales at relatively short wavelengths ({approx} 3 cm)

  17. Cosmic downsizing of powerful radio galaxies to low radio luminosities

    CERN Document Server

    Rigby, E E; Best, P N; Rosario, D; Röttgering, H J A

    2015-01-01

    At bright radio powers ($P_{\\rm 1.4 GHz} > 10^{25}$ W/Hz) the space density of the most powerful sources peaks at higher redshift than that of their weaker counterparts. This paper establishes whether this luminosity-dependent evolution persists for sources an order of magnitude fainter than those previously studied, by measuring the steep--spectrum radio luminosity function (RLF) across the range $10^{24} 10^{26}$ W/Hz the redshift of the peak space density increases with luminosity, whilst at lower radio luminosities the position of the peak remains constant within the uncertainties. This `cosmic downsizing' behaviour is found to be similar to that seen at optical wavelengths for quasars, and is interpreted as representing the transition from radiatively efficient to inefficient accretion modes in the steep-spectrum population. This conclusion is supported by constructing simple models for the space density evolution of these two different radio galaxy classes; these are able to successfully reproduce the ...

  18. The radio spectral energy distribution of infrared-faint radio sources

    Science.gov (United States)

    Herzog, A.; Norris, R. P.; Middelberg, E.; Seymour, N.; Spitler, L. R.; Emonts, B. H. C.; Franzen, T. M. O.; Hunstead, R.; Intema, H. T.; Marvil, J.; Parker, Q. A.; Sirothia, S. K.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; For, B.-Q.; Greenhill, L. J.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Kaplan, D. L.; Lenc, E.; Lonsdale, C. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Morgan, J.; Oberoi, D.; Offringa, A.; Ord, S. M.; Prabu, T.; Procopio, P.; Udaya Shankar, N.; Srivani, K. S.; Staveley-Smith, L.; Subrahmanyan, R.; Tingay, S. J.; Wayth, R. B.; Webster, R. L.; Williams, A.; Williams, C. L.; Wu, C.; Zheng, Q.; Bannister, K. W.; Chippendale, A. P.; Harvey-Smith, L.; Heywood, I.; Indermuehle, B.; Popping, A.; Sault, R. J.; Whiting, M. T.

    2016-10-01

    Context. Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z ≥ 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. Aims: Because of their optical and infrared faintness, it is very challenging to study IFRS at these wavelengths. However, IFRS are relatively bright in the radio regime with 1.4 GHz flux densities of a few to a few tens of mJy. Therefore, the radio regime is the most promising wavelength regime in which to constrain their nature. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. Methods: We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio-far-infrared SED of this source. Results: We find IFRS usually follow single power laws down to observed frequencies of around 150 MHz. Mostly, the radio SEDs are steep (α IFRS show statistically significantly steeper radio SEDs than the broader RL AGN population. Our analysis reveals that the fractions of GPS and CSS sources in the population of IFRS are consistent with the fractions in the broader RL AGN population. We find that at least % of IFRS contain young AGN, although the fraction might be significantly higher as suggested by the steep SEDs and the compact morphology of IFRS. The detailed multi-wavelength

  19. Ultraviolet and radio flares from UX Arietis and HR 1099

    Science.gov (United States)

    Lang, Kenneth R.; Willson, Robert F.

    1988-01-01

    Simultaneous observations of the RS CVn systems UX Ari and HR 1099 with the IUE satellite and the VLA are presented. Flaring activity is observed at ultraviolet wavelengths with the IUE when none is detected at radio wavelengths with the VLA. Radio flares with no detectable ultraviolet activity have also been observed. Thus, flares in the two spectral regions are either uncorrelated or weakly correlated. The flaring emission probably originates in different regions at the two wavelengths. Radio flares from RS CVn stars may originate in sources that are larger than, or comparable to, a star in size. This is in sharp contrast to compact, coherent radio flares from dwarf M stars. The ultraviolet flares from RS CVn stars probably originate in sources that are smaller than a component star.

  20. Wavelength sweepable laser source

    DEFF Research Database (Denmark)

    2014-01-01

    Wavelength sweepable laser source is disclosed, wherein the laser source is a semiconductor laser source adapted for generating laser light at a lasing wavelength. The laser source comprises a substrate, a first reflector, and a second reflector. The first and second reflector together defines...... and having a rest position, the second reflector and suspension together defining a microelectromechanical MEMS oscillator. The MEMS oscillator has a resonance frequency and is adapted for oscillating the second reflector on either side of the rest position.; The laser source further comprises electrical...... connections adapted for applying an electric field to the MEMS oscillator. Furthermore, a laser source system and a method of use of the laser source are disclosed....

  1. Radio observations of massive stars

    CERN Document Server

    Blomme, Ronny

    2011-01-01

    Detectable radio emission occurs during almost all phases of massive star evolution. I will concentrate on the thermal and non-thermal continuum emission from early-type stars. The thermal radio emission is due to free-free interactions in the ionized stellar wind material. Early ideas that this would lead to an easy and straightforward way of measuring the mass-loss rates were thwarted by the presence of clumping in the stellar wind. Multi-wavelength observations provide important constraints on this clumping, but do not allow its full determination. Non-thermal radio emission is associated with binarity. This conclusion was already known for some time for Wolf-Rayet stars and in recent years it has become clear that it is also true for O-type stars. In a massive-star binary, the two stellar winds collide and around the shocks a fraction of the electrons are accelerated to relativistic speeds. Spiralling in the magnetic field these electrons emit synchrotron radiation, which we detect as non-thermal radio em...

  2. Radio Properties of Pinwheel Nebulae

    CERN Document Server

    Monnier, J D; Tuthill, P G; Danchi, W C

    2002-01-01

    A small number of dusty Wolf-Rayet stars have been resolved into pinwheel nebulae, defined by their ``rotating'' spiral dust shells observed in the infrared. This morphology is naturally explained by dust formation associated with colliding winds in a binary system. In order to confirm and further explore this hypothesis, we have observed the known pinwheel nebulae (WR 104 and WR 98a) as well as the suspected binary WR 112 at multiple radio wavelengths with the Very Large Array to search for non-thermal radio emission from colliding winds. The spectrum of each target is nearly flat between 5 and 22 GHz, consistent with the presence of non-thermal emission that is reduced at low frequencies by free-free absorption. This emission must lie outside the radio ``photosphere,'' leading us to estimate a lower limit to the physical size of the non-thermal emitting region that is larger than expected from current theory. Based on a radio and infrared comparison to WR 104 and 98a, we conclude that WR 112 is a likely can...

  3. SS 433: Results of a Recent Multi-wavelength Campaign

    CERN Document Server

    Chakrabarti, S K; Pal, S; Mondal, S A; Nandi, A; Bhattacharya, A; Mandal, S; Sagar, R; Pandey, J C; Pati, A; Saha, S K; Chakrabarti, Sandip K.; Mondal, Soumen; Mandal, Samir; Sagar, Ram

    2005-01-01

    We conducted a multi-wavelength campaign in September-October, 2002, to observe SS 433. We used 45 meter sized 30 dishes of Giant Meter Radio Telescope (GMRT) for radio observation, 1.2 meter Physical Research Laboratory Infra-red telescope at Mt Abu for IR, 1 meter Telescope at the State Observatory, Nainital for Optical photometry, 2.3 meter optical telescope at the Vainu Bappu observatory for spectrum and Rossi X-ray Timing Explorer (RXTE) Target of Opportunity (TOO) observation for X-ray observations. We find sharp variations in intensity in time-scales of a few minutes in X-rays, IR and radio wavelengths. Differential photometry at the IR observation clearly indicated significant intrinsic variations in short time scales of minutes throughout the campaign. Combining results of these wavelengths, we find a signature of delay of about two days between IR and Radio. The X-ray spectrum yielded double Fe line profiles which corresponded to red and blue components of the relativistic jet. We also present the b...

  4. The radio structure of NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Pedlar, A.; Ghataure, H.S.; Davies, R.D.; Harrison, B.A. (Nuffield Radio Astronomy Labs., Jodrell Bank (UK)); Perley, R.; Crane, P.C. (National Radio Astronomy Observatory, Socorro, NM. (USA)); Unger, S.W. (Royal Greenwich Observatory, Hailsham (UK))

    1990-10-01

    We present high dynamic range VLA and MERLIN images of NGC 1275 at wavelengths of 18, 22, 90 and 199 cm with angular resolutions ranging from 0.3 to 40 arcsec. Over the central 30 arcsec there is evidence for collimated ejection mainly in PA 160{sup o}. Outside this region the radio structure shows evidence of a sharp change in direction to approximately PA 235{sup o}, before merging into the 10-arcmin radio halo. On arcsec and arcmin angular scales, there is considerable asymmetry between the structure north and south of the active nucleus. We consider the radio source structure to be consistent with an asymmetrical Fanaroff-Riley type I source, with the jet collimation axis close to the line-of-sight. The radio 'halo' consists of the outer lobes of this structure. (author).

  5. Detecting the cosmic web with radio surveys

    CERN Document Server

    Vazza, F; Gheller, C; Ferrari, C; Bonafede, A

    2016-01-01

    We study the challenges to detect the cosmic web at radio wavelengths with state-of-the-art cosmological simulations of extragalactic magnetic fields. The incoming generation of radio surveys operating at low frequency, like LOFAR, SKA-LOW and MWA will have the best chance to detect the large-scale, low surface brightness emission from the shocked cosmic web. The detected radio emission will enable to constrain the average magnetisation level of the gas in filaments and the acceleration efficiency of electrons by strong shocks. In case of detections, through statistical modelling (e.g. correlation functions) it will be possible to discriminate among competing scenarios for the magnetisation of large-scale structures (i.e. astrophysical versus primordial scenarios), making radio surveys an important probe of cosmic magnetogenesis.

  6. Analysis, Design and Fabrication of centimeter-wave Dielectric Fresnel Zone Plate Lens and reflector

    CERN Document Server

    Mahmoudi, A; Mahmoudi, Ali; Azalzadeh, Reza

    2005-01-01

    Fresnel lens has a long history in optics. This concept at non-optical wavelengths is also applicable. In this paper we report design and fabrication of a half and quarter wave dielectric Fresnel lens made of Plexiglas, and a Fresnel reflector at 11.1 GHz frequency. We made two lenses and one reflector at same frequency and compare their gain and radiation pattern to simulated results. Some methods for better focusing action will be introduced.

  7. Where the active galaxies live: a panchromatic view of radio-AGN in the AKARI-NEP field

    CERN Document Server

    Karouzos, Marios; Trichas, Markos

    2013-01-01

    We study the host galaxy properties of radio sources in the AKARI-North Ecliptic Pole (NEP) field, using an ensemble of multi-wavelength datasets. We identify both radio-loud and radio-quiet AGN and study their host galaxy properties by means of SED fitting. We investigate the relative importance of nuclear and star-formation activity in radio-AGN and assess the role of radio-AGN as efficient quenchers of star-formation in their host galaxies.

  8. First detection of thermal radio jets in a sample of proto-brown dwarf candidates

    CERN Document Server

    Morata, O; González, R F; de Gregorio-Monsalvo, I; Ribas, A; Perger, M; Bouy, H; Barrado, D; Eiroa, C; Bayo, A; Huélamo, N; Morales-Calderón, M; Rodríguez, L F

    2015-01-01

    We observed with the JVLA at 3.6 and 1.3 cm a sample of 11 proto-brown dwarf candidates in Taurus in a search for thermal radio jets driven by the most embedded brown dwarfs. We detected for the first time four thermal radio jets in proto-brown dwarf candidates. We compiled data from UKIDSS, 2MASS, Spitzer, WISE and Herschel to build the Spectral Energy Distribution (SED) of the objects in our sample, which are similar to typical Class~I SEDs of Young Stellar Objects (YSOs). The four proto-brown dwarf candidates driving thermal radio jets also roughly follow the well-known trend of centimeter luminosity against bolometric luminosity determined for YSOs, assuming they belong to Taurus, although they present some excess of radio emission compared to the known relation for YSOs. Nonetheless, we are able to reproduce the flux densities of the radio jets modeling the centimeter emission of the thermal radio jets using the same type of models applied to YSOs, but with corresponding smaller stellar wind velocities a...

  9. B1524-136 A CSS quasar with two-sided radio jets

    CERN Document Server

    Mantovani, F; Bondi, M; Junor, W; Salter, C J; Ricci, R

    2002-01-01

    We present MERLIN, global VLBI and VLBA observations of the high-luminosity, compact steep-spectrum quasar B1524$-$136 at cm wavelengths. These observations reveal well-defined radio jets on both sides of the active nucleus, a situation which is almost unique amongst high-luminosity radio quasars. However, the radio jets on opposite sides are very dissimilar, and the overall radio structure appears highly distorted. We discuss possible implications of these observations.

  10. Strictly Transparent Wavelength Conversion Using Multi-Wavelength Signal Generation

    Institute of Scientific and Technical Information of China (English)

    Eiichi; Yamada; Hiroaki; Sanjoh; Yuzo; Yoshikuni

    2003-01-01

    We succeeded in strictly transparent wavelength conversion by means of channel selection from multi-wavelength signals generated by sinusoidal modulation of input signal. Modulation-format-independent and bit-rate-independent wavelength conversion is achieved with small power penalty.

  11. Distributed fiber Brillouin strain and temperature sensor with centimeter spatial resolution by coherent probe-pump technique

    Science.gov (United States)

    Zou, Lufan; Bao, Xiaoyi; Wan, Yidun; Ravet, Fabien; Chen, Liang

    2005-05-01

    We present a sensing principle of the distributed fiber Brillouin strain and temperature sensor by coherent probe-pump technique that offers a new method to achieve centimeter spatial resolution with high frequency resolution. A combination of continuous wave (cw) and pulse source as the probe (Stokes) beam and cw laser as the pump beam have resulted in stronger Brillouin interaction of Stokes and pump inside the pulse-length in the form of cw-pump and pulse-pump interactions. We find that the coherent portion inside the pulse-length of these two interactions due to the same phase has a very high Brillouin amplification. The Brillouin profile originating from the coherent interaction of pulse-pump with cw-pump results in high temperature and strain accuracy with centimeter resolution, which has been verified by successfully detecting 1.5 cm out-layer crack on an optical ground wire (OPGW) cable.

  12. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Leemans, Wim [LOASIS Program, AFRD

    2008-07-08

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  13. Measuring Beliefs in Centimeters: Private Knowledge Biases Preschoolers' and Adults' Representation of Others' Beliefs

    Science.gov (United States)

    Sommerville, Jessica A.; Bernstein, Daniel M.; Meltzoff, Andrew N.

    2013-01-01

    A novel task, using a continuous spatial layout, was created to investigate the degree to which (in centimeters) 3-year-old children's ("N" = 63), 5-year-old children's ("N" = 60), and adults' ("N" = 60) own privileged knowledge of the location of an object biased their representation of a…

  14. Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes

    Science.gov (United States)

    Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.

    2010-01-01

    The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm

  15. Planck intermediate results: XLV. Radio spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Aller, H. D.;

    2016-01-01

    Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous gro...

  16. Free-space wavelength-multiplexed optical scanner demonstration.

    Science.gov (United States)

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  17. Multi-wavelength Laser Photoacoustics

    Science.gov (United States)

    2012-09-01

    Multi-wavelength Laser Photoacoustics by Kristan P. Gurton, Melvin Felton, and Richard Tober ARL-TR-6147 September 2012...2012 Multi-wavelength Laser Photoacoustics Kristan P. Gurton and Melvin Felton Computational and Information Sciences Directorate, ARL...REPORT TYPE Final 3. DATES COVERED (From - To) June 1, 2012 4. TITLE AND SUBTITLE Multi-wavelength Laser Photoacoustics 5a. CONTRACT NUMBER

  18. Matching Radio Catalogs with Realistic Geometry: Application to SWIRE and ATLAS

    CERN Document Server

    Fan, Dongwei; Norris, Ray P; Hopkins, Andrew M

    2015-01-01

    Crossmatching catalogs at different wavelengths is a difficult problem in astronomy, especially when the objects are not point-like. At radio wavelengths an object can have several components corresponding, for example, to a core and lobes. {Considering not all radio detections correspond to visible or infrared sources, matching these catalogs can be challenging.} Traditionally this is done by eye for better quality, which does not scale to the large data volumes expected from the next-generation of radio telescopes. We present a novel automated procedure, using Bayesian hypothesis testing, to achieve reliable associations by explicit modelling of a particular class of radio-source morphology. {The new algorithm not only assesses the likelihood of an association between data at two different wavelengths, but also tries to assess whether different radio sources are physically associated, are double-lobed radio galaxies, or just distinct nearby objects.} Application to the SWIRE and ATLAS CDF-S catalogs shows t...

  19. The radio spectral energy distribution of infrared-faint radio sources

    CERN Document Server

    Herzog, A; Middelberg, E; Seymour, N; Spitler, L R; Emonts, B H C; Franzen, T M O; Hunstead, R; Intema, H T; Marvil, J; Parker, Q A; Sirothia, S K; Hurley-Walker, N; Bell, M; Bernardi, G; Bowman, J D; Briggs, F; Cappallo, R J; Callingham, J R; Deshpande, A A; Dwarakanath, K S; For, B -Q; Greenhill, L J; Hancock, P; Hazelton, B J; Hindson, L; Johnston-Hollitt, M; Kapinska, A D; Kaplan, D L; Lenc, E; Lonsdale, C J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Morgan, J; Oberoi, D; Offringa, A; Ord, S M; Prabu, T; Procopio, P; Shankar, N Udaya; Srivani, K S; Staveley-Smith, L; Subrahmanyan, R; Tingay, S J; Wayth, R B; Webster, R L; Williams, A; Williams, C L; Wu, C; Zheng, Q; Chippendale, A P; Harvey-Smith, L; Heywood, I; Indermuehle, B; Popping, A; Sault, R J; Whiting, M T

    2016-01-01

    Infrared-faint radio sources (IFRS) are a class of radio-loud (RL) active galactic nuclei (AGN) at high redshifts (z > 1.7) that are characterised by their relative infrared faintness, resulting in enormous radio-to-infrared flux density ratios of up to several thousand. We aim to test the hypothesis that IFRS are young AGN, particularly GHz peaked-spectrum (GPS) and compact steep-spectrum (CSS) sources that have a low frequency turnover. We use the rich radio data set available for the Australia Telescope Large Area Survey fields, covering the frequency range between 150 MHz and 34 GHz with up to 19 wavebands from different telescopes, and build radio spectral energy distributions (SEDs) for 34 IFRS. We then study the radio properties of this class of object with respect to turnover, spectral index, and behaviour towards higher frequencies. We also present the highest-frequency radio observations of an IFRS, observed with the Plateau de Bure Interferometer at 105 GHz, and model the multi-wavelength and radio...

  20. Radio frequency detection assembly and method for detecting radio frequencies

    Science.gov (United States)

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  1. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT

    Science.gov (United States)

    Zakharenko, V.; Konovalenko, A.; Zarka, P.; Ulyanov, O.; Sidorchuk, M.; Stepkin, S.; Koliadin, V.; Kalinichenko, N.; Stanislavsky, A.; Dorovskyy, V.; Shepelev, V.; Bubnov, I.; Yerin, S.; Melnik, V.; Koval, A.; Shevchuk, N.; Vasylieva, I.; Mylostna, K.; Shevtsova, A.; Skoryk, A.; Kravtsov, I.; Volvach, Y.; Plakhov, M.; Vasilenko, N.; Vasylkivskyi, Y.; Vavriv, D.; Vinogradov, V.; Kozhin, R.; Kravtsov, A.; Bulakh, E.; Kuzin, A.; Vasilyev, A.; Ryabov, V.; Reznichenko, A.; Bortsov, V.; Lisachenko, V.; Kvasov, G.; Mukha, D.; Litvinenko, G.; Brazhenko, A.; Vashchishin, R.; Pylaev, O.; Koshovyy, V.; Lozinsky, A.; Ivantyshyn, O.; Rucker, H. O.; Panchenko, M.; Fischer, G.; Lecacheux, A.; Denis, L.; Coffre, A.; Grießmeier, J.-M.

    This paper describes digital radio astronomical receivers used for decameter and meter wavelength observations. Since 1998, digital receivers performing on-the-fly dynamic spectrum calculations or waveform data recording without data loss have been used at the UTR-2 radio telescope, the URAN VLBI system, and the GURT new generation radio telescope. Here, we detail these receivers developed for operation in the strong interference environment that prevails in the decameter wavelength range. Data collected with these receivers allowed us to discover numerous radio astronomical objects and phenomena at low frequencies, a summary of which is also presented.

  2. Constraining the Redshift Evolution of FIRST Radio Sources in RCS1 Galaxy Clusters

    CERN Document Server

    Gralla, Megan B; Yee, H K C; Barrientos, L Felipe

    2010-01-01

    We conduct a statistical analysis of the radio source population in galaxy clusters as a function of redshift by matching radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) catalog with 618 optically-selected galaxy clusters from the first Red-Sequence Cluster Survey (RCS1). The number of excess radio sources (above the background level) per cluster is 0.14 +/- 0.02 for clusters with 0.35 1.5 sigma) in the number of radio sources per unit of cluster mass for the galaxy clusters with 0.35 4.1 X 10^(24) W/Hz) radio sources per unit (10^14 solar masses) mass, which we measure to be 0.031 +/- 0.004. We further characterize the population of galaxy cluster-related radio sources through visual inspection of the RCS1 images, finding that although the radio activity of brightest cluster galaxies (BCGs) also does not strongly evolve between our high and low redshift samples, the lower-redshift, richest clusters are more likely to host radio-loud BCGs than the higher-redshift, rich est...

  3. Radio-quiet Gamma-ray Pulsars

    Science.gov (United States)

    Lin, Lupin Chun-Che

    2016-09-01

    A radio-quiet γ-ray pulsar is a neutron star that has significant γ-ray pulsation but without observed radio emission or only limited emission detected by high sensitivity radio surveys. The launch of the Fermi spacecraft in 2008 opened a new epoch to study the population of these pulsars. In the 2nd Fermi Large Area Telescope catalog of γ-ray pulsars, there are 35 (30 % of the 117 pulsars in the catalog) known samples classified as radio-quiet γ-ray pulsars with radio flux density (S1400) of less than 30 μJy. Accompanying the observations obtained in various wavelengths, astronomers not only have the opportunity to study the emitting nature of radio-quiet γ-ray pulsars but also have proposed different models to explain their radiation mechanism. This article will review the history of the discovery, the emission properties, and the previous efforts to study pulsars in this population. Some particular cases known as Geminga-like pulsars (e.g., PSR J0633+1746, PSR J0007+7303, PSR J2021+4026, and so on) are also specified to discuss their common and specific features.

  4. Wavelength-conserving grating router for intermediate wavelength density

    Science.gov (United States)

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  5. Rapid variability of extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Quirrenbach, A.; Witzel, A.; Krichbaum, T.; Hummel, C.A.; Alberdi, A.; Schalinski, C.

    1989-02-02

    Since its discovery more than 20 years ago, variability of extragalactic radio sources on timescales of weeks to years has been the subject of many investigations. We have examined the variability of these sources on timescales of hours at wavelengths of 6 and 11 cm using the 100-m telescope of the Max-Planck-Institut fuer Radioastronomie and report the results for two sources. The quasar QSO0917 + 62 showed variations with amplitudes of up to 23% in /similar to/ 24 hours, which were correlated at the two wavelengths; in the BL Lac object 0716 + 71 we found variations with amplitudes of 7-11%. We discuss intrinsic effects, gravitational lensing and scattering in the interstellar medium as possible explanations for rapid radio variability.

  6. Data Reduction of Multi-wavelength Observations

    CERN Document Server

    Pilia, M; Pellizzoni, A P; Bachetti, M; Piano, G; Poddighe, A; Egron, E; Iacolina, M N; Melis, A; Concu, R; Possenti, A; Perrodin, D

    2015-01-01

    Multi-messenger astronomy is becoming the key to understanding the Universe from a comprehensive perspective. In most cases, the data and the technology are already in place, therefore it is important to provide an easily-accessible package that combines datasets from multiple telescopes at different wavelengths. In order to achieve this, we are working to produce a data analysis pipeline that allows the data reduction from different instruments without needing detailed knowledge of each observation. Ideally, the specifics of each observation are automatically dealt with, while the necessary information on how to handle the data in each case is provided by a tutorial that is included in the program. We first focus our project on the study of pulsars and their wind nebulae (PWNe) at radio and gamma-ray frequencies. In this way, we aim to combine time-domain and imaging datasets at two extremes of the electromagnetic spectrum. In addition, the emission has the same non-thermal origin in pulsars at radio and gam...

  7. A Rare Chance to Observe a Centimeters Scale Cross-Cutting Rippling on the Lunar Surface: The Chang'e-3 Landing Place on the Mare Imbrium

    Science.gov (United States)

    Kochemasov, G. G.

    2016-08-01

    Cosmic bodies move in several orbits: in Galaxy, around star, around planet. The moving in keplerian orbits has a wave nature. Lower fr. waves modulate the higher fr. ones making side fr. Centimeter space lunar ripples are calculated and discovered.

  8. Laser system with wavelength converter

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to an apparatus comprising a diode laser (10) providing radiation in a first wavelength interval, a radiation conversion unit (12) having an input and an output, the radiation converter configured to receive the radiation in the first wavelength interval from the diode...... laser at the input, the radiation conversion unit configured to convert the radiation in the first wavelength interval to radiation in a second wavelength interval and the output configured to output the converted radiation, the second wavelength interval having one end point outside the first...... wavelength interval. Further, the invention relates to a method of optically pumping a target laser (14) in a laser system, the laser system comprising a laser source providing radiation at a first frequency, the laser source being optically connected to an input of a frequency converter, the frequency...

  9. Impact of cognitive radio on radio astronomy

    NARCIS (Netherlands)

    Bentum, M.J.; Boonstra, A.J.; Baan, W.A.

    2010-01-01

    The introduction of new communication techniques requires an increase in the efficiency of spectrum usage. Cognitive radio is one of the new techniques that fosters spectrum efficiency by using unoccupied frequency spectrum for communications. However, cognitive radio will increase the transmission

  10. Fabrication of centimeter-scale light-emitting diode with improved performance based on graphene quantum dots

    Science.gov (United States)

    Xu, Chang; Yang, Siwei; Tian, Linfan; Guo, Tianqi; Ding, Guqiao; Zhao, Jianwei; Sun, Jing; Lu, Jian; Wang, Zhongyang

    2017-03-01

    The low solubility of graphene quantum dots in organic solvents limits their application in optoelectronic devices. We propose a bottom-up synthesis approach that yields graphene quantum dots that can be dissolved in organic solvents, and we apply this approach to construct new devices. Further, by using the newly designed structure described here, a centimeter-scale emitting area and a maximum external quantum efficiency of approximately 1.2% are achieved. The method we propose provides a feasible way to develop light-emitting diodes based on graphene quantum dots for practical application.

  11. Radio Jets in Young Stellar Objects with the SKA

    CERN Document Server

    Anglada, Guillem; Carrasco-Gonzalez, Carlos

    2014-01-01

    Jets are ubiquitous in the star-forming process since accretion is intimately associated with outflow. Weak free-free continuum emission in the centimeter domain is associated with these jets. Observations in the cm range are most useful to trace the base of the ionized jets, close to the YSO and its accretion disk, where jets are accelerated and collimated. Optical or near-IR images are obscured by the high extinction present. Radio recombination lines in jets (in combination with proper motions) should provide their 3D kinematics. SKA will be crucial to perform this kind of observations. Thermal radio jets are associated with both low and high mass protostars. The ionizing mechanism appears to be related to shocks in the associated outflows, as suggested by the observed correlation between the centimeter luminosity and the outflow momentum rate. From this correlation and that with the bolometric luminosity of the driving star it will be possible to discriminate with SKA between unresolved HII regions and je...

  12. Resonance and Radio

    Science.gov (United States)

    Starrett, Malin J.

    2008-01-01

    The science and technology of radio receives little attention in contemporary education. This article discusses ways to explore the basic operating principles of radio. (Contains 4 figures, 3 footnotes, and 2 notes.)

  13. An Early & Comprehensive Millimeter and Centimeter Wave and X-ray Study of Supernova 2011dh: A Non-Equipartition Blastwave Expanding into A Massive Stellar Wind

    CERN Document Server

    Horesh, Assaf; Fox, Derek B; Frail, Dale A; Carpenter, John; Kulkarni, S R; Ofek, Eran O; Gal-Yam, Avishay; Kasliwal, Mansi M; Arcavi, Iair; Quimby, Robert; Cenko, S Bradley; Nugent, Peter E; Bloom, Joshua S; Law, Nicholas M; Poznanski, Dovi; Gorbikov, Evgeny; Polishook, David; Yaron, Ofer; Ryder, Stuart; Weiler, Kurt W; Bauer, Franz; Van Dyk, Schuyler D; Immler, Stefan; Panagia, Nino; Pooley, Dave; Kassim, Namir

    2012-01-01

    Only a handful of supernovae (SNe) have been studied in multi-wavelength from radio to X-rays, starting a few days after explosion. The early detection and classification of the nearby type IIb SN2011dh/PTF11eon in M51 provides a unique opportunity to conduct such observations. We present detailed data obtained at the youngest phase ever of a core-collapse supernova (days 3 to 12 after explosion) in the radio, millimeter and X-rays; when combined with optical data, this allows us to explore the early evolution of the SN blast wave and its surroundings. Our analysis shows that the expanding supernova shockwave does not exhibit equipartition (e_e/e_B ~ 1000), and is expanding into circumstellar material that is consistent with a density profile falling like R^-2. Within modeling uncertainties we find an average velocity of the fast parts of the ejecta of 15,000 +/- 1800 km/s, contrary to previous analysis. This velocity places SN 2011dh in an intermediate blast-wave regime between the previously defined compact...

  14. Estimation of Potential Interference Immunity of Radio Reception with Spatial Signal Processing in Mutipath Radio-Communication Channels. Part II. Meter and Decimeter Ranges

    Science.gov (United States)

    Lvov, A. V.; Metelev, S. L.

    2016-11-01

    We propose simulation models for estimating the interference immunity of radio reception using the spatial processing of signals in the airborne and ground-based communication channels of the meter and decimeter wavelength ranges. The ultimate achievable interference immunity under various radio-wave propagation conditions is studied.

  15. Wavelength conversion devices and techniques

    DEFF Research Database (Denmark)

    Stubkjær, Kristian; Jørgensen, Carsten; Danielsen, Søren Lykke;

    1996-01-01

    Wavelength division multiplexed (WDM) networks are currently subject to an immense interest because of the extra capacity and flexibility they provide together with the possibilities for graceful system upgrades. For full network flexibility it is very attractive to be able to translate the chann...... wavelengths in an easy way and preferably without opto-electronic conversion. Here, we will first briefly look at advantages of employing optical wavelength converters in WDM networks and next review the optical wavelength conversion devices with emphasis on recent developments....

  16. Multi-wavelength study of MGRO J2019+37

    Science.gov (United States)

    Hou, Chao; Chen, Song-Zhan; Yuan, Qiang; Cao, Zhen; He, Hui-Hai; Sheng, Xiang-Dong

    2014-08-01

    MGRO J2019+37, within the Cygnus region, is a bright extended source revealed by Milagro at 12-35 TeV. This source is almost as bright as the Crab Nebula in the northern sky, but is not confirmed by ARGO-YBJ around the TeV scale. Up to now, no obvious counterpart at low energy wavelengths has been found. Hence, MGRO J2019+37 is a rather mysterious object and its VHE γ-ray emission mechanism is worth investigating. In this paper, a brief summary of the multi-wavelength observations from radio to γ-rays is presented. All the available data from XMM-Newton and INTEGRAL at X-ray, and Fermi-LAT at γ-ray bands, are used to get constraints on its emission flux at low energy wavelengths. Then, its possible counterparts and the VHE emission mechanism are discussed.

  17. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Comet 103P/Hartley 2

    Science.gov (United States)

    Milam, S. N.; Charnley, S. B.; Chuang, Y.-L.; Kuan, Y.-J.; Coulson, I. M.; Remijan, A. R.

    2011-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [1]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. We have conducted observations, at primarily millimeter and submillimeter wavelengths, where molecular emission is easily resolved, towards comets to determine important cosmogonic quantities, such as the ortl1o:pal'a ratio and isotope ratios, as well as probe the origin of cometary organics. Comets provide important clues to the processes that occurred during the formation and early evolution of the Solar System. Past observations, as well as laboratory measurements of cometary material obtained from Stardust, have shown that comets appear to contain a mixture of the products from both interstellar and nebular chemistries. A major observational challenge in cometary science is to quantify the extent to which chemical compounds can be linked to either reservoir.

  18. Centimeter Accuracy for the French Transportable Laser Ranging Station (FTLRS) through Sub-System Controls

    Science.gov (United States)

    Nicolas, J.; Pierron, F.; Samain, E.; Barlier, F.

