WorldWideScience

Sample records for centaur radiation measurements

  1. Our Continuing Program of Optical Color Measurements of Centaurs and KBOs

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2012-05-01

    We report on our continuing program of BVR color measurement of Centaurs and KBOs. Most of our measurements have been made with the Vatican Advanced Technology Telescope (VATT). We report of new colors obtained through October 2011.

  2. ADDJUST - An automated system for steering Centaur launch vehicles in measured winds

    Swanson, D. C.

    1977-01-01

    ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.

  3. Radiation measurement

    Go, Sung Jin; Kim, Seung Guk; No, Gyeong Seok; Park, Myeong Hwan; Ann, Bong Seon

    1998-03-01

    This book explains technical terms about radiation measurement, which are radiation, radiation quantity and unit such as prefix of international unit, unit for defence purposes of radiation, coefficient of radiation and interaction, kinds and principles of radiation detector, ionization chamber, G-M counter, G-M tube, proportional counter, scintillation detector, semiconductor radiation detector, thermoluminescence dosimeter, PLD, others detector, radiation monitor, neutron detector, calibration of radiation detector, statistics of counting value, activation analysis and electronics circuit of radiation detector.

  4. Measurement of amino terminal propeptide of type III procollagen (PIIINP) employing the ADVIA Centaur platform. Validation, reference interval and comparison to UniQ RIA

    Knudsen, Cindy Soendersoe; Heickendorff, Lene; Nexo, Ebba

    2014-01-01

    Background: Recently, measurement of amino terminal propeptide of type III procollagen (PIIINP) was introduced as a part of the hepatic cirrhotic marker enhanced liver fibrosis™ test on the automated ADVIA Centaur® immunoassay platform (Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA...... UniQ PIIINP RIA assay (Orion Diagnostica, Espoo, Finland) using 55 patient samples (range=3.7-43.3 µg/L). Furthermore, we established a reference interval based on samples from 287 blood donors. Results: In the concentration range 2.5-11.9 µg/L, the total imprecision was below 8%. Comparison...... PIIINP assay is suitable for routine use with our newly defined reference interval. The results obtained by Centaur correlates well with those obtained by the previously employed RIA, though the absolute values are higher....

  5. Radiation practices and radiation measurements

    2008-03-01

    The guide presents the principal requirements on accuracy of radiation measurements and on the approval, calibration and operating condition inspections of radiation meters, together with requirements for dosimetric services measuring the individual radiation doses of workers engaged in radiation work (approved dosimetric services). The Guide also sets out the definitions of quantities and units used in radiation measurements. The radiation protection quantities used for assessing the harmful effects of radiation and for expressing the maximum values for radiation exposure (equivalent dose and effective dose) are set out in Guide ST 7.2. This Guide concerns measurements of ionizing radiation involved in radiation practices, the results of which are used for determining the radiation exposure of workers engaged in radiation work and members of the public, and of patients subject to the use of radiation in health services, or upon the basis of which compliance with safety requirements of appliances currently in use and of their premises of use or of the workplaces of workers is ensured. The Guide also concerns measurements of the radon concentration of inhaled air in both workplaces and dwellings. The Guide does not apply to determining the radiation exposure of aircrews, determination of exposure caused by internal radiation, or measurements made to protect the public in the event of, or in preparation for abnormal radiation conditions

  6. Radiation flux measuring device

    Corte, E.; Maitra, P.

    1977-01-01

    A radiation flux measuring device is described which employs a differential pair of transistors, the output of which is maintained constant, connected to a radiation detector. Means connected to the differential pair produce a signal representing the log of the a-c component of the radiation detector, thereby providing a signal representing the true root mean square logarithmic output. 3 claims, 2 figures

  7. Radiation Calibration Measurements

    Omondi, C.

    2017-01-01

    KEBS Radiation Dosimetry mandate are: Custodian of Kenya Standards on Ionizing radiation, Ensure traceability to International System (SI ) and Calibration radiation equipment. RAF 8/040 on Radioisotope applications for troubleshooting and optimizing industrial process established Radiotracer Laboratory objective is to introduce and implement radiotracer technique for problem solving of industrial challenges. Gamma ray scanning technique applied is to Locate blockages, Locate liquid in vapor lines, Locate areas of lost refractory or lining in a pipe and Measure flowing densities. Equipment used for diagnostic and radiation protection must be calibrated to ensure Accuracy and Traceability

  8. Radiation detection and measurement

    Knoll, G.F.

    1979-01-01

    The book is a complete, clear and up-to-date text that provides a basic review of instruments and methods of ionizing radiation. The text covers detailed discussion of all detector types introductory discussions of radiation sources, interactions, and counting statistics functional analysis of the electronics and pulse processing aspects of radiation detectors in instrumentation systems and consideration of shielding and background potentially vital in low-level counting. A total of 350 figures and approximately 900 references to current scientific literature is included. The book is largely intended as a textbook for a junior/senior or first-year graduate course in nuclear instrumentation and radiation measurements

  9. Radiation dose measurements

    1960-01-01

    About 200 scientists from 28 countries and 5 international organizations met at a symposium on radiation dosimetry held by the International Atomic Energy Agency in June 1960. The aim of the symposium was not so much the description of a large number of measuring instruments as a discussion of the methods used, with special emphasis on those problems which had become important in the context of recent developments, such as the measurement of mixed or very large doses

  10. Radiation ray measuring device

    Maekawa, Tatsuyuki; Ida, Masaki.

    1997-01-01

    The present invention provides a chained-radiation ray monitoring system which can be applied to an actual monitoring system of a nuclear power plant or the like. Namely, this device comprises a plurality of scintillation detectors. Each of the detectors has two light take-out ports for emitting light corresponding to radiation rays irradiated from the object of the measurement to optical fibers. In addition, incident light from the optical fiber by way of one of the light take-out optical ports is transmitted to the other of the ports and sent from the other optical port to the fibers. Plurality sets of measuring systems are provided in which each of the detectors are disposed corresponding to a plurality of objects to be measured. A signal processing device is (1) connected with optical fibers of plurality sets of measuring systems in conjunction, (2) detects the optical pulses inputted from the optical fibers to identify the detector from which the optical pulses are sent and (3) measures the amount of radiation rays detected by the identified detector. As a result, the device of the present invention can form a measuring system with redundancy. (I.S.)

  11. Radiation measuring instrument

    Genrich, V.

    1985-01-01

    A highly sensitive and compactly structured radiation measuring instrument for detecting ionizing radiation, in particular for measuring dose rates and contamination. The laminar structure of the associated counter tube, using only a few, simple plastic parts and a highly elastic counter wire, makes it possible to use the simplest manufacturing techniques. The service life of the counter tube construction, which is completely and permanently sealed and filled with gas, is expected to be more than 12 years. The described counter tube can be adapted in optimal fashion to the available space in a pocket instrument if it is used in combination with a specialized high-voltage generator which is low in interference voltage and with a pulse evaluation circuit having a means of compensating for interference voltage

  12. Radiation detection and measurement

    Knoll, G.F.

    1979-01-01

    Introductory material covers radiation sources, radiation interactions, general properties of radiation detectors, and counting statistics and error prediction. This is followed by detailed sections on gas-filled detectors, scintillation counters, semiconductor detectors, neutron detectors and spectroscopy, detector electronics and pulse processing, and miscellaneous radiation detectors and applications

  13. WISE Views of Centaurs & Scattered Disk Objects

    Bauer, J. M.; Walker, R.; Mainzer, A.; Blauvelt, E.; Masiero, J.; Grav, T.; Cutri, R.; Dailey, J.; Lisse, C. M.; Fernandez, Y. R.; hide

    2011-01-01

    The Wide Field Infrared Survey Explorer surveyed most of the sky in the Mid-Infrared From January through September of 2010. In addition to 120 comets, more than 30 Centaurs and Scattered Disc Objects (SDOs) were observed and discovered. We will present preliminary results from the analysis ofthese outer solar system bodies.

  14. Radiation measurements and applications

    Griffin, H.C.; Rogers, W.L.

    1990-01-01

    This 1990 symposium was the seventh in a series of meetings which began in 1964. The 300 participants from 23 countries and the 65 oral and 77 poster presentations were more than double the size of the 1985 symposium. Some of this increase derived from the broadened scope of the program. Previous meetings emphasized X-rays and gamma-rays, but it has been increasingly clear that distinction from other forms of radiation (i.e., electrons, alpha-particles and neutrons) was contrived. This broadening led to papers in fields such as ''airport'' monitors and arms control. However, most of the increase in size of the symposium is simply a reflection of the vigorous activity, both academic and industrial in radiation measurements and their many applications. The papers in these Proceedings are arranged by major topic without regard to whether the paper was invited or contributed, oral or poster. Discussion, although an important part of the meeting, was not recorded and therefore is not included in the Proceedings

  15. Measurement and detection of radiation

    Tsoulfanidis, Nicholas

    2015-01-01

    This fourth edition reflects recent major developments that have occurred in radiation detector materials, systems, and applications. It continues to provide the most practical and up-to-date introduction to radiation detector technology, proper measurement techniques, and analysis of results for engineers and scientists using radiation sources. New chapters emphasize the expanded use of radiation detection systems in nuclear non-proliferation, homeland security, and nuclear medicine. The book also discusses the correct ways to perform measurements following current health physics procedures.

  16. Radiation protection, measurements and methods

    1983-06-01

    The introductory lectures discuss subjects such as radiation protection principles and appropriate measuring techniques; methods, quantities and units in radiation protection measurement; technical equipment; national and international radiation protection standards. The papers presented at the various sessions deal with: Dosimetry of external radiation (27 papers); Working environment monitoring and emission monitoring (21 contributions); Environmental monitoring (19 papers); Incorporation monitoring (9 papers); Detection limits (4 papers); Non-ionizing radiation, measurement of body dose and biological dosimetry (10 papers). All 94 contributions (lectures, compacts and posters) are retrievable as separate records. (HP) [de

  17. Underwater radiation measuring device

    Seki, Noriyuki; Suzuki, Yasuo

    1998-01-01

    The present invention provides a device for measuring, under water, radiation from spent fuels (long members to be detected) of nuclear power plants and reprocessing facilities. Namely, a detecting insertion tube (insertion tube) is disposed so as to be in parallel with axial direction of the long member to be detected stored underwater. A γ-ray detector is inserted to the inside of the insertion tube. A driving mechanism is disposed for moving the γ-ray detector in axial direction inside of the insertion tube. The driving mechanism preferably has a system that it moves the γ-ray detector by winding a detection signal cable around a driving drum. The driving mechanism is formed by inserting and securing a driving tube having screws formed on the side surface and inserting it into the insertion tube. It may have a system of moving the γ-ray detector together with the driving tube while engaging the teeth of a driving transfer mechanism with the screws of the driving tube. (I.S.)

  18. ''Intelligent'' radiation measurements

    Ward, A.

    1980-01-01

    A description is given of three applications of current microprocessor technology which are characterized by the use of the microprocessor to impart a degree of intelligence to conventional radiation detection techniques. In the first application the microcomputer computes the radiation dose from the observed counting rate in a Geiger counter. In the second application the microcomputer provides the pulse height distribution and the radioisotopes used, from the spectrum of pulses from a scintillation counter. The third application is an arrangement for radiation monitor calibration. (H.K.)

  19. Taming Liquid Hydrogen: The Centaur Upper Stage Rocket

    Dawson, Virginia P.; Bowles, Mark D.

    2004-01-01

    The Centaur is one of the most powerful rockets in the world. As an upper-stage rocket for the Atlas and Titan boosters it has been a reliable workhorse for NASA for over forty years and has played an essential role in many of NASA's adventures into space. In this CD-ROM you will be able to explore the Centaur's history in various rooms to this virtual museum. Visit the "Movie Theater" to enjoy several video documentaries on the Centaur. Enter the "Interview Booth" to hear and read interviews with scientists and engineers closely responsible for building and operating the rocket. Go to the "Photo Gallery" to look at numerous photos of the rocket throughout its history. Wander into the "Centaur Library" to read various primary documents of the Centaur program. Finally, stop by the "Observation Deck" to watch a virtual Centaur in flight.

  20. Radiation dose rate measuring device

    Sorber, R.

    1987-01-01

    A portable device is described for in-field usage for measuring the dose rate of an ambient beta radiation field, comprising: a housing, substantially impervious to beta radiation, defining an ionization chamber and having an opening into the ionization chamber; beta radiation pervious electrically-conductive window means covering the opening and entrapping, within the ionization chamber, a quantity of gaseous molecules adapted to ionize upon impact with beta radiation particles; electrode means disposed within the ionization chamber and having a generally shallow concave surface terminating in a generally annular rim disposed at a substantially close spacing to the window means. It is configured to substantially conform to the window means to define a known beta radiation sensitive volume generally between the window means and the concave surface of the electrode means. The concave surface is effective to substantially fully expose the beta radiation sensitive volume to the radiation field over substantially the full ambient area faced by the window means

  1. Solar and infrared radiation measurements

    Vignola, Frank; Michalsky, Joseph

    2012-01-01

    The rather specialized field of solar and infrared radiation measurement has become more and more important in the face of growing demands by the renewable energy and climate change research communities for data that are more accurate and have increased temporal and spatial resolution. Updating decades of acquired knowledge in the field, Solar and Infrared Radiation Measurements details the strengths and weaknesses of instruments used to conduct such solar and infrared radiation measurements. Topics covered include: Radiometer design and performance Equipment calibration, installation, operati

  2. Radiation detector device for measuring ionizing radiation

    Brake, D. von der.

    1983-01-01

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP) [de

  3. Atmospheric Radiation Measurement Program plan

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs

  4. Nuclear instrumentation for radiation measurement

    Madan, V.K.

    2012-01-01

    Nuclear radiation cannot be detected by human senses. Nuclear detectors and associated electronics facilitate detection and measurement of different types of radiation like alpha particles, beta particles, gamma radiation, and detection of neutrons. Nuclear instrumentation has evolved greatly since the discovery of radioactivity. There has been tremendous advancement in detector technology, electronics, computer technology, and development of efficient algorithms and methods for spectral processing to extract precisely qualitative and quantitative information of the radiation. Various types of detectors and nuclear instruments are presently available and are used for different applications. This paper describes nuclear radiation, its detection and measurement and associated electronics, spectral information extraction, and advances in these fields. The paper also describes challenges in this field

  5. Measurement and detection of radiation

    Tsoulfanidis, Nicholas

    2011-01-01

    This is an update of the standard textbook for the field of radiation measurement. It includes illustrative examples and new problems. The research and applications of nuclear instrumentation have grown substantially since publication of the previous editions. With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines, including nuclear nonproliferation, homeland security, and nuclear medicine. Continuing in the tradition of its bestselling predecessors, "Measurement and Detection of Radiation, Third Edition" illustrates the fundamentals of nuclear interactions and radiation detection with a multitude of examples and problems. It offers a clearly written, accessible introduction to nuclear instrumentation concepts. The following are new to the third edition: a new chapter on the latest applications of radiation detection, covering nuclear medicine, dosimetry, health physics, no...

  6. Centaure: an heterogeneous parallel architecture for computer vision

    Peythieux, Marc

    1997-01-01

    This dissertation deals with the architecture of parallel computers dedicated to computer vision. In the first chapter, the problem to be solved is presented, as well as the architecture of the Sympati and Symphonie computers, on which this work is based. The second chapter is about the state of the art of computers and integrated processors that can execute computer vision and image processing codes. The third chapter contains a description of the architecture of Centaure. It has an heterogeneous structure: it is composed of a multiprocessor system based on Analog Devices ADSP21060 Sharc digital signal processor, and of a set of Symphonie computers working in a multi-SIMD fashion. Centaure also has a modular structure. Its basic node is composed of one Symphonie computer, tightly coupled to a Sharc thanks to a dual ported memory. The nodes of Centaure are linked together by the Sharc communication links. The last chapter deals with a performance validation of Centaure. The execution times on Symphonie and on Centaure of a benchmark which is typical of industrial vision, are presented and compared. In the first place, these results show that the basic node of Centaure allows a faster execution than Symphonie, and that increasing the size of the tested computer leads to a better speed-up with Centaure than with Symphonie. In the second place, these results validate the choice of running the low level structure of Centaure in a multi- SIMD fashion. (author) [fr

  7. Measuring space radiation shielding effectiveness

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  8. Thermoluminescent measurement in space radiation dosimetry

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  9. Radiation measurements and quality control

    McLaughlin, W.L.

    1977-01-01

    Accurate measurements are essential to research leading to a successful radiation process and to the commissioning of the process and the facility. On the other hand, once the process is in production, the importance to quality control of measuring radiation quantities (i.e., absorbed dose, dose rate, dose distribution) rather than various other parameters of the process (i.e. conveyor speed, dwell time, radiation field characteristics, product dimensions) is not clearly established. When the safety of the product is determined by the magnitude of the administered dose, as in radiation sterilization, waste control, or food preservation, accuracy and precision of the measurement of the effective dose are vital. Since physical dose measurements are usually simpler, more reliable and reproducible than biological testing of the product, there is a trend toward using standardized dosimetry for quality control of some processes. In many industrial products, however, such as vulcanized rubber, textiles, plastics, coatings, films, wire and cable, the effective dose can be controlled satisfactorily by controlling process variables or by product testing itself. In the measurement of radiation dose profiles by dosimetry, it is necessary to have suitable dose meter calibrations, to account for sources of error and imprecision, and to use correct statistical procedures in specifying dwell times or conveyor speeds and source and product parameters to achieve minimum and maximum doses within specifications. (author)

  10. Temperature radiation measuring equipment. Temperaturstrahlungsmessgeraet

    Lotzer, W

    1981-01-22

    The invention is concerned with a temperature radiation measuring equipment for non-contact temperature measurement by the light intensity variation method, with a photoelectric resistance as the measuring element. By having a circuit with a transistor, the 'dark resistance' occurring in the course of time is compensated for and thus gives a genuine reading (ie. the voltage drop across the photoelectric resistance remains constant).

  11. Quality assurance in radiation measurement

    Noriah Mod Ali

    2002-01-01

    The achievement of traceability to recognize measurement standards for ionizing radiation posses special requirements. Methods of transferring reference standard to the working situation are devised through calibration and appropriate traceability, which optimize the accuracy attainable with the method of dose determination in routine use. Appropriate procedures are developed by the SSDL-MINT to establish accurate dose measurement in wide range of radiation fields such as in medicine, agriculture and industrial application. The status of work including effort towards ISO 9000 certification of SSDL dosimetry services will be summarized. (Author)

  12. Atmospheric Radiation Measurement Program Plan

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  13. Albedos of Jovian Trojans, Hildas and Centaurs

    Romanishin, William; Tegler, Stephen C.

    2017-10-01

    We present distributions of optical V band albedos for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. We compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) The Hildas are 15-25% darker than the Trojans at a very high level of statistical significance. If the Hildas and Trojans started out with similar surfaces, the Hildas may have darkened due to the effects of gardening as they pass through zone III of the asteroid belt. (2) The median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups (3) The median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of significance. However, the modes of the L4 and L5 albedo distributions are very similar, perhaps indicating the presence of a distinct brighter component in the L4 cloud that is not found in the L5 cloud.

  14. USA's gift aids radiation measurement

    1970-01-01

    On 8 December 1969, the anniversary of President Eisenhower's speech which led to the foundation of the Agency, the United States of America handed over a $25 000 gift which will assist considerably the promotion of world-wide standardization in the measurement of radiation. (author)

  15. Centaur, 1945-1948: een koers tussen herstel en vernieuwing

    Sophie Levie

    1998-06-01

    Full Text Available Een index van Centaur, voorafgegaan door een korte introductie waarin informatie wordt gegeven over de inhoud, de redactie en de signatuur van dit tijdschrift, dat tot nu toe schromelijk is verwaarloosd door de Nederlandse literatuurgeschiedschrijving.

  16. Measuring space radiation shielding effectiveness

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  17. Measuring space radiation shielding effectiveness

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  18. IRAC Reflectances of Cold Classical KBOs and Centaurs

    Emery, Joshua; Brown, Michael; Cruikshank, Dale; Dalle Ore, Cristina; Fernandez, Yanga; Fraser, Wes; Stansberry, John; Trilling, David

    2009-04-01

    We propose to measure reflected fluxes of 22 Centaurs and 27 cold classical Kuiper belt objects (KBOs) with IRAC in order to determine surface compositions. The small bodies of the outer solar system provide probes of the statistical conditions, history, and interactions in the solar system. We focus in this proposal on two groups that isolate two key aspects of the complicated larger puzzle: starting compositions and physical effects of thermal evolution. The cold classical KBOs are the only dynamical group among the Kuiper belt that remain in (or very near) the region in which they formed (~40 AU), offering insight into the conditions in a known region of the early nebula. The prevailing hypothesis that their surfaces are dominated by complex organic molecules derived from irradiation of originally CH4-rich bodies will be directly tested by searching for strong absorption within the 3.6 micron channel. A subset will also be observed at 4.5 microns as a measure of other volatiles (e.g., residual CH4, CO2, N2) informative of original compositions. The Centaurs have been scattered inward into their unstable orbits among the giant planets. While closer to the Sun, accelerated thermal evolution is hypothesized to replace thin organic mantles with dust coatings through vigorous sublimation, creating the two distinct color groups (less red/gray and ultra-red). We will test this hypothesis by searching for and characterizing absorptions at 3.6 micron due to the hypothesized organics. The IRAC 3.6 and 4.5 micron reflectances will distinguish among multiple surface compositions that could explain the less red/gray group, only one of which (silicate dust) is consistent with the prevailing hypothesis. No other existing or near-term ground or space-based facility can measure reflectances at these critical wavelengths for these faint bodies. Our cycle-2 and cycle-4 programs to observe an initial set of outer solar system objects have been tremendously successful, and this

  19. Intercomparison of Environmental Nuclear Radiation Measuring

    GAO; Fei; NI; Ning; HOU; Jin-bing; SONG; Ming-zhe

    2015-01-01

    In 2015,Radiation Metrology Division of China Institute of Atomic Energy organized an environmental monitoring of nuclear radiation measuring intercomparison,and 9laboratories attended.The intercomparison included environmental level dosemeters and protection level

  20. Status of radiation-based measurement technology

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.

    1999-03-01

    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  1. Ultraviolet radiation, measurements and safety evaluations for radiation protection purposes

    Witew, B.; Fischer, P.G.

    1983-01-01

    In order to evaluate the effects of ultraviolet radiation, one has to study that photobiologically effective radiation which induces a just measurable threshold reaction. For practical radiation protection, one has to determine the permissible duration of exposure at the end of which the threshold reaction is induced. This time limit is derived by means of spectral measurements and determination of radiation intensity. Detrimental photobiological effects can be avoided, and favourable effects optimized, by observing the time limit. Thus these measurements are used to determine the threshold at which the desired effects of ultraviolet radiation will be accompanied by unwanted effects or damage to persons, as for instance in the use of ultraviolet radiation for operating room sterilization, arc welding work, or cosmetic purposes. (orig.) [de

  2. Measurement and detection of radiation

    Tsoulfanidis, Nicholas; Landsberger, Sheldon

    2011-01-01

    .... With the miniaturization of equipment, increased speed of electronic components, and more sophisticated software, radiation detection systems are now more productively used in many disciplines...

  3. Mass Densities of KBOs and Centaurs from Spitzer Observations

    Mueller, Michael; Spencer, J.; Stansberry, J.; Grundy, W.

    2009-01-01

    The dynamical and physical properties of the Small Solar System Bodies in the outer Solar system, Centaurs and Kuiper Belt objects (KBOs), contain important clues on the formation and evolution of the early Solar System. The only practical way to study their internal properties, such as chemical

  4. Application of microprocessors to radiation protection measurements

    Zappe, D.; Meldes, C.

    1982-01-01

    In radiation protection measurements signals from radiation detectors or dosemeters have to be transformed into quantities relevant to radiation protection. In most cases this can only be done by taking into account various parameters (e.g. the quality factor). Moreover, the characteristics of the statistical laws of nuclear radiation emission have to be considered. These problems can properly be solved by microprocessors. After reviewing the main properties of microprocessors, some typical examples of applying them to problems of radiation protection measurement are given. (author)

  5. Relations between radiation risks and radiation protection measuring techniques

    Herrmann, K.; Kraus, W.

    Relations between radiation risks and radiation protection measuring techniques are considered as components of the radiation risk. The influence of the exposure risk on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Based upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high exposure risk. As a consequence the following recommendations are presented: occupationally exposed persons with small exposure risk should be monitored using only a long-term desimeter (for instance a thermoluminescence desimeter). In the case of internal exposure, the surface and air contamination levels should be controlled so strictly that routine measurements of internal contamination need not be performed

  6. Pressing problems of measurement of ionizing radiations

    Fominykh, V.I.; Yudin, M.F.

    1993-01-01

    The current system for ensuring the unity of measurements in the Russian Federation and countries of the former Soviet Union ensures a high quality of dosimetric, radiometric, and spectrometric measurements in accordance with the recommendations of the Consulative Committee on Standards for Measurements of Ionizing Radiations of the International Bureau of Weights and Measures (IBWM), International Organization on Radiological Units (ICRU), International Commission on Radiological Protection (ICRP), International Organization on Legislative Metrology (IOLM), International Atomic Energy Agency (IAEA), World Health Organization (WHO), etc. Frequent collation of the national primary and secondary standards of Russia with those of IBWM and the leading national laboratories of the world facilitate mutual verification of the measurements of ionizing radiations. The scope of scientific and scientific-technical problems that can be solved by using ionizing radiations has expanded significantly in recent years. In this paper the authors consider some pressing problems of the metrology of ionizing radiations which have arisen as a result of this expansion. These include the need for unity and reliability of measurements involved in radiation protection, the measurement of low doses involving low dose rates, ensuring the unity of measurements when monitoring the radiological security of the population, the need for more uniformity on an international scale regarding the basic physical quantities and their units for characterizing radiation fields, determination of the accuracy of measurement of the radiation dose absorbed by an irradiated tissue or organ, and the development of complex standards for ionizing radiations. 5 refs., 1 tab

  7. Verification of Bioanalytical Method for Quantification of Exogenous Insulin (Insulin Aspart) by the Analyser Advia Centaur® XP.

    Mihailov, Rossen; Stoeva, Dilyana; Pencheva, Blagovesta; Pentchev, Eugeni

    2018-03-01

    In a number of cases the monitoring of patients with type I diabetes mellitus requires measurement of the exogenous insulin levels. For the purpose of a clinical investigation of the efficacy of a medical device for application of exogenous insulin aspart, a verification of the method for measurement of this synthetic analogue of the hormone was needed. The information in the available medical literature for the measurement of the different exogenous insulin analogs is insufficient. Thus, verification was required to be in compliance with the active standards in Republic of Bulgaria. A manufactured method developed for ADVIA Centaur XP Immunoassay, Siemens Healthcare, was used which we verified using standard solutions and a patient serum pool by adding the appropriate quantity exogenous insulin aspart. The method was verified in accordance with the bioanalytical method verification criteria and regulatory requirements for using a standard method: CLIA chemiluminescence immunoassay ADVIA Centaur® XP. The following parameters are determined and monitored: intra-day precision and accuracy, inter-day precision and accuracy, limit of detection and lower limit of quantification, linearity, analytical recovery. The routine application of the method for measurement of immunoreactive insulin using the analyzer ADVIA Centaur® XP is directed to the measurement of endogenous insulin. The method is applicable for measuring different types of exogenous insulin, including insulin aspart.

  8. Radiation measurement practice for understanding statistical fluctuation of radiation count using natural radiation sources

    Kawano, Takao

    2014-01-01

    It is known that radiation is detected at random and the radiation counts fluctuate statistically. In the present study, a radiation measurement experiment was performed to understand the randomness and statistical fluctuation of radiation counts. In the measurement, three natural radiation sources were used. The sources were fabricated from potassium chloride chemicals, chemical fertilizers and kelps. These materials contain naturally occurring potassium-40 that is a radionuclide. From high schools, junior high schools and elementary schools, nine teachers participated to the radiation measurement experiment. Each participant measured the 1-min integration counts of radiation five times using GM survey meters, and 45 sets of data were obtained for the respective natural radiation sources. It was found that the frequency of occurrence of radiation counts was distributed according to a Gaussian distribution curve, although the obtained 45 data sets of radiation counts superficially looked to be fluctuating meaninglessly. (author)

  9. Measurement of advanced electromagnetic radiation

    Bajlo, Darko

    2017-01-01

    For the purpose of detecting advanced electromagnetic radiation predicted by Wheeler-Feynman absorber theory for the case of incomplete absorption of retarded electromagnetic radiation, pulses in duration of 6 ns to 24 ns, wavelength from 91 cm to 200 cm where supplied to three different transmitting antennas. Detection was done with a λ/20 monopole antenna in the advanced time window at a time 2r/c before the arrival of the center of the retarded pulse. At distances ranging from 430 cm to 18...

  10. Quality assurance in field radiation measurements

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  11. Radiation protection measuring device SSM-1

    Anon.

    1988-01-01

    Product information from the producer on a universal measuring instrument for alpha, beta and gamma radiation designed for stationary and field use by military, police and fire brigades. 4 figs. (qui)

  12. Southern Great Plains Atmospheric Radiation Measurement Site

    Federal Laboratory Consortium — The Southern Great Plains Atmospheric Radiation Measurement Site (SGP-ARM) is the oldest and largest of DOE's Arm sites. It was established in 1992. It consists of...

  13. Phantoms for Radiation Measurements of Mobile Phones

    Pedersen, Gert Frølund

    2001-01-01

    Measurements of radiation efficiency for a handheld phone equipped with a patch and a helical antenna operated near the human user have been performed. Both measurements include a simple head plus hand phantom and live persons are considered. The position of the hand on the phone is found...... to be the main reason for the large variation in radiation efficiency among persons. The tilt angle of the phone and the distance between the head and phone only play a minor role...

  14. Dosimetric radiation measurements in space

    Benton, E.V.

    1983-01-01

    In reviewing radiation exposures recorded during spaceflights of the United States and the Soviet Union, this paper examines absorbed dose and dose rates as a function of parameters such as inclination, altitude, spacecraft type and shielding. Complete shielding from galactic cosmic rays does not appear practical because of spacecraft weight limitations. Preliminary data on neutron and HZE-particle components and LET spectra are available. Most of the data in this paper are from manned missions; for low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence on inclination. The doses range from about 6 millirad per day for the Space Transportation System (STS) No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. (author)

  15. MEASURING TEMPORAL PHOTON BUNCHING IN BLACKBODY RADIATION

    Tan, P. K.; Poh, H. S.; Kurtsiefer, C. [Center for Quantum Technologies, 3 Science Drive 2, 117543 (Singapore); Yeo, G. H.; Chan, A. H., E-mail: pengkian@physics.org, E-mail: phyck@nus.edu.sg [Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 (Singapore)

    2014-07-01

    Light from thermal blackbody radiators such as stars exhibits photon bunching behavior at sufficiently short timescales. However, with available detector bandwidths, this bunching signal is difficult to observe directly. We present an experimental technique to increase the photon bunching signal in blackbody radiation via spectral filtering of the light source. Our measurements reveal strong temporal photon bunching from blackbody radiation, including the Sun. This technique allows for an absolute measurement of the photon bunching signature g {sup (2)}(0), and thereby a direct statement on the statistical nature of a light source. Such filtering techniques may help revive the interest in intensity interferometry as a tool in astronomy.

  16. Quality control of gamma radiation measuring systems

    Surma, M.J.

    2002-01-01

    The problem of quality control and assurance of gamma radiation measuring systems has been described in detail. The factors deciding of high quality of radiometric measurements as well as statistical testing and calibration of measuring systems have been presented and discussed

  17. Evaluation of Arctic broadband surface radiation measurements

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  18. Exposure of Finnish population to ultraviolet radiation and radiation measurements

    Hoikkala, M.; Lappalainen, J.; Leszczynski, K.; Paile, W.

    1990-01-01

    This report is based on a survey of the literature on radiation risks involved in sunbathing and the use of solaria. The purpose of the report is to provide background information for the development of regulations on solaria and for informing the public about the risks posed by solaria and the sun. The report gives an overview of the properties and biological effects of ultraviolet radiation. The most important regulations and recommendations issued in various countries are presented. The connection between ultraviolet radiation and the risks of skin cancer is examined both on a general level and in reference to information obtained from the Finnish Cancer Registry. In Finland, the incidence of melanomas nearly tripled between 1960 and 1980. The most important cause is considered to be the population's increased exposure to the su's ultraviolet radiation. There are no reliable data on the connection between the use of solaria and the risks of skin cancer. It is estimated, however, that solaria account for less than 10 per cent of the skin cancer risk of the whole population. There are some difficult physical problems associated with the measurement of ultraviolet radiation emitted by both natural sources and solaria. A preliminary study of these problems has been undertaken by means of a survey of the available literature, supplemented by a review of measurements performed by the Finnish Centre For Radiation and Nuclear Safety. The estimated inaccuracy of the Optronic 742 spectroradiometer used by the Centre in the measurement of ultraviolet radiation emitted by the sun and solaria is about +-14%

  19. Radiation transmission pipe thickness measurement system

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  20. Computational methods for industrial radiation measurement applications

    Gardner, R.P.; Guo, P.; Ao, Q.

    1996-01-01

    Computational methods have been used with considerable success to complement radiation measurements in solving a wide range of industrial problems. The almost exponential growth of computer capability and applications in the last few years leads to a open-quotes black boxclose quotes mentality for radiation measurement applications. If a black box is defined as any radiation measurement device that is capable of measuring the parameters of interest when a wide range of operating and sample conditions may occur, then the development of computational methods for industrial radiation measurement applications should now be focused on the black box approach and the deduction of properties of interest from the response with acceptable accuracy and reasonable efficiency. Nowadays, increasingly better understanding of radiation physical processes, more accurate and complete fundamental physical data, and more advanced modeling and software/hardware techniques have made it possible to make giant strides in that direction with new ideas implemented with computer software. The Center for Engineering Applications of Radioisotopes (CEAR) at North Carolina State University has been working on a variety of projects in the area of radiation analyzers and gauges for accomplishing this for quite some time, and they are discussed here with emphasis on current accomplishments

  1. On output measurements via radiation pressure

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  2. Differential Detector for Measuring Radiation Fields

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  3. Relations between radiation risks and radiation protection measuring techniques

    Herrmann, K.; Kraus, W.

    1975-10-01

    'Risk of damage' and 'exposure risk' are considered as components of the radiation risk. The influence of the 'exposure risk' on type and extent of radiation protection measurements is discussed with regard to different measuring tasks. Basing upon measuring results concerning the frequency of certain external and internal occupational exposures in the GDR, it has been shown that only a small fraction of the monitored persons are subjected to a high 'exposure risk'. As a consequence the following recommendations are given for discussion: (a) occupationally exposed persons with small 'exposure risk' should be monitored using only a long-term dosimeter (for instance a thermoluminescence dosimeter), (b) in the case of internal exposure the surface and, if necessary, air contamination should be controlled so strictly that routine measurements of internal contamination need not be performed. (author)

  4. Detection and measurement of ionizing radiation

    Anon.

    1990-01-01

    All detection or measurement of radiation rests in the possibility of recognizing the interactions of radiation with matter. When radiation passes through any kind of material medium, all or a portion of its energy is transferred to this medium. This transferred energy produces an effect in the medium. In principle, the detection of radiation is based on the appearance and the observation of this effect. In theory, all of the effects produced by radiation may be used in detecting it: in practice, the effects most commonly employed are: (1) ionization of gases (gas detectors), or of some chemical substance which is transformed by radiation (photographic or chemical dosimeters); (2) excitations in scintillators or semiconductors (scintillation counters, semiconductor counters); (3) creation of structural defects through the passage of radiation (transparent thermoluminescent and radioluminescent detectors); and (4) raising of the temperature (calorimeters). This study evaluates in detail, instruments based on the ionization of gases and the production of luminescence. In addition, the authors summarize instruments which depend on other forms of interaction, used in radiation medicine and hygiene (radiology, nuclear medicine)

  5. Environmental Gamma Radiation Measurements in Baskil District

    Canbazoglu, C.

    2008-01-01

    In this study, we have determined environmental gamma radiation dose rate in Baskil district which has very high granite content in its geographical structure. Gamma radiation dose rate measurements were achieved by portable radiation monitoring equipment based on the energy range between 40 keV and 1.3 MeV. The measurements were performed on asphalt and soil surface level and also one meter above the ground surface. The gamma dose rate was also performed inside and outside of buildings over the district. The dose rates were found to be between 8.46μR/h and 34.66 μR/h. Indoor and outdoor effective dose rate of the gamma radiation exposure has been calculated to be 523μSv/y and 196μSv/y, respectively

  6. Radiation budget measurement/model interface

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  7. Metrology of ionizing radiations and environmental measurements

    Nourreddine, Abdel-Mjid

    2008-01-01

    The subject of radiation protection covers all measurements taken by the authorities to ensure protection of the population and its environment against the harmful effects of ionizing radiation. Dosimetry occupies an important place in this field, because it makes it possible to consider and to quantify the risk of using radiations in accordance with the prescribed limits. In this course, we will review the fundamental concepts used in the metrology and dosimetry of ionizing radiations. After classification of ionizing radiations according to their interactions with biological matter, we will present the various quantities and units brought into play and in particular the new operational quantities that are good estimators raising protection standards. They are directly connected to the annual limits of effective dose and of equivalent dose defined in the French regulation relating to the protection of the population and of workers against ionizing radiations. The average natural exposure of the population in France varies between 2 to 2.5 mSv per year, depending on geographic location. It comes principally from three sources: cosmic radiation, radioactive elements contained in the ground and radioactive elements that we absorb when breathing or eating. Radon, which is a naturally occurring radioactive gas, is a public health risk and represents 30% of the exposure. Finally, we will give some applications of dosimetry and environmental measurements developed recently at RaMsEs/IPHC laboratory of Strasbourg. (author)

  8. Measurement tolerance analysis of solar radiation

    Cimo, J.; Maderkova, L.; Horak, J.; Igaz, D.; Pasztorova, S. [Department of Biomereorlogy and Hydrology, Slovak Agriculture University, Nitra (Slovakia)

    2012-07-01

    Solar radiant energy is bane and almost the only one source of heat for Earth 's surface and for atmosphere, and almost the only one source of energy for physical processes. Solar energy is one of the most available and the most ecological energy source. Currently the firm Kipp and Zonen belongs to prominent producer of sensors for measuring of global radiation. These sensors are the most used in our country and also in network of meteorological measurements of WMO. Therefore the two types of measuring sensors for global radiation (pyranometer PMP6, CMP 11) in comparison with calculation method Savin-Angstrom are analysed. (author)

  9. Radiation protection measurement. Philosophy and implementation

    Recht, P.; Lakey, J.R.A.

    1975-01-01

    A selection from the proceedings of the International Symposium held by the U.K. Society for radiological protection in June 1974 was presented. The central theme was the philosophy of radiation protection measurement and its interpretation although some specific areas of good health physics practice were included. The 28 papers selected were chosen to be either representative of the central theme or of wider interest. The papers have been grouped in 6 main sections: philosophy of measurements; interpretation of measurements; implementation by legislation and monitoring; radiation exposure and control; reactor safety and siting; accidents

  10. A radiation measurement study on cellular phone

    Mohd Yusof Mohd Ali; Rozaimah Abd Rahim; Roha Tukimin; Khairol Nizam Mohamed; Mohd Amirul Nizam Mohamad Thari; Ahmad Fadzli Ahmad Sanusi

    2007-01-01

    This paper will explain the radiation level produced by various selected cellular phone from various models and brands available in the market. The result obtained from this study will also recommend whether a cellular phone is safe for public usage or it might cause any effect on public health. Finally, a database of radiation measurement level produced by selected various cellular phone will also be developed and exhibited in this paper. (Author)

  11. Natural radiation measurements in Chile

    Stuardo, E.

    1996-01-01

    To estimate the population indoor exposure in dwellings and workers exposure in some mines of the country, a radon and gamma monitoring programme is presently being carried out by the C.CH.E.N. Dosimetry Laboratory. In 1988-89 an indoor radon survey was started, using passive track detectors and long periods of integration time, and in the past two years some measurements of radon in mines, drinking water and high background zones have been added. The radon gas concentrations in 119 single family dwellings in Santiago in the winter season led to an estimated effective annual dose from inhalation of 500 μSv. Other radon gas concentrations in water and mines are presented and discussed. (author)

  12. Measurement uncertainty in broadband radiofrequency radiation level measurements

    Vulević Branislav D.

    2014-01-01

    Full Text Available For the evaluation of measurement uncertainty in the measurement of broadband radio frequency radiation, in this paper we propose a new approach based on the experience of the authors of the paper with measurements of radiofrequency electric field levels conducted in residential areas of Belgrade and over 35 municipalities in Serbia. The main objective of the paper is to present practical solutions in the evaluation of broadband measurement uncertainty for the in-situ RF radiation levels. [Projekat Ministarstva nauke Republike Srbije, br. III43009

  13. A photometric search for activity among asteroids and Centaurs

    Sosa Oyarzabal, A.; Mammana, L.; Fernández, J. A.

    2014-07-01

    We present the first results of a long-term observational campaign focused on the detection of activity in selected asteroids and centaurs. Our observational targets are near-Earth asteroids in cometary orbits (cf. [2]), the so called ''main-belt comets'' or ''active asteroids'' (well-known objects as well as potential candidates), and bright centaurs with good orbits, all close to their perihelion passages. In those objects with a former detection of activity, our aim is to contribute to a better physical knowledge of them, and determine, for instance, if the observed activity is transient or permanent. To achieve our goals, we analyzed CCD-filtered images of each observable target acquired with the 2.15-m telescope ''Jorge Sahade'' at CASLEO (San Juan, Argentina), during two runs of three consecutive nights each (during August 2013 and January 2014, respectively). Our study will be completed by future runs with the same instrumentation already assigned to our campaign. As preliminary results, we observed activity in the main-belt comets P/2013 P5 (PANSTARRS) and 133P/(7968) Elst-Pizarro. We also observed the main-belt comet (596) Scheila, which showed an unequivocally stellar appearance. We observed the main-belt comet candidate (3646) Aduatiques (cf. [1]), and noticed in this object a curious feature whose connection to some kind of activity is not well determined yet. We also observed the near-Earth asteroid in cometary orbit 2006 XL_5 (cf. [3]), and the centaurs (281371) 2008 FC_{76}, (332685) 2009 HH_{36}), (382004) 2010 RM_{64}, 2010 XZ_{78}, and 2011 UR_{402}. We have not detected activity in these objects, but an improved analysis is still in progress. %Corresponding author: Andrea Sosa (asosa@fisica.edu.uy)

  14. Development of radiation protection and measurement technology

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)

    1997-07-01

    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.

  15. WISE Observations of Comets, Centaurs, & Scattered Disk Objects

    Bauer, J.; Walker, R.; Mainzer, A.; Masiero, J.; Grav, T.; Cutri, R.; Dailey, J.; McMillan, R.; Lisse, C. M.; Fernandez, Y. R.; hide

    2011-01-01

    The Wide-Field Infrared Survey Explorer (WISE) was luanched on December 14, 2009. WISE imaged more than 99% of the sky in the mid-infrared for a 9-month mission lifetome. In addition to its primary goals of detecting the most luminous infrared galaxies and the nearest brown dwarfs, WISE, detected over 155500 of solar system bodies, 33700 of which were previously unknown. Most of the new objects were main Belt asteriods, and particular emphasis was on the discovery of Near Earth Asteoids. Hundreds of Jupiter Trojans have been imaged by WISE as well. However a substantial number of Centaurs, Scattered Disc Objects (SDOs), & cometary objects, were observed and discovered.

  16. Automated System of Area Radiation Measurement (ASARM)

    Hernandez G, J.

