WorldWideScience

Sample records for cenozoic climate trends

  1. Trends, Rhythms, and Aberrations in Global Climate during the Cenozoic: The Interplay between Tectonic and Orbital forcing (Milutin Milankovic Medal Lecture)

    Science.gov (United States)

    Zachos, James C.

    2016-04-01

    Prior to the mid-nineties much of our understanding of early Neogene and Paleogene climate was based on relatively low-resolution reconstructions. As a consequence, under-sampled periodic climate variability appeared as noise in global records (i.e., stacks), limiting our ability to fully evaluate mechanisms of past climate change. Efforts to address this limitation began in earnest with Ocean Drilling Program Leg 154, one of the first to successfully recover high-quality stratigraphically complete and relatively expanded successions of Paleogene pelagic sediments, allowing for astronomical tuning and the development of detailed paleoclimatic records extending back into the Oligocene. The strategies implemented during this Leg to locate, recover, and tune Paleogene sequences were adapted by subsequent ODP/IODP expeditions, ultimately contributing to the development of high-resolution astronomically-tuned climate records extending back to the Cretaceous. The collective contributions of these expeditions provided the necessary framework for characterizing climate variability on orbital time scales throughout the Cenozoic, including the major transitions and aberrations, the Oligocene-Miocene (O/M), Eocene-Oligocene Transition (EOT), and the Paleocene-Eocene Thermal Maximum (PETM). In this presentation I will review the most recent advances in reconstructing past climates on orbital time scales, and how these advances are altering our understanding of the triggering mechanisms for these major climate transitions, and discuss how the interplay between tectonic processes and orbital forcing as well as physical and geochemical feedbacks contributed to drive the more rapid and extreme aberrations.

  2. Cenozoic planktonic marine diatom diversity and correlation to climate change

    Science.gov (United States)

    Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas

    2014-01-01

    Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all pimpact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  3. Cenozoic planktonic marine diatom diversity and correlation to climate change.

    Directory of Open Access Journals (Sweden)

    David Lazarus

    Full Text Available Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18O (climate and carbon cycle records (∂(13C, and 20-0 Ma pCO2. Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p.9, detrended r>.6, all p<.001, but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.

  4. Present-day climatic equivalents of European Cenozoic climates

    Science.gov (United States)

    Utescher, Torsten; Mosbrugger, Volker; Ivanov, Dimiter; Dilcher, David L.

    2009-07-01

    Recently, continental climate evolution in Central Europe over the last 45 Ma has been reconstructed from the palaeobotanical record using a Nearest Living Relative methodology (Coexistence Approach; CA). The reconstructed climate curves document in detail the transition from almost tropical conditions in the Mid-Eocene to a temperate climate at the Pliocene/Pleistocene transition. The observed climatic shifts are primarily expressed as non-proportional changes of the different variables taken into account. In the present study a published palaeoclimate data set for a total of 42 macrofloras complemented by new calculations is used as base to analyse the climatic space in which a fossil flora existed. To define these spaces CA intervals calculated for 3 temperature (mean annual temperature, cold and warm month mean) and 3 precipitation variables (mean annual precipitation, mean monthly precipitation of the driest and of the wettest month) are combined. Using a global gridded climatology (10' resolution), this climate space is then utilized to identify Recent climate analogues with respect to the variables regarded. For 18 macrofloras climatic analogue regions with respect to 6 variables are identified on the globe. For 16 macrofloras, analogues exist when three temperature parameters and mean annual precipitation are regarded. No Recent equivalents are found in 8 cases. This corroborates the assumption of the temporary existence of non-analogue climates in the Cenozoic. As shown by multivariate statistics the observed anomalies with respect to present-day conditions basically refer to high winter temperatures. Deploying a GIS, the Recent climate analogues can be presented as sets of grid cells for each flora that can be mapped on a globe. Once identified, these regions can be merged with adequate thematic layers to assess additional proxy data for the palaeofloras. To exemplify the procedure Koeppen climate type, numbers of days with ground frost, as well as

  5. Disentangling Topographic and Climatic Change during the Late Cretaceous and Cenozoic in the Western US Cordillera

    Science.gov (United States)

    Snell, K. E.; Eiler, J. M.; Wernicke, B. P.; Peppe, D. J.; Fox, D. L.; Fetrow, A. C.; Passey, B. H.

    2014-12-01

    A diverse suite of tectonic and climatic drivers influenced the topographic evolution of the western USA Cordillera. Despite years of study, considerable uncertainty remains about fundamentals of this evolution, such as the timing and magnitude of maximum average elevations for the different physiographic provinces; the drivers and topographic effects of different episodes of extension during the Cenozoic; and the relative relief of peaks and intermontane basins within the Cordillera at different times and in different places. Numerous tectonic models have been developed to explain the evolution of the Cordillera, and understanding these details is key for distinguishing between these different models. In addition, the topographic changes in the Cordillera have important implications for regional and local climate of the western US at different times in the past, and may drive important differences in local climatic responses to global climate changes through the Cenozoic. The majority of the tools that currently exist for quantitatively reconstructing changes in topography through time and space rely on paleoclimate proxy data. Thus it is also important to be able to disentangle climatic change from elevation change in terrestrial paleoclimate records. To address some of these outstanding questions, we have generated and compiled paleotemperature estimates from the Late Cretaceous through the Miocene of the western US. In this presentation, we will focus on the latest installment of the project, which utilizes Oligocene paleotemperature records from central Utah and South Dakota and Miocene-Holocene paleotemperature records from Kansas. The data are dominantly composed of mean annual temperature estimates from leaf margin analysis and summer temperature estimates from carbonate clumped isotope thermometry. We will discuss how these data compare to temperature data from the Paleogene from the western US, what general trends exist within all the data and how these

  6. Cenozoic vegetation, climate changes and hominid evolution in tropical Africa

    Science.gov (United States)

    Bonnefille, Raymonde

    2010-07-01

    This paper reviews information on past vegetation of tropical Africa during the Cenozoic, focused upon the last 10 Ma, a time spanning hominid record in Central and East Africa. Summary of palaeobotanical data collected at terrestrial sites are compared with new results on the long term evolution of the continental vegetation zones documented from marine pollen record of two deep sea cores recovered from the Atlantic and Indian Oceans. Section 2 includes a summary of modern distribution of vegetation belts in the African continent and a synthesis of the results of both macrobotanical (fossil wood, leaves and fruits) and microbotanical (mainly pollen) studies presented according to time scale and geographical location. The main features emphasized by the palaeobotanical results are 1) seasonal vegetation and climate documented as soon as the Eocene in Tanzania 2) well diversified forests existing in northern West Ethiopia during the Oligocene 3) high temporal and spatial variabilities of forests composition during the Miocene when deciduous Legume woodland was documented in Ethiopia whereas wetter evergreen forests existed in Western Kenya 4) lack of evidence for an evergreen forest belt, continuous from Western Congo to East Africa. Section 3 presents new original pollen data recovered from a long core in the Gulf of Aden documenting large scale past vegetation changes in East Africa during the last 11 Ma. These results are discussed in comparison with a summarized long pollen sequence previously published from a marine core offshore the Niger delta. This comparison illustrates variations in geographical distribution of large vegetation zone at the continental scale, through time. In Section 4, vegetation changes registered during the last 10 Ma are discussed in relation with the results of isotopic studies and an updated presentation of hominids evolution in Africa. Several changes are shown in the marine records. An expansion of savanna/grassland is shown at 10

  7. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    , faulting), tectonic disturbance related to ocean opening could be responsible for deposition of thick Paleocene wedges along the western coast of Norway. During subsequent Cenozoic periods domal structures in the Norwegian shelf are a proof for mild and protracted compression. However, depositional......) changed the erosional regime in western Scandinavia from fluvial (inefficient in tectonically stable settings, almost regardless of the amount of precipitation) to glacial. Glacial erosion is much more effective and is apparently able to outpace tectonic processes responsible for development of high...... topography. Therefore, a hypothesis of climate control on erosion and deposition during the Cenozoic history of western Scandinavia and adjacent sedimentary basins emerges. This theory is further supported by higher sediment input and pronounced progradation patterns of the Molo Formation (deposited during...

  8. Cenozoic climate and paleogeographic changes in the Pacific region

    Science.gov (United States)

    Cronin, T. M.; Ogasawara, K.; Wolfe, J.A.

    1994-01-01

    This special issue represents the proceedings of the symposium, held as part of the 29th International Geological Congress, 1992. Other relevant papers on Cainozoic climate change in Japan are also included. Data is assembled from the Pacific Ocean itself, its marginal seas, in particular the Sea of Japan, and the surrounding coastal states. The palaeoenvironment of the region is reconstructed from the analysis of micropalaeontological, isotopic and stratigraphic data from deep-sea and terrestrial cores. -S.J.Stone

  9. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond.

    Science.gov (United States)

    McKay, R M; Barrett, P J; Levy, R S; Naish, T R; Golledge, N R; Pyne, A

    2016-01-28

    Mounting evidence from models and geological data implies that the Antarctic Ice Sheet may behave in an unstable manner and retreat rapidly in response to a warming climate, which is a key factor motivating efforts to improve estimates of Antarctic ice volume contributions to future sea-level rise. Here, we review Antarctic cooling history since peak temperatures of the Middle Eocene Climatic Optimum (approx. 50 Ma) to provide a framework for future initiatives to recover sediment cores from subglacial lakes and sedimentary basins in Antarctica's continental interior. While the existing inventory of cores has yielded important insights into the biotic and climatic evolution of Antarctica, strata have numerous and often lengthy time breaks, providing a framework of 'snapshots' through time. Further cores, and more work on existing cores, are needed to reconcile Antarctic records with the more continuous 'far-field' records documenting the evolution of global ice volume and deep-sea temperature. To achieve this, we argue for an integrated portfolio of drilling and coring missions that encompasses existing methodologies using ship- and sea-ice-/ice-shelf-based drilling platforms as well as recently developed seafloor-based drilling and subglacial access systems. We conclude by reviewing key technological issues that will need to be overcome.

  10. Climate vs. tectonic induced variations in Cenozoic sediment supply from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    and intensity of climate variations boosted significantly [26]. Tectonism and climate as factors controlling sediment production Tectonic surface uplift would increase river power, cause river incision and increase hillslope gradients above the threshold for occurrence of landslides. In that case tectonic...... of the Cretaceous and Cenozoic ocean basins. Tectonophysics, 1988. 155(1-4): p. 27-48. 7. Doré , A.G., et al., Potential mechanisms for the genesis of Cenozoic domal structures on the NE Atlantic margin: pros, cons and some new ideas. Spec. Pub. Geol. Soc. London, 2008. 306: p. 1-26. 8. Nielsen, S.B., et al., Plate......-A comment regarding the isostasy-climate-erosion hypothesis by Nielsen et al. 2008. Journal of Geodynamics, 2009. 48(2): p. 95-100. 18. Nielsen, S.B., et al., Reply to comment regarding the ICE-hypothesis. Journal of Geodynamics, 2009. 48(2): p. 101-106. 19. Chalmers, J.A., et al., The Scandinavian...

  11. A chilling perspective on Greenland's early Cenozoic climate from coupled Hf-Nd isotopes

    Science.gov (United States)

    Scher, H. D.; Bizimis, M.; Buckley, W. P., Jr.; Duggan, B.; Bohaty, S. M.; Wilson, P. A.

    2015-12-01

    The prevailing view of northern hemisphere glaciation has been of ice sheets forming on Greenland after 2.7 Ma, with iceberg rafting as early as 15 Ma. This view is incompatible with recent results from global climate/ice sheet models that predict northern hemisphere glaciation only after CO2 falls below ~280 ppmv (occurring at 25 Ma) and with recent sediment evidence for Arctic iceberg rafting as early as the middle Eocene. However, the amount of northern hemisphere ice represented by these sediments is ambiguous and global ice budget calculations for the early Cenozoic are controversial. Here we use coupled Hf-Nd isotopes of oxyhydroxides in sediments from the upper Eocene to lower Oligocene section in ODP Site U1411 (Newfoundland Ridge) to determine when the circum-North Atlantic came under the influence of a mechanical weathering regime. Leached oxyhydroxide Hf-Nd isotopes are an indicator of weathering intensity because mechanical weathering by ice sheets mobilizes the zircon-bound Hf reservoir in the crust, which has extreme unradiogenic eHf values. Chemical weathering produces a distinct seawater array on Hf-Nd diagrams, while seawater exposed to the products of mechanical weathering plot on divergent arrays closer to the Terrestrial Array. Hf-Nd isotopes of Site U1411 leachates are grouped in a near vertical trend between the seawater and terrestrial global reference arrays. Within this group there are four distinct arrays that can be delineated by age. Samples that are late Eocene in age fall along an array that is slightly divergent from the seawater array. The aspect of the Hf-Nd isotope data changes permanently after the first step of the EOT, falling along arrays that are systematically offset in the direction of the terrestrial arrays. The steepest array, most proximal to the terrestrial array, is comprised of samples deposited between 33.7 and 32.2 Ma. These results indicate a circum-North Atlantic weathering regime appeared in the earliest Oligocene.

  12. Vital effects in coccolith calcite: Cenozoic climate-pCO2 drove the diversity of carbon acquisition strategies in coccolithophores?

    Science.gov (United States)

    Bolton, Clara T.; Stoll, Heather M.; Mendez-Vicente, Ana

    2012-12-01

    Coccoliths, calcite plates produced by the marine phytoplankton coccolithophores, have previously shown a large array of carbon and oxygen stable isotope fractionations (termed "vital effects"), correlated to cell size and hypothesized to reflect the varying importance of active carbon acquisition strategies. Culture studies show a reduced range of vital effects between large and small coccolithophores under high CO2, consistent with previous observations of a smaller range of interspecific vital effects in Paleocene coccoliths. We present new fossil data examining coccolithophore vital effects over three key Cenozoic intervals reflecting changing climate and atmospheric partial pressure of CO2 (pCO2). Oxygen and carbon stable isotopes of size-separated coccolith fractions dominated by different species from well preserved Paleocene-Eocene thermal maximum (PETM, ˜56 Ma) samples show reduced interspecific differences within the greenhouse boundary conditions of the PETM. Conversely, isotope data from the Plio-Pleistocene transition (PPT; 3.5-2 Ma) and the last glacial maximum (LGM; ˜22 ka) show persistent vital effects of ˜2‰. PPT and LGM data show a clear positive trend between coccolith (cell) size and isotopic enrichment in coccolith carbonate, as seen in laboratory cultures. On geological timescales, the degree of expression of vital effects in coccoliths appears to be insensitive topCO2 changes over the range ˜350 ppm (Pliocene) to ˜180 ppm (LGM). The modern array of coccolith vital effects arose after the PETM but before the late Pliocene and may reflect the operation of more diverse carbon acquisition strategies in coccolithophores in response to decreasing Cenozoic pCO2.