    The French Transportable Laser Ranging Station (FTLRS)is a highly mobile satellite laserranging (SLR) system dedicated to the trackingof geodetic satellites equipped withretroreflectors. This station weighs only 300kg witha 13-cm diameter telescope and is housedin eight containers.The reliability of such a station and its accuracy of 2 cmin real field experiment conditionswere demonstrated during a first field campaign carried outfrom October 1996 to February1997 near Ajaccio on Corsica Island, France. The results ofthis probatory experiment suggestedthat several technical improvements and some modificationswere necessary for JASON-1validation and calibration phase and for new applicationssuch as the Time Transfer by LaserLink (T2L2) experiment. A first change concerns theuse of a new laser wavelength (green instead ofinfrared) and of a new avalanche photodiode with atime walk compensation system. Anotherchange is the installation of a coaxial cabletransmitting directly the signal coming from thereturn detector. Finally, a new calibration systemwas developed with several other changes.A short description of the system is first given.Then, the major changes and the main resultsof ground accuracy tests are summarized and presented.

  19. Radio Pulsating Structures with Coronal Loop Contraction

    Science.gov (United States)

    Kallunki, J.; Pohjolainen, S.

    2012-10-01

    We present a multi-wavelength study of a solar eruption event on 20 July 2004, comprising observations in Hα, EUV, soft X-rays, and in radio waves with a wide frequency range. The analyzed data show both oscillatory patterns and shock wave signatures during the impulsive phase of the flare. At the same time, large-scale EUV loops located above the active region were observed to contract. Quasi-periodic pulsations with ˜ 10 and ˜ 15 s oscillation periods were detected both in microwave - millimeter waves and in decimeter - meter waves. Our calculations show that MHD oscillations in the large EUV loops - but not likely in the largest contracting loops - could have produced the observed periodicity in radio emission, by triggering periodic magnetic reconnection and accelerating particles. As the plasma emission in decimeter - meter waves traces the accelerated particle beams and the microwave emission shows a typical gyrosynchrotron flux spectrum (emission created by trapped electrons within the flare loop), we find that the particles responsible for the two different types of emission could have been accelerated in the same process. Radio imaging of the pulsed decimetric - metric emission and the shock-generated radio type II burst in the same wavelength range suggest a rather complex scenario for the emission processes and locations. The observed locations cannot be explained by the standard model of flare loops with an erupting plasmoid located above them, driving a shock wave at the CME front.

  20. Commercial Radio as Communication.

    Science.gov (United States)

    Rothenbuhler, Eric W.

    1996-01-01

    Compares the day-to-day work routines of commercial radio with the principles of a theoretical communication model. Illuminates peculiarities of the conduct of communication by commercial radio. Discusses the application of theoretical models to the evaluation of practicing institutions. Offers assessments of commercial radio deriving from…

  1. Performance Evaluation of Wavelength Routed Optical Network with Wavelength Conversion

    CERN Document Server

    Gond, Vitthal J

    2010-01-01

    The rapid development of telecommunication networks is driven by user demands for new applications and advances in technologies. The explosive growth of the internet traffic is due to its use for collecting the information, communication, multimedia application, entertainment, etc. These applications are imposing a tremendous demand for bandwidth capacity on telecommunication network. The introduction of fiber optics had proved to meet the huge demand of bandwidth. These requirement can be meet by all optical network which is capable of transmitting enormous data at very high speed, around 50 Tera bits per seconds (Tbps) A wavelength conversion technique is addressed in this paper to reduced the blocking probability in wavelength routed networks. It is seen that the blocking probability of traffic requests decreases as the wavelength conversion factor increases. We explode the possibility for network with different size with variation in wavelength per link. In this work the evaluation of wavelength routed op...

  2. Backscattering by sea of centimeter and millimeter waves at small grazing angle%小掠射角时海边厘米波和毫米波的后向散射

    Institute of Scientific and Technical Information of China (English)

    V F Kravchenko; V I Lutsenko; I V Lutsenko

    2014-01-01

    本文利用海边反射在雷达横截面(RCS)上某些毫米波段和厘米波段的实验数据,来计算风速、海面辐射夹角和入射场极化的近似值,并在马尔可夫半嵌套过程的基础上提出了散射信号的仿真模型。本文证明了在反射尖峰和停顿状态的描述中可以使用有限原子式指令。该模型可以估计海边毫米波段和厘米波段的无线电波以一定海面辐射掠射角的后向散射强度,并且发出模拟散射信号。%Using experimental data reflected by the sea on specific radar cross -section (SRCS) at millimeter and centimeter waves ,the approximations of the wind speed ,angle of the sea surface radiation and polarization of the incident field can be calculated .The simulation model of the scattered signal has been proposed on the basis of the semi-Markov nested processes . For the first time it has been proved that for the description of reflections at spikes and pauses ,it is possible to use finite atomic functions .The proposed model allows us to estimate the backscatter intensity of millimeter and centimeter radio waves by the sea at grazing angle of surface radiation ,as well as to simulate scattered signal .

  3. Centimeter-scale spatial variability in 2-methyl-4-chlorophenoxyacetic acid mineralization increases with depth in agricultural soil

    DEFF Research Database (Denmark)

    Badawi, Nora; Johnsen, Anders R.; Sørensen, Jan

    2013-01-01

    Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralizati...... to the groundwater if transported from the plow layer into the subsoil. © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.......Mineralization of organic chemicals in soil is typically studied using large homogenized samples, but little is known about the small-scale spatial distribution of mineralization potential. We studied centimeter-scale spatial distribution of 2-methyl-4-chlorophenoxyacetic acid (MCPA) mineralization...... activity at different depths (8-115 cm) in a Danish agricultural soil profi le using a 96-well microplate C-radiorespirometric method for small-volume samples. The heterotrophic microbial population and specifi c MCPA degraders decreased 10- to 100-fold from the plow layer to a depth of 115 cm. MCPA...

  4. Logistic Regression Analysis of Contrast-Enhanced Ultrasound and Conventional Ultrasound Characteristics of Sub-centimeter Thyroid Nodules.

    Science.gov (United States)

    Zhao, Rui-Na; Zhang, Bo; Yang, Xiao; Jiang, Yu-Xin; Lai, Xing-Jian; Zhang, Xiao-Yan

    2015-12-01

    The purpose of the study described here was to determine specific characteristics of thyroid microcarcinoma (TMC) and explore the value of contrast-enhanced ultrasound (CEUS) combined with conventional ultrasound (US) in the diagnosis of TMC. Characteristics of 63 patients with TMC and 39 with benign sub-centimeter thyroid nodules were retrospectively analyzed. Multivariate logistic regression analysis was performed to determine independent risk factors. Four variables were included in the logistic regression models: age, shape, blood flow distribution and enhancement pattern. The area under the receiver operating characteristic curve was 0.919. With 0.113 selected as the cutoff value, sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 90.5%, 82.1%, 89.1%, 84.2% and 87.3%, respectively. Independent risk factors for TMC determined with the combination of CEUS and conventional US were age, shape, blood flow distribution and enhancement pattern. Age was negatively correlated with malignancy, whereas shape, blood flow distribution and enhancement pattern were positively correlated. The logistic regression model involving CEUS and conventional US was found to be effective in the diagnosis of sub-centimeter thyroid nodules.

  5. Ground-Based Centimeter, Millimeter, and Submillimeter Observations of Recent Comets

    Science.gov (United States)

    Milam, S. N.; Chuang, Y.-L.; Charnley, S. B.; Kuan, Y. -J.; Villanueva, G. L.; Coulson, I. M.; Remijan. A. R.

    2012-01-01

    Comets provide important clues to the physical and chemical processes that occurred during the formation and early evolution of the Solar System, and could also have been important for initiating prebiotic chemistry on the early Earth [I]. Comets are comprised of molecular ices, that may be pristine interstellar remnants of Solar System formation, along with high-temperature crystalline silicate dust that is indicative of a more thermally varied history in the protosolar nebula [2]. Comparing abundances of cometary parent volatiles, and isotopic fractionation ratios, to those found in the interstellar medium, in disks around young stars, and between cometary families, is vital to understanding planetary system formation and the processing history experienced by organic matter in the so-called interstellar-comet connection [3]. In the classical picture, the long-period comets probably formed in the nebular disk across the giant planet formation region (5-40 AU) with the majority of them originating from the Uranus-Neptune region. They were subsequently scattered out to the Oort Cloud (OC) by Jupiter. The short-period comets (also known as ecliptic or Jupiter Family Comets - JFC) reside mainly in the Edgeworth-Kuiper belt where they were formed. Given the gradient in physical conditions expected across this region of the nebula, chemical diversity in this comet population is to be expected [4,5]. We have conducted observations of comets I 03P/Hartley 2 (JFC) and C/2009 PI (Garradd) (OC), at primarily millimeter and submillimeter wavelengths, to determine important cosmogonic quantities, such as the ortho:para ratio and isotope ratios, as well as probe the origin of cometary organics and if they vary between the two dynamic reservoirs.

  6. Ham radio for dummies

    CERN Document Server

    Silver, H Ward

    2013-01-01

    An ideal first step for learning about ham radio Beyond operating wirelessly, today's ham radio operators can transmit data and pictures; use the Internet, laser, and microwave transmitters; and travel to places high and low to make contact. This hands-on beginner guide reflects the operational and technical changes to amateur radio over the past decade and provides you with updated licensing requirements and information, changes in digital communication (such as the Internet, social media, and GPS), and how to use e-mail via radio. Addresses the critical use of ham radio for replacing downe

  7. Interference comparator for laser diode wavelength and wavelength instability measurement

    Science.gov (United States)

    Dobosz, Marek; KoŻuchowski, Mariusz

    2016-04-01

    Method and construction of a setup, which allows measuring the wavelength and wavelength instability of the light emitted by a laser diode (or a laser light source with a limited time coherence in general), is presented. The system is based on Twyman-Green interferometer configuration. Proportions of phases of the tested and reference laser's interference fringe obtained for a set optical path difference are a measure of the unknown wavelength. Optical path difference in interferometer is stabilized. The interferometric comparison is performed in vacuum chamber. The techniques of accurate fringe phase measurements are proposed. The obtained relative standard uncertainty of wavelength evaluation in the tested setup is about 2.5 ṡ 10-8. Uncertainty of wavelength instability measurement is an order of magnitude better. Measurement range of the current setup is from 500 nm to 650 nm. The proposed technique allows high accuracy wavelength measurement of middle or low coherence sources of light. In case of the enlarged and complex frequency distribution of the laser, the evaluated wavelength can act as the length master in interferometer for displacement measurement.

  8. Radio Loud and Radio Quiet Quasars

    CERN Document Server

    Kellermann, K I; Kimball, A E; Perley, R A; Ivezic, Zeljko

    2016-01-01

    We discuss 6 GHz JVLA observations covering a volume-limited sample of 178 low redshift ($0.2 5 \\mathrm{~mJy~beam}^{-1}$ ($log(L) \\gtrsim 24$). The radio luminosity function of optically selected QSOs and the extended radio emission associated with RLQs are both inconsistent with simple "unified" models that invoke relativistic beaming from randomly oriented QSOs to explain the difference between RLQs and RQQs. Some intrinsic property of the AGNs or their host galaxies must also determine whether or not a QSO appears radio loud.

  9. Abu Simbel Radio Telescope Project in the upper Egypt.

    Science.gov (United States)

    Shaltout, M.

    1999-03-01

    This paper shows the importance of building a radio telescope at Abu Simbel in the south of Egypt as part of the European VLBI Network (EVN) to cover the gap between the radio telescopes in Western Europe and the radio telescope at Hartebeesthoek in South Africa. The telescope can be used for solar and stellar observations at wavelengths ranging between centimetres and millimetres, and for geodetic VLBI studies. The suggested diameter is 32 meters for the telescope and it is expected to work in the frequency range from 1.4 to 43 GHz. Abu Simbel is characterised by excellent atmospheric transparency, dry climate, and low population without any artificial interference.

  10. Detection of Exomoons Through Their Modulation of Exoplanetary Radio Emissions

    CERN Document Server

    Noyola, Joaquin P; Musielak, Zdzislaw E

    2013-01-01

    In the Jupiter-Io system, the moon's motion produces currents along the field lines that connect the moon to the Jupiter's polar regions, where the radio emission is modulated by the currents. Based on this process, we suggest that such modulation of planetary radio emissions may reveal the presence of exomoons around giant planets in exoplanetary systems. The required physical conditions for the modulation are established and used to select potential candidates for exomoon's detection. A cautiously optimistic scenario of possible detection of such exomoons with the Long Wavelength Array (LWA) and the Low-Frequency Array (LOFAR) radio telescopes is provided.

  11. Radiography of Spanish Radio

    Directory of Open Access Journals (Sweden)

    Dra. Emma Rodero Antón

    2007-01-01

    Full Text Available In its eighty years of existence, radio has been always characterized to adapt to the social, cultural and technological transformations. Thus it has been until this moment. Nevertheless, some years ago, the authors and professionals of this medium have been detecting a stagnation that affects to its structure. At a time in continuous technological evolution, radio demands a deep transformation. For that reason, from the conviction of which the future radio, public and commercial, will necessarily have to renew itself, in this paper we establish ten problems and their possible solutions to the radio crisis in order to draw an x-ray of radio in Spain. Radio has future, but it is necessary to work actively by it. That the radio continues being part of sound of our life, it will depend on the work of all: companies, advertisers, professionals, students, investigators and listeners.

  12. Parallel Calibration for Sensor Array Radio Interferometers

    CERN Document Server

    Brossard, Martin; Pesavento, Marius; Boyer, Rémy; Larzabal, Pascal; Wijnholds, Stefan J

    2016-01-01

    In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the directional and undirectional complex gains of the array elements and their noise powers, with a reasonable computational complexity. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Realistic numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cram\\'er-Rao bound even with the presence of non-calibration sources at unknown directions, in a computationally efficient manner.

  13. Growth of centimeter-scale atomically thin MoS2 films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Gene Siegel

    2015-05-01

    Full Text Available We are reporting the growth of single layer and few-layer MoS2 films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns was used to ablate a polycrystalline MoS2 target. The material thus ablated was deposited on a single crystal sapphire (0001 substrate kept at 700 °C in an ambient vacuum of 10−6 Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM, Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL measurements. The ablation of the MoS2 target by 50 laser pulses (energy density: 1.5 J/cm2 was found to result in the formation of a monolayer of MoS2 as shown by AFM results. In the Raman spectrum, A1g and E12g peaks were observed at 404.6 cm−1 and 384.5 cm−1 with a spacing of 20.1 cm−1, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV and 615 nm (2.02 eV, with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS2 exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS2 films were prepared. It was found that as the number of monolayers (n in the MoS2 films increases, the spacing between the A1g and E12g Raman peaks (Δf increases following an empirical relation, Δ f = 26 . 45 − 15 . 42 1 + 1 . 44 n 0 . 9 cm − 1 .

  14. Discovery of Correlated Behavior Between the HXR and the Radio Bands in Cygnus X-3

    CERN Document Server

    McCollough, M L; Zhang, S N; Harmon, B A; Hjellming, R M; Waltman, E B; Foster, R S; Ghigo, F D; Briggs, M S; Pendleton, G N; Johnston, K J

    1999-01-01

    Using CGRO/BATSE hard X-ray (HXR) data and GHz radio monitoring data from the Green Bank Interferometer (GBI), we have performed a long term study ($\\sim$ 1800 days) of the unusual X-ray binary Cyg X-3 resulting in the discovery of a remarkable relationship between these two wavelength bands. We find that, during quiescent radio states, the radio flux is strongly anticorrelated with the intensity of the HXR emission. The relationship switches to a correlation with the onset of major radio flaring activity. During major radio flaring activity the HXR drops to a very low intensity during quenching in the radio and recovers during the radio flare. Injection of plasma into the radio jets of Cyg X-3 occurs during changes in the HXR emission and suggests that disk-related and jet-related components are responsible for the high energy emission.

  15. Analisis Kendala Perizinan Spektrum Frekuensi Radio untuk Radio Komunitas

    OpenAIRE

    2014-01-01

    Izin penggunaan spektrum frekuensi radio diatur dalam Undang-undang No.36 tahun 1999 tentang Telekomunikasi. Saat ini masih ditemukan Radio Komunitas yang belum memiliki Izin Stasiun Radio (ISR). Penelitian ini bertujuan untuk menemu kenali kendala-kendala yang dihadapi Radio Komunitas pada proses pengajuan Izin Stasiun Radio (ISR). Teknik pengumpulan data melalui wawancara dengan penanggungjawab Radio Komunitas dan pejabat di lingkungan Balai Monitor Frekuensi Radio (Balmon) di Jakarta, Sema...

  16. Non-thermal emission from extragalactic radio sources a high resolution broad band (radio to X-rays) approach

    CERN Document Server

    Brunetti, G

    2002-01-01

    In the framework of the study of extragalactic radio sources, we will focus on the importance of the spatial resolution at different wavelengths, and of the combination of observations at different frequency bands. In particular, a substantial step forward in this field is now provided by the new generation X-ray telescopes which are able to image radio sources in between 0.1--10 keV with a spatial resolution comparable with that of the radio telescopes (VLA) and of the optical telescopes. After a brief description of some basic aspects of acceleration mechanisms and of the radiative processes at work in the extragalactic radio sources, we will focus on a number of recent radio, optical and X-ray observations with arcsec resolution, and discuss the deriving constraints on the physics of these sources.

  17. Wavelength dimensioning for wavelength-routed WDM satellite network

    Institute of Scientific and Technical Information of China (English)

    Liu Zhe; Guo Wei; Deng Changlin; Hu Weisheng

    2016-01-01

    Internet and broadband applications driven by data traffic demand have become key dri-vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter-satellite links (ISLs) with wavelength routing (WDM-OSN). Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provi-sion requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM) is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street net-work (MSN) topology, wavelength requirements and average end-to-end delay based on the topol-ogy generated by LAS-PMM could be reduced by 24.8%and 12.4%, respectively.

  18. AWG Filter for Wavelength Interrogator

    Science.gov (United States)

    Black, Richard J. (Inventor); Costa, Joannes M. (Inventor); Faridian, Fereydoun (Inventor); Moslehi, Behzad (Inventor); Sotoudeh, Vahid (Inventor)

    2015-01-01

    A wavelength interrogator is coupled to a circulator which couples optical energy from a broadband source to an optical fiber having a plurality of sensors, each sensor reflecting optical energy at a unique wavelength and directing the reflected optical energy to an AWG. The AWG has a detector coupled to each output, and the reflected optical energy from each grating is coupled to the skirt edge response of the AWG such that the adjacent channel responses form a complementary pair response. The complementary pair response is used to convert an AWG skirt response to a wavelength.

  19. Topology optimised wavelength dependent splitters

    DEFF Research Database (Denmark)

    Hede, K. K.; Burgos Leon, J.; Frandsen, Lars Hagedorn;

    A photonic crystal wavelength dependent splitter has been constructed by utilising topology optimisation1. The splitter has been fabricated in a silicon-on-insulator material (Fig. 1). The topology optimised wavelength dependent splitter demonstrates promising 3D FDTD simulation results....... This complex photonic crystal structure is very sensitive against small fabrication variations from the expected topology optimised design. A wavelength dependent splitter is an important basic building block for high-performance nanophotonic circuits. 1J. S. Jensen and O. Sigmund, App. Phys. Lett. 84, 2022...

  20. Observation of two coronal mass ejections on April 7, 2011 by radio telescope URAN-2

    Science.gov (United States)

    Brazhenko, A.; Melnik, V.; Konovalenko, A.; Dorovskyy, V.; Vashchishin, V.; Franzusenko, A.; Rucker, H.

    2012-09-01

    Two CME's (coronal mass ejection) were registered by SOHO and STEREO on April 7, 2011. The results of observations obtained by radio telescope URAN-2 of different CME manifestations in radio emission at decameter wavelengths are discussed in this paper. Particularly we report about registration of new type of fine structure of type II bursts.

  1. Senior radio listeners

    DEFF Research Database (Denmark)

    Blaakilde, Anne Leonora

    media platforms, not the least when listening to radio. The elder generation is no exception from this. Recently, for instance, the Danish public broadcast DR has carried out an exodus of programmes targeted for the senior segment. These programmes are removed from regular FM and sent to DAB receivers......Radiobroadcasting and the hardware materialization of radio have during the 20th century changed significantly, which means that senior radio listeners have travelled along with this evolution from large, impressive radio furnitures to DAB and small, wireless, mobile devices, and from grave...... and solemn radio voices to lightharted, laughing and chatting speakers. Senior radio listerners have experienced the development and refinements of technique, content and genres. It is now expected of all media users that they are capable of crossing media, combining, juggling and jumping between various...

  2. Transformations of Radio Aesthetics

    Directory of Open Access Journals (Sweden)

    Grażyna Stachyra

    2015-09-01

    Full Text Available The paper presents some remarks upon the nature of contemporary radio communications in the context of the terms “aesthetics” and “aesthetisation”. The latter, denoting a process of turning aesthetic phenomena into unaesthetic ones, becomes the dominant strategy of formatted radio. The “surface aesthetisation,” which provides mainly pleasure and entertainment, transcends the simple styling of objects or environment and appears to be a more significant strand of contemporary culture. The article shows several examples of “surface” modelling of radio programming and explains their purpose in radio communication.

  3. Revealing Hanny's Voorwerp : radio observations of IC 2497

    NARCIS (Netherlands)

    Jozsa, G. I. G.; Garrett, M. A.; Oosterloo, T. A.; Rampadarath, H.; Paragi, Z.; van Arkel, H.; Lintott, C.; Keel, W. C.; Schawinski, K.; Edmondson, E.

    2009-01-01

    We present multi-wavelength radio observations in the direction of the spiral galaxy IC 2497 and the neighbouring emission nebula known as "Hanny's Voorwerp". Our WSRT continuum observations at 1.4 GHz and 4.9 GHz reveal the presence of extended emission at the position of the nebulosity, although t

  4. A Zynq-based Cluster Cognitive Radio

    OpenAIRE

    Rooks, Kurtis M.

    2014-01-01

    Traditional hardware radios provide very rigid solutions to radio problems. Intelligent software defined radios, also known as cognitive radios, provide flexibility and agility compared to hardware radio systems. Cognitive radios are well suited for radio applications in a changing radio frequency environment, such as dynamic spectrum access. In this thesis, a cognitive radio is demonstrated where the system self reconfigures to dem...

  5. Radio Recombination Lines in Galactic HII Regions

    CERN Document Server

    Quireza, C; Bania, T M; Rood, R T; Balser, Dana S.; Quireza, Cintia; Rood, Robert T.

    2006-01-01

    We report radio recombination line (RRL) and continuum observations of a sample of 106 Galactic HII regions made with the NRAO 140 Foot radio telescope in Green Bank, WV. We believe this to be the most sensitive RRL survey ever made for a sample this large. Most of our source integration times range between 6 and 90 hours which yield typical r.m.s. noise levels of 1.0--3.5 milliKelvins. Our data result from two different experiments performed, calibrated, and analyzed in similar ways. A CII survey was made at 3.5 cm wavelength to obtain accurate measurements of carbon radio recombination lines. When combined with atomic (CI) and molecular (CO) data, these measurements will constrain the composition, structure, kinematics, and physical properties of the photodissociation regions that lie on the edges of HII regions. A second survey was made at 3.5 cm wavelength to determine the abundance of 3He in the interstellar medium of the Milky Way. Together with measurements of the 3He+ hyperfine line we get high precis...

  6. Accurate Weather Forecasting for Radio Astronomy

    Science.gov (United States)

    Maddalena, Ronald J.

    2010-01-01

    The NRAO Green Bank Telescope routinely observes at wavelengths from 3 mm to 1 m. As with all mm-wave telescopes, observing conditions depend upon the variable atmospheric water content. The site provides over 100 days/yr when opacities are low enough for good observing at 3 mm, but winds on the open-air structure reduce the time suitable for 3-mm observing where pointing is critical. Thus, to maximum productivity the observing wavelength needs to match weather conditions. For 6 years the telescope has used a dynamic scheduling system (recently upgraded; www.gb.nrao.edu/DSS) that requires accurate multi-day forecasts for winds and opacities. Since opacity forecasts are not provided by the National Weather Services (NWS), I have developed an automated system that takes available forecasts, derives forecasted opacities, and deploys the results on the web in user-friendly graphical overviews (www.gb.nrao.edu/ rmaddale/Weather). The system relies on the "North American Mesoscale" models, which are updated by the NWS every 6 hrs, have a 12 km horizontal resolution, 1 hr temporal resolution, run to 84 hrs, and have 60 vertical layers that extend to 20 km. Each forecast consists of a time series of ground conditions, cloud coverage, etc, and, most importantly, temperature, pressure, humidity as a function of height. I use the Liebe's MWP model (Radio Science, 20, 1069, 1985) to determine the absorption in each layer for each hour for 30 observing wavelengths. Radiative transfer provides, for each hour and wavelength, the total opacity and the radio brightness of the atmosphere, which contributes substantially at some wavelengths to Tsys and the observational noise. Comparisons of measured and forecasted Tsys at 22.2 and 44 GHz imply that the forecasted opacities are good to about 0.01 Nepers, which is sufficient for forecasting and accurate calibration. Reliability is high out to 2 days and degrades slowly for longer-range forecasts.

  7. Enhancing GNU Radio for Hardware Accelerated Radio Design

    OpenAIRE

    Irick, Charles Robert

    2010-01-01

    As technology evolves and new methods for designing radios arise, it becomes necessary to continue the search for fast and flexible development environments. Some of these new technologies include software defined radio (SDR), Field Programmable Gate Arrays (FPGAs), and the open source project GNU Radio. Software defined radio is a concept that GNU Radio has harnessed to allow developers to quickly create flexible radio designs. In terms of hardware, the maturity of FPGAs give ...

  8. Low frequency radio observations of SN 2011dh and the evolution of its post-shock plasma properties

    CERN Document Server

    Yadav, Naveen

    2016-01-01

    We present late time, low frequency observations of SN 2011dh made using the Giant Metrewave Radio Telescope (GMRT). Our observations at $325\\ \\rm MHz$, $610\\ \\rm MHz$ and $1280\\ \\rm MHz$ conducted between $93-421\\ \\rm days$ after the explosion supplement the millimeter and centimeter wave observations conducted between $4-15 \\ \\rm days$ after explosion using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) and extensive radio observations ($ 1.0-36.5\\ \\rm GHz$) conducted between $16-93\\ \\rm days$ after explosion using Jansky Very Large Array (JVLA). We fit a synchrotron self absorption model (SSA) to the $610\\ \\rm MHz$ and $1280\\ \\rm MHz$ radio light curves. We use it to determine the radius ($R_{\\rm p}$) and magnetic field ($B_{\\rm p}$) at $173$ \\& $323$ days after the explosion. A comparison of the peak radio luminosity $L_{\\rm op}$, with the product of the peak frequency $\

  9. Analisis Kendala Perizinan Spektrum Frekuensi Radio untuk Radio Komunitas

    Directory of Open Access Journals (Sweden)

    Sri Wahyuningsih

    2014-03-01

    Full Text Available Izin penggunaan spektrum frekuensi radio diatur dalam Undang-undang No.36 tahun 1999 tentang Telekomunikasi. Saat ini masih ditemukan Radio Komunitas yang belum memiliki Izin Stasiun Radio (ISR. Penelitian ini bertujuan untuk menemu kenali kendala-kendala yang dihadapi Radio Komunitas pada proses pengajuan Izin Stasiun Radio (ISR. Teknik pengumpulan data melalui wawancara dengan penanggungjawab Radio Komunitas dan pejabat di lingkungan Balai Monitor Frekuensi Radio (Balmon di Jakarta, Semarang dan Yogyakarta. Analisis data mengacu pada model Matthew B Miles dan A Michael Huberman. Hasil penelitian menyatakan kendala yang dihadapi terutama pada sertifikasi perangkat Radio Komunitas.

  10. Valuing commercial radio licences

    NARCIS (Netherlands)

    Kerste, M.; Poort, J.; van Eijk, N.

    2015-01-01

    Within the EU regulatory framework, licensees for commercial radio broadcasting may be charged a fee to ensure optimal allocation of scarce resources but not to maximize public revenues. While radio licence renewal occurs in many EU countries, an objective, model-based approach for setting licence f

  11. Radio Graceful Hamming Graphs

    Directory of Open Access Journals (Sweden)

    Niedzialomski Amanda

    2016-11-01

    Full Text Available For k ∈ ℤ+ and G a simple, connected graph, a k-radio labeling f : V (G → ℤ+ of G requires all pairs of distinct vertices u and v to satisfy |f(u − f(v| ≥ k + 1 − d(u, v. We consider k-radio labelings of G when k = diam(G. In this setting, f is injective; if f is also surjective onto {1, 2, . . . , |V (G|}, then f is a consecutive radio labeling. Graphs that can be labeled with such a labeling are called radio graceful. In this paper, we give two results on the existence of radio graceful Hamming graphs. The main result shows that the Cartesian product of t copies of a complete graph is radio graceful for certain t. Graphs of this form provide infinitely many examples of radio graceful graphs of arbitrary diameter. We also show that these graphs are not radio graceful for large t.

  12. Radio Emission from Exoplanets

    OpenAIRE

    George, Samuel J.; Stevens, Ian R.

    2008-01-01

    We present results from new low frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). We do not detect either system, but are able to place tight upper limits on their low frequency radio emission.

  13. Unlocking radio broadcasts

    DEFF Research Database (Denmark)

    Skov, Mette; Lykke, Marianne

    2012-01-01

    This poster reports the preliminary results of a user study uncovering the information seeking behaviour of humanities scholars dedicated to radio research. The study is part of an interdisciplinary research project on radio culture and auditory resources. The purpose of the study is to inform th...

  14. Superconductor Semiconductor Research for NASA's Submillimeter Wavelength Missions

    Science.gov (United States)

    Crowe, Thomas W.

    1997-01-01

    Wideband, coherent submillimeter wavelength detectors of the highest sensitivity are essential for the success of NASA's future radio astronomical and atmospheric space missions. The critical receiver components which need to be developed are ultra- wideband mixers and suitable local oscillator sources. This research is focused on two topics, (1) the development of reliable varactor diodes that will generate the required output power for NASA missions in the frequency range from 300 GHZ through 2.5 THz, and (2) the development of wideband superconductive mixer elements for the same frequency range.

  15. Radio Counterparts of Compact Binary Mergers detectable in Gravitational Waves: A Simulation for an Optimized Survey

    CERN Document Server

    Hotokezaka, Kenta; Hallinan, Gregg; Lazio, T Joseph W; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation of accelerated electrons in shocks formed with the circum-merger medium. We explore the detectability of these synchrotron generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produces radio remnants on timescales of a few years and the latter produces $\\gamma$-ray bursts in the direction of the jet and orphan radio afterglows extending over wider angles on timescales of a week to a month. The intensity and duration of these radio counterparts depend on the kinetic energies of the outflows and on circum-merger densities. We estimate the detectability of the radio counterparts ...

  16. Cosmological MHD Simulations of Galaxy Cluster Radio Relics: Insights and Warnings for Observations

    CERN Document Server

    Skillman, Samuel W; Hallman, Eric J; O'Shea, Brian W; Burns, Jack O; Li, Hui; Collins, David C; Norman, Michael L

    2012-01-01

    Non-thermal radio emission from cosmic ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare to observed galaxy clusters. We find a significant dependence of the observed morphology and radio rel...

  17. Wavelength Filters in Fibre Optics

    CERN Document Server

    Venghaus, Herbert

    2006-01-01

    Wavelength filters constitute an essential element of fibre-optic networks. This book gives a comprehensive account of the principles and applications of such filters, including their technological realisation. After an introductory chapter on wavelength division multiplexing in current and future fibre optic networks follows a detailed treatment of the phase characteristics of wavelength filters, a factor frequently neglected but of significant importance at high bit rates. Subsequent chapters cover three-dimensional reflection of gratings, arrayed waveguide gratings, fibre Bragg gratings, Fabry-Perot filters, dielectric multilayer filters, ring filters, and interleavers. The book explains the relevant performance parameters, the particular advantages and shortcomings of the various concepts and components, and the preferred applications. It also includes in-depth information on the characteristics of both commercially available devices and those still at the R&D stage. All chapters are authored by inter...

  18. Planar Lenses at Visible Wavelengths

    CERN Document Server

    Khorasaninejad, Mohammadreza; Devlin, Robert C; Oh, Jaewon; Zhu, Alexander Y; Capasso, Federico

    2016-01-01

    Sub-wavelength resolution imaging requires high numerical aperture (NA) lenses, which are bulky and expensive. Metasurfaces allow the miniaturization of conventional refractive optics into planar structures. We show that high-aspect-ratio titanium dioxide metasurfaces can be fabricated and designed as meta-lenses with NA = 0.8. Diffraction-limited focusing is demonstrated at wavelengths of 405 nm, 532 nm, and 660 nm with corresponding efficiencies of 86%, 73%, and 66%. The meta-lenses can resolve nanoscale features separated by sub-wavelength distances and provide magnification as high as 170x with image qualities comparable to a state-of-the-art commercial objective. Our results firmly establish that meta-lenses can have widespread applications in laser-based microscopy, imaging, and spectroscopy.

  19. Undergraduate Research with a Small Radio Telescope

    Science.gov (United States)

    Fisher, P. L.; Williams, G. J.