    2013-10-01

    The realized activities in nuclear facilities involve the determination of the presence of ionizing radiation fields in the workspaces. The instruments designed to detect and to measure these radiation fields provide useful information (specific type of radiation, intensity, etc.) to take the appropriate radiological protection measures, with the purpose of reducing to the minimum the workers exposition and the people in general. The radiological protection program of Reactor TRIGA Mark III contains the instructions and procedures to implement a periodic radiological monitoring, surveillance, rising of contamination levels, type and number of the instruments required for the radiological monitoring of areas and personal. The ana logical monitoring system model Rms II used to detect and measuring exposition speed and neutron radiation fields in several areas of the installation, provides the information in a logarithmic scale measurer of 4 or 5 decades located in a shelf where the previously mentioned measurement channels are centralized. Also inside the reactor monitoring system are two monitors of radioactive material concentration in the air: The particles continuous monitor and the gaseous effluents monitor which present the referred information of the diverse detectors through ana logical readers. These monitors when operating with an ana logical indication does not present the possibility to generate historical files electronically of each monitor previously mentioned neither to generate visual and audible indications of the alarms. This work presents the Automated System of Area Radiation Measurement which potentiated the functionality of the area monitors for gamma and neutron radiation, as well as of the particles continuous monitor and the gaseous effluents of reactor TRIGA Mark III, when being developed a computer system that captures in real time the information of all the monitors, generating this way an electronic binnacle, a visual and audible alarm

  17. Measurement of Radiated Power Loss on EAST

    Duan Yanmin; Hu Liqun; Mao Songtao; Xu Ping; Chen Kaiyun; Lin Shiyao; Zhong Guoqiang; Zhang Jizong; Zhang Ling; Wang Liang

    2011-01-01

    A type of silicon detector known as AXUV (absolute extreme ultraviolet) photodiodes is successfully used to measure the radiated power in EAST. The detector is characterized by compact structure, fast temporal response (<0.5 s) and flat spectral sensitivity in the range from ultra-violet to X-ray. Two 16-channel AXUV arrays are installed in EAST to view the whole poloidal cross-section of plasma. Based on the diagnostic system, typical radiation distributions for both limiter and divertor plasma are obtained and compared. As divertor detachment occurs, the radiation distribution in X-point region is observed to vary distinctly. The total radiation power losses in discharges with different plasma parameters are briefly analyzed.

  18. Aircrew radiation exposure: sources-risks-measurement

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  19. Evaluation of Arctic broadband surface radiation measurements

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  20. Radiation measurement of civil air flight

    Winter, M.

    1999-01-01

    In order to aquire knowledge of the radiation exposure of civil aircrew members in common flight altitudes, it was necessary to develop a practicable measurement system. Radiation exposure was hereby estimated by using the ACREM-System, which is patented by the Austrian Research Centres Seibersdorf (OEFZS). Total Equivalent Dose could be estimated in a simple way by combining a measured component of the radiation field in flight altitudes and the results of simulation with LUIN 94 particle transport code (Keran O'Brian). To verify the results of the measurement system, a tissue equivalent proportional counter (TEPC) was used. Because of the difficult measurement conditions in cargo airplanes, special attention had to be taken to make the measurement equipment easy to use and transport. Special software has been developed to automate the measurement and the evaluation of the large amount of collected data. Measurements in standard calibration photon fields for the characterization of the equipment could be performed at the Primary Dosimetry Laboratory for Austria at the Austrian Research Centre (OEFZS) in Seibersdorf. Additional measurements were performed at Physikalisch Technische Bundesanstalt Braunschweig (PTB, Germany) and Paul Scherer Institute (PSI, Switzerland) to determine the reponse of the instruments to high energy photon and standard neutron fields. (author)

  1. Neutron measuring instruments for radiation protection

    Heinzelmann, M.; Schneider, W.; Hoefert, M.; Kuehn, H.; Jahr, R.; Wagner, S.; Piesch, E.

    1979-09-01

    The present report deals with selected topics from the field of neutron dosimetry for radiation protection connected with the work of the subcommittee 6802 in the Standards Committee on Radiology (NAR) of the German Standards Institute (DIN). It is a sort of material collection. The topics are: 1. Measurement of the absorbed-energy dose by a) ionization chambers in fields of mixed radiation and b) recoil-proton proportional counting tubes. 2. Measurement of the equivalent dose, neutron monitors, combination methods by a) rem-meters, b) recoil-proton counting tubes, c) recombination method, tissue-equivalent proportional counters, activation methods for high energies in fields of mixed radiation, d) personnel dosimetry by means of ionization chambers and counting tubes, e) dosimetry by means of activation methods, nuclear track films, nonphotographic nuclear track detectors and solid-state dosimeters. (orig./HP) [de

  2. Automatic radiation measuring system connected with GPS

    Tanigaki, Minoru

    2014-01-01

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  3. Radiation Dose Measurement Using Chemical Dosimeters

    Lee, Min Sun; Kim, Eun Hee; Kim, Yu Ri; Han, Bum Soo

    2010-01-01

    The radiation dose can be estimated in various ways. Dose estimates can be obtained by either experiment or theoretical analysis. In experiments, radiation impact is assessed by measuring any change caused by energy deposition to the exposed matter, in terms of energy state (physical change), chemical production (chemical change) or biological abnormality (biological change). The chemical dosimetry is based on the implication that the energy deposited to the matter can be inferred from the consequential change in chemical production. The chemical dosimetry usually works on the sample that is an aqueous solution, a biological matter, or an organic substance. In this study, we estimated absorbed doses by quantitating chemical changes in matter caused by radiation exposure. Two different chemical dosimeters, Fricke and ECB (Ethanol-Chlorobenzene) dosimeter, were compared in several features including efficacy as dose indicator and effective dose range

  4. Radiofrequency (RF) radiation measurement for diathermy machine

    Rozaimah Abdul Rahim; Roha Tukimin; Mohd Amirul Nizam; Ahmad Fadzli; Mohd Azizi

    2010-01-01

    Full-text: Diathermy machine is one of medical device that use widely in hospital and clinic. During the diathermy treatment, high radiofrequency (RF) currents (shortwave and microwave) are used to heat deep muscular tissues through electromagnetic energy to body tissues. The heat increases blood flow, relieve pain and speeding up recovery. The stray RF radiation from the machine can exposes to unintended tissue of the patient, to the operator (physical therapist) and also can cause electromagnetic interference (EMI) effect to medical devices around the machine. The main objective of this study is to establish a database of the RF radiation exposure levels experienced by the operator and patient during the treatments. RF radiation (electric and magnetic field) produced by the diathermy machines were measured using special RF survey meters. The finding of this study confirms that radiation levels on the surface and near the applicator of the diathermy machine much more elevated due to the much closer distance to the source and they exceeding the occupational and general public exposure limit. The results also shows the field strengths drop very significantly when the distance of measurement increase. (author)

  5. Measurements of the cosmic background radiation

    Weiss, R.

    1980-01-01

    Measurements of the attributes of the 2.7-K microwave background radiation (CBR) are reviewed, with emphasis on the analytic phase of CBR studies. Methods for the direct measurement of the CBR spectrum are discussed. Attention is given to receivers, antennas, absolute receiver calibration, atmospheric emission and absorption, the galactic background contribution, the analysis of LF measurements, and recent HF observations of the CBR spectrum. Measurements of the large-angular-scale intensity distribution of the CBR (the most convincing evidence that the radiation is of cosmological origin) are examined, along with limits on the linear polarization of the CBR. A description is given of the NASA-sponsored Cosmic Background Explorer (COBE) satellite mission. The results of the COBE mission will be a set of sky maps showing, in the wave number range from 1 to 10,000 kaysers, the galactic background radiation due to synchrotron emission from galactic cosmic rays, to diffuse thermal emission from H II regions, and to diffuse thermal emission from interstellar and interplanetary dust, as well as a residue consisting of the CBR and whatever other cosmological background might exist

  6. Deviating measurements in radiation protection. Legal assessment of deviations in radiation protection measurements

    Hoegl, A.

    1996-01-01

    This study investigates how, from a legal point of view, deviations in radiation protection measurements should be treated in comparisons between measured results and limits stipulated by nuclear legislation or goods transport regulations. A case-by-case distinction is proposed which is based on the legal concequences of the respective measurement. Commentaries on nuclear law contain no references to the legal assessment of deviating measurements in radiation protection. The examples quoted in legal commentaries on civil and criminal proceedings of the way in which errors made in measurements for speed control and determinations of the alcohol content in the blood are to be taken into account, and a commentary on ozone legislation, are examined for analogies with radiation protection measurements. Leading cases in the nuclear field are evaluated in the light of the requirements applying in case of deviations in measurements. The final section summarizes the most important findings and conclusions. (orig.) [de

  7. Statistics for Radiation Measurement. Chapter 5

    Lötter, M. G. [Department of Medical Physics, University of the Free State, Bloemfontein (South Africa)

    2014-12-15

    Measurement errors are of three general types: (i) blunders, (ii) systematic errors or accuracy of measurements, and (iii) random errors or precision of measurements. Blunders produce grossly inaccurate results and experienced observers easily detect their occurrence. Examples in radiation counting or measurements include the incorrect setting of the energy window, counting heavily contaminated samples, using contaminated detectors for imaging or counting, obtaining measurements of high activities, resulting in count rates that lead to excessive dead time effects, and selecting the wrong patient orientation during imaging. Although some blunders can be detected as outliers or by duplicate samples and measurements, blunders should be avoided by careful, meticulous and dedicated work. This is especially important where results will determine the diagnosis or treatment of patients.

  8. Automatic actinometric system for diffuse radiation measurement

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  9. Radiation measurements on the Mir Orbital Station

    Badhwar, G.D.; Atwell, W.; Reitz, G.; Beaujean, R.; Heinrich, W.

    2002-01-01

    Radiation measurements made onboard the MIR Orbital Station have spanned nearly a decade and covered two solar cycles, including one of the largest solar particle events, one of the largest magnetic storms, and a mean solar radio flux level reaching 250x10 4 Jansky that has been observed in the last 40 years. The cosmonaut absorbed dose rates varied from about 450 μGy day -1 during solar minimum to approximately half this value during the last solar maximum. There is a factor of about two in dose rate within a given module, and a similar variation from module to module. The average radiation quality factor during solar minimum, using the ICRP-26 definition, was about 2.4. The drift of the South Atlantic Anomaly was measured to be 6.0±0.5 deg. W, and 1.6±0.5 deg. N. These measurements are of direct applicability to the International Space Station. This paper represents a comprehensive review of Mir Space Station radiation data available from a variety of sources

  10. Measurements of neutron radiation in aircraft

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I.; Faj, D.; Stanic, D.; Planinic, J.

    2010-01-01

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21 o to 58 o ; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H n =5.9 μSv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H f =1.4 μSv/h.

  11. Measurements of neutron radiation in aircraft

    Vukovic, B.; Poje, M.; Varga, M.; Radolic, V.; Miklavcic, I. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Faj, D. [Clinical Hospital Osijek (Croatia); Stanic, D. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J., E-mail: planinic@ffos.h [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)

    2010-12-15

    Radiation environment is a complex mixture of charged particles of the solar and galactic origin, as well as of secondary particles created in an interaction of galactic cosmic particles with the nuclei of the Earth's atmosphere. A radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. In order to measure a neutron component of the cosmic radiation, we investigated a few combinations of a track etch detector (CR-39, LR-115) with a plastic converter or boron foil. Detector calibration was performed on neutrons coming from the nuclear reactor, as well as in the CERN-EU high-energy Reference Field (CERF) facility. From November 2007 to September 2008, the neutron dose equivalent was measured by the track detectors during five aircraft flights, in the north geographical latitude from 21{sup o} to 58{sup o}; the respective average dose rate, determined by using the D-4 detector (CR-39/B), was H{sub n}=5.9 {mu}Sv/h. The photon dose rate, measured by the electronic dosimeter RAD-60 SE, had the average value of H{sub f}=1.4 {mu}Sv/h.

  12. Photometric observations of nine Transneptunian objects and Centaurs

    Hromakina, T.; Perna, D.; Belskaya, I.; Dotto, E.; Rossi, A.; Bisi, F.

    2018-02-01

    We present the results of photometric observations of six Transneptunian objects and three Centaurs, estimations of their rotational periods and corresponding amplitudes. For six of them we present also lower limits of density values. All observations were made using 3.6-m TNG telescope (La Palma, Spain). For four objects - (148975) 2001 XA255, (281371) 2008 FC76, (315898) 2008 QD4, and 2008 CT190 - the estimation of short-term variability was made for the first time. We confirm rotation period values for two objects: (55636) 2002 TX300 and (202421) 2005 UQ513, and improve the precision of previously reported rotational period values for other three - (120178) 2003 OP32, (145452) 2005 RN43, (444030) 2004 NT33 - by using both our and literature data. We also discuss here that small distant bodies, similar to asteroids in the Main belt, tend to have double-peaked rotational periods caused by the elongated shape rather than surface albedo variations.

  13. Spectral and electronic measurements of solar radiation

    Suzuki, Mamoru; Hanyu, Mitsuhiro

    1977-01-01

    The spectral data of solar radiation are necessary if detailed discussion is intended in relation to the utilization of solar energy. Since those data have not been fully prepared so far, a measuring equipment developed in Electro-technical Laboratory to obtain those data is described. The laboratory is now continuing the measurement at the wavelength of 0.3 μm to 1.1 μm. The equipment employs the system to always calibrate with the standard light source, it can measure both the direct light of the sun only and the sun light including sky light, and it enables to obtain the value based on the secondary standard of spectral illumination intensity established by the laboratory. The solar spectral irradiance is determined with the current readings of photomultiplier in the standard light source and the sun-light measurements at a wavelength and with the spectral illumination intensity from the standard light source. In order to practice such measurement many times at various wavelengths, control of the equipment, data collection, computation, drawing and listing are performed by a microcomputer. As an example, the data on Sept. 10, 1976, are shown comparing the graphs at three different hours. It can be well observed that the transmissivity attenuates with shorter wavelength, and the transmissivity in near infra-red region changes greatly due to the absorption of radiation by water vapour. (Wakatsuki, Y.)

  14. Measuring ionizing radiation with a mobile device

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  15. Bunch Length Measurements using Coherent Radiation

    Ischebeck, Rasmus; Barnes, Christopher; Blumenfeld, Ian; Clayton, Chris; Decker, Franz Josef; Deng, Suzhi; Hogan, Mark; Huang Cheng Kun; Iverson, Richard; Johnson, Devon K; Krejcik, Patrick; Lu, Wei; Marsh, Kenneth; Oz, Erdem; Siemann, Robert; Walz, Dieter

    2005-01-01

    The accelerating field that can be obtained in a beam-driven plasma wakefield accelerator depends on the current of the electron beam that excites the wake. In the E-167 experiment, a peak current above 10kA will be delivered at a particle energy of 28GeV. The bunch has a length of a few ten micrometers and several methods are used to measure its longitudinal profile. Among these, autocorrelation of coherent transition radiation (CTR) is employed. The beam passes a thin metallic foil, where it emits transition radiation. For wavelengths greater than the bunch length, this transition radiation is emitted coherently. This amplifies the long-wavelength part of the spectrum. A scanning Michelson interferometer is used to autocorrelate the CTR. However, this method requires the contribution of many bunches to build an autocorrelation trace. The measurement is influenced by the transmission characteristics of the vacuum window and beam splitter. We present here an analysis of materials, as well as possible layouts ...

  16. Proportional counter system for radiation measurement

    Sugimoto, M; Okudera, S

    1970-11-21

    A gas such as Xe or Kr employed in counter tubes is charged into the counter tube of a gas-flow type proportional counter for radiation measurement and into a vessel having a volume larger than that of the counter tube. The vessel communicates with the counter tube to circulate the gas via a pump through both the vessel and tube during measurement. An organic film such as a polyester synthetic resin film is used for the window of the counter tube to measure X-rays in the long wavelength range. Accordingly, a wide range of X-rays can be measured including both long and short wavelengths ranges by utilizing only one counter tube, thus permitting the gases employed to be effectively used.

  17. A sensor element for direct radiation measurement

    Bajons, P.; Wernhart, U.; Zeiler, H. [University of Vienna (Austria). Institut of Material Physics

    1998-08-01

    A combination of a photodiode with a nonimaging light concentrator is developed to perform measurements of the direct solar radiation component. A prototype composed of low price elements is taken as a starting point to discuss the problems which must be faced when calibrating such sensors. By this the influence of the angle of incidence and spectral distribution (caused by different air mass or varying degree of clearness) of the incident radiation on the behavior of the system is studied. The readings are compared to the calculated (global minus diffuse) readings obtained from two standard star pyranometers. Finally the possibilities for increasing the accuracy of the sensor element and for applying the device are discussed. (author)

  18. Method and apparatus for determining accuracy of radiation measurements made in the presence of background radiation

    Horrocks, D.L.

    1977-01-01

    A radioactivity measuring instrument, and a method related to its use, for determining the radioactivity of a sample measured in the presence of significant background radiation, and for determining an error value relating to a specific probability of accuracy of the result are presented. Error values relating to the measurement of background radiation alone, and to the measurement of sample radiation and background radiation together, are combined to produce a true error value relating to the sample radiation alone

  19. Measuring element for the detection and determination of radiation doses of gamma radiation and neutrons

    Jahn, W.; Piesch, E.

    1975-01-01

    A measuring element detects and proves both gamma and neutron radiation. The element includes a photoluminescent material which stores gamma radiation and particles of arsenic and phosphorus embedded in the photoluminescent material for detecting neutron radiation. (U.S.)

  20. Measurement of Thermal Radiation Properties of Solids

    Richmond, J. C. (Editor)

    1963-01-01

    The overall objectives of the Symposium were to afford (1) an opportunity for workers in the field to describe the equipment and procedures currently in use for measuring thermal radiation properties of solids, (2) an opportunity for constructive criticism of the material presented, and (3) an open forum for discussion of mutual problems. It was also the hope of the sponsors that the published proceedings of the Symposium would serve as a valuable reference on measurement techniques for evaluating thermal radiation properties of solids, partic.ularly for those with limited experience in the field. Because of the strong dependence of emitted flux upon temperature, the program committee thought it advisable to devote the first session to a discussion of the problems of temperature measurement. All of the papers in Session I were presented at the request of and upon topics suggested by the Committee. Because of time and space limitations, it, was impossible to consider all temperature measurement problems that might arise--the objective was rather to call to the attention of the reader some of the problems that might be encountered, and to provide references that might provide solutions.

  1. Performance of hepatitis B assays on the Bayer ADVIA Centaur Immunoassay System.

    van Helden, Josef; Denoyel, Gérard; Karwowska, Sylwia; Reamer, Randy; Schmalz, John; Wright, Ted; Preisel-Simmons, Barbara

    2004-01-01

    Bayer HealthCare LLC, Diagnostics Division, has developed several new assays on the ADVIA Centaur immunoassay system for the detection of markers of hepatitis B virus infection in human serum and plasma. This panel includes assays for: hepatitis B surface antigen (HBsAg), a confirmatory test method for HBsAg, antibodies to hepatitis B surface antigen (anti-HBs), IgM and IgG antibodies to hepatitis B core antigen (anti-HBc Total) and IgM antibodies to hepatitis B core antigen (anti-HBc IgM). These assays employ magnetic particle separation technology with direct chemiluminescence for optimal assay performance. All of the assays are fully automated, require sample volumes ranging from 15 microl to 100 microl (with the exception of the ADVIA Centaur HBsAg Confirmatory Assay, which requires 2 x 100 microl), and have throughputs of up to 240 tests per hour. The five ADVIA Centaur HBV assays were tested in extensive performance evaluations conducted at two sites in Europe. The performance evaluations, which included samples from HBV-infected individuals, blood donors, hospitalized/clinical patients, and HBV vaccinees (for Anti-HBs evaluation), generated performance data in support of obtaining the Communautés Européennes (CE) mark for European market distribution. The HBV performance evaluations resulted in an overall diagnostic specificity > 99%, i.e. 99.94% for the ADVIA Centaur HBsAg Assay, 100% for the ADVIA Centaur Anti-HBs Assay, 100% for the ADVIA Centaur HBc IgM Assay and 99.94% for the ADVIA Centaur HBc Total Assay. All of the ADVIA Centaur assays showed a very good diagnostic sensitivity on these populations with 100% for the ADVIA Centaur HBsAg Assay, 99.0% for the ADVIA Centaur Anti-HBs Assay, 98.53% for the ADVIA Centaur HBc IgM Assay and 100% for the ADVIA Centaur HBc Total Assay. The ADVIA Centaur HBsAg Confirmatory Test confirmed 100% of the positive HBsAg samples. Testing of interfering substances and potential cross-reacting samples for all ADVIA

  2. Radiation measurement on the International Space Station

    Akopova, A.B.; Manaseryan, M.M.; Melkonyan, A.A.; Tatikyan, S.Sh.; Potapov, Yu.

    2005-01-01

    The results of an investigation of radiation environment on board the ISS with apogee/perigee of 420/380km and inclination 51.6 o are presented. For measurement of important characteristics of cosmic rays (particles fluxes, LET spectrum, equivalent doses and heavy ions with Z>=2) a nuclear photographic emulsion as a controllable threshold detector was used. The use of this detector permits a registration of the LET spectrum of charged particles within wide range of dE/dx and during last years it has already been successfully used on board the MIR station, Space Shuttles and 'Kosmos' spacecrafts. An integral LET spectrum was measured in the range 0.5-2.2x103keV/μm and the value of equivalent dose 360μSv/day was estimated. The flux of biologically dangerous heavy particles with Z>=2 was measured (3.85x103particles/cm2)

  3. Overview of centaur and graspin enviroment generators part 1 syntx related features

    Zuppa, Elisabetta

    1989-01-01

    A short presentation of two generic interactive environments- GRASPIN and CENTAUR- is given. When provided with the description of a particular language-including its syntax and semantics- GRASPIN and CENTAUR produce an environment specific for that language. This is the first of a series of notes regarding the above systems which will cover the semantic specification and user-interface features of both of them.

  4. Radiation damage measurements in room temperature semiconductor radiation detectors

    Franks, L.A.; Olsen, R.W.; James, R.B.; Brunett, B.A.; Walsh, D.S.; Doyle, B.L.; Vizkelethy, G.; Trombka, J.I.

    1998-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI 2 ) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 10 p/cm 2 and significant bulk leakage after 10 12 p/cm 2 . CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5 x 10 9 p/cm 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from moderated fission spectrum of neutrons after fluences up to 10 10 n/cm 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particle at fluences up to 1.5 x 10 10 α/cm 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5 x 10 9 α/cm 2 . CT detectors show resolution losses after fluences of 3 x 10 9 p/cm 2 at 33 MeV for chlorine-doped detectors. Indium doped material may be more resistant. Neutron exposures (8 MeV) caused resolution losses after fluences of 2 x 10 10 n/cm 2 . Mercuric iodide has been studied with intermediate energy protons (10 to 33 MeV) at fluences up to 10 12 p/cm 2 and with 1.5 GeV protons at fluences up to 1.2 x 10 8 p/cm 2 . Neutron exposures at 8 MeV have been reported at fluences up to 10 15 n/cm 2 . No radiation damage was reported under these irradiation conditions

  5. New approach to radiation monitoring: citizen based radiation measurement

    Kuca, P.; Helebrant, J.

    2016-01-01

    Both the Fukushima Dai-chi NPP accident in Japan in 2011 and the Chernobyl NPP accident in USSR in 1986 similarly to the first one have shown a necessity to find a way how to improve confidence of the public to official authorities. It is important especially in such a case of severe accidents with significant consequences in large inhabited areas around the damaged NPP. A lack of public confidence to officials was caused mostly by rather poor communication between official authorities and the public, as well by restricted access to the information for the public. It may have extremely negative impacts on the public understanding of actual situation and its possible risks, on public acceptance of necessary protective measures and participation of the public in remediation of the affected areas. One of possible ways to improve the situation can be implementation of citizen radiation monitoring on voluntary basis. Making sure, the official results are compatible with public self-measured ones, the public probably has more confidence in them. In the Czech Republic the implementation of such an approach is tested in the framework of security research founded by the Czech Ministry of the Interior - the research project RAMESIS solved by SURO. (authors)

  6. Radiative lifetime measurements of rubidium Rydberg states

    Branden, D B; Juhasz, T; Mahlokozera, T; Vesa, C; Wilson, R O; Zheng, M; Tate, D A; Kortyna, A

    2010-01-01

    We have measured the radiative lifetimes of ns, np and nd Rydberg states of rubidium in the range 28 ≤ n ≤ 45. To enable long-lived states to be measured, our experiment uses slow-moving (∼100 μK) 85 Rb atoms in a magneto-optical trap (MOT). Two experimental techniques have been adopted to reduce random and systematic errors. First, a narrow-bandwidth pulsed laser is used to excite the target nl Rydberg state, resulting in minimal shot-to-shot variation in the initial state population. Second, we monitor the target state population as a function of time delay from the laser pulse using a short-duration, millimetre-wave pulse that is resonant with a one- or two-photon transition to a higher energy 'monitor state', n'l'. We then selectively field ionize the monitor state, and detect the resulting electrons with a micro-channel plate. This signal is an accurate mirror of the nl target state population, and is uncontaminated by contributions from other states which are populated by black body radiation. Our results are generally consistent with other recent experimental results obtained using a method which is more prone to systematic error, and are also in excellent agreement with theory.

  7. Environmental gamma radiation measurements in Bangladeshi houses

    Idrish Miah, M.

    2002-01-01

    The indoor gamma dose rate in air measured using TLDs in the Dhaka district is not wide ranging and follows a normal distribution with an arithmetic mean of 1.54±0.26 mGy.y -1 . The result has been compared with those found by other investigators for different locations of the world. Measurements were made on a monthly basis for a year period, and a sinusoidal variation of monthly indoor gamma radiation of the type: d = 160 + 65 cos p/6 (m -1 ), where d is the indoor dose rate (nGy.h -1 ) and m the month, was observed. This might be due to seasonally varied air exchange rates of the houses. The average annual effective dose and the collective dose equivalent for the residents were estimated to be 0.86 mSv and 172.20 man-Sv respectively based on the indoor gamma exposure. (author)

  8. Environmental gamma radiation measurements in Bangladeshi houses

    Miah, M.I.

    2004-01-01

    Indoor gamma dose rate in air measured using TLDs in the Dhaka district is not wide ranging and follows a normal distribution with an arithmetic mean of 1.54±0.26 mGy y -1 . The result has been compared with those found by other investigators for different locations of the world. Measurements were made on a monthly basis for a year period, and a sinusoidal variation of monthly indoor gamma radiation of the type: d=160+65 cos π/6 (m-1), where d is the indoor dose rate (nGy h -1 ) and m the month. This might be due to the seasonally varied air exchange rates of the houses. The average annual effective dose and the collective dose equivalent for the residents were estimated to be 0.86 mSv and 172.20 man-Sv, respectively, based on the indoor gamma exposure

  9. Environmental gamma radiation measurements in Bangladeshi houses

    Miah, M.I. E-mail: idrish_physics@yahoo.com

    2004-06-01

    Indoor gamma dose rate in air measured using TLDs in the Dhaka district is not wide ranging and follows a normal distribution with an arithmetic mean of 1.54{+-}0.26 mGy y{sup -1}. The result has been compared with those found by other investigators for different locations of the world. Measurements were made on a monthly basis for a year period, and a sinusoidal variation of monthly indoor gamma radiation of the type: d=160+65 cos {pi}/6 (m-1), where d is the indoor dose rate (nGy h{sup -1}) and m the month. This might be due to the seasonally varied air exchange rates of the houses. The average annual effective dose and the collective dose equivalent for the residents were estimated to be 0.86 mSv and 172.20 man-Sv, respectively, based on the indoor gamma exposure.

  10. Measurement of basis weight by radiation gauge

    Buchnea, A.

    1981-01-01

    For accurate measurement of the basis weight (mass per unit area) of a material such as paper between a radioactive source and an ionization chamber the apparatus is calibrated by using a plurality of standards of known basis weight to provide a relationship between basis weight and the output current of the chamber which includes at least terms of the second order and preferably terms of higher orders. The major portion of the radiation path is enclosed in airtight chambers which are sufficiently rigid that the density therein is independent of ambient temperature and pressure variations. The accuracy is increased by measuring ambient temperature and pressure fluctuations, and linearly compensating for resultant density variations in the air gap through which the paper web passes. A wheel holding the standards is induced by a motor and a perforated encoding disc. (author)

  11. Radiation damage measurements in room-temperature semiconductor radiation detectors

    Franks, L A; Olsen, R W; Walsh, D S; Vizkelethy, G; Trombka, J I; Doyle, B L; James, R B

    1999-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI sub 2) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 sup 1 sup 0 p/cm sup 2 and significant bulk leakage after 10 sup 1 sup 2 p/cm sup 2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5x10 sup 9 p/cm sup 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from a moderated fission spectrum of neutrons after fluences up to 10 sup 1 sup 0 n/cm sup 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particles at fluences up to 1.5x10 sup 1 sup 0 alpha/cm sup 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5x10 sup 9 alpha/cm sup 2. CT detectors show resolution...

  12. Estimating shortwave solar radiation using net radiation and meteorological measurements

    Shortwave radiation has a wide variety of uses in land-atmosphere interactions research. Actual evapotranspiration estimation that involves stomatal conductance models like Jarvis and Ball-Berry require shortwave radiation to estimate photon flux density. However, in most weather stations, shortwave...

  13. Cosmic Radiation Measurements in Airline Service

    Bagshaw, M

    1999-07-01

    Ionising radiation monitoring equipment is installed in all Concordes and much data have been derived. To validate the measurements from the on-board monitoring equipment, a programme of measurements on Concorde has been carried out using passive dosemeters in association with the UK National Radiological Protection Board. Data from a typical month (in this case October 1997) shows an arithmetic mean dose across the British Airways Concorde fleet of 12.9 ({+-}0.4) {mu}Sv.h{sup -1}. Results from the NRPB measurements for the same month give a dose of 11.4 ({+-}0.5) {mu}Sv.h{sup -1} and application of the CARI 3Q programme gives a dose of 9.6 {mu}Sv.h{sup -1} for the same month. The effective route dose between London and New York gives a mean value of 43.1 {mu}Sv for the Concorde detectors. The NRPB results give a route dose of 38.9 {mu}Sv whereas the CARI 3Q programme gives a route dose of 32.5 {mu}Sv. Measurements have also been performed on the Boeing 747-400 aircraft on the high latitude ultralonghaul direct London-Tokyo flight and these give values in the region of 6 {mu}Sv.h{sup -1}, against the CARI 3Q estimate of 3.7 {mu}Sv.h{sup -1}. (author)

  14. Cosmic Radiation Measurements in Airline Service

    Bagshaw, M.

    1999-01-01

    Ionising radiation monitoring equipment is installed in all Concordes and much data have been derived. To validate the measurements from the on-board monitoring equipment, a programme of measurements on Concorde has been carried out using passive dosemeters in association with the UK National Radiological Protection Board. Data from a typical month (in this case October 1997) shows an arithmetic mean dose across the British Airways Concorde fleet of 12.9 (±0.4) μSv.h -1 . Results from the NRPB measurements for the same month give a dose of 11.4 (±0.5) μSv.h -1 and application of the CARI 3Q programme gives a dose of 9.6 μSv.h -1 for the same month. The effective route dose between London and New York gives a mean value of 43.1 μSv for the Concorde detectors. The NRPB results give a route dose of 38.9 μSv whereas the CARI 3Q programme gives a route dose of 32.5 μSv. Measurements have also been performed on the Boeing 747-400 aircraft on the high latitude ultralonghaul direct London-Tokyo flight and these give values in the region of 6 μSv.h -1 , against the CARI 3Q estimate of 3.7 μSv.h -1 . (author)

  15. The great advances in radiation measurements

    Brodsky, A.

    2002-01-01

    The title of this banquet talk was selected to entertain conferees with recollections of major advances in dosimetry that have stimulated appetites for scientific progress. Recalling over fifty years of use of dosimetric instruments and concepts in the 1950-2000 era leads to an appreciation of many advances in solid state dosimetry, which others here know well and pursue vigorously. This author has been mainly a user, admirer, and interpreter of the fundamental methods of dose measurement. These advances have allowed ease of application in radiation protection and medical physics, for determining current routine and accidental exposures to workers, and for precise radiotherapeutic dose delivery. In more recent years, advances in identifying means of locating selective depositions of energy in various materials are providing ways of retrospectively assessing doses to tissue that were deposited many years ago. These methods also will allow development of quantitative theories of radiation damage once the lesions of interest are identified through further advances in molecular genetics. Yet, reflections on the past fifty years lead to increasing appreciation of the enormous achievements of our predecessors in the 1900-1950 period. Therefore, this presentation emphasises methods used by the author and some of his data interpretations during his 52-year career, with some examination of the earlier origin of some of these methods. (author)

  16. Measurements of computed tomography radiation scatter

    Van Every, B.; Petty, R.J.

    1992-01-01

    This paper describes the measurement of scattered radiation from a computed tomography (CT) scanner in a clinical situation and compares the results with those obtained from a CT performance phantom and with data obtained from CT manufacturers. The results are presented as iso-dose contours. There are significant differences between the data obtained and that supplied by manufacturers, both in the shape of the iso-dose contours and in the nominal values. The observed scatter in a clinical situation (for an abdominal scan) varied between 3% and 430% of the manufacturers' stated values, with a marked reduction in scatter noted a the head and feet of the patient. These differences appear to be due to the fact that manufacturers use CT phantoms to obtain scatter data and these phantoms do not provide the same scatter absorption geometry as patients. CT scatter was observed to increase as scan field size and slice thickness increased, whilst there was little change in scatter with changes in gantry tilt and table slew. Using the iso-dose contours, the orientation of the CT scanner can be optimised with regard to the location and shielding requirements of doors and windows. Additionally, the positioning of staff who must remain in the room during scanning can be optimised to minimise their exposure. It is estimated that the data presented allows for realistic radiation protection assessments to be made. 13 refs., 5 tabs., 6 figs

  17. Radiation dose measurement in gastrointestinal studies

    Sulieman, A.; Elzaki, M.; Kappas, C.; Theodorou, K.

    2011-01-01

    Barium studies investigations (barium swallow, barium meal and barium enema) are the basic routine radiological examination, where barium sulphate suspension is introduced to enhance image contrast of gastrointestinal tracts. The aim of this study was to quantify the patients' radiation doses during barium studies and to estimate the organ equivalent dose and effective dose with those procedures. A total of 33 investigations of barium studies were measured by using thermoluminescence dosemeters. The result showed that the patient entrance surface doses were 12.6±10, 44.5±49 and 35.7±50 mGy for barium swallow, barium meal, follow through and enema, respectively. Effective doses were 0.2, 0.35 and 1.4 mSv per procedure for barium swallow, meal and enema respectively. Radiation doses were comparable with the previous studies. A written protocol for each procedure will reduce the inter-operator variations and will help to reduce unnecessary exposure. (authors)

  18. A ring system detected around the Centaur (10199) Chariklo.

    Braga-Ribas, F; Sicardy, B; Ortiz, J L; Snodgrass, C; Roques, F; Vieira-Martins, R; Camargo, J I B; Assafin, M; Duffard, R; Jehin, E; Pollock, J; Leiva, R; Emilio, M; Machado, D I; Colazo, C; Lellouch, E; Skottfelt, J; Gillon, M; Ligier, N; Maquet, L; Benedetti-Rossi, G; Ramos Gomes, A; Kervella, P; Monteiro, H; Sfair, R; El Moutamid, M; Tancredi, G; Spagnotto, J; Maury, A; Morales, N; Gil-Hutton, R; Roland, S; Ceretta, A; Gu, S-h; Wang, X-b; Harpsøe, K; Rabus, M; Manfroid, J; Opitom, C; Vanzi, L; Mehret, L; Lorenzini, L; Schneiter, E M; Melia, R; Lecacheux, J; Colas, F; Vachier, F; Widemann, T; Almenares, L; Sandness, R G; Char, F; Perez, V; Lemos, P; Martinez, N; Jørgensen, U G; Dominik, M; Roig, F; Reichart, D E; LaCluyze, A P; Haislip, J B; Ivarsen, K M; Moore, J P; Frank, N R; Lambas, D G

    2014-04-03

    Hitherto, rings have been found exclusively around the four giant planets in the Solar System. Rings are natural laboratories in which to study dynamical processes analogous to those that take place during the formation of planetary systems and galaxies. Their presence also tells us about the origin and evolution of the body they encircle. Here we report observations of a multichord stellar occultation that revealed the presence of a ring system around (10199) Chariklo, which is a Centaur--that is, one of a class of small objects orbiting primarily between Jupiter and Neptune--with an equivalent radius of 124 ±  9 kilometres (ref. 2). There are two dense rings, with respective widths of about 7 and 3 kilometres, optical depths of 0.4 and 0.06, and orbital radii of 391 and 405 kilometres. The present orientation of the ring is consistent with an edge-on geometry in 2008, which provides a simple explanation for the dimming of the Chariklo system between 1997 and 2008, and for the gradual disappearance of ice and other absorption features in its spectrum over the same period. This implies that the rings are partly composed of water ice. They may be the remnants of a debris disk, possibly confined by embedded, kilometre-sized satellites.

  19. Measurement of solar radiation at the Earth's surface

    Bartman, F. L.

    1982-01-01

    The characteristics of solar energy arriving at the surface of the Earth are defined and the history of solar measurements in the United States presented. Radiation and meteorological measurements being made at solar energy meteorological research and training sites and calibration procedures used there are outlined. Data illustrating the annual variation in daily solar radiation at Ann Arbor, Michigan and the diurnal variation in radiation at Albuquerque, New Mexico are presented. Direct normal solar radiation received at Albuquerque is contrasted with that received at Maynard, Massachusetts. Average measured global radiation for a period of one year for four locations under clear skies, 50% cloud cover, and 100% cloud cover is given and compared with the solar radiation at the top of the atmosphere. The May distribution of mean daily direct solar radiation and mean daily global solar radiation over the United States is presented. The effects of turbidity on the direct and circumsolar radiation are shown.

  20. measurement of indoor background ionizing radiation in some

    Administrator

    Measurement of the background ionizing radiation profile within the. Chemistry Research Laboratory and Physics Laboratory III all of the. University of Jos and their immediate neighbourhood were carried out. These science laboratories also harbour a number of active radiation sources. The radiation levels were measured ...

  1. Method and apparatus for measuring electromagnetic radiation

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  2. Method of measuring blood flow by radiation

    Gildenberg, P.L.

    1977-01-01

    A method of measuring relative blood flow through at least a part of the body using penetrating radiation comprises transmitting a plurality of rays at an initial angle or initial mean angle through a planar slice of the body to define a first set of rays, transmitting a plurality of further sets of rays at angles or mean angles different from each other and from the initial angle or initial mean angle through the same planar slice of the body to define by the intersection of all such rays a two-dimensional matrix of elements of the body in the slice, measuring for each ray emerging from the body a number of over the period of time at least equal to a pulse interval representing the momentary sum of the transmissions or absorptions of the element of the body intersected by the ray, determining from the momentary signals momentary signals a difference signal representing the maximum difference between the momentary signals for each ray over the period of time, deriving sets of discrete difference signals corresponding to the sets of rays, the difference signals being indicative of the transmission or absorption of blood flowing through each element of the body in the matrix, and calculating from the difference signals resultant signals representing the transmissions or absorptions due to blood flow in the elements of the matrix. These resultant signals may be visually depicted on a cathode ray tube display, as a digital print-out, or as a photograph. 30 claims, 8 figures

  3. Radiation detection and measurement concepts, methods and devices

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  4. Reflections on Centaur Upper Stage Integration by the NASA Lewis (Glenn) Research Center

    Graham, Scott R.

    2015-01-01

    The NASA Glenn (then Lewis) Research Center (GRC) led several expendable launch vehicle (ELV) projects from 1963 to 1998, most notably the Centaur upper stage. These major, comprehensive projects included system management, system development, integration (both payload and stage), and launch operations. The integration role that GRC pioneered was truly unique and highly successful. Its philosophy, scope, and content were not just invaluable to the missions and vehicles it supported, but also had significant Agency-wide benefits. An overview of the NASA Lewis Research Center (now the NASA Glenn Research Center) philosophy on ELV integration is provided, focusing on Atlas/Centaur, Titan/Centaur, and Shuttle/Centaur vehicles and programs. The necessity of having a stable, highly technically competent in-house staff is discussed. Significant depth of technical penetration of contractor work is another critical component. Functioning as a cohesive team was more than a concept: GRC senior management, NASA Headquarters, contractors, payload users, and all staff worked together. The scope, content, and history of launch vehicle integration at GRC are broadly discussed. Payload integration is compared to stage development integration in terms of engineering and organization. Finally, the transition from buying launch vehicles to buying launch services is discussed, and thoughts on future possibilities of employing the successful GRC experience in integrating ELV systems like Centaur are explored.

  5. Characteristics and correlation of various radiation measuring methods in spatial radiation measurement

    Yoneda, Kazuhiro; Tonouchi, Shigemasa

    1992-01-01

    When the survey of the state of natural radiation distribution was carried out, for the purpose of examining the useful measuring method, the comparison of the γ-ray dose rate calculated from survey meter method, in-situ measuring method and the measuring method by sampling soil was carried out. Between the in-situ measuring method and the survey meter method, the correlation Y=0.986X+5.73, r=0.903, n=18, P<0.01 was obtained, and the high correlation having the inclination of nearly 1 was shown. Between the survey meter method and the measuring method by sampling soil, the correlation Y=1.297X-10.30, r=0.966, n=20 P<0.01 was obtained, and the high correlation was shown, but as for the dose rate contribution, the disparities of 36% in U series, 6% in Th series and 20% in K-40 were observed. For the survey of the state of natural radiation distribution, the method of using in combination the survey meter method and the in-situ measuring method or the measuring method by sampling soil is suitable. (author)

  6. Electromagnetically driven radiative shocks and their measurements

    Kondo, K.; Watanabe, M.; Nakajima, M.; Kawamura, T.; Horioka, K.

    2005-01-01

    Experimental results on a generation of strong shocks in a compact pulse power device are reported. The characteristics of strong shocks are different from hydrodynamical shocks' because they depend on not only collisions but radiation processes. Radiative shocks are relevant to high energy density phenomena such as the explosions of supernovae. When initial pressure is lower than about 50 mtorr, an interesting structure is confirmed at the shock front, which might indicate a phenomenon proceeded by the radiative process. (author)

  7. Measurement of indoor background ionizing radiation in some ...

    Certain types of building materials are known to be radioactive. Exposure to indoor ionizing radiation like exposure to any other type of ionizing radiation results in critical health challenges. Measurement of the background ionizing radiation profile within the Chemistry Research Laboratory and Physics Laboratory III all of ...

  8. Portable apparatus for measurement of nuclear radiation

    Whitlock, G.D.

    1975-01-01

    The apparatus described is stated to be particularly applicable to the measurement of tritium contamination of a surface, although it may have other applications to the determination of radioactivity on surfaces. The mean range of a tritium β particle in air at normal atmospheric pressure is only 1.5 mm. and when monitoring such radiation with the apparatus it is necessary to exclude light. The apparatus comprises a plastic scintillator sheet located in the base of a housing, with a sealing ring mounted in the base so as to make a hermetic and light-tight seal between a support surface and the base of the housing. Photomultiplier means are optically coupled to the scintillator sheet to detect and amplify the scintillations, and a pump device is provided to reduce the air pressure in the vicinity of the sheet to below atmospheric pressure. The scintillator sheet and the photomultiplier means are movable as one unit within the housing, the unit being arranged to be acted upon by atmospheric pressure so as to move the unit into an operative position against a spring when the air pressure in the vicinity of the sheet is reduced to below atmospheric pressure. A shutter is provided to prevent exposure of the scintillator sheet to light when the apparatus is not in use. (U.K.)

  9. Review of measures to control radiation

    Swindon, T.N.

    1980-03-01

    Methods used in Canada and the U.S.A. to overcome problems in the control of radiation, to prescribe standards and to ensure that compliance with the standards is achieved are reviewed. The relevant Acts and Regulations are outlined. Options which could be applied in Australia for effecting better control of radiation are suggested

  10. Autonomous rendezvous and docking operations of unmanned expendable cargo transfer vehicles (e.g. Centaur) with Space Station Freedom

    Emmet, Brian R.

    1991-01-01

    This paper describes the results of the feasibility study using Centaur or other CTV's to deliver payloads to the Space Station Freedom (SSF). During this study was examined the requirements upon unmanned cargo transfer stages (including Centaur) for phasing, rendezvous, proximity operations and docking/berthing (capture).