  13. Permian to late Cenozoic evolution of northern Patagonia: Main tectonic events, magmatic activity, and depositional trends

    Science.gov (United States)

    Uliana, M. A.; Biddle, K. T.

    The late Paleozoic to late Cenozoic evolution of northern Patagonia was influenced significantly by events that occurred while the area was part of the South American sector of Gondwanaland. Late Paleozoic to Middle Triassic subduction along the edge of the supercontinent formed a broad convergent-margin system that is the underpinning of northern Patagonia. Deformation (Gondwanidian orogeny) associated with the subduction is recognized in both the forearc and the convergent backarc areas. Regional extension, accompanied by bimodal volcanism, began in the Late Triassic and led to the formation of a number of north-northwest trending rift basins in Patagonia, which generally followed the Gondwanidian basement grain. Continued extension in the Jurassic and Early Cretaceous led to the opening of the Rocas Verdes marginal basin in southern Chile and, ultimately, to the opening of the South Atlantic Ocean. Once oceanic crust began to form, faulting and volcanism declined in Patagonia. During the late Early Cretaceous to the Late Cretaceous, sags over the rift basins coalesced to form a broad backarc basin behind the volcanic arc to the west. These sags are suggestive of thermally driven subsidence. Subsidence of the evolving Atlantic margin allowed extensive marine transgressions to take place from the east. The stratigraphic record of northern Patagonia reflects these events. The upper Paleozoic to upper Mesozoic sedimentary sequences were deposited in basins directly associated with convergent activity along the margin of Gondwanaland or in rift basins created during its breakup. Even though the Tertiary evolution of Patagonia was dominated by events along the western margin of South America, the patterns of sediment transport, thickness, and general shoreline position were still influenced by the locations of the Mesozoic rifts formed during the breakup of Gondwanaland.

  14. High resolution cyclostratigraphy of the early Eocene – new insights into the origin of the Cenozoic cooling trend

    Directory of Open Access Journals (Sweden)

    T. Westerhold

    2009-02-01

    Full Text Available Here we present a high-resolution cyclostratigraphy based on X-ray fluorescence (XRF core scanning data from a new record retrieved from the tropical western Atlantic (Demerara Rise, ODP Leg 207, Site 1258. The Eocene sediments from ODP Site 1258 cover magnetochrons C20 to C24 and show well developed cycles. This record includes the missing interval for reevaluating the early Eocene part of the Geomagnetic Polarity Time Scale (GPTS, also providing key aspects for reconstructing high-resolution climate variability during the Early Eocene Climatic Optimum (EECO. Detailed spectral analysis demonstrates that early Eocene sedimentary cycles are characterized by precession frequencies modulated by short (100 kyr and long (405 kyr eccentricity with a generally minor obliquity component. Counting of both the precession and eccentricity cycles results in revised estimates for the duration of magnetochrons C21r through C24n. Our cyclostratigraphic framework also corroborates that the geochronology of the Eocene Green River Formation (Wyoming, USA is still questionable mainly due to the uncertain correlation of the "Sixth Tuff" to the GPTS.

    Right at the onset of the long-term Cenozoic cooling trend the dominant eccentricity-modulated precession cycles of ODP Site 1258 are interrupted by strong obliquity cycles for a period of ~800 kyr in the middle of magnetochron C22r. These distinct obliquity cycles at this low latitude site point to (1 a high-latitude driving mechanism on global climate variability from 50.1 to 49.4 Ma, and (2 seem to coincide with a significant drop in atmospheric CO2 concentration below a critical threshold between 2- and 3-times the pre-industrial level (PAL. The here newly identified orbital configuration of low eccentricity in combination with high obliquity amplitudes during this ~800-kyr period and the crossing of a critical pCO2 threshold may have led to the formation of the first ephemeral

  15. Investigating Cenozoic climate change in tectonically active regions with a high-resolution atmospheric general circulation model (ECHAM5)

    Science.gov (United States)

    Mutz, Sebastian; Ehlers, Todd; Li, Jingmin; Werner, Martin; Stepanek, Christian; Lohmann, Gerrit

    2016-04-01

    Studies of Cenozoic palaeo-climates contribute to our understanding of contemporary climate change by providing insight into analogues such as the Pliocene (PLIO), and by evaluation of GCM (General Circulation Models) performance using the Mid-Holocene (MH) and the Last Glacial Maximum (LGM). Furthermore, climate is a factor to be considered in the evolution of ecology, landscapes and mountains, and in the reconstruction of erosion histories. In this study, we use high-resolution (T159) ECHAM5 simulations to investigate pre-industrial (PI) and the the above mentioned palaeo-climates for four tectonically active regions: Alaska (St. Elias Range), the US Northwest Pacific (Cascade Range), western South America (Andes) and parts of Asia (Himalaya-Tibet). The PI climate simulation is an AMIP (Atmospheric Model Intercomparison Project) style ECHAM5 experiment, whereas MH and LGM simulation are based on simulations conducted at the Alfred Wegner Institute, Bremerhaven. Sea surface boundary conditions for MH were taken from coupled atmosphere-ocean model simulations (Wei and Lohmann, 2012; Zhang et al, 2013) and sea surface temperatures and sea ice concentration for the LGM are based on GLAMAP project reconstructions (Schäfer-Neth and Paul, 2003). Boundary conditions for the PLIO simulation are taken from the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) project and the employed PLIO vegetation boundary condition is created by means of the transfer procedure for the PRISM vegetation reconstruction to the JSBACH plant functional types as described by Stepanek and Lohmann (2012). For each of the investigated areas and time slices, the regional simulated climates are described by means of cluster analyses based on the variability of precipitation, 2m air temperature and the intra-annual amplitude of the values. Results indicate the largest differences to a PI climate are observed for LGM and PLIO climates in the form of widespread cooling and warming

  16. Cenozoic Mammals and Climate Change: The Contrast between Coarse-Scale versus High-Resolution Studies Explained by Species Sorting

    OpenAIRE

    Donald Prothero

    2012-01-01

    Many paleontologists have noticed the broadly similar patterns between the changes in Cenozoic mammalian diversity and taxonomic dominance and climate changes. Yet detailed studies of fossil population samples with fine-scale temporal resolution during episodes of climate change like the Eocene-Oligocene transition in the White River Group, and the late Pleistocene at Rancho La Brea tar pits, demonstrates that most fossil mammal species are static and show no significant microevolutionary res...

  17. Cenozoic Mammals and Climate Change: The Contrast between Coarse-Scale versus High-Resolution Studies Explained by Species Sorting

    Directory of Open Access Journals (Sweden)

    Donald Prothero

    2012-04-01

    Full Text Available Many paleontologists have noticed the broadly similar patterns between the changes in Cenozoic mammalian diversity and taxonomic dominance and climate changes. Yet detailed studies of fossil population samples with fine-scale temporal resolution during episodes of climate change like the Eocene-Oligocene transition in the White River Group, and the late Pleistocene at Rancho La Brea tar pits, demonstrates that most fossil mammal species are static and show no significant microevolutionary response to major climate changes. This mismatch between patterns seems best explained by species sorting. As the punctuated equilibrium model demonstrated, over long time spans most fossil species are stable and do not respond to climate change. Instead, change occurs at the next hierarchical level, with species sorting adding and subtracting to the total diversity pattern revealed by coarse-scale taxon counting, apparently responding to longer-term changes in climate as revealed by proxies like the oxygen isotope record.

  18. Window technique for climate trend analysis

    Science.gov (United States)

    Szentimrey, Tamás; Faragó, Tibor; Szalai, Sándor

    1992-01-01

    Climatic characteristics are affected by various systematic and occasional impacts: besides the changes in the observing system (locations of the stations of the meteorological network, instruments, observing procedures), the possible local-scale and global natural and antropogenic impacts on climatic conditions should be taken into account. Apart from the predictability problems, the phenomenological analysis of the climatic variability and the determination of past persistent climatic anomalies are significant problems, among other aspects, as evidence of the possible anomalous behavior of climate or for climate impact studies. In this paper, a special technique for the identification of such “shifts” in the observational series is presented. The existence of these significant shorter or longer term changes in the mean characteristics for the properly selected adjoining periods of time is the necessary condition for the formation of any more or less unidirectional climatic trends. Actually, the window technique is based on a complete set of orthogonal functions. The sensitivity of the proposed model on its main parameters is also investigated. This method is applied for hemispheric and Hungarian data series of the mean annual surface temperature.

  19. A climate trend analysis of Uganda

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies observed changes in rainfall and temperature in Uganda, based on an analysis of a quality-controlled, long time series of station observations throughout Uganda. Extending recent trends forward, it also provides a current and near-future context for understanding the actual nature of climate change impacts in the country, and a basis for identifying climate adaptations that may protect and improve the country's food security.

  20. A first-order global model of Late Cenozoic climatic change: Orbital forcing as a pacemaker of the ice ages

    Science.gov (United States)

    Saltzman, Barry

    1992-01-01

    The development of a theory of the evolution of the climate of the earth over millions of years can be subdivided into three fundamental, nested, problems: (1) to establish by equilibrium climate models (e.g., general circulation models) the diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the 'weather statistics') and both the prescribed external radiative forcing and the prescribed distribution of the slow response variables (e.g., the ice sheets and shelves, the deep ocean state, and the atmospheric CO2 concentration); (2) to construct, by an essentially inductive process, a model of the time-dependent evolution of the slow-response climatic variables over time scales longer than the damping times of these variables but shorter than the time scale of tectonic changes in the boundary conditions (e.g., altered geography and elevation of the continents, slow outgassing, and weathering) and ultra-slow astronomical changes such as in the solar radiative output; and (3) to determine the nature of these ultra-slow processes and their effects on the evolution of the equilibrium state of the climatic system about which the above time-dependent variations occur. All three problems are discussed in the context of the theory of the Quaternary climate, which will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. We construct a simple mathematical model for the Late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2), coupled with changes in the deep ocean state and ice mass, under the additional 'pacemaking' influence of earth-orbital forcing, are primary determinants of the climate state over this period. Our goal is to illustrate how a single model governing both very long term variations and higher frequency oscillatory variations in the

  1. Late Cenozoic climate and the phylogenetic structure of regional conifer floras worldwide

    NARCIS (Netherlands)

    W.L. Eiserhardt; F. Borchsenius; B. Sandel; W.D. Kissling; J.-C. Svenning

    2015-01-01

    Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscill

  2. A climate trend analysis of Ethiopia

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Kebebe, Emebet; Biru, Nigist; White, Libby; Galu, Gideon

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in March-June, June-September, and March-September rainfall and temperature, identifying significant reductions in rainfall and increases in temperature over time in many areas of Ethiopia. Conclusions: * Spring and summer rains in parts of Ethiopia have declined by 15-20 percent since the mid-1970s. * Substantial warming across the entire country has exacerbated the dryness.* An important pattern of observed existing rainfall declines coincides with heavily populated areas of the Rift Valley in south-central Ethiopia, and is likely already adversely affecting crop yields and pasture conditions. * Rapid population growth and the expansion of farming and pastoralism under a drier, warmer climate regime could dramatically increase the number of at-risk people in Ethiopia during the next 20 years.* Many areas of Ethiopia will maintain moist climate conditions, and agricultural development in these areas could help offset rainfall declines and reduced production in other areas.

  3. Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors

    Science.gov (United States)

    Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.

    2012-12-01

    Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.

  4. Topographic growth around the Orange River valley, southern Africa: A Cenozoic record of crustal deformation and climatic change

    Science.gov (United States)

    Dauteuil, Olivier; Bessin, Paul; Guillocheau, François

    2015-03-01

    We reconstruct the history of topographic growth in southern Africa on both sides of the Orange River valley from an integrated analysis of erosion surfaces, crustal deformation and climate change. First, we propose an inventory of erosion surfaces observed in the study area and classify them according to their most likely formative process, i.e. chemical weathering or mechanical erosion. Among the various land units observed we define a new class of landform: the pedivalley, which corresponds to a wide valley with a flat erosional floor. In the Orange River valley, we mapped three low-relief erosion surfaces, each bevelling a variety of lithologies. The oldest and most elevated is (1) a stripped etchplain evolving laterally into (2) a stepped pediplain bearing residual inselbergs; (3) a younger pediplain later formed in response to a more recent event of crustal deformation. These are all Cenozoic landforms: the etchplain is associated with a late Palaeocene to middle Eocene weathering event, and the two pediplains are older than the middle Miocene alluvial terraces of the Orange River. Landscape evolution was first driven by slow uplift (10 m/Ma), followed by a second interval of uplift involving a cumulative magnitude of at least 200 m. This event shaped the transition between the two pediplains and modified the drainage pattern. A final phase of uplift (magnitude: 60 m) occurred after the Middle Miocene and drove the incision of the lower terraces of the Orange River. Climate exerted a major control over the denudation process, and involved very humid conditions responsible for lateritic weathering, followed by more arid conditions, which promoted the formation of pedivalleys. Collectively, these produce pediplains.

  5. Observed soil temperature trends associated with climate change in Canada

    Science.gov (United States)

    Qian, Budong; Gregorich, Edward G.; Gameda, Sam; Hopkins, David W.; Wang, Xiaolan L.