    2001-11-01

    We describe the construction of a small radio telescope system at ULM and the role of radio astronomy in undergraduate education. The heart of the system is the Small Radio Telescope (SRT), which is a modified satellite TV antenna and custom receiver purchased from MIT Haystack Observatory. This telescope measures the brightness of many celestial objects at wavelengths near 21 cm. The system consists of various components to control dish movement, as well as perform analog to digital conversions allowing analysis of collected data. Undergraduate students have participated in the construction of the hardware and the task of interfacing the hardware to software on two GNU/Linux computer systems. The construction of the telescope and analysis of data allow the students to employ key concepts from mechanics, optics, electrodynamics, and thermodynamics, as well as computer and electronics skills. We will report preliminary results of solar observations conducted with this instrument and with the MIT Haystack Observatory 37m radio telescope. This work was supported by Louisiana Board of Regents grant LEQSF-ENH-UG-16, NASA/LaSPACE LURA R109139 and ULM Development Foundation Grant 97317.

  20. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  1. VLA Polarimetry of Two Extended Radio Galaxies

    CERN Document Server

    Junor, W; Morganti, R; Padrielli, L

    2000-01-01

    Multi-wavelength VLA observations of two extended radio galaxies, 0235-197and 1203+043 are presented. There is some evidence from earlier studies thatthese two sources exhibit low frequency (<1 GHz) variability. This work showsthat both sources have linear polarizations, if any, below the detection limitsat 320 MHz, so we cannot explain the variability as being due to instrumentalpolarization effects as has been suggested for 3C159. Refractive scintillationmay be the cause of the variability in 0235-197. This would require theexistence of a bright, compact component in one of the hot spots seen in theseobservations. This is not implausible but the resolution of this observationalprogram is insufficent to address that question. The radio source 1203+043lacks any bright compact component thereby ruling out a refractivescintillation mechanism for its variability. Consequently, it is possible thatclaims of variability in this source are spurious. However, the 320 MHz VLAobservations show that 1203+043 has an `...

  2. DETECTION OF RADIO EMISSION FROM FIREBALLS

    Energy Technology Data Exchange (ETDEWEB)

    Obenberger, K. S.; Taylor, G. B.; Dowell, J.; Henning, P. A.; Schinzel, F. K.; Stovall, K. [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States); Hartman, J. M. [NASA Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Ellingson, S. W. [Bradley Department of Electrical Engineering, Virginia Tech, Blacksburg, VA 24061 (United States); Helmboldt, J. F.; Wilson, T. L. [US Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States); Kavic, M. [Department of Physics, Long Island University, Brooklyn, NY 11201 (United States); Simonetti, J. H. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-06-20

    We present the findings from the Prototype All-Sky Imager, a back end correlator of the first station of the Long Wavelength Array, which has recorded over 11,000 hr of all-sky images at frequencies between 25 and 75 MHz. In a search of this data for radio transients, we have found 49 long-duration (10 s of seconds) transients. Ten of these transients correlate both spatially and temporally with large meteors (fireballs), and their signatures suggest that fireballs emit a previously undiscovered low frequency, non-thermal pulse. This emission provides a new probe into the physics of meteors and identifies a new form of naturally occurring radio transient foreground.

  3. Next Generation Radio Astronomy Receiver Systems

    CERN Document Server

    Morgan, Matthew A

    2009-01-01

    Radio astronomy observations in the coming decade will require new levels of sensitivity while mapping large regions of space with much greater efficiency than is achieved with current telescopes. This requires new instrumentation with the greatest achievable sensitivity, dynamic range, and field of view. Receiver noise is quickly approaching fundamental limits at most radio wavelengths, so significant gains in sensitivity can only be made by increasing collecting area. Jointly, these requirements suggest using large arrays of smaller antennas, or many moderate-size antennas equipped with multi-beam arrays. The challenge is to develop receivers and wide bandwidth data transport systems which are lower cost, more compact, more reliable, lower weight, and more reproducible than the best current systems, with no compromise to performance. This can be achieved with a greater degree of component integration, extensive use of digital signal processing and transport, and replacement of functions currently performed ...

  4. Intraday Variability in Northern Hemisphere Radio Sources

    CERN Document Server

    Krichbaum, T P; Fuhrmann, L; Cimo, G; Witzel, A

    2001-01-01

    We summarize results from flux density monitoring campaigns performed with the 100 meter radio-telescope at Effelsberg and the VLA during the past 15 yrs. We briefly discuss some of the statistical properties of the rapid variability from now more than 40 high declination sources, which show Intraday Variability (IDV). In general, IDV is more pronounced for sources with flat radio spectra and compact VLBI structures. The frequency dependence of the variability pattern varies with source and observing time. For 0917+62, we present new VLBI images, which suggest that the variability pattern is modified by the occurrence of new jet components. For 0716+71, we show the first detection of IDV at millimeter wavelengths (32 GHz). For the physical interpretation of the IDV phenomenon, a complex source and frequency dependent superposition of interstellar scintillation and source intrinsic variability should be considered.

  5. Radio source evolution

    CERN Document Server

    Perucho, Manel

    2015-01-01

    Baldwin (1982) wrote that "the distribution of sources in the radio luminosity, P, overall physical size, D, diagram" could be considered as "the radio astronomer's H-R diagram". However, unlike the case of stars, not only the intrinsic properties of the jets, but also those of the host galaxy and the intergalactic medium are relevant to explain the evolutionary tracks of radio radio sources. In this contribution I review the current status of our understanding of the evolution of radio sources from a theoretical and numerical perspective, using the P-D diagram as a framework. An excess of compact (linear size < 10 kpc) sources could be explained by low-power jets being decelerated within the host galaxy, as shown by recent numerical simulations. These decelerated jets could also explain the population of the radio sources that have been recently classified as FR0. I will discuss the possible tracks that radio sources may follow within this diagram, and some of the physical processes that can explain the d...

  6. Wavelength-shifted Cherenkov radiators

    Science.gov (United States)

    Krider, E. P.; Jacobson, V. L.; Pifer, A. E.; Polakos, P. A.; Kurz, R. J.

    1976-01-01

    The scintillation and Cherenkov responses of plastic Cherenkov radiators containing different wavelength-shifting fluors in varying concentrations have been studied in beams of low energy protons and pions. For cosmic ray applications, where large Cherenkov to scintillation ratios are desired, the optimum fluor concentrations are 0.000025 by weight or less.

  7. Centimeter-level precise orbit determination for the HY-2A satellite using DORIS and SLR tracking data

    Science.gov (United States)

    Kong, Qiaoli; Guo, Jinyun; Sun, Yu; Zhao, Chunmei; Chen, Chuanfa

    2017-01-01

    The HY-2A satellite is the first ocean dynamic environment monitoring satellite of China. Centimeter-level radial accuracy is a fundamental requirement for its scientific research and applications. To achieve this goal, we designed the strategies of precise orbit determination (POD) in detail. To achieve the relative optimal orbit for HY-2A, we carried out POD using DORIS-only, SLR-only, and DORIS + SLR tracking data, respectively. POD tests demonstrated that the consistency level of DORIS-only and SLR-only orbits with respect to the CNES orbits were about 1.81 cm and 3.34 cm in radial direction in the dynamic sense, respectively. We designed 6 cases of different weight combinations for DORIS and SLR data, and found that the optimal relative weight group was 0.2 mm/s for DORIS and 15.0 cm for SLR, and RMS of orbit differences with respect to the CNES orbits in radial direction and three-dimensional (3D) were 1.37 cm and 5.87 cm, respectively. These tests indicated that the relative radial and 3D accuracies computed using DORIS + SLR data with the optimal relative weight set were obviously higher than those computed using DORIS-only and SLR-only data, and satisfied the requirement of designed precision. The POD for HY-2A will provide the invaluable experience for the following HY-2B, HY-2C, and HY-2D satellites.

  8. Fluid flow on centimeter-scale in deep paleosubduction zones in western Tianshan, China: Evidence from high-pressure veins

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-fu; HUANG De-zhi; HUANG Shi-qi; LI Guo-ming; GAO Jun; SHI Yong-hong

    2008-01-01

    High-pressure(HP) veins were extensively developed in western Tianshan high-pressure(HP) metamorphic belt. The HP vein and host-rocks were analyzed by electronic microprobe to trace the origin of vein-forming fluids. Analytical data show that the immediately adjacent host-rocks of the studied HP vein are eclogites and gradually turned into blueschist as the distance from the veins increases, which indicates that the vein-forming fluid was derived from adjacent host-rocks; the boundaries between the vein and the host-rocks are sharp, which indicates that the fracture of the host-rocks is brittle during the vein-forming process. It is suggested that this type of HP veins is precipitated from the liquid formed by the dehydration of the host-rocks during the prograde metamorphism from blueschist to eclogite facies, which results in hydrofracturing of the rocks and provides the space for the vein to precipitate. The width of the eclogite-facies host-rocks is usually 1-2 cm, which provides the direct evidence that the fluid flow is on centimeter-scale.

  9. Radio broadcasting via satellite

    Science.gov (United States)

    Helm, Neil R.; Pritchard, Wilbur L.

    1990-10-01

    Market areas offering potential for future narrowband broadcast satellites are examined, including international public diplomacy, government- and advertising-supported, and business-application usages. Technical issues such as frequency allocation, spacecraft types, transmission parameters, and radio receiver characteristics are outlined. Service and system requirements, advertising revenue, and business communications services are among the economic issues discussed. The institutional framework required to provide an operational radio broadcast service is studied, and new initiatives in direct broadcast audio radio systems, encompassing studies, tests, in-orbit demonstrations of, and proposals for national and international commercial broadcast services are considered.

  10. Unlocking radio broadcasts

    DEFF Research Database (Denmark)

    Lykke, Marianne; Skov, Mette

    2012-01-01

    This poster reports the preliminary results of a user study uncovering the information seeking behaviour of humanities scholars dedicated to radio research. The study is part of an interdisciplinary research project on radio culture and auditory resources. The purpose of the study is to inform...... the design of information architecture and interaction design of a research infrastructure that will enable future radio and audio based research. Results from a questionnaire survey on humanities scholars’ research interest and information needs, preferred access points, and indexing levels are reported...

  11. Radio y elecciones

    Directory of Open Access Journals (Sweden)

    Alma Rosa Alva de la Selva

    2000-01-01

    Full Text Available En este trabajo se analiza el comportamiento de la radio en México ante la contienda electoral de julio de 2000. Se examina el papel de la radio como espacio para la discusión política, así como el tratamiento informativo que hizo del tema. Asimismo, se analiza la posible repercusión de factores de reciente surgimiento en el panorama radiofónico para un manejo más autónomo de la información política en la radio

  12. A Search for Radio Gravitational Lenses, Using the Sloan Digital Sky Survey and the Very Large Array

    CERN Document Server

    Boyce, E R; Bolton, A S; Hewitt, J N; Burles, S; Boyce, Edward R.; Bowman, Judd D.; Bolton, Adam S.; Hewitt, Jacqueline N.; Burles, Scott

    2006-01-01

    We report on a novel search for radio gravitational lenses. Using the Very Large Array, we imaged ten candidates with both dual redshifts in Sloan Digital Sky Survey spectra and 1.4 GHz radio flux >2 mJy in the FIRST survey. The VLA maps show that in each case the radio emission is associated with the foreground galaxy rather than being lensed emission from the background galaxy, although at least four of our targets are strong lenses at optical wavelengths. These SDSS dual-redshift systems do not have lensed radio emission at the sensitivity of current radio surveys.

  13. Imprints of Molecular Clouds in Radio Continuum Images

    CERN Document Server

    Yusef-Zadeh, F

    2012-01-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the snake filament and G359.75-0.13 demonstrate an anti--correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are iden...

  14. Radio continuum emission from knots in the DG Tau jet

    CERN Document Server

    Rodriguez, L F; Raga, A C; Canto, J; Riera, A; Loinard, L; Dzib, S A; Zapata, L A

    2011-01-01

    Context: HH 158, the jet from the young star DG Tau, is one of the few sources of its type where jet knots have been detected at optical and X-ray wavelengths. Aims: To search, using Very Large Array observations of this source, radio knots and if detected, compare them with the optical and X-ray knots. To model the emission from the radio knots. Methods: We analyzed archive data and also obtained new Very Large Array observations of this source, as well as an optical image, to measure the present position of the knots. We also modeled the radio emission from the knots in terms of shocks in a jet with intrinsically time-dependent ejection velocities. Results: We detected radio knots in the 1996.98 and 2009.62 VLA data. These radio knots are,within error, coincident with optical knots. We also modeled satisfactorily the observed radio flux densities as shock features from a jet with intrinsic variability. All the observed radio, optical, and X-ray knot positions can be intepreted as four successive knots, ejec...

  15. The long-term centimeter variability of active galactic nuclei: A new relation between variability timescale and accretion rate

    CERN Document Server

    Park, Jongho

    2016-01-01

    We study the long-term ($\\approx$30 years) radio variability of 43 radio bright AGNs by exploiting the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program. We model the periodograms (temporal power spectra) of the observed lightcurves as simple power-law noise (red noise, spectral power $P(f)\\propto f^{-\\beta}$) using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index ($\\beta$) from $\\approx$1 to $\\approx$3. We fit a Gaussian function to each flare in a given lightcurve to obtain the flare duration. We discover a correlation between $\\beta$ and the median duration of the flares. We use the derivative of a lightcurve to obtain a characteristic variability timescale which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativisti...

  16. Music, Radio, and Mediatization

    DEFF Research Database (Denmark)

    Krogh, Mads; Michelsen, Morten

    2016-01-01

    Mediatization has become a key concept for understanding the relations between media and other cultural and social fields. Contributing to the discussions related to the concept of mediatization, this article discusses how practices of radio and music(al life) influence each other. We follow Deacon......’s and Stanyer’s advice to supplement the concept of mediatization with ‘a series of additional concepts at lower levels of abstraction’ and suggest, in this respect, the notion of heterogeneous milieus of music– radio. Hereby, we turn away from the all-encompassing perspectives related to the concept...... of mediatization where media as such seem to be ascribed agency. Instead, we consider historical accounts of music–radio in order to address the complex non- linearity of concrete processes of mediatization as they take place in the multiple meetings between a decentred notion of radio and musical life....

  17. The digital sport radio.

    Directory of Open Access Journals (Sweden)

    Hilario José ROMERO BEJARANO

    2014-07-01

    Full Text Available Radio has been immersed in recent years in a phase of technological integration and business of multimedia, as well as diversification of systems and channels for broadcasting. In addition, Internet has been consolidated as the platform of digital radio that more has evolved as a result of its continued expansion. However, the merger radio-Internet must be understood as a new form of communication, and not solely as a new complementary medium. In this context, it is of great interest to analyze that transformations in the way of reception, contents, languages, programs and schedules, has brought with it for the radio that integration. To this end is taken as main reference the sports areas, a key aspect and broadly representative of the current broadcasting landscape.

  18. Everyday Radio Telescope

    CERN Document Server

    Mandal, Pranshu; Kumar, Pratik; Yelikar, Anjali; Soni, Kanchan; T, Vineeth Krishna

    2016-01-01

    We have developed an affordable, portable college level radio telescope for amateur radio astronomy which can be used to provide hands-on experience with the fundamentals of a radio telescope and an insight into the realm of radio astronomy. With our set-up one can measure brightness temperature and flux of the Sun at 11.2 GHz and calculate the beam width of the antenna. The set-up uses commercially available satellite television receiving system and parabolic dish antenna. We report the detection of point sources like Saturn and extended sources like the galactic arm of the Milky way. We have also developed python pipeline, which are available for free download, for data acquisition and visualization.

  19. Boom Booom Net Radio

    DEFF Research Database (Denmark)

    Grimshaw, Mark Nicholas; Yong, Louisa; Dobie, Ian

    1999-01-01

    Internet radio is one of the growth areas of the Internet but, as this article will show, is fraught with difficulties and frustration for both the modestly-funded broadcaster (bitcaster) and the listener. The article will illustrate some of these problems by means of a short case study of an exi......Internet radio is one of the growth areas of the Internet but, as this article will show, is fraught with difficulties and frustration for both the modestly-funded broadcaster (bitcaster) and the listener. The article will illustrate some of these problems by means of a short case study...... of an existing Internet radio station; Boom Booom Net Radio. Whilst necessity dictates some use of technology-related terminology, wherever possible we have endeavoured to keep such jargon to a minimum and to either explain it in the text or to provide further explanation in the appended glossary....

  20. Unveiling the radio cosmos

    Science.gov (United States)

    Vanderlinde, Keith

    2017-02-01

    Using a radio telescope with no moving parts, the dark energy speeding up the expansion of the Universe can be probed in unprecedented detail, says Keith Vanderlinde, on behalf of the CHIME collaboration.

  1. Social cognitive radio networks

    CERN Document Server

    Chen, Xu

    2015-01-01

    This brief presents research results on social cognitive radio networks, a transformational and innovative networking paradigm that promotes the nexus between social interactions and cognitive radio networks. Along with a review of the research literature, the text examines the key motivation and challenges of social cognitive radio network design. Three socially inspired distributed spectrum sharing mechanisms are introduced: adaptive channel recommendation mechanism, imitation-based social spectrum sharing mechanism, and evolutionarily stable spectrum access mechanism. The brief concludes with a discussion of future research directions which ascertains that exploiting social interactions for distributed spectrum sharing will advance the state-of-the-art of cognitive radio network design, spur a new line of thinking for future wireless networks, and enable novel wireless service and applications.

  2. Smart Radio Spectrum Management for Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Partha Pratim Bhattacharya

    2011-08-01

    Full Text Available Today’s wireless networks are characterized by fixed spectrum assignment policy. The limited availablespectrum and the inefficiency in the spectrum usage necessitate a new communication paradigm toexploit the existing wireless spectrum opportunistically. Cognitive radio is a paradigm for wirelesscommunication in which either a network or a wireless node changes its transmission or receptionparameters to communicate efficiently avoiding interference with licensed or unlicensed users. It cancapture best available spectrum to meet user communication requirements (spectrum management. Inthis work, a fuzzy logic based system for spectrum management is proposed where the radio can shareunused spectrum depending on parameters like distance, signal strength, node velocity and availabilityof unused spectrum. The system is simulated and is found to give satisfactory results.

  3. Triple-Play and 60-GHz Radio-over-Fiber Techniques for Next-Generation Optical Access Networks

    DEFF Research Database (Denmark)

    Llorente, R.; Walker, S.; Tafur Monroy, Idelfonso

    2011-01-01

    Radio-over-fiber techniques apply to fiber-to-thehome distributions to reach the customer premises with the services to be received with full-standard low-cost equipment. Bi-directional coarse wavelength division multiplexing (CWDM) radio-over-fiber transmission of triple-format full-standard ort......Radio-over-fiber techniques apply to fiber-to-thehome distributions to reach the customer premises with the services to be received with full-standard low-cost equipment. Bi-directional coarse wavelength division multiplexing (CWDM) radio-over-fiber transmission of triple-format full...... performance of radio-over-fiber optical transmission employing vertical-cavity surface-emitting lasers (VCSELs), and further wireless transmission, of standard OFDM UWB signals is reported when operating in the 60-GHz radio band. Performance is evaluated at 1.44 Gbit/s bitrate. PON transmission distance up...

  4. Classics in radio astronomy

    CERN Document Server

    Sullivan, Woodruff Turner

    1982-01-01

    Radio techniques were the nrst to lead astronomy away from the quiescent and limited Universe revealed by traditional observations at optical wave­ lengths. In the earliest days of radio astronomy, a handful of radio physicists and engineers made one startling discovery after another as they opened up the radio sky. With this collection of classic papers and the extensive intro­ ductory material, the reader can experience these exciting discoveries, as well as understand the developing techniques and follow the motivations which prompted the various lines of inquiry. For instance he or she will follow in detail the several attempts to detect radio waves from the sun at the turn of the century; the unravelling by Jansky of a "steady hiss type static"; the incredible story of Reber who built a 9 meter dish in his backyard in 1937 and then mapped the Milky Way; the vital discoveries by Hey and colleagues of radio bursts from the Sun and of a discrete source in the constellation of Cygnus; the development of re...

  5. How Else Can We Detect Fast Radio Bursts?

    Science.gov (United States)

    Lyutikov, Maxim; Lorimer, Duncan R.

    2016-06-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. However, magnetar giant flares, driven by the reconfiguration of the magnetosphere, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission, (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds), and (iii) a high-energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen in a coordinated radio-optical surveys, e.g., by the Palomar Transient Factory in a 60 s frame as a transient object of m = 15-20 mag with an expected optical detection rate of about 0.1 hr-1, an order of magnitude higher than in radio. Shallow, but large-area sky surveys such as ASAS-SN and EVRYSCOPE could also detect prompt optical flashes from the more powerful Lorimer-burst clones. The best constraints on the optical to radio power for this kind of emission could be provided by future observations with facilities like Large Synoptic Survey Telescope. Case (iii) might be seen in relatively rare cases that the relativistically ejected magnetic blob is moving along the line of sight.

  6. Review of short wavelength lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, P.L.

    1985-03-18

    There has recently been a substantial amount of research devoted to the development of short wavelength amplifiers and lasers. A number of experimental results have been published wherein the observation of significant gain has been claimed on transitions in the EUV and soft x-ray regimes. The present review is intended to discuss the main approaches to the creation of population inversions and laser media in the short wavelength regime, and hopefully aid workers in the field by helping to provide access to a growing literature. The approaches to pumping EUV and soft x-ray lasers are discussed according to inversion mechanism. The approaches may be divided into roughly seven categories, including collisional excitation pumping, recombination pumping, direct photoionization and photoexcitation pumping, metastable state storage plus optical pumping, charge exchange pumping, and finally, the extension of free electron laser techniques into the EUV and soft x-ray regimes. 250 references.

  7. Wavelength-multiplexed entanglement distribution

    Science.gov (United States)

    Lim, Han Chuen; Yoshizawa, Akio; Tsuchida, Hidemi; Kikuchi, Kazuro

    2010-08-01

    The realization of an entanglement distribution optical fiber network connecting multiple parties would permit implementation of many information security applications such as entanglement-based quantum key distribution and quantum secret sharing. However, due to material absorption and scattering in optical fiber, photons that are the carriers of quantum entanglement experience loss during propagation and the overall photon arrival rate can be very low in such a network. One way to increase photon arrival rate is to make full use of the available transmission bandwidth of optical fiber and this is achievable via wavelength-multiplexing. We review our recent work on wavelength-multiplexed entanglement distribution and discuss system design considerations from a telecommunication engineering perspective.

  8. A New Wavelength Selective Photoreceiver

    Institute of Scientific and Technical Information of China (English)

    LIU Kai; HUANG Yongqing; REN Xiaomin; LI Jianxin; GUO Wei

    2000-01-01

    A new kind of wavelength selective photoreceiver is proposed. It was constructed by a Fabry-Perot (F-P) etalon filter and a resonant cavity enhanced (RCE) photodetector. The photoreceiver′s spectral response is determined by the F-P etalon filter with a FWHM of less than 4 nm. Moreover, with such a photoreceiver, the transmission loss of the F-P etalon filter can be compensated to some extent. And this will benefit its applications.

  9. Optimal radio window for the detection of ultra-high energy cosmic rays and neutrinos off the Moon

    NARCIS (Netherlands)

    Scholten, O.; Bacelar, J.; Braun, R.; de Bruyn, A. G.; Falcke, H.; Stappers, B.; Strom, R. G.

    2006-01-01

    When high-energy cosmic rays impinge on a dense dielectric medium, radio waves are produced through the Askaryan effect. We show that at wavelengths comparable to the length of the shower produced by an Ultra-High Energy cosmic ray or neutrino, radio signals are ail extremely efficient way to detect

  10. Variable low-frequency radio emission of the solar system and galactic objects

    Science.gov (United States)

    Konovalenko, Alexander; Kolyadin, Vladimir; Rucker, Helmut; Zakharenko, Vyacheslav; Zarka, Philippe; Griessmeier, Jean-M.; Denis, Loran; Melnik, Valentin; Litvinenko, Galina; Zaitsev, Valerij; Falkovich, Igor; Ulyanov, Oleg; Sidorchuk, Mikhail; Stepkin, Sergej; Stanislavskij, Alexander; Kalinichenko, Nikolaj; Boiko, Nastja; Vasiljiva, Iaroslavna; Mukha, Dmytro; Koval, Artem

    2013-04-01

    There are many physical processes and propagation effects for the producing the time variable radio emission just at the low frequencies (at the decameter wavelength). The study of this radio emission is the important part of the modern radio astronomy. Strong progress in the development of the radio telescopes, methods and instrumentation allowed to start the corresponding investigations at new quality and quantity levels. It related to the implementation of the world largest UTR-2 radio telescope (effective area is more than 100 000 sq.m) more high sensitive at frequencies less than 30 MHz. During last years many new observations were carried out with this radio telescope and many new effects have been detected for the Sun, planets, interplanetary medium, exoplanets as well as various kinds of the stars.

  11. A radio pulsing white dwarf binary star

    CERN Document Server

    Marsh, T R; Hümmerich, S; Hambsch, F -J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-01-01

    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable a...

  12. Radio data archiving system

    Science.gov (United States)

    Knapic, C.; Zanichelli, A.; Dovgan, E.; Nanni, M.; Stagni, M.; Righini, S.; Sponza, M.; Bedosti, F.; Orlati, A.; Smareglia, R.

    2016-07-01

    Radio Astronomical Data models are becoming very complex since the huge possible range of instrumental configurations available with the modern Radio Telescopes. What in the past was the last frontiers of data formats in terms of efficiency and flexibility is now evolving with new strategies and methodologies enabling the persistence of a very complex, hierarchical and multi-purpose information. Such an evolution of data models and data formats require new data archiving techniques in order to guarantee data preservation following the directives of Open Archival Information System and the International Virtual Observatory Alliance for data sharing and publication. Currently, various formats (FITS, MBFITS, VLBI's XML description files and ancillary files) of data acquired with the Medicina and Noto Radio Telescopes can be stored and handled by a common Radio Archive, that is planned to be released to the (inter)national community by the end of 2016. This state-of-the-art archiving system for radio astronomical data aims at delegating as much as possible to the software setting how and where the descriptors (metadata) are saved, while the users perform user-friendly queries translated by the web interface into complex interrogations on the database to retrieve data. In such a way, the Archive is ready to be Virtual Observatory compliant and as much as possible user-friendly.

  13. Tools of radio astronomy

    CERN Document Server

    Wilson, Thomas L; Hüttemeister, Susanne

    2013-01-01

    This 6th edition of “Tools of Radio Astronomy”, the most used introductory text in radio astronomy, has been revised to reflect the current state of this important branch of astronomy. This includes the use of satellites, low radio frequencies, the millimeter/sub-mm universe, the Cosmic Microwave Background and the increased importance of mm/sub-mm dust emission. Several derivations and presentations of technical aspects of radio astronomy and receivers, such as receiver noise, the Hertz dipole and  beam forming have been updated, expanded, re-worked or complemented by alternative derivations. These reflect advances in technology. The wider bandwidths of the Jansky-VLA and long wave arrays such as LOFAR and mm/sub-mm arrays such as ALMA required an expansion of the discussion of interferometers and aperture synthesis. Developments in data reduction algorithms have been included. As a result of the large amount of data collected in the past 20 years, the discussion of solar system radio astronomy, dust em...

  14. First high spatial resolution interferometric observations of solar flares at millimeter wavelengths

    Science.gov (United States)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Bieging, J. H.; Hurford, G. J.

    1990-01-01

    The first high spatial resolution interferometric observations of solar flares at millimeter wavelengths, carried out with the Berkeley-Illinois-Maryland Array are presented. The observations were made at 3.3 mm wavelength during the very active periods of March 1989, using one or three baselines with fringe spacings of 2-5 arcsec. The observations represent an improvement of an order of magnitude in both sensitivity and spatial resolution compared with previous solar observations at these wavelengths. It appears that millimeter burst sources are not much smaller than microwave sources. The most intense bursts imply brightness temperatures of over 10 to the 6th K and are due to nonthermal gyrosynchrotron emission or possibly thermal free-free emission. If the emission in the flash phase is predominantly due to gyrosynchrotron emission, thermal gyrosynchrotron models can be ruled out for the radio emission because the flux at millimeter wavelengths is too high.

  15. Planck intermediate results. XLV. Radio spectra of northern extragalactic radio sources

    CERN Document Server

    Ade, P A R; Arnaud, M; Ashdown, M; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartolo, N; Battaner, E; Battye, R; Benabed, K; Bendo, G J; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Butler, R C; Calabrese, E; Cardoso, J -F; Catalano, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, H C; Christensen, P R; Clements, D L; Colombo, L P L; Combet, C; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Ducout, A; Dupac, X; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D L; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Israel, F P; Jaffe, A H; Jaffe, T R; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leonardi, R; Levrier, F; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Madden, S; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Mazzotta, P; Mendes, L; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; Oxborrow, C A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Pearson, T J; Peel, M; Perdereau, O; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Popa, L; Pratt, G W; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Ristorcelli, I; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Savini, G; Scott, D; Spencer, L D; Stolyarov, V; Sudiwala, R; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; Yvon, D; Zacchei, A; Zonca, A

    2016-01-01

    Continuum spectra covering centimetre to submillimetre wavelengths are presented for a northern sample of 104 extragalactic radio sources, mainly active galactic nuclei, based on four-epoch Planck data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous ground-based radio observations between 1.1 and 37 GHz. The single-survey Planck data confirm that the flattest high-frequency radio spectral indices are close to zero, indicating that the original accelerated electron energy spectrum is much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The radio spectra peak at high frequencies and exhibit a variety of shapes. For a small set of low-z sources, we find a spectral upturn at high frequencies, indicating the presence of intrinsic cold dust. Variability can generally be approximated by achromatic variations, while sources with clear signatures of evolving shocks appear to be limited to the strongest outbursts.

  16. Infrared-faint radio sources in the SERVS deep fields. Pinpointing AGNs at high redshift

    Science.gov (United States)

    Maini, A.; Prandoni, I.; Norris, R. P.; Spitler, L. R.; Mignano, A.; Lacy, M.; Morganti, R.

    2016-12-01

    Context. Infrared-faint radio sources (IFRS) represent an unexpected class of objects which are relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S1.4 GHz≳ 10 mJy) has provided evidence that most of them (if not all) contain an active galactic nuclei (AGN). Still uncertain is the nature of the radio-faintest IFRSs (S1.4 GHz≲ 1 mJy). Aims: The scope of this paper is to assess the nature of the radio-faintest IFRSs, testing their classification and improving the knowledge of their IR properties by making use of the most sensitive IR survey available so far: the Spitzer Extragalactic Representative Volume Survey (SERVS). We also explore how the criteria of IFRSs can be fine-tuned to pinpoint radio-loud AGNs at very high redshift (z > 4). Methods: We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 μm IR counterparts of the 64 sources located in the SERVS fields were searched for and, when detected, their IR properties were studied. Results: We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that IR-detected IFRSs are mostly consistent with a mixture of high-redshift (z ≳ 3) radio-loud AGNs. The faintest ones (S1.4 GHz 100 μJy), however, could be also associated with nearer (z 2) dust-enshrouded star-burst galaxies. We also argue that, while IFRSs with radio-to-IR ratios >500 can very efficiently pinpoint radio-loud AGNs at redshift 2 < z < 4, lower radio-to-IR ratios ( 100-200) are expected for higher redshift radio-loud AGNs.

  17. Radio Continuum Jet in NGC 7479

    CERN Document Server

    Laine, Seppo

    2007-01-01

    The barred galaxy NGC 7479 hosts a remarkable jet-like radio continuum feature: bright, 12-kpc long in projection, and hosting an aligned magnetic field. The degree of polarization is 6%-8% along the jet, and remarkably constant, which is consistent with helical field models. The radio brightness of the jet suggests strong interaction with the ISM and hence a location near the disk plane. We observed NGC 7479 at four wavelengths with the VLA and Effelsberg radio telescopes. The equipartition strength is 35-40 micro-G for the total and >10 micro-G for the ordered magnetic field in the jet. The jet acts as a bright, polarized background. Faraday rotation between 3.5 and 6 cm and depolarization between 6 and 22 cm can be explained by magneto-ionic gas in front of the jet, with thermal electron densities of ~0.06 cm**(-3) in the bar and ~0.03 cm**(-3) outside the bar. The regular magnetic field along the bar points toward the nucleus on both sides. The regular field in the disk reveals multiple reversals, probabl...

  18. An Evolutionary Sequence of Young Radio Galaxies

    CERN Document Server

    Collier, J D; Filipović, M D; Tothill, N F H

    2015-01-01

    We have observed the faintest sample of Gigahertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) sources to date, using the Australia Telescope Compact Array. We test the hypothesis that GPS and CSS sources are the youngest radio galaxies, place them into an evolutionary sequence along with a number of other young Active Galactic Nuclei (AGN) candidates, and search for evidence of the evolving accretion mode and its relationship to star formation. GPS/CSS sources have very small radio jets that have been recently launched from the central Supermassive Black Hole and grow in linear size as they evolve, which means that the linear size of the jets is an excellent indicator of the evolutionary stage of the AGN. We use high-resolution radio observations to determine the linear size of GPS/CSS sources, resolve their jets and observe their small-scale morphologies. We combine this with other multi-wavelength age indicators, including the spectral age, colours, optical spectra and Spectral Energy Distributio...