  11. Automatization of the radiation control measurements

    Seki, Akio; Ogata, Harumi; Horikoshi, Yoshinori; Shirai, Kenji

    1988-01-01

    Plutonium Fuel Production Facility (PFPF) was constructed to fabricate the MOX fuels for 'MONJU' and 'JOYO' reactors and to develop the practical fuel fabricating technology. For the fuel fabrication process in this facility, centralized controlling system is being adopted for the mass production of the fuel and reduction of the radiation exposure dose. Also, the radiation control systems are suitable for the large-scale facility and the automatic-remote process of the fuel fabrication. One of the typical radiation control systems is the self moving survey system which has been developed by PNC and adopted for the automatic routine monitoring. (author)

  12. Radiation Pressure Measurements on Micron-Size Individual Dust Grains

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Witherow, W. K.; West, E. A.; Gallagher, D. L.; Adrian, M. L.; Fishman, G. J.; Tankosic, D.; LeClair, A.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2- to 6.82-micron range and irradiating them from above with laser radiation focused to beam widths of approximately 175- 400 microns at ambient pressures particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of SiO2 and the corresponding extinction and scattering efficiencies.

  13. About Solar Radiation Intensity Measurements and Data Processing

    MICH-VANCEA Claudiu

    2012-10-01

    Full Text Available Measuring the intensity of solar radiation is one of the directions of investigation necessary for the implementation of photovoltaic systems in a particular geographical area. This can be done by using specific measuring equipment (pyranometer sensors based onthermal or photovoltaic principle. In this paper it is presented a method for measuring solar radiation (which has two main components - direct radiation and diffuse radiation with sensors based on photovoltaic principle. Such data are processed for positioning solarpanels, in order their efficiency to be maximized.

  14. Measurement of radiation damage on an optical reflector

    Peng, K.C.; Sahu, S.K.; Huang, H.C.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical white fluorocarbon reflector called Goretex, which is to be used for aerogel threshold counters and crystal calorimeters of the BELLE detector of the KEK B-factory. Reflectance of the Goretex surface was monitored to see any effect of the radiation damage. Maximum equivalent dose was 8.6 Mrad. No radiation damage is observed within measurement errors. (orig.)

  15. Survey by measurement of urban environmental radiation, 1

    Inokoshi, Yukio; Kitahara, Akiharu; Suzuki, Takashi; Sugiura, Shiroharu; Shindo, Kotaro

    1984-01-01

    In the evaluation of the effect of radiation on the population of Tokyo Metropolis, it is necessary to know the external exposure due to natural radiation. Radiation dose rate has been measured on the ground (parks, etc.), paved roads (sidewalks), buildings, and transportation facilities (subways). The average values of cosmic ray and ground radiation were 8.8 x 10 -10 C/kg.h and 6.5 x 10 -10 C/kg.h, respectively. The radiation dose rate on roads differed largely with the structural materials, thickness, etc. The radiation in wooden buildings was almost similar to surrounding natural radiation. In high-rise buildings, there was not much difference from floor to floor. The natural radiation in subways depends largely on the depth. (Mori, K.)

  16. Application of a universal optic data link for radiation measurements

    Komatsu, T.; Takada, E.

    2002-01-01

    Optic Data Link (ODL) is a device to convert electric and optic signals to each other, which is used for the field of optical communications. We examined the possibility to apply ODLs to radiation measurements. The effect of ODLs on energy and timing resolution has been investigated. From the results, fundamental applicability of ODLs to radiation measurements has been demonstrated. (author)

  17. Calibration of solar radiation measuring instruments. Final report

    Bahm, R J; Nakos, J C

    1979-11-01

    A review of solar radiation measurement of instruments and some types of errors is given; and procedures for calibrating solar radiation measuring instruments are detailed. An appendix contains a description of various agencies who perform calibration of solar instruments and a description of the methods they used at the time this report was prepared. (WHK)

  18. Do dose area product meter measurements reflect radiation doses ...

    Enrique

    SA JOURNAL OF RADIOLOGY • August 2004. Abstract. This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from ...

  19. Do dose area product meter measurements reflect radiation doses ...

    This study determined the correlation between radiation doses absorbed by health care workers and dose area product meter (DAP) measurements at Universitas Hospital, Bloemfontein. The DAP is an instrument which accurately measures the radiation emitted from the source. The study included the interventional ...

  20. Measuring the greenhouse effect and radiative forcing through the atmosphere

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  1. Calculating the diffuse solar radiation in regions without solar radiation measurements

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  2. Chernobyl accident: Causes, consequences and problems of radiation measurements

    Kortov, V.; Ustyantsev, Yu.

    2013-01-01

    General description of Chernobyl accident is given in the review. The accident causes are briefly described. Special attention is paid to radiation situation after the accident and radiation measurements problems. Some data on Chernobyl disaster are compared with the corresponding data on Fukushima accident. It is noted that Chernobyl and Fukushima lessons should be taken into account while developing further measures on raising nuclear industry safety. -- Highlights: ► The short comparative analysis of accidents at Chernobyl and Fukushima is given. ► We note the great effect of β-radiation on the radiation situation at Chernobyl. ► We discuss the problems of radiation measurements under these conditions. ► The impact of shelter on the radiation situation near Chernobyl NPS is described

  3. Control measures in industrial and medical applications of radiation

    Akinloye, M. K.

    1999-01-01

    Radiation and radioactive substances are natural and permanent features of the environment; additionally the use of human made radiation is widespread. Sources of radiation are essential to modern health care, disposable medical supplies sterilized by intense radiation have been central to combating disease, radiology is a vital diagnostic tool and radiotherapy is commonly part of the treatment of malignancies. Nuclear techniques are in growing use in industry, agriculture, medicine and many fields of research, benefiting hundreds of millions of people and giving employment to millions of people in the related occupations, Irradiation is used around the world to preserve and reduce wastage and sterilization techniques have been used to eradicate disease carrying insects and pests. Industrial radiography is in routine use, for example to examine welds and detect cracks and help prevent the failure of engineered structures. It is also known that exposure to ionizing radiation can result to injuries that manifest themselves in the individual and his descendants. It is therefore imperative that the use of radiation sources be accompanied with the methods necessary for the prevention of the harmful effects of the radiation. These methods are referred to as control measures. Control measures that have been applied in establishments can be classified into physical control measures and administrative control measures. Physical control measures involve the technical aspects while administrative control measures augment physical measures. The guidelines and recommendations for the safe use of radiation and radioactive materials are provided through legislative and regulatory controls

  4. Mathematical simulation of gamma-radiation angle distribution measurements

    Batij, V.G.; Batij, E.V.; Egorov, V.V.; Fedorchenko, D.V.; Kochnev, N.A.

    2008-01-01

    We developed mathematical model of the facility for gamma-radiation angle distribution measurement and calculated response functions for gamma-radiation intensities. We developed special software for experimental data processing, the 'Shelter' object radiation spectra unfolding and Sphere detector (ShD) angle resolution estimation. Neuronet method using for detection of the radiation directions is given. We developed software based on the neuronet algorithm, that allows obtaining reliable distribution of gamma-sources that make impact on the facility detectors at the measurement point. 10 refs.; 15 figs.; 4 tab

  5. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  6. Measuring stations for gamma radiation - measured results 1982

    Kjelle, P.E.

    1983-01-01

    Gamma radiation is recorded continuously at 25 stations in Sweden. The evaluation of the data from five of the stations is made in a most accurate way, and the results are presented in this report. (G.B.)

  7. Solar and terrestrial radiation: methods and measurements

    Coulson, Kinsell L

    1975-01-01

    ... AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. Ill Fifth Avenue, New York, New York 10003 United Kingdom Edition published by A C A D E M I C PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 Library of Congress Cataloging in Publication Data Coulson, Kinsell L Solar and terrestrial radiation. Inclu...

  8. Crack velocity measurement by induced electromagnetic radiation

    Frid, V.; Rabinovitch, A.; Bahat, D.

    2006-01-01

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality

  9. Crack velocity measurement by induced electromagnetic radiation

    Frid, V. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)]. E-mail: vfrid@bgu.ac.il; Rabinovitch, A. [Deichmann Rock Mechanics Laboratory of the Negev, Physics Department, Ben Gurion University of the Negev, Beer Sheva (Israel); Bahat, D. [Deichmann Rock Mechanics Laboratory of the Negev, Geological and Environmental Sciences Department, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2006-07-31

    Our model of electromagnetic radiation (EMR) emanated from fracture implies that EMR amplitude is proportional to crack velocity. Soda lime glass samples were tested under uniaxial tension. Comparison of crack velocity observed by Wallner line analysis and the peak amplitude of EMR signals registered during the test, showed very good correlation, validating this proportionality.

  10. Ground-based spectral measurements of solar radiation, (2)

    Murai, Keizo; Kobayashi, Masaharu; Goto, Ryozo; Yamauchi, Toyotaro

    1979-01-01

    A newly designed spectro-pyranometer was used for the measurement of the global (direct + diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation component which leads to the spectral distribution of the optical thickness (extinction coefficient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorption by the aerosols. Very strong absorption in the ultraviolet region was recognized. (author)

  11. Calorimeter with capacitance transducer for measurement of SHF radiation power

    Kiselev, V.A.; Linnik, A.F.; Onishchenko, I.N.; Uskov, V.V.

    2005-01-01

    A calorimeter of simple design for measuring total energy of microwave radiation is described. It operates in the energy range of 0.5 J to 6 kJ; water is used as the absorbing material. A capacitive probe is applied to measure changes in the water volume. The energy absorption factor of electromagnetic radiation in the range of 3-60 GHz is at least 0.9. The calorimeter is insensitive to radiation field nonuniformity over the absorber volume. The calorimeter is intended for measuring the radiation energy of beam plasma generators and generators with dielectric structure. Its design makes it possible to simultaneously measure the radiation energy and monitor the beam current [ru

  12. Radiation and impurity measurements in FRX-C/T

    Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Tuszewski, M.

    1984-01-01

    Translation of Field-Reversed Configurations (FRCs) in the FRX-C/T device has provided better diagnostic access for radiation measurements. It is observed that radiated power accounts for 7 +- 2% of the total power losses, indicating that thermal conduction accounts for about half of the losses. It was determined through impurity seeding experiments that the oxygen fraction is 0.6 +- 0.2% and that oxygen can account for most of the radiated power

  13. Radiation budget measurement/model interface research

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  14. Trace element measurements with synchrotron radiation

    Hanson, A.L.; Kraner, H.W.; Jones, K.W.; Gordon, B.M.; Mills, R.E.

    1982-01-01

    Aspects of the application of synchrotron radiation to trace element determinations by x-ray fluorescence have been investigated using beams from the Cornell facility, CHESS. Fluoresced x rays were detected with a Si(Li) detector placed 4 cm from the target at 90 0 to the beam. Thick samples of NBS Standard Reference Materials were used to calibrate trace element sensitivity and estimate minimum detectable limits for this method

  15. Measurement of background gamma radiation in the northern Marshall Islands

    Bordner, Autumn S.; Crosswell, Danielle A.; Katz, Ainsley O.; Shah, Jill T.; Zhang, Catherine R.; Nikolic-Hughes, Ivana; Hughes, Emlyn W.; Ruderman, Malvin A.

    2016-01-01

    Sixty-seven nuclear tests were conducted on two atolls in the northern Marshall Islands between 1946 and 1958. These tests produced radioactive fallout, which even today gives rise to radiation measurable above naturally occurring background levels. Rather than obtain new data, recent estimates of contamination levels in the northern Marshall Islands use measurements made decades ago to calculate present radiation levels. In contrast, we report on timely measurements on three different atolls...

  16. Radiation protection measures for hot cell sanitation

    Berger, H.U.; Burck, W.; Dilger, H.

    1983-01-01

    The cell 5 of the Hot Cell Facility of the Kernforschungszentrum Karlsruhe GmbH (KfK) was to be restored and reequipped after 12 years of operation. The decontamination work was first done remotely controlled and afterwards by 38 persons entering the cell, which took about 2 months. The radiation protection methods and personal dosimetry systems are described. At the beginning of the work the γ-dose rate amounted up to 900 mSv/h. After completion of the remotely controlled decontamination work the γ-dose rate decreased to 1.5 mSv/h. At that time the (α+β-contamination was 10 5 Bq/cm 2 . Till the end of the work the removable activity dropped to 10 2 - 10 3 Bq/cm 2 for β-radiation, to 0.3 - 30 Bq/cm 2 for α-radiation and the local dose rate to about 0.03 mSv/h. During the work the accumulated collective doses were listed for breast, hand, head, gonads and foot. In the figure the development with the time of the doses for breast and hand is shown. During restoration work of the cell the accumulated collective whole-body dose amounted to 30 mSv. (orig.) [de

  17. Radiation dose measurements in intravenous pyelography

    Egeblad, M.; Gottlieb, E.

    1975-01-01

    Intravenous pyelography (IVP) and micturition cystourethrography (MCU) are the standard procedures in the radiological examination of children with urinary tract infections and in the control of these children. Gonad protection against radiation is not possible in MCU, but concerning the girls partly possible in IVP. It is of major importance to know the radiation dose in these procedures, especially since the examination is often repeated in the same patients. All IVP were done by means of the usual technique including possible gonad protection. The thermoluminescence dosimeter was placed rectally in the girls and fixed on the scrota in the boys. A total of 50 children was studied. Gonad dose ranged from 140 to 200mR in the girls and from 20 to 70mR in the boys (mean values). The radiation dose in IVP is very low compared to that of MCU, and from this point of view IVP is a dose saving examination in the control of children with urinary tract infections [fr

  18. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    Lubis, L E; Badawy, M K

    2016-01-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care. (paper)

  19. Environmental radiation measurements and remedial actions (Hantepe/Ezine/Canakkale)

    2009-01-01

    There are some regions in the world that are known as high background radiation areas. Intensive scientific investigations in the field of radiation dose and health effects, risk estimates, radiation protection, environmental transportation routes and ecological effects related with natural radiation have been carried out in these regions. Also natural radiation dosimetry, in vitro and in vivo biological studies which take into account the measurements in the field of low level radiation, radon, thoron and cosmic rays have been carried out, again in these regions. The well-known high natural background radiation areas in the world are Guarapari in Brazil, Ramsar in Iran, Kerala in India and Yangjiang in China. In addition to above mentioned areas, other relatively lower high background radiation areas are exist. Since 1960s, radiological, geological, epidemiological and ecological studies have been carried out in order to determine the risks and possible health effects of long-term low level natural radiation exposure. In the framework of surveying the background radiation of Turkey, the background radiation measurements were carried out in 56 different points around the area of Canakkale city. The radiation levels at Hantepe beach of Geyikli which is located in Ezine town of Canakkale was found higher than the mean background radiation level of the region. The radiation dose rates were measured in between 0.20 and 10.88 Gy h-1 in contact and 0.27 and 3.11 Gy h-1 above 1 meter of the ground level where the thorium-containing sand is dense. After the rehabilitation studies, the radiation dose rate were measured in between 0.15 and 8.09 Gy h-1 in contact and 0.17 and 2.88 Gy h-1 above 1 meter of the ground level. It was observed that the radiation dose rates were decreased seriously after the rehabilitation studies when the arithmetic mean value of the dose rates was taken into account. The effective dose calculations were performed by taking into account the

  20. Device for the integral measurement of ionizing radiations

    Micheron, Francois.

    1980-01-01

    This invention relates to devices for the integral determination of ionizing radiations, particularly to the construction of a portable dosemeter. Portable measuring instruments have been suggested in the past, particularly dosemeters in which the discharge of a capacitor under the action of ionizing radiations is measured. Since the charge of a capacitor is not stable owing to dielectric imperfections, these measuring instruments have to be recalibrated at frequent intervals. To overcome this drawback, the invention suggests using the discharge of an electret, electrically charged to a pre-set initial value, under the action of ionizing radiations, as the transducer means of a dosemeter used in conjunction with display or warning systems [fr

  1. First aid and subsequent measures after radiation accidents

    Flach, H.D.

    1980-01-01

    An organisation schedule and first aid measures after accidents involving ionizing radiation are presented, both in accordance with the current practice of the responsible professional associations. Optimum care also of persons with radiation injuries will be assured by cooperation between voluntary lay helpers, physicians, and regional centres in which failure symptons of the haematopoietic system can be treated. (DG) [de

  2. Traceability of radiation measurements: musings of a user

    Kathren, R.L.

    1980-04-01

    Although users of radiation desire measurement traceability for a number of reasons, including legal, regulatory, contractual, and quality assurance requirements, there exists no real definition of the term in the technical literature. Definitions are proposed for both traceability and traceability to the National Bureau of Standards. The hierarchy of radiation standards is discussed and allowable uncertainties are given for each level. Areas of need with respect to radiation standards are identified, and a system of secondary radiation calibration laboratories is proposed as a means of providing quality calibrations and traceability on a routine basis

  3. Spectroscopic and bolometric measurements of radiation loss in DIVA

    Shiho, Makoto; Odajima, Kazuo; Sugie, Tatsuo; Maeda, Hikosuke; Kasai, Satoshi

    1977-11-01

    Radiation loss due to low- and high-z impurities in DIVA (JFT-2a) was measured by means of a calibrated 3m grazing incidence vacuum monochromater and a calibrated pyroelectric detector. The following results were obtained: 1) Radiation loss power due to low-z impurities becomes insignificant by using clean surfaces for the vacuum wall. 2) Radiation loss power due to pseudo continuum from high-z impurities has influence on the energy balance of the confined plasma. 3) The divertor reduces the radiation loss by a factor of about 3. (auth.)

  4. Traceability of radiation measurements: musings of a user

    Kathren, R.L.

    1980-04-01

    Although users of radiation desire measurement traceability for a number of reasons, including legal, regulatory, contractual, and quality assurance requirements, there exists no real definition of the term in the technical literature. Definitions are proposed for both traceability and traceability to the National Bureau of Standards. The hierarchy of radiation standards is discussed and allowable uncertainties are given for each level. Areas of need with respect to radiation standards are identified, and a system of secondary radiation calibration laboratories is proposed as a means of providing quality calibrations and traceability on a routine basis.

  5. Beam size measurement at high radiation levels

    Decker, F.J.

    1991-05-01

    At the end of the Stanford Linear Accelerator the high energy electron and positron beams are quite small. Beam sizes below 100 μm (σ) as well as the transverse distribution, especially tails, have to be determined. Fluorescent screens observed by TV cameras provide a quick two-dimensional picture, which can be analyzed by digitization. For running the SLAC Linear Collider (SLC) with low backgrounds at the interaction point, collimators are installed at the end of the linac. This causes a high radiation level so that the nearby cameras die within two weeks and so-called ''radiation hard'' cameras within two months. Therefore an optical system has been built, which guides a 5 mm wide picture with a resolution of about 30 μm over a distance of 12 m to an accessible region. The overall resolution is limited by the screen thickness, optical diffraction and the line resolution of the camera. Vibration, chromatic effects or air fluctuations play a much less important role. The pictures are colored to get fast information about the beam current, size and tails. Beside the emittance, more information about the tail size and betatron phase is obtained by using four screens. This will help to develop tail compensation schemes to decrease the emittance growth in the linac at high currents. 4 refs., 2 figs

  6. Online radiation dose measurement system for ATLAS experiment

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Mikuz, M. [Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana (Slovenia); Bronner, J.; Hartet, J. [Physikalisches Institut, Universitat Freiburg, Hermann-Herder-Str. 3, Freiburg (Germany); Franz, S. [CERN, Geneva (Switzerland)

    2009-07-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO{sub 2} will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10{sup 9} n/cm{sup 2} for NIEL (non-ionizing energy loss) measurements, 10{sup 12} n/cm{sup 2} for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  7. Online radiation dose measurement system for ATLAS experiment

    Mandic, I.; Cindro, V.; Dolenc, I.; Gorisek, A.; Kramberger, G.; Mikuz, M.; Bronner, J.; Hartet, J.; Franz, S.

    2009-01-01

    In experiments at Large Hadron Collider, detectors and electronics will be exposed to high fluxes of photons, charged particles and neutrons. Damage caused by the radiation will influence performance of detectors. It will therefore be important to continuously monitor the radiation dose in order to follow the level of degradation of detectors and electronics and to correctly predict future radiation damage. A system for online radiation monitoring using semiconductor radiation sensors at large number of locations has been installed in the ATLAS experiment. Ionizing dose in SiO 2 will be measured with RadFETs, displacement damage in silicon in units of 1-MeV(Si) equivalent neutron fluence with p-i-n diodes. At 14 monitoring locations where highest radiation levels are expected the fluence of thermal neutrons will be measured from current gain degradation in dedicated bipolar transistors. The design of the system and tests of its performance in mixed radiation field is described in this paper. First results from this test campaign confirm that doses can be measured with sufficient sensitivity (mGy for total ionizing dose measurements, 10 9 n/cm 2 for NIEL (non-ionizing energy loss) measurements, 10 12 n/cm 2 for thermal neutrons) and accuracy (about 20%) for usage in the ATLAS detector

  8. Techniques for radiation measurements: Micro-dosimetry and dosimetry

    Waker, A. J.

    2006-01-01

    Experimental Micro-dosimetry is concerned with the determination of radiation quality and how this can be specified in terms of the distribution of energy deposition arising from the interaction of a radiation field with a particular target site. This paper discusses various techniques that have been developed to measure radiation energy deposition over the three orders of magnitude of site-size; nano-meter, micrometer and millimetre, which radiation biology suggests is required to fully account for radiation quality. Inevitably, much of the discussion will concern the use of tissue-equivalent proportional counters and variants of this device, but other technologies that have been studied, or are under development, for their potential in experimental Micro-dosimetry are also covered. Through an examination of some of the quantities used in radiation metrology and dosimetry the natural link with Micro-dosimetric techniques will be shown and the particular benefits of using Micro-dosimetric methods for dosimetry illustrated. (authors)

  9. Nuclear radiation-warning detector that measures impedance

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  10. Estimation of diffuse from measured global solar radiation

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  11. Measurement of Background Gamma Radiation Levels at Two ...

    MICHAEL

    ABSTRACT: An in-situ measurement of the background radiation level was carried out at the vicinity of three ... Soil contains small quantities of radioactive elements along with their progeny. .... assessment for soil samples from Kestanbol.

  12. Radiated power measurement with AXUV photodiodes in EAST tokamak

    Duan Yanmin; Hu Liqun; Du Wei; Mao Songtao; Chen Kaiyun; Zhang Jizhong

    2013-01-01

    The fast bolometer diagnostic system for absolute radiated power measurement on EAST tokamak is introduced, which is based on the absolute extreme ultraviolet (AXUV) photodiodes. The relative calibration of AXUV detectors is carried out using X-ray tube and standard luminance source in order to evaluate the sensitivity degradation caused by cumulative radiation damage during experiments. The calibration result shows a 23% sensitivity decrease in the X-ray range for the detector suffering ∼27000 discharges, but the sensitivity for the visible light changes little. The radiated power measured by AXUV photodiodes is compared with that measured by resistive bolometer. The total radiated power in main plasma deduced from AXUV detector is lower a factor of 1∼4 than that deduced from resistive bolometer. Some typical measurement results are also shown in this article. (author)

  13. Measurement of radiative lifetime in atomic samarium using ...

    2014-02-08

    Feb 8, 2014 ... gations of radiative lifetime measurement of odd-parity energy level at ... introduced by an electronic delay generator between the two ... cascade repopulation and depopulation, Zeeman and hyperfine quantum beats [6]. The.

  14. Measuring Earth's Radiation Budget from the Vicinity of the Moon

    Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.

    2018-02-01

    We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.

  15. Development of radiation detection and measurement systems

    Moon, B. S.; Ham, C. S.; Chung, C. E. and others

    2000-03-01

    This report contains descriptions on the following six items. The first item is the result of a study on CsI(TI) crystals with their light emitting characteristics and the result of a study on plastic scintillators. The second item is the result of a study on advanced radiation detectors and includes experiments for the effect of using a Compton suppressor with an HPGe detector. For the third item, we describe the results of a design work done using EGS4 for a thickness gauge, a density gauge, and a level gauge. The fourth item contains descriptions on the prototype circuit systems developed for a level gauge, a thickness gauge, and for a survey meter. The fifth part contains the computed tomography algorithm and a prototype scanning system developed for a CT system. As the sixth and the last item, we describe the prototype high precision heat source and the prototype heat-voltage converter which we have designed and fabricated.

  16. Development of radiation detection and measurement systems

    Moon, B. S.; Ham, C. S.; Chung, C. E. and others

    2000-03-01

    This report contains descriptions on the following six items. The first item is the result of a study on CsI(TI) crystals with their light emitting characteristics and the result of a study on plastic scintillators. The second item is the result of a study on advanced radiation detectors and includes experiments for the effect of using a Compton suppressor with an HPGe detector. For the third item, we describe the results of a design work done using EGS4 for a thickness gauge, a density gauge, and a level gauge. The fourth item contains descriptions on the prototype circuit systems developed for a level gauge, a thickness gauge, and for a survey meter. The fifth part contains the computed tomography algorithm and a prototype scanning system developed for a CT system. As the sixth and the last item, we describe the prototype high precision heat source and the prototype heat-voltage converter which we have designed and fabricated

  17. Optical fibers and their applications for radiation measurements

    Kakuta, Tsunemi

    1998-01-01

    As a new method of radiation measurements, several optical methods using optical fiber sensors have been developed. One is the application of 'radio-luminescence' from the optical fiber itself such as plastic scintillating fibers. Other researches are made to develop the 'combined-sensors' by combination of optical fibers and scintillating materials. Using the time domain method of optical fiber sensors, the profile of radiation distribution along the optical fiber can be easily determined. A multi-parameter sensing system for measurement of radiation, temperature, stress, etc, are also expected using these optical fiber sensors. (author)

  18. Measurement of the radiation in the accelerator-therapy room

    Zutz, Hayo

    2013-01-01

    The measurement of the scattering radiation in the accelerator-therapy room of the PTB is described. The accelerators are commercial linear accelerators of the firm Elektra of the type ''Precise''. The measurements were performed by means of secondary-normal ionization chambers and a special measurement technique developed in the PTB both with and without the used beam. (HSI)

  19. Radiation risk estimation based on measurement error models

    Masiuk, Sergii; Shklyar, Sergiy; Chepurny, Mykola; Likhtarov, Illya

    2017-01-01

    This monograph discusses statistics and risk estimates applied to radiation damage under the presence of measurement errors. The first part covers nonlinear measurement error models, with a particular emphasis on efficiency of regression parameter estimators. In the second part, risk estimation in models with measurement errors is considered. Efficiency of the methods presented is verified using data from radio-epidemiological studies.

  20. Radiation quantities, units and measurements. Final report 1999

    Wambersie, A.; Allisy, A.; Caswell, R.S.

    2000-01-01

    The determination of human exposure to radiation and radioactivity, whether arising from environmental exposures, medical practice or industrial activities, requires a fundamental set of quantities and units with which exposures can be specified and the means and ability to make measurements which yield results in terms of these quantities and units. Radiation protection then, as well as effective use of radiation in medical applications, requires the capability to accurately quantify the characteristics and extent of radiation exposure, so that appropriate and useful assessments of the potential health consequences and risks, whether for protection of the public and workers or for diagnosis and treatment of disease, can be formulated. The work carried out via this concerted action on ''Radiation quantities, units and measurements'' has addressed these needs. Measurement of radiation is a complex subject and is a science in itself. Yet many users of radiation who need to make radiation measurements cannot be expected to become experts in this particular field. They need authoritative guidance on how to deal with the measurement problems connected with their particular use of radiation. The work carried out pursuant to this concerted action has resulted in publications that meet this need. Important achievements include the publication of seven new ICRU reports, the completion of all but the printing of three other ICRU reports, completion of the drafting work on two other reports, the development of many others reports and the initiation of seven new activities that will result in ICRU reports representing important future contribution to the needs identified in this project. (orig.)

  1. Measurement of solar energy radiation in Abu Dhabi, UAE

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A.

    2009-01-01

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 deg. N, 54.45 deg. E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m 2 , respectively. The highest one-minute average daily solar radiation was 1041 W/m 2 . Yearly average daily energy input was 18.48 MJ/m 2 /day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture

  2. Measurement of solar energy radiation in Abu Dhabi, UAE

    Islam, M.D.; Kubo, I.; Ohadi, M.; Alili, A.A. [Department of Mechanical Engineering, The Petroleum Institute, Abu Dhabi, P.O. Box 2533 (United Arab Emirates)

    2009-04-15

    This paper presents data on measurement of actual solar radiation in Abu Dhabi (24.43 N, 54.45 E). Global solar radiation and surface temperatures were measured and analyzed for one complete year. High resolution, real-time solar radiation and other meteorological data were collected and processed. Daily and monthly average solar radiation values were calculated from the one-minute average recorded values. The highest daily and monthly mean solar radiation values were 369 and 290 W/m{sup 2}, respectively. The highest one-minute average daily solar radiation was 1041 W/m{sup 2}. Yearly average daily energy input was 18.48 MJ/m{sup 2}/day. Besides the global solar radiation, the daily and monthly average clearness indexes along with temperature variations are discussed. When possible, global solar energy radiation and some meteorological data are compared with corresponding data in other Arab state capitals. The data collected indicate that Abu Dhabi has a strong potential for solar energy capture. (author)

  3. Radiation measured for ISS-Expedition 12 with different dosimeters

    Zhou, D.; Semones, E.; Gaza, R.; Johnson, S.; Zapp, N.; Weyland, M.

    2007-01-01

    Radiation in low Earth orbit (LEO) is mainly from Galactic Cosmic Rays (GCR), solar energetic particles and particles in South Atlantic Anomaly (SAA). These particles' radiation impact to astronauts depends strongly on the particles' linear energy transfer (LET) and is dominated by high LET radiation. It is important to investigate the LET spectrum for the radiation field and the influence of radiation on astronauts. At present, the best active dosimeters used for all LET are the tissue equivalent proportional counter (TEPC) and silicon detectors; the best passive dosimeters are thermoluminescence dosimeters (TLDs) or optically stimulated luminescence dosimeters (OSLDs) for low LET and CR-39 plastic nuclear track detectors (PNTDs) for high LET. TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation for space mission Expedition 12 (ISS-11S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the mission with these different dosimeters. This paper introduces the operation principles for these dosimeters, describes the method to combine the results measured by CR-39 PNTDs and TLDs/OSLDs, presents the experimental LET spectra and the radiation quantities

  4. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  5. Measurement of natural background radiation intensity on a train

    Chen, Y. F.; Lin, J. W.; Sheu, R. J.; Lin, U. T.; Jiang, S. H.

    2011-01-01

    This work aims to measure different components of natural background radiation on a train. A radiation measurement system consisting of four types of radiation detectors, namely, a Berkeley Lab cosmic-ray detector, moderated 3He detector, high pressure ionisation chamber and NaI(Tl) spectrometer, associated with a global positioning system unit was established for this purpose. For the commissioning of the system, a test measurement on a train along the railway around the northern Taiwan coast from Hsinchu to Hualien with a distance of ∼275 km was carried out. No significant variation of the intensities of the different components of natural background radiation was observed, except when the train went underground or in the tunnels. The average external dose rate received by the crew of the train was estimated to be 62 nSv h -1 . (authors)

  6. Mobile equipment for measurement of gamma radiation

    2009-01-01

    NRPA has several systems to perform mobile measurements. One of the systems consists of detectors mounted on the roof of a car. Mobile systems can be used to map the radioactive contamination of large areas in a short time, to the reference measurements and to search for sources astray. The systems can be mounted on the vehicle or used in a helicopter or airplane. (AG)

  7. Measurement of radiation dose in dental radiology

    Helmrot, E.; Carlsson, G. A.

    2005-01-01

    Patient dose audit is an important tool for quality control and it is important to have a well-defined and easy to use method for dose measurements. In dental radiology, the most commonly used dose parameters for the setting of diagnostic reference levels (DRLs) are the entrance surface air kerma (ESAK) for intraoral examinations and dose width product (DWP) for panoramic examinations. DWP is the air kerma at the front side of the secondary collimator integrated over the collimator width and an exposure cycle. ESAK or DWP is usually measured in the absence of the patient but with the same settings of tube voltage (kV), tube current (mA) and exposure time as with the patient present. Neither of these methods is easy to use, and, in addition, DWP is not a risk related quantity. A better method of monitoring patient dose would be to use a dose area product (DAP) meter for all types of dental examinations. In this study, measurements with a DAP meter are reported for intraoral and panoramic examinations. The DWP is also measured with a pencil ionisation chamber and the product of DWP and the height H (DWP x H) of the secondary collimator (measured using film) was compared to DAP. The results show that it is feasible to measure DAP using a DAP meter for both intraoral and panoramic examinations. The DAP is therefore recommended for the setting of DRLs. (authors)

  8. Using Radiation Pattern Measurements for Mobile Handset Performance Evaluation

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2005-01-01

    The mean effective gain (MEG) is an attractive performance measure of mobile handsets, since it incorporates both directional and polarization properties of the handset and environment. In this work the MEG is computed from measured spherical radiation patterns of five different mobile handsets...... values obtained for different orientations of the handsets in the environments. For practical measurements it is important to minimize the measurement time. The paper includes a study of the variation in MEG when the number of samples in the spherical radiation pattern is reduced. Furthermore...

  9. Optical fibers and their applications for radiation measurements

    Kakuta, Tsunemi

    1998-01-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as 'Key Component' for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  10. Optical fibers and their applications for radiation measurements

    Kakuta, Tsunemi [Japan Atomic Energy Research Inst., Tokyo (Japan)

    1998-07-01

    When optical fibers are used in a strong radiation field, it is necessary to increase the radiation-resistant capacity. Aiming at the improvement of such property, the characteristics of recent optical fibers made from quartz-glass were reviewed and the newly developed techniques for radiation measurement using those fibers were summarized in this report. Since optical fibers became able to use in the levels near the core conditions, their applications have started in various fields of technologies related to radiation. By combining the optical fibers and a small sensor, it became possible to act as `Key Component` for measuring wide range radioactivity from a trace activity to a strong radiation field in the reactor core. Presently, the fibers are utilized for investigation of the optical mechanisms related in radiation, evaluation of their validities so on. Further, the optical fibers are expected to utilize in a multi-parametric measuring system which allows to concomitantly determine the radiation, temperature, pressure, flow amount etc. as an incore monitor. (M.N.)

  11. Measurement of background gamma radiation in the northern Marshall Islands.

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  12. Space weather effects measured in atmospheric radiation on aircraft

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  13. Radiation protection measures in the case of incidents and radiation accidents

    Herzberg, B.

    1976-01-01

    Measures to be taken in the case of radiation accidents connected with an unusually high radiation exposure to persons, the amounts of which exceed the limiting values, with depend on whether there has been an external or an internal exposure. In order to give further treatment in the case of whole-body or partial-body irradiation, it is necessary to estimate the exposure dose. In nuclear medicine the accident doses are generally low, i.e. acute radiation damage does not occur here, and immediate measures are not necessary. Therapeutic measures in the case of incorporation accidents are only necessary when the maximum amounts for the nuclide in question recommended by the ICRP has been reached or exceeded in the organism. However, decorporation measures ought to be carried out only by qualified radiation protection physicians. The type of radiation accident which occurs most frequently in nuclear medicine is radiation exposure as a result of contamination. If in the case of contamination of a person the measurement exceeds the radioactivity limit, the decontamination measures are necessary. In the present contribution, these measures for cases without injuries are described in detail. (orig./HP) [de

  14. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  15. Measurement of man's exposure to external radiation

    Becker, K.

    1975-01-01

    After outlining briefly the rationale for personnel radiation monitoring with integrating detectors, a review is presented of some developments which have taken place in personnel and environmental dosimetry during the past 3.5 years. The results of a pilot field experiment concerning the stability of film and thermoluminescent dosimeters (TLDs) in four Latin-American countries are summarized. It shows that film dosimeters should be used only with caution, and in locations with a moderate climate. A survey is being conducted on the current status and trends in personnel monitoring, involving detailed questioning of over 150 laboratories in about forty countries to obtain information on the type of service and detectors, evaluation and recordkeeping, additional applications, problem and development areas, intercomparisons, practical experiences with different systems, administrative and legal aspects, etc. According to the preliminary results, the trend is away from photographic film and towards mostly automatic TLD systems, not only in the industrialized countries but also in several of the larger and more advanced developing countries. The need for higher quality standards and frequent performance tests under realistic conditions is emphasized. Differences in the requirements for personnel and []stationary environmental dosimeters are outlined. As evidenced by the results of a recent international intercomparison of such dosimeters under laboratory and field conditions, involving 56 dosimeter sets from eleven countries, reasonably accurate results can be obtained with several TLD systems including LiF, CaSO 4 :Dy, and CaF 2 :Mn; however CaF 2 :Dy is less reliable than the others and film is not adequate at all. Transit doses were found to be erratic and frequently high. Limitations in the assessment of population doses from stationary detector readings are discussed. (auth)

  16. Radiation entropy influx as a measure of planetary dissipative processes

    Izakov, M.N.

    1989-01-01

    Dissipative processes including high flows of matter and energy occur at the planets. Radiation negentropy influx, resulting from difference of entropy fluxes of incoming solar and outgoing thermal radiation of the planet, is a measure of all these processes. Large share of radiation negentropy influx is spent in the vertical thermal fluxes which keep the planet temperature conditions. Next share of radiation negentropy consumption at the Earth is water evaporation. It's rest part is used for the dynamics, which is explained by the efficiency insignificant amount of heat engine, which generates movements in the atmosphere and ocean. Essentially higher share of radiation negentropy influx, than at the Earth, is spent at the Venus, where there are practically no water

  17. Development of Software for Measurement and Analysis of Solar Radiation

    Mohamad Idris Taib; Abul Adli Anuar; Noor Ezati Shuib

    2015-01-01

    This software was under development using LabVIEW to be using with StellarNet spectrometers system with USB communication to computer. LabVIEW have capabilities in hardware interfacing, graphical user interfacing and mathematical calculation including array manipulation and processing. This software read data from StellarNet spectrometer in real-time and then processed for analysis. Several measurement of solar radiation and analysis have been done. Solar radiation involved mainly infra-red, visible light and ultra-violet. With solar radiation spectrum data, information of weather and suitability of plant can be gathered and analyzed. Furthermore, optimization of utilization and safety precaution of solar radiation can be planned. Using this software, more research and development in utilization and safety of solar radiation can be explored. (author)

  18. Implementation of organizational measures in radiation protection in the Netherlands

    Freerk Boersma, H.

    2004-01-01

    The Regulation Administrative and Organizational Measures in Radiation Protection is an important part of new legislation concerning radiation protection in the Netherlands. In this contribution we pay attention to the implementation of two obligations resulting from this regulation, being the creation of a radiation protection organization, and the realization of a system of internal permits. These obligations apply to holders of comprehensive licenses. Relevant aspects of the regulation will be explained in some detail. The first draft of a guideline, initiated by the Dutch Radiation Protection Society and meant to facilitate putting up a system for internal permits, is discussed. We also describe the radiation protection organization and the system of internal permits at Groningen University, and focus on the major successes and flaws of both. (Author) 7 refs

  19. Biological trace element measurements using synchrotron radiation

    Giauque, R.D.; Jaklevic, J.M.; Thompson, A.C.

    1985-07-01

    The feasibility of performing x-ray fluorescence trace element determinations at concentrations substantially below the ppM level for biological materials is demonstrated. Conditions for achieving optimum sensitivity were ascertained. Results achieved for five standard reference materials were, in most cases, in excellent agreement with listed values. Minimum detectable limits of 20 ppM were measured for most elements

  20. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  1. Radiation Pressure Measurements on Micron Size Individual Dust Grains

    Abbas, M. M.; Craven, P.D.; Spann, J. F.; Tankosic, D.; Witherow, W. K.; LeClair, A.; West, E.; Sheldon, R.; Gallagher, D. L.; Adrian, M. L.

    2003-01-01

    Measurements of electromagnetic radiation pressure have been made on individual silica (SiO2) particles levitated in an electrodynamic balance. These measurements were made by inserting single charged particles of known diameter in the 0.2 micron to 6.82 micron range and irradiating them from above with laser radiation focused to beam-widths of approx. 175-400 micron, at ambient pressures approx. 10(exp -3) to 10(exp -4) torr. The downward displacement of the particle due to the radiation force is balanced by the electrostatic force indicated by the compensating dc potential applied to the balance electrodes, providing a direct measure of the radiation force on the levitated particle. Theoretical calculations of the radiation pressure with a least-squares fit to the measured data yield the radiation pressure efficiencies of the particles, and comparisons with Mie scattering theory calculations provide the imaginary part of the refractive index of silica and the corresponding extinction and scattering efficiencies.

  2. Control device intended for a gamma radiation measuring instrument

    1976-01-01

    This invention concerns a monitoring device for a gamma radiation measuring instrument or radiation meter, in which the radiation to be measured brings about, inter alia, the ionisation of a gas and the generation of current pulses. The dial of this meter is generally calibrated in roentgens per hour, i.e. in radiation rate units. This instrument of very simple design is remarkable for its operating reliability. Preferably placed at the inlet to a radioactive area, it enables every user of a ratemeter to check, over the entire measuring range of this instrument, its proper operation prior to entering the area. To this effect, the monitoring device in question has a thick wall lead castle, having an internal cavity in which is mounted a radioactive source delivering a gamma radiation with given constant characteristics, through a measurement window closed by a calibrated plug. Lead doors articulated on the castle can be superimposed on this window to bring about a given attenuation of the radiation coming from the source and delivered to the exterior of the castle [fr

  3. ACREM: A new air crew radiation exposure measuring system

    Beck, P.; Duftschmid, K.; Kerschbaumer, S.; Schmitzer, C.; Strachotinsky, C.; Grosskopf, A.; Winkler, N.

    1996-01-01

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  4. Solar Panel Integration as an Alternate Power Source on Centaur 2 (SPIAPS)

    Gebara, Christine A.; Schuetze, Nich A.; Knochel, Aviana M.; Magruder, Darby F.

    2011-01-01

    The dream of exploration has inspired thousands throughout time. Space exploration, in particular, has taken the past century by storm and caused a great advance in technology. In this project, a retractable solar panel array will be developed for use on the Centaur 2 Rover. Energy generated by the solar panels will go to power the Centaur 2 Robot (C2) or Regolith & Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE) payload, an in-situ resource utilization project. Such payload is designed to drill into lunar and Martian terrain as well as be able to conduct other geological testing; RESOLVE is slated for testing in 2012. Ultimately, this project will fit into NASA s larger goal of deep space exploration as well as long term presence outside Earth s orbit.

  5. Design and Development of transducer for IR radiation measurement

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  6. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  7. Terrestrial radiation measurements in Marshall Islands

    Gudiksen, P.H.

    1978-01-01

    With the prospect of habitation in the near future, radiological surveys were undertaken of Enewetak and Bikini Atolls to provide a basis for determining whether or not the atolls can be safely reinhabited. The surveys included all of the forty islands within Enewetak Atoll, but only the two principal islands, Bikini and Eneu Islands, of Bikini Atoll. These atolls were former U.S. nuclear weapons test sites in the Pacific. Integral parts of the surveys were the measurements of the distributions of radioactivity in the soil and the resulting gamma ray exposure rates for external dose estimation. Numerous soil samples were collected from both atolls for analysis by Ge (Li) gamma spectrometry and by wet chemistry techniques. At Enewetak Atoll the gamma exposure rates were measured by TLDs and a helicopter-borne array of Nal detectors, while at Bikini Atoll portable Nal detectors, pressurized ion-chambers, and TLDs were utilized. The predominant species measured in the soil samples collected from both atolls were 90 Sr, 239,240 Pu, 137 Cs and 60 Co with the latter two nuclides being the primary contributors to the gamma-ray exposure rates. The geographical distribution of the exposure rates measured on both atolls, was highly variable ranging from less than 1 μR/h on islands that had not been impacted radiologically by the testing program, to over 100 μR/h near weapon detonation sites. Thus, within Enewetak Atoll, the highest soil activities and gamma-ray exposure rates were measured on the northern islands, where the weapons testing had been most intense. Bikini Island exhibited contamination levels that were considerably higher than those on Eneu Island. Generally, the highest activity levels were observed within the island interiors or in proximity to ground zero sites, and could usually be related to the surrounding vegetation density. The island of Yvonne, within Enewetak Atoll, is the most severely contaminated land area. Particles containing as much as several

  8. Measurement of gamma radiation doses in nuclear power plant environment

    Bochvar, I.A.; Keirim-Markus, I.B.; Sergeeva, N.A.