    2011-01-01

    Trends in soil temperature are important, but rarely reported, indicators of climate change. On the basis of the soil temperature data from 30 climate stations across Canada during 1958-2008, trends in soil temperatures at 5, 10, 20, 50, 100, and 150 cm depths were analyzed, together with atmospheric variables, such as air temperature, precipitation, and depth of snow on the ground, observed at the same locations. There was a significant positive trend with soil temperatures in spring and summer means, but not for the winter and annual means. A positive trend with time in soil temperature was detected at about two-thirds of the stations at all depths below 5 cm. A warming trend of 0.26-0.30°C/decade was consistently detected in spring (March-April-May) at all depths between 1958 and 2008. The warming trend in soil temperatures was associated with trends in air temperatures and snow cover depth over the same period. A significant decreasing trend in snow cover depth in winter and spring was associated with increasing air temperatures. The combined effects of the higher air temperature and reduced snow depth probably resulted in an enhanced increasing trend in spring soil temperatures, but no significant trends in winter soil temperatures. The thermal insulation by snow cover appeared to play an important role in the response of soil temperatures to climate change and must be accounted for in projecting future soil-related impacts of climate change.

  6. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H; Edgar, Kirsty M; Foster, Gavin L; Ridgwell, Andy; Inglis, Gordon N; Pancost, Richard D; Lunt, Daniel J; Pearson, Paul N

    2016-04-25

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  7. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Science.gov (United States)

    Anagnostou, Eleni; John, Eleanor H.; Edgar, Kirsty M.; Foster, Gavin L.; Ridgwell, Andy; Inglis, Gordon N.; Pancost, Richard D.; Lunt, Daniel J.; Pearson, Paul N.

    2016-05-01

    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ11B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the

  8. Climate Variability and Trends in Bolivia

    NARCIS (Netherlands)

    Seiler, C.; Hutjes, R.W.A.; Kabat, P.

    2013-01-01

    Climate-related disasters in Bolivia are frequent, severe, and manifold and affect large parts of the population, economy, and ecosystems. Potentially amplified through climate change, natural hazards are of growing concern. To better understand these events, homogenized daily observations of temper

  9. The fingerprint of climate trends on European crop yields

    OpenAIRE

    Moore, Frances C.; Lobell, David B

    2015-01-01

    Agriculture is one of the economic sectors most exposed to climate change impacts, but few studies have statistically connected long-term changes in temperature and rainfall with yields. Doing so in Europe is particularly important because yields of wheat and barley have plateaued since the early 1990s and climate change has been suggested as a cause of this stagnation. Here, we show that the impact of climate trends can be detected in the pattern of long-term yield trends in Europe. Although...

  10. A climate trend analysis of Sudan

    Science.gov (United States)

    Funk, Christopher C.; Eilerts, Gary; Verdin, Jim; Rowland, Jim; Marshall, Michael

    2011-01-01

    Summer rains in western and southern Sudan have declined by 10-20 percent since the mid-1970s. Observed warming of more than 1 degree Celsius is equivalent to another 10-20 percent reduction in rainfall for crops. The warming and drying have impacted southern Darfur and areas around Juba. Rainfall declines west of Juba threaten southern Sudan's future food production prospects. In many cases, areas with changing climate are coincident with zones of substantial conflict, suggesting some degree of association; however, the contribution of climate change to these conflicts is not currently understood. Rapid population growth and the expansion of farming and pastoralism under a more variable climate regime could dramatically increase the number of at-risk people in Sudan over the next 20 years.

  11. Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes

    Science.gov (United States)

    Silva Tamayo, J. C.; Sierra, G. M.; Correa, L. G.

    2008-12-01

    Changes in the sedimentologic and stratigraphic characteristics of the coal-bearing middle Oligocene-late Miocene siliciclastic Amagá Formation, northwestern Colombia, reflect major fluctuations in the stratigraphic base level within the Amagá Basin, which paralleled three major stages of evolution of the middle Cenozoic Andean Orogeny. These stages, which are also traceable by the changes in the compositional modes of sandstones, controlled the occurrence of important coal deposits. The initial stage of evolution of the Amagá Basin was related to the initial uplift of the Central Cordillera of Colombia around 25 Ma, which promoted moderate subsidence rates and high rates of sediment supply into the basin. This allowed the development of aggradational braided rivers and widespread channel amalgamation resulting in poor preservation of both, low energy facies and geomorphic elements. The presence of poorly preserved Alfisols within the scarce flood plains and the absence of swamp deposits suggest arid climate during this stage. The compositional modes of sandstones suggest sediment supply from uplifted basement-cored blocks. The second stage of evolution was related to the late Oligocene eastward migration of the Pre-Andean tholeitic magmatic arc from the Western Cordillera towards the Cauca depression. This generated extensional movements along the Amagá Basin, enhancing the subsidence and increasing the accommodation space along the basin. As a result of the enhanced subsidence rates, meandering rivers developed, allowing the formation of extensive swamps deposits (currently coal beds). The excellent preservation of Entisols and Alfisols within the flood plain deposits suggests rapid channels migration and a humid climate during deposition. Moderate to highly mature channel sandstones support this contention, and point out the Central Cordillera of Colombia as the main source of sediment. Enhanced subsidence during this stage also prevented channels

  12. A climate trend analysis of Chad

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies significant decreases in rainfall and increases in air temperature across Chad, especially in the eastern part of the country. These analyses are based on quality-controlled station observations. Conclusions:* Summer rains have decreased in eastern Chad during the past 20 years. * Temperatures have increased by 0.8 °Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant. * The amount of farmland per person is low, and decliningrapidly.* Population growth combined with stagnating yieldscould lead to a 30 percent reduction in per capita cereal production by 2025.* In many cases, areas with changing climate are coincident with zones of substantial conflict, indicating some degree of association; however, the contribution of climate change to these conflicts is not currently understood.

  13. A climate trend analysis of Mali

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies modest declines in rainfall, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have remained relatively steady for the past 20 years, but are 12 percent below the 1920-1969 average. * Temperatures have increased by 0.8° Celsius since 1975, amplifying the effect of droughts. * Cereal yields are low but have been improving. * Current population and agricultural trends indicate that increased yields have offset population expansion, keeping per capita cereal production steady.

  14. A Climate Trend Analysis of Burkina Faso

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in rainfall and air temperatures. These analyses are based on quality controlled station observations. Conclusions: * Summer rains have remained steady over the past 20 years, but remain 15 percent below the 1920-69 average. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * The amount of farmland per person is low, and declining. * Burkina Faso has offset rapid population growth with improved yields. * Continued yield growth would maintain current levels of per capita food production.

  15. Late Cenozoic Climate History of the Ross Embayment from the AND-1B Drill Hole: Culmination of Three Decades of Antarctic Margin Drilling

    Science.gov (United States)

    Naish, T.R.; Powell, R.D.; Barrett, P.J.; Levy, R.H.; Henrys, S.; Wilson, G.S.; Krissek, L.A.; Niessen, F.; Pompilio, M.; Ross, J.; Scherer, R.; Talarico, F.; Pyne, A.; ,

    2007-01-01

    Because of the paucity of exposed rock, the direct physical record of Antarctic Cenozoic glacial history has become known only recently and then largely from offshore shelf basins through seismic surveys and drilling. The number of holes on the continental shelf has been small and largely confined to three areas (McMurdo Sound, Prydz Bay, and Antarctic Peninsula), but even in McMurdo Sound, where Oligocene and early Miocene strata are well cored, the late Cenozoic is poorly known and dated. The latest Antarctic geological drilling program, ANDRILL, successfully cored a 1285-m-long record of climate history spanning the last 13 m.y. from subsea-floor sediment beneath the McMurdo Ice Shelf (MIS), using drilling systems specially developed for operating through ice shelves. The cores provide the most complete Antarctic record to date of ice-sheet and climate fluctuations for this period of Earth’s history. The >60 cycles of advance and retreat of the grounded ice margin preserved in the AND-1B record the evolution of the Antarctic ice sheet since a profound global cooling step in deep-sea oxygen isotope records ~14 m.y.a. A feature of particular interest is a ~90-m-thick interval of diatomite deposited during the warm Pliocene and representing an extended period (~200,000 years) of locally open water, high phytoplankton productivity, and retreat of the glaciers on land.

  16. A climate trend analysis of Senegal

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; Verdin, James; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies modest declines in rainfall, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have remained steady in Senegal over the past 20 years but are 15 percent below the 1920-1969 average. * Temperatures have increased by 0.9° Celsius since 1975, amplifying the effect of droughts. * Cereal yields are low but have been improving. * The amount of farmland per person is low and declining rapidly. * Current population and agriculture trends could lead to a 30-percent reduction in per capita cereal production by 2025.

  17. Climate Trends and Farmers’ Perceptions of Climate Change in Zambia

    OpenAIRE

    Brian P. Mulenga; Wineman, Ayala

    2014-01-01

    In Zambia like in many other developing countries, the agricultural sector is highly dependent on rain-fed production and therefore vulnerable to weather shocks. Maize is the primary staple crop in Zambia, and is widely grown by smallholder farmers throughout the country, with a dual cassava-maize regime found only in the northern region. Among the smallholder farmers almost all production is rain-fed with very few farmers using mechanized irrigation. Climate change therefore has the potentia...

  18. Observing climate change trends in ocean biogeochemistry: when and where.

    Science.gov (United States)

    Henson, Stephanie A; Beaulieu, Claudie; Lampitt, Richard

    2016-04-01

    Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change-driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long-term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP). Here, we use an ensemble of global coupled climate models to assess the temporal and spatial scales over which observations of eight biogeochemically relevant variables must be made to robustly detect a long-term trend. We find that, as a global average, continuous time series are required for between 14 (pH) and 32 (PP) years to distinguish a climate change trend from natural variability. Regional differences are extensive, with low latitudes and the Arctic generally needing shorter time series (temperature, but nevertheless the existing network of observatories only represents 9-15% of the global ocean surface. Our results present a quantitative framework for assessing the adequacy of current and future ocean observing networks for detection and monitoring of climate change-driven responses in the marine ecosystem. PMID:26742651

  19. The fingerprint of climate trends on European crop yields

    Science.gov (United States)

    Moore, Frances C.; Lobell, David B.

    2015-01-01

    Europe has experienced a stagnation of some crop yields since the early 1990s as well as statistically significant warming during the growing season. Although it has been argued that these two are causally connected, no previous studies have formally attributed long-term yield trends to a changing climate. Here, we present two statistical tests based on the distinctive spatial pattern of climate change impacts and adaptation, and explore their power under a range of parameter values. We show that statistical power for the identification of climate change impacts is high in many settings, but that power for identifying adaptation is almost always low. Applying these tests to European agriculture, we find evidence that long-term temperature and precipitation trends since 1989 have reduced continent-wide wheat and barley yields by 2.5% and 3.8%, respectively, and have slightly increased maize and sugar beet yields. These averages disguise large heterogeneity across the continent, with regions around the Mediterranean experiencing significant adverse impacts on most crops. This result means that climate trends can account for ∼10% of the stagnation in European wheat and barley yields, with likely explanations for the remainder including changes in agriculture and environmental policies. PMID:25691735

  20. Using Google Dengue Trends to Estimate Climate Effects in Mexico

    OpenAIRE

    Gluskin, Rebecca T.; Santillana, Mauricio; John S Brownstein

    2013-01-01

    Objective: To evaluate the association between Dengue Fever (DF) and climate in Mexico with real-time data from Google Dengue Trends (GDT) and climate data from NASA Earth observing systems. Introduction: The incidence of dengue fever (DF) has increased 30 fold between 1960 and 2010 [1]. The literature suggests that temperature plays a major role in the life cycle of the mosquito vector and in turn, the timing of DF outbreaks [2]. We use real-time data from GDT and real-time temperature estim...

  1. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    Directory of Open Access Journals (Sweden)

    Antonius G T Schut

    Full Text Available Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010 derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  2. Trends and variability in climate parameters of peshawar district

    International Nuclear Information System (INIS)

    Rain fall pattern, daily minimum and maximum temperatures and humidity are the main factors that constitute the climate of an area. In Pakistan, consecutive positive anomalies have been observed in minimum, maximum and mean temperatures and rainfall since mid 1970s. The objective of the current study was to investigate the recent trends and variability of annual minimum, maximum and mean temperatures, relative humidity and rainfall of Peshawar. Annual meteorological parameters for 30-years (1981-2010) of Peshawar observatory have been analysed to determine indications of variations from long-term averages. Different statistical methods were used to analyse the data. For this purpose, Mann-Kendall test was applied to Meteorological data of Peshawar (1981-2010) to study any trend, which were revealed to be in a mixture. The final results show that rainfall is decreasing, minimum temperature, mean temperature and relative humidity are increasing and maximum temperature has no change. Various factors could be responsible for the contemporary trends in climate like rise in number of vehicles and industries from reviewing available literature, keeping in mind the nature of the study. Trends found may have negative implications for agriculture, health and socioeconomic conditions of the region that require the attention from relevant stakeholders. (author)

  3. Arctic Climate Variability and Trends from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Xuanji Wang

    2012-01-01

    Full Text Available Arctic climate has been changing rapidly since the 1980s. This work shows distinctly different patterns of change in winter, spring, and summer for cloud fraction and surface temperature. Satellite observations over 1982–2004 have shown that the Arctic has warmed up and become cloudier in spring and summer, but cooled down and become less cloudy in winter. The annual mean surface temperature has increased at a rate of 0.34°C per decade. The decadal rates of cloud fraction trends are −3.4%, 2.3%, and 0.5% in winter, spring, and summer, respectively. Correspondingly, annually averaged surface albedo has decreased at a decadal rate of −3.2%. On the annual average, the trend of cloud forcing at the surface is −2.11 W/m2 per decade, indicating a damping effect on the surface warming by clouds. The decreasing sea ice albedo and surface warming tend to modulate cloud radiative cooling effect in spring and summer. Arctic sea ice has also declined substantially with decadal rates of −8%, −5%, and −15% in sea ice extent, thickness, and volume, respectively. Significant correlations between surface temperature anomalies and climate indices, especially the Arctic Oscillation (AO index, exist over some areas, implying linkages between global climate change and Arctic climate change.

  4. Climate change and predicted trend of fungal keratitis in Egypt.

    Science.gov (United States)

    Saad-Hussein, A; El-Mofty, H M; Hassanien, M A

    2011-06-01

    Rising rates of invasive fungal infections may be linked to global climate change. A study was made of the trend of ophthalmic fungal corneal keratitis in the greater Cairo area of Egypt and its association with climate records during the same period. Data on diagnosed cases of fungal keratitis were collected from records of ophthalmic departments of Cairo University hospital and atmospheric temperature and humidity for the greater Cairo area were obtained from online records. Statistical analysis showed a significant increase in the relative frequency of keratomycosis during 1997-2007. The rise correlated significantly with rises n min,mum temperature and the maximum atmospheric humidity in the greater Cairo area over the same period (after exclusion of the effect of the maximum atmos pheric temperature). The predicted increase in keratomycosis up to the year 2030 corresponds to predicted increases in CO2 emissions and surface temperature from climate change models for Egypt.