  19. INTERPLANETARY SCINTILLATION RADIO SOURCES DETECTED WITH THE MEXICAN ARRAY RADIO TELESCOPE (MEXART)

    Science.gov (United States)

    Mejia Ambriz, J. C.; Villanueva-Hernandez, P.; Gonzalez-Esparza, A.; Aguilar-Rodriguez, E.; Andrade-Mascote, E.; Carrillo-Vargas, A.

    2009-12-01

    The Mexican Array Radio Telescope (MEXART) has an antenna composed by 4096 full-wavelength dipoles, covering about 9800 square meters. The instrument is primary devoted to carry out observations of compact stelar radio sources presenting Interplanetary Scintillation (IPS) at 140 MHz. The IPS technique is a very useful tool to perform observations of large-scale solar wind density disturbances in the inner heliosphere at heliocentric ranges where no other instruments can cover. These observations can help to track the evolution of CMEs and shocks in the interplanetary medium. We present the first catalog of IPS sources detected with the MEXART. We show the power spectrum analysis to obtain information of solar wind velocity and density.

  20. ANTENNA OF RADIO CONTROL

    Directory of Open Access Journals (Sweden)

    Ludwig Ilnytskyi

    2015-12-01

    Full Text Available The article is devoted to current issues in the field of radio monitoring. In this article was considered the antenna of radio control, which represents a grid from three vibrators. Threelement antenna array provides simultaneous control of two radio electronic devices that radiates at frequencies that are close to each other. Antenna system using simple technical means provides noise suppression, even if noise will have the same frequency as useful signal. This makes it possible to use the antenna system in conditions of multibeam wave propagation under the adjustment on the most intense by the power beam. Antenna system makes it possible to measure the electromagnetic field intensity, congestion of the frequency spectrum, direction of noise electromagnetic waves incidence, noise electric field intensity.

  1. Radio & Optical Interferometry: Basic Observing Techniques and Data Analysis

    CERN Document Server

    Monnier, John D

    2012-01-01

    Astronomers usually need the highest angular resolution possible, but the blurring effect of diffraction imposes a fundamental limit on the image quality from any single telescope. Interferometry allows light collected at widely-separated telescopes to be combined in order to synthesize an aperture much larger than an individual telescope thereby improving angular resolution by orders of magnitude. Radio and millimeter wave astronomers depend on interferometry to achieve image quality on par with conventional visible and infrared telescopes. Interferometers at visible and infrared wavelengths extend angular resolution below the milli-arcsecond level to open up unique research areas in imaging stellar surfaces and circumstellar environments. In this chapter the basic principles of interferometry are reviewed with an emphasis on the common features for radio and optical observing. While many techniques are common to interferometers of all wavelengths, crucial differences are identified that will help new practi...

  2. Saber sobre la radio

    OpenAIRE

    Mata, María Cristina; Universidad Nacional de Córdoba. Argentina

    1998-01-01

    La autora propone en este artículo repensar los fundamentos sobre los cuales se estructuran las asignaturas y talleres de radio en las escuelas de Comunicación Social en Latinoamérica, con el proposito de romper la escisión  entre teoría/práctica y de no violentar su complejidad: en la radio, entendida como práctica comunicativa, se juega en primer lugar una "red de vinculaciones e intercambios" en condiciones privilegiadas para la dialoguicidad. En un segundo lugar, asociado al desarrollo de...

  3. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  4. Sub-wavelength diffractive optics

    Energy Technology Data Exchange (ETDEWEB)

    Warren, M.E.; Wendt, J.R.; Vawter, G.A.

    1998-03-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate sub-wavelength surface relief structures fabricated by direct-write e-beam technology as unique and very high-efficiency optical elements. A semiconductor layer with sub-wavelength sized etched openings or features can be considered as a layer with an effective index of refraction determined by the fraction of the surface filled with semiconductor relative to the fraction filled with air or other material. Such as a layer can be used to implement planar gradient-index lenses on a surface. Additionally, the nanometer-scale surface structures have diffractive properties that allow the direct manipulation of polarization and altering of the reflective properties of surfaces. With this technology a single direct-write mask and etch can be used to integrate a wide variety of optical functions into a device surface with high efficiencies; allowing for example, direct integration of polarizing optics into the surface with high efficiencies; allowing for example, direct integration of polarizing optics into the surfaces of devices, forming anti-reflection surfaces or fabricating high-efficiency, high-numerical aperture lenses, including integration inside vertical semiconductor laser cavities.

  5. Astronomical Studies at Infrared Wavelengths

    Science.gov (United States)

    Rinehart, Stephen A.

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, Herschel, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future balloon programs, paving the way for interferometric observations of exoplanets.

  6. Long-wavelength silicon photonic integrated circuits

    OpenAIRE

    2014-01-01

    In this paper we elaborate on our development of silicon photonic integrated circuits operating at wavelengths beyond the telecommunication wavelength window. Silicon-on-insulator waveguide circuits up to 3.8 mu m wavelength are demonstrated as well as germanium-on-silicon waveguide circuits operating in the 5-5 mu m wavelength range. The heterogeneous integration of III-V semiconductors and IV-VI semiconductors on this platform is described for the integration of lasers and photodetectors op...

  7. In-service communication channel sensing based on reflectometry for dynamic wavelength assigned wavelength- and time-division multiplexed passive optical network systems

    Science.gov (United States)

    Iida, Daisuke; Kuwano, Shigeru; Terada, Jun

    2015-04-01

    In future radio access systems, base stations will be mainly accommodated in wavelength- and time-division multiplexing passive optical network (PON) based mobile backhaul and fronthaul networks, and in such networks, failed connections in an optical network unit (ONU) wavelength channel will severely degrade mobile system performance. A cost-effective in-service ONU wavelength channel monitor is essential to ensure proper system operation without failed connections. To address this issue, we propose a reflectometry-based remote sensing method that provides ONU wavelength channel information with the optical line terminal-ONU distance. The proposed method enables real-time monitoring of ONU wavelength channels without data signal quality degradation and is also able to determine if the ONUs are connected to the PON. Experimental results show that it achieves wavelength channel distinction with a high distance resolution (˜10 m). Additionally, with the method, the distance resolution for distinguishing the ONUs after the PON splitter is determined by the received signal bandwidth or the test light modulation speed rather than by the pulse width as in conventional optical time-domain reflectometry.

  8. Explosive and radio-selected Transients: Transient Astronomy with SKA and its Precursors

    CERN Document Server

    Chandra, Poonam; Arun, K G; Iyyani, Shabnam; Misra, Kuntal; Narasimha, D; Ray, Alak; Roy, Subhashis; Sutaria, Firoza

    2016-01-01

    With the high sensitivity and wide-field coverage of the Square Kilometre Array (SKA), large samples of explosive transients are expected to be discovered. Radio wavelengths, especially in commensal survey mode, are particularly well suited for uncovering the complex transient phenomena. This is because observations at radio wavelengths may suffer less obscuration than in other bands (e.g. optical/IR or X-rays) due to dust absorption. At the same time, multiwaveband information often provides critical source classification rapidly than possible with only radio band data. Therefore, multiwaveband observational efforts with wide fields of view will be the key to progress of transients astronomy from the middle 2020s offering unprecedented deep images and high spatial and spectral resolutions. Radio observations of gamma ray bursts (GRBs) with SKA will uncover not only much fainter bursts and verifying claims of sensitivity limited population versus intrinsically dim GRBs, they will also unravel the enigmatic po...

  9. A Reconfigurable Radio Architecture for Cognitive Radio in Emergency Networks

    NARCIS (Netherlands)

    Zhang, Qiwei; Kokkeler, Andre B.J.; Smit, Gerard J.M.

    2006-01-01

    Cognitive Radio has been proposed as a promising technology to solve today's spectrum scarcity problem. Cognitive Radio is able to sense the spectrum to find the free spectrum, which can be optimally used by Cognitive Radio without causing interference to the licensed user. In the scope of the Adapt

  10. Spectrum management and radio resource management considering cognitive radio systems

    NARCIS (Netherlands)

    Haartsen, Jaap C.; Wieweg, Lasse; Huschke, Jörg

    2005-01-01

    International fora and some national administrations define a cognitive radio (CR) as a pioneering radio communication system that would be capable of altering and adapting its transmitter and receiver parameters based on communication and the exchange of information with related detectable radio co

  11. Radio Fatwa : Islamic Tanya-Jawab Programmes on Radio Dakwah

    NARCIS (Netherlands)

    Sunarwoto,

    2012-01-01

    The present article is a study of radio fatwa in Indonesia with special reference to the Tanya-Jawab genres in radio dakwah.The concept of fatwa has changed over time. Such Islamic Tanya-Jawab programmes broadcast on radio dakwah are important to understand how fatwa is disseminated by means of medi

  12. Determining the radio AGN contribution to the radio-FIR correlation using the black hole fundamental plane relation

    CERN Document Server

    Wong, O Ivy; Schawinski, K; Kapińska, A D; Lamperti, I; Oh, K; Ricci, C; Berney, S

    2016-01-01

    We investigate the 1.4 GHz radio properties of 92 nearby (z<0.05) ultra hard X-ray selected Active Galactic Nuclei (AGN) from the Swift Burst Alert Telescope (BAT) sample. Through the ultra hard X-ray selection we minimise the biases against obscured or Compton-thick AGN as well as confusion with emission derived from star formation that typically affect AGN samples selected from the UV, optical and infrared wavelengths. We find that all the objects in our sample of nearby, ultra-hard X-ray selected AGN are radio quiet; 83\\% of the objects are classed as high-excitation galaxies (HEGs) and 17\\% as low-excitation galaxies (LEGs). While these low-z BAT sources follow the radio--far-infrared correlation in a similar fashion to star forming galaxies, our analysis finds that there is still significant AGN contribution in the observed radio emission from these radio quiet AGN. In fact, the majority of our BAT sample occupy the same X-ray--radio fundamental plane as have been observed in other samples, which incl...

  13. Radio-Optical Galaxy Shape Correlations in the COSMOS Field

    CERN Document Server

    Tunbridge, Ben; Brown, Michael L

    2016-01-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the COSMOS field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of $ 0.212\\pi$ radians (or $38.2^{\\circ}$) at a $95\\%$ confidence level.

  14. Radio continuum monitoring of the extreme carbon star IRC+10216

    CERN Document Server

    Menten, K M; Krügel, E; Claussen, M J; Sahai, R

    2006-01-01

    We describe Very Large Array observations of the extreme carbon star IRC+10216 at 8.4, 14.9, and 22.5 GHz made over a two year period. We find possible variability correlated with the infrared phase and a cm- to sub-millimeter wavelength spectral index very close to 2. The variability, observed flux densities, and upper limit on the size are consistent with the emission arising from the stellar photosphere or a slightly larger radio photosphere.

  15. Radio-over-Fiber Transmission Using Vortex Modes

    DEFF Research Database (Denmark)

    Tatarczak, Anna; Lu, Xiaofeng; Rommel, Simon

    2015-01-01

    This paper demonstrates experimentally the distribution of radio-over-fiber (RoF) signals using orbital angular momentum (OAM) of light over standard OM4 multimode fiber (MMF) at 850 nm wavelength. Five independent OAM modes are used to convey RoF signals in the microwave regime showing robust...... performance and therefore opening new prospects for enhancing the capacity of MMF based RoF Links....

  16. RADIO OBSERVATIONS OF THE STAR FORMATION ACTIVITIES IN THE NGC 2024 FIR 4 REGION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Yuseong, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2015-07-15

    Star formation activities in the NGC 2024 FIR 4 region were studied by imaging centimeter continuum sources and water maser sources using several archival data sets from the Very Large Array. The continuum source VLA 9 is elongated in the northwest–southeast direction, consistent with the FIR 4 bipolar outflow axis, and has a flat spectrum in the 6.2–3.6 cm interval. The three water maser spots associated with FIR 4 are also distributed along the outflow axis. One of the spots is located close to VLA 9, and another one is close to an X-ray source. Examinations of the positions of compact objects in this region suggest that the FIR 4 cloud core contains a single low-mass protostar. VLA 9 is the best indicator of the protostellar position. VLA 9 may be a radio thermal jet driven by this protostar, and it is unlikely that FIR 4 contains a high-mass young stellar object (YSO). A methanol 6.7 GHz maser source is located close to VLA 9, at a distance of about 100 AU. The FIR 4 protostar must be responsible for the methanol maser action, which suggests that methanol class II masers are not necessarily excited by high-mass YSOs. Also discussed are properties of other centimeter continuum sources in the field of view and the water masers associated with FIR 6n. Some of the continuum sources are radio thermal jets, and some are magnetically active young stars.

  17. Relationship of Solar Radio Emission at λ=1.43m and Optical Processes in the Sun

    Science.gov (United States)

    Makandarashvili, Sh.; Oghrapishvili, N.; Japaridze, D.; Maghradze, D.

    2016-09-01

    Radio frequency observations supplement optical studies and in some cases they are the only way of obtaining information on the physical conditions for radio waves and their propagation. Solar radio emission appears in two forms, "quiescent" and "sporadic." Their distinctive features are well known. Solar radio observations at meter wavelengths (λ = 1.43 m, ν = 210 MHz) have been made at the Abastumani Astrophysical Observatory using a solar radio telescope throughout five solar cycles (since 1957). This article is a study of the long-term observations of solar radio bursts and sunspots. It is found that there is a correlation between the amplitudes of the radio bursts, the number of spots, and the regions of the spots.

  18. Sub-microsecond wavelength stabilization of tunable lasers with the internal wavelength locker

    Science.gov (United States)

    Kimura, Ryoga; Tatsumoto, Yudai; Sakuma, Kazuki; Onji, Hirokazu; Shimokozono, Makoto; Ishii, Hiroyuki; Kato, Kazutoshi

    2016-08-01

    We proposed a method of accelerating the wavelength stabilization after wavelength switching of the tunable distributed amplification-distributed feedback (TDA-DFB) laser using the internal wavelength locker to reduce the size and the cost of the wavelength control system. The configuration of the wavelength stabilization system based on this locker was as follows. At the wavelength locker, the light intensity after an optical filter is detected as a current by the photodiodes (PDs). Then, for estimating the wavelength, the current is processed by the current/voltage-converting circuit (IVC), logarithm amplifier (Log Amp) and field programmable gate array (FPGA). Finally, the laser current is tuned to the desired wavelength with reference to the estimated wavelength. With this control system the wavelength is stabilized within 800 ns after wavelength switching, which is even faster than that with the conventional control system.

  19. Detection of fast transients with radio interferometric arrays

    CERN Document Server

    Bhat, N D R; Cox, P J; Gupta, Y; Prasad, J; Roy, J; Bailes, M; Burke-Spolaor, S; Kudale, S S; van Straten, W

    2013-01-01

    Next-generation radio arrays, including the SKA and its pathfinders, will open up new avenues for exciting transient science at radio wavelengths. Their innovative designs, comprising a large number of small elements, pose several challenges in digital processing and optimal observing strategies. The Giant Metre-wave Radio Telescope (GMRT)presents an excellent test-bed for developing and validating suitable observing modes and strategies for transient experiments with future arrays. Here we describe the first phase of the ongoing development of a transient detection system for GMRT that is planned to eventually function in a commensal mode with other observing programs. It capitalizes on the GMRT's interferometric and sub-array capabilities, and the versatility of a new software backend. We outline considerations in the plan and design of transient exploration programs with interferometric arrays, and describe a pilot survey that was undertaken to aid in the development of algorithms and associated analysis s...

  20. Probing the bright radio flare and afterglow of GRB 130427A with the Arcminute Microkelvin Imager

    NARCIS (Netherlands)

    Anderson, G.E.; van der Horst, A.J.; Staley, T.D.; Fender, R.P.; Wijers, R.A.M.J.; Scaife, A.M.M.; Rumsey, C.; Titterington, D.J.; Rowlinson, A.; Saunders, R.D.E.

    2014-01-01

    We present one of the best sampled early-time light curves of a gamma-ray burst (GRB) at radio wavelengths. Using the Arcminute Mircrokelvin Imager (AMI), we observed GRB 130427A at the central frequency of 15.7 GHz between 0.36 and 59.32 d post-burst. These results yield one of the earliest radio d

  1. Shock Formation Height in the Solar Corona Estimated from SDO and Radio Observations

    Science.gov (United States)

    Gopalswamy, N.; Nitta, N.

    2011-01-01

    Wave transients at EUV wavelengths and type II radio bursts are good indicators of shock formation in the solar corona. We use recent EUV wave observations from SDO and combine them with metric type II radio data to estimate the height in the corona where the shocks form. We compare the results with those obtained from other methods. We also estimate the shock formation heights independently using white-light observations of coronal mass ejections that ultimately drive the shocks.

  2. Multi-Wavelength Studies on H2O Maser Host Galaxies

    Indian Academy of Sciences (India)

    J. S. Zhang; J. Wang

    2011-03-01

    H2O maser emissions have been found in external galaxies for more than 30 years. Main sciences associated with extragalactic H2O masers can be summarized roughly into three parts: maser emission itself, AGN sciences and cosmology exploration. Our work in this field focusses on two projects: X-ray data analysis of individual maser source using X-ray penetrability to explore maser host obscured AGN; multi-wavelength statistical properties of the whole published H2O maser sample. Here their nuclear radio properties were investigated in detail, based on their 6-cm and 20-cm radio observation data. Comparing the radio properties between maser-detected sources and non-detected sources at similar distance scale, we find that: (1) maser host galaxies tend to have higher nuclear radio luminosity; (2) the spectral index of both samples is comparable (∼ 0.6), within the error ranges. In addition, for AGN-maser sources, the isotropic maser luminosity tends to increase with rising radio luminosity. Thus we propose the nuclear radio luminosity as one good indicator for searching AGN-masers in the future.

  3. Educational Broadcasting--Radio.

    Science.gov (United States)

    Ahamed, Uvais; Grimmett, George

    This manual is intended for those who must conduct educational radio broadcasting training courses in Asia-Pacific countries without the resources of experienced personnel, as well as for individuals to use in self-learning situations. The selection of material has been influenced by the need to use broadcasting resources effectively in programs…

  4. Valuing commercial radio licences

    NARCIS (Netherlands)

    Kerste, M.; Poort, J.; van Eijk, N.

    2011-01-01

    Within the EU Regulatory Framework, licensees for commercial radio broadcasting may be charged a fee to ensure optimal allocation of scarce resources but not to maximize public revenues. In this paper, it is described how such a fee can be determined for the purpose of licence renewal or extension.

  5. Albanian: Basic Radio Communications.

    Science.gov (United States)

    Defense Language Inst., Washington, DC.

    This volume has been designed as a supplement to a course in Albanian developed by the Defense Language Institute. The emphasis in this text is placed on radio communications instruction. The volume is divided into five exercises, each of which contains a vocabulary, dictation, and an air-to-ground communications procedure conducted in Albanian…

  6. Svetloe Radio Astronomical Observatory

    Science.gov (United States)

    Smolentsev, Sergey; Rahimov, Ismail

    2013-01-01

    This report summarizes information about the Svetloe Radio Astronomical Observatory activities in 2012. Last year, a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to their required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  7. Zelenchukskaya Radio Astronomical Observatory

    Science.gov (United States)

    Smolentsev, Sergey; Dyakov, Andrei

    2013-01-01

    This report summarizes information about Zelenchukskaya Radio Astronomical Observatory activities in 2012. Last year a number of changes took place in the observatory to improve some technical characteristics and to upgrade some units to the required status. The report provides an overview of current geodetic VLBI activities and gives an outlook for the future.

  8. The LOFAR radio environment

    CERN Document Server

    Offringa, A R; Zaroubi, S; van Diepen, G; Martinez-Ruby, O; Labropoulos, P; Brentjens, M A; Ciardi, B; Daiboo, S; Harker, G; Jelic, V; Kazemi, S; Koopmans, L V E; Mellema, G; Pandey, V N; Pizzo, R F; Schaye, J; Vedantham, H; Veligatla, V; Wijnholds, S J; Yatawatta, S; Zarka, P; Alexov, A; Anderson, J; Asgekar, A; Avruch, M; Beck, R; Bell, M; Bell, M R; Bentum, M; Bernardi, G; Best, P; Birzan, L; Bonafede, A; Breitling, F; Broderick, J W; Bruggen, M; Butcher, H; Conway, J; de Vos, M; Dettmar, R J; Eisloeffel, J; Falcke, H; Fender, R; Frieswijk, W; Gerbers, M; Griessmeier, J M; Gunst, A W; Hassall, T E; Heald, G; Hessels, J; Hoeft, M; Horneffer, A; Karastergiou, A; Kondratiev, V; Koopman, Y; Kuniyoshi, M; Kuper, G; Maat, P; Mann, G; McKean, J; Meulman, H; Mevius, M; Mol, J D; Nijboer, R; Noordam, J; Norden, M; Paas, H; Pandey, M; Pizzo, R; Polatidis, A; Rafferty, D; Rawlings, S; Reich, W; Rottgering, H J A; Schoenmakers, A P; Sluman, J; Smirnov, O; Sobey, C; Stappers, B; Steinmetz, M; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; van Ardenne, A; van Cappellen, W; van Duin, A P; van Haarlem, M; van Leeuwen, J; van Weeren, R J; Vermeulen, R; Vocks, C; Wijers, R A M J; Wise, M; Wucknitz, O

    2012-01-01

    Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h surveys with Dutch LOFAR stations, covering 30-78 MHz with low-band antennas and 115-163 MHz with high-band antennas. This is a subset of the full frequency range of LOFAR. The surveys have been observed with a 0.76 kHz / 1 s resolution. Results: We measured the RFI occupancy in the low and high frequency sets to be 1.8% and 3.2% respectively. These values are found to be representative values for the LOFAR radio environment. Between day and night, there is no significant difference in the radio environment. We find that lowering the current observational time and frequency resolutions of LOFAR results in a slight loss of flagging accuracy. At LOFAR's nominal resolution of 0.76 kHz and 1 s, the false-positives rate is about 0.5%. This rate increases approximately linear...

  9. Multi-wavelength extragalactic surveys and the role of MeerKAT and SALT

    CERN Document Server

    Jarvis, Matt J

    2011-01-01

    In these proceedings I discuss a range of surveys that are currently underway at optical, near-infrared and far-infrared wavelengths that have large components accessible to both the Southern African Large Telescope (SALT) and the Meer Karoo Array Telescope (MeerKAT). Particular attention is paid to the surveys currently underway with ESO's VISTA telescope, which will provide the ideal data from which to select targets for SALT spectroscopy whilst also providing the necessary depth and photometric redshift accuracy to trace the uJy radio population, found through the proposed MeerKAT surveys. Such surveys will lead to an accurate picture of evolution of star-formation and accretion activity traced at radio wavelengths. Furthermore, SALT spectroscopy could play a crucial role in following up Herschel surveys with its large collecting area and blue sensitivity which occupies a niche in instrumentation on 8- and 10-m class telescopes.

  10. Bolometric Arrays for Millimeter Wavelengths

    Science.gov (United States)

    Castillo, E.; Serrano, A.; Torres-Jácome, A.

    2009-11-01

    During last years, semiconductor bolometers using thin films have been developed at INAOE, specifically boron-doped hydrogenated amorphous silicon films. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and sub-millimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible configurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit specifically designed for this application. Both versions will work below 77K.

  11. INOVASI RADIO KAMPUS (RANCANG BANGUN RADIO UDINUS DENGAN INOVASI TEKNOLOGI @RADIO

    Directory of Open Access Journals (Sweden)

    Wellia Shinta Sari

    2014-08-01

    Full Text Available Perkembangan Teknologi Informasi dan Komunikasi (TIK memaksa industri penyiaran untuk ikut menyesuaikan diri. Radio konvensional bisa jadi akan tertinggal jika tidak melakukan inovasi teknologi yang ada. Begitu juga dengan radio kampus, yang keberadaannya sangat dibutuhkan sebagai wadah kreativitas dan sarana pembelajaran di sebuah universitas, apalagi yang memiliki program studi penyiaran. Radio kampus Suara Dian yang masih konvensional sehingga hampir kehilangan eksistensinya harus segera dibenahi dan dihidupkan kembali dengan mengikuti perkembangan teknologi di era konvergensi. Metode Inovasi teknologi yang bisa dilakukan adalah dengan menggunakan teknologi @Radio Streaming, yang bukan sekedar streaming, tapi juga optimalisasi teknologi yang terintegrasi dinamis melalui RISE (Radio Broadcasting Integrated System. Dengan berbagai fitur unggul dari inovasi teknologi tersebut, maka diharapkan Radio kampus Udinus ”Suara Dian” dapat kembali hidup, berkembang dan lebih kompetitif ditengah industri penyiaran Radio. Kata kunci : radio, kampus, konvergensi, streaming.

  12. The importance of Radio Quiet Zone (RQZ) for radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin

    2013-05-01

    Most of radio observatories are located in isolated areas. Since radio sources from the universe is very weak, astronomer need to avoid radio frequency interference (RFI) from active spectrum users and radio noise produced by human made (telecommunication, mobile phone, microwave user and many more. There are many observatories around the world are surrounded by a Radio Quiet Zone (RQZ), which is it was set up using public or state laws. A Radio Quiet Zone normally consists of two areas: an exclusive area in which totally radio emissions are forbidden, with restrictions for residents and business developments, and a larger (radius up to 100 km above) coordination area where the power of radio transmission limits to threshold levels. Geographical Information System (GIS) can be used as a powerful tool in mapping large areas with varying RQZ profiles. In this paper, we report the initial testing of the usage of this system in order to identify the areas were suitable for Radio Quiet Zone. Among the important parameters used to develop the database for our GIS are population density, information on TV and telecommunication (mobile phones) transmitters, road networks (highway), and contour shielding. We will also use other information gathered from on-site RFI level measurements on selected 'best' areas generated by the GIS. The intention is to find the best site for the purpose of establishing first radio quiet zones for radio telescope in Malaysia.

  13. Simultaneous multi-wavelength observations of GRS 1915+105

    DEFF Research Database (Denmark)

    Fuchs, Y.; Rodriguez, Cayo Juan Ramos; Mirabel, I.F.;

    2003-01-01

    We present the result of multi-wavelength observations of the microquasar GRS 1915 + 105 in a plateau state with a luminosity of similar to7.5 x 10(38) erg s(-1) (similar to40% L-Edd), conducted simultaneously with the INTEGRAL and RXTE satellites, the ESOstarstar/NTT, the Ryle Telescope, the NRAO......(starstarstar) VLA and VLBA, in 2003 April 2-3. For the first time were observed concurrently in GRS 1915 + 105 all of the following properties: a strong steady optically thick radio emission corresponding to a powerful compact jet resolved with the VLBA, bright near-IR emission, a strong QPO at 2.5 Hz in the X...

  14. Clear sky atmosphere at cm-wavelengths from climatology data

    CERN Document Server

    Lew, Bartosz

    2015-01-01

    We utilise ground-based, balloon-born and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to numerically solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature ($T_{\\rm atm}$) and optical depth ($\\tau$) at the centimetre wavelengths. We validate the reconstruction by comparing the model column PWV, with photometric measurements of PWV, performed in the clear sky conditions towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of the Polish 32-metre radio telescope, and characterise $T_{\\rm atm}$ and $\\tau$ year-round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss shortcomings of using planar, single-layer, and optically thin atmospheric model approxima...

  15. Multi-wavelength constraints on cosmic-ray leptons in the Galaxy

    CERN Document Server

    Orlando, E; Moskalenko, I V; Dickinson, C; Digel, S; Jaffe, T R; Jóhannesson, G; Leahy, J P; Porter, T A; Vidal, M

    2015-01-01

    Cosmic rays (CRs) interact with the gas, the radiation field and the magnetic field in the Milky Way, producing diffuse emission from radio to gamma rays. Observations of this diffuse emission and comparison with detailed predictions are powerful tools to unveil the CR properties and to study CR propagation. We present various GALPROP CR propagation scenarios based on current CR measurements. The predicted synchrotron emission is compared to radio surveys, and synchrotron temperature maps from WMAP and Planck, while the predicted interstellar gamma-ray emission is compared to Fermi-LAT observations. We show how multi-wavelength observations of the Galactic diffuse emission can be used to help constrain the CR lepton spectrum and propagation. Finally we discuss how radio and microwave data could be used in understanding the diffuse Galactic gamma-ray emission observed with Fermi-LAT, especially at low energies.

  16. The 2010 August 01 type II burst: A CME-CME Interaction, and its radio and white-light manifestations

    CERN Document Server

    Oliveros, Juan Carlos Martínez; Bain, Hazel M; Liu, Ying; Krupar, Vratislav; Bale, Stuart; Krucker, Säm

    2012-01-01

    We present observational results of a type II burst associated with a CME-CME interaction observed in the radio and white-light wavelength range. We applied radio direction-finding techniques to observations from the STEREO and Wind spacecraft, the results of which were interpreted using white-light coronagraphic measurements for context. The results of the multiple radio-direction finding techniques applied were found to be consistent both with each other and with those derived from the white-light observations of coronal mass ejections (CMEs). The results suggest that the Type II burst radio emission is causally related to the CMEs interaction.

  17. Radio Counterparts of Compact Binary Mergers Detectable in Gravitational Waves: A Simulation for an Optimized Survey

    Science.gov (United States)

    Hotokezaka, K.; Nissanke, S.; Hallinan, G.; Lazio, T. J. W.; Nakar, E.; Piran, T.

    2016-11-01

    Mergers of binary neutron stars and black hole-neutron star binaries produce gravitational-wave (GW) emission and outflows with significant kinetic energies. These outflows result in radio emissions through synchrotron radiation. We explore the detectability of these synchrotron-generated radio signals by follow-up observations of GW merger events lacking a detection of electromagnetic counterparts in other wavelengths. We model radio light curves arising from (i) sub-relativistic merger ejecta and (ii) ultra-relativistic jets. The former produce radio remnants on timescales of a few years and the latter produce γ-ray bursts in the direction of the jet and orphan-radio afterglows extending over wider angles on timescales of weeks. Based on the derived light curves, we suggest an optimized survey at 1.4 GHz with five epochs separated by a logarithmic time interval. We estimate the detectability of the radio counterparts of simulated GW-merger events to be detected by advanced LIGO and Virgo by current and future radio facilities. The detectable distances for these GW merger events could be as high as 1 Gpc. Around 20%-60% of the long-lasting radio remnants will be detectable in the case of the moderate kinetic energy of 3\\cdot {10}50 erg and a circum-merger density of 0.1 {{cm}}-3 or larger, while 5%-20% of the orphan-radio afterglows with kinetic energy of 1048 erg will be detectable. The detection likelihood increases if one focuses on the well-localizable GW events. We discuss the background noise due to radio fluxes of host galaxies and false positives arising from extragalactic radio transients and variable active galactic nuclei, and we show that the quiet radio transient sky is of great advantage when searching for the radio counterparts.

  18. A direct localization of a fast radio burst and its host

    Science.gov (United States)

    Chatterjee, S.; Law, C. J.; Wharton, R. S.; Burke-Spolaor, S.; Hessels, J. W. T.; Bower, G. C.; Cordes, J. M.; Tendulkar, S. P.; Bassa, C. G.; Demorest, P.; Butler, B. J.; Seymour, A.; Scholz, P.; Abruzzo, M. W.; Bogdanov, S.; Kaspi, V. M.; Keimpema, A.; Lazio, T. J. W.; Marcote, B.; McLaughlin, M. A.; Paragi, Z.; Ransom, S. M.; Rupen, M.; Spitler, L. G.; van Langevelde, H. J.

    2017-01-01

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  19. A direct localization of a fast radio burst and its host.