    1976-01-01

    Considered are the problems of measuring gamma radiation dose values and the dose distribution in the nuclear power plant area with the aim of estimating the extent of their effect on the population. Presented are the dosimeters applied, their distribution throughout the controlled area, time of measurement. The distribution of gamma radiation doses over the controlled area and the dose alteration with the increase of the distance from the release source are shown. The results of measurements are investigated. The conclusion is made that operating nuclear power plants do not cause any increase in the gamma radiation dose over the area. Recommendations for clarifying the techniques for using dose-meters and decreasing measurement errors are given [ru

  9. Recent developments and trends in radiation protection measuring techniques

    Maushart, R.

    1993-01-01

    Measuring instruments used in radiation protection have undergone dramatic changes over the past decade. But also the attitude of users vis-a-vis this equipment is changing. This is reflected in changes in equipment concepts, the trend being towards 'considerate equipment' which does not absorb the user's attention, but reserves it for the real proposes of radiation protection. Just measuring is no longer enough. Measured data acquisition and evaluation must be integrated more closely, and more specifically, into an overall process of optimized in-plant radiation protection. A key role in this scheme is played by the application-oriented user interface, while measurement and testing routines become more and more automated. The technology now available for storing programs and data, interconnecting and displaying them in many ways, offers almost unlimited possibilities

  10. Radiation protection measures in case of 125I incorporation

    Strobelt, W.

    1976-01-01

    Thyroid measurements were performed on members of the scientific staff in the whole body counter of the Giessen Radiation Center with an aluminium encapsulated 3'' x 3'' dia. NaI(T1) detector; the personnel under investigation comprised those persons who either handled major quantities of 125 I or worked in the controlled area. The measuring setup, phantom calibration and the limits of measurement that can be attained are discussed. In a few cases of incorporation the effective halflife was determined. The radiation exposure was calculated by the absorbed fractions concept. A hazard is encountered almost exclusively in the iodization of the test substances. (orig./HP) [de

  11. Radiation protection measures for the handling of unsealed radioactive materials

    Moehrle, G.

    1975-03-01

    The radiation protective medical measures are described which are required after contamination by radioactive materials or their incorporation. In the case of skin contamination, penetration by diffusion is explained and the maximum permissible value with regard to the various types of radiation is given. A detailed description of the decontamination measures including the necessary equipment follows. Indications for the treatment of injuries are given. In addition, incorporation due to inhalation, ingestion with intake through the skin are described, direct and indirect incorporation detection are explained, and the therapeutical possibilities and measures are gone into. (ORU/LH) [de

  12. Coordinated weather balloon solar radiation measurements during a solar eclipse.

    Harrison, R G; Marlton, G J; Williams, P D; Nicoll, K A

    2016-09-28

    Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto unexploited possibility for making solar eclipse radiation measurements. For the 20 March 2015 solar eclipse, a coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44°N, 0.94°W), Lerwick (60.15°N, 1.13°W) and Reykjavik (64.13°N, 21.90°W), straddling the path of the eclipse. The balloons reached sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was estimated by assuming that the maximum solar radiation during a swing occurs when the photodiode sensing surface becomes normal to the direction of the solar beam. Both approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation changes.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'. © 2016 The Authors.

  13. Radiation (UV-IR) measurements in the TRIAM-1 tokamak

    Nakamura, K; Nakamura, Y; Hiraki, N; Itoh, S [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-07-01

    Scaling law is presented that the ratio P sub(R)/P sub(I) (P sub(R): radiation loss, P sub(I): input power) is proportional to the parameter a sup(3/2)/R (a: minor radius, R: major radius). The discussion is presented about the design of the apparatus for measuring the radiation (ultraviolet to infrared) from the TRIAM-1 tokamak plasma.

  14. Effectiveness estimation of camouflage measures with solar radiation and longwave radiation considered

    Jung, J.S. [LG Electronics Corporation (Korea); Kauh, S.K. [Seoul National University, Seoul (Korea); Yoo, H.S. [Soongsil University, Seoul (Korea)

    1998-11-01

    Camouflage measures in military purpose utilizes the apparent temperature difference between the target and background, so it is essential to develop thermal analysis program for apparent temperature predictions and to apply some camouflage measures to real military targets for camouflage purpose. In this study, a thermal analysis program including conduction, convection and radiation is developed and the validity of radiation heat transfer terms is examined. The results show that longwave radiation along with solar radiation should be included in order to predict apparent temperature as well as physical temperature exactly. Longwave emissivity variation as an effective camouflage measures is applied to a real M2 tank. From the simulation results, it is found that an effective surface treatment, such as painting of a less emissive material or camouflage, clothing, may provide a temperature similarity or a spatial similarity, resulting in an effective camouflage. (author). 12 refs., 6 figs., 1 tab.

  15. Satellite data sets for the atmospheric radiation measurement (ARM) program

    Shi, L.; Bernstein, R.L. [SeaSpace Corp., San Diego, CA (United States)

    1996-04-01

    This abstract describes the type of data obtained from satellite measurements in the Atmospheric Radiation Measurement (ARM) program. The data sets have been widely used by the ARM team to derive cloud-top altitude, cloud cover, snow and ice cover, surface temperature, water vapor, and wind, vertical profiles of temperature, and continuoous observations of weather needed to track and predict severe weather.

  16. Measurement of Gamma Radiation in an Automobile Mechanic ...

    Environmental radiation measurement was carried out in an automobile mechanic village, Apo, Abuja, Nigeria. An in-situ measurement approach was adopted using RDS-200 Universal Survey Meter and a handheld Global Positioning System (Garmin GPS 76S) equipment. It was observed that the dose equivalent varied ...

  17. Alpha radiation gauge for the measurement of gas density

    Lech, M.

    1977-01-01

    Alpha gauge for the measurement of gas density with thick alfa source, has been developed. The gauge is based on radiation transmission through a space filled with gas and total-count principle. Air density can be measured in the range 1,2 - 1,27 kg m -3 with a maximum standard deviation of 2 x 10 -3 kg m -3 . (author)

  18. 47 CFR 2.1511 - Measurements of radiated emissions.

    2010-10-01

    ... TREATY MATTERS; GENERAL RULES AND REGULATIONS FCC Procedure for Testing Class A, B and S Emergency... 243 MHz. Step (9) Compute the peak effective radiated power for the maximum level of each measured emission using the following formula: EC03JN91.001 where: dBmmeas is the measured receiver reading in dBm...

  19. The problem of the detection threshold in radiation measurement

    Rose, E.; Wueneke, C.D.

    1983-01-01

    In all cases encountered in practical radiation measurement, the basic problem is to differentiate between the lowest measured value and the zero value (background, natural background radiation, etc.). For this purpose, on the mathematical side, tests based on hypotheses are to be applied. These will show the probability of differentiation between two values having the same random spread. By means of these tests and the corresponding error theory, a uniform treatment of the subject, applicable to all problems relating to measuring technique alike, can be found. Two basic concepts are found in this process, which have to be defined in terms of semantics and nomenclature: Decision threshold and detection threshold, or 'minimum detectable mean value'. At the decision threshold, one has to decide (with a given statistical error probability) whether a measured value is to be attributed to the background radiation, accepting the zero hypothesis, or whether this value differs significantly from the background radiation (error of 1rst kind). The minimum detectable mean value is the value which, with a given decision threshold, can be determined with sufficient significance to be a measured value and thus cannot be mistaken as background radiation (alternative hypothesis, error of 2nd kind). Normally, the two error types are of equal importance. It may happen, however, that one type of error gains more importance, depending on the approach. (orig.) [de

  20. An Experiment in Radiation Measurement Using the Depron Instrument

    Benghin, Victor V.; Nechaev, Oleg Y.; Zolotarev, Ivan A.; Amelyushkin, Alexander M.; Petrov, Vasiliy L.; Panasyuk, Milhail I.; Yashin, Ivan V.

    2018-02-01

    Most of the radiation measurements have been made onboard spacecraft flying along orbits with an inclination of up to 51.6 degrees. Due to the prospect of manned missions at orbits with larger inclinations, it is advisable to conduct preliminary detailed dosimetry measurements at a high-inclination orbit; due to its polar orbit, the Lomonosov satellite provides good opportunities for such study. We chose a method of cosmic radiation dosimetry based on semiconductor detectors. This method is widely used onboard spacecraft, including full-time radiation monitoring onboard the International Space Station (ISS). It should be noted that not only did the charged particles contribute significantly in the dose equivalent, but also did the neutrons. Semiconductor detectors have low sensitivity to neutron radiation and are not sufficient for detecting the expected flux of neutrons. We add a thermal neutron counter to the proposed device in order to provide an opportunity for estimation of neutron flux variations along the satellite trajectory. Thus, the design of the instrument DEPRON (Dosimeter of Electrons, PROtons and Neutrons) was determined. DEPRON is intended for registration of the absorbed doses and linear energy transfer spectra for high-energy electrons, protons and nuclei of space radiation, as well as registration of thermal neutrons. The present paper provides a brief description of the DEPRON instrument. Its calibration results and the first mission results of background radiation measurements are also presented.

  1. Measurement and control systems using nuclear radiation

    Melo, Jose Altino Tupinamba; Madi Filho, Tufic

    2007-01-01

    Non-destructive Assay is applied to machines and components quality tests. These elements would not have a good performance if they were conceived without concern about the mechanical project quality, used materials, manufacture processes and inspection and maintenance methodology. In this work, a measure and control system of non destructive processes was developed, using a radioactive source with a defined energy in function of the material to be analyzed. This system involves: interface of input/output (I/O) (hardware) and graphical interface (software). In the non destructive analysis, it is made the comparison of the signal proceeding from the sensor with a signal preset (set point) or analogical signal of reference (Base Line), which is adjusted in the I/O interface. Analyzed the signal, the system will make the decision: to reject or to accept the analyzed material. The I/O interface is implemented by electronic equipment with a MCS51. The purpose of this interface is to supply conditions to exchange information, using serial RS232, between the sensor and the microcomputer. The graphical interface (software) is written in visual C++ language. (author)

  2. Development of a mobile robot for remote radiation measurement

    Sarkar, Ushnish; Saini, Surendra Singh; Swaroop, Tumapala Teja; Sreejith, P.; Kumar, Ravinder; Ray, Debasish Datta

    2016-01-01

    Remote measurement of radiation using mobile robots is recommended in nuclear installations. For this purpose various robots have been developed that carry a radiation sensor. However since the robot has to go very near to the source of radiation, the life of the robot's components is compromised due to high level of absorbed dose. It was earlier managed to increase the life expectancy of remote radiation measurement robots by allowing the sensor to be placed on an extendable telescopic assembly; analogous to a health physicist taking measurements using a Teletector. The first prototype developed had stair climbing capabilities but it was found to be over dimensioned for various potential applications. A significant use of such robots is in taking measurements at nuclear reprocessing facilities having narrow cluttered pathways. This required development of a new version of the robot capable of negotiating the narrow pathways of such facilities. This paper describes the different aspects of the development of the mobile robot system with flexible radiation sensing capabilities

  3. Highlights in radiation measuring technique's - Serial Micro Channel SMC 2100

    Kandler, M.; Hoffmann, Ch.

    2002-01-01

    The Serial Micro Channel SMC 2100 offers an ''intelligent stand alone'' electronics for the radiation measuring technique's. First it is designed of being connected to a serial interface RS232 of a PC. With a RS485 serial interface on a PC, a network structure can be generated. It has all functional modules which are necessary for the measurement of detector signals. Hence it is possible to directly connect any detector for radiation measurement to a PC, laptop, or notebook. All variations can be operated without PC support too. It has a modular structure and consists of two blocks, the functional modules and the basic modules. The Serial Micro Channel SMC 2100 may be directly coupled to a detector, which therefore makes the realisation of an ''intelligent radiation detector'' with serial link RS232 or RS485. (orig.)

  4. An international intercomparison of absorbed dose measurements for radiation therapy

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  5. Measurement of microwave radiation from electron beam in the atmosphere

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  6. Fire and earthquake counter measures in radiation handling facilities

    1985-01-01

    'Fire countermeasures in radiation handling facilities' published in 1961 is still widely utilized as a valuable guideline for those handling radiation through the revision in 1972. However, science and technology rapidly advanced, and the relevant laws were revised after the publication, and many points which do not conform to the present state have become to be found. Therefore, it was decided to rewrite this book, and the new book has been completed. The title was changed to 'Fire and earthquake countermeasures in radiation handling facilities', and the countermeasures to earthquakes were added. Moreover, consideration was given so that the book is sufficiently useful also for those concerned with fire fighting, not only for those handling radiation. In this book, the way of thinking about the countermeasures against fires and earthquakes, the countermeasures in normal state and when a fire or an earthquake occurred, the countermeasures when the warning declaration has been announced, and the data on fires, earthquakes, the risk of radioisotopes, fire fighting equipment, the earthquake counter measures for equipment, protectors and radiation measuring instruments, first aid, the example of emergency system in radiation handling facilities, the activities of fire fighters, the example of accidents and so on are described. (Kako, I.)

  7. Radiation protection at workplaces with increased natural radiation exposure in Greece: recording, monitoring and protection measures

    Potiriadis, C.; Koukoliou, V.

    2002-01-01

    Greek Atomic Energy Commission (GAEC) is the regulatory, advisory and competent authority on radiation protection matters. It is the authority responsible for the introduction of Radiation Protection regulations and monitoring of their implementation. In 1997, within the frame of its responsibilities the Board of the GAEC appointed a task group of experts to revise and bring the present Radiation Protection Regulations into line with the Basic Safety Standards (BSS) 96/29/Euratom Directive and the 97/43/Euratom Directive (on health protection of individuals against the dangers of ionising radiation in relation to medical exposure). Concerning the Title 7. of the new European BSS Directive, which refers to the Radiation Protection at work places with increased levels of natural radiation exposure, the Radiation Protection Regulations provides that the authority responsible for recording, monitoring and introducing protection measures at these places is the GAEC. Practices where effective doses to the workers due to increased natural radiation levels, may exceed 1mSv/y, have to be specified and authorised by the GAEC. The identification procedure is ongoing

  8. Accredited dose measurements for validation of radiation sterilized products

    Miller, A.

    1993-01-01

    for control of radiation sterilization. The accredited services include: 1. 1. Irradiation of dosimeters and test samples with cobalt-60 gamma rays. 2. 2. Irradiation of dosimeters and test samples with 10 MeV electrons. 3. 3. Issue of and measurement with calibrated dosimeters. 4. 4. Measurement...... of the dosimetric parameters of an irradiation facility. 5. 5. Measurement of absorbed dose distribution in irradiated products. The paper describes these services and the procedures necessary for their execution....

  9. Mobile Handset Performance Evaluation Using Radiation Pattern Measurements

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2006-01-01

    The mean effective gain is an attractive performance measure of mobile handsets, since it incorporates both directional and polarization properties of the handset and environment. In this work the mean effective gain is computed from measured spherical radiation patterns of five different mobile...... pattern is reduced. Furthermore, the frequency dependence of the mean effective gain is investigated, and a method is proposed for reducing the required number of measurements on different frequencies....

  10. Environmental radiation measurements using TLD in and around AERE, Dhaka

    Mollah, A.S.; Husain, S.R.; Rahman, M.M.

    1986-01-01

    The external background radiation level in and around the Atomic Energy Research Establishment (AERE) in Dhaka has been measured. The measurements were performed using lithium fluoride (LiF) thermoluminescence dosemeters (TLD-100) at 32 locations, all one metre above the ground. The annual average dose rate measured in the AERE environs was 1.74+-0.23 mGy.y -1 in air, based on analysis of thermoluminescence dosemeter data collected from 1982 to 1984. (author)

  11. Measurement of global solar radiation over Brunei Darussalam

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  12. Spectral measurements of gamma radiation streaming through ducts

    Meenakshisundaram, P.K.; Bhatnagar, V.M.; Raghunath, V.M.; Gopinath, D.V.

    1979-01-01

    The paper presents the spectral measurements of gamma radiation streaming through multi-legged rectangular concrete ducts for cesium-137 and cobald-60 sources. Effect of lead lining the inner surface of the duct on the streaming radiation spectrum and optimization of liner thickness for minimum streaming radiation dose have been studied. For three-legged ducts, a comparative analysis of lead lining the entire duct as against lining any one or both the corners of the duct is reported. It is seen that lead lining any one of the corners would reduce the streaming radiation dose by a factor of 5 to 12. Lining both the corners which is nearly as effective as lining the entire duct reduces the dose by a factor of 16 to 60 depending on the soruce energy and duct dimensions. (orig.)

  13. Online Radiation Dose Measurement System for ATLAS experiment

    Mandić, I; The ATLAS collaboration

    2012-01-01

    Particle detectors and readout electronics in the high energy physics experiment ATLAS at the Large Hadron Collider at CERN operate in radiation field containing photons, charged particles and neutrons. The particles in the radiation field originate from proton-proton interactions as well as from interactions of these particles with material in the experimental apparatus. In the innermost parts of ATLAS detector components will be exposed to ionizing doses exceeding 100 kGy. Energetic hadrons will also cause displacement damage in silicon equivalent to fluences of several times 10e14 1 MeV-neutrons per cm2. Such radiation doses can have severe influence on the performance of detectors. It is therefore very important to continuously monitor the accumulated doses to understand the detector performance and to correctly predict the lifetime of radiation sensitive components. Measurements of doses are important also to verify the simulations and represent a crucial input into the models used for predicting future ...

  14. Methods for measuring of fuel can deformation under radiation conditions

    Zelenchuk, A.V.; Fetisov, B.V.; Lakin, Yu.G.; Tonkov, V.Yu.

    1978-01-01

    The possibility for measuring fuel can deformation under radiation conditions by means of the acoustic method and tensoresistors is considered. The construction and operation of the in-pile facility for measuring creep of the fuel can specimen loaded by the internal pressure is described. The data on neutron radiation effect on changes in creep rate for zirconium fuel can are presented. The results obtained with tensoresistors are in a good agreement with those obtained by the acoustic method, which enables to recommend the use of both methods for the irradiation creep investigation of the fuel element cans

  15. An intercomparison of detectors for measurement of background radiation

    Nielsen, S.P.; Boetter-Jensen, L.

    1981-04-01

    Measurements of the background radiation were made in 1978 at 14 locations with a high-pressure ionization chamber, thermoluminiscence dosimeters (TLD's), two NaI(Tl) detectors, and a Ge(Li) spectrometer system. Simultaneous measurements with the ionization chamber and the spectrometer system provide reliable estimates of the total background exposure rate, of the individual contributors to the terrestrial exposure rate, and of the exposure rate from the secondary cosmic radiation. The TLD results agree with those of the ionization chamber. The NaI(Tl) detector results show that accurate estimates of the terrestrial exposure rate can be obtained if empirical corrections are applied. (author)

  16. A unique experiment. Measurement of radiation doses at Vinca

    NONE

    1960-07-15

    For the first time in the history of the peaceful applications of atomic energy, an experiment was conducted to determine the exact levels of radiation exposure resulting from a reactor incident. The experiment was made at Vinca, Yugoslavia, wherein October 1958 six persons had been subjected to high doses of neutron and gamma radiation during a brief uncontrolled run of a zero-power reactor. One of them died but the other five were successfully treated at the Curie Hospital in Paris. In the case of four of them, the treatment involved the grafting of healthy bone marrow to counteract the effects of radiation on blood-forming tissues. It was recognized that if the effects produced on the irradiated persons could be related to the exact doses of radiation they had received, it would be possible to gain immensely valuable knowledge about the biological consequences of acute and high level radiation exposure on a quantitative basis. It was suggested to the Yugoslav authorities that a dosimetry experiment be conducted at Vinca. The most accurate modern techniques of dosimetry developed at the Oak Ridge National Laboratory were employed during the experiment. Simultaneous measurements of the neutron and gamma doses were made at points where the people had been located. At these points the effects of the radiation on the salt solution in the phantoms were studied. In particular, the energy distribution of the radiation was investigated.It was the ratio between the various components of the radiation that was of special interest in these measurements because this ratio itself would help in determining the exact doses. The dose of one of the components, viz. slow neutrons, had already been determined during the treatment of the patients. If the ratio of the components could be ascertained, the doses of the fast neutrons and gamma rays could also be established because the ratio would not be affected by the power level at which the reactor was operated

  17. Studying and measuring the gamma radiation doses in Homs city

    Sofaan, A. H.

    2001-01-01

    The gamma radiation dose was measured in Homs city by using many portable dosimeters (electronic dosimeter and Geiger-Muller). The measurements were carried out in the indoor and outdoor buildings, for different time period, through one year (1999-2000). High purity germanium detector with low back ground radiation (HpGe) was used to determine radiation element contained in some building and the surrounding soil. The statistical analysis laws were applied to make sure that the measured dose distribution around average value is normal distribution. The measurement indicates that the gamma indoor dose varies from 312μSv/y to 511μSv/y, with the average annual dose of 385μSv/y. However the gamma outdoor dose rate varies from 307μSv/y to 366μSv/y with an average annual dose 385μSv/y. The annual outdoor gamma radiation dose is about %16 lower than the outdoor dose in Homs City. These measurements have indicated that environmental gamma doses in Homs City are relatively low. This is because that most of the soils and rocks in the area are limestone. (author)

  18. Ultraviolet light and infrared radiation. Measurement and hazard assessment

    Mayer, A.; Salsi, S.

    1979-01-01

    Ultraviolet, light and infrared radiation exists in many work places and can be dangerous in many ways, especially for the eyes. The INRS has developed a method and an apparatus for measuring on site or in a laboratory the spectral energy distribution of such radiation and the luminance of the source. With current knowledge of the effects of radiation on the eyes and by comparing readings taken and recommended limit values, it is possible to determine the risk levels at work places in the different wave ranges. Two examples of readings taken at a pot furnace in a crystal glass factory and at an MAG welding station are given and the appropriate protective measures described [fr

  19. Design and testing of an innovative solar radiation measurement device

    Badran, Omar; Al-Salaymeh, Ahmed; El-Tous, Yousif; Abdala, Wasfi

    2010-01-01

    After review of studies conducted on the solar radiation measuring systems, a new innovative instrument that would help in measuring the accurate solar radiation on horizontal surfaces has been designed and tested. An advanced instrument with ease of use and high precision that would enable the user to take the readings in terms of solar intensity (W/m 2 ) has been tested. Also, the innovative instrument can record instantaneous readings of the solar intensities as well as the averages value of the solar radiation flux during certain periods of time. The instrument based in its design on being programmed by programmable interfacing controller (PIC). Furthermore, the power supply circuit is fed by the solar energy cells and does not need an external power source.

  20. Current situation and prospect of market on the latest radiation measuring instrument

    Ha, Chang Ho; Kim, Wang Geum; Cho, Gyu Seong

    2009-12-01

    This book deals with current situation and prospect of market on the latest radiation measuring instrument. The contents of this book are basic of technology on radiation measuring instrument with basic principle of various measuring instrument, current situation of technology and prospect of radiation measuring instrument, effect of spreading and application field of radiation measuring instrument, facility for making and research and development of radiation measuring instrument, prospect of market about radiation measuring instrument, strategy for market entry with the latest radiation measuring instrument and general prospect for the future.

  1. new model for solar radiation estimation from measured air

    HOD

    RMSE) and correlation ... countries due to the unavailability of measured data in place [3-5]. ... models were used to predict solar radiation in Nigeria by. [12-15]. However ..... "Comparison of Gene Expression Programming with neuro-fuzzy and ...

  2. Non-ionizing radiation exposure: electric field strength measurement ...

    In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation. The result of this study could be used for health ...

  3. Organisational measures and medical care after indicents involving radiation exposure

    Kemmer, W.

    1980-01-01

    West Germany has emergency plans for all kinds of catastrophes, from conventional causes to nuclear accidents. Emergency provisions refer to organisational measures, technical equipment, and medical equipment for the treatment of radiation injuries. These provisions require constant training of responsible persons. Emergency plans and provisions in the Federal Republic of Germany have not been optimized yet. (DG) [de

  4. Measurement of Gamma Radiation in an Automobile Mechanic ...

    imeh james

    Nuclear Technology Centre, Nigeria Atomic Energy Commission, ... An in-situ measurement approach was adopted using RDS-200 Universal Survey Meter and a handheld ... the people living and working within the area are safe and are not exposed to high doses of radiation as a result .... battery works, panel beating e.t.c..

  5. Listing of solar radiation measuring equipment and glossary

    Carter, E. A.; Greenbaum, S. A.; Patel, A. M.

    1976-01-01

    An attempt is made to list and provide all available information about solar radiation measuring equipment which are being manufactured and are available on the market. The list is in tabular form and includes sensor type, response time, cost data and comments for each model. A cost code is included which shows ranges only.

  6. Measurements of K/Π ratio in cosmic radiation

    Mahon, J.R.P.

    1986-01-01

    Measurements of k/Π ratio in cosmic radiation by its half lives and its fluxes, were carried out. The kaon flux was obtained using the Cherenkov detector, and for pion flux scintillation detectors were used. The final results of K/Π ratio ∼ 0.2 was obtained. (M.C.K.) [pt

  7. Measurement of radio frequency radiation (RFR) power levels from ...

    With the upsurge in the number of network providers and the attendant increase in the installation of mast in Nigeria, the environment is being inundated with radiofrequency radiation (RFR). There is, therefore, increasing concern about the health implications of this development. In this study measurements of RFR output ...

  8. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Behrens, Christopher

    2010-02-15

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 {mu}m to 110 {mu}m. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 {mu}m to 160 {mu}m were done. (orig.)

  9. Detection and spectral measurements of coherent synchrotron radiation at FLASH

    Behrens, Christopher

    2010-02-01

    The operation of high-gain free-electron laser (FEL) underlies tremendous demands on high quality electron beams with high peak currents. At the Free-Electron-Laser in Hamburg (FLASH), two magnetic bunch compressors are used to compress the electron bunches longitudinally. In the bunch compressor magnets, these short electron bunches generate coherent synchrotron radiation (CSR). This CSR contains information on the longitudinal bunch profile, which is relevant for driving an FEL. In order to investigate coherent synchrotron radiation at the second bunch compressor BC3 at FLASH, a new setup behind the last dipole was installed. For the detection of coherent synchrotron radiation, which is emitted in the infrared regime, pyroelectric detectors were used. These pyroelectric detectors have been calibrated at the free-electron laser FELIX in the wavelength range from 5 μm to 110 μm. For characterisation of the emitted radiation, a transverse scanning device was used to measure the transverse intensity distribution. Various transmission filters were used to obtain additional information about the spectral content. In order to get spectral information with high resolution over a wide wavelength range, a rotating mirror spectrometer using reflective blazed gratings was installed. Using this spectrometer, the first spectral measurements of coherent synchrotron radiation at FLASH in a wavelength range from 10 μm to 160 μm were done. (orig.)

  10. Density measurement using gamma radiation - theory and application

    Springer, E.K.

    1979-01-01

    There are still widespread uncertainties about the use and safety of gamma radiation in industries. This paper describes, by the example of radiometric density measurement, the theory of gamma radiation. The differences and advantages of both types of detectors, the ionization chamber and the scintillation counter, are discussed. The degree of accuracy which can be expected from the radiometric density meter will be defined, and the inter-relationship: source strength - measuring range - measuring length(normally the pipe diameter) in relation to the measuring accuracy required will be explained in detail. The use of radioactive material requires the permission of the Atomic Energy Board. The formalities involved to receive a user's licence and the implementations of safety standards set by the local authorities are discussed in depth [af

  11. A universal measuring and monitoring system for nuclear radiation

    Genrich, V.

    1988-01-01

    Genitron Instruments, Frankfurt/Main, committed themselves to revise the 'conventional' concept of counting tube metrology. The goal was to develop a modular system that would allow large-area measuring tasks. The contribution in hand explains this development, which consists of a highly integrated measuring head that can be combined with various detector types, and complemented by various system components, to form a universal measuring and monitoring system for nuclear radiation. This modular design concept is capable of fulfilling a multitude of tasks, ranging from single, specific applications to non-stop monitoring tasks within a large-area measuring network. (orig./DG) [de

  12. Lens transmission measurement for an absolute radiation thermometer

    Hao, X.; Yuan, Z.; Lu, X.

    2013-01-01

    The lens transmission for the National Institute of Metrology of China absolute radiation thermometer is measured by a hybrid method. The results of the lens transmission measurements are 99.002% and 86.792% for filter radiometers with center wavelengths 633 nm and 900 nm, respectively. These results, after correcting for diffraction factors and the size-of-source effect when the lens is incorporated within the radiometer, can be used for measurement of thermodynamic temperature. The expanded uncertainty of the lens transmission measurement system has been evaluated. It is 1.3×10 −3 at 633 nm and 900 nm, respectively

  13. Portable radiation instrumentation traceability of standards and measurements

    Wiserman, A.; Walke, M.

    1995-01-01

    Portable radiation measuring instruments are used to estimate and control doses for workers. Calibration of these instruments must be sufficiently accurate to ensure that administrative and legal dose limits are not likely to be exceeded due to measurement uncertainties. An instrument calibration and management program is established which permits measurements made with an instrument to be traced to a national standard. This paper describes the establishment and maintenance of calibration standards for gamma survey instruments and an instrument management program which achieves traceability of measurement for uniquely identified field instruments. (author)

  14. Remote control and data processing for measurement of radiation dose

    Zhou Yu; Luo Yisheng; Guo Yong; Ji Gang; Wang Xinggong; Zhang Hong; Zhang Wenzhong

    2004-01-01

    Objective: To protect the workers from the reactor radiation and to improve the accuracy and efficiency of neutron dose measurement. Methods: With the application of remote control technology, a remote control and automatic measurement system for radiation dose measurement(especially for neutron dose) was set up. A Model 6517A electrometer was operated all automatically over RS-232 serial interface using SCPI commands with a computer. Results: The workers could stay far from the reactor and be able to control the portable computer in site though internet or LAN and then to control the 6517A electrometer to implement the dose measurement. After the measurement, the data were transferred to the remote computer near the workers and shared by many experts at the first time through the net. Conclusion: This is the first time that the remote control technology is applied in radiation dose measurement, which has so far been considered can only be performed at a near place. This new system can meet the need of neutron radiobiology researches as well as of the safety and health of the workers. (author)

  15. Environmental radiation measurements using lithium fluoride thermoluminescence dosemeters

    Driscoll, C.M.H.; Green, B.M.R.; McKinlay, A.F.; Richards, D.J. (National Radiological Protection Board, Harwell (UK))

    1984-01-01

    The National Radiological Protection Board is involved in a large scale environmental survey of radiation levels in homes throughout the United Kingdom. Passive radon and gamma ray dosemeters are posted to a representative sample of households. Lithium fluoride thermoluminescence dosemeters are used to assess natural gamma radiation and are left in the measurement location for a period of six months before being returned to the Board for processing. As a preliminary to the national survey, the Board has been engaged on several limited surveys in regions of igneous and sedimentary geology. Experience gained in these limited surveys and from standardisation studies using environmental dosemeters are reported.

  16. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  17. Measurement of Radiofrequency Radiation Exposure in Epidemiological Studies (invited paper)

    Swerdlow, A.J.

    1999-01-01

    The measurement of radiofrequency (RF) exposure is important to the quality of epidemiological studies of the possible association of RF exposure with disease. The extent and type of exposure measurement in past epidemiological studies of RF, and the features of measurement that would be desirable for better studies in the future are summarised. Measurement characteristics that are discussed include quantification of radiation frequency and of intensity and timing of exposures, measurement (or good estimation) of exposures for individuals rather than only for groups, quality of measurement, and measurement of RF exposures experienced outside the study setting. Integration of exposure measurement into the design of epidemiological studies is needed for better assessments of possible RF effects. (author)

  18. Measurement of TFTR D-T radiation shielding efficiency

    Kugel, H.W.; Ascione G.; Elwood, S.

    1994-01-01

    High power D-T fusion reactor designs presently exhibit complex geometric and material density configurations. Simulations of the radiation shielding required for safe operation and full compliance with all regulatory requirements must include sufficient margin to accommodate uncertainties in material properties and distributions, uncertainties in the final configurations, and uncertainties in approximations employing the homogenization of complex geometries. Measurements of radiation shielding efficiency performed in a realistic D-T tokamak environment can provide empirical guidance for simulating safe, efficient, and cost effective shielding systems for future high power fusion reactors. In this work, the authors present the results of initial measurements of the TFTR radiation shielding efficiency during high power D-T operations with record neutron yields. The TFTR design objective is to limit the total dose-equivalent at the nearest PPPL property lines from all radiation pathways to 10 mrem per calendar year. Compliance with this design objective over a calendar year requires measurements in the presence of typical site backgrounds of about 80 mrem per year

  19. The measurement of alpha, beta and gamma radiations

    Burns, P.A.

    1982-01-01

    Detection methods for nuclear radiations are based on the processes of excitation and ionization of atoms in the detection medium by the passage of a charged particle. Detectors are usually of two types, those which produce a charge pulse following ionization of the medium and those which produce a burst of light photons which are then detected by a photomultiplier tube. By processing the electronic signals produced in suitable ways either the count rate of the source, the activity, or the dose equivalent to a person may be determined. In order to make these determinations it is necessary to understand the type of nuclear transformation of the radionuclide in question, the type and energy of the radiation being emitted and the processes involved when these radiations pass through the medium of the detector. Suitable choice of detectors and extrapolation from measured data to the quantity which is to be determined can then be made

  20. Absolute measurement of undulator radiation in the extreme ultraviolet

    Maezawa, H.; Kitamura, H.; Sasaki, T.; Mitani, S.; Osaka City Univ.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Tokyo Univ.; Mikuni, A.; Tokyo Univ., Tanashi

    1983-01-01

    The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy #betta#, the field parameter K, and the angle of observation THETA in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula lambdasub(n)=lambda 0 /2n#betta# 2 (1+K 2 /2+#betta# 2 THETA 2 ), and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed. (orig.)

  1. Measurements of diversity gain and radiation efficiency of the eleven antenna by using different measurement techniques

    Yang, Jian; Pivnenko, Sergey; Laitinen, Tommi

    2010-01-01

    This paper presents measurement results of diversity gain and radiation efficiency by using three different measurement techniques: reverberation chamber, spherical near-field anechoic chamber, and multi-probe anechoic chamber. The results are measured over a large 2–8 GHz bandwidth which...

  2. measurement of high dose radiation using yellow perspex dosimeter

    Thamrin, M Thoyib; Sofyan, Hasnel

    1996-01-01

    Measurement of high dose radiation using yellow perspex dosemeter has been carried out. Dose range used was between 0.1 to 3.0 kGy. Measurement of dose rate against Fricke dosemeter as a standard dose meter From the irradiation of Fricke dosemeter with time variation of 3,6,9,12,15 and 18 minute, it was obtained average dose rate of 955.57 Gy/hour, linear equation of dose was Y= 2.333+15.776 X with its correlation factor r = 0.9999. Measurement result using yellow perspex show that correlation between net optical density and radiation dose was not linear with its equation was ODc exp. [Bo + In(dose).Bi] Value of Bo = -0.215 and Bi=0.5020. From the experiment it was suggested that routine dosimeter (yellow perspex) should be calibrated formerly against standard dosemeters

  3. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Leszczynski, K

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.).

  4. Assessment and comparison of methods for solar ultraviolet radiation measurements

    Leszczynski, K.

    1995-06-01

    In the study, the different methods to measure the solar ultraviolet radiation are compared. The methods included are spectroradiometric, erythemally weighted broadband and multi-channel measurements. The comparison of the different methods is based on a literature review and assessments of optical characteristics of the spectroradiometer Optronic 742 of the Finnish Centre for Radiation and Nuclear Safety (STUK) and of the erythemally weighted Robertson-Berger type broadband radiometers Solar Light models 500 and 501 of the Finnish Meteorological Institute and STUK. An introduction to the sources of error in solar UV measurements, to methods for radiometric characterization of UV radiometers together with methods for error reduction are presented. Reviews on experiences from world-wide UV monitoring efforts and instrumentation as well as on the results from international UV radiometer intercomparisons are also presented. (62 refs.)

  5. Measuring thyroid uptake with hand-held radiation monitors

    Deschamps, M.

    1987-04-01

    With the use of Iodine 123, 125 and 131 and some compounds of Technetium-99 m, a fraction of the isotopes can be trapped in the thyroid of the technicians. We used the hand-held radiation contamination or survey meters of the nine (9) Nuclear medicine departments we visited to see if they were adequate for the evaluation of thyroid uptake of the users. Measurements on a neck-phanton helped us to determine a minimum detectable activity for each isotope. We were then able to check if the measurements of investigations and action levels were possible. None of the hand-held radiation monitors are completely satisfactory for the measure of thyroid uptake of the user. We discuss a class of equipment capable of measuring radiation emissions at the investigation level. Measurement at the action level is possible with meters having scintillation or proportional probes but none of them permits the discrimination in energy required for a quantitative evaluation of the radioisotopes used

  6. A Centaur Reconnaissance Mission: a NASA JPL Planetary Science Summer Seminar mission design experience

    Chou, L.; Howell, S. M.; Bhattaru, S.; Blalock, J. J.; Bouchard, M.; Brueshaber, S.; Cusson, S.; Eggl, S.; Jawin, E.; Marcus, M.; Miller, K.; Rizzo, M.; Smith, H. B.; Steakley, K.; Thomas, N. H.; Thompson, M.; Trent, K.; Ugelow, M.; Budney, C. J.; Mitchell, K. L.

    2017-12-01

    The NASA Planetary Science Summer Seminar (PSSS), sponsored by the Jet Propulsion Laboratory (JPL), offers advanced graduate students and recent doctoral graduates the unique opportunity to develop a robotic planetary exploration mission that answers NASA's Science Mission Directorate's Announcement of Opportunity for the New Frontiers Program. Preceded by a series of 10 weekly webinars, the seminar is an intensive one-week exercise at JPL, where students work directly with JPL's project design team "TeamX" on the process behind developing mission concepts through concurrent engineering, project design sessions, instrument selection, science traceability matrix development, and risks and cost management. The 2017 NASA PSSS team included 18 participants from various U.S. institutions with a diverse background in science and engineering. We proposed a Centaur Reconnaissance Mission, named CAMILLA, designed to investigate the geologic state, surface evolution, composition, and ring systems through a flyby and impact of Chariklo. Centaurs are defined as minor planets with semi-major axis that lies between Jupiter and Neptune's orbit. Chariklo is both the largest Centaur and the only known minor planet with rings. CAMILLA was designed to address high priority cross-cutting themes defined in National Research Council's Vision and Voyages for Planetary Science in the Decade 2013-2022. At the end of the seminar, a final presentation was given by the participants to a review board of JPL scientists and engineers as well as NASA headquarters executives. The feedback received on the strengths and weaknesses of our proposal provided a rich and valuable learning experience in how to design a successful NASA planetary exploration mission and generate a successful New Frontiers proposal. The NASA PSSS is an educational experience that trains the next generation of NASA's planetary explorers by bridging the gap between scientists and engineers, allowing for participants to learn

  7. Measures against radiation disaster/terrorism and radiation emergency medical assistance team

    Tominaga, Takako; Akashi, Makoto

    2016-01-01

    The probability of occurrence of radiological terrorism and disaster in Japan is not low. For this reason, preparations for coping with the occurrence of radiological terrorism should be an urgent issue. This paper describes the radiation medical system and the threat of radiological terrorism and disaster in Japan, and introduces the Radiation Emergency Medical Assistance Team (REMAT), one of the radiation accident/disaster response organizations at the National Institute of Radiological Sciences. Radiation exposure medical systems in Japan are constructed only in the location of nuclear facilities and adjacent prefectures. These medical systems have been developed only for the purpose of medical correspondence at the time of nuclear disaster, but preparations are not made by assuming measures against radiological terrorism. REMAT of the National Institute of Radiological Sciences is obligated to dispatch persons to the requesting prefecture to support radiation medical care in case of nuclear disaster or radiation accident. The designation of nuclear disaster orientated hospitals in each region, and the training of nuclear disaster medical staffing team were also started, but preparations are not enough. In addition to enhancing and strengthening experts, specialized agencies, and special forces dealing with radiological terrorism, it is essential to improve regional disaster management capacity and terrorism handling capacity. (A.O.)

  8. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  9. Distributed solar radiation fast dynamic measurement for PV cells

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the

  10. Development of radiation protection and measurement technology -A study on the radiation and environmental safety-

    Chang, Si Young; Seo, Kyeong Won; Yoon, Seok Cheol; Lee, Tae Yeong; Kim, Bong Hwan; Chung, Deok Yeon; Lee, Ki Chang; Kim, Jong Soo; Yoon, Yeo Chang; Kim, Jang Ryeol; Lee, Sang Yoon

    1994-07-01

    Reference radiation fields which can meet the national and international standard and criteria such as the ANSI N13.11 have been designed, produced and evaluated to maintain the national traceability and reliability of the radiation measurement and to provide precise calibration of the various radiation measuring instruments as well as standard irradiation of the personal dosimeters for the performance evaluation. Existing dose calculation algorithm has been improved to correctly evaluate the shallow dose from the β(Ti-204) + γ(Cs-137) mixed radiation exposure by applying the TLD response correction function newly derived in this study. A mathematical algorithm to calculate the internal dose from inhalation of the uranium isotopes has been developed on the basis of the ICRP-30 respiratory tract model. Detailed performance analysis of the KAERI lung counter has been carried out to participate in the intercomparison of lung dosimetry. A preliminary and basic study on the quantitative method of optimal dose reduction based on the ALARA concept has been performed to technically support and strengthen the national radiation protection infrastructure. (Author)

  11. Measuring Radiation Damage from Heavy Energetic Ions in Aluminum

    Kostin, M., PI-MSU; Ronningen, R., PI-MSU; Ahle, L., PI-LLNL; Gabriel, T., Scientific Investigation and Development; Mansur, L., PI-ORNL; Leonard, K., ORNL; Mokhov, N., FNAL; Niita, K., RIST, Japan

    2009-02-21

    An intense beam of 122 MeV/u (9.3 GeV) 76Ge ions was stopped in aluminum samples at the Coupled Cyclotron Facility at NSCL, MSU. Attempts were made at ORNL to measure changes in material properties by measuring changes in electrical resistivity and microhardness, and by transmission electron microscopy characterization, for defect density caused by radiation damage, as a function of depth and integrated ion flux. These measurements are relevant for estimating damage to components at a rare isotope beam facility.

  12. A new system for the measurement of the space radiation

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2000-01-01

    Radiation from space mainly consists of charged heavy particles (protons and heavier particles). Due to this fact, the effective dose significantly differs from the physical dose. Current measuring equipment is not fully suitable to measure both of the quantities simultaneously. A combined device for measurement of the mentioned values consists of an on-board thermoluminescence dosimeter reader and a three-axis silicon detector linear energy transfer spectrometer. This paper deals with the main characteristic of the new system. This system can be, applied for dosimetry of air crew as well. (authors)

  13. A new system for measurement of the space radiation

    Pazmandi, T.; Apathy, I.; Deme, S.; Beaujean, R.

    2001-01-01

    The space radiation mainly consists of heavy charged particles (protons and heavier particles). Due to this fact its effective dose significantly differs from the physical dose. The recently used measuring equipment is not fully suitable to measure both quantities simultaneously. The combined device for measurement of mentioned values consists of an on board thermoluminescent dosimeter reader and a three axis silicon telescope as a linear energy transfer spectrometer. The paper deals with the main characteristics of the new system. This system can be applied for dosimetry of air-crew as well. (authors)

  14. Health physics measurements of laser radiation: Experience and competence wanted

    Fischer, P.G.

    1998-01-01

    Measurement of the parameters required for an analysis of hazards involved is a complex task in terms of measuring techniques and calibration, and a costly procedure at that. Although part of the evaluation work can be done with the support of computers, evaluation and interpretation of measured information requires the experience and competence of the human expert. It is to be hoped that the computer industry will soon have developed turn-key solutions of universal applicability for analytical tasks of this kind, so that in the near future determination of the source terms, especially for LED or IRED radiation, will be an easy task. (orig./CB) [de

  15. Radioactivity concentration measuring device for radiation waste containing vessel

    Goto, Tetsuo.

    1994-01-01

    The device of the present invention can precisely and accurately measure a radioactive concentration of radioactive wastes irrespective of the radioactivity concentration distribution. Namely, a Ge detector having a collimator and a plurality of radiation detectors are placed at the outside of the radioactive waste containing vessel in such a way that it can rotate and move vertically relative to the vessel. The plurality of radiation detectors detect radiation coefficient signals at an assumed segment unit of a predetermined length in vertical direction and for every predetermined angle unit in the rotational direction. A weight measuring device determines the weight of the vessel. A computer calculates an average density of radioactivity for the region filled with radioactivity based on the determined net weight and radiation coefficient signals assuming that the volume of the radioactivity is constant. In addition, the computer calculates the amount of radioactivity in the assumed segment by conducting γ -ray absorption compensation calculation for the material in the vessel. Each of the amount of radioactivity is integrated to determine the amount of radioactivity in the vessel. (I.S.)