  5. Importance of ensembles in projecting regional climate trends

    Science.gov (United States)

    Arritt, Raymond; Daniel, Ariele; Groisman, Pavel

    2016-04-01

    We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are

  6. Cenozoic tectonic and climatic events in southern Iberian Peninsula: Implications for the evolutionary history of freshwater fish of the genus Squalius (Actinopterygii, Cyprinidae).

    Science.gov (United States)

    Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio

    2016-04-01

    Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was

  7. Trends in global vegetation activity and climatic drivers indicate a decoupled response to climate change

    DEFF Research Database (Denmark)

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G.;

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty...... an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration...... in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS...

  8. Long-period orbital climate forcing. Cyclostratigraphic studies of Cenozoic continental and marine successions in Europe. Geologica Ultraiectina (297)

    NARCIS (Netherlands)

    Abels, H.A.

    2008-01-01

    Orbital climate forcing is well-known for its strong impact on Earth’s climate as for example the switching from glacial to inter-glacial states in the Late Pleistocene. Typical ‘Milankovitch’ cycles are climatic precession (21.000 years or 21 kyrs), obliquity (41 kyrs), and short and long eccentric

  9. Increasing drought trend in China under climate warming

    Science.gov (United States)

    Chen, Y.; Yuan, W.

    2015-12-01

    Several recently published studies have researched how drought is changing under climate change. We use the Palmer Drought Severity Index (PDSI) and water balance (precipitation minus evapotranspiration, P-ET) through 1982 to 2009 to study the drought conditions in China. The results showed that the anomaly PDSI and P-ET values all showed significant decreased trend. The areas of drought in China have increased from 1982 to 2009. Almost 75% of China showed decreased trend especially in southern China and the northwest China become wetter. The precipitation, evapotranspiration and temperature led to this condition comprehensively. Temperature exerts a growing influence on drought and the effects of precipitation become weaker. The drought may cause the positive feedback for the decreased precipitation, increased evapotranspiration and increased temperature. We should make policy based on this condition to enhance the sustainable use of water resources, particularly for agricultural development and slow down this feedback.

  10. Potential tropical Atlantic impacts on Pacific decadal climate trends

    Science.gov (United States)

    Chikamoto, Y.; Mochizuki, T.; Timmermann, A.; Kimoto, M.; Watanabe, M.

    2016-07-01

    The tropical Pacific cooling from the early 1990s to 2013 has contributed to the slowdown of globally averaged sea surface temperatures (SSTs). The origin of this regional cooling trend still remains elusive. Here we demonstrate that the remote impact of Atlantic SST anomalies, as well as local atmosphere-ocean interactions, contributed to the eastern Pacific cooling during this period. By assimilating observed three-dimensional Atlantic temperature and salinity anomalies into a coupled general circulation model, we are able to qualitatively reproduce the observed Pacific decadal trends of SST and sea level pressure (SLP), albeit with reduced amplitude. Although a major part of the Pacific SLP trend can be explained by equatorial Pacific SST forcing only, the origin of this low-frequency variability can be traced back further to the remote impacts of equatorial Atlantic and South Atlantic SST trends. Atlantic SST impacts on the atmospheric circulation can also be detected for the Northeastern Pacific, thus providing a linkage between Atlantic climate and Western North American drought conditions.

  11. Climate change and transnational corporations. Analysis and trends

    International Nuclear Information System (INIS)

    In Economic and Social Council resolution 1989/25, the Council requested an analytic study of the main sectors of activity that have adverse effects on environmental preservation and the factors that determine the allocation of activities between developed and developing countries. The present report, entitled Climate Change and Transnational Corporations: Analysis and Trends, is in response to that request. The problem of global warming and the dangers it presents to global survival are being given high priority by the United Nations. Discussions are under way leading to a convention on global climate change under the auspices of United Nations intergovernmental bodies. The study was designed as a contribution to that process. It focuses on six transnational energy-producing and energy-consuming industrial sectors, in which corporate practices have a direct and major impact on the problems associated with global climate change. The sectors are fossil fuel production, transportation, electricity-generation, energy-intensive metals production, chlorofluorocarbons and other ozone-depleting chemicals, and inorganic nitrogen fertilizers. The study explores the relative differential impacts between industrialized and developing countries of each sector, and asks how each sector would have to be restructured in order to limit global climate change and ozone depletion. It concludes that major changes in the technical processes and investment patterns of the transnational corporations in those sectors would be necessary if catastrophic environmental changes are to be avoided

  12. INTERTEMPORAL AND INTERSPATIAL VARIABILITY OF CLIMATE CHANGE ON DRYLAND WINTER WHEAT YIELD TRENDS

    OpenAIRE

    Shaik, Saleem; Helmers, Glenn A.

    2000-01-01

    The importance of climate (temperature and precipitation) variability on Nebraska dryland winter wheat yield trend is examined. The use of short term (1956-1999) climatic divisional panel data (interspatial) and long term (1909-1999) state time series data (intertemporal) is to address the predictability power of estimating the yield trends accounting for climate variability.

  13. Sedimentary environments of the Cenozoic sedimentary debris found in the moraines of the Grove Mountains, east Antarctica and its climatic implications

    Institute of Scientific and Technical Information of China (English)

    FANG Aimin; LIU Xiaohan; LEE Jong Ik; LI Xiaoli; HUANG Feixin

    2004-01-01

    During the field work of the 1998~1999's and 1999~2000's Chinese National Antarctic Research Expedition (CHNARE) in the Grove Mountains, east Antarctica, some Cenozoic sedimentary debris are found in two terminal moraine banks over the blue ice near Harding Mount in the center of this region. All the debris are of characteristics of glaciogenic diamicton and belong to the products of the glacial movements of the East Antarctic Ice Sheet. In this paper, the authors make a detailed study on the sedimentary environments of the sedimentary debris through petrologic, sedimentological, mineralogical, and geo-chemical methods. Characteristics of their sedimentary textures and structures, grain size distributions, quartz grains' surface textures and features, together with their geo-chemical compositions all show that these sedimentary rocks are a kind of subglacial lodgement tills which are deposited in the ice sheet frontal area by reactions of glacial movements and glaciogenic melt water. Their palaeoenvironmental implications in revealing the retreat history of East Antarctic Ice Sheet are discussed. The authors draw the conclusion from current study that the glacial frontal of the East Antarctica Ice Sheet might have been retreated to this area during the Pliocene Epoch, which represents a warm climate event accompanied by a large-scale ice sheet retreat in Antarctica at that time.

  14. Detection of trends in surface ozone in the presence of climate variability

    Science.gov (United States)

    Barnes, Elizabeth A.; Fiore, Arlene M.; Horowitz, Larry W.

    2016-05-01

    Trends in trace atmospheric constituents can be driven not also by trends in their (precursor) emissions but also by trends in meteorology. Here we use ground-level ozone as an example to highlight the extent to which unforced, low-frequency climate variability can drive multidecadal trends. Using output from six experiments of the Geophysical Fluid Dynamics Laboratory chemistry-climate model (CM3), we demonstrate that 20 year trends in surface ozone driven by climate variability alone can be as large as those forced by changes in ozone precursor emissions or by anthropogenic climate change. We highlight regions and seasons where surface ozone is strongly influenced by climate variability and thus where a given forced trend may be more difficult to detect. A corollary is that this approach identifies regions and seasons of low variability, where measurement sites may be most effectively deployed to detect a particular trend driven by changing precursor emissions. We find that the representative concentration pathways 4.5 (RCP4.5) and RCP8.5 forced surface ozone trends in most locations emerge over background variability during the first half of the 21st century. Ozone trends are found to respond mostly to changes in emissions of ozone precursors and unforced climate variability, with a comparatively small impact from anthropogenic climate change. Thus, attempts to attribute observed trends to regional emissions changes require consideration of internal climate variability, particularly for short record lengths and small forced trends.

  15. Dragonflies and climatic change - recent trends in Germany and Europe

    Directory of Open Access Journals (Sweden)

    Jürgen Ott

    2010-12-01

    Full Text Available In this paper the trends of dragonfly expansions during the last decades in Germany and Europe are summarized. It is shown, that there is a general expansion of many species to the north: Mediterranean species expanded to Central and Northern Europe, whereas some African species expanded to Southern Europe, some are even new to the continent. In general this means an increase of biodiversity, but looking at the ecological effects, in the medium term a decrease can be expected for mooreland and alpine species. Dragonflies can be regarded as a good indicator group for climatic change. Already now in some areas or regions negative effects on waters bodies and their dragonfly communities can be observed and more will occur if e.g. temperature rises or precipitation decreases. The consequences for nature conservation strategies – such as the NATURA 2000 network – are outlined and the general need for monitoring programmes is emphasised.

  16. North Atlantic-Fennoscandian Holocene climate trends and mechanisms

    Science.gov (United States)

    Sejrup, Hans Petter; Seppä, Heikki; McKay, Nicholas P.; Kaufman, Darrell S.; Geirsdóttir, Áslaug; de Vernal, Anne; Renssen, Hans; Husum, Katrine; Jennings, Anne; Andrews, John T.

    2016-09-01

    To investigate the mechanisms behind Holocene regional climate trends from north of 58°N in the North Atlantic-Fennoscandian region Principal Component Analysis (PCA) was performed and a temperature anomaly stack produced from 81 proxy derived summer temperature time series from 74 sites. The PC results show distinctly different trends for near-surface versus surface temperatures, demonstrating the importance of handling these separately. The first PC of weighted sea surface summer temperature time series and continental time series explains 45 ± 8% of the variance, where the uncertainty is the standard deviation of the distribution of variance explained across the 1000 age-uncertain ensemble members. PC1 has a relatively uniform expression over the whole region, closely following the summer insolation at 65°N. The second PC explains 22 ± 4% of the variance and shows a non-uniform expression, with loadings in opposite directions in the northern and southeastern parts of the region. Comparing the PC time series with model runs and with the timing of the demise of the Laurentide Ice Sheet (LIS), suggest that this pattern reflects both topographic and albedo effects of the LIS as well as release of meltwater into the North Atlantic and Arctic Oceans. Comparing the stack of gridded records with published global stacks reveals an unusual Holocene temperature development in the North Atlantic-Fennoscandian region most likely resulting from the location relative to the decaying LIS.

  17. Cenozoic Landscape evolution of the South-African Plateau around the Orange Valley: tectonic and climate coupling

    Science.gov (United States)

    Dauteuil, Olivier; Bessin, Paul; Guillocheau, François

    2014-05-01

    The plateaus form the key geomorphic element of the African relief with the occurrence of the South African (or Kalahari) Plateau, extending from South Africa to southern Congo (Fig. 1). The origin and evolution of this large relief with a mean elevation ranging 1 to 2 kilometres were largely debated. This work discussed the landscape growth of the South African plateau on both sides of the Orange valley in term of planation process, incision, deformation and climate change. This work is mainly based on a geomorphic analysis done from DEM and field data. First, we proposed a new typology of planation surfaces based on their genetic process (weathering versus erosion), and not depending the elevation, as previously. Five types of planation surfaces were retained: etchplain, peneplain, pediplain, top-weathering surface and wav-cut platform. Using this approach to determine the evolution of Orange valley, we recognised three planation surfaces of which origin is not controlled by the lithology: a top weathering surface recorded the end of Eocene weathering period, a first etchplain-to-pediplain formed during the Oligocene and finally a pediplain initiated after a deformation event during the Miocene. This event reorganised completely the drainage network and the catchment of the Orange River that became similar to the current one. It corresponds to a regional tilting of the southern part of the plateau with a elevation of 200 m at least. Afterwards, global eustatic variations driven the landscape evolution because the Orange River gained the current stream connected to the sea level. Thus the landscape growth of the South African plateau results in a change in planation processes driven by a first climate change occurring during a slow uplift, then a regional tilting and at least by eustasy. Thus, an accurate and detail geomorphic analysis allows discriminating the tectonic to climatic processes causing the current landscape.

  18. Assessment of climate change impacts on climate variables using probabilistic ensemble modeling and trend analysis

    Science.gov (United States)

    Safavi, Hamid R.; Sajjadi, Sayed Mahdi; Raghibi, Vahid

    2016-08-01

    Water resources in snow-dependent regions have undergone significant changes due to climate change. Snow measurements in these regions have revealed alarming declines in snowfall over the past few years. The Zayandeh-Rud River in central Iran chiefly depends on winter falls as snow for supplying water from wet regions in high Zagrous Mountains to the downstream, (semi-)arid, low-lying lands. In this study, the historical records (baseline: 1971-2000) of climate variables (temperature and precipitation) in the wet region were chosen to construct a probabilistic ensemble model using 15 GCMs in order to forecast future trends and changes while the Long Ashton Research Station Weather Generator (LARS-WG) was utilized to project climate variables under two A2 and B1 scenarios to a future period (2015-2044). Since future snow water equivalent (SWE) forecasts by GCMs were not available for the study area, an artificial neural network (ANN) was implemented to build a relationship between climate variables and snow water equivalent for the baseline period to estimate future snowfall amounts. As a last step, homogeneity and trend tests were performed to evaluate the robustness of the data series and changes were examined to detect past and future variations. Results indicate different characteristics of the climate variables at upstream stations. A shift is observed in the type of precipitation from snow to rain as well as in its quantities across the subregions. The key role in these shifts and the subsequent side effects such as water losses is played by temperature.