    Science.gov (United States)

    Chatterjee, S; Law, C J; Wharton, R S; Burke-Spolaor, S; Hessels, J W T; Bower, G C; Cordes, J M; Tendulkar, S P; Bassa, C G; Demorest, P; Butler, B J; Seymour, A; Scholz, P; Abruzzo, M W; Bogdanov, S; Kaspi, V M; Keimpema, A; Lazio, T J W; Marcote, B; McLaughlin, M A; Paragi, Z; Ransom, S M; Rupen, M; Spitler, L G; van Langevelde, H J

    2017-01-04

    Fast radio bursts are astronomical radio flashes of unknown physical nature with durations of milliseconds. Their dispersive arrival times suggest an extragalactic origin and imply radio luminosities that are orders of magnitude larger than those of all known short-duration radio transients. So far all fast radio bursts have been detected with large single-dish telescopes with arcminute localizations, and attempts to identify their counterparts (source or host galaxy) have relied on the contemporaneous variability of field sources or the presence of peculiar field stars or galaxies. These attempts have not resulted in an unambiguous association with a host or multi-wavelength counterpart. Here we report the subarcsecond localization of the fast radio burst FRB 121102, the only known repeating burst source, using high-time-resolution radio interferometric observations that directly image the bursts. Our precise localization reveals that FRB 121102 originates within 100 milliarcseconds of a faint 180-microJansky persistent radio source with a continuum spectrum that is consistent with non-thermal emission, and a faint (twenty-fifth magnitude) optical counterpart. The flux density of the persistent radio source varies by around ten per cent on day timescales, and very long baseline radio interferometry yields an angular size of less than 1.7 milliarcseconds. Our observations are inconsistent with the fast radio burst having a Galactic origin or its source being located within a prominent star-forming galaxy. Instead, the source appears to be co-located with a low-luminosity active galactic nucleus or a previously unknown type of extragalactic source. Localization and identification of a host or counterpart has been essential to understanding the origins and physics of other kinds of transient events, including gamma-ray bursts and tidal disruption events. However, if other fast radio bursts have similarly faint radio and optical counterparts, our findings imply that

  20. Spectral Index Studies of the Diffuse Radio Emission in Abell 2256: Implications to Merger Activity

    CERN Document Server

    Ruta, Kale

    2010-01-01

    We present a multi-wavelength analysis of the merging rich cluster of galaxies Abell 2256. We have observed A2256 at 150 MHz using the Giant Metrewave Radio Telescope and successfully detected the diffuse radio halo and the relic emission over an extent $\\sim1.2$ Mpc$^2$. Using this 150 MHz image and the images made using archival observations from the VLA (1369 MHz) and the WSRT (350 MHz), we have produced spectral index images of the diffuse radio emission in A2256. These spectral index images show a distribution of flat spectral index (S$\\propto\

  1. THE AUGER ENGINEERING RADIO ARRAY

    Directory of Open Access Journals (Sweden)

    Klaus Weidenhaupt

    2013-12-01

    Full Text Available The Auger Engineering Radio Array currently measures MHz radio emission from extensive air showers induced by high energy cosmic rays with 24 self-triggered radio detector stations. Its unique site, embedded into the baseline detectors and extensions of the Pierre Auger Observatory, allows to study air showers in great detail and to calibrate the radio emission. In its final stage AERA will expand to an area of approximately 20km2 to explore the feasibility of the radio-detection technique for future cosmic-ray detectors. The concept and hardware design of AERA as well as strategies to enable self-triggered radio detection are presented. Radio emission mechanisms are discussed based on polarization analysis of the first AERA data.

  2. Radio observations of Planck clusters

    CERN Document Server

    Kale, Ruta

    2012-01-01

    Recently, a number of new galaxy clusters have been detected by the ESA-Planck satellite, the South Pole Telescope and the Atacama Cosmology Telescope using the Sunyaev-Zeldovich effect. Several of the newly detected clusters are massive, merging systems with disturbed morphology in the X-ray surface brightness. Diffuse radio sources in clusters, called giant radio halos and relics, are direct probes of cosmic rays and magnetic fields in the intra-cluster medium. These radio sources are found to occur mainly in massive merging clusters. Thus, the new SZ-discovered clusters are good candidates to search for new radio halos and relics. We have initiated radio observations of the clusters detected by Planck with the Giant Metrewave Radio Telescope. These observations have already led to the detection of a radio halo in PLCKG171.9-40.7, the first giant halo discovered in one of the new Planck clusters.

  3. Thermal and Nonthermal Radio Galaxies

    CERN Document Server

    Antonucci, Robert

    2011-01-01

    Radio galaxies were discovered and mapped in the 1950s. The optical spectra showed little or no nuclear continuum light. Some also revealed powerful high ionization emission lines, while others showed at most weak low-ionization emission lines. Quasars were found in the 1960s, and their spectra were dominated by powerful continuum radiation which was subsequently identified with optically thick thermal radiation from copious accretion flows, as well as high ionization narrow emission lines, and powerful broad permitted lines. By the 1980s, data from optical polarization and statistics of the radio properties required that many radio galaxies contain hidden quasar nuclei, hidden from the line of sight by dusty, roughly toroidal gas distributions. The radio galaxies with hidden quasars are referred to as "thermal." Do all radio galaxies have powerful hidden quasars? We now know the answer using arguments based on radio, infrared, optical and X-ray properties. Near the top of the radio luminosity function, for F...

  4. The paraboloidal reflector antenna in radio astronomy and communication theory and practice

    CERN Document Server

    Baars, Jacob W M

    2007-01-01

    Reflector antennas are widely used in the microwave and millimeter wavelength domain. Radio astronomers have developed techniques of calibration of large antennas with radio astronomical methods. These have not been comprehensively described. This text aims to fill this gap. The Paraboloidal Reflector Antenna in Radio Astronomy and Communication: Theory and Practice takes a practical approach to the characterization of antennas. All calculations and results in the form of tables and figures have been made with Mathematica by Wolfram Research. The reader can use the procedures for the implementation of his/her own input data. The book should be of use to all who are involved in the design and calibration of large antennas, like ground station managers and engineers, practicing radio astronomers, and finally, graduate students in radio astronomy and communication technology.

  5. Distributed Radio Interferometric Calibration

    CERN Document Server

    Yatawatta, Sarod

    2015-01-01

    Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distribute...

  6. Searches for radio transients

    CERN Document Server

    Bhat, N D R

    2011-01-01

    Exploration of the transient Universe is an exciting and fast-emerging area within radio astronomy. Known transient phenomena range in time scales from sub-nanoseconds to years or longer, thus spanning a huge range in time domain and hinting a rich diversity in their underlying physical processes. Transient phenomena are likely locations of explosive or dynamic events and they offer tremendous potential to uncover new physics and astrophysics. A number of upcoming next-generation radio facilities and recent advances in computing and instrumentation have provided a much needed impetus for this field which has remained a relatively uncharted territory for the past several decades. In this paper we focus mainly on the class of phenomena that occur on very short time scales (i.e. from $\\sim$ milliseconds to $\\sim$ nanoseconds), known as {\\it fast transients}, the detections of which involve considerable signal processing and data management challenges, given the high time and frequency resolutions required in the...

  7. BOLOMETRIC ARRAYS FOR MILLIMETER WAVELENGTHS

    Directory of Open Access Journals (Sweden)

    E. Castillo

    2009-01-01

    Full Text Available During last years, semiconductor bolometers using thin lms have been developed at INAOE, speci cally boron-doped hydrogenated amorphous silicon lms. The characteristics shown by these devices made them attractive to be used in astronomical instrumentation, mainly in two-dimentional arrays. These detector arrays used at the Large Millimeter Telescope will make possible to obtain astronomical images in millimeter and submillimeter wavelengths. With this in mind, we are developing a method to produce, with enough reliability, bolometer arrays at INAOE. Until now, silicon nitride diaphragm arrays, useful as radiation absorbers, have succesfully been obtained. Sizes going from one to four millimeter by element in a consistent way; however we have not tested thermometers and metallic contact deposition yet. At the same time, we are working on two possible con gurations for the readout electronics; one of them using commercial components while the other will be an integrated circuit speci cally designed for this application. Both versions will work below 77K.

  8. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  9. AGN content of X-ray, IR and radio sources

    Science.gov (United States)

    Mickaelian, A. M.; Paronyan, G. M.; Abrahamyan, H. V.; Gyulzadyan, M. V.; Mikayelyan, G. A.

    2016-09-01

    We have carried out a number of surveys and identification works related to X-ray, IR and radio sources and searched for extragalactic ones. Among them, most interesting are Active Galactic Nuclei (AGN) and Starburst (SB) Galaxies. Some 4500 AGN have been revealed from ROSAT BSC and FSC sources, and many more are hidden ones; those showing evidence of activity but with no emission lines in optical wavelengths. We estimated AGN content of X-ray sources as 52.9%. IR sources contain thousands of SBs, and most important are those having signs of interaction and/or merging. We have carried out optical identifications of IRAS point sources, and 1278 IR galaxies have been revealed, including LIRGs and ULIRGs. We have also combined IRAS PSC and FSC catalogs and compiled its extragalactic sample, which allowed to estimate AGN content among IR sources as 23.7%. Extragalactic radio sources contain bright galaxies, AGN and SBs. We have studied the border between AGN and normal galaxies by radio/optical flux ratios to establish which objects may be attributed to AGN based on radio properties. Interestingly, absolute majority of objects associated with both X-ray and radio sources are AGN.

  10. Rapid Radio Flaring during an Anomalous Outburst of SS Cyg

    CERN Document Server

    Mooley, K P; Fender, R P; Sivakoff, G R; Rumsey, C; Perrott, Y; Titterington, D; Grainge, K; Russell, T D; Carey, S H; Hickish, J; Razavi-Ghods, N; Scaife, A; Scott, P; Waagen, E O

    2016-01-01

    The connection between accretion and jet production in accreting white dwarf binary systems, especially dwarf novae, is not well understood. Radio wavelengths provide key insights into the mechanisms responsible for accelerating electrons, including jets and outflows. Here we present densely-sampled radio coverage, obtained with the Arcminute MicroKelvin Imager Large Array, of the dwarf nova SS Cyg during its February 2016 anomalous outburst. The outburst displayed a slower rise (3 days per mag) in the optical than typical ones, and lasted for more than 3 weeks. Rapid radio flaring on timescales <1 hour was seen throughout the outburst. The most intriguing behavior in the radio was towards the end of the outburst where a fast, luminous ("giant"), flare peaking at ~20 mJy and lasting for 15 minutes was observed. This is the first time that such a flare has been observed in SS Cyg, and insufficient coverage could explain its non-detection in previous outbursts. These data, together with past radio observatio...

  11. Solar Imaging Radio Array (SIRA): a multispacecraft mission

    Science.gov (United States)

    MacDowall, R. J.; Bale, S. D.; Demaio, L.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J. C.; Reiner, M. J.; Weiler, K. W.

    2005-01-01

    The Solar Imaging Radio Array (SIRA) is a mission to perform aperture synthesis imaging of low frequency solar, magnetospheric, and astrophysical radio bursts. The primary science targets are coronal mass ejections (CMEs), which drive shock waves that may produce radio emission. A space-based interferometer is required, because the frequencies of observation (SIRA will require a 12 to 16 microsatellite constellation to establish a sufficient number of baselines with separations on the order of kilometers. The microsats will be located quasi-randomly on a spherical shell, initially of diameter 10 km or less. The baseline microsat, as presented here, is 3-axis stabilized with a body-mounted, earth-directed high gain antenna and an articulated solar array; this design was developed by the Integrated Mission Design Center (IMDC) at NASA Goddard Space Flight Center (GSFC). A retrograde orbit at a distance of ~500,000 km from Earth was selected as the preferred orbit because the 8 Mbps downlink requirement is easy to meet, while keeping the constellation sufficiently distant from terrestrial radio interference. Also, the retrograde orbit permits imaging of terrestrial magnetospheric radio sources from varied perspectives. The SIRA mission serves as a pathfinder for space-based satellite constellations and for spacecraft interferometry at shorter wavelengths. It will be proposed to the NASA MIDEX proposal opportunity in mid-2005.

  12. Magic Wavelengths for Terahertz Clock Transitions

    OpenAIRE

    Zhou, Xiaoji; Xu, Xia; Chen, Xuzong; Chen, Jingbiao

    2010-01-01

    Magic wavelengths for laser trapping of boson isotopes of alkaline-earth Sr, Ca and Mg atoms are investigated while considering terahertz clock transitions between the $^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2}$ metastable triplet states. Our calculation shows that magic wavelengths of trapping laser do exist. This result is important because those metastable states have already been used to realize accurate clocks in the terahertz frequency domain. Detailed discussions for magic wavelength for teraher...

  13. Weak and Compact Radio Emission in Early High-Mass Star Forming Regions: I. VLA Observations

    CERN Document Server

    Rosero, V; Claussen, M; Kurtz, S; Cesaroni, R; Araya, E D; Carrasco-González, C; Rodríguez, L F; Menten, K M; Wyrowski, F; Loinard, L; Ellingsen, S P

    2016-01-01

    We present a high sensitivity radio continuum survey at 6 and 1.3$\\,$cm using the Karl G. Jansky Very Large Array towards a sample of 58 high-mass star forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC-IRs, CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the $1\\,$mJy level. Due to the improvement in the continuum sensitivity of the VLA, this survey achieved map rms levels of $\\sim$ 3-10 $\\mu$Jy beam$^{-1}$ at sub-arcsecond angular resolution. We extracted 70 centimeter continuum sources associated with 1.2$\\,$mm dust clumps. Most sources are weak, compact, and are prime candidates for high-mass protostars. Detection rates of radio sources associated with the mm dust clumps for CMCs, CMC-IRs and HMCs are 6$\\%$, 53$\\%$ and 100$\\%$, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs...

  14. A Statistical Method to Constrain Faint Radio Source Counts Below the Detection Threshold

    CERN Document Server

    Mitchell-Wynne, Ketron; Afonso, Jose; Jarvis, Matt J

    2013-01-01

    We present a statistical method based on a maximum likelihood approach to constrain the number counts of extragalactic sources below the nominal flux-density limit of continuum imaging surveys. We extract flux densities from a radio map using positional information from an auxiliary catalogue and show that we can model the number counts of this undetected population down to flux density levels well below the detection threshold of the radio survey. We demonstrate the capabilities that our method will have with future generation wide-area radio surveys by performing simulations over various sky areas with a power-law dN/dS model. We generate a simulated power-law distribution with flux densities ranging from 0.1 \\sigma to 2 \\sigma, convolve this distribution with a Gaussian noise distribution rms of 10 micro-Jy/beam, and are able to recover the counts from the noisy distribution. We then demonstrate the application of our method using data from the Faint Images of the Radio Sky at Twenty-Centimeters survey (FI...

  15. Synchrotron masers and fast radio bursts

    CERN Document Server

    Ghisellini, Gabriele

    2016-01-01

    Fast Radio Bursts (FRBs), with a typical duration of 1 ms and 1 Jy flux density at GHz frequencies, have brightness temperatures exceeding 1e33 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Alternatively, we can have maser emission. Under certain conditions, the synchrotron stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light crossing time limits, since there is no simple relation between the actual size of the source and the observed variability timescale.

  16. Radio observations of Jupiter-family comets

    CERN Document Server

    Crovisier, J; Bockelée-Morvan, D; Colom, P

    2008-01-01

    Radio observations from decimetric to submillimetric wavelengths are now a basic tool for the investigation of comets. Spectroscopic observations allow us i) to monitor the gas production rate of the comets, by directly observing the water molecule, or by observing secondary products (e.g., the OH radical) or minor species (e.g., HCN); ii) to investigate the chemical composition of comets; iii) to probe the physical conditions of cometary atmospheres: kinetic temperature and expansion velocity. Continuum observations probe large-size dust particles and (for the largest objects) cometary nuclei. Comets are classified from their orbital characteristics into two separate classes: i) nearly-isotropic, mainly long-period comets and ii) ecliptic, short-period comets, the so-called Jupiter-family comets. These two classes apparently come from two different reservoirs, respectively the Oort cloud and the trans-Neptunian scattered disc. Due to their different history and - possibly - their different origin, they may h...

  17. Synchrotron masers and fast radio bursts

    Science.gov (United States)

    Ghisellini, G.

    2017-02-01

    Fast radio bursts, with a typical duration of 1 ms and 1 Jy flux density at gigahertz frequencies, have brightness temperatures exceeding 1033 K, requiring a coherent emission process. This can be achieved by bunching particles in volumes smaller than the typical wavelength, but this may be challenging. Maser emission is a possibility. Under certain conditions, the synchrotron-stimulated emission process can be more important than true absorption, and a synchrotron maser can be created. This occurs when the emitting electrons have a very narrow distribution of pitch angles and energies. This process overcomes the difficulties of having extremely dense bunches of particles and relaxes the light-crossing time limits, since there is no simple relation between the actual size of the source and the observed variability time-scale.

  18. Dark matter indirect searches: Multi-wavelength and anisotropies

    Science.gov (United States)

    Ando, Shin'ichiro

    2016-05-01

    If dark matter is made of particles governed by weak-scale physics, they may annihilate or decay to leave observable signatures in high-energy gamma-ray sky. In addition, any charged particles produced by the same process will also give low-frequency photons through successive electromagnetic interactions. Plenty of data from modern astrophysical measurements of various wavelengths, especially gamma rays, enabled new analysis techniques to search for these dark matter signatures with an unprecedented sensitivities. Since it is very likely that signatures of dark matter annihilation or decay is hidden in the gamma-ray data, one should fully utilize all available data including: (1) energy spectrum of all wavelengths ranging from radio to very-high-energy gamma rays; (2) spatial clustering probed with the angular power spectrum of the gamma-ray background; (3) cross correlation between the gamma-ray distribution with nearby galaxy catalogs; and (4) gamma-ray-flux distribution. I will review recent theoretical and observational developments in all these aspects, and discuss prospects for the future towards discovery of dark matter as an elementary particle in physics beyond the standard model.

  19. Sensitivity of S- and Ka-band matched dual-wavelength radar system for detecting nonprecipitating cloud

    Science.gov (United States)

    Vivekanandan, J.; Politovich, Marcia; Rilling, Robert; Ellis, Scott; Pratte, Frank

    2004-12-01

    Remote detection of cloud phase in either liquid, ice or mixed form a key microphysical observation. Evolution of a cloud system and associated radiative properties depend on microphysical characteristics. Polarization radars rely on the shape of the particle to delineate the regions of liquid and ice. For specified transmitter and receiver characteristics, it is easier to detect a high concentrations of larger atmospheric particles than a low concentration of small particles. However, the radar cross-section of a given hydrometeor increases as the transmit frequency of the radar increases. Thus, in spite of a low transmit power, the sensitivity of a millimeter-wave radar might be better than high powered centimeter-wave radars. Also, ground clutter echoes and receiver system noise powers are sensitive functions of radar transmit frequency. For example, ground clutter in centimeter-wave radar sample volumes might mask non-precipitating or lightly precipitating clouds. An optimal clutter filter or signal processing technique can be used to suppress clutter masking its effects and/or enhanced weak cloud echoes that have significantly different Doppler characteristics than stationary ground targets. In practice, it is imperative to investigate the actual performance of S and Ka-band radar systems to detect small-scale, weak cloud reflectivity. This paper describes radar characteristics and the sensitivity of the new system in non-precipitating conditions. Recently, a dual-wavelength S and Ka-band radar system with matched resolution volume and sensitivity was built to remotely detect supercooled liquid droplets. The detection of liquid water content was based on the fact that the shorter of the two wavelengths is more strongly attenuated by liquid water. The radar system was deployed during the Winter Icing Storms Project 2004 (WISP04) near Boulder, Colorado to detect and estimate liquid water content. Observations by dual-wavelength radar were collected in both non

  20. A Radio Astronomy Curriculum for the Middle School Classroom

    Science.gov (United States)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  1. Radio AGN in the local universe: unification, triggering and evolution

    Science.gov (United States)

    Tadhunter, Clive

    2016-06-01

    Associated with one of the most important forms of active galactic nucleus (AGN) feedback, and showing a strong preference for giant elliptical host galaxies, radio AGN (L_{1.4 GHz} > 10^{24} W Hz^{-1}) are a key sub-class of the overall AGN population. Recently their study has benefitted dramatically from the availability of high-quality data covering the X-ray to far-IR wavelength range obtained with the current generation of ground- and space-based telescope facilities. Reflecting this progress, here I review our current state of understanding of the population of radio AGN at low and intermediate redshifts (z < 0.7), concentrating on their nuclear AGN and host galaxy properties, and covering three interlocking themes: the classification of radio AGN and its interpretation; the triggering and fuelling of the jet and AGN activity; and the evolution of the host galaxies. I show that much of the observed diversity in the AGN properties of radio AGN can be explained in terms of a combination of orientation/anisotropy, mass accretion rate, and variability effects. The detailed morphologies of the host galaxies are consistent with the triggering of strong-line radio galaxies (SLRG) in galaxy mergers. However, the star formation properties and cool ISM contents suggest that the triggering mergers are relatively minor in terms of their gas masses in most cases, and would not lead to major growth of the supermassive black holes and stellar bulges; therefore, apart from a minority (<20 %) that show evidence for higher star formation rates and more massive cool ISM reservoirs, the SLRG represent late-time re-triggering of activity in mature giant elliptical galaxies. In contrast, the host and environmental properties of weak-line radio galaxies (WLRG) with Fanaroff-Riley class I radio morphologies are consistent with more gradual fuelling of the activity via gas accretion at low rates onto the supermassive black holes.

  2. Multi-wavelength study of the MGRO J2019+37

    CERN Document Server

    Hou, Chao; Yuan, Qiang; Cao, Zhen; He, Huihai; Sheng, Xiangdong

    2014-01-01

    MGRO J2019+37 within the Cygnus region is a bright and extended source revealed by Milagro at 12-35 TeV. This source is almost as bright as Crab Nebula in northern sky, while it is not confirmed by ARGO-YBJ around TeV. Up to now, no obvious counterpart at low energy wavelengths has been found. Hence, MGRO J2019+37 becomes mysterious and its VHE gamma-ray emission mechanism is attractive. In this paper, a brief summary of the multi-wavelength observations from Radio to gamma-ray is presented. All the available data from the XMM-Newton and INTEGRAL at X-ray, and the Fermi-LAT at gamma-ray bands were used to get constraint on its emission flux at low energy wavelengths. Then, its possible counterparts and the VHE emission mechanism are discussed.

  3. HELP : The Herschel Extragalactic Legacy Project & The Coming of Age of Multi-Wavelength Astrophysics

    CERN Document Server

    Vaccari, Mattia

    2015-01-01

    How did galaxies form and evolve? This is one of the most challenging questions in astronomy today. Answering it requires a careful combination of observational and theoretical work to reliably determine the observed properties of cosmic bodies over large portions of the distant Universe on the one hand, and accurately model the physical processes driving their evolution on the other. Most importantly, it requires bringing together disparate multi-wavelength and multi-resolution spectro-photometric datasets in an homogeneous and well-characterized manner so that they are suitable for a rigorous statistical analysis. The Herschel Extragalactic Legacy Project (HELP) funded by the EC FP7 SPACE program aims to achieve this goal by combining the expertise of optical, infrared and radio astronomers to provide a multi-wavelength database for the distant Universe as an accessible value-added resource for the astronomical community. It will do so by bringing together multi-wavelength datasets covering the 1000 deg$^2$...

  4. Hunting for treasures among the Fermi unassociated sources: a multi-wavelength approach

    CERN Document Server

    Acero, F; Ojha, R; Stevens, J; Edwards, P G; Ferrara, E; Blanchard, J; Lovell, J E J; Thompson, D J

    2013-01-01

    The Fermi Gamma-ray Space Telescope has been detecting a wealth of sources where the multi-wavelength counterpart is either inconclusive or missing altogether. We present a combination of factors that can be used to identify multi-wavelength counterparts to these Fermi unassociated sources. This approach was used to select and investigate seven bright, high-latitude unassociated sources with radio, UV, X-ray and gamma-ray observations. As a result, four of these sources are candidates to be active galactic nuclei (AGN), and one to be a pulsar, while two do not fit easily into these known categories of sources. The latter pair of extra-ordinary sources might reveal a new category subclass or a new type of gamma-ray emitters. These results altogether demonstrate the power of a multi-wavelength approach to illuminate the nature of unassociated Fermi sources.

  5. Compact radio cores in radio-quiet AGNs

    CERN Document Server

    Maini, Alessandro; Norris, Ray P; Giovannini, Gabriele; Spitler, Lee R

    2016-01-01

    The mechanism of radio emission in radio-quiet (RQ) active galactic nuclei (AGN) is still debated and might arise from the central AGN, from star formation activity in the host, or from either of these sources. A direct detection of compact and bright radio cores embedded in sources that are classified as RQ can unambiguously determine whether a central AGN significantly contributes to the radio emission. We search for compact, high-surface-brightness radio cores in RQ AGNs that are caused unambiguously by AGN activity. We used the Australian Long Baseline Array to search for compact radio cores in four RQ AGNs located in the Extended Chandra Deep Field South (ECDFS). We also targeted four radio-loud (RL) AGNs as a control sample. We detected compact and bright radio cores in two AGNs that are classified as RQ and in one that is classified as RL. Two RL AGNs were not imaged because the quality of the observations was too poor. We report on a first direct evidence of radio cores in RQ AGNs at cosmological reds...

  6. Wavelet Cleaning of Solar Dynamic Radio Spectrograms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By applying the state-of-the-art mathematical apparatus, the wavelet transformation, we explore the possibility of a dynamic cleaning of raw data obtained with the Chinese solar radio spectrographs over a wide wavelength range (from 0.7 to 7.6 GHz). We consider the problem of eliminating the interference caused by combination rates of data sampling (10-20ms), and the low-frequency interference (4-30 s) caused by the receiving equipment changing its characteristics with time. It is shown that the best choice to reconstruct a signal suffering from amplitude, frequency and phase instabilities, is by means of wavelet transformation at both high and low frequencies. We analysed observational data which contained interferences of nonsolar origin such as instrumental effects and other man-made signals. A subsequent comparison of the reference data obtained with the acoustooptical receiver of the Siberian Solar Radio Telescope (SSRT) with the "cleaned"spectra confirms the correctness of this approach.

  7. HIRAX: a probe of dark energy and radio transients

    Science.gov (United States)

    Newburgh, L. B.; Bandura, K.; Bucher, M. A.; Chang, T.-C.; Chiang, H. C.; Cliche, J. F.; Davé, R.; Dobbs, M.; Clarkson, C.; Ganga, K. M.; Gogo, T.; Gumba, A.; Gupta, N.; Hilton, M.; Johnstone, B.; Karastergiou, A.; Kunz, M.; Lokhorst, D.; Maartens, R.; Macpherson, S.; Mdlalose, M.; Moodley, K.; Ngwenya, L.; Parra, J. M.; Peterson, J.; Recnik, O.; Saliwanchik, B.; Santos, M. G.; Sievers, J. L.; Smirnov, O.; Stronkhorst, P.; Taylor, R.; Vanderlinde, K.; Van Vuuren, G.; Weltman, A.; Witzemann, A.

    2016-08-01

    The Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) is a new 400{800MHz radio interferometer under development for deployment in South Africa. HIRAX will comprise 1024 six meter parabolic dishes on a compact grid and will map most of the southern sky over the course of four years. HIRAX has two primary science goals: to constrain Dark Energy and measure structure at high redshift, and to study radio transients and pulsars. HIRAX will observe unresolved sources of neutral hydrogen via their redshifted 21-cm emission line (`hydrogen intensity mapping'). The resulting maps of large-scale structure at redshifts 0.8{2.5 will be used to measure Baryon Acoustic Oscillations (BAO). BAO are a preferential length scale in the matter distribution that can be used to characterize the expansion history of the Universe and thus understand the properties of Dark Energy. HIRAX will improve upon current BAO measurements from galaxy surveys by observing a larger cosmological volume (larger in both survey area and redshift range) and by measuring BAO at higher redshift when the expansion of the universe transitioned to Dark Energy domination. HIRAX will complement CHIME, a hydrogen intensity mapping experiment in the Northern Hemisphere, by completing the sky coverage in the same redshift range. HIRAX's location in the Southern Hemisphere also allows a variety of cross-correlation measurements with large-scale structure surveys at many wavelengths. Daily maps of a few thousand square degrees of the Southern Hemisphere, encompassing much of the Milky Way galaxy, will also open new opportunities for discovering and monitoring radio transients. The HIRAX correlator will have the ability to rapidly and efficiently detect transient events. This new data will shed light on the poorly understood nature of fast radio bursts (FRBs), enable pulsar monitoring to enhance long-wavelength gravitational wave searches, and provide a rich data set for new radio transient phenomena

  8. Radio emision from supernova remnants

    Science.gov (United States)

    Dubner, G.

    2016-06-01

    The vast majority of supernova remnants (SNRs) in our Galaxy and nearby galaxies have been discovered through radio observations, and only a very small number of the SNRs catalogued in the Milky Way have not been detected in the radio band, or are poorly defined by current radio observations. The study of the radio emission from SNRs is an excellent tool to investigate morphological characteristics, marking the location of shock fronts and contact discontinuities; the presence, orientation and intensity of the magnetic field; the energy spectrum of the emitting particles; and the dynamical consequences of the interaction with the circumstellar and interstellar medium. I will review the present knowledge of different important aspects of radio remnants and their impact on the interstellar gas. Also, new radio studies of the Crab Nebula carried out with the Karl Jansky Very Large Array (JVLA) at 3 GHz and with ALMA at 100 GHz, will be presented.

  9. Flexible Adaptation in Cognitive Radios

    CERN Document Server

    Li, Shujun

    2013-01-01

    This book provides an introduction to software-defined radio and cognitive radio, along with methodologies for applying knowledge representation, semantic web, logic reasoning and artificial intelligence to cognitive radio, enabling autonomous adaptation and flexible signaling. Readers from the wireless communications and software-defined radio communities will use this book as a reference to extend software-defined radio to cognitive radio, using the semantic technology described. Readers with a background in semantic web and artificial intelligence will find in this book the application of semantic web and artificial intelligence technologies to wireless communications. For readers in networks and network management, this book presents a new approach to enable interoperability, collaborative optimization and flexible adaptation of network components. Provides a comprehensive ontology covering the core concepts of wireless communications using a formal language; Presents the technical realization of using a ...

  10. Uzaybimer Radio Telescope Control System

    Science.gov (United States)

    Balbay, R.; Öz, G. K.; Arslan, Ö.; Özeren, F. F.; Küçük, İ.

    2016-12-01

    A 13 meters former NATO radar is being converted into a radio telescope. The radio telescope is controlled by a system which has been developed at UZAYBİMER. The Telescope Control System(TCS) has been designed using modern industrial systems. TCS has been developed in LabView platform in which works Windows embedded OS. The position feedback used on radio telescopes is an industrial EtherCAT standard. ASCOM library is used for astronomical calculations.

  11. Software defined radio architectures evaluation

    OpenAIRE

    Palomo, Alvaro; Villing, Rudi; Farrell, Ronan

    2008-01-01

    This paper presents an performance evaluation of GNU Radio and OSSIE, two open source Software Defined Radio (SDR) architectures. The two architectures were compared by running implementations of a BPSK waveform utilising a software loopback channel on each. The upper bound full duplex throughput was found to be around 700kbps in both cases, though OSSIE was slightly faster than GNU Radio. CPU and memory loads did not differ significantly.

  12. The long wavelength view of GG Tau A: Rocks in the Ring World

    CERN Document Server

    Scaife, Anna M M

    2013-01-01

    We present the first detection of GG Tau A at centimeter-wavelengths, made with the Arcminute Microkelvin Imager Large Array (AMI-LA) at a frequency of 16 GHz ({\\lambda} = 1.8 cm). The source is detected at > 6 {\\sigma}_{rms} with an integrated flux density of S = 249+/-45 {\\mu}Jy. We use these new centimetre-wave data, in conjunction with additional measurements compiled from the literature, to investigate the long wavelength tail of the dust emission from this unusual proto-planetary system. We use an MCMC based method to determine maximum likelihood parameters for a simple parametric spectral model and consider the opacity and mass of the dust contributing to the microwave emission. We derive a dust mass of approximately 0.1 solar masses, constrain the dimensions of the emitting region and find that the opacity index at {\\lambda} > 7mm is less than unity, implying a contribution to the dust population from grains exceeding 4 cm in size. We suggest that this indicates coagulation within the GG Tau A system ...

  13. Two-wavelength lidar inversion algorithm

    NARCIS (Netherlands)

    Kunz, G.J.

    1999-01-01

    Potter [Appl. Opt. 26, 1250 (1987)] has presented a method to determine profiles of the atmospheric aerosol extinction coefficients by use of a two-wavelength lidar with the assumptions of a constant value for the extinction-to-backscatter ratio for each wavelength and a constant value for the ratio

  14. Military Mail Radio

    Directory of Open Access Journals (Sweden)

    Bîlbîie Răduţ

    2015-12-01

    Full Text Available Cultural and scientific personalities from the army, military experts and creators of the doctrine have collaborated with the radio from the beginnings of radiophony, the educational role of this new, persuasive communication channel being evident not only for Romania or the Romanian army but also for all the countries that had radiophony services. This happens in the context of the end of the crisis and the start of economic and social development, promoting culture, creating a solid class of peasants with a certain social status, in villages, together with the priest, teacher and gendarme, increasing of the number of subscriptions and development of the Romanian radiophony.

  15. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  16. Internet Resources for Radio Astronomy

    Science.gov (United States)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  17. Radio-induced brain lesions

    Directory of Open Access Journals (Sweden)

    Gorgan Mircea Radu

    2014-03-01

    Full Text Available Introduction : Radiotherapy, an important tool in multimodal oncologic treatment, can cause radio-induced brain lesion development after a long period of time following irradiation.