  16. Measurements of radiated elastic wave energy from dynamic tensile cracks

    Boler, Frances M.

    1990-01-01

    The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.

  17. "Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"

    Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.

    2017-12-01

    Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.

  18. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi

    2001-01-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  19. Measurement and assessment of doses from external radiations required for revised radiation protection regulations

    Tsujimura, Norio; Kojima, Noboru; Hayashi, Naomi [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan)

    2001-06-01

    Radiation protection regulations based on the 1990 recommendations of ICRP have been revised and will take effect from Apr., 2001. The major changes concerning on the measurement and assessment of doses from external radiations are as follows. (1) Personal dose equivalent and ambient dose equivalent stated in ICRP Publication 74 are introduced as quantities to be measured with personal dosimeters and survey instruments, respectively. (2) For multiple dosimetry for workers, the compartment weighting factors used for a realistic assessment of effective dose are markedly changed. In advance of the introduction of the new radiation protection regulations, the impacts on workplace and personal monitoring for external radiations by these revisions were investigated. The following results were obtained. (1) A new ambient dose equivalent to neutrons is higher with a factor of 1.2 than the old one for moderated fission neutron spectra. Therefore, neutron dose equivalent monitors for workplace monitoring at MOX fuel for facilities should be recalibrated for measurement of the new ambient dose equivalent. (2) Annual effective doses of workers were estimated by applying new calibration factors to readings of personal dosimeters, worn by workers. Differences between effective doses and effective dose equivalents are small for workers engaged in the fabrication process of MOX fuel. (author)

  20. Application of real time spectrum measurement to radiation monitors

    Matsuno, K.; Watanabe, M.; Sakamaki, T.

    1996-01-01

    A multichannel analyzer (MCA) and two realtime spectrum monitoring methods have been developed for use in radiation monitors. The new MCA was designed to be installed at a local site as a component of a radiation monitor. The MCA repeats spectrum measurement at short intervals (Δt) and, after each measurement, transmits a spectrum datum to the operation console. The authors applied two methods to process Δt spectrum counts for each channel for longer time interval. One method of processing counts is the 'running average (RA) method'. The other method is the 'exponential smoothing (ES) method', which simulates RC rate meters by subtracting a fraction corresponding to the accumulated counts. Relative standard deviations for each channel can be made the same by selecting an appropriate value. The response with the 'ES' method is initially faster than that with the 'RA' method, but the 'RA' method allows a full response to be reached at a predictable time. (author)

  1. Measurements of nonionizing radiation emitted from microwave oven

    Elnour, Yassir Elnour Osman

    2014-05-01

    There is an increase in the usage of microwave oven which is used electromagnetic radiation in the microwave range, which believed to be harmful to human health. The measurements were taken at distance of range(0-100) cm from the microwave oven. The study concluded that the risk possibility of the radiation increases at high mode. We measured the power density, magnetic field and signal strength of microwave oven using the SPECTRAN high frequency (HF-6080) detector. The experimental results of power density were found to be (3.78-208000) nW/m 2 and magnetic field is (0.001-0.744) mA/m. These values are less than the exposure limits recommended. (author)

  2. Radiation protection in the age of accountability - measuring our effectiveness

    Hutchinson, D.E.

    1993-01-01

    Effectiveness and accountability were catch-words of the 1980s for public and private enterprises. This mood has persisted into the current decade and radiation protection authorities have not escaped the organisational microscope. But whereas simple models and measures of effectiveness can be applied to most private companies and government agencies, organisations in the regulatory and preventative health areas cannot be assessed by the same criteria. These organisations are fundamentally different because their primary objective is one of minimisation. This paper looks at options for measuring and reporting the effectiveness of radiation protection organisations. Some performance indicators are proposed and evaluated. The intention is not, however, to present a 'solution' to this apparently vexing problem. Indeed, the answer may be that there is none. 11 refs., 4 figs

  3. Global real-time dose measurements using the Automated Radiation Measurements for Aerospace Safety (ARMAS) system

    Tobiska, W. Kent; Bouwer, D.; Smart, D.; Shea, M.; Bailey, J.; Didkovsky, L.; Judge, K.; Garrett, H.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R.; Bell, D.; Mertens, C.; Xu, X.; Wiltberger, M.; Wiley, S.; Teets, E.; Jones, B.; Hong, S.; Yoon, K.

    2016-11-01

    The Automated Radiation Measurements for Aerospace Safety (ARMAS) program has successfully deployed a fleet of six instruments measuring the ambient radiation environment at commercial aircraft altitudes. ARMAS transmits real-time data to the ground and provides quality, tissue-relevant ambient dose equivalent rates with 5 min latency for dose rates on 213 flights up to 17.3 km (56,700 ft). We show five cases from different aircraft; the source particles are dominated by galactic cosmic rays but include particle fluxes for minor radiation periods and geomagnetically disturbed conditions. The measurements from 2013 to 2016 do not cover a period of time to quantify galactic cosmic rays' dependence on solar cycle variation and their effect on aviation radiation. However, we report on small radiation "clouds" in specific magnetic latitude regions and note that active geomagnetic, variable space weather conditions may sufficiently modify the magnetospheric magnetic field that can enhance the radiation environment, particularly at high altitudes and middle to high latitudes. When there is no significant space weather, high-latitude flights produce a dose rate analogous to a chest X-ray every 12.5 h, every 25 h for midlatitudes, and every 100 h for equatorial latitudes at typical commercial flight altitudes of 37,000 ft ( 11 km). The dose rate doubles every 2 km altitude increase, suggesting a radiation event management strategy for pilots or air traffic control; i.e., where event-driven radiation regions can be identified, they can be treated like volcanic ash clouds to achieve radiation safety goals with slightly lower flight altitudes or more equatorial flight paths.

  4. Absolute Bunch Length Measurements by Incoherent Radiation Fluctuation Analysis

    Sannibale, F.; Stupakov, G.V.; Zolotorev, M.S.; Filippetto, D.; Jagerhofer, L.

    2009-01-01

    By analyzing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and successfully tested a simple scheme based on this principle that allows for the absolute measurement of the rms bunch length. A description of the method and the experimental results are presented.

  5. Deuterium Lamb shift via quenching-radiation anisotropy measurements

    van Wijngaarden, A.; Drake, G.W.F.

    1978-01-01

    The Lamb shift of a hydrogenic ion can be deduced from the anisotropy in the angular distribution of the 2s/sub 1/2/-1s/sub 1/2/ electric field quenching radiation. The accuracy of our previous anisotropy measurement for deuterium is improved to about +- 150 ppm. The derived Lamb shift is (1059.36 +- 0.16) MHz. The sources of error are carefully analyzed and the prospects for further improvements in the accuracy are discussed

  6. Coherent radiation spectrum measurements at KEK LUCX facility

    Shevelev, M., E-mail: mishe@post.kek.jp [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Aryshev, A., E-mail: alar@post.kek.jp [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Araki, S.; Fukuda, M. [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Karataev, P. [John Adams Institute at Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Terunuma, N.; Urakawa, J. [KEK: High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2015-01-21

    This paper demonstrates the detailed design concept, alignment, and initial testing of a Michelson interferometer for the THz spectral range. We present the first results on the measurement of a coherent transition radiation spectrum and describe the performance of a pair of ultra-fast broadband room temperature Schottky barrier diode detectors. We discuss the main criteria of interferometer beam splitter optimization, the alignment technique, the high-precision calibration and linearity check of the motion system.

  7. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  8. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  9. Characterization of a radiation detector for aircraft measurements

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E.

    2014-08-01

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  10. Characterization of a radiation detector for aircraft measurements

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares, Av. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil)

    2014-08-15

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  11. Errors in measuring absorbed radiation and computing crop radiation use efficiency

    Gallo, K.P.; Daughtry, C.S.T.; Wiegand, C.L.

    1993-01-01

    Radiation use efficiency (RUE) is often a crucial component of crop growth models that relate dry matter production to energy received by the crop. RUE is a ratio that has units g J -1 , if defined as phytomass per unit of energy received, and units J J -1 , if defined as the energy content of phytomass per unit of energy received. Both the numerator and denominator in computation of RUE can vary with experimental assumptions and methodologies. The objectives of this study were to examine the effect that different methods of measuring the numerator and denominator have on the RUE of corn (Zea mays L.) and to illustrate this variation with experimental data. Computational methods examined included (i) direct measurements of the fraction of photosynthetically active radiation absorbed (f A ), (ii) estimates of f A derived from leaf area index (LAI), and (iii) estimates of f A derived from spectral vegetation indices. Direct measurements of absorbed PAR from planting to physiological maturity of corn were consistently greater than the indirect estimates based on green LAI or the spectral vegetation indices. Consequently, the RUE calculated using directly measured absorbed PAR was lower than the RUE calculated using the indirect measures of absorbed PAR. For crops that contain senesced vegetation, green LAI and the spectral vegetation indices provide appropriate estimates of the fraction of PAR absorbed by a crop canopy and, thus, accurate estimates of crop radiation use efficiency

  12. Measuring element for detection and dose measurement of gamma radiation and neutrons and manufacturing method for the measuring element

    Piesch, E.; John, W.

    1979-01-01

    The measuring element consists of a bubble-free glass composed on the basis of metaphosphate material. The detection of the γ-radiation takes place through the photoluminescence of the element, and detection of the neutrons by means of resulting β particles producing Cerenkov radiation in the radioluminescence material, that can be measured. For this purpose in addition to Ag the glass contains As as a second excitable element. (DG) [de

  13. Measuring solar UV radiation with EBT radiochromic film

    Butson, Ethan T; Cheung Tsang; Yu, Peter K N; Butson, Martin J

    2010-01-01

    Ultraviolet radiation dosimetry has been performed with the use of a radiochromic film dosimeter called Gafchromic EBT for solar radiation exposure. The film changes from a clear colour to blue colour when exposed to ultraviolet radiation and results have shown that the colour change is reproducible within ±10% at 5 kJ m -2 UV exposure under various conditions of solar radiation. Parameters tested included changes in season (summer versus winter exposure), time of day, as well as sky conditions such as cloudy skies versus clear skies. As the radiochromic films' permanent colour change occurs in the visible wavelengths the film can be analysed with a desktop scanner with the most sensitive channel for analysis being the red component of the signal. Results showed that an exposure of 5 kJ m -2 (approximately 1 h exposure in full sun during summer) produced an approximate 0.28 change in the net OD when analysed in reflection mode on the desktop scanner which is significant darkening. The main advantages of this film type, and thus the new EBT2 film which has replaced EBT for measurement of UV exposure, is the visible colour change and thus easy analysis using a desktop scanner, its uniformity in response and its robust physical strength for use in outside exposure situations. (note)

  14. Science Plan for the Atmospheric Radiation Measurement Program (ARM)

    1996-02-01

    The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE's programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols

  15. Atmospheric radiation measurement program facilities newsletter, June 2002.; TOPICAL

    Holdridge, D. J.

    2002-01-01

    ARM Intensive Operational Period Scheduled to Validate New NASA Satellite-Beginning in July, all three ARM sites (Southern Great Plains[SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and

  16. Therapy palliative with 223Ra without special radiation protection measures?

    Just, Guenther; Petzold, Juergen

    2015-01-01

    For nearly 2 years now as a therapy of the castration resistant prostata carcinoma a nuclide therapy with 223 Ra-Dichloride (trade-mark Xofigo) is applied. Xofigo is applied by a medical specialist for nuclear medicine altogether 6 times in a monthly distance. The activity used in each case is according to the body weight (50 kBq/kg BW). This therapy is licensed by the supervisory authorities of the German federal countries as an ambulant therapy. Special radiation protection measures are only required when exceeding a given number of 17 patients per year as incorparation measurements.

  17. Electron bunch length measurement with a wakefield radiation decelerator

    Weiwei Li

    2014-03-01

    Full Text Available In this paper, we propose a novel method to measure the electron bunch length with a dielectric wakefield radiation (DWR decelerator which is composed of two dielectric-lined waveguides (DLWs and an electron spectrometer. When an electron beam passes through a DLW, the DWR is excited which leads to an energy loss of the electron beam. The energy loss is found to be largely dependent on the electron bunch length and can be easily measured by an electron spectrometer which is essential for a normal accelerator facility. Our study shows that this method has a high resolution and a great simplicity.

  18. Radiation measurements during cavities conditioning on APS RF test stand

    Grudzien, D.M.; Kustom, R.L.; Moe, H.J.; Song, J.J.

    1993-01-01

    In order to determine the shielding structure around the Advanced Photon Source (APS) synchrotron and storage ring RF stations, the X-ray radiation has been measured in the near field and far field regions of the RF cavities during the normal conditioning process. Two cavity types, a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity, are used on the APS and are conditioned in the RF test stand. Vacuum measurements are also taken on a prototype 352-MHz single-cell cavity and a 352-MHz five-cell cavity. The data will be compared with data on the five-cell cavities from CERN

  19. Hohlraum Radiation Drive Measurements on the Omega Laser

    Decker, C.; Turner, R.E.; Landen, O.L.; Suter, L.J.; Amendt, P.; Kornblum, H.N.; Hammel, B.A.; Murphy, T.J.; Wallace, J.; Delamater, N.D.; Gobby, P.; Hauer, A.A.; Magelssen, G.R.; Oertel, J.A.; Knauer, J.; Marshall, F.J.; Bradley, D.; Seka, W.; Soures, J.M.

    1997-01-01

    Time-resolved drive measurements with thin-walled hohlraum targets on Omega [J.M.Soures et al., Phys.Plasmas 3, 2108 (1996)] are presented and compared with two-dimensional hydrodynamical simulations. For the first time, radiation fluxes are measured through the laser entrance hole instead of through a diagnostic side hole. We find improved agreement between time dependent experiments and simulations using this new technique. In addition, the drive history obtained in this manner correlates well with the drive onto the capsule at target center. copyright 1997 The American Physical Society

  20. Treatment and reporting of uncertainties for environmental radiation measurements

    Colle, R.

    1980-01-01

    Recommendations for a practical and uniform method for treating and reporting uncertainties in environmental radiation measurements data are presented. The method requires that each reported measurement result include the value, a total propagated random uncertainty expressed as the standard deviation, and a combined overall uncertainty. The uncertainty assessment should be based on as nearly a complete assessment as possible and should include every conceivable or likely source of inaccuracy in the result. Guidelines are given for estimating random and systematic uncertainty components, and for propagating and combining them to form an overall uncertainty

  1. Analysis of radiation measurement data of the BUSS cask

    Liu, Y.Y.; Tang, J.S.

    1995-01-01

    The Beneficial Uses Shipping System (BUSS) is a Type-B packaging developed for shipping nonfissile, special-form radioactive materials to facilities such as sewage, food, and medical-product irradiators. The primary purpose of the BUSS cask is to provide shielding and confinement, as well as impact, puncture, and thermal protection for its certified special-form contents under both normal transport and hypothetical accident conditions. A BUSS cask that contained 16 CsCl capsules (2.723 x 10 4 TBq total activity) was recently subjected to radiation survey measurements at a Westinghouse Hanford facility, which provided data that could be used to validate computer codes. Two shielding analysis codes, MICROSHIELD (User's Manual 1988) and SAS4 (Tan 1993), that are used at Argonne National Laboratory to evaluate the safety of packaging of radioactive materials during transportation, have been selected for analysis of radiation data obtained from the BUSS cask. MICROSHIELD, which performs only gamma radiation shielding calculation, is based on a point-kernel model with idealized geometry, whereas SAS4 is a control module in the SCALE code system (1995) that can perform three-dimensional Monte Carlo shielding calculation for photons and neutrons, with built-in procedures for cross-section data processing and automated variance reduction. The two codes differ in how they model the details of the physics of gamma photon attenuation in materials, and this difference is reflected in the associated engineering cost of the analysis. One purpose of the analysis presented in this paper, therefore, is to examine the effects of the major modeling assumptions in the two codes on calculated dose rates, and to use the measured dose rates for comparison. The focus in this paper is on analysis of radiation dose rates measured on the general body of the cask and away from penetrations

  2. Predictions of stellar occultations by TNOs/Centaurs using Gaia

    Desmars, Josselin; Camargo, Julio; Berard, Diane; Sicardy, Bruno; Leiva, Rodrigo; Vieira-Martins, Roberto; Braga-Ribas, Felipe; Assafin, Marcelo; Rossi, Gustavo; Chariklo occultations Team, Rio Group, Lucky Star Occultation Team, Granada Occultation Team

    2017-10-01

    Stellar occultations are the unique technique from the ground to access physical parameters of the distant solar system objects, such as the measure of the size and the shape at kilometric level, the detection of tenuous atmospheres (few nanobars), and the investigation of close vicinity (satellites, rings, jets).Predictions of stellar occultations require accurate positions of the star and the object.The Gaia DR1 catalog now allows to get stellar position to the milliarcsecond (mas) level. The main uncertainty in the prediction remains in the position of the object (tens to hundreds of mas).Now, we take advantage of the NIMA method for the orbit determination that uses the most recent observations reduced by the Gaia DR1 catalog and the astrometric positions derived from previous positive occultations.Up to now, we have detected nearly 50 positive occultations for about 20 objects that provide astrometric positions of the object at the time of the occultation. The uncertainty of these positions only depends on the uncertainty on the position of the occulted stars, which is a few mas with the Gaia DR1 catalog. The main limitation is now on the proper motion of the star which is only given for bright stars in the Tycho-Gaia Astrometric Solution. This limitation will be solved with the publicationof the Gaia DR2 expected on April 2018 giving proper motions and parallaxes for the Gaia stars. Until this date, we use hybrid stellar catalogs (UCAC5, HSOY) that provide proper motions derived from Gaia DR1 and another stellar catalog.Recently, the Gaia team presented a release of three preliminary Gaia DR2 stellar positions involved in the occultations by Chariklo (22 June and 23 July 2017) and by Triton (5 October 2017).Taking the case of Chariklo as an illustration, we will present a comparison between the proper motions of DR2 and the other catalogs and we will show how the Gaia DR2 will lead to a mas level precision in the orbit and in the prediction of stellar

  3. The use of gamma radiation in fluid flow measurements

    Tjugum, S.A.; Johansen, G.A.

    2000-01-01

    The use of gamma radiation in densitometry measurements is a well known principle. These measurements are often used in the oil industry where there is a need for finding the gas fraction of an oil/water/gas flow. The traditional gamma densitometer has a simple construction, where the measured parameter is the attenuation of a single gamma beam. High reliability, robustness and the clamp-on possibility are advantages that this type of instruments offer. More information can be found by studying how radiation is scattered and absorbed by matter. This information is needed in new multiphase flow meters. Problems to be solved in these instruments are how to find volume fractions of more than two components, how to handle different flow regimes in non-homogeneous flow, and how to do measurements independent of the salinity of the water. The new technology involves multi-energy, multi-mode and multi-sensor systems. At the University of Bergen the focus has been on how to do flow regime and salinity independent measurements by using multi-sensor and multi-mode systems. This paper gives an overview of the different techniques, and presents the latest results within this field of research at the University of Bergen. (author)

  4. Radiation Load of Children by Chest Radiodiagnostic Measurements

    Nikodemova, D.; Vladar, M.; Ranogajec-Komor, M.; Horvathova, M.

    1998-01-01

    Radiodiagnostic examinations of children present particular importance from the radiation hygiene point of view. The estimation of the radiation load of pediatric patient is not easy, because of the lack of information about organ weighting factors for various ages of patients, as well as due to the differences in applied X-ray examination parameters. In the district of Slovak Republic, in which also the working Nuclear Power Plant Jaslovske Bohunice is included, efforts were done to estimate the radiation load of children to 15 years by chest radiodiagnostic examinations. The data of entrance surface doses were collected using measurements with TLD for 100 patients divided in 5 age categories at six radiodiagnostic departments. The calculations of the total absorbed dose were performed using the measured ESD values (entrance surface dose in mGy) integrated over the X-ray beam area, the conversion factors between the imparted energy and the dose-area product and the known irradiation parameters (kV, HVL, mass, etc.). The analysis of the obtained absorbed doses (E a ) as a function of age for chest PA radiodiagnostic examinations has shown, that the investigated Slovak radiodiagnostic centres use rather lower voltage techniques and the entrance surface doses are much higher than the proposed value of European Communities. (author)

  5. Design and implementation of a virtual laboratory of radiation measurement

    Alvarez T, J. R.; Morales S, J. B.

    2009-10-01

    The work involves the implementation of a virtual laboratory, this project is conducted in the Faculty of Engineering of National Autonomous University of Mexico with the name of LANUVI. It is intended that the laboratory can be used by students who have interest in the nuclear radiation knowledge as well as in its detection and attenuation, in addition serve as and introduction to nuclear systems. In the first part of project will conduct a source that can simulate the particle radiation of Alfa, beta, neutrons and gamma rays. The project will take sources used in class laboratories and elements that are dangerous but are used in different practical applications. After taking the source analyzing the particles behaviour in different media like air, animal tissue, aluminium, lead, etc. The analysis is done in different ways in order to know with which material can stop or mitigate the different types of radiation. Finally shall be measure radioactivity with different types of detectors. At this point, has the behaviour of ionization chamber but in the future is expected to make the simulation of some other radiation detectors. The mathematical models we represent the behaviour of these cases were implemented in free software. The program will be used to implement the virtual laboratory with radiation sources, detectors and different types of shields will be Blender which is a free software that is used by many users for the embodiment of games but try to use as a tool to help visualize the different equipment that is widely used in a radioactive materials laboratory. (Author)

  6. Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models

    Patrinos, A.A.; Renne, D.S.; Stokes, G.M.; Ellingson, R.G.

    1991-01-01

    The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program

  7. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  8. Electromagnetic Radiation Measurements and Safety Issues of some Cellular

    A. Mousa

    2011-01-01

    Full Text Available As the mobile telecommunication systems are tremendously growing allover the world then the numbers of handheld andbase stations are also rapidly growing and it became very popular to see these base stations distributed everywhere in theneighborhood and on roof tops which has caused a considerable amount of panic to the public in Palestine concerning witherthe radiated electromagnetic field from these base stations may cause any health effect or hazard. This paper focuses on theradiated electromagnetic energy from some typical mobile base stations around the city of Nablus. The exposure levels dueto these stations were measured and compared to some international standard guidelines like ICNIRP and FCC to see if itmeets these standards, this is in order to answer some of the public fear and concern. The results are presented and somecomments are made on the other sources of electromagnetic radiation in the 200 kHz to 3 GHz range.

  9. Radiation exposure in nuclear medicine: real-time measurement

    Sylvain, Iara; Bok, Bernard; X. Bichat University, Paris

    2002-01-01

    French regulations have introduced the use of electronic dosimeters for personnel monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital) personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 mu Sv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nurses and stretcher-bearers. The extrapolated annual cumulative doses for all staff remained less than 10% of the maximum legal limit for exposed workers (2 mSv/yr). Electronic dosimeters are not technically justified for routine survey of staff. The high sensitivity and immediate reading of electronic semiconductor dosimeters may become very useful for exposure control under risky working conditions. It may become an important help for optimising radiation protection. (author)

  10. Radiation-damage measurements on PVT-based plastic scintillators

    Ilie, S.; Schoenbacher, H.; Tavlet, M.

    1993-01-01

    Samples of PVT-based plastic scintillators produced by Nuclear Enterprise Technology Ltd. (NET) were irradiated up to 9 kGy, both with a gamma source and within a typical accelerator radiation field (CERN PS ACOL Irradiation Facility). The consequent reduction of scintillating efficiency and light transmission were measured, as well as subsequent recovery, over a period of several months. The main results show that irradiation affects more the light transmission than the light emission. The radiation type does not affect either the amount of transmission reduction or the recovery. Observations were also made by means of polarized light. Non-uniformities and internal stresses were observed in scintillator bulks which were polymerized too quickly. These defects influence the light transmission. (orig.)

  11. Temperature in subsonic and supersonic radiation fronts measured at OMEGA

    Johns, Heather; Kline, John; Lanier, Nick; Perry, Ted; Fontes, Chris; Fryer, Chris; Brown, Colin; Morton, John

    2017-10-01

    Propagation of heat fronts relevant to astrophysical plasmas is challenging in the supersonic regime. Plasma Te changes affect opacity and equation of state without hydrodynamic change. In the subsonic phase density perturbations form at material interfaces as the plasma responds to radiation pressure of the front. Recent experiments at OMEGA studied this transition in aerogel foams driven by a hohlraum. In COAX, two orthogonal backlighters drive x-ray radiography and K-shell absorption spectroscopy to diagnose the subsonic shape of the front and supersonic Te profiles. Past experiments used absorption spectroscopy in chlorinated foams to measure the heat front; however, Cl dopant is not suitable for higher material temperatures at NIF. COAX has developed use of Sc and Ti dopants to diagnose Te between 60-100eV and 100-180eV. Analysis with PrismSPECT using OPLIB tabular opacity data will evaluate the platform's ability to advance radiation transport in this regime.

  12. SI units for radiation measurements : for or against

    Nagaratnam, A.; Reddy, A.R.

    1975-01-01

    The historical evolution of the International System of Units (SI) is traced and concepts regarding radiation quantities and units as given by the ICRU are presented. Implications of the changeover to SI units for radiation measurement from the conventional system of familiar units like curie, roentgen, rad and rem are discussed. The familiar units will be kept for the time being along with SI units. In order to avoid confusion in the changeover period, new names, namely, becquerel and gray have been suggested by the authors for the SI units for activity and absorbed dose respectively. One becquerel will be 1 nuclear transformation per second and is approximately equal to 2.703 x 10 -11 Ci. One gray will be 1 joule per kilogram and is exactly equal to 100 rad. (M.G.B.)

  13. Ultrashort electron bunch length measurement with diffraction radiation deflector

    Xiang, Dao; Huang, Wen-Hui

    2007-01-01

    In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR) deflector which is composed of a DR radiator and three beam position monitors (BPMs). When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.

  14. Ultrashort electron bunch length measurement with diffraction radiation deflector

    Dao Xiang

    2007-01-01

    Full Text Available In this paper, we propose a novel method to measure electron bunch length with a diffraction radiation (DR deflector which is composed of a DR radiator and three beam position monitors (BPMs. When an electron beam passes through a metallic aperture which is tilted by 45 degrees with respect to its trajectory, backward DR that propagates perpendicular to the beam’s trajectory is generated which adds a transverse deflection to the beam as a result of momentum conservation. The deflection is found to be largely dependent on the bunch length and could be easily observed with a downstream BPM. Detailed investigations show that this method has wide applicability, high temporal resolution, and great simplicity.

  15. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  16. Measurements of environmental radioactivity and radiation in Taiwan

    Lin Yuming; Huang Chingchung

    1993-01-01

    Established in 1974, the Taiwan Radiation Monitoring Center (TRMC) is responsible for the environmental radiation surveillance and related fields in Taiwan. Its environmental radiation monitoring programs can be categorized into two parts: surveillance of natural ionizing radiation and surveillance of man-made ionizing radiation. For natural ionizing radiation, surveillance programs are mainly to establish the radiation baseline data including radon. For man-made ionizing radiation, surveillance programs include the radio-fallout surveillance and the environmental radiation monitoring around the nuclear facilities. This article summarizes the relevant studies carried out by TRMC in the recent years

  17. Radiation measurements in Austria in 1999 - date and evaluation

    Bobek, E.; Streeruwitz, E.

    2000-12-01

    natural radiation exposure do occur. There are regions with particular geological conditions where exposure levels by far exceed the average dose due to high radon values. Artificial radiation exposure is predominantly caused by the use of radioactive substances and of ionizing radiation in medical applications, in particular by x-ray diagnostics, leading on the average to approximately 1.3 mSv per person annually in the reporting period. By comparison, the dose to the Austrian population due to the effects of the reactor accident at Chernobyl amounting in 1999 to less than 0.02 mSv is small. The exposure as a result of the operation of the nuclear installations at the Austrian Research Center Seibersdorf and at the Atomic Institute of the Austrian Universities in 1999 was negligible. Investigative measurements by the authorities of gaseous and liquid emissions and the internal surveillance by the operators show that maximum permissible levels never were exceeded. Also environmental monitoring in the surroundings could not detect any inadmissibly high gamma dose rates or immissions. The artificial radionuclide content of air, precipitation and surface water in the reporting period was mainly caused by the Chernobyl accident and similarly low as in the previous years. In these media the values for caesium-137 - which nowadays is the only significant radionuclide left from the Chernobyl fallout - are only slightly higher than before the accident. However, in soils from certain regions much higher caesium-137 concentrations can be found than before the accident. Since in most agriculturally used sods radiocaesium is fixed strongly to clay minerals and thus is only marginally available for plant uptake, foodstuffs and agricultural products generally show only minor caesium-137 concentrations. In comparison, significantly higher values still can be found in some forest produce such as wild growing fungi and game. In semi-natural forest ecosystems the fixation of caesium is

  18. How to obtain traceability on optical radiation measurements?

    Matamoros García, Carlos H.

    2006-02-01

    Traceability to national standards provides confidence in measurements results, granting a guaranty when carrying out governmental rules and when demonstrating conformity with quality requirements such as ISO 9000 or ISO/IEC 17025 (and the Mexican equivalent standards). The appropriate traceability contributes with confidence of the quality of products or services. This paper presents different ways to obtain traceability in Mexico for the optical radiation measurements, mentioning some applications, and highlighting the necessity of having traceability to the appropriate units of the SI. Additionally it present the national standards maintained by Centro Nacional de Metrologia (CENAM), the national metrology institute in Mexico, that give the technical support to Mexican measurements in this field and the international recognition that the personal of the Optics and Radiometry Division had gained in 10 years of development.

  19. Radiation exposure of patients due to medical measures

    Schwarz, E.R.; Tsavachidis, C.; Hinz, G.; Eigelsreiter, H.

    1987-01-01

    The main objective of this research project supported by the Federal Ministry of the Interior was to collect the data required as a basis for an up-to-date assessment of the radiation exposure of the population as a result of medical measures. Apart from the fact that this had to be done in order to fulfill a commitment required by the EURATOM principles, the report in hand also presents a useful survey of the improvements achieved over the last years in terms of radiation hygiene in the field of imaging technology applied for medical diagnostics. The data obtained from four hospital centers (2 university hospitals, 1 city hospital, and one county hospital) and from three medical practices (radiologist, internal specialist, orthopedics), the changes experienced in the selection of imaging methods for diagnostic purposes in the period 1976 to 1983 or 1985 are illustrated, and analyses show the developmental trends. The results show that there is reason to assume the radiation exposure of the population to be receding. (orig./MG) [de

  20. Measurement of radiation dose in paediatric micturating cystourethrography

    Hassan, N. E. A.

    2013-06-01

    Paediatrics and children have been recognized that they have a higher risk of developing cancer from the radiation than adults. Therefor, increased attention has been directed towards the dose to the patients. Micturating Cystourethrography (MCU) is a commonly use ed fluoroscopic procedure in children and commonly used to detect the vesicoureteric reflux (VUR) and show urethral and bladder and abnormalities. This study aims to measure the pediatric patients undergoing MCU. The study was carried out in two hospitals in Khartoum. The entrance surface dose (ESD) was determined determined by indirect method for 45 children. Furthermore, the mean ESD, sd and range resulting from MCU procedures has been estimated to be 0.7±.5 (0.2-2.5) mGy for the total patient population. The radiation dose to the patients is well within established safety limits, in the light of the current practice. The radiation dose results of this study are appropriate for adoption as the local initial dose reference level (DRL) value for this technique. The data presented in this study showed our doses to be approximately 50% lower than the lower mean values presented in the literature.(Author)

  1. Comparisons of Air Radiation Model with Shock Tube Measurements

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  2. Measurement of stray EC radiation on W7-AS

    Gandini, F.; Hirsch, M.; Cirant, S.; Erckmann, V.; Granucci, G.; Kasparek, W.; Laqua, H. P.; Muzzini, V.; Nowak, S.; Radau, S.

    2001-10-01

    In the framework of a collaboration between IFP-CNR Milano, IPP Garching/Greifswald and IPF Stuttgart, a set of four millimeterwave probes has been installed in W7-AS stellarator at selected positions of the inner vessel wall. Their purpose is to observe RF stray radiation during operation in presence of strong level of Electron Cyclotron (EC) waves, used for plasma start-up, heating and current drive. The aim of these measurements is to benchmark two complementary theoretical models for the distribution of the stray radiation in the vessel. From these codes, quantitative predictions are expected for the spatial distribution of the RF wall load and the RF-impact on in-vessel components in large future devices such as W7-X and, possibly, ITER. This input is important to optimize the wall armour and select rf-compatible in-vessel materials. We present first measurements from different heating and startup scenarios, with up to 800 kW of injected power at 140 GHz and different launching geometries. An analysis of measurements performed on FTU using a previous version of sniffer probe is also presented.

  3. Measurement of stray EC radiation on W7-AS

    Gandini, F.; Cirant, S.; Granucci, G.; Muzzini, V.; Nowak, S.; Hirsch, M.; Erckmann, V.; Laqua, H.P.; Radau, S.; Kasparek, W.

    2001-01-01

    In the framework of a collaboration between IFP-CNR Milano, IPP Garching/Greifswald and IPF Stuttgart, a set of four millimeterwave probes has been installed in W7-AS stellarator at selected positions of the inner vessel wall. Their purpose is to observe RF stray radiation during operation in presence of strong level of Electron Cyclotron (EC) waves, used for plasma start-up, heating and current drive. The aim of these measurements is to benchmark two complementary theoretical models for the distribution of the stray radiation in the vessel. From these codes, quantitative predictions are expected for the spatial distribution of the RF wall load and the RF-impact on in-vessel components in large future devices such as W7-X and, possibly, ITER. This input is important to optimize the wall armour and select rf-compatible in-vessel materials. We present first measurements from different heating and startup scenarios, with up to 800 kW of injected power at 140 GHz and different launching geometries. An analysis of measurements performed on FTU using a previous version of sniffer probe is also presented

  4. TLD array for precise dose measurements in stereotactic radiation techniques

    Ertl, A.; Kitz, K.; Griffitt, W.; Hartl, R.F.E.; Zehetmayer, M.

    1996-01-01

    We developed a new TLD array for precise dose measurement and verification of the spatial dose distribution in small radiation targets. It consists of a hemicylindrical, tissue-equivalent rod made of polystyrene with 17 parallel moulds for an exact positioning of each TLD. The spatial resolution of the TLD array was evaluated using the Leskell spherical phantom. Dose planning was performed with KULA 4.4 under stereotactic conditions on axial CT images. In the Leksell gamma unit the TLD array was irradiated with a maximal dose of 10 Gy with an unplugged 14 mm collimator. The doses delivered to the TLDs were rechecked by diode detector and film dosimetry and compared to the computer-generated dose profile. We found excellent agreement of our measured values, even at the critical penumbra decline. For the 14 mm and 18 mm collimator and for the 11 mm collimator combination we compared the measured and calculated data at full width at half maximum. This TLD array may be useful for phantom or tissue model studies on the spatial dose distribution in confined radiation targets as used in stereotactic radiotherapy. (author)

  5. 3D measurement of absolute radiation dose in grid therapy

    Trapp, J V; Warrington, A P; Partridge, M; Philps, A; Leach, M O; Webb, S

    2004-01-01

    Spatially fractionated radiotherapy through a grid is a concept which has a long history and was routinely used in orthovoltage radiation therapy in the middle of last century to minimize damage to the skin and subcutaneous tissue. With the advent of megavoltage radiotherapy and its skin sparing effects the use of grids in radiotherapy declined in the 1970s. However there has recently been a revival of the technique for use in palliative treatments with a single fraction of 10 to 20 Gy. In this work the absolute 3D dose distribution in a grid irradiation is measured for photons using a combination of film and gel dosimetry

  6. Multichannel bolometer for radiation measurements on the TCA tokamak

    Joye, B.; Marmillod, P.; Nowak, S.

    1986-01-01

    A multichannel radiation bolometer has been developed for the Tokamak Chauffage Alfven (TCA) tokamak. It has 16 equally spaced chords that view the plasma through a narrow horizontal slit. Almost an entire vertical plasma cross section can be observed. The bolometer operates on the basis of a semiconducting element which serves as a temperature-dependent resistance. A new electronic circuit has been developed which takes advantage of the semiconductor characteristics of the detector by using feedback techniques. Measurements made with this instrument are discussed

  7. Radiodiagnostic measurements radiation load of children by chest

    Nikodemova, D.; Vladar, M.; Ranogajec, M.; Horvathova, M

    1998-01-01

    In the district of Slovak Republic we have tried to estimate the radiation load of children to 15 years by chest radiodiagnostic examinations. Our data were collected using measurements with TLD for 100 patients divided in 5 age categories at six radiodiagnostic departments. The analysis of obtained absorbed doses as a function of age for chest radiodiagnostic examinations has shown, that the investigated Slovak radiodiagnostic centres use rather lower voltage techniques and the entrance surface doses are much higher than the proposed value of European Communities. (authors)

  8. The design of nuclear radiation measuring instrument of embedded network

    Zhang Huaiqiang; Ge Liangquan; Xiong Shengqing

    2009-01-01

    The design and realization of nuclear radiation measuring instrument is introduced. Due to the current nuclear instrument often used serial interface to communicate the PC, it is widely used for simple design and easy operation. However, as the demand of remote data acquisition and the call of sharing resources, the design of embedded the TCP/IP protocol stack into MCU, it may send the nuclear signal in Internet. Some devices that link each other with the network can be networked. The design is not only realizing remote data acquisition and sharing resources, but also reducing costs and improving the maintainability of the system. (authors)

  9. Preliminary measurements of gamma radiation in Chilean Antarctic Stations

    Stuardo B, E. (Comision Chilena de Energia Nuclear, Santiago. Dept. de Aplicaciones Nucleares)

    1983-11-01

    Natural and artificial gamma radiation, 1 m above the soil, is being investigated in 4 Chilean Antartic Stations. The measurements are performed with different types of TLD detectors. Preliminary results in the Tte. Marsh Station are reported and discussed. An average exposition of 3,5 ..mu..R/h was found during a 108 days period. This exposition corresponds to an annual dose of about 40 mrad, 8% of the annual dose limit for individual of the public. The presence of low energy artificial radioisotopes was not found.

  10. Preliminary measurements of gamma radiation in Chilean Antarctic Stations

    Stuardo B, E.

    1983-01-01

    Natural and artificial gamma radiation, 1 m above the soil, is being investigated in 4 Chilean Antartic Stations. The measurements are performed with different types of TLD detectors. Preliminary results in the Tte. Marsh Station are reported and discussed. An average exposition of 3,5 μR/h was found during a 108 days period. This exposition corresponds to an annual dose of about 40 mrad, 8% of the annual dose limit for individual of the public. The presence of low energy artificial radioisotopes was not found. (Author)

  11. In-flight radiation measurements aboard French airliners

    Montagne, C.; Donne, J.P.; Pelcot, D.; Nguyen, V.D.; Bouisset, P.; Kerlau, G.

    1993-01-01

    Routine radiation monitoring has been carried out for more than 15 years aboard Air France airliners. Annual dose received by aircrews can be estimated in the 2-3 mSv range for subsonic long-haul aircrews. Recent dosimetric measurements, using CIRCE devices based on low-pressure TEPC microdosimetry techniques and by using new types of bubble damage detectors, seem to confirm partly these results. More investigations by these new techniques could be undertaken at other phases of the 11 year solar cycle. (author)

  12. Radiation education by means of the measurement of natural environmental radiation in Tono region, Gifu prefecture

    Maruyama, Haruo; Yoshida, Yasuo; Uda, Tatsuhiko; Obayashi, Haruo

    1999-01-01

    The Tono region is placed in the south-east of Gifu prefecture. In this region, there is a plan of construction of the Research and Education Park. As the center facility of the park, the National Institute for Fusion Science (NIFS) has started their research activities. The Plasma Research Committee of Toki-city has been organized by the board of education of Toki-city for about 20 years. The committee is mainly composed of science teachers of elementary school, junior high school and high school in the area. The committee has measured continuously the natural environmental background radiations in cooperation with NIFS. Its activities started before constructing the NIFS laboratory buildings. Now, the new measuring points in Tajimi-city and Mizunami-city are added to the points in Toki-city area, therefore, some teachers join as the new members of the committee. In this conference, we present. (1) Plasma Research Committee of Toki-city; its history, organization and activities. (2) Obtained data of the natural environmental radiation in Toki-city. (3) Example lecture taken in natural radiation, its results and the farther issues. (author)

  13. SI units for radiation protection - an interim measure

    Burns, J.E.

    1982-01-01

    The brief memorandum comments on the problems concerning the delay in publishing the report of the ICRU working group on the change to SI units and makes the following suggestions to organisations considering whether to change over to SI units in the near future: a) It would be preferable to delay change-over to SI units for quantities specifying radiation for protection purposes until ICRU publishes its recommendations. This would avoid the risk of having to make two successive changes in procedure, with their attendant cost, need for retraining and the possibility of errors. (b) If, however, in order to be consistent with a change to SI units that has already been made in other applications of radiation, there are strong reasons for changing to SI units before the ICRU recommendations are published, then as an interim measure, measurements of exposure may be converted to dose equivalent using the approximation that 1 mR = 10 μSv. A decision as to whether to alter the scales of existing instruments, or to convert readings to dose equivalent at a later stage will depend on individual circumstances. (U.K.)

  14. Intercomparison of measuring and evaluation methods for environmental radiations

    Saito, Kimiaki; Nagaoka, Toshi; Sakamoto, Ryuichi; Tsutsumi, Masahiro; Moriuchi, Shigeru; Okano, Masaharu.

    1990-11-01

    This report presents the results of the cooperative research by IPCR and JAERI. In order to investigate the accuracy and characteristics of the measurement and evaluation methods for environmental radiations, developed independently by IPCR and by JAERI, field experiments were performed using the both methods under the same conditions at the same time. The experiments were performed at fixed points on the ground, in a moving car and in a flying helicopter. Discussion was made on the basis of the comparison of the results from the both methods. The exposure rates from the IPCR method agreed within 10% with those from the JAERI method, however the former were systematically higher than the latter. Since the evaluated exposure rate components due to 238 U-series, 232 Th-series and 40 K showed apparent differences between the IPCR method and the JAERI method, further investigation is necessary for the positions and widths of the applied energy bands and the coefficients in the equations to evaluate the components. In measurements in a moving vehicle, the sequential data should be gathered per sufficiently short distance to distinguish the local change of the radiation level when it changes greatly according to the location. The aerial data showed that the exposure rates from terrestrial gamma rays in the region west of the Abe river are apparently higher than those in the Kanto district. (author)

  15. Protecting agriculture against nuclear radiations: conception and measures

    Lehmann Hans-Joerg

    1997-01-01

    In case of atomic and chemical (AC) accident or attacks the agriculture is severely affected. This became clearly after the Chernobyl disaster, after which the authorities mobilized and increased the efforts to protect the agriculture. In Switzerland the Federal Commission for AC protection has undertaken the necessary actions in collaboration with the Federal Office for Agriculture. The protection of agriculture against radioactive fallout has many aspects. One of these concerns the requirement of informing farmers with all the necessary instruction to ensure the protection of rural population and animals, foods and forages, to make them able to take essential protection measures without exterior assistance, and to provide the agriculture buildings with simple and durable tools necessary in case of emergency intervention. To implement these requirements on Confederation level educational programs were developed to instruct agriculture agents and advisors on basic notions of radioactivity and radiation protection. These programs are thought to make the farmer aware with the implications of nuclear chemical and nuclear menace and the measures of protecting its enterprise by own means. Special instructions are to be applied by the enterprise chiefs to ensure first that the personnel protection is the top priority and then how to minimize and limit the damage produced by the radiation accident

  16. Measuring and modeling exposure from environmental radiation on tidal flats

    Gould, T.J.; Hess, C.T.