  19. Are climate model simulations useful for forecasting precipitation trends? Hindcast and synthetic-data experiments

    International Nuclear Information System (INIS)

    Water scientists and managers currently face the question of whether trends in climate variables that affect water supplies and hazards can be anticipated. We investigate to what extent climate model simulations may provide accurate forecasts of future hydrologic nonstationarity in the form of changes in precipitation amount. We compare gridded station observations (GPCC Full Data Product, 1901–2010) and climate model outputs (CMIP5 Historical and RCP8.5 simulations, 1901–2100) in real and synthetic-data hindcast experiments. The hindcast experiments show that imputing precipitation trends based on the climate model mean reduced the root mean square error of precipitation trend estimates for 1961–2010 by 9% compared to making the assumption (implied by hydrologic stationarity) of no trend in precipitation. Given the accelerating pace of climate change, the benefits of incorporating climate model assessments of precipitation trends in water resource planning are projected to increase for future decades. The distribution of climate models’ simulated precipitation trends shows substantial spatially coherent biases, suggesting that there may be room for further improvement in how climate models are parametrized and used for precipitation estimation. Linear extrapolation of observed trends in long precipitation records may also be useful, particularly for lead times shorter than about 25 years. Overall, our findings suggest that simulations by current global climate models, combined with the continued maintenance of in situ hydrologic observations, can provide useful information on future changes in the hydrologic cycle. (paper)

  20. Climate-driven trends in contemporary ocean productivity.

    Science.gov (United States)

    Behrenfeld, Michael J; O'Malley, Robert T; Siegel, David A; McClain, Charles R; Sarmiento, Jorge L; Feldman, Gene C; Milligan, Allen J; Falkowski, Paul G; Letelier, Ricardo M; Boss, Emmanuel S

    2006-12-01

    Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs. PMID:17151666

  1. Climate-driven trends in contemporary ocean productivity.

    Science.gov (United States)

    Behrenfeld, Michael J; O'Malley, Robert T; Siegel, David A; McClain, Charles R; Sarmiento, Jorge L; Feldman, Gene C; Milligan, Allen J; Falkowski, Paul G; Letelier, Ricardo M; Boss, Emmanuel S

    2006-12-01

    Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.

  2. A climatic deconstruction of recent drought trends in the United States

    International Nuclear Information System (INIS)

    We present high spatial-resolution trends of the Palmer drought severity index (PDSI), potential evapotranspiration (PET), and selected climate variables from 1979–2013 for the contiguous United States in order to gain an understanding of recent drought trends and their climatic forcings. Based on a spatial grouping analysis, four regions of increasing (upper Midwest, Louisiana, southeastern United States (US), and western US) and decreasing (New England, Pacific Northwest, upper Great Plains, and Ohio River Valley) drought trends based on Mann–Kendall Z values were found. Within these regions, partial correlation and multiple regression for trends in climate variables and PDSI were performed to examine potential climatic controls on these droughts. As expected, there was a US-wide concurrence on drought forcing by precipitation. However, there was correspondence of recent PET trends with recent drought trends in many regions. For regions with an increase in recent droughts, average air temperature was generally the second most important variable after precipitation in determining recent drought trends. Across the regions where recent drought trends are decreasing, there was no clear ranking of climate-variable importance, where trends in average temperature, specific humidity and net radiation all played significant regional roles in determining recent drought trends. Deconstructing the trends in drought show that, while there are regions in the US showing positive and negative trends in drought conditions, the climate forcings for these drought trends are regionally specific. The results of this study allow for the interpretation of the role of the changing hydroclimatic cycle in recent drought trends, which also have implications for the current and impending results of climate change. (letter)

  3. From School of Rock to Building Core Knowledge: Teaching about Cenozoic climate change with data and case studies from the primary literature

    Science.gov (United States)

    Leckie, R. M.; St John, K. K.; Jones, M. H.; Pound, K. S.; Krissek, L. A.; Peart, L. W.

    2011-12-01

    The School of Rock (SoR) began in 2005 as a pilot geoscience professional development program for K-12 teachers and informal educators aboard the JOIDES Resolution (JR). Since then, the highly successful SoR program, sponsored by the Consortium for Ocean Leadership's Deep Earth Academy, has conducted on-shore professional development at the Integrated Ocean Drilling Program (IODP) core repository in College Station, TX, and on the JR. The success of the SoR program stems from the natural synergy that develops between research scientists and educators when their combined pedagogical skills and scientific knowledge are used to uncover a wealth of scientific ocean drilling discoveries and research findings. Educators are challenged with authentic inquiry based on sediment archives; these lessons from the past are then made transferable to the general public and to classrooms through the creation of age-appropriate student-active learning materials (http://www.oceanleadership.org/education/deep-earth-academy/educators/classroom-activities/). This science made accessible approach was the basis for a successful NSF Course Curriculum and Laboratory Improvement (CCLI) proposal to develop teaching materials for use at the college level. Our Building Core Knowledge project resulted in a series of 14 linked, yet independent, inquiry-based exercise modules around the theme of Reconstructing Earth's Climate History. All of the exercises build upon authentic data from peer reviewed scientific publications. These multiple part modules cover fundamental paleoclimate principles, tools and proxies, and Cenozoic case studies. It is important to teach students how we know what we know. For example, paleoclimate records must be systematically described, ages must be determined, and indirect evidence (i.e., proxies) of past climate must be analyzed. Much like the work of a detective, geoscientists and paleoclimatologists reconstruct what happened in the past, and when and how it

  4. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    previous findings on the potential influence of Arctic gateways on ocean overturning and also suggests that Northern Hemisphere climate, particularly in the North Atlantic, was very sensitive to changes in Arctic seaways. This result is of particular significance when considered in the context of the Paleocene Eocene Thermal Maximum (PETM). Volcanic activity prior to the PETM may have been responsible for the formation of a sub-aerial barrier in the North Atlantic, and consequently may have driven warming of intermediate waters sufficient to destabilize methane clathrates. Evidence for freshening of Arctic ocean waters prior to the PETM would support this hypothesis.

  5. Impacts of recent climate change on trends in baseflow and stormflow in United States watersheds

    Science.gov (United States)

    Ficklin, Darren L.; Robeson, Scott M.; Knouft, Jason H.

    2016-05-01

    Characterizing the impacts of climatic change on hydrologic processes is critical for managing freshwater systems. Specifically, there is a need to evaluate how the two major components of streamflow, baseflow and stormflow, have responded to recent trends in climate. We derive baseflow and stormflow for 674 sites throughout the United States from 1980 to 2010 to examine their associations with precipitation, potential evapotranspiration, and maximum/minimum temperature. The northeastern (NE) and southwestern (SW) United States display consistent trends in baseflow and stormflow: increasing during fall and winter in the NE and decreasing during all seasons in the SW. Trends elsewhere and at other times of the year are more variable but still associated with changes in climate. Counter to expectations, baseflow and stormflow trends throughout the United States tend to change concurrently. These trends are primarily associated with precipitation trends, but increases in PET are influential and likely to become important in the future.

  6. Climate change or climate cycles? Snowpack trends in the Olympic and Cascade Mountains, Washington, USA.

    Science.gov (United States)

    Barry, Dwight; McDonald, Shea

    2013-01-01

    Climate change could significantly influence seasonal streamflow and water availability in the snowpack-fed watersheds of Washington, USA. Descriptions of snowpack decline often use linear ordinary least squares (OLS) models to quantify this change. However, the region's precipitation is known to be related to climate cycles. If snowpack decline is more closely related to these cycles, an OLS model cannot account for this effect, and thus both descriptions of trends and estimates of decline could be inaccurate. We used intervention analysis to determine whether snow water equivalent (SWE) in 25 long-term snow courses within the Olympic and Cascade Mountains are more accurately described by OLS (to represent gradual change), stationary (to represent no change), or step-stationary (to represent climate cycling) models. We used Bayesian information-theoretic methods to determine these models' relative likelihood, and we found 90 models that could plausibly describe the statistical structure of the 25 snow courses' time series. Posterior model probabilities of the 29 "most plausible" models ranged from 0.33 to 0.91 (mean = 0.58, s = 0.15). The majority of these time series (55%) were best represented as step-stationary models with a single breakpoint at 1976/77, coinciding with a major shift in the Pacific Decadal Oscillation. However, estimates of SWE decline differed by as much as 35% between statistically plausible models of a single time series. This ambiguity is a critical problem for water management policy. Approaches such as intervention analysis should become part of the basic analytical toolkit for snowpack or other climatic time series data.

  7. Trend assessment: applications for hydrology and climate research

    Directory of Open Access Journals (Sweden)

    M. Kallache

    2005-01-01

    Full Text Available The assessment of trends in climatology and hydrology still is a matter of debate. Capturing typical properties of time series, like trends, is highly relevant for the discussion of potential impacts of global warming or flood occurrences. It provides indicators for the separation of anthropogenic signals and natural forcing factors by distinguishing between deterministic trends and stochastic variability. In this contribution river run-off data from gauges in Southern Germany are analysed regarding their trend behaviour by combining a deterministic trend component and a stochastic model part in a semi-parametric approach. In this way the trade-off between trend and autocorrelation structure can be considered explicitly. A test for a significant trend is introduced via three steps: First, a stochastic fractional ARIMA model, which is able to reproduce short-term as well as long-term correlations, is fitted to the empirical data. In a second step, wavelet analysis is used to separate the variability of small and large time-scales assuming that the trend component is part of the latter. Finally, a comparison of the overall variability to that restricted to small scales results in a test for a trend. The extraction of the large-scale behaviour by wavelet analysis provides a clue concerning the shape of the trend.

  8. A trend analysis of global fire activity. Is it land use or climate the main driver?

    Science.gov (United States)

    Bistinas, Ioannis; Oom, Duarte; Silva, Joao M. N.; Lopez-Saldaña, Gerardo; Pereira, Jose M. C.

    2016-04-01

    We perform a global trend analysis of active fire counts at 0.5o spatial resolution, using 156 months (January 2001 - December 2013) of MODIS Climate Modelling Grid data (TERRA). We use the Contextual Mann-Kendall (CMK) test to assess the statistical significance at cell level and found that 13% of the global land area displays statistically significant active fire count trends, with a slight predominance of negative trends (50.63% of the total significant cells). We perform the same trend analysis with the unexplained variability (residuals) between active fires and the Fire Weather Index (FWI) that is used as a proxy for climate. There is agreement between the main patterns from the trend analysis coming from the residuals and the active fire trends, implying that the main contemporary fire trends are not climate driven. Spatially coherent patches with significant trends were found in all continents (with the obvious exception of Antarctica). The majority of significant trends occur in areas of high fire incidence, and both increasing and decreasing trends appear to be associated with land use change processes. The analysis reveals large negative trends at the Sahel and between Russia and Kazakhstan, whereas a massive and coherent positive trend appears in southeastern Asia. Smaller patches of positive trends appear in southeastern United States and in Mexico, as well as in Brazil and between Argentina and Paraguay, and in Asia in India. There are also negative trends in Brazil, Argentina and in Australia. The study highlights the land use activities as the main driver of these trends, but also the need for data driven analyses and longer time series for future studies in order to gain better knowledge on fire occurrence.

  9. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  10. Altitude dependence of atmospheric temperature trends: Climate models versus observation

    CERN Document Server

    Douglass, D H; Singer, F

    2004-01-01

    As a consequence of greenhouse forcing, all state of the art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200 to 400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.

  11. Climate-driven population responses of resident brown trout, Salmo trutta: Trends and future projections

    OpenAIRE

    2016-01-01

    The climate is changing at an alarming rate with consequences such as species and population extinctions, changes in species distribution and phenology. However, mechanisms underlying these global trends are not well understood, especially at a population level. Climate effects on demographic traits and population dynamics have recently received increasing attention as key importance for understanding the ecological impacts of climate change. The effects on demographic traits might vary acros...

  12. Global climate models’ bias in surface temperature trends and variability

    International Nuclear Information System (INIS)

    The Earth has warmed in the last century with the most rapid warming occurring near the surface in the Arctic. This Arctic amplification occurs partly because the extra heat is trapped in a thin layer of air near the surface due to the persistent stable-stratification found in this region. The amount of warming depends upon the extent of turbulent mixing in the atmosphere, which is described by the depth of the atmospheric boundary layer (ABL). Global climate models (GCMs) tend to over-estimate the depth of stably-stratified ABLs, and here we show that GCM biases in the ABL depth are strongly correlated with biases in the surface temperature variability. This highlights the need for a better description of the stably-stratified ABL in GCMs in order to constrain the current uncertainty in climate variability and projections of climate change in the surface layer. (letter)

  13. Recent climate change in Japan – spatial and temporal characteristics of trends of temperature

    Directory of Open Access Journals (Sweden)

    M. Domroes

    2008-04-01

    Full Text Available In this paper temperature series of Japan were statistically analysed in order to answer the question whether recent climate change can be proved for Japan; the results were compared and discussed with the global trends. The observations in Japan started for some stations in the 1870s, 59 stations are available since 1901, 136 stations since 1959. Modern statistical methods were applied, such as: Gaussian binominal low-pass filter (30 yr, trend analysis (linear regression model including the trend-to-noise-ratio as measure of significance and the non-parametric, non-linear trend test according to MANN (MANN's Q. According to the results of the analyses, climate change in Japan is clearly shown for temperature over the 100 yr (1901–2000: Annual mean temperatures increased at all stations from 0.35 (Hakodate to 2.95°C (Tokyo. The magnitude of climate change is illustrated to increase over the recent period 1976–2000. Seasonally, the strongest warming trends were observed for winter temperatures and also increasing temperature trends prevailed in summer, with the exception of slightly decreasing trends at only four stations. As far as temperatures are concerned, a distinct increase could be shown over the period 1901–2000 with a strong trend of warming over the more recent period 1976–2000.

  14. Trends in projections of standardized precipitation indices in a future climate in Poland

    Science.gov (United States)

    Osuch, Marzena; Romanowicz, Renata J.; Lawrence, Deborah; Wong, Wai K.

    2016-05-01

    Possible future climate change effects on dryness conditions in Poland are estimated for six climate projections using the standardized precipitation index (SPI). The time series of precipitation represent six different climate model runs under the selected emission scenario for the period 1971-2099. Monthly precipitation values were used to estimate the SPI for multiple timescales (1, 3, 6, 12, and 24 months) for a spatial resolution of 25 km for the whole country. Trends in the SPI were analysed using the Mann-Kendall test with Sen's slope estimator for each grid cell for each climate model projection and aggregation scale, and results obtained for uncorrected precipitation and bias corrected precipitation were compared. Bias correction was achieved using a distribution-based quantile mapping (QM) method in which the climate model precipitation series were adjusted relative to gridded precipitation data for Poland. The results show that the spatial pattern of the trend depends on the climate model, the timescale considered and on the bias correction. The effect of change on the projected trend due to bias correction is small compared to the variability among climate models. We also summarize the mechanisms underlying the influence of bias correction on trends in precipitation and the SPI using a simple example of a linear bias correction procedure. In both cases, the bias correction by QM does not change the direction of changes but can change the slope of trend, and the influence of bias correction on SPI is much reduced. We also have noticed that the results for the same global climate model, driving different regional climate model, are characterized by a similar pattern of changes, although this behaviour is not seen at all timescales and seasons.