  18. Local Group dSph radio survey with ATCA (III): constraints on particle dark matter

    NARCIS (Netherlands)

    Regis, Marco; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella; Richter, Laura

    2014-01-01

    We performed a deep search for radio synchrotron emissions induced by weakly interacting massive particles (WIMPs) annihilation or decay in six dwarf spheroidal (dSph) galaxies of the Local Group. Observations were conducted with the Australia Telescope Compact Array (ATCA) at 16 cm wavelength, with

  19. 3C 220.3: A Radio Galaxy Lensing a Submillimeter Galaxy

    NARCIS (Netherlands)

    Haas, Martin; Leipski, Christian; Barthel, Peter; Wilkes, Belinda J.; Vegetti, Simona; Bussmann, R. Shane; Willner, S. P.; Westhues, Christian; Ashby, Matthew L. N.; Chini, Rolf; Clements, David L.; Fassnacht, Christopher D.; Horesh, Assaf; Klaas, Ulrich; Koopmans, Léon V. E.; Kuraszkiewicz, Joanna; Lagattuta, David J.; Meisenheimer, Klaus; Stern, Daniel; Wylezalek, Dominika

    2014-01-01

    Herschel Space Observatory photometry and extensive multiwavelength follow-up have revealed that the powerful radio galaxy (PRG) 3C 220.3 at z = 0.685 acts as a gravitational lens for a background submillimeter galaxy (SMG) at z = 2.221. At an observed wavelength of 1 mm, the SMG is lensed into thre

  20. How else can we detect Fast Radio Bursts?

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    We discuss possible electromagnetic signals accompanying Fast Radio Bursts (FRBs) that are expected in the scenario where FRBs originate in neutron star magnetospheres. For models involving Crab-like giant pulses, no appreciable contemporaneous emission is expected at other wavelengths. Magnetar giant flares, driven by the reconfiguration of the magnetosphere, however, can produce both contemporaneous bursts at other wavelengths as well as afterglow-like emission. We conclude that the best chances are: (i) prompt short GRB-like emission; (ii) a contemporaneous optical flash that can reach naked eye peak luminosity (but only for a few milliseconds); (iii) a high energy afterglow emission. Case (i) could be tested by coordinated radio and high-energy experiments. Case (ii) could be seen by the Palomar Transient Factory in a 60-second frame as a transient object of $m=15-20$ magnitude with an expected optical detection rate of about 0.1~hr$^{-1}$, an order of magnitude higher than in radio. EVRYSCOPE could also ...

  1. Growth of centimeter-scale atomically thin MoS{sub 2} films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Gene; Venkata Subbaiah, Y. P.; Prestgard, Megan C.; Tiwari, Ashutosh, E-mail: tiwari@eng.utah.edu [Nanostructured Materials Research Laboratory, Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-05-01

    We are reporting the growth of single layer and few-layer MoS{sub 2} films on single crystal sapphire substrates using a pulsed-laser deposition technique. A pulsed KrF excimer laser (wavelength: 248 nm; pulse width: 25 ns) was used to ablate a polycrystalline MoS{sub 2} target. The material thus ablated was deposited on a single crystal sapphire (0001) substrate kept at 700 °C in an ambient vacuum of 10{sup −6} Torr. Detailed characterization of the films was performed using atomic force microscopy (AFM), Raman spectroscopy, UV-Vis spectroscopy, and photoluminescence (PL) measurements. The ablation of the MoS{sub 2} target by 50 laser pulses (energy density: 1.5 J/cm{sup 2}) was found to result in the formation of a monolayer of MoS{sub 2} as shown by AFM results. In the Raman spectrum, A{sub 1g} and E{sup 1}{sub 2g} peaks were observed at 404.6 cm{sup −1} and 384.5 cm{sup −1} with a spacing of 20.1 cm{sup −1}, confirming the monolayer thickness of the film. The UV-Vis absorption spectrum exhibited two exciton absorption bands at 672 nm (1.85 eV) and 615 nm (2.02 eV), with an energy split of 0.17 eV, which is in excellent agreement with the theoretically predicted value of 0.15 eV. The monolayer MoS{sub 2} exhibited a PL peak at 1.85 eV confirming the direct nature of the band-gap. By varying the number of laser pulses, bi-layer, tri-layer, and few-layer MoS{sub 2} films were prepared. It was found that as the number of monolayers (n) in the MoS{sub 2} films increases, the spacing between the A{sub 1g} and E{sup 1}{sub 2g} Raman peaks (Δf) increases following an empirical relation, Δf=26.45−(15.42)/(1+1.44 n{sup 0.9}) cm{sup −1}.

  2. The coexistence of cognitive radio and radio astronomy

    NARCIS (Netherlands)

    Bentum, M.J.; Boonstra, A.J.; Baan, W.A.

    2009-01-01

    An increase of the efficiency of spectrum usage requires the development of new communication techniques. Cognitive radio may be one of those new technique, which uses unoccupied frequency bands for communications. This will lead to more power in the bands and therefore an increasing level of Radio

  3. Evaluation of GNU Radio Platform Enhanced for Hardware Accelerated Radio Design

    OpenAIRE

    Karve, Mrudula Prabhakar

    2010-01-01

    The advent of software radio technology has enabled radio developers to design and imple- ment radios with great ease and flexibility. Software radios are effective in experimentation and development of radio designs. However, they have limitations when it comes to high- speed, high-throughput designs. This limitation can be overcome by introducing a hardware element to the software radio platform. Enhancing GNU Radio for Hardware Accelerated Radio Design project implements suc...

  4. Radio Observations of the Hubble Deep Field South region: I. Survey Description and Initial Results

    CERN Document Server

    Norris, R P; Jackson, C A; Boyle, B J; Ekers, R D; Mitchell, D A; Sault, R J; Wieringa, M H; Williams, R E; Hopkins, A M; Higdon, J; Norris, Ray P.; Huynh, Minh T.; Jackson, Carole A.; Boyle, Brian J.; Ekers, Ronald. D.; Mitchell, Daniel A.; Sault, Robert J.; Wieringa, Mark H.; Williams, Robert E.; Hopkins, Andrew M.; Higdon, James

    2005-01-01

    This paper is the first of a series describing the results of the Australia Telescope Hubble Deep Field South (ATHDFS) radio survey. The survey was conducted at four wavelengths - 20, 11, 6, and 3 cm, over a 4-year period, and achieves an rms sensitivity of about 10 microJy at each wavelength. We describe the observations and data reduction processes, and present data on radio sources close to the centre of the HDF-S. We discuss in detail the properties of a subset of these sources. The sources include both starburst galaxies and galaxies powered by an active galactic nucleus, and range in redshift from 0.1 to 2.2. Some of them are characterised by unusually high radio-to-optical luminosities, presumably caused by dust extinction.

  5. Radio Quiet AGN

    CERN Document Server

    Czerny, B; Karas, V; Ponti, G

    2005-01-01

    Active Galactic Nuclei are powered by accretion onto massive black holes. Although radio-quiet objects are not as spectacular sources of very high energy photons as radio-loud ones this class of objects also represents a challenge for modeling high energy processes close to a black hole. Both a hot optically thin plasma and a cooler optically thick accretion disk are usually thought to be present in the vicinity of a black hole although the details of the accretion flow are still under discussion. The role of the disk seems to decrease with a drop in the Eddington ratio: in sources like quasars and Narrow Line Seyfert 1 galaxies disk flow dominates while in Seyfert galaxies the disk retreats, and in sources like LINERS or Sgr A* a disk is most likely absent. Shocks and reconnections are possibly taking place in an inner hot flow and in the magnetic corona above the cold disk. Uncollimated outflow is also present and it may carry significant fraction of available mass and energy.

  6. Radio astronomy from space

    Science.gov (United States)

    Woan, G.

    2011-04-01

    At frequencies below about 30 MHz, radio astronomy becomes increasingly difficult from the Earth's surface, mainly due to a combination of poor ionospheric seeing and strong terrestrial interference. The obvious move is to space, either as free-flying spacecraft or with a telescope located somewhere on the Moon. All the major space agencies have a renewed interest in the Moon as a site for exploration and science, and low-frequency radio astronomy is probably the strongest of the astronomical objectives put forward in these programmes. Although the Sun is a strong source of interference in extra-solar system work, it is also a prime target for study in itself. A constellation of satellites (as proposed for the SIRA mission) would be able to image both the Sun and the inner heliosphere over the entire low-frequency band. Here we investigate some of the advantages and limitations of astronomy at these very low frequencies, using space- and lunar-based antennas.

  7. Are Homologous Radio Bursts Driven by Solar Post-Flare Loops?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6 GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other instruments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole magnetic structures. By examining the evolutions of the magnetic polarities of sources (17 GHz),we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.

  8. High resolution radio observations of nuclear and circumnuclear regions of luminous infrared galaxies (LIRGs)

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, A; Perez-Torres, M A [Instituto de Astrofisica de Andalucia (IAA, CSIC), PO Box 3004, 18080-Granada (Spain); Colina, L [Instituto de Estructura de la Materia - IEM, CSIC, C, Serrano 115, 28005 Madrid (Spain); Torrelles, J M [Instituto de Ciencias del Espacio (ICE, CSIC) and IEEC, Gran Capita 2-4, 08034 Barcelona (Spain)], E-mail: antxon@iaa.es, E-mail: torres@iaa.es, E-mail: colina@damir.iem.csic.es, E-mail: torrelle@ieec.fcr.es

    2008-10-15

    High-resolution radio observations of the nuclear region of Luminous and Ultraluminous Infrared Galaxies (ULIRGs) have shown that its radio structure consists of a compact high surface-brightness central radio source immersed in a diffuse low brightness circumnuclear halo. While the central component could be associated with an AGN or compact star-forming regions where radio supernovae are exploding, it is well known that the circumnuclear regions host bursts of star-formation. The studies of radio supernovae can provide essential information about stellar evolution and CSM/ISM properties in regions hidden by dust at optical and IR wavelengths. In this contribution, we show results from radio interferometric observations from NGC 7469, IRAS 18293-3413 and IRAS 17138-1017 where three extremely bright radio supernovae have been found. High-resolution radio observations of these and other LIRGs would allow us to determine the core-collapse supernova rate in them as well as their star-formation rate.

  9. Multifrequency observations of extended radio galaxies V - 3C 31, 3C 33.1, 3C 35, 3C 66B, 3C 129, 3C 130, 3C 223, 3C 310, 3C 390.3 and 4C 48.29

    Science.gov (United States)

    van Breugel, W.; Jagers, W.

    1982-08-01

    A sample of 3C radio sources of large angular size has been observed in total and polarized intensity at several wavelengths with the Westerbork Synthesis Radio Telescope. The sources were selected such that their largest angular size was greater than about 200 arcsec and their declination greater than about 25 degrees. Some additional sources with radio jets or peculiar morphology were also included. The name of each source, its structural type classification, wavelength of observation, and data references are given.

  10. Infrared-Faint Radio Sources in the SERVS deep fields: Pinpointing AGNs at high redshift

    CERN Document Server

    Maini, Alessandro; Norris, Ray P; Spitler, Lee R; Mignano, Arturo; Lacy, Mark; Morganti, Raffaella

    2016-01-01

    Infrared-Faint Radio Sources (IFRS) represent an unexpected class of objects relatively bright at radio wavelength, but unusually faint at infrared (IR) and optical wavelengths. A recent and extensive campaign on the radio-brightest IFRSs (S_{1.4GHz} >= 10 mJy) has provided evidence that most of them (if not all) contain an AGN. Still uncertain is the nature of the radio-faintest ones (S_{1.4GHz} 4). We analysed a number of IFRS samples identified in SERVS fields, including a new sample (21 sources) extracted from the Lockman Hole. 3.6 and 4.5 mum IR counterparts of the 64 sources located in the SERVS fields were searched for, and, when detected, their IR properties were studied. We compared the radio/IR properties of the IR-detected IFRSs with those expected for a number of known classes of objects. We found that they are mostly consistent with a mixture of high-redshift (z >= 3) radio-loud AGNs. The faintest ones (S_{1.4GHz} ~ 100 muJy), however, could be also associated with nearer (z ~ 2) dust-enshrouded...

  11. Faint arc-minute extended radio emission around Cygnus X-3

    CERN Document Server

    Sanchez-Sutil, J R; Combi, J A; Luque-Escamilla, P; Munoz-Arjonilla, A J; Paredes, J M; Pooley, G

    2008-01-01

    Aims. We revisit the vicinity of the microquasar Cygnus X-3 at radio wavelengths. We aim to improve our previous search for possible associated extended radio features/hot spots in the position angle of the Cygnus X-3 relativistic jets focusing on shorter angular scales than previously explored. Methods. Our work is mostly based on analyzing modern survey and archive radio data, mainly including observations carried out with the Very Large Array and the Ryle Telescopes. We also used deep near-infrared images that we obtained in 2005. Results. We present new radio maps of the Cygnus X-3 field computed after combining multi-configuration Very Large Array archive data at 6 cm and different observing runs at 2 cm with the Ryle Telescope. These are probably among the deepest radio images of Cygnus X-3 reported to date at cm wavelengths. Both interferometers reveal an extended radio feature within a few arc-minutes of the microquasar position, thus making our detection more credible. Moreover, this extended emissio...

  12. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    OpenAIRE

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spe...

  13. Formation and Fractionation of CO (Carbon Monoxide) in Diffuse Clouds Observed at Optical and Radio Wavelengths

    Science.gov (United States)

    Liszt, H. S.

    2017-02-01

    We modeled {{{H}}}2 and CO formation incorporating the fractionation and selective photodissociation affecting CO when {A}{{V}} ≲ 2 mag. UV absorption measurements typically have N({}12{CO})/N({}13{CO}) ≈ 65 that are reproduced with the standard UV radiation and little density dependence at n(H) ≈ 32–1024 {{cm}}-3: densities n(H) ≲ 256 {{cm}}-3 avoid overproducing CO. Sightlines observed in millimeter wave absorption and a few in UV show enhanced {}13{CO} by factors of two to four and are explained by higher n(H) ≳ 256 {{cm}}-3 and/or weaker radiation. The most difficult observations to understand are UV absorptions having N({}12{CO})/N({}13{CO}) > 100 and N(CO) ≳ 1015 {{cm}}-2. Plots of {W}{CO} versus N(CO) show that {W}{CO} remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. {}12{CO} and {}13{CO} have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H) ≳ 128 {{cm}}-3, plots of {W}{CO} versus N(CO) are insensitive to n(H), and {W}{CO}/N(CO) ≈ 1 {{K}} {km} {{{s}}}-1/(1015 CO {{cm}}-2); this compensates for small CO/{{{H}}}2 to make {W}{CO} more readily detectable. Rapid increases of N(CO) with n(H), N(H), and N({{{H}}}2) often render the CO bright, i.e., a small CO-{{{H}}}2 conversion factor. For n(H) ≲ 64 {{cm}}-3, CO enters the regime of truly weak excitation, where {W}{CO} ∝ n(H)N(CO). {W}{CO} is a strong function of the average {{{H}}}2 fraction and models with {W}{CO} = 1 {{K}} {km} {{{s}}}-1 fall in the narrow range of 0.65–0.8 or 0.4–0.5 at {W}{CO} 0.1 {{K}} {km} {{{s}}}-1. The insensitivity of easily detected CO emission to gas with small implies that even deep CO surveys using broad beams may not discover substantially more emission.

  14. Search for the Third Harmonic of Type III Bursts Radio Emission at Decameter Wavelengths

    Science.gov (United States)

    Brazhenko, A. I.; Melnik, V. N.; Konovalenko, A. A.; Pylaev, O. S.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Vashchishin, R. V.; Rucker, H. O.

    The results of observations of trio bursts consisting of type III bursts are presented in this paper. The instantaneous frequency ratio of trio components is near 1:2:3. We analyze flow, duration, frequency drift rate and polarization of trio components as well as dependencies of these characteristics on frequency.

  15. Formation and Fractionation of CO (carbon monoxide) in diffuse clouds observed at optical and radio wavelengths

    CERN Document Server

    Liszt, Harvey S

    2016-01-01

    We modelled \\HH\\ and CO formation incorporating the fractionation and selective photodissociation affecting CO when \\AV\\ $\\la2$mag. UV absorption measurements typically have N(\\cotw)/N(\\coth) $\\approx 65$ that are reproduced with the standard UV radiation and little density dependence at n(H) $\\approx32-1024\\pccc$: Densities n(H) $\\la256\\pccc$ avoid overproducing CO. Sightlines observed in mm-wave absorption and a few in UV show enhanced \\coth\\ by factors of 2-4 and are explained by higher n(H) $\\ga256\\pccc$ and/or weaker radiation. The most difficult observations to understand are UV absorptions having N(\\cotw)/N(\\coth) $>$100 and N(CO)$\\ga10^{15}\\pcc$. Plots of \\WCO\\ vs. N(CO) show that \\WCO\\ remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. \\cotw\\ and \\coth\\ have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H)$\\ga128\\pccc$, plots of \\WCO\\ vs N(CH) ...

  16. Wavelength initialization employing wavelength recognition scheme in WDM-PON based on tunable lasers

    Science.gov (United States)

    Mun, Sil-Gu; Lee, Eun-Gu; Lee, Jong Hyun; Lee, Sang Soo; Lee, Jyung Chan

    2015-01-01

    We proposed a simple method to initialize the wavelength of tunable lasers in WDM-PON employing wavelength recognition scheme with an optical filter as a function of wavelength and accomplished plug and play operation. We also implemented a transceiver based on our proposed wavelength initialization scheme and then experimentally demonstrated the feasibility in WDM-PON configuration guaranteeing 16 channels with 100 GHz channel spacing. Our proposal is a cost-effective and easy-to-install method to realize the wavelength initialization of ONU. In addition, this method will support compatibility with all kind of tunable laser regardless of their structures and operating principles.

  17. COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF GALAXY CLUSTER RADIO RELICS: INSIGHTS AND WARNINGS FOR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Xu, Hao; Li, Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); O' Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Norman, Michael L., E-mail: samuel.skillman@colorado.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093 (United States)

    2013-03-01

    Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 Multiplication-Sign 10{sup 7} K, {rho} {approx} 10{sup -28}-10{sup -27} g cm{sup -3}, with magnetic field strengths of 0.1-1.0 {mu}G, and shock Mach numbers of M {approx} 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.

  18. Radio Loud AGNs are Mergers

    CERN Document Server

    Chiaberge, Marco; Lotz, Jennifer; Norman, Colin

    2015-01-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei at z>1 using new samples. The objects have HST images taken with WFC3 in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z>1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%) radio-loud galaxies at z>1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38% are merging systems. The merger fraction for the sample of non-active galaxies at z>1 is indistinguishable from radio-quiet objects. This...

  19. Relics of Double Radio Sources

    CERN Document Server

    Dwarakanath, K S

    2009-01-01

    We have formed a new sample which consists of extended extragalactic radio sources without obvious active galactic nuclei (AGN) in them. Most of these sources appear to be dead double radio sources. These sources with steep spectra ($\\alpha < $ -1.8; S $\\propto \

  20. Radio Relics in Cosmological Simulations

    Indian Academy of Sciences (India)

    M. Hoeft; S. E. Nuza; S. Gottlöber; R. J. van Weeren; H. J. A. Röttgering; M. Brüggen

    2011-12-01

    Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.

  1. Cognitive Radio for Emergency Networks

    NARCIS (Netherlands)

    Zhang, Qiwei; Kokkeler, A.B.J.; Smit, G.J.M.

    2006-01-01

    In the scope of the Adaptive Ad-hoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed to alleviate the spectrum shortage problem which is the major limitation for emergency networks. Cognitive Radio has been proposed as a promising technology to solve todayâ?~B

  2. 78 FR 32165 - Commercial Radio Operators; Correction

    Science.gov (United States)

    2013-05-29

    ... COMMISSION 47 CFR Part 0 Commercial Radio Operators; Correction AGENCY: Federal Communication Commission...) Administers the Commission's commercial radio operator program (part 13 of this chapter); the Commission's... rules concerning radio operator licenses for maritime and aviation in order to reduce...

  3. High Power Short Wavelength Laser Development

    Science.gov (United States)

    1977-11-01

    Unlimited güä^äsjäsiiiüüü X NRTC-77-43R P I High Power Short Wavelength Laser Development November 1977 D. B. Cohn and W. B. Lacina...NO NRTC-77-43R, «. TITLE fana »uetjjitj BEFORE COMPLETING FORM CIPIENT’S CATALOO NUMBER KIGH.POWER SHORT WAVELENGTH LASER DEVELOPMENT , 7...fWhtn Data Enterte NRTC-77-43R HIGH POWER SHORT WAVELENGTH LASER DEVELOPMENT ARPA Order Number: Program Code Number: Contract Number: Principal

  4. Solar and Planetary Observations with a Lunar Radio Telescope

    Science.gov (United States)

    Kassim, N.; Weiler, K. W.; Lazio, J. W.; MacDowall, R. J.; Jones, D. L.; Bale, S. D.; Demaio, L.; Kasper, J. C.

    2006-05-01

    Ground-based radio telescopes cannot observe at frequencies below about 10 MHz (wavelengths longer than 30 m) because of ionospheric absorption. The Lunar Imaging Radio Array (LIRA) is a mission concept in which an array of radio telescopes is deployed on the Moon, as part of the Vision for Space Exploration, with the aim of extending radio observations to lower frequencies than are possible from the Earth. LIRA would provide the capability for dedicated monitoring of solar and planetary bursts as well as the search for magnetospheric emissions from extrasolar planets. The highest sensitivity observations can be accomplished by locating LIRA on the far side of the Moon. The array would be composed of 10-12 radial arms, each 1-2 km in length. Each arm would have several hundred dipole antennas and feedlines printed on a very thin sheet of kapton with a total mass of about 300 kg. This would provide a convenient way to deploy thousands of individual antennas and a centrally condensed distribution of array baselines. The lunar farside provides shielding from terrestrial natural and technological radio interference and freedom from the corrupting influence of Earth's ionosphere. This paper will describe the science case for LIRA as well as various options for array deployment and data transmission to Earth. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Basic research in radio astronomy at the NRL is supported by the Office of Naval Research.

  5. Radio Emission from Globular Clusters

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Radio emission of globular clusters is studied by analyzing the VLA radio survey data of the NVSS and FIRST. We find that 13 clusters have radio sources within their half-mass radii of clusters. Sources detected previously in NGC 7078and NGC 6440 are identified. Pulsars in NGC 6121, NGC 6440 and NGC 7078cannot be detected because of the insufficient survey sensitivity and resolution.There may be a pulsar in the core of Terzan 1. The nature of the extended radio source near the core of NGC 6440 remains unclear. In the core of a globular cluster,there may be many neutron stars or an intermediate mass black hole, but this cannot be clarified with the current radio observations.

  6. Radio outburst of BL Lacertae

    Science.gov (United States)

    Buemi, C. S.; Leto, P.; Trigilio, C.; Umana, G.; Giroletti, M.; Orienti, M.; Raiteri, C. M.; Villata, M.; Bach, U.

    2013-04-01

    We report on extremely high radio flux of BL Lacertae at 43 and 8 GHz. Observations at 43 GHz with the 32 m radio telescope in Noto (Italy) revealed a flux density of 10.5 +/- 0.2 Jy on 2013 April 10.65, while observations at 8 GHz with the 32 m radio telescope in Medicina (Italy) detected a flux density of 8.2 +/- 0.7 Jy on April 12.22. These extremely high radio fluxes show that the radio activity likely correlated to the strong optical, near-infrared, and gamma-ray activity of 2011-2012 (see ATels #4028, #4031, #4155, #4271, #4277, #4349, #4565, #4600), and X-ray activity of late 2012 (ATels #4557, #4627), is far to be exhausted.

  7. CONSTRAINING RADIO EMISSION FROM MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, P.; Kaspi, V. M.; Dib, R. [Department of Physics, Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Champion, D. J. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Hessels, J. W. T., E-mail: plazar@physics.mcgill.ca [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands)

    2012-01-10

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U 0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected for any of our targets. The non-detections allow us to place luminosity upper limits of L{sub 1950} {approx}< 1.60 mJy kpc{sup 2} for periodic emission and L{sub 1950,single} {approx}< 7.6 Jy kpc{sup 2} for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  8. Constraining Radio Emission from Magnetars

    CERN Document Server

    Lazarus, Patrick; Champion, David J; Hessels, Jason W T; Dib, Rim

    2011-01-01

    We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, monitoring observations of magnetar 4U0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected was detected for any of our targets. The non-detections allow us to place luminosity upper limits (at 1950 MHz) of approximately L < 1.60 mJy kpc^2 for periodic emission and L < 7.6 Jy kpc^2 for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.

  9. Radio propagation measurement and channel modelling

    CERN Document Server

    Salous, Sana

    2013-01-01

    While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies

  10. The faint radio sky: radio astronomy becomes mainstream

    CERN Document Server

    Padovani, Paolo

    2016-01-01

    Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall "big picture" astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalac...

  11. A Radio Astronomy Science Education Partnership - GAVRT and Radio JOVE

    Science.gov (United States)

    Higgins, C. A.; Thieman, J. R.; Bunnell, K.; Soholt, G.

    2009-12-01

    The planet Jupiter provides an excellent subject to educate, engage, and inspire students and teachers to learn science. The Goldstone Apple-Valley Radio Telescope (GAVRT) program (http://www.lewiscenter.org/gavrt) and The Radio JOVE project (http://radiojove.gsfc.nasa.gov) each have a long history of allowing students and teachers to interact with scientists and real radio telescopes. The upcoming Juno mission to Jupiter (2011 launch) allows both GAVRT and Radio JOVE to combine efforts and engage with the NASA Juno mission, thus increasing the excitement and learning potential for teachers, students, and the general public. Teachers can attend workshops for training to operate a 34-meter radio telescope and/or build their own simple radio telescope, both of which can be used directly in the classroom. We will overview some classroom activities and highlight some teacher-student experiences. In addition, we will update our efforts on greater Web-based control of the radio telescopes, as well as highlight our upcoming workshops to allow better access for teachers in different parts of the Country.

  12. The Radio Language Arts Project: adapting the radio mathematics model.

    Science.gov (United States)

    Christensen, P R

    1985-01-01

    Kenya's Radio Language Arts Project, directed by the Academy for Educational Development in cooperation with the Kenya Institute of Education in 1980-85, sought to teach English to rural school children in grades 1-3 through use of an intensive, radio-based instructional system. Daily 1/2 hour lessons are broadcast throughout the school year and supported by teachers and print materials. The project further was aimed at testing the feasibility of adaptation of the successful Nicaraguan Radio Math Project to a new subject area. Difficulties were encountered in articulating a language curriculum with the precision required for a media-based instructional system. Also a challenge was defining the acceptable regional standard for pronunciation and grammar; British English was finally selected. An important modification of the Radio Math model concerned the role of the teacher. While Radio Math sought to reduce the teacher's responsibilities during the broadcast, Radio Language Arts teachers played an important instructional role during the English lesson broadcasts by providing translation and checks on work. Evaluations of the Radio language Arts Project suggest significant gains in speaking, listening, and reading skills as well as high levels of satisfaction on the part of parents and teachers.

  13. The faint radio sky: radio astronomy becomes mainstream

    Science.gov (United States)

    Padovani, Paolo

    2016-09-01

    Radio astronomy has changed. For years it studied relatively rare sources, which emit mostly non-thermal radiation across the entire electromagnetic spectrum, i.e. radio quasars and radio galaxies. Now, it is reaching such faint flux densities that it detects mainly star-forming galaxies and the more common radio-quiet active galactic nuclei. These sources make up the bulk of the extragalactic sky, which has been studied for decades in the infrared, optical, and X-ray bands. I follow the transformation of radio astronomy by reviewing the main components of the radio sky at the bright and faint ends, the issue of their proper classification, their number counts, luminosity functions, and evolution. The overall "big picture" astrophysical implications of these results, and their relevance for a number of hot topics in extragalactic astronomy, are also discussed. The future prospects of the faint radio sky are very bright, as we will soon be flooded with survey data. This review should be useful to all extragalactic astronomers, irrespective of their favourite electromagnetic band(s), and even stellar astronomers might find it somewhat gratifying.

  14. Correlation radio range finder

    Directory of Open Access Journals (Sweden)

    A. Sorochan

    2012-10-01

    Full Text Available In work widely known methods of range measuring are short characterized. The basic attention is given features of signal processing in a correlation method of range measuring. The signal with angular modulation with one-voice-frequency fluctuation is used as a probing signal. The absence of Doppler effect on the formation of the correlation integral, the frequency instability of the transmitter, the phase change on reflection from the target is presented. It is noticed that the result of signal processing in the range measuring instrument is reduced to formation on an exit one-voice-frequency harmonious fluctuation equal to modulating frequency that provides high characteristics of a radio range finder.

  15. Implementing Software Defined Radio

    CERN Document Server

    Grayver, Eugene

    2013-01-01

    Software Defined Radio makes wireless communications easier, more efficient, and more reliable. This book bridges the gap between academic research and practical implementation. When beginning a project, practicing engineers, technical managers, and graduate students can save countless hours by considering the concepts presented in these pages. The author covers the myriad options and trade-offs available when selecting an appropriate hardware architecture. As demonstrated here, the choice between hardware- and software-centric architecture can mean the difference between meeting an aggressive schedule and bogging down in endless design iterations. Because of the author’s experience overseeing dozens of failed and successful developments, he is able to present many real-life examples. Some of the key concepts covered are: Choosing the right architecture for the market – laboratory, military, or commercial Hardware platforms – FPGAs, GPPs, specialized and hybrid devices Standardization efforts to ens...

  16. A Revised View of the Transient Radio Sky

    CERN Document Server

    Frail, D A; Ofek, E O; Bower, G C; Nakar, E

    2011-01-01

    We report on a re-analysis of archival data from the Very Large Array for a sample of ten long duration radio transients reported by Bower and others. These transients have an implied all-sky rate that would make them the most common radio transient in the sky and yet most have no quiescent counterparts at other wavelengths and therefore no known progenitor (other than Galactic neutron stars). We find that more than half of these transients are due to rare data artifacts. The remaining sources have lower signal-to-noise ratio (SNR) than initially reported by 1 to 1.5-sigma. This lowering of SNR matters greatly since the sources are at the threshold. We are unable to decisively account for the differences. By two orthogonal criteria one source appears to be a good detection. Thus the rate of long duration radio transients without optical counterparts is, at best, comparable to that of the class of recently discovered Swift J1644+57 nuclear radio transients. We revisit the known and expected classes of long dur...

  17. The far-infrared/radio correlation as probed by Herschel

    CERN Document Server

    Ivison, R J; Ibar, E; Andreani, P; Elbaz, D; Altieri, B; Amblard, A; Arumugam, V; Auld, R; Aussel, H; Babbedge, T; Berta, S; Blain, A; Bock, J; Bongiovanni, A; Boselli, A; Buat, V; Burgarella, D; Castro, N; Cava, A; Cepa, J; Chanial, P; Cimatti, A; Cirasuolo, M; Clements, D L; Conley, A; Conversi, L; Cooray, A; Daddi, E; Dominguez, H; Dowell, C D; Dwek, E; Eales, S; Farrah, D; Fox, M; Franceschini, A; Gear, W; Genzel, R; Glenn, J; Griffin, M; Gruppioni, C; Halpern, M; Hatziminaoglou, E; Isaak, K; Lagache, G; Levenson, L; Lu, N; Lutz, D; Madden, S; Maffei, B; Magdis, G; Mainetti, G; Maiolino, R; Marchetti, L; Morrison, G E; Mortier, A M J; Nguyen, H T; Nordon, R; O'Halloran, B; Oliver, S J; Omont, A; Owen, F N; Page, M J; Panuzzo, P; Papageorgiou, A; Pearson, C P; A.,; Poglitsch, A; Pohlen, M; Popesso, P; Pozzi, F; Rawlings, J I; Raymond, G; Rigopoulou, D; Riguccini, L; Rizzo, D; Rodighiero, G; Roseboom, I G; Rowan-Robinson, M; Saintonge, A; Portal, M Sanchez; Santini, P; Schulz, B; Scott, Douglas; Seymour, N; Shao, L; Shupe, D L; Smith, A J; Stevens, J A; Sturm, E; Symeonidis, M; Tacconi, L; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Vieira, J; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2010-01-01

    We set out to determine the ratio, q(IR), of rest-frame 8-1000um flux, S(IR), to monochromatic radio flux, S(1.4GHz), for galaxies selected at far-IR and radio wavelengths, to search for signs that the ratio evolves with redshift, luminosity or dust temperature, and to identify any far-IR-bright outliers - useful laboratories for exploring why the far-IR/radio correlation is generally so tight when the prevailing theory suggests variations are almost inevitable. We use flux-limited 250-um and 1.4-GHz samples, obtained in GOODS-N using Herschel (HerMES; PEP) and the VLA. We determine bolometric IR output using ten bands spanning 24-1250um, exploiting data from PACS and SPIRE, as well as Spitzer, SCUBA, AzTEC and MAMBO. We also explore the properties of an L(IR)-matched sample, designed to reveal evolution of q(IR) with z, spanning log L(IR) = 11-12 L(sun) and z=0-2, by stacking into the radio and far-IR images. For 1.4-GHz-selected galaxies, we see tentative evidence of a break in the flux ratio, q(IR), at L(1...

  18. On the connection between radio and gamma rays

    Directory of Open Access Journals (Sweden)

    Orienti M.