    2005-01-01

    To examine the shielding effects of the tide cycle, a high pressure ion chamber was used to measure the exposure rate from environmental radiation on tidal flats. A theoretical model is derived to predict the behavior of exposure rate as a function of time for a detector placed one meter above ground on a tidal flat. The numerical integration involved in this derivation results in an empirical formula which implies exposure rate ∝tan-1(sint). We propose that calculating the total exposure incurred on a tidal flat requires measurements of only the slope of the tidal flat and the exposure rate when no shielding occurs. Experimental results are consistent with the model

  17. Polarization measurements of auroral kilometric radiation by Dynamics Explorer-1

    Shawhan, S.D.; Gurnett, D.A.

    1982-01-01

    The plasma wave instrument (PWI) on the Dynamics Explorer-1 has been used to measure polarization of auroral kilometric radiation (AKR) at frequencies of 50 to 400 kHz in both the northern and the southern nightside auroral regions at altitudes of 1 to 3 R/sub E/ above the AKR source regions. The AKR polarization sense is found to be the same as the right hand polarized auroral hiss found in the frequency range of 0.8 to 6.4 kHz. Consequently, these unambiguous direct polarization measurements of AKR lead to the conclusion that AKR escapes the magnetosphere in the R-X mode. Since DE-1 is close to the source region, it can be inferred that AKR is generated predominately in the R-X mode

  18. Measurement of patient radiation doses in certain urography procedures

    Sulieman, A.; Barakat, H.; Zailae, A.; Abuderman, A.; Theodorou, K.

    2015-01-01

    Patients are exposed to significant radiation doses during diagnostic and interventional urological procedures. This study aimed to measure patient entrance surface air kerma (ESAK) and to estimate the effective dose during intravenous urography (IVU), extracorporeal shock-wave lithotripsy (ESWL), and ascending urethrogram (ASU) procedures. ESAK was measured in patients using calibrated thermo luminance dosimeters, GR200A). Effective doses (E) were calculated using the National Radiological Protection Board (NRPB) software. A total of 179 procedures were investigated. 27.9 % of the patients underwent IVU procedures, 27.9 % underwent ESWL procedures and 44.2 % underwent ASU procedures. The mean ESAK was 2.1, 4.18 and 4.9 mGy for IVU, ESWL, and ASU procedures, respectively. Differences in patient ESAK for the same procedure were observed. The mean ESAK values were comparable with those in previous studies. (authors)

  19. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth's atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy's Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described

  20. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  1. Radiation protection measures during the decommissioning of DR 2

    Larsen, Thommy Ingemann; Hedemann Jensen, Per; Sogaard-Hansena, Jens; Lauridsen, Bente

    2008-01-01

    DR 2 (Danish Reactor 2), one of the research reactors at the Riso site, has been in the process of being decommissioned during the last two years. The decommissioning will be completed in 2008. The reactor went critical for the first time in late 1958 and was shut down in 1975. The construction was a 5 MW light-water moderated and cooled tank type reactor. Although the process of decommissioning was formally initiated in 2005, it was preceded by a characterization project with the purpose of determining activity contents in key materials and dose rates at relevant spots in the reactor. The paper describes the removal of neutron beam plugs, grid plate and a thermal column with focus on radiation protection issues. The primary objective is, however, to describe the measures taken to control radiation doses during the removal of the reactor block concrete and the reactor tank.The demolition and removal of concrete was done by an external contractor. The contractor had to comply with a comprehensive set of requirements. This included splitting activated concrete from concrete containing activities below clearance levels with no use of fluids of any kind, as the risk of not being able to control diffusion of contaminated fluids was an important issue. The experience from the decommissioning of the DR 1 reactor in 2005 showed that water-cooled cutting made it very difficult to monitor the levels of air contamination as the filters of the air monitors were blocked frequently. Certainly, dry cutting turned out to be a great technical challenge to the external contractor. Another demand was that the work should take place inside a de-pressurized containment in order to control air contamination and thereby minimize internal doses. The experience gathered from the practical implementation of dose reducing measures will be discussed. Problems involving the use of external contractors will be discussed, including training of personnel with no prior knowledge of radioactivity

  2. Development of radiation detection and measurement system - Development of scintillation radiation sensor

    Kang, Hee Dong; Kim, Wan [Kyungpook National University, Taegu (Korea); Kim, Do Sung [Taegu University, Taegu (Korea)

    2000-03-01

    We have been fabricated CsI(Tl) scintillation crystals and plastic scintillators for radiation-based measuring equipment. CsI (Tl) single crystals doped with thallium as an activator were grown using the Czochralski method. The crystal structure of grown CsI(Tl) was bcc, and it was confirmed that its lattice constant was 4,568 A. The spectral range of luminescence of CsI(Tl) was 350 {approx} 700 nm independent of thallium concentration, and the fast component of the luminescence was decreased with increasing thallium concentration. The energy resolution of CsI(Tl) scintillator doped with 0.1 mole% thallium was about 9% for 137 Cs {gamma}-rays. The relation formula of {gamma}-ray energy versus energy resolution was ln(FWHM%)=-0.705ln({epsilon})+6.75. The radiation damage of CsI(Tl) increased in proportion to thallium concentration and radiation damage of CsI(Tl) increased in proportion to thallium concentration and radiation dosage, and the irradiated crystals were colored reddish. The radiation induced absorption bands appeared around 355, 425, 520 and 555 nm, and their energy level were about 3.50, 2.88, 2.39 and 2.21 eV. Plastic scintillators were fabricated thermal polymerization method. Those were polymerizing at 120 deg. C, during 72 hours, and annealing at 75 deg. C, during 24 hours. When the concentration of 1st solute was 1.5 wt% and concentration of 2nd solute was 0.01 wt%, the characteristics of scintillation were very excellent. Also 3.0 wt% tetraphenyl lead were loaded to improve the detection efficiency of {gamma}-ray. The range of emission spectrum was 400 {approx} 450nm, and the central peak was 415 nm. The radiation damage was not appear under 1*10{sup 3}Gy, but the color of plastic scintillator was changed to brown, over 1*10{sup 4}Gy exposured. 84 refs., 39 figs. (Author)

  3. Testing of environmental radiation monitors using the Risø low-level radiation measurement stations

    Bøtter-Jensen, L.

    2000-01-01

    June, 1999. The chief aims of such experiments are to allow the participants to check their home calibrations of their detectors and to compare the responses of the individual environmental radiation measurement systems used in the different EU member states and making a link between the different...... a simulation of a radioactive plume passing over the monitors during a certain time was made using a specially designed source set up in the field that was able to vary the air kerma rate from low activity Cs-137 sources additional to the natural air kerma rate. It is demonstrated that a typical environmental...

  4. Atmospheric radiation measurement program facilities newsletter, April 2001.; TOPICAL

    Holdridge, D. J.

    2001-01-01

    Intensive Observation Period Projects Scheduled-Several IOP projects have been scheduled for the SGP CART site this spring. These projects either have already begun or will begin shortly. Radiosondes-The RS-90 Transition IOP is currently under way. The RS-90 model radiosonde is gradually replacing the older RS-80 model. Radiosondes are instrument packages attached to and launched by weather balloons. The instruments measure atmospheric pressure, temperature, and relative humidity as the balloon rises through the air. The new RS-90 model is a high-performance radiosonde with fast-response sensors capable of providing data for each variable every second. The relatively environmentally friendly package is constructed of cardboard and steel rather than Styrofoam, and it has a water-activated battery that contains no toxic substances. The RS-90 Transition IOP is taking place during April. Operators will launch both the old RS-80 and the new RS-90 radiosondes simultaneously once each day to obtain duplicate vertical profiles of the atmosphere for comparison. This procedure will also allow data users to test the output from the old and new radiosondes in models. Narrow Field of View (NFOV) Solar Spectrometer Cloud Optical Depth Retrieval Campaign-The NFOV IOP is scheduled to take place on May 7-August 31, 2001. A researcher from Pennsylvania State University will be deploying a dual-spectrometer instrument that measures the hemispheric flux and zenith NFOV radiance over a wavelength range of 300- 1000 nanometers. (One nanometer equals 1 billionth of a meter or 0.000000039 inches.) This wavelength range includes the ultraviolet, visible, and near-infrared spectra. These measurements are used to estimate cloud optical depth-a quantity related to the amount of solar radiation intercepted by a cloud-for broken cloud fields over vegetated surfaces. The IOP measurements will be compared with optical depth measurements made by SGP instruments. Precision Gas Sampling (PGS

  5. Dose measurements in pulsed radiation fields with commercially available measuring components

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  6. Apparatus for the measurement of ion activety caused by radiation

    Stroem, S.

    1989-01-01

    The invention relates to a linear amplifier for the monitoring of very small currents from a high pressure ionization chamber. In the traditional design of an ionization chamber current amplifier, selected semiconductors and resistors are chosen to measure the very small currents in question. As the leakage currents in these semiconductors are larger than the smallest currents to be measured, very sophisticated electronics must be employed to succeed with the design. In order to overcome this disadvantage, the invention is based on the following basic features: A capacitor is charged by the chamber ion current during a fixed time period, without loading the amplifier input. The use of a peak detector makes bouncing of the time-lag relay contacts unimportant, and allows an anlog-to-digital converter to store the voltage build-up in the capacitor as a digital value. The measuring range of the amplifier, 0.001 pA to 1000 pA, makes it suitable for measuring gamma radiation in the air, both under normal and abnormal conditions. 1 fig

  7. Measurements of the thermal radiative properties of liquid uranium

    Havstad, M.A.; McLean, W. II; Self, S.A.

    1992-07-01

    Measurements of the thermal radiative properties of liquid uranium have been made using an instrument with two optical systems, one for measuring the complex index of refraction by ellipsometry, the other for measuring the normal spectral emissivity by direct comparison to an integral blackbody cavity. The measurements cover the wavelength range 0.4 to 10 μm with sample temperatures between 940 and 1630 K. Two 5keV ion sputter guns and an Auger spectrometer produce and verify, in-situ, atomically pure sample surfaces. Good agreement between the two methods is observed for the normal spectral emissivity, which varies with wavelength in a manner typical of transition metals. The two components of the complex index of refraction, the index of refraction and the extinction coefficient, increase with wavelength, from ∼3 at 0.4 μm to -20 at 9.5 μm. Both components of polarized reflectivity are shown for visible to infrared wavelengths

  8. Measurement of the natural radiation background level of Riyadh City

    Al-Kusayer, T.A.; Al-Haj, A.N.

    1987-01-01

    A gamma spectroscopy system was used to analyze the radionuclides in soil samples and to determine the cumulative radioactivity of terrestrial origin in the Riyadh City area. Minimal work has been done in the 1980s to measure the natural background radiation level in Saudi Arabia by using thermoluminescent dosimeters. The measurement of the natural radioactivity in the Riyadh area for the radionuclide concentration in becquerels per kilogram, the exposure rate arising from radionuclides in grays per hour, and the equivalent dose rate in sieverts per hour are the goals of this work. Soil samples were collected from 21 places in Riyadh City. Each site was sampled for two depth profiles, 0 to 5 cm and 5 to 15 cm. These measurements were taken before the Chernobyl accident, and in the absence of any measurements for that area in the past, this work can be considered in future work for a reference 137 Cs concentration in Riyadh soil to determine the 137 Cs increase in the soil after the Chernobyl accident

  9. Experience of the use of radiation measuring instruments for Russia

    Matsubara, S.; Ohshima, T.; Kawaguti, H.

    1994-01-01

    After the Chernobyl accident, among a series of international cooperations, also from our company T.OHSHIMA visited Russia in October, 1991 as a member of the USSR and Japan Joint Specialist Meeting on Environmental Radiation and Shelter Structure of Chernobyl-4 Nuclear Power Plant, and a few members including H.KAWAGUTI visited there in December, 1991 for the handling instructions of the apparatus delivered to Sasagawa Memorial Health Cooperation Foundation. During these visits to Russia they carried electronic personal dosimeters and pocketsize dose ratemeters, measured the doses and dose rate of some areas including the actual polluted areas and gained interesting data. Especially T.OHSHIMA entered the turbine structure of Chernobyl No.4 Reactor and experienced 7m Sv/h. I introduce these measurement data and the instruments used for the measurement. Also H.KAWAGUTI and others explained the maintenance and handling of the whole body counter loaded into the medical examination car offered to Russia for Chernobyl Sasagawa Medical Care Cooperation Project of Sasagawa Memorial Health Cooperation Foundation. I introduce the outline of this medical examination car laying stress on the whole body counter and present a part of the data by the whole body counter measured during the medical care cooperation. (author)

  10. Measurements of TFTR D-T radiation shielding efficiency

    Kugel, H.W.; Ascione, G.; Elwood, S.; Gilbert, J.; Ku, L.P.; Levine, J.; Rule, K.; Azziz, N.; Goldhagen, P.; Hajnal, F.

    1994-11-01

    Measurements of neutron and gamma dose-equivalents were performed in the Test Cell, at the outer Test Cell wall, in nearby work areas, and out to the nearest property lines at a distance of 180 m. Argon ionization chambers, moderated 3 He proportional counters, and fission chamber detectors were used to obtain measurements of neutron and gamma dose-equivalents per D-T neutron during individual TFTR discharges. These measured neutron and gamma D-T dose-equivalents per TFTR neutron characterize the effects of local variations in material density resulting from the complex asymmetric site geometry. The measured dose-equivalents per TFTR D-T neutron and the cumulative neutron production were used to determine that the planned annual TFTR neutron production of 1 x 10 21 D-T neutrons is consistent with the design objective of limiting the total dose-equivalent at the property line, from all radiation sources and pathways, to less than 10 mrem per year

  11. Cryopump measurements relating to safety, pumping speed, and radiation outgassing

    Graham, W.G.; Ruby, L.

    1978-09-01

    A test cryopump has been constructed to investigate operation in close proximity to a neutral beam, to determine static and dynamic pumping speeds, and to study outgassing such as might be produced by a pulse of nuclear radiation. No difficulty was encountered in operating the cryopump close to a deuterium neutral-beam source suitable for a fusion-reactor injector. Static and dynamic pumping-speed measurements agreed well, but were somewhat lower than expectations, probably due to the unusual method chosen to supply liquid helium. Safety tests showed that hydrogen could not be ignited at any subatmospheric pressure resulting from a leak-up-to-air accident. The possible hazard of liquid-oxygen condensation in such accidents was not explored. Tests made with pulses of neutrons and gamma rays produced by a TRIGA showed that the cryopump could be partially outgassed by radiation pulses of sufficient intensity. However, the effect is ascribed to the gamma-ray component of the TRIGA pulse which is about 10 3 times that expected from a fusion reactor such as TFTR

  12. Calculation and Measurement of Low-Energy Radiative Moller Scattering

    Epstein, Charles; DarkLight Collaboration

    2017-09-01

    A number of current nuclear physics experiments have come to rely on precise knowledge of electron-electron (Moller) and positron-electron (Bhabha) scattering. Some of these experiments, having lepton beams on targets containing atomic electrons, use these purely-QED processes as normalization. In other scenarios, with electron beams at low energy and very high intensity, Moller scattering and radiative Moller scattering have such enormous cross-sections that the backgrounds they produce must be understood. In this low-energy regime, the electron mass is also not negligible in the calculation of the cross section. This is important, for example, in the DarkLight experiment (100 MeV). As a result, we have developed a new event generator for the radiative Moller and Bhabha processes, with new calculations that keep all terms of the electron mass. The MIT High Voltage Research Laboratory provides us a unique opportunity to study this process experimentally and compare it with our work, at a low beam energy of 2.5 MeV where the effects of the electron mass are significant. We are preparing a dedicated apparatus consisting of a magnetic spectrometer in order to directly measure this process. An overview of the calculation and the status of the experiment will be presented.

  13. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007

    LR Roeder

    2007-12-01

    This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

  14. High beta radiation exposure of medical staff measures for optimisation of radiation protection

    Barth, I.; Rimpler, A.

    2006-01-01

    Full text of publication follows: New therapies applying beta radionuclides have been introduced in medicine in recent years, especially in nuclear medicine, e. g. radio-synoviorthesis, radioimmunotherapy and palliative pain therapy. The preparation of radiopharmaceuticals, their dispensary as well as injection require the handling of vials and syringes with high activities of beta emitters at small distances to the skin. Thus the medical staff may be exposed to a high level of beta radiation. Hence the local skin dose, Hp(0,07), was measured at these workplaces with thin-layer thermoluminescent dosemeters TLD (LiF:Mg,P,Cu) fixed to the tip of the fingers at both hands of the personnel. In addition, official beta/photon ring dosemeters were worn at the first knuckle of the index finger. Very high local skin doses were measured at the tip of index finger and thumb. The findings indicate that the exposure of the staff can exceed the annual dose limit for skin of 500 mSv when working at a low protection standard. By the use of appropriate shieldings and tools (e.g. tweezers or forceps) the exposure was reduced of more than one order of magnitude. The German dosimetry services provide official beta/photon ring dosemeters for routine monitoring of the extremity exposure of occupationally exposed persons. But even monitoring with these official dosemeters does not provide suitable results to control compliance with the dose limit in the majority of cases because they can mostly not be worn at the spot of highest beta exposure (finger tip). Therefore, a study was performed to identify the difference of readings of official ring dosemeters and the maximum local skin dose at the finger tips. At workplaces of radio-synoviorthesis a correction factor of 3 was determined provided that the staff worked at high radiation protection standard and the ring dosemeters were worn at the first knuckle of the index finger. The correction factor increases significantly when the radiation

  15. Influence of Spherical Radiation Pattern Measurement Uncertainty on Handset Performance Measures

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2005-01-01

    system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...... in the performance measures are investigated for both the GSM-900 and the GSM-1800 band. Despite the deliberately large deviations from the reference position, the changes in TRP and TIS are generally within ±0.5 dB with a maximum of about 1.4 dB. For the MEG values the results depend on the orientation...

  16. Radiation doses measured by TLD (thermo luminescent dosimeter) in x-ray examination

    Yamamoto, Seiichi; Hiraki, Motoji; Murakami, Shozo; Nishikawa, Naozo; Yagi, Takayuki

    1977-01-01

    By means of TLD, we measured the radiation doses to the skin in the central area of the field of radiation and doses scattered outside of the radiation field, utilizing a phantom to define a suitable radiation field. Clinically, when radiography of the gall bladder and the chest was done, we measured both the radiation doses of the central skin area where radiation was done and the skin above the area of the female gonads. In radiography of the chest, the radiation doses to the skin area above the female gonads situate was under 0.1 mR. When female gonads are less than 15 cm from the margin of the radiation field of the radiation dose can be decreased by 30% if gum sheets containing lead are used to cover the skin area outside the radiation field. (auth.)

  17. Changes in Handset Performance Measures due to Spherical Radiation Pattern Measurement Uncertainty

    Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    An important characteristic of a mobile handset is its ability to receive and transmit power. One way to characterize the performance of a handset in this respect is to use measurements of the spherical radiation pattern from which the total radiated power (TRP), total isotropic sensitivity (TIS)...... with respect to the environment. Standard deviations up to about 0.5dB and a maximum deviation of about 1.6dB were found....... in the performance measures are investigated for both the GSM-900 and the GSM-1800 band. Despite the deliberately large deviations from the reference position, the changes in TRP and TIS are generally within ±0.5dB with a maximum of about 1.4dB. For the MEG values the results depend on the orientation of the handset...... system that may introduce errors in standardized performance measurements. Radiation patterns of six handsets have been measured while they were mounted at various offsets from the reference position defined by the Cellular Telecommunications & Internet Association (CTIA) certification. The change...

  18. Space charge dosimeters for extremely low power measurements of radiation in shipping containers

    Britton, Jr; Charles, L [Alcoa, TN; Buckner, Mark A [Oak Ridge, TN; Hanson, Gregory R [Clinton, TN; Bryan, William L [Knoxville, TN

    2011-04-26

    Methods and apparatus are described for space charge dosimeters for extremely low power measurements of radiation in shipping containers. A method includes in situ polling a suite of passive integrating ionizing radiation sensors including reading-out dosimetric data from a first passive integrating ionizing radiation sensor and a second passive integrating ionizing radiation sensor, where the first passive integrating ionizing radiation sensor and the second passive integrating ionizing radiation sensor remain situated where the dosimetric data was integrated while reading-out. Another method includes arranging a plurality of ionizing radiation sensors in a spatially dispersed array; determining a relative position of each of the plurality of ionizing radiation sensors to define a volume of interest; collecting ionizing radiation data from at least a subset of the plurality of ionizing radiation sensors; and triggering an alarm condition when a dose level of an ionizing radiation source is calculated to exceed a threshold.

  19. Measurement and analysis of coherent synchrotron radiation effects at FLASH

    Beutner, B.

    2007-12-01

    The vacuum-ultra-violet Free Electron Laser in Hamburg (FLASH) is a linac driven SASE-FEL. High peak currents are produced using magnetic bunch compression chicanes. In these magnetic chicanes, the energy distribution along an electron bunch is changed by eff ects of Coherent Synchrotron Radiation (CSR). Energy changes in dispersive bunch compressor chicanes lead to transverse displacements along the bunch. These CSR induced displacements are studied using a transverse deflecting RF-structure. Experiments and simulations concerning the charge dependence of such transverse displacements are presented and analysed. In these experiments an over-compression scheme is used which reduces the peak current downstream the bunch compressor chicanes. Therefore other self interactions like space charge forces which might complicate the measurements are suppressed. Numerical simulations are used to analyse the beam dynamics under the influence of CSR forces. The results of these numerical simulations are compared with the data obtained in the over-compression experiments at FLASH. (orig.)

  20. Measurement and analysis of coherent synchrotron radiation effects at FLASH

    Beutner, B.

    2007-12-15

    The vacuum-ultra-violet Free Electron Laser in Hamburg (FLASH) is a linac driven SASE-FEL. High peak currents are produced using magnetic bunch compression chicanes. In these magnetic chicanes, the energy distribution along an electron bunch is changed by eff ects of Coherent Synchrotron Radiation (CSR). Energy changes in dispersive bunch compressor chicanes lead to transverse displacements along the bunch. These CSR induced displacements are studied using a transverse deflecting RF-structure. Experiments and simulations concerning the charge dependence of such transverse displacements are presented and analysed. In these experiments an over-compression scheme is used which reduces the peak current downstream the bunch compressor chicanes. Therefore other self interactions like space charge forces which might complicate the measurements are suppressed. Numerical simulations are used to analyse the beam dynamics under the influence of CSR forces. The results of these numerical simulations are compared with the data obtained in the over-compression experiments at FLASH. (orig.)

  1. Development of Spectrometer Software for Electromagnetic Radiation Measurement and Analysis

    Mohd Idris Taib; Noor Ezati Shuib; Wan Saffiey Wan Abdullah

    2013-01-01

    This software was under development using LabVIEW to be using with StellarNet Spectrometer system. StellarNet Spectrometer was supplied with SpectraWiz operating software that can measure spectral data for real-time spectroscopy. This LabVIEW software was used to access real-time data from SpectraWiz dynamic link library as hardware interfacing. This software will acquire amplitude of every electromagnetic wavelength at periodic time. In addition to hardware interfacing, the user interface capabilities of software include plotting of spectral data in various mode including scope, absorbance, transmission and irradiance mode. This software surely can be used for research and development in application, utilization and safety of electromagnetic radiation, especially solar, laser and ultra violet. Of-line capabilities of this software are almost unlimited due to availability of mathematical and signal processing function in the LabVIEW add on library. (author)

  2. Atmospheric Radiation Measurement (ARM) Climate Research Facility Management Plan

    Mather, James [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-01

    Mission and Vision Statements for the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mission The ARM Climate Research Facility, a DOE scientific user facility, provides the climate research community with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface. Vision To provide a detailed and accurate description of the Earth atmosphere in diverse climate regimes to resolve the uncertainties in climate and Earth system models toward the development of sustainable solutions for the nation's energy and environmental challenges.

  3. Measurement of radionuclides in the environment via Cherenkov radiation

    Ross, H.H.

    1987-01-01

    The author has developed an alternate approach to the measurement of some beta-emitting nuclides that utilizes the luminescence generated by the Cherenkov process. The luminescence, now known as Cherenkov radiation, was shown to be generated when a charged particle passes through a transparent medium at a speed that exceeds the phase velocity of light in the same medium. Cherenkov emission is different from most other luminescence processes in that it is a purely physical phenomenon. One consequence of this is that Cherenkov systems are free of chemical quenching effects. Conventional methods of analysis for environmental levels of beta-emitting radionuclides are often tedious, time-consuming, and expensive. The Cherenkov method is fast, requires very little operator attention, and is much less expensive to perform

  4. The energy balance experiment EBEX-2000. Part III: Behaviour and quality of the radiation measurements

    Kohsiek, W.; Liebethal, C.; Foken, T.; Vogt, R.; Oncley, S.P.; Bernhofer, C.; Debruin, H.A.R.

    2007-01-01

    An important part of the Energy Balance Experiment (EBEX-2000) was the measurement of the net radiation and its components. Since the terrain, an irrigated cotton field, could not be considered homogeneous, radiation measurements were made at nine sites using a variety of radiation instruments,

  5. Detection and measurement of ionizing radiation by the Radioactive Waste Management Centre

    Mudra, Josef

    2013-01-01

    The following topics are dealt with: Basic properties of radionuclides and selection of suitable detectors; radiation characteristics of sealed sources (radiation detection, dose rate measurement, surface contamination measurement, gamma spectroscopy); non-destructive analysis (segment gamma scanner, digital radiography); destructive analysis; radiation monitoring of humans and workplaces; and dosimetric monitoring of workplace surroundings and discharges. (orig.)

  6. The possible direct use of satellite radiance measurements by the Atmospheric Radiation Measurement Program

    1993-03-01

    The Atmospheric Radiation Measurement (ARM) Program is a major research program initiated by the Department of Energy to improve our understanding of radiative and cloud processes critical to predicting the Earth's climate and its changes. Central to this concept is the use of four to six intensively instrumented sites for long-term study and characterization of the processes of interest. The instrumentation suites will include ground-based, high-accuracy radiometers for measuring the short and longwave surface flux, as well as an extensive set of ground-and air-based instrumentation for characterizing the intervening atmospheric column. Satellite-based measurements are expected to play a very important role in providing top-of-the-atmosphere measurements. In this study, we examine the possibility of comparing ARM outputs directly with satellite measurements, thereby ensuring the independence of these two important data sets. Thus we focused on what do satellites really measure and how well do they measure it. On what can we do about the general lack of adequate visible channel calibration. On what is the best way for ARM to obtain near-real-time access to this unprocessed data. And on what is the optimum way for ARM to make use of satellite data

  7. Abstracts from the fourth annual meeting of the council on ionizing radiation measurements and standards (CIRMS)

    Anon.

    1995-01-01

    The Council on Ionizing Radiation Measurements and Standards held its fourth annual meeting at the National Institute of Standards and Technology, Gaithersburg, Maryland on November 28-30, 1995. The organization represents thousands of users of ionizing radiation and radioactive sources engaged in industrial radiation processing and sterilization, medical radiation diagnostics and therapy, nuclear power, and worker radiation protection programs. CIRMS provides a forum for discussing ionizing radiation issues; identifying, defining and prioritizing needed work; disseminating information on standards; and organizing workshops and meetings to advance ionizing radiation technology. Over 100 participants attended the meeting, which highlighted advanced techniques in radiation dosimetry and radioactivity measurements for the different ionizing radiation communities. Representatives attended from 28 corporations, 10 federal agencies, 8 national laboratories, 12 universities, and 1 state. Advanced techniques and future measurement needs were discussed in four sessions: (I) Medical Dosimetry, Radiology and Nuclear Medicine, (II) Occupational and Radiation Protection Dosimetry, (III) Measurement Techniques for Public and Environmental Radiation Protection, and (IV) Measurement Techniques for Radiation Effects on Materials. An additional session (Session V) was added to this annual meeting on the implementation of ISO 9000 for those CIRMS members involved in instrument and product manufacturing, and those providing radiation measurement services. Abstracts are also included from the poster session (Session VI) held on the final day of the meeting. The 4th Annual Meeting was organized by the Chairman of the Science and Technology Committee, Mr. Joseph C. McDonald of the Battelle Pacific Northwest Laboratory

  8. Radiation dose measurement for patients and staff during cardiac catheterization

    Joda, H. H. M.

    2009-07-01

    The primary objective of this study was to determine the patient and staff dose during cardiac catheterization procedures in Ahmed Gasim Hospital, Khartoum Bahry. A survey of patient and staff exposure was performed covered 2 Cath Lab units from 2 manufacturers. The measurements involved 50 operations. The medical staff was monitored using TLD chips (LiF: Mg, Cu, P). The main operator who was closer to the patient and the x-ray tube, was monitored at six positions (forehead, neck chest - over the lead apron, waist - under the lead apron, leg, and hand), while the exposure to the assistant was measured at two positions (chest - over the lead apron, and hand), where the technologist and the circulator were monitored at one position (chest - over the lead apron). patient exposure was measured using the DAP meter. The main operator and the rest of the staff received 0.14, 0.01 mSv/y respectively. The estimated patient dose rate was found to be 125 mGy/min which considered higher than the recommended DRL for the continuous high mode fluoroscopy used in interventional radiology (100 mGy/min). The study concluded to the fact that the main operator received relatively high dose which is a direct result to the poor radiation protection in the department. (Author)

  9. Measurement of radiation skyshine with D-T neutron source

    Yoshida, S.; Nishitani, T. E-mail: nisitani@naka.jaeri.go.jp; Ochiai, K.; Kaneko, J.; Hori, J.; Sato, S.; Yamauchi, M.; Tanaka, R.; Nakao, M.; Wada, M.; Wakisaka, M.; Murata, I.; Kutsukake, C.; Tanaka, S.; Sawamura, T.; Takahashi, A

    2003-09-01

    The D-T neutron skyshine experiments have been carried out at the Fusion Neutronics Source (FNS) of JAERI with the neutron yield of {approx}1.7x10{sup 11} n/s. The concrete thickness of the roof and the wall of a FNS target room are 1.15 and 2 m, respectively. The FNS skyshine port with a size of 0.9x0.9 m{sup 2} was open during the experimental period. The radiation dose rate outside the target room was measured a maximum distance of 550 m from the D-T target point with a spherical rem-counter. Secondary gamma-rays were measured with high purity Ge detectors and NaI scintillation counters. The highest neutron dose was about 9x10{sup -22} Sv/(source neutron) at a distance of 30 m from the D-T target point and the dose rate was attenuated to 4x10{sup -24} Sv/(source neutron) at a distance of 550 m. The measured neutron dose distribution was analyzed with Monte Carlo code MCNP-4B and a simple line source model. The MCNP calculation overestimates the neutron dose in the distance range larger than 230 m. The line source model agrees well with the experimental results within the distance of 350 m.

  10. Application of Terahertz Radiation to Soil Measurements: Initial Results

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  11. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  12. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    Myers, D.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    2005-07-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data. (author)

  13. INSTRUMENTATION FOR MEASURING AND TRANSMISSION THE SOLAR RADIATION THROUGH EARTH’S ATMOSPHERE

    Alexandru Dan Toma

    2013-07-01

    Full Text Available The Sun's energy is distributed over a broad range of the electromagnetic spectrum and Sun behaves approximately like a "blackbody" radiating at a temperature of about 5800 K with maximum output in the green-yellow part of the visible spectrum, around 500 nm. Not all solar radiation reaching the top of the atmosphere reaches Earth's surface due to a various optical phenomena in regard to solar radiation crossing the Earth’s atmosphere. In order to investigate them, there are two general categories of instruments used to measure the transmission of solar radiation through Earth's atmosphere: instruments that measure radiation from the entire sky and instruments that measure only direct solar radiation. Within each of these categories, instruments can be further subdivided into those that measure radiation over a broad range of wavelengths and those that measure only specific wavelengths.

  14. Measurement and Calculation of Gamma Radiation from HWZPR Reactor

    Jalali, Majid

    2006-01-01

    HWZPR is a research reactor with natural uranium fuel, D 2 O moderator and graphite reflector with maximum power of 100 W. It is a suitable means for theoretical research and heavy water reactor experiments. Neutrons from the core participate in different nuclear reactions by interactions with fuel, moderator, graphite and the concrete around the reactor. The results of these interactions are the production of prompt gammas in the environment. Useful information is gained by the reactor gamma spectrum measurement from point of view of relative quantity and energy distribution of direct and scattered radiations. Reactor gamma ray spectrum has been gathered in different places around the reactor by HPGe detector. In analysis of these spectra, 1 H(n,γ) 2 H, 16 O(n,n'γ) 16 O, 2 H(n,γ) 3 H and 238 U(n,γ) 239 U reactions occurring in reactor moderator and fuel, are important. The measured spectrum has been primarily estimated by the MCNP code. There is agreement between the code and the experiments in some points. The scattered gamma rays from 27 Al (n,γ) 28 Al reaction in the reactor tank, are the most among the gammas scattered in the reactor environment. Also the dose calculations by MCNP code show that 72% of gamma dose belongs to the energy range 3-11 MeV from reactor gamma spectrum and the danger of exposure from the reactor high-energy photons is serious. (author)

  15. 110. PTB seminar: Dose rate measurements of ionizing radiation in the range of natural ambient radiation. Proceedings

    Lauterbach, U.; Pessara, W.; Woehler-Figgen, S.

    1997-12-01

    Measuring instruments for radiation dose measurement in the range of natural ambient radiation are not subject to legal obligations for calibration and the PTB received numerous requests in the past, asking for measures to be taken in order to ensure reliability of measuring results in this range of radiation. This has induced PTB to organise the seminar, intended to present the current status of measuring technology in this field, reveal problems encountered in practical applications, and discuss suitable ction for quality assurance. The papers of the seminar report the measuring performance and capabilities of the available instruments, results of comparative analyses of measurements, and resulting proposed action for quality assurance. Discussions concluding the sessions are also presented in the processdings volume. (orig./CB) [de

  16. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  17. Atmospheric radiation measurement program facilities newsletter, September 2001.; TOPICAL

    Holdridge, D. J.

    2001-01-01

    Our Changing Climate-Is our climate really changing? How do we measure climate change? How can we predict what Earth's climate will be like for generations to come? One focus of the Atmospheric Radiation Measurement (ARM) Program is to improve scientific climate models enough to achieve reliable regional prediction of future climate. According to the Environmental Protection Agency (EPA), the global mean surface temperature has increased by 0.5-1.0 F since the late 19th century. The 20th century's 10 warmest years all occurred in the last 15 years of the century, with 1998 being the warmest year of record. The global mean surface temperature is measured by a network of temperature-sensing instruments distributed around the world, including ships, ocean buoys, and weather stations on land. The data from this network are retrieved and analyzed by various organizations, including the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the World Meteorological Organization. Worldwide temperature records date back to 1860. To reconstruct Earth's temperature history before 1860, scientists use limited temperature records, along with proxy indicators such as tree rings, pollen records, and analysis of air frozen in ancient ice. The solar energy received from the sun drives Earth's weather and climate. Some of this energy is reflected and filtered by the atmosphere, but most is absorbed by Earth's surface. The absorbed solar radiation warms the surface and is re-radiated as heat energy into the atmosphere. Some atmospheric gases, called greenhouse gases, trap some of the re-emitted heat, keeping the surface temperature regulated and suitable for sustaining life. Although the greenhouse effect is natural, some evidence indicates that human activities are producing increased levels of some greenhouse gases such as carbon dioxide, methane, and nitrous oxide. Scientists believe that the combustion of fossil fuels is

  18. Effect-independent measures of tissue response to fractionated radiation

    Thames, H.D.

    1984-01-01

    Tissue repair factors are measures of sparing from dose fractionation, in the absence of proliferation. A desirable feature of any repair factor is that it be independent of the level of injury induced in the tissue, since otherwise the comparison of tissues on the basis of the factor would not be meaningful. The repair factors F/sub R/ and F/sub rec/ are increasing functions of D/sub 1/, and depend on level of skin reaction after fractionated radiation. By contrast, β/α is effect-independent as a measure of repair capacity in skin, gut, and bone marrow. For late fibrotic reactions in the kidney, there was an increase in β/α with increased levels of injury that was statistically insignificant. The halftime, T/sub 1/2/, for intracellular repair processes in tissues is a measure of repair kinetics. Effect-independence is defend for T/sub 1/2/ as independence from size of dose per fraction. T/sub 1/2/ is independent of fraction size in skin, gut, and spinal cord, and is longer (1.5 hours) in the late-reacting tissues (lung and spinal cord) than in those that react acutely (less than 1 hour), with skin as the exception (1.3 hours). Therefore, early and late-responding normal tissues may be distinguished in terms of both repair capacity and repair kinetics: repair is slower in late-responding tissues, which are also more sensitive to changes in dose fractionation

  19. Sweat gland function as a measure of radiation change

    Pigott, K.H.; Dische, S.; Saunders, M.I.; Vojnovic, B.

    2000-01-01

    Radiotherapy may result in dryness of the skin even when no other change can be detected. We describe a system for recording the electrical conductance of skin as a measure of sweat gland function. In 22 normal volunteers close agreement was obtained between measurements obtained from comparable sites on both sides of the chest. Measurements were subsequently made in 38 patients treated by radiotherapy to one side of the chest for tumours of the breast or lung using one of five different fractionation schedules. Simultaneous readings were obtained from both sides of the chest with the non irradiated side acting as a control. A dose response relationship was demonstrated: five patients who received the equivalent total dose of 15 Gy in 2-Gy fractions showed no change in conductance. Sixteen out of 23 who received an equivalent total dose of 42-46 Gy in 2-Gy fractions had a greater than 22% reduction in mean skin conductance compared with that of the control areas despite the skin appearing normal in the large majority. Marked changes in skin conductance were seen after higher total doses. In a prospective study 18 women receiving breast irradiation underwent weekly readings during treatment. A mean reduction of 40% in skin conductance was noted by the end of the second week of treatment prior to any clinical evidence of radiation change. Skin conductance returned to normal in 44% of patients by 6 months. In the remainder, those patients who showed the greatest reduction in skin conductance during treatment demonstrated the least recovery. Changes in sweat gland function can be detected and quantified in skin which may otherwise appear normal. Differences may so be demonstrated between areas treated using different fractionation schedules and the method may be applied to the detection during radiotherapy of unusually sensitive patient. (author)

  20. Technology Development for Radiation Dose Measurement and Evaluation

    Kim, Bong Hwan; Chang, S. Y.; Lee, T. Y. (and others)

    2007-06-15

    The correction factors essential for the operation of In-Vivo counting system were produced and implemented into a field operation for the improvement of accuracy in measurement of the radioactivity inside a human body. The BiDAS2007 code which calculate an internal dose was developed by upgrading the former code prepared in the previous stage of this project. The method of using the multibioassy data, the maximum likelihood function and the Bayesian statistics were established to an internal dose based on the measurement data of radioactivity, intakes and retention of radioactivity in a human body and it can improve the accuracy in estimation of the intakes of radioactivity and the committed effective dose equivalent. In order to solve the problem of low detection efficiency of the conventional Bonner Sphere (BS) to a high energy neutron, the extended BS's were manufactured and the technique for neutron field spectrometry was established. The fast neutron and gamma spectrometry system with a BC501A scintillation detector was also prepared. Several neutron fluence spectra at several nuclear facilities were measured and collected by using the extended BS. The spectrum weighted responses of some neutron monitoring instruments were also derived by using these spectra and the detector response functions. A high efficient TL material for the neutron personal dosimeter was developed. It solved the main problem of low thermal stability and high residual dose of the commercial TLDs and has the sensitivity to neutron and to gamma radiation with 40 and 10 times higher respectively than them.

  1. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  2. Measures of radiation protection in the operation of nuclear power plants in the German Democratic Republic

    Richter, D.; Schreiter, W.

    1975-11-01

    A survey is given on the provisions concerning (a) radiation protection at nuclear power plants in the GDR including the instructions applying within the plant, (b) the organization of radiation protection services, and (c) the measures of radiation protection surveillance inside and outside the plant during operation. (author)

  3. Measurement techniques and safety culture in radiation protection -reflections after 37 years of occupation with measuring instruments

    Maushart, R.

    1994-01-01

    Safety Culture in radiation use and radiation protection implies primarily knowledge and competence of the decision makers. As the measuring techniques are basic for practical radiation protection, only such person can be called competent who has sufficient expertise on measuring techniques, and is able to evaluate its application and results. Safety Culture also implies the readiness to expose errors, and to learn from them. ''Believing in infallibility'' excludes Safety Culture. Therefore, correctly applied measuring technique contributes to recognize weak points early. How far it is used consciously and actively to prevent undesirable developments and exceeding of limits, can be considered outright as a yardstick for a high-ranking safety culture. Safety Culture as a whole, however, needs more than more measuring techniques. It requires its own and adequate Measurement Culture, presupposing also motivation and determination to measure. Therefore, education, training, knowledge and consciousness of safety of the people who are responsible for measurements are decisive for successful radiation protection. (orig.) [de

  4. Radiation syndrome - pathogenesis, course, diagnostic and therapeutic measures

    Trott, K.R.

    1981-01-01

    Owing to lack of practical experience, schemes for medical aid in cases of reactor accidents are based on theoretical models and the results of radiation biology and tumor research. The chances for medical assistance are deduced from the course of the radiation syndrome in affected persons. (DG) [de

  5. Wood fibre density measurement with 238 Pu radiation

    Barry, B.J.; Baker, D.B.

    1996-01-01

    The form of the curve of attenuation by wood fibre of the X radiation from 238 Pu has been determined. An exponential function containing a term second order in the areal density of the fibre described the curve accurately. The effect of scatter is negligible, even with an uncollimated radiation beam. (author). 18 refs., 1 tab., 6 figs

  6. Development of capacity for measuring ionizing radiation in aircraft crew

    Federico, C.A.; Goncalez, O.L.

    2011-01-01

    This paper describes the activities performed in a research program of the Institute of Advanced Studies, Brazil, belonging to the Brazilian Air Force, joining to researches from Brazilian Nuclear Energy Commission, in order to bring to Brazil the capacity and acknowledge necessary to the evaluation of dose from ionizing radiation originated in the cosmic radiation and its by products which fall on aircraft crews

  7. Ionizing radiation biological effects and the proper protective measures against it's harmful effects

    Hhalel, A.M.

    1990-01-01

    This book intrduces a good knowledge in specifications of ionizing radiation biological effects and the proper protective measures againest harmful effectes. The book is devided in to five main sections, the first one introduces the hostorical bachground of the contributions of a number of scietists in the basic knolwledge of radiation and its biological effects. The second section deals with the physical and chemical principles of radiation the third one talks about radiation detection. While the fourth section talks (via seven chapter) about the effectes of ionizing radiation on living organisms molecules cells, tissues organs systems and the living organism the fifth section talks about the uses of radiation sources, the probability of radiation accidents, protective measures, international recommendations related to doses and safe use of ionizing radiation. (Abed Al-wali Al-ajlouni). 53 refs., 107 figs., 13 tabs

  8. Prophylactic measures of radiation injuries by natural herbs and neutraceuticals

    Goyal, P.K., E-mail: pkgoyal2002@gmail.com [Radiation and Cancer Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur (India)

    2014-07-01

    The application of radiation biology has gained greater relevance and significance in health and environmental issues. In the present time, nuclear terrorism and weapon related effects are raising much alarm and concern to public health. Obviously, radiation biology research has great potential in diagnosis, therapy and establishing standards for assessment risk from radiation exposure. The development of effective medical countermeasures against nuclear biological and chemical weapons is of immense importance to the defense of all nations and especially to those threatened by international terrorism. Chemical radiation protection is an important strategy to protect living being against deleterious effects of radiation. Earlier the synthetic chemical substances, which could minimize the pathological changes in the living system after exposure to ionizing radiation, were looked into. Medicinal plants are the local heritage with global importance. World is enclosed with a rich wealth of medicinal plants. Herbs have always been the principle form of medicine in India and presently they become popular. Over the last few years, interest in evaluating oriental medicinal herbs and edible phyto products for the use in anti-radiation strategies is encouraging and emerging as an acceptable approach for preventing the radiation induced lesions in many countries. Several Indian medicinal plants (Emblica officinalis, Rosemarinus officinalis, Trigonella foenum-graecum, Alstonia scholaris, Tinospora cordifolia, Phyllanthus niruri, Syzygium cumini, Aegle marmelos, Panax ginseng, Linum usitatissimum, Delonix regia etc) and antioxidant vitamins (C and E) have been tested in this laboratory by taking various biological end points for the possible use of natural products and phytochemicals to serve as radio protectors for medical countermeasures against radiation injuries, and the results obtained from such studies are highly encouraging and fruitful. It opens new avenues for the

  9. Prophylactic measures of radiation injuries by natural herbs and neutraceuticals

    Goyal, P.K.