  15. Are there spurious temperature trends in the United States Climate Division database?

    Science.gov (United States)

    Keim, B.D.; Wilson, A.M.; Wake, C.P.; Huntington, T.G.

    2003-01-01

    The United States (U.S.) Climate Division data set is commonly used in applied climatic studies in the United States. The divisional averages are calculated by including all available stations within a division at any given time. The averages are therefore vulnerable to shifts in average station location or elevation over time, which may introduce spurious trends within these data. This paper examines temperature trends within the 15 climate divisions of New England, comparing the NCDC's U.S. Divisional Data to the U.S. Historical Climate Network (USHCN) data. Correlation and multiple regression revealed that shifts in latitude, longitude, and elevation have affected the quality of the NCDC divisional data with respect to the USHCN. As a result, there may be issues with regard to their use in decadal-to century-scale climate change studies.

  16. The impact of economic recession on climate change: eight trends

    NARCIS (Netherlands)

    P.C. Obani; J. Gupta

    2015-01-01

    In the context of deadlocked climate change negotiations, and the expectation that legally binding targets may only set in as early as 2020, this paper addresses the question of whether the current economic recession in major economies in the North can help us buy time by reducing the emissions of g

  17. Plant molecular stress responses face climate change. Trends in Plants

    NARCIS (Netherlands)

    Ahuja, I.; Vos, de R.C.H.; Bones, A.M.; Hall, R.D.

    2010-01-01

    Environmental stress factors such as drought, elevated temperature, salinity and rising CO2 affect plant growth and pose a growing threat to sustainable agriculture. This has become a hot issue due to concerns about the effects of climate change on plant resources, biodiversity and global food secur

  18. Technology and Climate Trends in PV Module Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-10-01

    To sustain the commercial success of photovoltaic (PV) technology it is vital to know how power output decreases with time. Unfortunately, it can take years to accurately measure the long-term degradation of new products, but past experience on older products can provide a basis for prediction of degradation rates of new products. An extensive search resulted in more than 2000 reported degradation rates with more than 1100 reported rates that include some or all IV parameters. In this paper we discuss how the details of the degradation data give clues about the degradation mechanisms and how they depend on technology and climate zones as well as how they affect current and voltage differently. The largest contributor to maximum power decline for crystalline Si technologies is short circuit current (or maximum current) degradation and to a lesser degree loss in fill factor. Thin-film technologies are characterized by a much higher contribution from fill factor particularly for humid climates. Crystalline Si technologies in hot & humid climates also display a higher probability to show a mixture of losses (not just short circuit current losses) compared to other climates. The distribution for the module I-V parameters (electrical mismatch) was found to change with field exposure. The distributions not only widened but also developed a tail at the lower end, skewing the distribution.

  19. Health in climate change research from 1990 to 2014: positive trend, but still underperforming

    OpenAIRE

    Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer

    2016-01-01

    Background: Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health.Design: We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 t...

  20. Analysing the Cenozoic depositional record

    DEFF Research Database (Denmark)

    Goledowski, Bartosz; Clausen, O.R.; Nielsen, S.B.

    between the global climate record (oxygen isotopes) and lithology variations on the Eocene-Oligocene transition in the eastern North Sea. Due to the strongly limited time resolution of low temperature thermochronology, the Cenozoic sedimentary record potentially provides the most detailed history of...... lower limit to erosion rate in source areas of the respective sedimentary bodies. The lower limit arises because some erosional products are transported out of the mapped area, and some erosion is caused by chemical dissolution. The development of the source areas will be modelled using surface process...... models. The matrix mass deposition history will be compared with the paleoclimate record (e.g. oxygen isotope curves) to see if the previously observed correlation in the eastern North Sea can be extended to other ages and locations.  ...

  1. Southern Ocean Sector Centennial Climate Variability and Recent Decadal Trends

    OpenAIRE

    Latif, Mojib; Martin, Torge; Park, Wonsun

    2013-01-01

    Evidence is presented for the notion that some contribution to the recent decadal trends observed in the Southern Hemisphere, including the lack of a strong Southern Ocean surface warming, may have originated from longer-term internal centennial variability originating in the Southern Ocean. The existence of such centennial variability is supported by the instrumental sea surface temperatures (SSTs), a multimillennial reconstruction of Tasmanian summer temperatures from tree rings, and a mill...

  2. Dragonflies and climatic change - recent trends in Germany and Europe

    OpenAIRE

    Jürgen Ott

    2010-01-01

    In this paper the trends of dragonfly expansions during the last decades in Germany and Europe are summarized. It is shown, that there is a general expansion of many species to the north: Mediterranean species expanded to Central and Northern Europe, whereas some African species expanded to Southern Europe, some are even new to the continent. In general this means an increase of biodiversity, but looking at the ecological effects, in the medium term a decrease can be expected for mooreland an...

  3. Recent climate change in Japan – spatial and temporal characteristics of trends of temperature

    Directory of Open Access Journals (Sweden)

    D. Schaefer

    2009-02-01

    Full Text Available In this paper temperature series of Japan were statistically analysed in order to answer the question whether recent climate change can be proved for Japan; the results were compared and discussed with the global trends. The observations in Japan started for some stations in the 1870s, 59 stations are available since 1901, 136 stations since 1959. Modern statistical methods were applied, such as: Gaussian binominal low-pass filter (30 yr, trend analysis (linear regression model including the trend-to-noise-ratio as measure of significance and the non-parametric, non-linear trend test according to MANN (MANN's Q. According to the results of the analyses, climate change in Japan is clearly shown for temperature over the 100 yr (1901–2000: Annual mean temperatures increased at all stations from 0.35 (Hakodate to 2.95°C (Tokyo. The magnitude of climate change is illustrated to increase over the recent period 1976–2000. Seasonally, the strongest warming trends were observed for winter temperatures and also increasing temperature trends prevailed in summer, with the exception of slightly decreasing trends at only four stations.

  4. Break and trend analysis of EUMETSAT Climate Data Records

    Science.gov (United States)

    Doutriaux-Boucher, Marie; Zeder, Joel; Lattanzio, Alessio; Khlystova, Iryna; Graw, Kathrin

    2016-04-01

    EUMETSAT reprocessed imagery acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8-9. The data covers the period from 2004 to 2012. Climate Data Records (CDRs) of atmospheric parameters such as Atmospheric Motion Vectors (AMV) as well as Clear and All Sky Radiances (CSR and ASR) have been generated. Such CDRs are mainly ingested by ECMWF to produce a reanalysis data. In addition, EUMETSAT produced a long CDR (1982-2004) of land surface albedo exploiting imagery acquired by the Meteosat Visible and Infrared Imager (MVIRI) on board Meteosat 2-7. Such CDR is key information in climate analysis and climate models. Extensive validation has been performed for the surface albedo record and a first validation of the winds and clear sky radiances have been done. All validation results demonstrated that the time series of all parameter appear homogeneous at first sight. Statistical science offers a variety of analyses methods that have been applied to further analyse the homogeneity of the CDRs. Many breakpoint analysis techniques depend on the comparison of two time series which incorporates the issue that both may have breakpoints. This paper will present a quantitative and statistical analysis of eventual breakpoints found in the MVIRI and SEVIRI CDRs that includes attribution of breakpoints to changes of instruments and other events in the data series compared. The value of different methods applied will be discussed with suggestions how to further develop this type of analysis for quality evaluation of CDRs.

  5. Incorporating climate change trends to near future variability of crop yields in Iberia Peninsula

    Science.gov (United States)

    Capa-Morocho, Mirian; Baethgen, Walter E.; Fernandes, Kátia; Rodríguez-Fonseca, Belén; Ruiz-Ramos, Margarita

    2016-04-01

    In this study, we analyze the effects of near future climate variability on cropping systems in Iberian Peninsula (IP). For this purpose, we generated climate sequences that simulate realistic variability on annual to decadal time scales. The sequences incorporate nonlinear climate change trends, using statistical methods and and an ensemble of global climate models from the Coupled Model Intercomparison Project (CMIP5). Then, the climate sequences are temporal downscaled into daily weather data and used as inputs to crop models. As case study, we evaluate the impacts of plausible future climate scenarios on rain-fed wheat yield two agricultural locations in IP. We adapted the method by Greene et al., (2012 and 2015) for informing climate projections for the coming decades with a combination of seasonal to interannual and anthropogenically forced climate change information for accounting the Near-term Climate Change. Long-term data containing solar radiation, maximum and minimum temperature and rainfall are needed to apply this method. The climate variability observed was decomposed into long-range trend, decadal and interannual variability to understand the relative importance of each time scale. The interannual variability was modeled based on the observational records. The results of this study may have important implications on public and private sectors to analyze the probabilistic projections of impacts and agronomic adaptations of near future climate variability in Iberian Peninsula. This study has been funded by MACSUR project from FACCE-JPI. References Greene, A.M., Goddard, L., Gonzalez, P.L., Ines, A.V. and Chryssanthacopoulos, J., 2015.A climate generator for agricultural planning in southeastern South America.Agricultural and Forest Meteorology, 203: 217-228. Greene, A.M., Hellmuth, M. and Lumsden, T., 2012. Stochastic decadal climate simulations for the Berg and Breede water management areas, western Cape province, South Africa. Water Resources

  6. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  7. Earliest local emergence of forced dynamic and steric sea-level trends in climate models

    International Nuclear Information System (INIS)

    We investigate the impact of internal variability on the emergence of a forced local trend in steric and dynamic sea surface height in historical and future climate simulations. By analyzing the unforced control simulations, the magnitude of internally generated, local trends in sea surface height is quantified and compared to trends found in historical simulations and projections. We find that the timing of the emergence of a forced local signal depends strongly on the location and the year in which the trend computations are started. Starting in 1950, it takes at least 60 yr to detect a forced trend in regions of weak internal variability such as the tropical Atlantic Ocean while this period is reduced to 30 yr when starting in 1990. The detection of a forced trend is further delayed by several decades in regions of elevated internal variability. (letter)

  8. Impacts of the superimposed climate trends on droughts over 1961-2013 in Xinjiang, China

    Science.gov (United States)

    Li, Yi; Sun, Changfeng

    2016-05-01

    This study reveals the impacts of climatic variable trends on drought severity in Xinjiang, China. Four drought indices, including the self-calibrating Palmer drought severity index (sc-PDSI), Erinç's index (I m), Sahin's index (I sh), and UNEP aridity index (AI), were used to compare drought severity. The ensemble empirical mode decomposition and the modified Mann-Kendall trend test were applied to analyze the nonlinear components and trends of the climatic variable and drought indices. Four and six climatic scenarios were generated in sc-PDSI, I m, I sh, and AI with different combinations of the observed and detrended climatic variables, respectively. In Xinjiang, generally increasing trends in minimal, average, and maximal air temperature (T min, T ave, T max) and precipitation (P) were found, whereas a decreasing trend in wind speed at 2 m height (U 2) was observed. There were significantly increasing trends in all of the four studied drought indices. Drought relief was more obvious in northern Xinjiang than in southern Xinjiang. The strong influences of increased P on drought relief and the weak influences of increased T min, T ave, and T max on drought aggravation were shown by comparing four drought indices under different climate scenarios. Decreased U 2 had a weak influence on drought, as shown by the AI in different climate scenarios. The weak influences of T and U 2 were considered to be masked by the strong influences of P on droughts. Droughts were expected to be more severe if P did not increase, but were likely milder without an increase in air temperature and with a decrease in U 2.

  9. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales

    Science.gov (United States)

    Feng, Huihui

    2016-01-01

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and −14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed −40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate. PMID:27600157

  10. Individual contributions of climate and vegetation change to soil moisture trends across multiple spatial scales.

    Science.gov (United States)

    Feng, Huihui

    2016-01-01

    Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate. PMID:27600157

  11. Bird population trends are linearly affected by climate change along species thermal ranges

    OpenAIRE

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; van der Jeugd, Henk; Lindström, Åke

    2010-01-01

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the spec...

  12. Effects of a warming trend on cool climate viticulture in Michigan, USA.

    Science.gov (United States)

    Schultze, Steven R; Sabbatini, Paolo; Luo, Lifeng

    2016-01-01

    Historically, Michigan's climate had mainly three challenges for grape production: growing season temperatures were too low, the growing season was too short and there was too much rain near harvest. However, climate change in the past decades has led to a vastly different landscape that is evolving to meet the new climate. Recently, there has been a significant move from Vitis labrusca (North American) grape plantings to Vitis vinifera (wine grapes) as a consequence of Michigan's shifting climate. The goal of this study was to analyze the historical shift in climate and its potential future impact on the grape industry. We obtained data climate model projection data from two greenhouse gas (GHG) emission scenarios. First, a multi-linear regression model was built to predict future grape yields (t/ac) using data from the climate model projections. Second, trends in the severity of the three challenges (temperature, season length, precipitation timing) were analyzed. In both GHG scenarios grape yields are seen to improve, but to different extents. The improvement is likely a response to warmer season temperatures canceling out losses to early season frost. Model projections recommend that Michigan's future climate will be more accommodating for all varieties of grapes. This suggests that grape production will continue to grow, but the landscape will continue to evolve with more emphasis on varieties that are more climatically sensitive to cold temperatures. Climate change has greatly affected Michigan's viticultural landscape, and will continue to do so in the coming decades.

  13. Evaluating historical climate and hydrologic trends in the Central Appalachian region of the United States

    Science.gov (United States)

    Gaertner, B. A.; Zegre, N.

    2015-12-01

    Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.

  14. Impacts of Climate Trends and Variability on Livestock Production in Brazil

    Science.gov (United States)

    Cohn, A.; Munger, J.; Gibbs, H.