    2013-12-01

    Full Text Available Relativistic jets are one of the most powerful manifestations of the release of energy produced around supermassive black holes at the centre of active galactic nuclei (AGN. Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. From the comparison of the radio and gamma-ray light curves of gamma-ray flaring objects, there is evidence that some flares, either in radio or in gamma rays, have not an obvious connection at the other extreme of the electromagnetic spectrum, like in the case of the Narrow-Line Seyfert 1 SBS 0846+513. An intriguing aspect pointed out by high resolution radio observations is the change of the polarization properties close in time with some high energy flares. In particular, in PKS 1510–089 and 3C 454.3 a rotation of almost 90 degrees has been observed after strong gamma-ray flares. The swing of the polarization angle may be related either to the propagation of a shock along the jet that orders the magnetic field, or a change of the opacity regime.

  19. High resolution radio emission from RCW 49/Westerlund 2

    CERN Document Server

    Benaglia, Paula; Peri, Cintia S; Marti, Josep; Sanchez-Sutil, Juan R; Dougherty, Sean M; Noriega-Crespo, Alberto

    2013-01-01

    The HII region RCW 49 and its ionizing cluster form an extensive, complex region that has been widely studied at infrared and optical wavelengths. Molonglo 843 MHz and ATCA data at 1.4 and 2.4 GHz showed two shells. Recent high-resolution IR images revealed a complex dust structure and ongoing star formation. New high-bandwidth and high-resolution data of the RCW 49 field have been obtained to survey the radio emission at arcsec scale and investigate the small-scale features and nature of the HII region. Radio observations were collected with the new 2-GHz bandwidth receivers and the ATCA CABB correlator, at 5.5 and 9.0 GHz. In addition, archival observations at 1.4 and 2.4 GHz have been re-reduced and re-analyzed in conjunction with observations in the optical, infrared, X-ray and gamma-ray regimes.- The new 2-GHz bandwidth data result in the most detailed radio continuum images of RCW 49 to date. The radio emission closely mimics the near-IR emission observed by Spitzer, showing pillars and filaments. The b...

  20. Wavelength mismatch effect in electromagnetically induced absorption

    Science.gov (United States)

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-07-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch-near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  1. Wavelength mismatch effect in electromagnetically induced absorption

    CERN Document Server

    Bharti, Vineet; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch---near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  2. Multiple-Wavelength Pyrometry Independent Of Emissivity

    Science.gov (United States)

    Ng, Daniel

    1996-01-01

    Multiple-wavelength pyrometric method provides for determination of two sequential temperatures of same surface or temperatures of two surfaces made of same material. Temperatures measured, without knowing emissivity, by uncalibrated spectral radiometer.

  3. High efficiency dielectric metasurfaces at visible wavelengths

    CERN Document Server

    Devlin, Robert C; Chen, Wei-Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics1-3. Dielectric metasurfaces demonstrated thus far4-10 are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. It is critical that new materials and fabrication techniques be developed for dielectric metasurfaces at visible wavelengths to enable applications such as three-dimensional displays, wearable optics and planar optical systems11. Here, we demonstrate high performance titanium dioxide dielectric metasurfaces in the form of holograms for red, green and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide that exhibits low surface roughness of 0.738 nm and ideal optical properties. To fabricate the metasurfaces we use a lift-off-like process that allows us to produce highly anisotropic nanofins with shape birefringence. This ...

  4. The Density and Mass of Unshocked Ejecta in Cassiopeia A through Low Frequency Radio Absorption

    CERN Document Server

    DeLaney, Tracey; Rudnick, Lawrence; Perley, R A

    2014-01-01

    Characterizing the ejecta in young supernova remnants is a requisite step towards a better understanding of stellar evolution. In Cassiopeia A the density and total mass remaining in the unshocked ejecta are important parameters for modeling its explosion and subsequent evolution. Low frequency (<100 MHz) radio observations of sufficient angular resolution offer a unique probe of unshocked ejecta revealed via free-free absorption against the synchrotron emitting shell. We have used the Very Large Array plus Pie Town Link extension to probe this cool, ionized absorber at 9 arcseconds and 18.5 arcseconds resolution at 74 MHz. Together with higher frequency data we estimate an electron density of 4.2 electrons per cubic centimeters and a total mass of 0.39 Solar masses with uncertainties of a factor of about 2. This is a significant improvement over the 100 electrons per cubic centimeter upper limit offered by infrared [S III] line ratios from the Spitzer Space Telescope. Our estimates are sensitive to a numb...

  5. Radio and Optical Observations of DG Tau B

    CERN Document Server

    Rodríguez, Luis F; Loinard, Laurent; Zapata, Luis A; Raga, Alejandro C; Cantó, Jorge; Riera, Angels

    2012-01-01

    DG Tau B is a Class I young stellar source that drives the asymmetric HH 159 bipolar jet. At optical wavelengths it is obscured by circumstellar optically-thick material. Using VLA and JVLA observations, we determine for the first time the proper motions of this source and find them to be consistent, within error, with those of the nearby young star DG Tau. We also discuss an ejection event that is evident in the 1994 VLA data. As the optical and molecular outflows, this ejection traced in the radio continuum is markedly asymmetric and was detected only to the NW of the star. We propose that this knot, no longer detectable in the radio, could be observed in future optical images of DG Tau B. The positions of the VLA source and of a nearby infrared object are not coincident and we suggest that the VLA source traces the exciting object, while the infrared source could be a reflection lobe.

  6. The ATLAS-SPT Radio Survey of Cluster Galaxies

    CERN Document Server

    O'Brien, A N; Norris, R P; Filipović, M D

    2016-01-01

    Using a high-performance computing cluster to mosaic 4,787 pointings, we have imaged the 100 sq. deg. South Pole Telescope (SPT) deep-field at 2.1 GHz using the Australian Telescope Compact Array to an rms of 80 $\\mu$Jy and a resolution of 8". Our goal is to generate an independent sample of radio-selected galaxy clusters to study how the radio properties compare with cluster properties at other wavelengths, over a wide range of redshifts in order to construct a timeline of their evolution out to $z \\sim 1.3$. A preliminary analysis of the source catalogue suggests there is no spatial correlation between the clusters identified in the SPT-SZ catalogue and our wide-angle tail galaxies.

  7. A Michelson-type Radio Interferometer for University Education

    CERN Document Server

    Koda, Jin; Hasegawa, Tetsuo; Hayashi, Masahiko; Shafto, Gene; Slechta, Jeff; Metchev, Stanimir

    2016-01-01

    We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry. The design of this interferometer is based on the Michelson & Pease stellar optical interferometer, but operates at a radio wavelength (~11 GHz; ~2.7cm); thus the requirement for optical accuracy is much less stringent. We utilize a commercial broadcast satellite dish and feedhorn. Two flat side mirrors slide on a ladder, providing baseline coverage. This interferometer resolves and measures the diameter of the Sun, a nice daytime experiment which can be carried out even in marginal weather (i.e., partial cloud cover). Commercial broadcast satellites provide convenient point sources for comparison to the Su...

  8. Multi-Wavelength Variability Properties of Fermi Blazar S5 0716+714

    Indian Academy of Sciences (India)

    N. H. Liao; J. M. Bai; H. T. Liu; S. S. Weng; Liang Chen; F. Li

    2014-09-01

    The multi-wavelength variability properties of blazar S5 0716 + 714 are reported. We construct multi-wavelength light curves of radio, optical, X-ray and -ray including our optical observation at Yunnan Observatories. In all the bands, the light curves show intense variabilities. The variability amplitudes in -ray and optical bands are larger than those in the hard X-ray and radio bands. The characteristic variability timescales at 14.5 GHz, optical, X-ray, and -ray bands are comparable. The variations of the hard X-ray and 14.5GHz emissions are correlated with zero lag, and so are the V band and -ray variations. The multi-wavelength variability behaviours can be naturally explained by the classic leptonic model. We model the average SED of S5 0716 + 714 by leptonic model. The SSC+ERC model using the external seed photons from hot dust or Broad Line Region (BLR) emission is probably favourable avoiding the extreme input parameters from the pure SSC model.

  9. Principle analysis of IP wavelength router

    Institute of Scientific and Technical Information of China (English)

    王勇; 殷洪玺; 徐安士; 吴德明

    2001-01-01

    Combining IP with WDM is an attractive direction for research. WDM will play an important role in IP network in future. Now, an urgent problem is how to introduce wavelength routing in an IP network. We solve this problem by designing IP wavelength router, implementing DPDP (default path and dedicated path) method. We prove the reasonableness and feasibility of this design by a principle experiment. A lot of problems related to this design are also discussed.

  10. Short wavelength regenerative amplifier free electron lasers

    OpenAIRE

    Dunning, D J; McNeil, B. W. J.; Thompson, N. R.

    2008-01-01

    In this paper we discuss extending the operating wavelength range of tunable Regenerative Amplifier FELs to shorter wavelengths than current design proposals, notably into the XUV regions of the spectrum and beyond where the reflectivity of broadband optics is very low. Simulation studies are presented which demonstrate the development of good temporal coherence in generic systems with a broadband radiation feedback of less than one part in ten thousand.

  11. Physical Analysis of the Jovian Synchrotron Radio Emission

    Science.gov (United States)

    Santos-Costa, D.; Bolton, S. J.; Levin, S. M.; Thorne, R. M.

    2006-12-01

    We present results of our recent investigation of the Jovian synchrotron emission based on a particle transport code. The features of the two-dimensional brightness distributions, radio spectra and beaming curves are correlated to the different phenomena driven the dynamics of the electron radiation belts. The adiabatic invariant theory was used for performing this analysis work. The theoretical approach first enabled us to describe the electron radiation belts by modeling the interactions between high-energy trapped particles and plasmas, neutrals, moons, dust and magnetic field. Then radio observations were used to discuss the computed particle distributions in the inner magnetosphere of Jupiter. The simulated brightness mappings were compared with VLA observations made at two wavelengths (20 and 6 cm). The beaming curve comparisons at 13-cm wavelength were performed for different epochs in order to evaluate the dependence of the model to the geometric factor De. The computed radio spectra were discussed with measurements made in the [0.5-20] GHz radio band. The simulation results match the different remote observations very well and thus allowed us to study the phenomenology of the Jovian synchrotron radio emission. The analysis of the Jovian synchrotron emission demonstrates that during the inward particle transport, local losses associated with the Jovian moons set the extension and intensity of the synchrotron radiation along the magnetic equator. Close to the planet, trapped electrons suffer from the interactions with dust and magnetic field, resulting in the transport of particles toward the high latitudes. The quantity of particles transported away from the equator is sufficient to produce the measurable secondary radio emissions. The simulations show that the moon sweeping effect controls both the transport toward the planet and at high latitudes by reducing the abundance of particles constrained to populate the regions out of the equator. Among the

  12. JVLA observations of IC 348 SW: Compact radio sources and their nature

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Palau, Aina, E-mail: l.rodriguez@crya.unam.mx, E-mail: l.zapata@crya.unam.mx, E-mail: a.palau@crya.unam.mx [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico)

    2014-07-20

    We present sensitive 2.1 and 3.3 cm Jansky Very Large Array radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, 7 of which are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797, we detect a double radio source at its center, separated by ∼3''. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.

  13. Probing the accelerating Universe with radio weak lensing in the JVLA Sky Survey

    CERN Document Server

    Brown, M L; Amara, A; Bacon, D J; Battye, R A; Bell, M R; Beswick, R J; Birkinshaw, M; Böhm, V; Bridle, S; Browne, I W A; Casey, C M; Demetroullas, C; lin, T Enß; Ferreira, P G; Garrington, S T; Grainge, K J B; Gray, M E; Hales, C A; Harrison, I; Heavens, A F; Heymans, C; Hung, C L; Jackson, N J; Jarvis, M J; Joachimi, B; Kay, S T; Kitching, T D; Leahy, J P; Maartens, R; Miller, L; Muxlow, T W B; Myers, S T; Nichol, R C; Patel, P; Pritchard, J R; Raccanelli, A; Refregier, A; Richards, A M S; Riseley, C; Santos, M G; Scaife, A M M; Schäfer, B M; Schilizzi, R T; Smail, I; Starck, J -L; Szepietowski, R M; Taylor, A N; Whittaker, L; Wrigley, N; Zuntz, J

    2013-01-01

    We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be con...

  14. Radio Weak Lensing Shear Measurement in the Visibility Domain - I. Methodology

    CERN Document Server

    Rivi, Marzia; Makhathini, Sphesihle; Abdalla, Filipe Batoni

    2016-01-01

    The high sensitivity of the new generation of radio telescopes such as the Square Kilometre Array (SKA) will allow cosmological weak lensing measurements at radio wavelengths that are competitive with optical surveys. We present an adaptation to radio data of "lensfit", a method for galaxy shape measurement originally developed and used for optical weak lensing surveys. This likelihood method uses an analytical galaxy model and makes a Bayesian marginalisation of the likelihood over uninteresting parameters. It has the feature of working directly in the visibility domain, which is the natural approach to adopt with radio interferometer data, avoiding systematics introduced by the imaging process. As a proof of concept, we provide results for visibility simulations of individual galaxies with flux density S >= 10muJy at the phase centre of the proposed SKA1-MID baseline configuration, adopting 12 frequency channels in the band 950-1190 MHz. Weak lensing shear measurements from a population of galaxies with rea...

  15. JVLA Observations of IC 348SW: Compact Radio Sources and their Nature

    CERN Document Server

    Rodriguez, L F; Palau, A

    2014-01-01

    We present sensitive 2.1 and 3.3 cm JVLA radio continuum observations of the region IC 348 SW. We detect a total of 10 compact radio sources in the region, of which seven are first reported here. One of the sources is associated with the remarkable periodic time-variable infrared source LRLL 54361, opening the possibility of monitoring this object at radio wavelengths. Four of the sources appear to be powering outflows in the region, including HH 211 and HH 797. In the case of the rotating outflow HH 797 we detect at its center a double radio source, separated by $\\sim3"$. Two of the sources are associated with infrared stars that possibly have gyrosynchrotron emission produced in active magnetospheres. Finally, three of the sources are interpreted as background objects.

  16. System and method for phase retrieval for radio telescope and antenna control

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2013-01-01

    Disclosed herein are systems, methods, and non-transitory computer-readable storage media for radio phase retrieval. A system practicing the method gathers first data from radio waves associated with an object observed via a first aperture, gathers second data from radio waves associated with the object observed via an introduced second aperture associated with the first aperture, generates reduced noise data by incoherently subtracting the second data from the first data, and performs phase retrieval for the radio waves by modeling the reduced noise data using a single Fourier transform. The first and second apertures are at different positions, such as side by side. This approach can include determining a value Q which represents a ratio of wavelength times a focal ratio divided by pixel spacing. This information can be used to accurately measure and correct alignment errors or other optical system flaws in the apertures.

  17. Titan Extinction Profiles Observed by Cassini Radio Occultations and Implications

    Science.gov (United States)

    Marouf, Essam; French, Richard; Flasar, F. Michael; Schinder, Paul J.; Rappaport, Nicole J.

    Three monochromatic and phase-coherent radio signals of wavelength = 0.9, 3.6, and 13 cm (Ka-, X-, and S-bands), were propagated by Cassini through the neutral atmosphere of Titan and the refracted signals were observed on the Earth. Abel inversion of observed changes in the signal frequency is used to recover the refractivity profile of the atmosphere, hence estimate the expected loss in signal strength due to defocusing of the radio signal by differential refraction. The refractive defocusing component (wavelength independent, in principle) is then removed from the actual measured signal strength profiles yielding the "true" signal extinction due to absorption and scattering integrated along the propagation path. Abel inversion of the integrated intensity profiles, tempered to combat noise contribution, yields localized estimates of the extinction coefficient (absorbtivity) as a function of altitude, or the extinction profiles. The initial radio measurements are diffraction-limited. We extend Fresnel transform based diffraction reconstruction procedures developed for radio occultation observations of planetary rings to remove diffraction effects from the initial radio measurements. The procedures are tested using idealized models of simple isothermal atmospheric profile extending above a hard-limb (knife-edge) model. Reconstruction of the simulated "observed" diffraction-limited data shows good agreement with the assumed atmospheric profile and the location of the hard-limb for a range of model parameters. We then apply a similar approach to the actual measured data. Strong wavelength-dependent extinction coefficient profile behavior is observed. Its large-scale structure appears well modeled by predictions based on N2-N2 collision-induced gaseous absorption for Titan's physical conditions. Interesting localized features of yet unexplained origin are also observed. Because the spatial scales of the extinction profile features are relatively large compared with

  18. Radio emission in Mercury magnetosphere

    Science.gov (United States)

    Varela, J.; Reville, V.; Brun, A. S.; Pantellini, F.; Zarka, P.

    2016-10-01

    Context. Active stars possess magnetized wind that has a direct impact on planets that can lead to radio emission. Mercury is a good test case to study the effect of the solar wind and interplanetary magnetic field (IMF) on radio emission driven in the planet magnetosphere. Such studies could be used as proxies to characterize the magnetic field topology and intensity of exoplanets. Aims: The aim of this study is to quantify the radio emission in the Hermean magnetosphere. Methods: We use the magnetohydrodynamic code PLUTO in spherical coordinates with an axisymmetric multipolar expansion for the Hermean magnetic field, to analyze the effect of the IMF orientation and intensity, as well as the hydrodynamic parameters of the solar wind (velocity, density and temperature), on the net power dissipated on the Hermean day and night side. We apply the formalism derived by Zarka et al. (2001, Astrophys. Space Sci., 277, 293), Zarka (2007, Planet. Space Sci., 55, 598) to infer the radio emission level from the net dissipated power. We perform a set of simulations with different hydrodynamic parameters of the solar wind, IMF orientations and intensities, that allow us to calculate the dissipated power distribution and infer the existence of radio emission hot spots on the planet day side, and to calculate the integrated radio emission of the Hermean magnetosphere. Results: The obtained radio emission distribution of dissipated power is determined by the IMF orientation (associated with the reconnection regions in the magnetosphere), although the radio emission strength is dependent on the IMF intensity and solar wind hydro parameters. The calculated total radio emission level is in agreement with the one estimated in Zarka et al. (2001, Astrophys. Space Sci., 277, 293) , between 5 × 105 and 2 × 106 W.

  19. Measuring the Symmetry of Supernova Remnants in the Radio

    Science.gov (United States)

    Stafford, Jennifer; Lopez, Laura A.

    2017-01-01

    Nearly 300 supernova remnants (SNRs) are known in the MIlky Way galaxy, and they offer an important means to study the explosions and interactions of supernovae at sub-pc scales. In this poster, we present analysis of the morphology of Galactic SNRs at radio wavelengths. Specifically, we measure the symmetry of several tens of SNRs in 6- and 20-cm Very Large Array images using a multipole expansion technique, the power-ratio method. We explore how the SNRs' morphology changes as a function of their size and estimated dynamical ages, with the aim of probing how SNR shapes evolve with time.

  20. Diffuse bubble-like radio-halo emission in MRC 0116+111: Imprint of AGN feedback in a distant cluster of galaxies

    CERN Document Server

    Bagchi, Joydeep; Gopal-Krishna,; Wadnerkar, Nitin; Belapure, J; Werner, Norbert; Kumbharkhane, A C

    2009-01-01

    We report the discovery of a luminous, mini radio halo of ~240 kpc dimension at the center of a distant cluster of galaxies at redshift z = 0.131. Our optical and multi-wavelength GMRT and VLA observations reveal a highly unusual structure showing a twin bubble-like diffuse radio halo surrounding a cluster of bright elliptical galaxies; very similar to the large-scale radio structure of M87, the dominant galaxy in Virgo cluster. It presents an excellent opportunity to understand the energetics and the dynamical evolution of such radio jet inflated plasma bubbles in the hot cluster atmosphere.

  1. On Using Solar Radio Emission to Probe Interiors of Asteroids and Comets

    Science.gov (United States)

    Winebrenner, D. P.; Gary, D. E.; Sahr, J. D.; Asphaug, E. I.

    2015-12-01

    Asteroids, comets and other primitive solar system bodies are key sources of information on the early solar system, on volatiles and organics delivered to the terrestrial planets, and on processes of planetary formation now observed in operation around other stars. Whether asteroids (in various size classes) are rubble piles or monolithic, and whether any porosity or internal voids contain volatiles, are first-order questions for understanding the delivery of volatiles to the early Earth, and for assessing impact hazards. Information on bulk composition aids discrimination between types and origins of primitive bodies, .e.g., the degree of aqueous alteration and bound-water content of carbonaceous chondrite bodies, and the volatile mass fraction of comets. Radar and radio methods can provide direct information on bulk composition, micro- and macro-porosity, body-scale internal structure, and on whether voids in rocky materials are volatile- or vacuum-filled. Such methods therefore figure prominently in current missions to primitive bodies (e.g., CONSERT) and in a variety of proposed missions. Radio transmitters necessary for conventional methods, however, add considerably to spacecraft mass and power requirements. Moreover, at many wavelengths most useful for radio sounding, powerful radio emission from the Sun strongly interferes with conventional signals. Here we present initial results from an investigation of how solar radio emission could serve as a natural resource for probing interiors of primitive bodies, rather than as interference. We briefly review methods for using stochastic radio illumination (aka noise radar methods), and illustrate the characteristics of solar radio emission relevant to mission design (e.g., observed intervals between emission events of specified intensity for different points in the solar cycle). We then discuss methods for selecting and interpreting observations in terms of interior properties, for bodies is different size classes

  2. CHANG-ES VI: Probing Supernova Energy Deposition in Spiral Galaxies Through Multi-Wavelength Relationships

    CERN Document Server

    Li, Jiang-Tao; Dettmar, Ralf-Jurgen; Heald, George; Irwin, Judith; Johnson, Megan; Kepley, Amanda A; Krause, Marita; Murphy, E J; Orlando, Elena; Rand, Richard J; Strong, A W; Vargas, Carlos J; Walterbos, Rene; Wang, Q Daniel; Wiegert, Theresa

    2015-01-01

    How a galaxy regulates its SNe energy into different interstellar/circumgalactic medium components strongly affects galaxy evolution. Based on the JVLA D-configuration C- (6 GHz) and L-band (1.6 GHz) continuum observations, we perform statistical analysis comparing multi-wavelength properties of the CHANG-ES galaxies. The high-quality JVLA data and edge-on orientation enable us for the first time to include the halo into the energy budget for a complete radio-flux-limited sample. We find tight correlations of $L_{\\rm radio}$ with the mid-IR-based SFR. The normalization of our $I_{\\rm 1.6GHz}/{\\rm W~Hz^{-1}}-{\\rm SFR}$ relation is $\\sim$2-3 times of those obtained for face-on galaxies, probably a result of enhanced IR extinction at high inclination. We also find tight correlations between $L_{\\rm radio}$ and the SNe energy injection rate $\\dot{E}_{\\rm SN(Ia+CC)}$, indicating the energy loss via synchrotron radio continuum accounts for $\\sim0.1\\%$ of $\\dot{E}_{\\rm SN}$, comparable to the energy contained in CR ...

  3. Radio Search For Extrasolar Planets

    Science.gov (United States)

    Zarka, P.

    Theoretical justification and ongoing observational efforts in view of detecting radio emissions from extrasolar planets will be presented. On the "prediction" side, a heuris- tic scaling law has been established relating the radio output of any magnetized flow- obstacle system to the incident magnetic energy flux on the obstacle. Its confirmation by the observation of radio emission from extrasolar planets would help to understand the energy budget of such a system. On the "detection" side, specific procedures have been developed for interference mitigation and weak burst detection.

  4. Advanced Radio Resource Management for Multi Antenna Packet Radio Systems

    OpenAIRE

    Stanislav Nonchev; Mikko Valkama

    2010-01-01

    In this paper, we propose fairness-oriented packet scheduling (PS) schemes with power-efficientcontrol mechanism for future packet radio systems. In general, the radio resource managementfunctionality plays an important role in new OFDMA based networks. The control of the networkresource division among the users is performed by packet scheduling functionality based on maximizingcell coverage and capacity satisfying, and certain quality of service requirements. Moreover, multiantennatransmit-r...

  5. Optical lithography at a 126-nm wavelength

    Science.gov (United States)

    Kang, Hoyoung; Bourov, Anatoly; Smith, Bruce W.

    2001-08-01

    There is a window of opportunity for optical lithography between wavelengths of 100 nm and 157 nm that warrants exploration as a next generation technology. We will present activities underway to explore the feasibility of VUV optical lithography in this region with respect to source, optical design, materials, processes, masks, resolution enhancement, and compatibility with existing technologies. We have constructed a small field prototype lithography system using the second continuum 126nm emission wavelength of the Argon excimer. This has been accomplished using a small dielectric barrier discharge lamp with output on the order of 10mW/cm2 and small field catoptric imaging systems based on a modified Cassegrain system. Capacitance focus gauge and piezo electric stage has been installed for fine focusing. In order to achieve sub-half wavelength resolution that would be required to compete with 157nm lithography and others, we have started exploring the feasibility of using liquefied noble gas immersion fluids to increase effective value of lens numerical aperture by factors approaching 1.4x. Conventional silylation process works well with 126nm with high sensitivity. Chemically amplified DUV negative resist looks very good material for 126 nm. Initial contact printing image shows good selectivity and process control. An effort is also underway to explore the use of inorganic resist materials, as silver halide material for instance, to replace the conventional polymeric imaging systems that are currently employed at longer wavelengths, but may be problematic at these VUV wavelengths. Early accomplishments are encouraging. Prototype optical research tools can be used to reveal issues involved with 126nm lithography and solve initial problems. Though many challenges do exist at this short wavelength, it is quite feasible that lithography at this wavelength could meet the part of the needs of future device generations.

  6. Observation of quasi-periodic solar radio bursts associated with propagating fast-mode waves

    Science.gov (United States)

    Goddard, C. R.; Nisticò, G.; Nakariakov, V. M.; Zimovets, I. V.; White, S. M.

    2016-10-01

    Aims: Radio emission observations from the Learmonth and Bruny Island radio spectrographs are analysed to determine the nature of a train of discrete, periodic radio "sparks" (finite-bandwidth, short-duration isolated radio features) which precede a type II burst. We analyse extreme ultraviolet (EUV) imaging from SDO/AIA at multiple wavelengths and identify a series of quasi-periodic rapidly-propagating enhancements, which we interpret as a fast wave train, and link these to the detected radio features. Methods: The speeds and positions of the periodic rapidly propagating fast waves and the coronal mass ejection (CME) were recorded using running-difference images and time-distance analysis. From the frequency of the radio sparks the local electron density at the emission location was estimated for each. Using an empirical model for the scaling of density in the corona, the calculated electron density was used to obtain the height above the surface at which the emission occurs, and the propagation velocity of the emission location. Results: The period of the radio sparks, δtr = 1.78 ± 0.04 min, matches the period of the fast wave train observed at 171 Å, δtEUV = 1.7 ± 0.2 min. The inferred speed of the emission location of the radio sparks, 630 km s-1, is comparable to the measured speed of the CME leading edge, 500 km s-1, and the speeds derived from the drifting of the type II lanes. The calculated height of the radio emission (obtained from the density) matches the observed location of the CME leading edge. From the above evidence we propose that the radio sparks are caused by the quasi-periodic fast waves, and the emission is generated as they catch up and interact with the leading edge of the CME. The movie associated to Fig. 2 is available at http://www.aanda.org

  7. Recent Radio Monitoring of Microquasars with RATAN-600 Radio Telescope

    CERN Document Server

    Trushkin, S A; Kotani, T; Nizhelskij, N A; Namiki, M; Tsuboi, M; Voitsik, P A

    2007-01-01

    We report about the multi-frequency (1-30 GHz) daily monitoring of the radio flux variability of the three microquasars: SS433, GRS1915+105 and Cyg X-3 during the period from September 2005 to May 2006. 1. We detected clear correlation of the flaring radio fluxes and X-rays 'spikes' at 2-12 keV emission detected in RXTE ASM from GRS1915+105 during eight relatively bright (200-600 mJy) radio flares in October 2005. The 1-22 GHz spectra of these flares in maximum were optically thick at frequencies lower 2.3 GHz and optically thin at the higher frequencies. During the radio flares the spectra of the X-ray spikes become softer than those of the quiescent phase. Thus these data indicated the transitions from very high/hard states to high/soft ones during which massive ejections are probably happened. These ejections are visible as the detected radio flares. 2. After of the quiescent radio emission we have detected a drop down of the fluxes (~20 mJy) from Cyg X-3. That is a sign of the following bright flare. Inde...

  8. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  9. Radio signatures of lightning discharges in exoplanets and brown dwarfs

    Science.gov (United States)

    Hodosán, Gabriella; Helling, Christiane; Vorgul, Irena

    2014-05-01

    Lightning related signatures can be found in the whole spectral range from radio to gamma-rays. While for example UV, visible or IR molecular emission (as the lightning discharge causes changes in the local chemistry) depends on the composition of the atmosphere of the extrasolar body, radio signatures do not have this limitation, which means they may give us a universal tool for lightning observations outside the Solar System, both on exoplanets and brown dwarfs. Lightning induced radio signatures have three main types. Sferics emit in the low-frequency (LF) range with a power density peak at 10 kHz on Earth. (Aplin, K. L., 'Electrifying atmospheres', Springer 2013) Whistlers are electromagnetic waves propagating along magnetic field lines and emitting in the very low-frequency (VLF) range. (Desch, S. J. et al. 2002, Rep. Prog. Phys. 65, 955) While Schumann-resonances are VLF lightning discharge-induced electromagnetic oscillations of the earth-ionosphere cavity. (Simões, F. et al. 2012, LPICo 1683, 1052) There are certain factors that limit the observability of radio signatures. Every object with an ionosphere has a low cutoff frequency. This means radio waves with frequencies below this peak-frequency cannot propagate through the atmosphere. For Earth this value is about 5-10 MHz. However, the values for extrasolar atmospheres remain to be determined. Besides that, natural background noises like the galactic radio background or photo-electron noises give a limitation. (Zarka et al. 2012, PSS 74, 156) Putting all together, radio signatures with frequency below 10 MHz might only be observable from space. Waves below 30 kHz would not be able to reach the inner Solar System. (Zarka et al. 2012, PSS 74, 156) We show a general summary of radio signatures and their properties. A table of other lightning discharge signatures that have been observed either on Earth or other Solar System planets is also included. This table, also contains a list of different instruments

  10. Microwave absorptivity in the Saturn atmosphere from Cassini Radio Science

    Science.gov (United States)

    Kliore, A. J.; Marouf, E. A.; Flasar, F. M.

    2011-12-01

    Since 2005, the Cassini spacecraft has collected data from numerous radio occultations by the atmosphere of Saturn. These occultations probed a wide range of latitudes, ranging from equatorial to near-polar. The radio system of Cassini transmits three coherent downlinks to Earth at S-Band (13.04 cm), X-Band (3.56 cm), and Ka-Band (0.94 cm) wavelengths. With the Deep Space Net 70 m receiving stations, The signal-to-noise ratio (SNR) is approximately 48 dB at X-Band, and 38 dB at S-band. At Ka-band, 34 m DSN stations are used, resulting in an SNR of about 41 dB. These SNRs are quite adequate to follow the signals through the top of the microwave-absorbing regions before the noise-floor is reached. By subtracting the refractive defocusing attenuation in the atmosphere (derived from the phase data) from the total attenuation, one obtains the attenuation due to absorption (dB0, which can then be inverted to obtain vertical profiles of absorptivity (dB km-1 ) at each of the three wavelengths. Preliminary results show the expected large effect of wavelength on the absorptivity profiles, with the shorter wavelength signals being absorbed higher in the atmosphere. These profiles can be used to estimate the vertical density profiles of known microwave absorbers, such as NH3 and PH3, examples of which are presented .This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, San Jose State University, and NASA Goddard Space Flight Center with support from the Cassini program.

  11. A Search for Radio Emission from Nearby Exoplanets

    Science.gov (United States)

    Maps, Amethyst D.; Bastian, Timothy S.; Beasley, Anthony J.

    2017-01-01

    Since the discovery of the first extrasolar planet orbiting a main sequence star more than 20 years ago, the study of exoplanets has become a burgeoning field with more than 3300 confirmed extrasolar planets now known. A variety of techniques has been used to discover exoplanets orbiting main sequence stars and to deduce their properties: timing, radial velocities, direct imaging, microlensing, and transits in the optical/IR bands. Absent from this list so far is the detection of exoplanets at radio wavelengths, but not for lack of trying. Searches for radio emission from exoplanets predate their discovery (Winglee et al. 1986) and have continued sporadically to this day. The majority of searches for radio emission from exoplanets has searched for coherent radio emission. It is indeed the case that in our own solar system, all magnetized planets are powerful radio emitters, the likely emission mechanism being the cyclotron maser instability. The outstanding example is Jupiter, which emits 1010-1011 W at decameter wavelengths (frequencies planets in other solar systems, many must surely emit CMI radiation. The emitted radiation could be orders of magnitude more intense than Jupiter’s if the interaction between the magnetized planet and the wind from the primary star is stronger than the Sun/Jupiter interaction - due, for example, to a more powerful wind and/or the planet being closer to the star.We have initiated a new search for radio emission from exoplanets, focusing on all known exoplanetary systems within 20 pc - more than 50 systems containing nearly 100 planets using the Jansky Very Large Array (JVLA) in three frequency bands: 1-2 GHz, 2-4 GHz, and 4-8 GHz with a target sensitivity of ~10 microJy. We have completed the 2-4 GHz survey and report our preliminary results, which include the detection of two systems. We discuss whether the emission is from a planet or from the star and the implications of our conclusions for habitability of exoplanets.