    2014-01-01

    The application of radiation biology has gained greater relevance and significance in health and environmental issues. In the present time, nuclear terrorism and weapon related effects are raising much alarm and concern to public health. Obviously, radiation biology research has great potential in diagnosis, therapy and establishing standards for assessment risk from radiation exposure. The development of effective medical countermeasures against nuclear biological and chemical weapons is of immense importance to the defense of all nations and especially to those threatened by international terrorism. Chemical radiation protection is an important strategy to protect living being against deleterious effects of radiation. Earlier the synthetic chemical substances, which could minimize the pathological changes in the living system after exposure to ionizing radiation, were looked into. Medicinal plants are the local heritage with global importance. World is enclosed with a rich wealth of medicinal plants. Herbs have always been the principle form of medicine in India and presently they become popular. Over the last few years, interest in evaluating oriental medicinal herbs and edible phyto products for the use in anti-radiation strategies is encouraging and emerging as an acceptable approach for preventing the radiation induced lesions in many countries. Several Indian medicinal plants (Emblica officinalis, Rosemarinus officinalis, Trigonella foenum-graecum, Alstonia scholaris, Tinospora cordifolia, Phyllanthus niruri, Syzygium cumini, Aegle marmelos, Panax ginseng, Linum usitatissimum, Delonix regia etc) and antioxidant vitamins (C and E) have been tested in this laboratory by taking various biological end points for the possible use of natural products and phytochemicals to serve as radio protectors for medical countermeasures against radiation injuries, and the results obtained from such studies are highly encouraging and fruitful. It opens new avenues for the

  10. Measurements of radiative material properties for astrophysical plasmas

    Bailey, James E.

    2010-01-01

    The new generation of z-pinch, laser, and XFEL facilities opens the possibility to produce astrophysically-relevant laboratory plasmas with energy densities beyond what was previously possible. Furthermore, macroscopic plasmas with uniform conditions can now be created, enabling more accurate determination of the material properties. This presentation will provide an overview of our research at the Z facility investigating stellar interior opacities, AGN warm-absorber photoionized plasmas, and white dwarf photospheres. Atomic physics in plasmas heavily influence these topics. Stellar opacities are an essential ingredient of stellar models and they affect what we know about the structure and evolution of stars. Opacity models have become highly sophisticated, but laboratory tests have not been done at the conditions existing inside stars. Our research is presently focused on measuring Fe at conditions relevant to the base of the solar convection zone, where the electron temperature and density are believed to be 190 eV and 9 x 10 22 e/cc, respectively. The second project is aimed at testing atomic kinetics models for photoionized plasmas. Photoionization is an important process in many astrophysical plasmas and the spectral signatures are routinely used to infer astrophysical object's characteristics. However, the spectral synthesis models at the heart of these interpretations have been the subject of very limited experimental tests. Our current research examines photoionization of neon plasma subjected to radiation flux similar to the warm absorber that surrounds active galactic nuclei. The third project is a recent initiative aimed at producing a white dwarf photosphere in the laboratory. Emergent spectra from the photosphere are used to infer the star's effective temperature and surface gravity. The results depend on knowledge of H, He, and C spectral line profiles under conditions where complex physics such as quasi-molecule formation may be important. These

  11. Radiation exposure in nuclear medicine: real-time measurement

    Iara Sylvain

    2002-09-01

    Full Text Available French regulations have introduced the use of electronic dosimeters for personal monitoring of workers. In order to evaluate the exposure from diagnostic procedures to nuclear medicine staff, individual whole-body doses were measured daily with electronic (digital personal dosimeters during 20 consecutive weeks and correlated with the work load of each day. Personal doses remained always below 20 µSv/d under normal working conditions. Radiation exposure levels were highest to tech staff, nurses and stretcher-bearers. The extrapolated annual cumulative doses for all staff remained less than 10 % of the maximum legal limit for exposed workers (2 mSv/yr. Electronic dosimeters are not technically justified for routine survey of staff. The high sensitivity and immediate reading of electronic semiconductor dosimeters may become very useful for exposure control under risky working conditions. It may become an important help for optimising radiation protection.A legislação francesa introduziu o uso de dosímetros eletrônicos para monitoração da exposição do trabalhador. Afim de avaliar a exposição do trabalhador proveniente de exames diagnósticos em medicina nuclear, doses individuais do corpo inteiro foram medidas diariamente com dosímetros eletrônicos (digitais durante 20 semanas consecutivas e correlatas com as atividades de trabalho de cada dia. As doses foram sempre inferiores à 20 µSv por dia em condições normais de trabalho. Os níveis de exposição de radiação mais elevados foram para os enfermeiros, manipuladores e maqueiros. A extrapolação da dose anual para todos os trabalhadores foi menos que 10 % do limite máximo legal para os trabalhadores expostos (2 mSv/ano. Dosímetros eletrônicos não são tecnicamente justificados para a o controle de rotina da exposição dos trabalhadores, mas a alta sensibilidade e a leitura imediata desses dosímetros podem vir a serem muito úteis para o controle da exposição em condi

  12. An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics

    Nelson, Kurt

    1991-01-01

    The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.

  13. Supervised Autonomy for Exploration and Mobile Manipulation in Rough Terrain with a Centaur-like Robot

    Max Schwarz

    2016-10-01

    Full Text Available Planetary exploration scenarios illustrate the need for autonomous robots that are capable to operate in unknown environments without direct human interaction. At the DARPA Robotics Challenge, we demonstrated that our Centaur-like mobile manipulation robot Momaro can solve complex tasks when teleoperated. Motivated by the DLR SpaceBot Cup 2015, where robots should explore a Mars-like environment, find and transport objects, take a soil sample, and perform assembly tasks, we developed autonomous capabilities for Momaro. Our robot perceives and maps previously unknown, uneven terrain using a 3D laser scanner. Based on the generated height map, we assess drivability, plan navigation paths, and execute them using the omnidirectional drive. Using its four legs, the robot adapts to the slope of the terrain. Momaro perceives objects with cameras, estimates their pose, and manipulates them with its two arms autonomously. For specifying missions, monitoring mission progress, on-the-fly reconfiguration, and teleoperation, we developed a ground station with suitable operator interfaces. To handle network communication interruptions and latencies between robot and ground station, we implemented a robust network layer for the ROS middleware. With the developed system, our team NimbRo Explorer solved all tasks of the DLR SpaceBot Camp 2015. We also discuss the lessons learned from this demonstration.

  14. The 250AH/90A active lithium-thionyl chloride cell for Centaur-G application

    Zolla, A. E.; Tura, D. D.

    1987-09-01

    A high rate active Li/SOCl2 cell was designed for use in a 28 volt, 250 amp-hour space battery system. The lithium battery is being considered as a replacement of its heavier silver-zinc counterpart on board the Centaur-G booster rocket which is used to launch payloads from the Space Shuttle cargo bay into deep-space. Basically a feasibility study, this development effort is demonstrating the ability of the lithium cell to deliver up to 90 amps safely at power densities of approximately 25 watts per pound. Test data on 4 prototype units is showing an energy density of 85 watt-hours per pound and 9.0 watt-hours/cu in. The cells tested typically delivered 280 to 300 amp-hours under ambient temperature test conditions using alternating continuous loads of 90, 55, and 20 amperes throughout life. Data from four cells tested are presented to demonstrate the capability of Li/SOCl2 technology for a C/3 discharge rate in active and hermetic cell units.

  15. The Centaur Chariklo and its rings system from stellar occultations in 2017

    Leiva, Rodrigo; Sicardy, Bruno; Camargo, Julio; Ortiz, Jose Luis; Berard, Diane; Desmars, Josselin; Chariklo Occultations Team; Rio Group; Lucky Star Occultation Team; Granada Occultation Team

    2017-10-01

    A stellar occultation in June 3, 2013 revealed the presence of a dense ring system around the Centaur object (10199) Chariklo (Braga-Ribas et al., Nature 2014). Subsequent analysis of occultation data and long-term photometric variations indicate that Chariklo's body is elongated (Leiva et al. 2017, submitted) and that the main ring exhibits significant longitudinal variations of the radial width (Bérard et al. 2017, in press). We report three multi-chord high-quality stellar occultation by Chariklo on April 9, 2017 and June 22, 2017 from Namibia, and July 23 2017 from South America. The analysis of this new data set is underway, but preliminary results are consistent with triaxial ellipsoidal models. From this analysis we will:-present refined models for the size and shape of Chariklo's main body andevaluate the heights and slopes of its topographic features.-give constraints on the longitudinal width variations of Chariklo's rings andexplore the possibility to obtain the rings apsidal precession rate.Chariklo's shape and topography have strong consequences on the dynamics of the rings through Lindblad-type resonances between mean motion of the ring particles and the spin of the main body, while the rings precession rate gives constraints on the dynamical oblateness of the main body.**Part of the research leading to these results has received funding from the European Research Council under the European Community’s H2020 (2014-2020/ ERC Grant Agreement n 669416 ”LUCKY STAR”).

  16. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose?

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim; Serefoglu, Ege Can

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose?, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose? on the outer part of their lead aprons during the PNL procedures...

  17. Measurements of Background Gamma Radiation on Some Localities of North-East Kosovo

    , G. Hodolli; , Y. Halimi; , R. Gashi; , Se. Kadiri; , B. Xhafa; , A. Jonuzaj

    2016-01-01

    The measurement of natural environmental radiations is one of the most important subjects in health physics. The main sources of background radiation are cosmic, terrestrial and cosmogenic radiation produced by reactions with cosmic rays and atmospheric nuclei. Terrestrial radiation varies in different regions in the world. Generally the background dose rate from cosmic rays depends on the latitude and altitude. The dose rate range obtained in some northeast Kosovo, the dose rate varies from ...

  18. The assessment of four different correction models applied to the diffuse radiation measured with a shadow ring using global and normal beam radiation measurements for Beer Sheva, Israel

    Kudish, Avraham I.; Evseev, Efim G. [Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, E D Bergmann Campus, Beer Sheva 84105 (Israel)

    2008-02-15

    The measurement of the diffuse radiation incident on a horizontal surface, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by three different techniques: two of which measure it directly and the third indirectly. The most accurate is the indirect one, which is based upon the concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this being the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The occulting disk can provide accurate measurements of the diffuse radiation but it requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The major disadvantage of the shadow ring is that it also blocks that portion of the diffuse radiation obscured by the shadow ring. This introduces a measurement error that must be corrected to account for that portion of the sky obscured by the shadow band. In addition to this geometric correction factor there is a need to correct for anisotropic sky conditions. Four correction models have been applied to the data for Beer Sheva, Israel and the results have been evaluated both graphically and statistically. An attempt has been made to score the relative performance of the models under different sky conditions. (author)

  19. Development of advanced materials and devices for nuclear radiation measurements

    Gadkari, S.C.

    2015-01-01

    Single crystals of technologically important materials are grown in the Crystal Technology Section of the Technical Physics Division, BARC. These crystals find applications as scintillators and dosimeters in nuclear radiation detection/measurements. Scintillator crystals of some advanced materials like cerium doped Gd 3 Ga 3 Al 2 O 12 , Lu 2 SiO 5 , YAIO 3 etc and some conventional materials such as Bi 4 Ge 3 O 12 , CsI:Tl, NaI:Tl, etc have been grown from melts using the Czochralski and Bridgman techniques. Portable gamma-ray spectrometers that work from a USB port of a laptop have been developed using the grown scintillator crystals. In recent years there has been a flurry of research activities on materials containing Li 6 , B 10 , etc that have large capture cross-sections for neutrons to develop solid state detectors for neutrons. For this purpose single crystals of cerium doped Li 6 Y(BO 3 ) 3 and silver doped Li 2 B 4 O 7 have been developed. Optical, thermo-luminescence, photo-luminescence and scintillation properties of these crystals have been investigated with a view to develop detectors and dosimeters. The Li 2 B 4 O 7 :Ag is a tissue equivalent material (Z eff = 7.3 close to 7.4 of tissue) useful in the personal and medical dosimetry applications. As the emission of Ag + lies in the UV region (267 nm), a customized TL measurement set-up has been developed using a solar blind PMT that enabled the measurement of very low doses below 5 μGy and linearity up to 100 Gy. Films of CsI:TI in the 10 nm to 3 μm thickness range were deposited on silicon substrates using the physical vapor deposition technique under vacuum conditions. The deposited films investigated using SEM and AFM revealed a columnar growth behavior with a preferential orientation along <200>. The growth of single crystals from melts, recent efforts in the development of detectors and results of experiments conducted to detect thermal neutrons are described. (author)

  20. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  1. Automated Radiation Measurements for Aviation Safety (ARMAS), Phase I

    National Aeronautics and Space Administration — Commercial aircrew members and frequent flyers face radiation hazards from the effects of cosmic rays and solar energetic particles. During significant solar events,...

  2. Automated Radiation Measurements for Aviation Safety (ARMAS), Phase II

    National Aeronautics and Space Administration — The existing state-of-the-art for physics-based, data-driven, climatological specification of the global radiation environment is the capability embodied by Nowcast...

  3. Measurements of external radiation in United States dwellings

    Miller, K.M.

    1992-01-01

    The results of a survey of terrestrial gamma radiation levels are reported for the United States. This database represents a total of 1074 measurements in and around 247 different dwellings in several different areas of the country. The absorbed dose rate in air outdoors was found to range between 14 and 118 nGy.h -1 and averaged 46.6. nGy.h -1 , while for indoors it ranged between 12 and 160 nGy.h -1 and averaged 37.6 nGy.h -1 . Apart from regional differences in the terrestrial gamma levels, variations of up to a factor of 2 can be seen in the same geographical area. Variations within a house are typically large, with basement living areas averaging 50% higher than second-floor areas. Houses of full brick construction had average indoor levels 50% higher than those for wood frame houses. The material used for interior wall construction was not found to strongly influence the indoor dose rates except for rooms containing brick, cinder block or stone. For wood frame houses, including those of brick veneer exteriors, a linear regression analysis indicates that the average indoor dose rate can be reasonably well predicted based on a constant, which relates to the building contribution, and a shielding factor for the outdoor dose rate. Using the data collected in this survey and the population weighted mean outdoor absorbed dose rate in air reported for the US, the corresponding mean indoor value is estimated to be 37 nGy.h -1 . This value is in the low end of the range reported for other countries and is about half the estimated worldwide average of 70 nGy.h -1 . (author)

  4. Monte Carlo analysis of radiative transport in oceanographic lidar measurements

    Cupini, E.; Ferro, G. [ENEA, Divisione Fisica Applicata, Centro Ricerche Ezio Clementel, Bologna (Italy); Ferrari, N. [Bologna Univ., Bologna (Italy). Dipt. Ingegneria Energetica, Nucleare e del Controllo Ambientale

    2001-07-01

    The analysis of oceanographic lidar systems measurements is often carried out with semi-empirical methods, since there is only a rough understanding of the effects of many environmental variables. The development of techniques for interpreting the accuracy of lidar measurements is needed to evaluate the effects of various environmental situations, as well as of different experimental geometric configurations and boundary conditions. A Monte Carlo simulation model represents a tool that is particularly well suited for answering these important questions. The PREMAR-2F Monte Carlo code has been developed taking into account the main molecular and non-molecular components of the marine environment. The laser radiation interaction processes of diffusion, re-emission, refraction and absorption are treated. In particular are considered: the Rayleigh elastic scattering, produced by atoms and molecules with small dimensions with respect to the laser emission wavelength (i.e. water molecules), the Mie elastic scattering, arising from atoms or molecules with dimensions comparable to the laser wavelength (hydrosols), the Raman inelastic scattering, typical of water, the absorption of water, inorganic (sediments) and organic (phytoplankton and CDOM) hydrosols, the fluorescence re-emission of chlorophyll and yellow substances. PREMAR-2F is an extension of a code for the simulation of the radiative transport in atmospheric environments (PREMAR-2). The approach followed in PREMAR-2 was to combine conventional Monte Carlo techniques with analytical estimates of the probability of the receiver to have a contribution from photons coming back after an interaction in the field of view of the lidar fluorosensor collecting apparatus. This offers an effective mean for modelling a lidar system with realistic geometric constraints. The retrieved semianalytic Monte Carlo radiative transfer model has been developed in the frame of the Italian Research Program for Antarctica (PNRA) and it is

  5. Galileo Measurements of the Jovian Electron Radiation Environment

    Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.

    2003-12-01

    The Galileo spacecraft Energetic Particle Detector (EPD) has been used to map Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). The electron count rates from the instrument were averaged into 10-minute intervals over the energy range 0.2 MeV to 11 MeV to form an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and end of mission in 2003. These data were then used to provide differential flux estimates in the jovian equatorial plane as a function of radial distance (organized by magnetic L-shell position). These estimates provide the basis for an omni-directional, equatorial model of the jovian electron radiation environment. The comparison of these results with the original Divine model of jovian electron radiation and their implications for missions to Jupiter will be discussed. In particular, it was found that the electron dose predictions for a representative mission to Europa were about a factor of 2 lower than the Divine model estimates over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeded the Divine model by about 50% for thicker shielding for the assumed Europa orbiter trajectories. The findings are a significant step forward in understanding jovian electron radiation and represent a valuable tool for estimating the radiation environment to which jovian science and engineering hardware will be exposed.

  6. Circuit and Measurement Technique for Radiation Induced Drift in Precision Capacitance Matching

    Prasad, Sudheer; Shankar, Krishnamurthy Ganapathy

    2013-04-01

    In the design of radiation tolerant precision ADCs targeted for space market, a matched capacitor array is crucial. The drift of capacitance ratios due to radiation should be small enough not to cause linearity errors. Conventional methods for measuring capacitor matching may not achieve the desired level of accuracy due to radiation induced gain errors in the measurement circuits. In this work, we present a circuit and method for measuring capacitance ratio drift to a very high accuracy (<; 1 ppm) unaffected by radiation levels up to 150 krad.

  7. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Hollandt, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich Hochtemperatur- und Vakuumphysik; Hartmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Hochtemperaturskala; Gutschwager, B. [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe Infrarot-Strahlungsthermometrie; Struss, O. [HEITRONICS Infrarot Messtechnik GmbH (Germany)

    2007-09-15

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  8. Radiation thermometry - non-contact temperature measurements; Strahlungsthermometrie - Temperaturen beruehrungslos messen

    Hollandt, J.; Hartmann, J.; Gutschwager, B. [Physikalisch-Technische Bundesanstalt, Berlin (Germany); Struss, O. [HEITRONICS Infrarot Messtechnik GmbH, Wiesbaden (Germany)

    2006-07-01

    The temperature is one of the measurands most frequently determined, as it decisively influences physical, chemical and biological processes. To be able to evaluate, optimize, repeat and compare industrial procedures, temperatures must be measured with sufficient accuracy and worldwide uniformity. This is done with the aid of the regulations and instructions of the international temperature scale. Today, non-contact measurements of surface temperatures can be performed without problems with radiation thermometers over a temperature range from -100 C up to 3000 C. Compared to contacting measurements, radiation-thermometric temperature measurement offers a series of advantages. Radiation thermometers react very fast and the measurement is not influenced by heat supply or dissipation. This allows objects to be measured which move very fast, are energized or may experience fast temperature changes. Consequently, radiation thermometry is increasingly used for the monitoring and control of thermal processes, for maintenance and in building services engineering. The present contribution shall inform of the fundamentals of radiation-thermometric temperature measurement as well as of the construction and popular types of radiation thermometers. It will be explained how exact and worldwide uniform temperature measurement is guaranteed via the international temperature scale and the calibration of radiation thermometers. The emissivity of surfaces which is important in practical temperature measurements and some examples of industrial applications of radiation thermometers will be described. (orig.)

  9. Additional measurements of the radiation environment at the Los Alamos Spallation Radiation Effects Facility at LAMPF

    Davidson, D.R.; Reedy, R.C.; Greenwood, L.R.; Sommer, W.F.; Wechsler, M.S.

    1986-01-01

    Foil activation dosimetry experiments were conducted in a ''rabbit'' system at the completed Los Alamos Spallation Radiation Effects Facility (LASREF). The ''raffit'' system contains four tubes spaced radially outward 0.12, 0.18, 0.27, and 0.38 meters off beam centerline. Foils were irradiated for 3 to 62 hours to measure the neutron flux and energy spectrum radially from beam centerline, along the beamline, and the effect of the Isotope Production (IP) target loadings on the neutron flux in the neutron irradiation locations. Irradiations showed a decrease in the radial flux by a factor of 6 in 0.15 meters of iron outside the IP targets. An enchancement was seen in the 24-keV energy region outside 0.15 meters. There was little difference in the shape of the spectra outside the IP targets and the beam stop with the exception of the high energy tail (energies above 20 MeV). The decrease in the high energy tail outside the beam stop is due to the degradation of the energy of the proton beam in the IP targets. Irradiations outside the beam stop with zero and eight IP targets gave the same spectral shape with the exception of the high energy tail. The magnitude of the integral flux decreased by a factor of 2 when eight IP targets were present. Irradiations with five ''rabbits'' stacked on top of each other showed no difference in the integral flux below, on and above beam centerline

  10. Development of radiation detection and measurement system - Development of microcalorimeter for the radioactivity measurement

    Jun, Jae Shik; Jung, H. J.; Chai, H. S.; Han, W. S. [Chungnam National University, Taejon (Korea)

    2000-03-01

    A unique multi-purpose radiation transport code has been developed and expected to be used in various fields of radiation physics and engineering. The present model is a hybrid in which the restricted energy-loss straggling is applied as in the Class I algorithm and the correlation in the secondary electron production is maintained explicitly. Output electromotive forces from the several types of the heat flux sensors have been measured as a function of the temperature differences between both end-plates of the sensors. Based on the analysis of the measurements, we could select the most appropriate type for our purpose, the sensitivity of which is greater than 45 mV/K. Heat source has also been fabricated with manganin wires and the uncertainty has been estimated to be less than 0.1%. The calorimetric core has been installed in the temporary thermal jacket surrounded by thick styrofoam and the signal from the core has been measured with power varying in the range {mu}W {approx} mW. The reproducibility has been found to be better than 0.5% for power greater than 60 {mu}W/s. In addition, it is confirmed that the heat generated by Co-60 and Ir-192 sources frequently used in industries, medicine and biology with very high level of the activity could be measured with the reproducibility better than that above mentioned. On the whole, the performance characteristics of the calorimetric core could be comparable to those commercially available. 139 refs., 40 figs., 7 tabs. (Author)

  11. Diagnostic system for EUV radiation measurements from dense xenon plasma generated by MPC

    Petrov, Yu.V.; Garkusha, I.E.; Solyakov, D.G.; Marchenko, A.K.; Chebotarev, V.V.; Ladygina, M.S.; Staltsov, V.V.; Yelisyeyev, D.V.; Hassanein, A.

    2011-01-01

    Magnetoplasma compressor (MPC) of compact geometry has been designed and tested as a source of EUV radiation. In present paper diagnostic system for registration of EUV radiation is described. It was applied for radiation measurements in different operation modes of MPC. The registration system was designed on the base of combination of different types of AXUV photodiodes. Possibility to minimize the influence of electrons and ions flows from dense plasma stream on AXUV detector performance and results of the measurements has been discussed.

  12. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  13. Measurement and modelling of radiation transmission within a stand of maritime pine (Pinus pinaster Ait)

    Berbigier, P.; Bonnefond, J.M.

    1995-01-01

    A semi-empirical model of radiation penetration in a maritime pine canopy was developed so that mean solar (and net) radiation absorption by crowns and understorey could be estimated from above-canopy measurements only. Beam radiation Rb was assumed to penetrate the canopy according to Beer's law with an extinction coefficient of 0.32; this figure was found using non-linear regression techniques. For diffuse sky radiation, Beer's law was integrated over the sky vault assuming a SOC (standard overcast sky) luminance model; the upward and downward scattered radiative fluxes were obtained using the Kubelka-Munk equations and measurements of needle transmittance and reflectance. The penetration of net radiation within the canopy was also modelled. The model predicts the measured albedo of the stand very well. The estimation of solar radiation transmitted by the canopy was also satisfactory with the maximum difference between this and the mean output of mobile sensors at ground level being only 18 W m -2 . Due to the poor precision of net radiometers, the net radiation model could not be tested critically. However, as the modelled longwave radiation balance under the canopy is always between -10 and -20 Wm -2 , the below-canopy net radiation must be very close to the solar radiation balance. (author) [fr

  14. Determining the infrared radiative effects of Saharan dust: a radiative transfer modelling study based on vertically resolved measurements at Lampedusa

    Meloni, Daniela; di Sarra, Alcide; Brogniez, Gérard; Denjean, Cyrielle; De Silvestri, Lorenzo; Di Iorio, Tatiana; Formenti, Paola; Gómez-Amo, José L.; Gröbner, Julian; Kouremeti, Natalia; Liuzzi, Giuliano; Mallet, Marc; Pace, Giandomenico; Sferlazzo, Damiano M.

    2018-03-01

    Detailed measurements of radiation, atmospheric and aerosol properties were carried out in summer 2013 during the Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region (ADRIMED) campaign in the framework of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx) experiment. This study focusses on the characterization of infrared (IR) optical properties and direct radiative effects of mineral dust, based on three vertical profiles of atmospheric and aerosol properties and IR broadband and narrowband radiation from airborne measurements, made in conjunction with radiosonde and ground-based observations at Lampedusa, in the central Mediterranean. Satellite IR spectra from the Infrared Atmospheric Sounder Interferometer (IASI) are also included in the analysis. The atmospheric and aerosol properties are used as input to a radiative transfer model, and various IR radiation parameters (upward and downward irradiance, nadir and zenith brightness temperature at different altitudes) are calculated and compared with observations. The model calculations are made for different sets of dust particle size distribution (PSD) and refractive index (RI), derived from observations and from the literature. The main results of the analysis are that the IR dust radiative forcing is non-negligible and strongly depends on PSD and RI. When calculations are made using the in situ measured size distribution, it is possible to identify the refractive index that produces the best match with observed IR irradiances and brightness temperatures (BTs). The most appropriate refractive indices correspond to those determined from independent measurements of mineral dust aerosols from the source regions (Tunisia, Algeria, Morocco) of dust transported over Lampedusa, suggesting that differences in the source properties should be taken into account. With the in situ size distribution and the most appropriate refractive index the estimated dust IR radiative forcing

  15. Radiation

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  16. A method to measure internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures

    Tian, Qijie; Chang, Songtao; Li, Zhou; He, Fengyun; Qiao, Yanfeng

    2017-03-01

    The suppression level of internal stray radiation is a key criterion for infrared imaging systems, especially for high-precision cryogenic infrared imaging systems. To achieve accurate measurement for internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures, a measurement method, which is based on radiometric calibration, is presented in this paper. First of all, the calibration formula is deduced considering the integration time, and the effect of ambient temperature on internal stray radiation is further analyzed in detail. Then, an approach is proposed to measure the internal stray radiation of cryogenic infrared imaging systems under various ambient temperatures. By calibrating the system under two ambient temperatures, the quantitative relation between the internal stray radiation and the ambient temperature can be acquired, and then the internal stray radiation of the cryogenic infrared imaging system under various ambient temperatures can be calculated. Finally, several experiments are performed in a chamber with controllable inside temperatures to evaluate the effectiveness of the proposed method. Experimental results indicate that the proposed method can be used to measure internal stray radiation with high accuracy at various ambient temperatures and integration times. The proposed method has some advantages, such as simple implementation and the capability of high-precision measurement. The measurement results can be used to guide the stray radiation suppression and to test whether the internal stray radiation suppression performance meets the requirement or not.

  17. Mars' surface radiation environment measured with the Mars science laboratory's curiosity rover

    Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Reitz, G.; Cucinotta, F.A.; Kim, M.-H.; Grinspoon, D.; Bullock, M.A.; Posner, A.; Gómez-Elvira, J.; Vasavada, A.; Grotzinger, J.P.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory’s Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose

  18. Measuring main-ion temperatures in ASDEX upgrade using scattering of ECRH radiation

    Pedersen, Morten Stejner; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2016-01-01

    We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak.......We demonstrate that collective Thomson scattering of millimeter wave electron cyclotron resonance heating radiation can be used for measurements of the main-ion temperature in the ASDEX Upgrade tokamak....

  19. Radiation dose measurements during kilovoltage-cone beam computed tomography imaging in radiotherapy

    A Sathish Kumar

    2016-01-01

    Conclusion: Radiation dose to the eye, breast, and the surface of the pelvis have been arrived at during CBCT. The doses measured on patients agreed closely with those measured on humanoid phantom and with published values.

  20. National Council on Radiation Protection and Measurements semiannual technical progress report, March 1989--August 1989

    Ney, W.R.

    1991-01-01

    This semiannual technical progress report is for the period 1 March 1989 through 31 August 1989. This National Council on Radiation Protection and Measurements (NCRP) program is designed to provide recommendations for radiation protection based on scientific principles. During this period several reports were published covering the topics of occupational radiation exposure, medical exposure, radon control, dosimetry, and radiation protection standards. Accomplishments of various committees are also reported; including the committees on dental x-ray protection, radiation safety in uranium mining and milling, ALARA, instrumentation, records maintenance, occupational exposures of medical personnel, emergency planning, and others. (SM)

  1. ANALYSIS OF MEASURED AND MODELED SOLAR RADIATION AT THE TARS SOLAR HEATING PLANT IN DENMARK

    Tian, Zhiyong; Perers, Bengt; Furbo, Simon

    2017-01-01

    , such as solar radiation, inlet and outlet temperature for the solar collector field, flow rate and pressure, ambient temperature, Wind speed and wind direction were measured. Global horizontal radiation, direct normal irradiation (DNI) and total radiation on the tilted collector plane of the flat plate...... collector field have been measured in Tars solar heating plant. To determine the accuracy of modeled and measured solar radiation in Tars solar heating plant, monthly comparisons of measured and calculated radiation using 6 empirical models have been carried out. Comparisons of measured and modeled total......A novel combined solar heating plant with tracking parabolic trough collectors (PTC) and flat plate collectors (FPC) has been constructed and put into operation in Tars, 30 km north of Aalborg, Denmark in August 2015. To assess the operation performance of the plant, detailed parameters...

  2. Solar radiation measurements at the network of six sites in the UK, January - December 2001

    Driscoll, C.M.H.; Campbell, J.I.; Pearson, A.J.; Grainger, K.J.L.; Dean, S.F.; Clark, I.E

    2002-04-01

    A summary of the results from January to December 2001 of a survey of solar radiation levels at the UK network of six solar radiation measurement sites is presented. The network consists of three NRPB sites at Chilton, Leeds and (monitoring since 1988) and three Meteorological Office stations at Camborne, Kinloss and Lerwick (monitoring since 1993). Visible (400-770 nm), ultraviolet UVA radiation (320-400 nm) and erythemally weighted ultraviolet radiation UVR{sub eff} (280-400 nm) have been measured simultaneously using a three detector measurement system. Results are compared with calculated irradiances of ultraviolet radiation and published illuminance data, and with data for the measurement period from 1988 to 2000. Yearly reports have been produced for selected sites, giving the daily solar index (which is a measure of the sunburn potential for sensitive skin types) throughout the year. (author)

  3. Solar radiation measurements at the network of six sites in the UK, January - December 2001

    Driscoll, C.M.H.; Campbell, J.I.; Pearson, A.J.; Grainger, K.J.L.; Dean, S.F.; Clark, I.E.

    2002-01-01

    A summary of the results from January to December 2001 of a survey of solar radiation levels at the UK network of six solar radiation measurement sites is presented. The network consists of three NRPB sites at Chilton, Leeds and (monitoring since 1988) and three Meteorological Office stations at Camborne, Kinloss and Lerwick (monitoring since 1993). Visible (400-770 nm), ultraviolet UVA radiation (320-400 nm) and erythemally weighted ultraviolet radiation UVR eff (280-400 nm) have been measured simultaneously using a three detector measurement system. Results are compared with calculated irradiances of ultraviolet radiation and published illuminance data, and with data for the measurement period from 1988 to 2000. Yearly reports have been produced for selected sites, giving the daily solar index (which is a measure of the sunburn potential for sensitive skin types) throughout the year. (author)

  4. A study on the real-time radiation dosimetry measurement system based on optically stimulated luminescence

    Liu Yanping; Du Yanzhao; Chen Zhaoyang; Ba Weizhen; Fan Yanwei; Pan Shilie; Guo Qi

    2008-01-01

    The optically stimulated luminescent (OSL) radiation dosimeter technically surveys a wide dynamic measurement range and a high sensitivity. Optical fiber dosimeters provide capability for remote monitoring of the radiation in the locations which are difficult-to-access and hazardous. In addition, optical fiber dosimeters are immune to electrical and radio-frequency interference. In this paper, a novel remote optical fiber radiation dosimeter is described. The optical fiber dosimeter takes advantage of the charge trapping materials CaS:Ce, Sm that exhibit OSL. The measuring range of the dosimeter is from 0.1 to 100 Gy. The equipment is relatively simple and small in size, and has low power consumption. This device is suitable for measuring the space radiation dose and also can be used in high radiation dose condition and other dangerous radiation occasions. (authors)

  5. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling

    Gueymard, Christian A. [Solar Consulting Services, P.O. Box 392, Colebrook, NH 03576 (United States); Myers, Daryl R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3305 (United States)

    2009-02-15

    The solar renewable energy community depends on radiometric measurements and instrumentation for data to design and monitor solar energy systems, and develop and validate solar radiation models. This contribution evaluates the impact of instrument uncertainties contributing to data inaccuracies and their effect on short-term and long-term measurement series, and on radiation model validation studies. For the latter part, transposition (horizontal-to-tilt) models are used as an example. Confirming previous studies, it is found that a widely used pyranometer strongly underestimates diffuse and global radiation, particularly in winter, unless appropriate corrective measures are taken. Other types of measurement problems are also discussed, such as those involved in the indirect determination of direct or diffuse irradiance, and in shadowband correction methods. The sensitivity of the predictions from transposition models to inaccuracies in input radiation data is demonstrated. Caution is therefore issued to the whole community regarding drawing detailed conclusions about solar radiation data without due attention to the data quality issues only recently identified. (author)

  6. Measurement and calculation of radiation fields of the Sandia irradiator for dried sewage solids

    Morris, M.E.

    1981-03-01

    The radiation field of the Sandia Irradiator for Dried Sewage Solids was measured. The results of the measurement are given in this report. In addition, theoretical calculations of the fields are given and then compared with the measured values. Elementary models of the radiation source geometry and irradiated product are found to be adequate and thus allow us to duplicate (through calculation) the important features of the measured fields

  7. Radiation monitoring and measuring instrument developed by Turkish Atomic Energy Authority

    Kuecuekarslan, N.; Gueven, A.

    2001-01-01

    Turkish Atomic Energy Authority (TAEA), Cekmece Nuclear Research and Training Center, Nuclear Electronics Department is working on research, development and production of radiation monitoring and measuring instruments in the aims of TAEA to serve our Country. Advanced micro controller technology is used to cover problems of radiation measurement. Control by micro controller enables reliable, stable measurement and display of low level dose rate fields. It makes possible the simultaneous measurement of both dose and dose rate values

  8. Advances in SSTR techniques for dosimetry and radiation damage measurements

    Gold, R.; Roberts, J.H.; Ruddy, F.H.

    1979-01-01

    Solid state track recorders (SSTR) have been applied in the diverse nuclear reactor research. Two recent advances are described which possess outstanding relevance for reactor research, namely the evolvement of SSTR radiation damage monitors and the development of CR-39, a new plastic SSTR of extremely high sensitivity. Results from high fluence irradiations of natural quartz crystal SSTR are used to illustrate the concept of the SSTR radiation damage monitor. Response characteristics of CR-39 are presented with emphasis on the remarkable proton sensitivity of this new SSTR

  9. Radiation transport modelling for the interpretation of oblique ECE measurements

    Denk Severin S.

    2017-01-01

    Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.

  10. Shielding of Medical Radiation Facilities - National Council on Radiation Protection and Measurements Reports No. 147 and No. 151

    KASE, K.R.

    2008-01-01

    The National Council on Radiation Protection and Measurements of the United States (NCRP) has issued two reports in the past 18 months that provide methods and data for designing shielding for diagnostic radiological imaging and radiation therapy facilities. These reports update previous publications on this subject with revised methods that take into account new technologies, results from measurements and new data that have been published in the last 30 years. This paper gives a brief summary of the contents of these reports, the methods recommended for determining the shielding required and the data provided to aid in the calculations

  11. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  12. A study on the radiation and environmental safety -Development of radiation protection and measurement technology-

    Jang, See Yung; Lee, Tae Yung; Lee, Hyung Sub; Kim, Jan Ryul; Kim, Chang Kyung; Kim, Bong Hwan; Yoon, Kyung Soo; Jung, Kyung Kee; Jung, Duk Yun; Lee, Bong Jae; Chul, Yoon Suk; Lee, Kee Chang; Yoon, Yu Chang; Jung, Rae Ik; Lee, Sang Yoon; Han, Yung Dae; Kim, Jong Soo, I; Kim, Jong Soo, II; Suh, Kyung Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, Jong Kyung [Han Yang Univ., Seoul (Korea, Republic of)

    1995-07-01

    Reference X- and neutron radiation fields have been established and evaluated to support the national radiation protection programme under which performance evaluation test for domestic personal dosimetry will be implemented by the ministerial ordinance 1992-15, and to provide a basic technical support in radiation protection dosimetry. Personal dose evaluation algorithm has been developed with the KAERI reference radiation fields which comply well with those in the new ANSI N13.11(1993) to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of whole body direct bioassay and the resulting internal doses has been also developed and evaluated to be equally excellent compared with those being used in foreign countries. A BOMAB phantom for precise WBC calibration has also designed, fabricated and test-evaluated. A principal method for estimating the cost for radiation protection which is important in performing a cost-benefit analysis for the radiation protection optimization study based on the ALARA principle has been preliminarily investigated and suggested. 49 figs, 67 tabs, 50 refs. (Author).

  13. Measures of lifetime detriment from radiation exposures: Principles and methods

    Darby, Sarah; Fagnani, Francis; Hubert, Philippe; Schneider, Thierry; Thomas, Duncan; Vaeth, Michael; Weiss, Ken

    1990-06-01

    This report presents the work initiated at the 'Workshop on the comparison of methods for deriving life long risk indices for the effects of ionizing radiations', organized by CEPN in Fontenay-aux-Roses (France), on August 7-11, 1989. It has been written in collaboration by participants during the following years

  14. Radiation protection measurement - spectral solutions in special fields

    Urban, F.J.; Trliber, K.H.; Schwerdn, K.; Laube, S.

    1997-01-01

    The exposition to ionizing radiation is a fact for nearly every person. One part of the exposition is due to natural or man made radioisotopes occurring in the environment. Another part exists because of technical sources. mainly x-ray machines for medical diagnostics. (authors)

  15. Measures of lifetime detriment from radiation exposures: Principles and methods

    Darby, Sarah [University of Oxford (United Kingdom); Fagnani, Francis [INSERM (France); Hubert, Philippe [CEA/IPSN (France); Schneider, Thierry [CEPN, Fontenay-aux-Roses (France); Thomas, Duncan [University of Southern California (United States); Vaeth, Michael [University of Aarhus (Denmark); Weiss, Ken [University of Penn State (United States)

    1990-06-01

    This report presents the work initiated at the 'Workshop on the comparison of methods for deriving life long risk indices for the effects of ionizing radiations', organized by CEPN in Fontenay-aux-Roses (France), on August 7-11, 1989. It has been written in collaboration by participants during the following years.

  16. Ionizing radiation measurements and assay of corresponding dose

    PUBLICATIONS1

    2014 Kwame Nkrumah University of Science and Technology (KNUST). Journal of Science and Technology, Vol. 34, No. 2 (2014) ... reasons related to the assessment or control of exposure to radiation or radioactive substances .... 15 mSv lens of eye; 50 mSv skin, hands, feet. Fig. 1: Geographical map of Nigeria showing ...

  17. Measurement and Modeling of Particle Radiation in Coal Flames

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas Jerker

    2014-01-01

    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite...

  18. Size measurement of radioactive aerosol particles in intense radiation fields using wire screens and imaging plates

    Oki, Yuichi; Tanaka, Toru; Takamiya, Koichi; Ishi, Yoshihiro; UesugI, Tomonori; Kuriyama, Yasutoshi; Sakamoto, Masaaki; Ohtsuki, Tsutomu [Kyoto University Research Reactor Institute, Osaka (Japan); Nitta, Shinnosuke [Graduate School of Engineering, Kyoto University, Kyoto (Japan); Osada, Naoyuki [Advanced Science Research Center, Okayama University, Okayama (Japan)

    2016-09-15

    Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of 11C-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. The size distribution for 11C-bearing aerosol particles was found to be ca. 70 μm in geometric mean diameter. The size was similar to that for 7Be-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

  19. Methodology and measurement of radiation interception by quantum sensor of the oil palm plantation

    Johari Endan

    2005-09-01

    Full Text Available Interception of light by a canopy is a fundamental requirement for crop growth and is important for biomass production and plant growth modeling. Solar radiation is an important parameter for photosynthesis and evapotranspiration. These two phenomena are dependent not only on the intensity of radiation but also on the distribution of intercepted radiation within the canopy. In this study, two operational methods for estimating the amount of photosynthetically active radiation (PAR intercepted by a canopy of the oil palm are presented. LICOR radiation sensors, model LI-190SA and model LI-191SA were used for photosynthetically active radiation (PAR measurement above and below the canopy. We developed two methods, namely "Triangular" method and "Circular" method for PAR measurement. Results show that both methods were suitable for oil palm PAR measurement. The triangular method is recommended for PAR measurements with respect to the whole plantation and the circular method is recommended for specific purposes, such as growth analysis or growth modeling of the oil palm. However, practical considerations such as equipment availability, purpose of the measurement, age of the palm, and the number of measuring points to be sampled should be taken into account in the selection of a suitable method for a particular study. The results indicate that the interception of radiation was affected by spatial variation, and the radiation transmission decreased towards the frond tips.

  20. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere

    Beck, P.; Latocha, M.; Dorman, L.; Pelliccioni, M.; Rollet, S.

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircraft have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H*(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at. (authors)

  1. Radiation

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  2. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Arindam Pal

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for 2×2 MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  3. Evaluation of Diversity Antenna Designs Using Ray Tracing, Measured Radiation Patterns, and MIMO Channel Measurements

    Pal Arindam

    2007-01-01

    Full Text Available This paper presents an evaluation of the MIMO performance of three candidate antenna array designs, each embedded within a PDA footprint, using indoor wideband channel measurements at 5.2 GHz alongside channel simulations. A channel model which employs the plane-wave approximation was used to combine the embedded antenna radiation patterns of the candidate devices obtained from far-field pattern measurements and multipath component parameters from an indoor ray-tracer. The 4-element candidate arrays were each constructed using a different type of antenna element, and despite the diverse element directivities, pattern characteristics, and polarization purities, all three devices were constructed to fully exploit diversity in polarization, space, and angle. Thus, low correlation and high information theoretic capacity was observed in each case. A good match between the model and the measurements is also demonstrated, especially for MIMO subsets of identically or orthogonally polarized linear slot antennas. The interdependencies between the channel XPD, directional spread and pathloss, and the respective impact on channel capacity are also discussed in this paper.

  4. Instruments for radiation measurement in biosciences. Series 3. radioluminography. 13. Application of imaging plate for radiation control works

    Yamadera, Akira

    2000-01-01

    The imaging plate (IP) is useful for measurement of both distribution and intensity of radiation. This paper described application of IP in radiation control works. Since IP has the 500 times higher sensitivity than the film badge for X-ray-range radiation of 12-120 keV, it can be useful as a personnel dosemeter in medical field. IP is suitable for measurement of radioactivity in a lot of samples and it can be useful for measurement of smear test papers although a problem concerning 3 H monitoring remains. Since IP gives the two-dimensional information of radiation distribution, IP can be useful for monitoring of contamination status such as its site and area. A contamination accident occurred by 68 Ge in PET apparatus is described for instance. IP can be also useful for measurement of the low level radioactivity in solutions, such as waste water. The author made an apparatus for drain monitoring which composed from acryl-box and IP. The surface of the former box, containing the water, is stuck by various shields of acryl- and lead-plates and is in contact with IP. Both measurement of radioactivity concentration and identification of radionuclide are possible. The important defect is pointed out to be fading phenomenon in those works above. (K.H.)