    2015-12-01

    Cattle systems of Brazil are of major economic and environmental importance. They occupy ¼ of the land surface of the country, account for over 15 billion USD of annual revenue through the sale of beef, leather, and milk, are closely associated with deforestation, and have been projected to substantially grow in the coming decades. Sustainable intensification of production in the sector could help to limit environmental harm from increased production, but productivity growth could be inhibited by climate change. Gauging the potential future impacts of climate change on the Brazilian livestock sector can be aided by examining past evidence of the link between climate and cattle production and productivity. We use statistical techniques to investigate the contribution of climate variability and climate change to variability in cattle system output in Brazil's municipalities over the period 1974 to 2013. We find significant impacts of both temperature and precipitation variability and temperature trends on municipality-level exports and the production of both milk and beef. Pasture productivity, represented by a vegetation index, also varies significantly with climate shocks. In some regions, losses from exposure to climate trends were of comparable magnitude to technology and/or market-driven productivity gains over the study period.

  15. Trends in marine climate change research in the Nordic region since the first IPCC report

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Kokkalis, Alexandros; Bardarson, H.;

    2016-01-01

    Oceans are exposed to anthropogenic climate change shifting marine systems toward potential instabilities. The physical, biological and social implications of such shifts can be assessed within individual scientific disciplines, but can only be fully understood by combining knowledge and expertise...... evaluated the development of climate change related marine science by quantifying trends in number of publications, disciplinarity, and scientific focus of 1362 research articles published between 1990 and 2011. Our analysis showed a faster increase in publications within climate change related marine...... science than in general marine science indicating a growing prioritisation of research with a climate change focus. The composition of scientific disciplines producing climate change related publications, which initially was dominated by physical sciences, shifted toward a distribution with almost even...

  16. Mesosphere-Stratosphere Coupling: Implications for Climate Variability and Trends

    Science.gov (United States)

    Baldwin, Mark P.

    2004-01-01

    A key aspect of this project is the establishment of a causal link from circulation anomalies in the lower mesosphere and stratopause region downward through the stratosphere to the troposphere. The observational link for stratospheric sudden warmings and surface climate is fairly clear. However, our understanding of the dynamics is incomplete. We have been making significant progress in the area of dynamical mechanisms by which circulation anomalies in the stratosphere affect the troposphere. We are trying to understand the details and sequence of events that occur when a middle atmosphere (wind) anomaly propagates downward to near the tropopause. The wind anomaly could be caused by a warming or solar variations in the low-latitude stratopause region, or could have other causes. The observations show a picture that is consistent with a circulation anomaly that descends to the tropopause region, and can be detected as low as the mid-troposphere. Processes near the stratopause in the tropics appear to be important precursors to the wintertime development of the northern polar vortex. This may affect significantly our understanding of the process by which low-latitude wind anomalies in the low mesosphere and upper stratosphere evolve through the winter and affect the polar vortex.

  17. Late Cenozoic fire enhancement response to aridification in mid-latitude Asia: Evidence from microcharcoal records

    Science.gov (United States)

    Miao, Yunfa; Fang, Xiaomin; Song, Chunhui; Yan, Xiaoli; Zhang, Ping; Meng, Qingquan; Li, Fang; Wu, Fuli; Yang, Shengli; Kang, Shuyuan; Wang, Yuanping

    2016-05-01

    Fire provides an important indicator of paleoclimatic change. However, little information relating to late Cenozoic fire history has been gathered in mid-latitude Asia (including Inner Asia and East Asia), a key region for understanding the development of the arid-monsoon climate system as well as the driving forces behind it. Here we first report the records of microcharcoal concentrations (MC) covering the Holocene (10-0 ka) and late Pleistocene (0.8-0 Ma), which we use to analyze the fire activity patterns at an orbital time scale; then we compile the late Cenozoic MC record to investigate the long-term fire history by analyzing four cores from the Yangtze River Delta (YRD) area, East Asia (representing 8-0 Ma) and three sites in Inner Asia (representing 18-2 Ma). The results show that the (i) MC remained higher during the relatively dry late Holocene/glacial stages than that during the humid middle Holocene/interglacial stages at individual sites; (ii) MC increased with time in both Inner Asia and East Asia after 18 and 8 Ma, respectively; and (iii) MC always remained higher in the dry Inner Asia than in the contemporaneous wet East Asia. All these characteristics imply that late Cenozoic fire occurrence in mid-latitude Asia experienced a gradual increasing trend along with the global temperature/ice volume change, and indicates a continuous aridification trend across mid-latitude Asia. The global cooling, rather than the Tibetan Plateau uplift, might have played a key role in this observed trend.

  18. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    International Nuclear Information System (INIS)

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  19. 温盐环流反转及其对新生代气候的影响%TRANSITION OF THERMOHALINE CIRCULATION MODES AND ITS IMPACT ON CENOZOIC CLIMATE

    Institute of Scientific and Technical Information of China (English)

    张仲石; 王会军; 郭正堂

    2009-01-01

    温盐环流是由海水温度、盐度差异驱动的全球洋流循环系统.在气候系统中,它对全球热量输送起到了十分重要的作用.在亚轨道尺度(千年时间尺度)上,温盐环流的改变导致了一系列快速的气候变化,因此备受关注.在构造时间尺度(百万年时间尺度)上,古海洋记录和数值模拟揭示出,温盐环流的反转对新生代气候也产生了非常显著的影响.在新生代,温盐环流由"南大洋深层水主控型"向"北大西洋深层水主控型"反转.这一反转改变了全球的热量输送,使得南半球强烈变冷,并有町能导致南极东部永久冰盖的形成.在这一反转事件中,热带海道的作用更加重要.%The thermohaline circulation(THC)is a large-scale ocean circulation driven by global density gradients created by surface heat and freshwater fluxes. It plays an important role in the globale heat transport. Changes of the circulation have large impacts on the Earth climate. They cause a series of abrupt climate variations on the sub-orbital time scale, I. E., the millennial scale. Thus, the thermohaline circulation receives much concern. Here, based on paleoceanographic evidence and numeral modeling, we show that the thermohaline circulation also affect the climate markedly on the tectonic time scale,I, e., the million-year scale. In the Cenozoic,the thermohaline circulation reversed from the southern ocean deep water(SODW) dominated mode to the North Atlantic deep water(NADW) dominated mode,though the time of this reversal is still under debates. Some evidence reveals that the NADW formation was active during a period of the late Early Miocene and dominated ocean circulation after about 15Ma,while the earliest evidence of the NADW formation has been found in deep sea cores of the Early Oligocene age. The recent modeling study simulated the transition of thermohaline circulation from the SODW to the NADW dominated mode. The simulation indicates that the

  20. Potential trends in snowmelt-generated peak streamflows in a warming climate

    Science.gov (United States)

    Wang, Rui; Kumar, Mukesh; Link, Timothy E.

    2016-05-01

    Previously reported impacts of climate warming on streamflow peaks are varied, and the controls on the variations remain unclear. Using physically based linked snowpack and watershed hydrological models, we evaluated the potential changes in seasonal snowmelt-generated streamflow peak (Qmax) due to warming in a small semiarid mountain watershed. Results suggest that the trend in Qmax with warming is strongly governed by the conversion of precipitation phase, accumulated snow amount prior to the melt season, and snowmelt rate during the ablation period. Under a warming climate, the trend in Qmax is expected to be decreasing for relatively warm regions but increasing for cold regions. Climate regimes that are most susceptible to dominant precipitation phase transitions from snow to rain are likely to experience larger decreases in Qmax with warming. This study serves as a first step toward assessing the varied impacts on Qmax due to warming vis-a-vis the specific catchment hydroclimatology.

  1. Evidence of Arid to Semi-arid Climate Near Western Pacific Warm Pool During Sea-Level Lowstands: Caliche Surfaces in Late Cenozoic Carbonates of Nansha Islands, South China Sea

    Science.gov (United States)

    Gong, S.; Mii, H.; Horng, C.; Huang, F.; Chi, W.; Yui, T.; Torng, P.; Huang, S.; Wang, S.; Wu, J.; Yang, K.

    2003-12-01

    Whether the climate of tropical seas during glacial periods became cold and dry has been an open debate. Models by different authors proposed the tropical sea-surface temperature (SST) during the Last Glacial Maximum (LGM) to be about 2\\deg lower, or 5-6\\deg lower than present. The controversy partly arise from disparate reconstructions of temperature from stable oxygen isotope archives of marine sediments. In this paper, we provide field evidence of semi-arid or arid climate during late Cenozoic sea-level lowstands from an atoll located in central South China Sea near the Western Pacific Warm Pool (WPWP). Lower rainfall and higher evaporation associated with the dry conditions might have resulted in less meteoric water component in the surface sea-water, and this factor should be taken into considerations in deciphering temperature from isotopic records. Taiping Islet (Itu Aba), located at N10\\deg 23' and E114\\deg 22' is part of the Nansha (Spratly) Islands near the northwestern margin of the Western Pacific Warm Pool. Rock cores of a borehole at Taiping became accessible to the authors in the recent years. We identified at least four subaerial exposure surfaces (SES) in the late Cenozoic carbonates. Caliche deposits are recognized on each of the four surfaces on the basis of alveolar texture, micro-rhizolith, caliche glaebules and corroded limestone nodules in reddish matrix (terra-rossa). Caliche developed on limestones typically forms in semi-arid to arid areas with annual precipitation from about 500 to 1000mm, while the modern annual rainfall of Nansha Island is 1800-2100mm. The occurrence of the Nansha caliche suggests the climate was much drier than present during the sea-level lowstands represented by the four SES. During the sea-level falls, reduced surface area of South China Sea with continental shelves exposed might have resulted in less moistures in the atmosphere and therefore less precipitation and higher evaporation rates. As a result, the

  2. Climate trends in a non-traditional high quality wine producing region

    Directory of Open Access Journals (Sweden)

    Ludmila Bardin-Camparotto

    2014-09-01

    Full Text Available The global warming may put pressure over some world's highest quality wine producing regions. This fact indicates the need to evaluate the presence of climate change in non-traditional wine producing regions of the Globe. Therefore, the goals of this study were to detect trends in rainfall and air temperature series obtained from three locations of the eastern part of the State of São Paulo, Brazil (a non-traditional high quality wine producing region and to evaluate the effect of the detected climate trends on agrometeorological indices frequently used to indicate suitable areas for wine production. The trend analyses were applied to maximum and minimum air temperature series, rainfall series and to the following agrometeorological parameters: heliothermal index, cool night index and growing degree-days. These three indices were selected due to their previous use in studies that address the effect of regional climate conditions on the general wine style. The analyses took into account the grape phenological aspects for both summer and winter growing seasons. The results found in this study support the hypothesis of the presence of climate trends in the wine producing regions of the eastern part of the State of São Paulo-Brazil. These trends are mostly linked to changes in the minimum air temperature. The results also reveal a shortening in the duration of grapevines phenological phases and a change to warmer conditions during the ripening Months. These changes are consistent with the climate changes observed in other wine producing regions of the world and may negatively affect the wine production of the eastern part of the State of São Paulo.

  3. Prevailing climatic trends and runoff response from Hindukush-Karakoram-Himalaya, upper Indus basin

    CERN Document Server

    Hasson, Shabeh ul; Lucarini, Valerio

    2015-01-01

    We analyze trends in maximum, minimum and mean temperatures (Tx, Tn, and Tavg, respectively), diurnal temperature range (DTR) and precipitation from 18 stations (1250-4500 m asl) for their overlapping period of record (1995-2012), and separately, from six stations of their long term record (1961-2012). We apply Mann-Kendall test on serially independent time series to assess existence of a trend while true slope is estimated using Sen s slope method. Further, we statistically assess the spatial scale (field) significance of local climatic trends within ten identified sub-regions of UIB and analyze whether the spatially significant (field significant) climatic trends qualitatively agree with a trend in discharge out of corresponding sub-region. Over the recent period (1995-2012), we find a well agreed and mostly field significant cooling (warming) during monsoon season i.e. July-October (March-May and November), which is higher in magnitude relative to long term trends (1961-2012). We also find ... The observed...

  4. Genetic and phenotypic trends of fertility traits for Holstein dairy population in warm and temperate climate

    Directory of Open Access Journals (Sweden)

    Rabie Rahbar

    2016-04-01

    Full Text Available The main objective of this study was to investigate genetic and phenotypic trends for fertility traits in Holstein dairy population under warm and temperate climate. Fertility traits were: success in first service, gestation length, number of inseminations, insemination outcome, calving interval, calving birth weight and days open. The edited data set included up to 23,402 records from 9,486 cows. The mean and standard deviation for fertility traits were 0.32 ± 0.003, 278.2 ± 5.58, 2.73 ± 1.94,0.31 ± 0.001, 415.99 ± 79.62, 40.4 ± 6.08 and 140.36 ± 76.16 for success in first service, gestation length, number of inseminations, insemination outcome, calving interval, calving birth weight and days open, respectively. In general, there were decreasing genetic trends for all traits over the years. On the other hand, there were decreasing phenotypic trend for days open, calving interval, gestation length, number of inseminations and calving birth weight, but estimates of phenotypic trends were positive for success in first service and insemination outcome over the years. It was concluded decreased trend for days open, calving interval, gestation length, number of inseminations and calving birth weight and increased trend for success in first service and insemination outcome traits over time indicated that Holstein dairy producers in warm and temperate climate were successful in managing and improving in nutrition during 1999 to 2013.

  5. How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts?

    Science.gov (United States)

    Nasrollahi, Nasrin; AghaKouchak, Amir; Cheng, Linyin; Damberg, Lisa; Phillips, Thomas J.; Miao, Chiyuan; Hsu, Kuolin; Sorooshian, Soroosh

    2015-04-01

    Assessing the uncertainties and understanding the deficiencies of climate models are fundamental to developing adaptation strategies. The objective of this study is to understand how well Coupled Model Intercomparison-Phase 5 (CMIP5) climate model simulations replicate ground-based observations of continental drought areas and their trends. The CMIP5 multimodel ensemble encompasses the Climatic Research Unit (CRU) ground-based observations of area under drought at all time steps. However, most model members overestimate the areas under extreme drought, particularly in the Southern Hemisphere (SH). Furthermore, the results show that the time series of observations and CMIP5 simulations of areas under drought exhibit more variability in the SH than in the Northern Hemisphere (NH). The trend analysis of areas under drought reveals that the observational data exhibit a significant positive trend at the significance level of 0.05 over all land areas. The observed trend is reproduced by about three-fourths of the CMIP5 models when considering total land areas in drought. While models are generally consistent with observations at a global (or hemispheric) scale, most models do not agree with observed regional drying and wetting trends. Over many regions, at most 40% of the CMIP5 models are in agreement with the trends of CRU observations. The drying/wetting trends calculated using the 3 months Standardized Precipitation Index (SPI) values show better agreement with the corresponding CRU values than with the observed annual mean precipitation rates. Pixel-scale evaluation of CMIP5 models indicates that no single model demonstrates an overall superior performance relative to the other models.