  12. Exploring the Last Electromagnetic Frontier with the Long Wavelength Array (LWA)

    Science.gov (United States)

    Kassim, Namir E.; Cohen, A. S.; Crane, P. C.; Gross, C. A.; Hicks, B. C.; Lane, W. M.; Lazio, J.; Polisensky, E. J.; Ray, P. S.; Weiler, K. W.; Clarke, T. E.; Schmitt, H. R.; Hartman, J. M.; Helmboldt, J. F.; Craig, J.; Gerstle, W.; Pihlstrom, Y.; Rickard, L. J.; Taylor, G. B.; Ellingson, S. W.; D'Addario, L. R.; Navarro, R.

    2009-05-01

    Several decades ago, instruments like the Very Large Array (VLA) first opened the GHz frequency sky to high dynamic range imaging. Today, a path-finding VLA 74 MHz system is providing the first sub-arcminute resolution view of the radio universe below 100 MHz, a technical innovation inspiring an emerging suite of large (> 100 km), much more powerful long-wavelength instruments including the Long Wavelength Array (LWA). Similar in philosophy to the VLA and also located in New Mexico, the LWA will be a versatile, user-oriented electronic array designed to open the 20--80 MHz frequency range to detailed exploration for the first time. The LWA's mJy sensitivity and near-arcsecond resolution will surpass, by 2--3 orders of magnitude, the imaging power of previous interferometers in its frequency range. LWA scientific frontiers include: (1) the high-z universe, including distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy, respectively; (2) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays and supernova remnants; (3) planetary, solar, and space science, including space-weather prediction and extra-solar planet searches; and (4) the radio transient universe including GRBs, ultra-high energy cosmic rays, and new sources of unknown origin. Because the LWA will explore one of the most poorly investigated spectral regions the potential for new discoveries is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements. The LWA will also provide an unparalleled measure of small-scale ionospheric structure, a pre-requisite for accurate calibration and imaging. This presentation focuses on LWA science, while a companion paper reviews the technical design subjected to Preliminary Design Review in March 2009. Basic research in radio astronomy at the Naval Research Laboratory is supported

  13. Cassini Radio Occultation by Enceladus Plume

    Science.gov (United States)

    Kliore, A.; Armstrong, J.; Flasar, F.; French, R.; Marouf, E.; Nagy, A.; Rappaport, N.; McGhee, C.; Schinder, P.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Aguilar, R.; Rochblatt, D.

    2006-12-01

    A fortuitous Cassini radio occultation by Enceladus plume occurs on September 15, 2006. The occultation track (the spacecraft trajectory in the plane of the sky as viewed from the Earth) has been designed to pass behind the plume (to pass above the south polar region of Enceladus) in a roughly symmetrical geometry centered on a minimum altitude above the surface of about 20 km. The minimum altitude was selected primarily to ensure probing much of the plume with good confidence given the uncertainty in the spacecraft trajectory. Three nearly-pure sinusoidal signals of 0.94, 3.6, and 13 cm-wavelength (Ka-, X-, and S-band, respectively) are simultaneously transmitted from Cassini and are monitored at two 34-m Earth receiving stations of the Deep Space Network (DSN) in Madrid, Spain (DSS-55 and DSS-65). The occultation of the visible plume is extremely fast, lasting less than about two minutes. The actual observation time extends over a much longer time interval, however, to provide a good reference baseline for potential detection of signal perturbations introduced by the tenuous neutral and ionized plume environment. Given the likely very small fraction of optical depth due to neutral particles of sizes larger than about 1 mm, detectable changes in signal intensity is perhaps unlikely. Detection of plume plasma along the radio path as perturbations in the signals frequency/phase is more likely and the magnitude will depend on the electron columnar density probed. The occultation time occurs not far from solar conjunction time (Sun-Earth-probe angle of about 33 degrees), causing phase scintillations due to the solar wind to be the primary limiting noise source. We estimate a delectability limit of about 1 to 3E16 electrons per square meter columnar density assuming about 100 seconds integration time. Potential measurement of the profile of electron columnar density along the occultation track is an exciting prospect at this time.

  14. SETI and International Radio Law

    Science.gov (United States)

    Lyall, F.

    2010-04-01

    The use of radio in SETI is subject to international rules agreed through the International Telecommunication Union. These are summarised. An opportunity for their revision will arise in 2012. Suggestions may be made.

  15. Coherent Radio Emission from Pulsars

    CERN Document Server

    Mitra, Dipanjan; Gil, Janusz

    2015-01-01

    We review a physical model where the high brightness temperature of 10$^{25}-10^{30}$ K observed in pulsar radio emission is explained by coherent curvature radiation excited in the relativistic electron-positron plasma in the pulsar magnetosphere.

  16. Miniaturized Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Bennett Aerospace and Team Partners propose to develop a small, lightweight, and very power-efficient mobile radio for use on the Lunar surface. Our Team will...

  17. The Concept of 'Radio Music'

    DEFF Research Database (Denmark)

    Fjeldsøe, Michael

    2016-01-01

    In the late 1920s, young composers and musicians turned towards new fields of activity and new media in order to reach a larger audience. In Germany, this effort was part of the movement of Neue Sachlichkeit, and for a short period of time, Radiomusik was considered the ideal means for a democratic......, as discussed by Kurt Weill and Paul Hindemith, was at first greeted with great expectations, but soon a more realistic attitude prevailed. Weill, himself a radio critic as well, composed Der Lindberghflug (1929) as a piece of ‘radio music theatre’, but then changed some of its features in order to turn...... it into a didactical play for amateurs, a so-called Lehrstück. The article will present the concept of ‘radio music’ developed within German Neue Sachlichkeit and discuss the relevance of such a concept for current research in the field of radio and music....

  18. Reconfigurable, Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — AeroAstro proposes to develop a low-power, low-volume and lightweight, state-of-the-art digital radio capable of operating in a wide variety of bands, from VHF...

  19. Reconfigurable, Digital EVA Radio Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The nature of human exploration missions to the Moon and Mars demands a frequency-agile, reconfigurable, durable digital radio delivering telemetry, ranging, voice,...

  20. On the evaluation of Web Radio

    NARCIS (Netherlands)

    Field, A.N.; Hartel, P.H.

    2001-01-01

    We develop an evaluation method for Web radio, and perform it to see what we can be learnt about seven prominent Web radio sites. We also evaluate a commercial FM radio station for control purposes. We present a taxonomy of Web radio, and we give our observations and conclusions on this evaluation.

  1. Innovativeness and the Public Radio Audience.

    Science.gov (United States)

    Williams, Wenmouth, Jr.; Krugman, Dean M.

    1981-01-01

    A public radio audience was surveyed to test the hypothesis that a relationship exists between innovativeness and public radio listening. Rather than supporting the hypothesis, findings indicate that the entertainment and information elements of public radio are the primary attractions for the public radio audience. (MER)

  2. Radio Implementation of a Testbed For Cognitive Radio Source Localization Using USRPS and GNU Radio

    Science.gov (United States)

    2014-09-01

    pp. 116–130, 2009. [4] R.A. Rashid , M.A. Sarijari, N. Fisal, S.K.S. Yusof and N.H. Mahalin, “Spectrum sensing measurement using GNU Radio and...USRP software radio platform,” in Proc. 7th Int. Conf. Wireless and Mobile Commun., Luxembourg, 2011. [5] R.A. Rashid , M.A. Sarijari, N. Fisal...Sarijari, A. Marwanto, N. Fisal, S.K.S. Yusof and R.A Rashid , “Energy detection sensing based on GNU Radio and USRP: An analysis study,” in Proc

  3. Radio and line transmission 2

    CERN Document Server

    Roddy, Dermot

    2013-01-01

    Radio and Line Transmission, Volume 2 gives a detailed treatment of the subject as well as an introduction to additional advanced subject matter. Organized into 14 chapters, this book begins by explaining the radio wave propagation, signal frequencies, and bandwidth. Subsequent chapters describe the transmission lines and cables; the aerials; tuned and coupled circuits; bipolar transistor amplifiers; field-effect transistors and circuits; thermionic valve amplifiers; LC oscillators; the diode detectors and modulators; and the superheterodyne receiver. Other chapters explore noise and interfere

  4. Radio interferometry and satellite tracking

    CERN Document Server

    Kawase, Seiichiro

    2012-01-01

    Worldwide growth of space communications has caused a rapid increase in the number of satellites operating in geostationary orbits, causing overcrowded orbits. This practical resource is designed to help professionals overcome this problem. This timely book provides a solid understanding of the use of radio interferometers for tracking and monitoring satellites in overcrowded environments. Practitioners learn the fundamentals of radio interferometer hardware, including antennas, receiving equipment, signal processing and phase detection, and measurement accuracies. This in-depth volume describ

  5. A zero-power radio receiver.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2004-09-01

    This report describes both a general methodology and some specific examples of passive radio receivers. A passive radio receiver uses no direct electrical power but makes sole use of the power available in the radio spectrum. These radio receivers are suitable as low data-rate receivers or passive alerting devices for standard, high power radio receivers. Some zero-power radio architectures exhibit significant improvements in range with the addition of very low power amplifiers or signal processing electronics. These ultra-low power radios are also discussed and compared to the purely zero-power approaches.

  6. Modelling multi-wavelength observational characteristics of bow shocks from runaway early type stars

    CERN Document Server

    Acreman, David M; Harries, Tim J

    2015-01-01

    We assess the multi-wavelength observable properties of the bow shock around a runaway early type star using a combination of hydrodynamical modelling, radiative transfer calculations and synthetic imaging. Instabilities associated with the forward shock produce dense knots of material which are warm, ionised and contain dust. These knots of material are responsible for the majority of emission at far infra-red, H alpha and radio wavelengths. The large scale bow shock morphology is very similar and differences are primarily due to variations in the assumed spatial resolution. However infra-red intensity slices (at 22 microns and 12 microns) show that the effects of a temperature gradient can be resolved at a realistic spatial resolution for an object at a distance of 1 kpc.

  7. Deep Impact as a World Observatory Event: Synergies in Space, Time, and Wavelength

    CERN Document Server

    Käufl, H.U; ESO/VUB Conference

    2009-01-01

    In the context of the NASA Deep Impact space mission, comet 9P/Tempel1 has been at the focus of an unprecedented worldwide long-term multi-wavelength observation campaign. The comet was also studied throughout its perihelion passage by various sources including the Deep Impact mission itself, the Hubble Space Telescope, Spitzer, Rosetta, XMM and all major ground-based observatories in a wavelength band from cm-wave radio astronomy to x-rays. This book includes the proceedings of a meeting that brought together an audience of theoreticians and observers - across the electromagnetic spectrum and from different sites and projects - to make full use of the massive ground-based observing data set. The coherent presentation of all data sets illustrates and examines the various observational constraints on modelling the cometary nucleus, cometary gas, cometary plasma, cometary dust, and the comet's surface and its activity.

  8. Beam dynamics simulations for linacs driving short-wavelength FELs

    Energy Technology Data Exchange (ETDEWEB)

    Ferrario, M.; Tazzioli, F. [Istituto Nazionale di Fisica Nucleare, Frascati, RM (Italy). Laboratori nazionali di Frascati; Serafini, L. [Milan Univ., Milan (Italy); Istituto Nazionale di Fisica Nucleare, Milan (Italy)

    1999-07-01

    The fast code HOMDYN has been recently developed, in the framework of the TTF (Tesla test facility) collaboration, in order to study the beam dynamics of linacs delivering high brightness beams as those needed for short wavelength Fel experiments. These linacs are typically driven by radio-frequency photo-injectors, where correlated time dependent space charge effects are of great relevance: these effects cannot be studied by standard beam optics codes (TRACE3D, etc.) and they have been modeled so far by means of multi-particle (Pic or quasistatic) codes requiring heavy cpu time and memory allocations. HOMDYN is able to describe the beam generation at the photo-cathode and the emittance compensation process in the injector even running on a laptop with very modest running rimes (less than a minute). In this paper it is showed how this capability of the code is exploited so to model a whole linac up to the point where the space charge dominated regime is of relevance (200 MeV).

  9. The First Station of the Long Wavelength Array

    CERN Document Server

    Henning, Patricia; Taylor, Gregory B; Craig, Joseph; Pihlström, Ylva; Rickard, Lee J; Clarke, Tracy E; Kassim, Namir E; Cohen, Aaron

    2010-01-01

    The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Upon completion, LWA will consist of 53 phased array "stations" distributed over a region about 400 km in diameter in the state of New Mexico. Each station will consist of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5 sigma, 8 MHz, 2 polarizations, 1 hr, zenith) in 20-80 MHz; with resolution and field of view of (8", 8 deg) and (2",2 deg) at 20 MHz and 80 MHz, respectively. All 256 dipole antennas are in place for the first station of the LWA (called LWA-1), and commissioning activities are well underway. The station is located near the core of the EVLA, and is expected to be fully operational in early 2011.

  10. The relationship between radio power at 22 and 43 GHz and black hole properties of AGN in elliptical galaxies

    CERN Document Server

    Park, Songyoun; Yi, Sukyoung K

    2013-01-01

    We investigate the relationship between radio power and properties related to active galactic nuclei (AGNs). Radio power at 1.4 or 5 GHz, which has been used in many studies, can be affected by synchrotron self-absorption and free-free absorption in a dense region. On the other hand, these absorption effects get smaller at higher frequencies. Thus, we performed simultaneous observations at 22 and 43 GHz using the Korean VLBI Network (KVN) radio telescope based on a sample of 305 AGN candidates residing in elliptical galaxies from the overlap between the Sloan Digital Sky Survey (SDSS) Data Release 7 and Faint Images of the Radio Sky at Twenty-Centimeters (FIRST). About 37% and 22% of the galaxies are detected at 22 and 43 GHz, respectively. Assuming no flux variability between the FIRST and KVN observation, spectral indices were derived from FIRST and KVN data and we found that over 70% of the detected galaxies have flat or inverted spectra, implying the presence of optically thick compact regions near the ce...

  11. Device for wavelength-selective imaging

    Science.gov (United States)

    Frangioni, John V.

    2010-09-14

    An imaging device captures both a visible light image and a diagnostic image, the diagnostic image corresponding to emissions from an imaging medium within the object. The visible light image (which may be color or grayscale) and the diagnostic image may be superimposed to display regions of diagnostic significance within a visible light image. A number of imaging media may be used according to an intended application for the imaging device, and an imaging medium may have wavelengths above, below, or within the visible light spectrum. The devices described herein may be advantageously packaged within a single integrated device or other solid state device, and/or employed in an integrated, single-camera medical imaging system, as well as many non-medical imaging systems that would benefit from simultaneous capture of visible-light wavelength images along with images at other wavelengths.

  12. The radio properties of infrared-faint radio sources

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  13. Optimal Placement of Wavelength Converting Nodes

    DEFF Research Database (Denmark)

    Belotti, Pietro; Stidsen, Thomas K.

    2001-01-01

    The all optical network using WDM and optical nodes (OXC's) seems to be a possibility in a near future. The consensus to day seems to be that optical wavelength conversions is un-realistic for several decades, hence wavelength blocking will happen in the all optical networks. A possible solution ...... to this problem could be to include digital nodes (DXC's) in the network at the right places. In this article we present a linear programming model which optimizes the placement of these more expensive DXC's in the network....

  14. Suggested isosbestic wavelength calibration in clinical analyses.

    Science.gov (United States)

    Hoxter, G

    1979-01-01

    I recommend the use of isosbestic points for conveniently checking the wavelength scale of spectrophotometers in the ultraviolet and visible regions. Colorimetric pH indicators, hemoglobin derivatives, and other radiation-absorbing substances that are convertible into stable isomers of different absorption spectra provide a means for calibrating many different wavelengths by comparing the absorptivities of these isomers in equimolar solutions. The method requires no special precautions and results are independent of substance concentration and temperature between 4 and 45 degrees C. Isosbestic calibration may be important for (e.g.) coenzyme-dependent dehydrogenase activity determinations and in quality assurance programs.

  15. New method for spectrofluorometer monochromator wavelength calibration.

    Science.gov (United States)

    Paladini, A A; Erijman, L

    1988-09-01

    A method is presented for wavelength calibration of spectrofluorometer monochromators. It is based on the distortion that the characteristic absorption bands of glass filters (holmium or didymium oxide), commonly used for calibration of spectrophotometers, introduce in the emitted fluorescence of fluorophores like indole, diphenyl hexatriene, xylene or rhodamine 6G. Those filters or a well characterized absorber with sharp bands like benzene vapor can be used for the same purpose. The wavelength calibration accuracy obtained with this method is better than 0.1 nm, and requires no modification in the geometry of the spectrofluorometer sample compartment.

  16. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  17. Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths

    DEFF Research Database (Denmark)

    Andersen, T.V.; Hilligsøe, Karen Marie; Nielsen, C.K.;

    2004-01-01

    We demonstrate continuous-wave wavelength conversion through four-wave mixing in an endlessly single mode photonic crystal fiber. Phasematching is possible at vanishing pump power in the anomalous dispersion regime between the two zero-dispersion wavelengths. By mixing appropriate pump and idler...

  18. The redshift of the gravitationally lensed radio source PKS1830-211

    OpenAIRE

    1999-01-01

    We report on the spectroscopic identification and the long awaited redshift measurement of the heavily obscured, gravitationally lensed radio source PKS 1830-211, which was first observed as a radio Einstein ring. The NE component of the doubly imaged core is identified, in our infrared spectrum covering the wavelength range 1.5-2.5 microns, as an impressively reddened quasar at z=2.507. Our redshift measurement, together with the recently measured time delay (Lovell et al.), means that we ar...

  19. Digital coherent receiver for phase modulated radio-over-fibre optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Yu, Xianbin; Peucheret, Christophe

    2009-01-01

    A novel digital signal processing-based coherent receiver for phase-modulated radio-over-fiber (RoF) optical links is presented and demonstrated experimentally. Error-free demodulation of 50-Mbaud binary phase-shift keying (BPSK) and quadrature phase-shift keying data signal modulated on a 5-GHz...... radio-frequency (RF) carrier is experimentally demonstrated using the proposed digital coherent receiver. Additionally, a wavelength-division-multiplexing (WDM) phase-modulated RoF optical link is experimentally demonstrated. A 3 x50 Mb/s WDM transmission of a BPSK modulated 5-GHz RF carrier is achieved...

  20. Density waves in Saturn's rings probed by radio and optical occultation - Observational tests of theory

    Science.gov (United States)

    Brophy, Thomas G.; Rosen, Paul A.

    1992-01-01

    A parallel examination is conducted of Voyager radio and photopolarimeter occultation observations of the Saturn A ring's density waves. The radio instrument waves exhibit an average -90 deg offset from the dynamical phase. A warping height of about 100-m amplitude can qualtitatively reproduce this phase shift, while preserving the overall model wave shape. These results may be profoundly relevant for satellite-ring torque calculations in Saturn's rings, given the deposition of all of the net torque of the standard model in the first wavelength.

  1. A microwave photonic filter based on multi-wavelength fiber laser and infinite impulse response

    Science.gov (United States)

    Xu, Dong; Cao, Ye; Zhao, Ai-hong; Tong, Zheng-rong

    2016-09-01

    A microwave photonic filter (MPF) based on multi-wavelength fiber laser and infinite impulse response (IIR) is proposed. The filter uses a multi-wavelength fiber laser as the light source, two sections of polarization maintaining fiber (PMF) and three polarization controllers (PCs) as the laser frequency selection device. By adjusting the PC to change the effective length of the PMF, the laser can obtain three wavelength spacings, which are 0.44 nm, 0.78 nm and 1.08 nm, respectively. And the corresponding free spectral ranges ( FSRs) are 8.46 GHz, 4.66 GHz and 3.44 GHz, respectively. Thus changing the wavelength spacing of the laser can make the FSR variable. An IIR filter is introduced based on a finite impulse response (FIR) filter. Then the 3-dB bandwidth of the MPF is reduced, and the main side-lobe suppression ratio ( MSSR) is increased. By adjusting the gain of the radio frequency (RF) signal amplifier, the frequency response of the filter can be enhanced.

  2. The radio properties of infrared-faint radio sources

    CERN Document Server

    Middelberg, Enno; Hales, Christopher A; Seymour, Nick; Johnston-Hollitt, Melanie; Huynh, Minh T; Lenc, Emil; Mao, Minnie Y

    2010-01-01

    Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4GHz, but that are invisible at 3.6um when using sensitive Spitzer observations with uJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. We imaged a sample of 17 IFRS at 4.8GHz and 8.6GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spec...

  3. The Excess Radio Background and Fast Radio Transients

    CERN Document Server

    Kehayias, John; Weiler, Thomas J

    2015-01-01

    In the last few years ARCADE 2, combined with older experiments, has detected an additional radio background, measured as a temperature and ranging in frequency from 22 MHz to 10 GHz, not accounted for by known radio sources and the cosmic microwave background. One type of source which has not been considered in the radio background is that of fast transients (those with event times much less than the observing time). We present a simple estimate, and a more detailed calculation, for the contribution of radio transients to the diffuse background. As a timely example, we estimate the contribution from the recently-discovered fast radio bursts (FRBs). Although their contribution is likely 6 or 7 orders of magnitude too small (though there are large uncertainties in FRB parameters) to account for the ARCADE~2 excess, our development is general and so can be applied to any fast transient sources, discovered or yet to be discovered. We estimate parameter values necessary for transient sources to noticeably contrib...

  4. Solar Imaging Radio Array (SIRA): Radio Aperture Synthesis from Space

    Science.gov (United States)

    MacDowall, R.; Kaiser, M.; Gopalswamy, N.

    2003-05-01

    SIRA, the Solar Imaging Radio Array, will be a constellation of about 16 microsats designed to image radio sources in the solar corona and heliosphere using aperture synthesis techniques. These images will permit the mapping and tracking of CME-driven shocks (type II radio bursts) and solar flare electrons (type III radio bursts) as a function of time from near the sun to 1 AU. Two dimensional imaging of the CME-driven shock front is important for determination of space weather effects of CMEs, whereas imaging of the ubiquitous type III bursts will permit the derivation of density maps in the outer corona and solar wind. This will be the first mission to image the heliosphere (and the celestial sphere) with good angular resolution at frequencies below the ionospheric cutoff ( 10 MHz). The radio images are intrinsically complementary to white-light coronograph data, such as those of SDO, and can play a valuable role in the NASA Living with a Star program.

  5. Optimizing the optical wavelength for the photoacoustic imaging of inflammatory arthritis

    Science.gov (United States)

    Jo, Janggun; Xu, Guan; Hu, Jack; Francis, Sheeja; Marquardt, April; Yuan, Jie; Girish, Gandikota; Wang, Xueding

    2015-03-01

    With the capability of assessing high resolution optical information in soft tissues at imaging depth up to several centimeters, innovative biomedical photoacoustic imaging (PAI) offers benefits to diagnosis and treatment monitoring of inflammatory arthritis, particularly in combination with more established ultrasonography (US). In this work, a PAI and US dual-modality system facilitating both imaging functions in a real-time fashion was developed and initially tested for its clinical performance on patients with active inflammatory arthritis. Photoacoustic (PA) images of metacarpophalangeal (MCP) joints were acquired at 580-nm wavelength that provides a desired balance between optical absorption of blood and attenuation in background tissue. The results from six patients and six normal volunteers used as a control demonstrated the satisfactory sensitivity of PAI in assessing the physiological changes in the joints, specifically enhanced blood flow as a result of active synovitis. This preliminary study suggests that PAI, by revealing vascular features suggestive of joint inflammation, could be a valuable supplement to musculoskeletal US for rheumatology clinic.

  6. Charting the Last Electromagnetic Frontier with the Long Wavelength Array (LWA)

    Science.gov (United States)

    Kassim, N. E.; Clarke, T. E.; Cohen, A. S.; Crane, P. C.; Gaussiran, T. L.; Gross, C. A.; Henning, P. A.; Hicks, B. C.; Junor, W.; Lane, W. M.; Lazio, J.; Paravastu, N.; Pihlstrom, Y. M.; Polisensky, E. J.; Ray, P. S.; Stewart, K. P.; Taylor, G. B.; Weiler, K. W.

    2006-05-01

    Nearly three decades ago, the Very Large Array (VLA) first opened the 1-20 GHz radio sky to detailed study. Today, a path-finding VLA 74 MHz system is providing the first sub-arcminute resolution view of the radio universe below 100 MHz, a technical innovation that has inspired an emerging suite of much more powerful low-frequency instruments. Similar in philosophy to the VLA and also located in New Mexico, the Long Wavelength Array (LWA) will be a versatile, user-oriented electronic array poised to open the 20--80 MHz frequency range to detailed exploration for the first time. With a collecting area of one million square meters, the LWA will be a square kilometer telescope whose milli-Jansky sensitivity and near-arcsecond resolution will surpass, by 2--3 orders of magnitude, the imaging power of previous interferometers in its frequency range. LWA scientific frontiers include (1) the high-z universe, including distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy, respectively; (2) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays and supernova remnants; (3) planetary, solar, and space science, including space-weather prediction and extra-solar planet searches; and (4) the radio transient universe including GRBs, ultra-high energy cosmic rays, and new sources of unknown origin. Because the LWA will explore one of the most poorly investigated spectral regions the potential for new discoveries is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements, e.g. for cosmic ray acceleration, transients, and galaxy clusters. The LWA will also provide an unparalleled measure of small-scale ionospheric turbulence, a pre-requisite for accurate calibration and imaging. Basic research in radio astronomy at the Naval Research Laboratory is supported by the Office of Naval Research.

  7. Wavelength-agnostic WDM-PON System

    DEFF Research Database (Denmark)

    Wagner, Christoph; Eiselt, Michael; Zou, S.;

    2016-01-01

    Next-generation WDM-PON solutions for metro and access systems will take advantage of remotely controlled wavelength-tunable ONUs to keep system costs as low as possible. For such a purpose, each ONU signal can be labeled by a pilot tone modulated onto the optical data stream. We report...

  8. Aero-Optics at Shorter Wavelengths.

    Science.gov (United States)

    1980-03-01

    heliostat 1.93 1788 60 coelostat 2.40 2161 60 Changing from a CO2 laser to an iodine laser gives a wavelength ratio of 1/8. Assuming S is fixed, the...thickness and velocity profile. When the wall is concave to the external flow, Gortler vortices may occur. Cooling or heating can alter boundary layer

  9. Concepts for a short wavelength rf gun

    Science.gov (United States)

    Kuzikov, S. V.; Shchelkunov, S.; Vikharev, A. A.

    2017-03-01

    Three concepts of an rf gun to be operated at 0.1-10 mm wavelengths are considered. In all the concepts, the rf system exploits an accelerating traveling wave. In comparison with a classical decimeter standing-wave rf gun, we analyze the advantages of new concepts, available rf sources, and achievable beam parameters.

  10. Two-wavelength spatial-heterodyne holography

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Gregory R. (Clinton, TN); Bingham, Philip R. (Knoxville, TN); Simpson, John T. (Knoxville, TN); Karnowski, Thomas P. (Knoxville, TN); Voelkl, Edgar (Austin, TX)

    2007-12-25

    Systems and methods are described for obtaining two-wavelength differential-phase holograms. A method includes determining a difference between a filtered analyzed recorded first spatially heterodyne hologram phase and a filtered analyzed recorded second spatially-heterodyned hologram phase.

  11. Moving Crystal Slow-Neutron Wavelength Analyser

    DEFF Research Database (Denmark)

    Buras, B.; Kjems, Jørgen

    1973-01-01

    Experimental proof that a moving single crystal can serve as a slow-neutron wavelength analyser of special features is presented. When the crystal moves with a velocity h/(2 md) (h-Planck constant, m-neutron mass, d-interplanar spacing) perpendicular to the diffracting plane and the analysed...

  12. Adaptive multilayer optics for extreme ultraviolet wavelengths

    NARCIS (Netherlands)

    Bayraktar, Muharrem

    2015-01-01

    In this thesis we describe the development of a new class of optical components to enhance the imaging performance by enabling adaptations of the optics. When used at extreme ultraviolet (EUV) wavelengths, such ‘adaptive optics’ offers the potential to achieve the highest spatial resolution in imagi

  13. Alien wavelength modeling tool and field trial

    DEFF Research Database (Denmark)

    Sambo, N.; Sgambelluri, A.; Secondini, M.

    2015-01-01

    A modeling tool is presented for pre-FEC BER estimation of PM-QPSK alien wavelength signals. A field trial is demonstrated and used as validation of the tool's correctness. A very close correspondence between the performance of the field trial and the one predicted by the modeling tool has been...

  14. Investigation of optimum wavelengths for oximetry

    Science.gov (United States)

    Huong, Audrey K. C.; Stockford, Ian M.; Crowe, John A.; Morgan, Stephen P.

    2009-07-01

    An evaluation of the optimum choice of wavelengths, when using the 'Modified Lambert-Beer law' to estimate blood oxygen saturation, that minimises the mean error across a range of oxygen saturation values is presented. The stability of this approach and its susceptibility to noise are also considered.

  15. Laser wavelength comparison by high resolution interferometry.

    Science.gov (United States)

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  16. IA-Regional-Radio - Social Network for Radio Recommendation

    Science.gov (United States)

    Dziczkowski, Grzegorz; Bougueroua, Lamine; Wegrzyn-Wolska, Katarzyna

    This chapter describes the functions of a system proposed for the music hit recommendation from social network data base. This system carries out the automatic collection, evaluation and rating of music reviewers and the possibility for listeners to rate musical hits and recommendations deduced from auditor's profiles in the form of regional Internet radio. First, the system searches and retrieves probable music reviews from the Internet. Subsequently, the system carries out an evaluation and rating of those reviews. From this list of music hits, the system directly allows notation from our application. Finally, the system automatically creates the record list diffused each day depending on the region, the year season, the day hours and the age of listeners. Our system uses linguistics and statistic methods for classifying music opinions and data mining techniques for recommendation part needed for recorded list creation. The principal task is the creation of popular intelligent radio adaptive on auditor's age and region - IA-Regional-Radio.

  17. Radio Halos in future surveys in the radio continuum

    CERN Document Server

    Cassano, R; Norris, Ray P; Roettgering, H J A; Johnston-Hollitt, M; Trasatti, M

    2012-01-01

    Giant radio halos (RH) are Mpc-scale synchrotron sources detected in a significant fraction of massive and merging galaxy clusters.Their statistical properties can be used to discriminate among various models for their origin. Theoretical predictions are important as new radio telescopes are about to begin to survey the sky at low and high frequencies with unprecedented sensitivity. We carry out Monte Carlo simulations to model the formation and evolution of RH in a cosmological framework by assuming that RH are either generated in turbulent merging clusters, or are purely hadronic sources generated in more relaxed clusters, "off-state" halos. The models predict that the luminosity function of RH at high radio luminosities is dominated by the contribution of RH generated in turbulent clusters. The generation of these RH becomes less efficient in less massive systems causing a flattening of the luminosity function at lower luminosities. This flattening is compensated by the contribution of "off-state" RH that ...

  18. Resolved Multifrequency Radio Observations of GG Tau

    CERN Document Server

    Andrews, Sean M; Isella, Andrea; Birnstiel, Tilman; Rosenfeld, Katherine A; Wilner, David J; Perez, Laura M; Ricci, Luca; Carpenter, John M; Calvet, Nuria; Corder, Stuartt A; Deller, Adam T; Dullemond, Cornelis P; Greaves, Jane S; Harris, Robert J; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Linz, Hendrik; Mundy, Lee G; Sargent, Anneila I; Storm, Shaye; Testi, Leonardo

    2014-01-01

    We present sub-arcsecond resolution observations of continuum emission associated with the GG Tau quadruple star system at wavelengths of 1.3, 2.8, 7.3, and 50 mm. These data confirm that the GG Tau A binary is encircled by a circumbinary ring at a radius of 235 AU with a FWHM width of ~60 AU. We find no clear evidence for a radial gradient in the spectral shape of the ring, suggesting that the particle size distribution is spatially homogeneous on angular scales of ~0.1". A central point source, likely associated with the primary component (GG Tau Aa), exhibits a composite spectrum from dust and free-free emission. Faint emission at 7.3 mm is observed toward the low-mass star GG Tau Ba, although its origin remains uncertain. Using these measurements of the resolved, multifrequency emission structure of the GG Tau A system, models of the far-infrared to radio spectrum are developed to place constraints on the grain size distribution and dust mass in the circumbinary ring. The non-negligible curvature present ...

  19. Trirotron: triode rotating beam radio frequency amplifier

    Science.gov (United States)

    Lebacqz, Jean V.

    1980-01-01

    High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.

  20. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    DEFF Research Database (Denmark)

    Rana, Vikram; Loh, Alan; Corbel, Stephane

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0...