  5. Controlled platform for the radiation dose data measured in Radiation controlled area of KOMAC

    Park, Sung Kyun; Min, Yi Sub; Park, Jeong Min; Cho, Yong Sub

    2016-01-01

    Korea multi-purpose accelerator complex (KOMAC), the branch institute of Korea atomic energy research institute (KAERI), is a multi-user facility to provide a high-intensity proton beam with the energy from 20 MeV to the 100 MeV. This proton beam is accelerated via the proton linear accelerator that is comprised of a 50-keV injector, 3-MeV radio frequency quadrupole (RFQ), and 100-MeV drift tube linac (DTL). The KOMAC site is classified into General public area and Radiation controlled area, according to the dose rate of 0.25 μSv/h. The system for the data made in Radiation controlled area should have the database to save and the data in the database could be expressed on the monitor in the any form which user wants. The control platform to satisfy these conditions will be made on the basis of the Qt program and MYSQL program. The place with the maximum average values about the alpha and beta detected is the entrance of Radiation controlled area. However, their values are very small in comparison to the criteria to decide the contamination area in KOMAC. That is, KOMAC is safe from the radioactive contamination. The reason why the radiation dose value is twice the background value in Klystron gallery is the klystron to generate the radiation. However, actually the klystron gallery is controlled by the control room when the proton beam is accelerated

  6. Controlled platform for the radiation dose data measured in Radiation controlled area of KOMAC

    Park, Sung Kyun; Min, Yi Sub; Park, Jeong Min; Cho, Yong Sub [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Korea multi-purpose accelerator complex (KOMAC), the branch institute of Korea atomic energy research institute (KAERI), is a multi-user facility to provide a high-intensity proton beam with the energy from 20 MeV to the 100 MeV. This proton beam is accelerated via the proton linear accelerator that is comprised of a 50-keV injector, 3-MeV radio frequency quadrupole (RFQ), and 100-MeV drift tube linac (DTL). The KOMAC site is classified into General public area and Radiation controlled area, according to the dose rate of 0.25 μSv/h. The system for the data made in Radiation controlled area should have the database to save and the data in the database could be expressed on the monitor in the any form which user wants. The control platform to satisfy these conditions will be made on the basis of the Qt program and MYSQL program. The place with the maximum average values about the alpha and beta detected is the entrance of Radiation controlled area. However, their values are very small in comparison to the criteria to decide the contamination area in KOMAC. That is, KOMAC is safe from the radioactive contamination. The reason why the radiation dose value is twice the background value in Klystron gallery is the klystron to generate the radiation. However, actually the klystron gallery is controlled by the control room when the proton beam is accelerated.

  7. Assembly for the measurement of the most probable energy of directed electron radiation

    Geske, G.

    1987-01-01

    This invention relates to a setup for the measurement of the most probable energy of directed electron radiation up to 50 MeV. The known energy-range relationship with regard to the absorption of electron radiation in matter is utilized by an absorber with two groups of interconnected radiation detectors embedded in it. The most probable electron beam energy is derived from the quotient of both groups' signals

  8. Measurement of radiation damage on an epoxy-based optical glue

    Huang, H.C.; Peng, K.C.; Sahu, S.K.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical glue called Eccobond-24, which is a candidate for CsI and BGO crystal calorimeters of the BELLE detector of the KEK B-factory. Absorption spectrophotometry in the range 300-800 nm was used to monitor the radiation damage. The maximum equivalent dose was 1.64 Mrad. The glue shows effects of damage, but is acceptable for the radiation level in the above-mentioned experiment. (orig.)

  9. Radiation damage measurements on CZT drift strip detectors

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C

    2003-01-01

    from 2 x 10(8) to 60 x 10(8) p(+)/cm(2). Even for the highest fluences, which had a dramatic effect on the spectroscopic performance, we were able to recover the detectors after an appropriate annealing procedure. The radiation damage was studied as a function of depth inside the detector material...... with the proton dose. The radiation contribution to the electron trapping was found to obey the following relation: (mutau(e)(-1))(rad) = (2.5+/-0.2) x 10(-7) x Phi (V/cm)(2) with the proton fluence, Phi in p(+)/cm(2). The trapping depth dependence, however, did not agree well with the damage profile calculated...

  10. Personnel dosimetry in internal radiation exposure by excretory radionuclide measurement

    Balonov, M.I.; Bruk, G.Ya.; Korelina, N.F.; Likhtarev, I.A.; Repin, V.S.

    1986-01-01

    The collaboration with the SAAS resulted in the development of a mathematical method to calculate radiation doses in human tissues attributed to inhaled radionuclides concerning their retention dynamics in the respiratory system and their uptake into the blood as well as the metabolic pathways in the organs. 'Sanep-stations' and radiation protection service elaborated nomograms for the determination of the commitment doses in the critical organs based on the radionuclide content of a 24-hours urinalysis without intermediate calculations. Recommendations for the use of the method and the nomograms for various radionuclides (solubility classes D and N with MAAD of 1 and 10 μm) are given in the methodological document: 'Indirect dosimetry of inhaled radionuclides in workers'. A calculation method for the annual dose of internal irradiation in tritium workers is also cited

  11. Effects of radiation on health and safety measures

    Bansal, J.K.; Chawla, Raman; Sharma, Rakesh Kumar

    2007-01-01

    The most striking aspect of the effects of ionizing radiation on the living organisms at various levels of organization, is the grave damage produced by relatively trivial amounts of absorbed energy. At the physical level the reason for this lies in the fact that the energy is deposited in concentrated packets along the tracks of the ionizing particles. Injury to living tissue results from the transfer of energy to atoms and molecules in the cellular structure. Ionizing radiation causes atoms and molecules to become ionized or excited. These excitations and ionizations produce free radicals causing breakage of chemical bonds, production of new chemical bonds and cross-linkage between macromolecules and molecules in a critical structure (e.g. DNA, RNA, membrane or other organelle). It initiates in the fraction of seconds from subatomic level eventually effects complete biosphere

  12. Measurement of ionizing radiations for the orthodontics diagnosis

    Serrano Rivas, Karla; Coste Murillo, Pedro; Gatica Arias, Gabriela; Rodriguez Alfaro, Keilor; Shedden Rojas, Carol; Viquez Nunez, Laura; Zuniga Leon, Jessica

    2005-01-01

    The amount of radiation which is subjected a child during the taking of x-rays of routine for the orthodontics diagnosis is analyzed. The study was made to 26 children (men and women) between 7 and 13 years of age with healthy teething. During the taking of different radiographs a thermoluminescent crystal of lithium fluoride was positioned beforehand in the place of entrance of the ray. Itself proceeded to read the crystals in the Laboratorio de Fisica Nuclear de la Universidad de Costa Rica. Later the comparisons with the standards already established at worldwide level were made. As main conclusions obtained are that taboo in existence at present on x-rays do not include ionizing radiations for the orthodontics use and that the anterior-posterior radiographs are those that release more photons followed of the cephalometric radiography. (author) [es

  13. Radiation distribution measurement using plastic scintillating optical fibers for survey of radioactive contamination in wide area

    Ito, Chikara; Ito, Keisuke; Ishikawa, Takashi; Yoshida, Akihiro; Sanada, Yukihisa; Torii, Tatsuo; Nohtomi, Akihiro; Wakabayashi, Genichiro; Miyazaki, Nobuyuki

    2013-01-01

    It is important to examine distribution of environmental contamination due to the accident of Fukushima Daiichi Nuclear Power Station and to confirm the effect of decontamination works. We have applied radiation distribution measurement using plastic scintillating optical fibers (PSFs) in the survey of contamination in wide area including residential, farmland, forests, etc. In the measurements system, two scintillation lights that emitted at an incidence of a radiation transmit to photomultiplier tubes at the both end of PSFs. The position where scintillation light emitted is obtained from the detection time difference of each photomultiplier tube. The distribution of light emission quantity indicates the distribution of radiation incident in a PSF which is corresponds to the distribution of dose-rate. The radiation detection system using the PSFs has been applied to the radiation distribution measurement on grounds, trees, etc. The results show a good agreement with point data measured by survey meters using sodium iodide scintillators. As the PSFs which have water resistance, they have been successfully applied to the radiation distribution measurement in the river. We have also succeeded in measuring two-dimensional distribution of radiation by measuring the count rate while moving to the fiber at a constant speed. (author)

  14. Canopy architecture and radiation interception measurements in olive

    Díaz Espejo, Antonio; Durán, Pablo; Fernández Luque; Girón Moreno, Ignacio Francisco; Martín Palomo, María José

    2008-01-01

    In this work we tested techniques suitable for a future validation of the RATP model to simulate transpiration and photosynthesis of mature olive trees under field conditions. Canopy architecture was characterised with an electromagnetic 3D digitiser and the software 3A. Although the capability of the software to deal with big data sets has to be improved, the system seems to meet the RATP requirements. An array of radiation sensors mounted in an aluminium bar and located at di...

  15. A novel dosimeter for measuring the amount of radiation exposure of surgeons during percutaneous nephrolithotomy: Instadose™

    Yuruk, Emrah; Gureser, Gokhan; Tuken, Murat; Ertas, Kasim

    2016-01-01

    Introduction The aim of this study was to demonstrate the efficacy of Instadose™, a novel dosimeter designed for radiation workers to provide a measurement of the radiation dose at any time from any computer; to determine the amount of radiation exposure during percutaneous nephrolithotomy (PNL); and to evaluate the factors that affect the amount of radiation exposed. Material and methods Two experienced surgeons wore Instadose™ on the outer part of their lead aprons during the PNL procedures performed between December 2013 and July 2014. Patient demographics and stone characteristics were noted. Factors affecting radiation dose were determined. Fluoroscopic screening time was compared with the amount of radiation in order to validate the measurements of Instadose™. Results Overall, 51 patients with a mean age of 43.41 ±18.58 (range 1–75) years were enrolled. Male to female ratio was 35/16. The amount of radiation was greater than 0.01mSv in only 19 (37.25%) cases. Stone location complexity (p = 0.380), dilation type (p = 0.584), stone size (p = 0.565), dilation size (p = 0.891) and access number (p = 0.268) were not associated with increased radiation exposure. Instadose™ measurements were correlated with fluoroscopic screening time (r = 0.519, p = 0.001). Conclusions Instadose™ is a useful tool for the measurement of radiation exposure during PNL. The advantage of measuring the amount of radiation exposure after each PNL operation is that it may aid urologists in taking appropriate precautions to minimize the risk of radiation related complications. PMID:27551558

  16. Measurement of radiation shielding properties of polymer composites by using HPGe detector

    Gupta, Anil; Pillay, H.C.M.; Kale, P.K.; Datta, D.; Suman, S.K.; Gover, V.

    2014-01-01

    Lead is the most common radiation shield and its composite with polymers can be used as flexible radiation shields for different applications. However, lead is very hazardous and has been found to be associated with neurological disorders, kidney failure and hematotoxicity. Lead free radiation shield material has been developed by synthesizing radiation cross linked PDMS/Bi 2 O 3 polymer composites. In order to have a lead free radiation shield the relevant shielding properties such as linear attenuation, half value thickness (HVT) and tenth value thickness (TVT) have been measured by using HPGe detector. The present study describes the methodology of measurement of the shielding properties of the lead free shield material. In the measurement gamma energies such as 59.537 keV ( 241 Am), 122.061 keV and 136.474 keV ( 57 Co) are taken into consideration

  17. In-situ radiation measurements of the C1 and C2 waste storage tank vault

    Yong, L.K.; Womble, P.C.; Weems, L.D.

    1996-09-01

    In August of 1996, the Applied Radiation Measurements Department (ARMD) of the Waste Management and Remedial Action Division (WMRAD) at Oak Ridge National Laboratory (ORNL) was tasked with characterizing the radiation fields in the C 1 and C 2 Liquid Low Level Waste (LLLW) tank vault located at ORNL. These in-situ measurements were made to provide data for evaluating the potential radiological conditions for personnel working in or around the vault during future planned activities. This report describes the locations where measurements were made, the types of radiation detection instruments used, the methods employed, the problems encountered and resolved, and discusses the results obtained

  18. Radiation protection measures to support the life of population at contaminated territories

    Rolevich, I.V.

    1993-01-01

    At the contaminated territories from the first days after the accident at Chernobyl NPP protection measures are conducted with the aim to decrease the total dose of radiation to a limited level and to decrease the risk of cancer deceases and genetic consequences for living and next generations. Radiation protection measures at these territories are the following: radiation control of food and environment; measures on lowering the content of radionuclides in the air, water and soils; measures to supply people with clean food and products of agriculture; lowering the dose loading during X-ray diagnostics; control of radon influence, resettlement of population to the clear territories. Apart from that measures on development of medical service, supply with fool-bodied food, lowering the sociopsychological tension, education in the field of radiation protection and legal knowledge are conducted. The results of activity are shown

  19. Radioactivity measurement of radioactive contaminated soil by using a fiber-optic radiation sensor

    Joo, Hanyoung; Kim, Rinah; Moon, Joo Hyun

    2016-06-01

    A fiber-optic radiation sensor (FORS) was developed to measure the gamma radiation from radioactive contaminated soil. The FORS was fabricated using an inorganic scintillator (Lu,Y)2SiO5:Ce (LYSO:Ce), a mixture of epoxy resin and hardener, aluminum foil, and a plastic optical fiber. Before its real application, the FORS was tested to determine if it performed adequately. The test result showed that the measurements by the FORS adequately followed the theoretically estimated values. Then, the FORS was applied to measure the gamma radiation from radioactive contaminated soil. For comparison, a commercial radiation detector was also applied to measure the same soil samples. The measurement data were analyzed by using a statistical parameter, the critical level to determine if net radioactivity statistically different from background was present in the soil sample. The analysis showed that the soil sample had radioactivity distinguishable from background.

  20. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model

  1. A method of alpha-radiating nuclide activity measuring in aerosol filters

    Ignatov, V.P.; Galkina, V.N.

    1992-01-01

    Scintillation method of determination of alpha-radiating nuclide activity in aerosol filters was suggested. The method involves dissolution of the filter in organic solvent, introduction of luminophore into solution prepared, drying of the preparation and measurement of radionuclide activity. Dependences of alpha-radiation detection efficiency on the content of luminophore, filter material, colourless and coloured substances in preparations analyzed were considered

  2. Methods of measurements on incidental X-radiation from electron tubes

    1977-01-01

    The standard describes the method for detection of x-radiation and the method for the direct and indirect measurement of field pattern and exposure rate of random incidental radiation emanating from high voltage electron tubes. Required apparatus and calibration procedure for the exposure rate meter or film mount are described. (M.G.B.)

  3. Design of offline measuring system for radiation damage effects on linear CCD

    Zhang Yong; Tang Benqi; Xiao Zhigang; Wang Zujun; Huang Fang; Huang Shaoyan

    2004-01-01

    The paper discusses the hardware design of offline measuring system for radiation damage effects on linear CCD. Some credible results were achieved by using this system. The test results indicate that the system is available for the study of the radiation damage effects on linear CCD. (authors)

  4. Atmospheric Radiation Measurement Program facilities newsletter, February 2001.; TOPICAL

    Holdridge, D. J.

    2001-01-01

    This newsletter consists of the following: (1) ARM Science Team Meeting Scheduled-The 11th Annual ARM Science Team meeting is scheduled for March 19-23, 2001, in Atlanta, Georgia. Members of the science team will exchange research results achieved by using ARM data. The science team is composed of working groups that investigate four topics: instantaneous radiative flux, cloud parameterizations and modeling, cloud properties, and aerosols. The annual meeting brings together the science team's 150 members to discuss issues related to ARM and its research. The members represent universities, government laboratories and research facilities, and independent research companies. (2) Communications to Extended Facilities Upgraded-New communications equipment has been installed at all of the SGP extended facilities. Shelters were installed to house the new equipment used to transfer data from instruments via the Internet to the site data system at the central facility. This upgrade has improved data availability from the extended facilities to 100% and reduced telephone costs greatly. (3) SGP Goes ''Buggy''-Steve Sekelsky, a researcher from the University of Massachusetts, is planning to bring a 95-GHz radar to the SGP central facility for deployment in March-October 2001. The radar will help to identify signals due to insects flying in the air. The ARM millimeter cloud radar, which operates at 35 GHz, is sensitive to such insect interference. Testing will also be performed by using a second 35-GHz radar with a polarized radar beam, which can differentiate signals from insects versus cloud droplets. (4) Winter Fog-Fog can add to hazards already associated with winter weather. Common types of fog formation include advection, radiation, and steam. Advection fog: An advection fog is a dense fog that forms when a warm, moist air mass moves into an area with cooler ground below. For example, fog can form in winter when warmer, water-saturated air from the south (associated with

  5. Environmental gamma radiation measurement in District Swat (Pakistan))

    Jabbar, T.; Khan, K.; Akhter, P.; Jabbar, A.; Subhani, M.S.

    2008-01-01

    External exposure to environmental gamma ray sources is an important component of exposure to the public. A survey was carried out to determine activity concentration levels and associated doses from 226 Ra, 232 Th, 40 K and 137 Cs by means of high-resolution gamma ray spectrometry in the Swat district, famous for tourism. The mean concentrations for 226 Ra, 232 Th and 40 K were found to be 50.4 ± 0.7, 34.8 ± 0.7 and 434.5 ± 7.4 Bq kg -1 , respectively, in soil samples, which are slightly more than the world average values. However, 137 Cs was only found in the soil sample of Barikot with an activity concentration of 34 ± 1.2 Bq kg -1 . Only 40 K was determined in vegetation samples with an average activity of 172.2 ± 1.7 Bq kg -1 , whereas in water samples, all radionuclides were found below lower limits of detection. The radium equivalent activity in all soil samples is lower than the limit set in the Organisation for Economic Cooperation and Development report (370 Bq kg -1 ). The value of the external exposure dose has been determined from the content of these radionuclides in soil. The average terrestrial gamma air absorbed dose rate was observed to be 62.4 nGy h -1 , which yields an annual effective dose of 0.08 mSv. The average value of the annual effective dose lies close to the global range of outdoor radiation exposure given in United Nations Scientific Committee on the Effects of Atomic Radiation. However, the main component of the radiation dose to the population residing in the study area arises from cosmic ray due to high altitude. (authors)

  6. Atmospheric Radiation Measurement Program facilities newsletter, July 2001.; TOPICAL

    Holdridge, D. J.

    2001-01-01

    Global Warming and Methane-Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing

  7. Ionizing radiations and health. Exposures, epidemiological surveillance and sociological monitoring measurements

    Spira, Alfred; Boutou, Odile

    1999-01-01

    This paper draws attention to the epidemiological effect of natural and artificial ionizing radiation exposures on man. It describes ionizing radiation sources from nuclear facilities and medical establishments. The case here is in the region of La Hague in France where 4800 employees are exposed to ionizing radiations. The topic of leukemia research and thyroid studies for children in the region are discussed. The impact of radiations on fertility, life quality is covered. Finally, national propositions to establish a monitoring measurement system is also discussed including the personnel and the general population exposed

  8. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  9. Field oxide radiation damage measurements in silicon strip detectors

    Laakso, M [Particle Detector Group, Fermilab, Batavia, IL (United States) Research Inst. for High Energy Physics (SEFT), Helsinki (Finland); Singh, P; Shepard, P F [Dept. of Physics and Astronomy, Univ. Pittsburgh, PA (United States)

    1993-04-01

    Surface radiation damage in planar processed silicon detectors is caused by radiation generated holes being trapped in the silicon dioxide layers on the detector wafer. We have studied charge trapping in thick (field) oxide layers on detector wafers by irradiating FOXFET biased strip detectors and MOS test capacitors. Special emphasis was put on studying how a negative bias voltage across the oxide during irradiation affects hole trapping. In addition to FOXFET biased detectors, negatively biased field oxide layers may exist on the n-side of double-sided strip detectors with field plate based n-strip separation. The results indicate that charge trapping occurred both close to the Si-SiO[sub 2] interface and in the bulk of the oxide. The charge trapped in the bulk was found to modify the electric field in the oxide in a way that leads to saturation in the amount of charge trapped in the bulk when the flatband/threshold voltage shift equals the voltage applied over the oxide during irradiation. After irradiation only charge trapped close to the interface is annealed by electrons tunneling to the oxide from the n-type bulk. (orig.).

  10. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  11. Measurement and simulation of the radiation environment in the lower atmosphere for dose assessment

    Pioch, Christian Dieter

    2012-01-01

    Flying personnel is occupationally exposed to rather high radiation levels due to secondary cosmic radiation. Therefore, the radiation environment induced in the lower atmosphere by galactic and solar cosmic radiation was characterized by means of particle transport calculations using GEANT4. These calculations were validated with continuous measurements of the energy spectra of secondary neutrons with Bonner sphere spectrometers at the Zugspitze mountain and near the North Pole. The response of these instruments was determined with GEANT4 and for the first time experimentally verified at high neutron energies (244 and 387 MeV). Route doses for aircrews along typical long-haul flights were determined for galactic and solar cosmic radiation using most recent data on the magnetospheric field and primary cosmic radiation.

  12. Measurements of the ionising radiation level at a nuclear medicine facility performing PET/CT examinations

    Tulik, P.; Kowalska, M.; Golnik, N.; Budzynska, A.; Dziuk, M.

    2017-01-01

    This paper presents the results of radiation level measurements at workplaces in a nuclear medicine facility performing PET/ CT examinations. This study meticulously determines the staff radiation exposure in a PET/CT facility by tracking the path of patient movement. The measurements of the instantaneous radiation exposure were performed using an electronic radiometer with a proportional counter that was equipped with the option of recording the results on line. The measurements allowed for visualisation of the staff's instantaneous exposure caused by a patient walking through the department after the administration of "1"8F-FDG. An estimation of low doses associated with each working step and the exposure during a routine day in the department was possible. The measurements were completed by determining the average radiation level using highly sensitive thermoluminescent detectors. (authors)

  13. Measurements of surgeons' exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy.

    Lee, Kisung; Lee, Kyoung Min; Park, Moon Seok; Lee, Boram; Kwon, Dae Gyu; Chung, Chin Youb

    2012-06-15

    Measurement of radiation dose from C-arm fluoroscopy during a simulated intraoperative use in spine surgery. OBJECTIVE.: To investigate scatter radiation doses to specific organs of surgeons during intraoperative use of C-arm fluoroscopy in spine surgery and to provide practical intraoperative guidelines. There have been studies that reported the radiation dose of C-arm fluoroscopy in various procedures. However, radiation doses to surgeons' specific organs during spine surgery have not been sufficiently examined, and the practical intraoperative radioprotective guidelines have not been suggested. Scatter radiation dose (air kerma rate) was measured during the use of a C-arm on an anthropomorphic chest phantom on an operating table. Then, a whole body anthropomorphic phantom was located besides the chest phantom to simulate a surgeon, and scatter radiation doses to specific organs (eye, thyroid, breast, and gonads) and direct radiation dose to the surgeon's hand were measured using 4 C-arm configurations (standard, inverted, translateral, and tube translateral). The effects of rotating the surgeon's head away from the patient and of a thyroid shield were also evaluated. Scatter radiation doses decreased as distance from the patient increased during C-arm fluoroscopy use. The standard and translateral C-arm configurations caused lower scatter doses to sensitive organs than inverted and tube translateral configurations. Scatter doses were highest for breast and lowest for gonads. The use of a thyroid shield and rotating the surgeon's head away from the patient reduced scatter radiation dose to the surgeon's thyroid and eyes. The direct radiation dose was at least 20 times greater than scatter doses to sensitive organs. The following factors could reduce radiation exposure during intraoperative use of C-arm; (1) distance from the patient, (2) C-arm configuration, (3) radioprotective equipments, (4) rotating the surgeons' eyes away from the patient, and (5) avoiding

  14. Basic evaluation of signal transmission in a real-time internal radiation dose measurement system

    Shinohe, K.; Takura, T.; Sato, F.; Matsuki, H.; Yamada, S.; Sato, T.

    2009-01-01

    In radiation therapy, excessive exposure to radiation occurs because the dose actually delivered to the tumor is not known. As a result, a patient suffers from side effects. To solve this problem, a system is needed in which the delivered dose is measured inside the body and the dose data are transmitted from inside to outside of the body during radiation therapy. If such a system is realized, it will be possible to treat cancer safely and effectively. The proposed real-time internal radiation dose measurement system consists of an implantable dosimeter, a wireless communication system, and a wireless feeding system. In this study, a wireless communication system that uses magnetic fields was investigated. As a result, a communication distance of 200 mm was obtained. It was confirmed that radiation dose data could be transmitted outside the body when the communication distance is the required 200 mm. (author)

  15. Long distance elementary measurement of the radiation dose ratio produced by neutron activation

    Zhou Changgeng; Lou Benchao; Wu Chunlei; Hu Yonghong; Li Yan

    2009-04-01

    The working principle and the structure and performances of a long distance controllable individual radiation dose ratio instrument are described. The radiation dose ratio produced by neutron activation is elementarily measured by using this instrument in the neutron generator hall with high neutron yield. When neutron yield arrives to 2 x 10 11 s -1 , the radiation dose ratio produced by neutron activation is 99.9 μSv/h in 1 h after the generator being stopped. The radiation dose ratio is reduced to 24.4 μSv/h in 39 h after the generator being stopped. When neutron yield is 3.2 x 10 10 s -1 , the radiation dose ratio produced by neutron activation is 21.9 μSv/h in 36 min, after the generator being stopped. The measurement results may provide reference for physical experimenters and neutron generator operators. (authors)

  16. Measurements of Small Exposures of Gamma Radiation with CaSO{sub 4}:Mn Radiothermoluminescence

    Bjaerngard, Bengt

    1963-08-15

    A system for measurements of small exposures of gamma radiation using CaSO{sub 4}:Mn thermoluminescence has been developed. The construction and performance of a read-out apparatus is described as well as the construction and characteristics of a simple dosimeter. The reproducibility of the method at various exposures is estimated. 20 {mu}R of 1 MeV gamma radiation can be measured with a reproducibility within {+-} 50 % (standard deviation)

  17. A unified approach to deconvolution radiation spectra measured by radiochromic films

    Stancic, V; Ljubenov, V

    2002-01-01

    A method for the evaluation of energy distribution of a radiation source on the basis of measured space distribution of deposited energy is proposed. The measured data were obtained by using radiochromic films. Mathematical modeling is defined as a Fredholm integral equation inversion problem. Negative solutions were treated as an additional condition expressed through undefined energy group boundaries, caused by virtue of the physical phenomenon of statistical uncertainty. Examples are given of the electron source and neutron radiation field.

  18. Nuclear Targets for a Precision Measurement of the Neutral Pion Radiative Width

    Martel, Philippe; Clinton, Eric; McWilliams, R.; Lawrence, Dave; Miskimen, Rory; Ahmidouch, Abdellah; Ambrozewicz, Pawel; Asaturyan, Arshak; Baker, O.; Benton, LaRay; Bernstein, Aron; Cole, Philip; Collins, Patrick; Dale, Daniel; Danagoulian, Samuel; Davidenko, G.; Demirchyan, Raphael; Deur, Alexandre; Dolgolenko, A.; Dzyubenko, Georgiy; Evdokimov, Anatoly; Feng, JIng; Gabrielyan, Marianna; Gan, Liping; Gasparian, Ashot; Glamazdin, Oleksandr; Goryachev, Vladimir; Gyurjyan, Vardan; Hardy, K.; Ito, Mark; Khandaker, Mahbubul; Kingsberry, Paul; Kolarkar, Ameya; Konchatnyi, Mykhailo; Korchin, O.; Korsch, Wolfgang; Kowalski, Stanley; Kubantsev, Mikhail; Kubarovsky, Valery; Larin, Ilya; Matveev, V.; McNulty, Dustin; Milbrath, Brian; Minehart, Ralph; Mochalov, Vasiliy; Mtingwa, Sekazi; Nakagawa, Itaru; Overby, Steven; Pasyuk, Evgueni; Payen, Marvin; Pedroni, Ronald; Prok, Yelena; Ritchie, Barry; Salgado, Carlos; Sitnikov, Anatoly; Sober, Daniel; Stephens, W.; Teymurazyan, Aram; Underwood, Jarreas; Vasiliev, A.; Verebryusov, V.; Vishnyakov, Vladimir; Wood, Michael

    2009-01-01

    A technique is presented for precision measurements of the area densities, density * T, of approximately 5% radiation length carbon and 208Pb targets used in an experiment at Jefferson Laboratory to measure the neutral pion radiative width. The precision obtained in the area density for the carbon target is +/- 0.050%, and that obtained for the lead target through an x-ray attenuation technique is +/- 0.43%.

  19. Survey of radiofrequency radiation levels around GSM base stations and evaluation of measurement uncertainty

    Vulević Branislav D.

    2011-01-01

    Full Text Available This paper is a summary of broadband measurement values of radiofrequency radiation around GSM base stations in the vicinity of residential areas in Belgrade and 12 other cities in Serbia. It will be useful for determining non-ionizing radiation exposure levels of the general public in the future. The purpose of this paper is also an appropriate representation of basic information on the evaluation of measurement uncertainty.

  20. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  1. Radiation Dose Measurements in Routine X Ray Examinations

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  2. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  3. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale

    Kawamura, Yoshiyuki [Department of Intelligent Mechanical Engineering, Fukuoka Institute of Technology, 3-30-1 Wajirohigashi, Higashiku, Fukuoka 811-0295 (Japan)

    2016-01-15

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO{sub 2}) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO{sub 2} gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  4. Note: Measurement system for the radiative forcing of greenhouse gases in a laboratory scale.

    Kawamura, Yoshiyuki

    2016-01-01

    The radiative forcing of the greenhouse gases has been studied being based on computational simulations or the observation of the real atmosphere meteorologically. In order to know the greenhouse effect more deeply and to study it from various viewpoints, the study on it in a laboratory scale is important. We have developed a direct measurement system for the infrared back radiation from the carbon dioxide (CO2) gas. The system configuration is similar with that of the practical earth-atmosphere-space system. Using this system, the back radiation from the CO2 gas was directly measured in a laboratory scale, which roughly coincides with meteorologically predicted value.

  5. Measurement of the natural radiation of the Belgian territory

    Gillard, J.; Flemal, J.M.; Deworm, J.P.; Slegers, W.

    1989-01-01

    A measurement campaign of natural occuring radionuclides was set up on the Belgian territory in order to assess the doses received by the Belgian population. The results of the measurements are published together with a map of natural occuring radionuclides and exposure rates. (L.D.C.)

  6. Measurements of convective and radiative heating in wildland fires

    David Frankman; Brent W. Webb; Bret W. Butler; Daniel Jimenez; Jason M. Forthofer; Paul Sopko; Kyle S. Shannon; J. Kevin Hiers; Roger D. Ottmar

    2012-01-01

    Time-resolved irradiance and convective heating and cooling of fast-response thermopile sensors were measured in 13 natural and prescribed wildland fires under a variety of fuel and ambient conditions. It was shown that a sensor exposed to the fire environment was subject to rapid fluctuations of convective transfer whereas irradiance measured by a windowed sensor was...

  7. The Australian Commonwealth standard of measurement for absorbed radiation dose

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  8. Workshop on measurement quality assurance for ionizing radiation: Proceedings

    Heath, J.A.; Swinth, K.L. [comps.

    1993-12-31

    This workshop was held to review the status of secondary level calibration accreditation programs, review related measurement accreditation programs, document lessons learned, and to present changes in programs due to new national priorities involving radioactivity measurements. Contents include: fundamentals of measurement quality assurance (MQA), standards for MQA programs; perspectives and policies; complete MQA programs; future MQA programs; QA/QC programs--radioactivity; QA/QC programs--dosimetry; laboratory procedures for QA/QC; in-house control of reference dosimetry laboratories; in-house controls of radioactivity laboratories; and poster session. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Workshop on measurement quality assurance for ionizing radiation: Proceedings

    Heath, J.A.; Swinth, K.L.

    1993-01-01

    This workshop was held to review the status of secondary level calibration accreditation programs, review related measurement accreditation programs, document lessons learned, and to present changes in programs due to new national priorities involving radioactivity measurements. Contents include: fundamentals of measurement quality assurance (MQA), standards for MQA programs; perspectives and policies; complete MQA programs; future MQA programs; QA/QC programs--radioactivity; QA/QC programs--dosimetry; laboratory procedures for QA/QC; in-house control of reference dosimetry laboratories; in-house controls of radioactivity laboratories; and poster session. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  10. Modeling and design of radiative hydrodynamic experiments with X-ray Thomson Scattering measurements on NIF

    Ma, K. H.; Lefevre, H. J.; Belancourt, P. X.; MacDonald, M. J.; Doeppner, T.; Keiter, P. A.; Kuranz, C. C.; Johnsen, E.

    2017-10-01

    Recent experiments at the National Ignition Facility studied the effect of radiation on shock-driven hydrodynamic instability growth. X-ray radiography images from these experiments indicate that perturbation growth is lower in highly radiative shocks compared to shocks with negligible radiation flux. The reduction in instability growth is attributed to ablation from higher temperatures in the foam for highly radiative shocks. The proposed design implements the X-ray Thomson Scattering (XRTS) technique in the radiative shock tube platform to measure electron temperatures and densities in the shocked foam. We model these experiments with CRASH, an Eulerian radiation hydrodynamics code with block-adaptive mesh refinement, multi-group radiation transport and electron heat conduction. Simulations are presented with SiO2 and carbon foams for both the high temperature, radiative shock and the low-temperature, hydrodynamic shock cases. Calculations from CRASH give estimations for shock speed, electron temperature, effective ionization, and other quantities necessary for designing the XRTS diagnostic measurement. This work is funded by the LLNL under subcontract B614207, and was performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  11. Situational awareness of hazards: Validation of multi-source radiation measurements

    Hultquist, C.; Cervone, G.

    2016-12-01

    Citizen-led movements producing scientific hazard data during disasters are increasingly common. After the Japanese earthquake-triggered tsunami in 2011, and the resulting radioactive releases at the damaged Fukushima Daiichi nuclear power plants, citizens monitored on-ground levels of radiation with innovative mobile devices built from off-the-shelf components. To date, the citizen-led SAFECAST project has recorded 50 million radiation measurements worldwide, with the majority of these measurements from Japan. The analysis of data which are multi-dimensional, not vetted, and provided from multiple devices presents big data challenges due to their volume, velocity, variety, and veracity. While the SAFECAST project produced massive open-source radiation measurements at specific coordinates and times, the reliability and validity of the overall data have not yet been assessed. The nuclear disaster provides a case for assessing the SAFECAST data with official aerial remote sensing radiation data jointly collected by the governments of the United States and Japan. A spatial and statistical assessment of SAFECAST requires several preprocessing steps. First, SAFECAST ionized radiation sensors collected data using different units of measure than the government data, and they had to be converted. Secondly, the normally occurring radiation and decay rates of Cesium from deposition surveys were used to properly compare measurements in space and time. Finally, the GPS located points were selected within overlapping extents at multiple spatial resolutions. Quantitative measures were used to assess the similarity and differences in the observed measurements. Radiation measurements from the same geographic extents show similar spatial variations and statistically significant correlations. The results suggest that actionable scientific data for disasters and emergencies can be inferred from non-traditional and not vetted data generated through citizen science projects. This

  12. KERMA-based radiation dose management system for real-time patient dose measurement

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  13. Satellite Infrared Radiation Measurements Prior to the Major Earthquakes

    Ouzounov, Dimitar; Pulintes, S.; Bryant, N.; Taylor, Patrick; Freund, F.

    2005-01-01

    This work describes our search for a relationship between tectonic stresses and increases in mid-infrared (IR) flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. We present and &scuss observed variations in thermal transients and radiation fields prior to the earthquakes of Jan 22, 2003 Colima (M6.7) Mexico, Sept. 28 .2004 near Parkfield (M6.0) in California and Northern Sumatra (M8.5) Dec. 26,2004. Previous analysis of earthquake events has indicated the presence of an IR anomaly, where temperatures increased or did not return to its usual nighttime value. Our procedures analyze nighttime satellite data that records the general condtion of the ground after sunset. We have found from the MODIS instrument data that five days before the Colima earthquake the IR land surface nighttime temperature rose up to +4 degrees C in a 100 km radius around the epicenter. The IR transient field recorded by MODIS in the vicinity of Parkfield, also with a cloud free environment, was around +1 degree C and is significantly smaller than the IR anomaly around the Colima epicenter. Ground surface temperatures near the Parkfield epicenter four days prior to the earthquake show steady increase. However, on the night preceding the quake, a significant drop in relative humidity was indicated, process similar to those register prior to the Colima event. Recent analyses of continuous ongoing long- wavelength Earth radiation (OLR) indicate significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and/or gas composition prior to the earthquake. The OLR anomaly usually covers large areas surrounding the main epicenter. We have found strong anomalies signal (two sigma) along the epicentral area signals on Dec 21

  14. Assessment of Aircrew Radiation Exposure by further measurements and model development

    Lewis, B. J.; Desormeaux, M.; Green, A. R.; Bennett, L. G. I.; Butler, A.; McCall, M.; Saez Vergara, J. C.

    2004-01-01

    A methodology is presented for collecting and analysing exposure measurements from galactic cosmic radiation using a portable equipment suite and encapsulating these data into a semi-empirical model/Predictive Code for Aircrew Radiation Exposure (PCAIRE) for the assessment of aircrew radiation exposure on any flight over the solar cycle. The PCAIRE code has been validated against integral route dose measurements at commercial aircraft altitudes during experimental flights made by various research groups over the past 5 y with code predictions typically within ±20% of the measured data. An empirical correlation, based on ground-level neutron monitoring data, is detailed further for estimation of aircrew exposure from solar particle events. The semi-empirical models have been applied to predict the annual and career exposure of a flight crew member using actual flight roster data, accounting for contributions from galactic radiation and several solar energetic-particle events over the period 1973-2002. (authors)

  15. Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover

    Hassler, Donald M.; Zeitlin, Cary; Wimmer-Schweingruber, Robert F.; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L.; Brinza, David E.; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A.; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A.; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P.; MSL Science Team; Kemppinen, Osku; Cremers, David; Bell, James F.; Edgar, Lauren; Farmer, Jack; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stack, Katie; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sánchez, Pablo Sobrón; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Armiens-Aparicio, Carlos; Rodríguez, Javier Caride; Blázquez, Isaías Carrasco; Gómez, Felipe Gómez; Hettrich, Sebastian; Malvitte, Alain Lepinette; Jiménez, Mercedes Marín; Martínez-Frías, Jesús; Martín-Soler, Javier; Martín-Torres, F. Javier; Jurado, Antonio Molina; Mora-Sotomayor, Luis; Caro, Guillermo Muñoz; López, Sara Navarro; Peinado-González, Verónica; Pla-García, Jorge; Manfredi, José Antonio Rodriguez; Romeral-Planelló, Julio José; Fuentes, Sara Alejandra Sans; Martinez, Eduardo Sebastian; Redondo, Josefina Torres; Urqui-O'Callaghan, Roser; Mier, María-Paz Zorzano; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Sullivan, Robert; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; Berger, Thomas; Matthia, Daniel; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Kemppinen, Osku; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Gupta, Sanjeev; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; d'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Lasue, Jérémie; Lee, Qiu-Mei; Maurice, Sylvestre; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Israël, Guy; Szopa, Cyril; Dromart, Gilles; Robert, François; Sautter, Violaine; Le Mouélic, Stéphane; Mangold, Nicolas; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Wiens, Roger C.; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Edgett, Kenneth; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; Malin, Michael; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Van Beek, Tessa; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Goetz, Walter; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Wilhelm, Mary Beth; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Jones, Andrea; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Blaney, Diana; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Ehlmann, Bethany; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; Juarez, Manuel de la Torre; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Williams, Rebecca M. E.; Yingst, Aileen; Lewis, Kevin; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Hamilton, Victoria; Peterson, Joseph; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Schwenzer, Susanne P.; Anderson, Ryan B.; Herkenhoff, Kenneth; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Ávalos, Juan José Blanco; Ramos, Miguel; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; Navarro-González, Rafael; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Dietrich, William; Kortmann, Onno; Palucis, Marisa; Sumner, Dawn Y.; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Rubin, David; Jakosky, Bruce; Balic-Zunic, Tonci; Frydenvang, Jens; Jensen, Jaqueline Kløvgaard; Kinch, Kjartan; Koefoed, Asmus; Madsen, Morten Bo; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Atlaskin, Evgeny; Savijärvi, Hannu; García, César Martín; Mueller-Mellin, Reinhold; Bridges, John C.; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Newsom, Horton; Ollila, Ann; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Kah, Linda C.; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Kuzmin, Ruslan; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2014-01-01

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  16. Solar Radiation Measurement Using Raspberry Pi and Its Modelling Using Artificial Neural Networks

    Priya Selvanathan Shanmuga

    2016-01-01

    Full Text Available The advent of solar energy as the best alternative to traditional energy sources has led to an extensive study on the measurement and prediction of solar radiation. Devices such as pyranometer, pyrrheliometer, global UV radiometer are used for the measurement of solar radiation. The solar radiation measuring instruments available at Innovation Center, MIT Manipal were integrated with a Raspberry Pi to allow remote access to the data through the university Local Area Network. The connections of the data loggers and the Raspberry Pi were enclosed in a plastic box to prevent damage from the rainfall and humidity in Manipal. The solar radiation data was used to validate an Artificial Neural Network model which was developed using various meterological data from 2011-2015.

  17. Mars' surface radiation environment measured with the Mars Science Laboratory's Curiosity rover.

    Hassler, Donald M; Zeitlin, Cary; Wimmer-Schweingruber, Robert F; Ehresmann, Bent; Rafkin, Scot; Eigenbrode, Jennifer L; Brinza, David E; Weigle, Gerald; Böttcher, Stephan; Böhm, Eckart; Burmeister, Soenke; Guo, Jingnan; Köhler, Jan; Martin, Cesar; Reitz, Guenther; Cucinotta, Francis A; Kim, Myung-Hee; Grinspoon, David; Bullock, Mark A; Posner, Arik; Gómez-Elvira, Javier; Vasavada, Ashwin; Grotzinger, John P

    2014-01-24

    The Radiation Assessment Detector (RAD) on the Mars Science Laboratory's Curiosity rover began making detailed measurements of the cosmic ray and energetic particle radiation environment on the surface of Mars on 7 August 2012. We report and discuss measurements of the absorbed dose and dose equivalent from galactic cosmic rays and solar energetic particles on the martian surface for ~300 days of observations during the current solar maximum. These measurements provide insight into the radiation hazards associated with a human mission to the surface of Mars and provide an anchor point with which to model the subsurface radiation environment, with implications for microbial survival times of any possible extant or past life, as well as for the preservation of potential organic biosignatures of the ancient martian environment.

  18. Standardization of radiation protection measurements in mixed fields of an extended energy range

    Hoefert, M.; Stevenson, G.R.

    1977-01-01

    The improved ICRU concept of dose equivalent index aims at standardizing both area and personnel dose measurements so that the results on the dosimetry of external irradiations in radiation protection become compatible. It seems that for photon and neutron energies up to 3 and 20 MeV respectively the realization of dose-equivalent index is straightforward, but the inclusion of higher energies and/or other types of radiation will lead both to conceptual and practical difficulties. It will be shown that practical measurements in mixed radiation fields of an extended energy range for protection purposes will overestimate the standardized quantity. While area measurements can be performed to represent a good approximation, greater uncertainties have to be accepted in personnel dosimetry for stray radiation fields around GeV proton accelerators

  19. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    Osterhuber, R.; Condreva, K.

    1998-01-01

    Incoming, background cosmic radiation constantly fluxes through the earth's atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters' worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location

  20. Integral alpha and gamma radiation measurements in dwelling houses

    Paripas, B.; Takacs, S.; Somogyi, G.; Nikl, I.

    1984-01-01

    A solid state nuclear track detector method is applied to determine radon and total alpha-exposures (time integral of activity concentrations). The mathematical description of the method of measurement by a passive device equipped with two plastic sheets is presented. Measurements have been carried out in 88 houses over a five-month period and in 20 houses every season for a whole year. Simultaneously with the seasonal measurements of alpha-exposures, the gamma doses were also determined by means of TL dosemeters. The mean exposures due to thoron and its progeny have been estimated by statistical methods. A possible connection between the measured quantities and the lung cancer rates in two settlements were examined. (Author)