  6. Cenozoic stratigraphy of the Sahara, Northern Africa

    Science.gov (United States)

    Swezey, Christopher S.

    2009-01-01

    This paper presents an overview of the Cenozoic stratigraphic record in the Sahara, and shows that the strata display some remarkably similar characteristics across much of the region. In fact, some lithologies of certain ages are exceptionally widespread and persistent, and many of the changes from one lithology to another appear to have been relatively synchronous across the Sahara. The general stratigraphic succession is that of a transition from early Cenozoic carbonate strata to late Cenozoic siliciclastic strata. This transition in lithology coincides with a long-term eustatic fall in sea level since the middle Cretaceous and with a global climate transition from a Late Cretaceous–Early Eocene “warm mode” to a Late Eocene–Quaternary “cool mode”. Much of the shorter-term stratigraphic variability in the Sahara (and even the regional unconformities) also can be correlated with specific changes in sea level, climate, and tectonic activity during the Cenozoic. Specifically, Paleocene and Eocene carbonate strata and phosphate are suggestive of a warm and humid climate, whereas latest Eocene evaporitic strata (and an end-Eocene regional unconformity) are correlated with a eustatic fall in sea level, the build-up of ice in Antarctica, and the appearance of relatively arid climates in the Sahara. The absence of Oligocene strata throughout much of the Sahara is attributed to the effects of generally low eustatic sea level during the Oligocene and tectonic uplift in certain areas during the Late Eocene and Oligocene. Miocene sandstone and conglomerate are attributed to the effects of continued tectonic uplift around the Sahara, generally low eustatic sea level, and enough rainfall to support the development of extensive fluvial systems. Middle–Upper Miocene carbonate strata accumulated in northern Libya in response to a eustatic rise in sea level, whereas Upper Miocene mudstone accumulated along the south side of the Atlas Mountains because uplift of the

  7. Trends In Wintertime Climate Variability In The Northeastern United States: 1970- 2004

    Science.gov (United States)

    Burakowski, E. A.; Wake, C. P.; Braswell, B.

    2007-12-01

    Humans experience climate variability and climate change primarily through changes in weather at a local and regional scale. One of the most effective means to track these changes is through detailed analysis of meteorological data. In this work, changes in the winter climate of the northeastern United States are documented. Snow on the ground and snowfall are important components in water management, travel safety, and winter tourism and recreation. Trends in Temperature, snowfall, and snow depth data were collected from the United States Historical Climate Network (USHCN). The months of December through March are selected for winter climate analysis. Monthly and seasonal time series of the number of days with snow on the ground greater than 1, 3, and 5 inches are constructed from snow depth data. The National Climatic Data Center and Carbon Dioxide Information Analysis Center perform extensive quality assurance and quality control measures for monthly temperature data. However, daily snowfall and snow depth data have not been adjusted for station relocations, instrument changes, or time of observation biases. To address these data quality issues, we evaluate daily data for spatial coherence with nearest neighbors, and remove stations with non-climatic influences from regional analysis. Monthly and seasonal trends in mean, minimum and maximum temperature, total snowfall, and days with snow on the ground are estimated using linear regression and robust spline analysis. Northeastern United States winter temperatures are warming at a rate significantly greater than the global average. At stations located north of 44oN, December snowfall exhibits a decreasing trend (-3.5 inches/decade), whereas March snowfall is increasing (+1.3 inches/decade) over the period 1970-2004. Across the northeastern United States, the number of days with snow on the ground has also decreased substantially. The results hold important implications for the winter economy and recreation in the

  8. CENOZOIC CLIMATE AND ENVIRONMENT CHANGE WITH EVOLUTION OF MAMMALIAN FAUNAS IN GANSU PROVINCE%甘肃新生代气候环境变化与哺乳动物群演替

    Institute of Scientific and Technical Information of China (English)

    颉光普; 赵得思

    2011-01-01

    甘肃省境内新生代沉积中富含动物化石,以早渐新世晚期、晚渐新世、早中新世早期、中中新世晚期、晚中新世、早更新世和晚更新世的哺乳动物化石最为丰富.新生代青藏高原形成、快速隆升,改变了东亚的大气环流和中国的地理格局,使甘肃的气候和地理面貌发生了巨变.甘肃省境内的哺乳动物群在这些变化背景下发生了一次次的更替.本文通过对不同时代的动物群所代表的生态特征分析和结合沉积物佐证,推测了甘肃新生代的气候环境演变过程:古新世-早渐新世早期,海拔不高,气候炎热干燥,呈沙漠或干旱的荒漠环境;早渐新世晚期-早中新世早期为半干旱半暖湿气候下的森林环境,间有开阔的草原地带;中中新世晚期森林更加茂密,水体丰富,冬季风开始逐渐形成并不断发展;晚中新世为炎热半干旱的稀树草原环境,古冬季风盛行;上新世时变得越来越干冷;第四纪开始,青藏高原的抬升活动愈发剧烈,甘肃的海拔高度越来越高,从早期的干冷到中间的短期暖湿反复变化,生物和地貌也随之巨变,适应干冷气候和荒漠草原环境的哺乳动物兴起.晚更新世时甘肃北部以干燥寒冷的草原为主,夹有大面积森林草原或荒漠草原,但此期间气候有波动,出现过温湿气候;南部有茂密的森林,气候暖湿.晚更新世末,气候环境、地理和生物面貌已与现代相似.%Cenozoic sediments in Cansu Province contain abundant fossils, especially fossil mammals in Early to Late Oligocene,Early through Late Miocene,and Early through Late Pleistocene. The formation of the Qinghai-Tibetan Plateau and its rapid uplift in the Cenozoic altered atmospheric circulations in East Asia and geographic layout in China. Such changes also profoundly affect the climates and topography of the province. Mammalian faunas in Cansu Province have undergone repeated turnovers under

  9. Land-atmosphere coupling explains the link between pan evaporation and actual evapotranspiration trends in a changing climate

    NARCIS (Netherlands)

    Heerwaarden, van C.C.; Vilà-Guerau de Arellano, J.; Teuling, A.J.

    2010-01-01

    Decreasing trends in pan evaporation are widely observed across the world as a response of the climate system to changes in temperature, precipitation, incoming radiation and wind speed. Nevertheless, we only partially understand how trends in actual evapotranspiration are linked to those trends. He

  10. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer

    Science.gov (United States)

    Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C.; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region’s most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species’ total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  11. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    Science.gov (United States)

    Uboni, Alessia; Horstkotte, Tim; Kaarlejärvi, Elina; Sévêque, Anthony; Stammler, Florian; Olofsson, Johan; Forbes, Bruce C; Moen, Jon

    2016-01-01

    Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus) populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species, and the multi

  12. Long-Term Trends and Role of Climate in the Population Dynamics of Eurasian Reindeer.

    Directory of Open Access Journals (Sweden)

    Alessia Uboni

    Full Text Available Temperature is increasing in Arctic and sub-Arctic regions at a higher rate than anywhere else in the world. The frequency and nature of precipitation events are also predicted to change in the future. These changes in climate are expected, together with increasing human pressures, to have significant impacts on Arctic and sub-Arctic species and ecosystems. Due to the key role that reindeer play in those ecosystems, it is essential to understand how climate will affect the region's most important species. Our study assesses the role of climate on the dynamics of fourteen Eurasian reindeer (Rangifer tarandus populations, using for the first time data on reindeer abundance collected over a 70-year period, including both wild and semi-domesticated reindeer, and covering more than half of the species' total range. We analyzed trends in population dynamics, investigated synchrony among population growth rates, and assessed the effects of climate on population growth rates. Trends in the population dynamics were remarkably heterogeneous. Synchrony was apparent only among some populations and was not correlated with distance among population ranges. Proxies of climate variability mostly failed to explain population growth rates and synchrony. For both wild and semi-domesticated populations, local weather, biotic pressures, loss of habitat and human disturbances appear to have been more important drivers of reindeer population dynamics than climate. In semi-domesticated populations, management strategies may have masked the effects of climate. Conservation efforts should aim to mitigate human disturbances, which could exacerbate the potentially negative effects of climate change on reindeer populations in the future. Special protection and support should be granted to those semi-domesticated populations that suffered the most because of the collapse of the Soviet Union, in order to protect the livelihood of indigenous peoples that depend on the species

  13. Late Cenozoic geomorphologic signal of Andean forearc deformation and tilting associated with the uplift and climate changes of the Southern Atacama Desert (26°S 28°S)

    Science.gov (United States)

    Riquelme, Rodrigo; Hérail, Gérard; Martinod, Joseph; Charrier, Reynaldo; Darrozes, José

    2007-05-01

    We analyze remarkable examples of the large (˜ 10,000 km 2) and local-scale (˜ 100 km 2) landscape forms related to Late Cenozoic geomorphologic evolution of the Andean forearc region in the Southern Atacama Desert. We also consider the continental sedimentary deposits, so-called "Atacama Gravels", which are related to the degradation of the landscape during the Neogene. Our analysis integrates 1:50,000 field cartography, Landsat TM images observations, ˜ 1:1000 sedimentary logging data, and 50 m horizontal resolution topographic data to reconstruct the Late Cenozoic geomorphologic evolution of this region and discuss the factors that control it, i.e., Miocene aridification of the climate and Neogene Central Andean uplift. We determine that the Precordillera was already formed in the Oligocene and most of the present-day altitude of the Precordillera was reached before that time. Afterward, five episodes of geomorphologic evolution can be differentiated: (1) the development of an Oligocene deep incised drainage system cutting the uplifted Precordillera (up to 2000 m of vertical incision) and connecting it to the Ocean; followed by (2) the infilling of deep incised valleys by up to 400 m of Atacama Gravels. This infill started in the Early Miocene with the development of fluvial deposition and finished in the Middle Miocene with playa and playa lake depositions. We propose that playa-related deposition occurs in an endorheic context related to tectonic activity of the Atacama Fault System and Coastal Cordillera uplift. However, the upward sedimentologic variation in the Atacama Gravels evidences a progressive aridification of the climate. Subsequently, we have identified the effects of the Middle-Upper Miocene slow tectonic deformation: the Neogene Andean uplift is accommodated by a tilting or flexuring of the inner-forearc (Central Depression and Precordillera) related to some hundreds of meters of uplift in the Precordillera. This tilting or flexuring results

  14. PATMOS-x Cloud Climate Record Trend Sensitivity to Reanalysis Products

    Directory of Open Access Journals (Sweden)

    Michael J. Foster

    2016-05-01

    Full Text Available Continuous satellite-derived cloud records now extend over three decades, and are increasingly used for climate applications. Certain applications, such as trend detection, require a clear understanding of uncertainty as it relates to establishing statistical significance. The use of reanalysis products as sources of ancillary data could be construed as one such source of uncertainty, as there has been discussion regarding the suitability of reanalysis products for trend detection. Here we use three reanalysis products: Climate Forecast System Reanalysis (CFSR, Modern Era Retrospective Analysis for Research and Applications (MERRA and European Center for Medium range Weather Forecasting (ECMWF ERA-Interim (ERA-I as sources of ancillary data for the Pathfinder Atmospheres Extended/Advanced Very High Resolution Radiometer (PATMOS-x/AVHRR Satellite Cloud Climate Data Record (CDR, and perform inter-comparisons to determine how sensitive the climatology is to choice of ancillary data source. We find differences among reanalysis fields required for PATMOS-x processing, which translate to small but not insignificant differences in retrievals of cloud fraction, cloud top height and cloud optical depth. The retrieval variability due to choice of reanalysis product is on the order of one third the size of the retrieval uncertainty, making it a potentially significant factor in trend detection. Cloud fraction trends were impacted the most by choice of reanalysis while cloud optical depth trends were impacted the least. Metrics used to determine the skill of the reanalysis products for use as ancillary data found no clear best choice for use in PATMOS-x. We conclude use of reanalysis products as ancillary data in the PATMOS-x/AVHRR Cloud CDR do not preclude its use for trend detection, but for that application uncertainty in reanalysis fields should be better represented in the PATMOS-x retrieval uncertainty.

  15. Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China

    Directory of Open Access Journals (Sweden)

    Liu Xiaodong

    2011-12-01

    Full Text Available Abstract Background Hemorrhagic fever with renal syndrome (HFRS is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May and winter (November to January, during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model

  16. Foraminifera in Cenozoic Paleoenvironments

    Institute of Scientific and Technical Information of China (English)

    Brian McGowran

    2005-01-01

    Paleontologists search the fossil record for evidence of age, ancient environments, phylogenetic reconstructions and ancient communities. Cenozoic foraminifera preserve evidence for all of these simultaneously from the water column and from at, above and below the sediment/water interface. As our understanding of foraminiferal assemblages and their place in the strata (biofacies) becomes more sophisticated, so are foraminiferal biofacies challenged to contribute to more subtle problems in Cenozoic earth and life history. Progress is described as a series of five "integrations". (Ⅰ) The quantification of foraminiferal biofacies was an advance on simple presences and absences of species meeting such questions as marine or nonmarine, or shallow or deep. (Ⅱ) Foraminiferal shells carry geochemical signals especially isotopes of oxygen (temperature, ice volume), carbon (nutrition and the carbon cycle), and strontium (seawater ratios through time). (Ⅲ) From modern foraminiferal biology we have lifestyle insights leading to a model of oceans and paleo-oceans called the trophic resource continuum, a valuable way into greenhouse-icehouse comparisons and contrasts. (Ⅳ) Biofacies changes in space and time are sometimes abrupt with little evidence of diachrony, and sometimes gradual. These patterns are clarified in the context of sequence stratigraphy (which they enrich in turn). (Ⅴ) The paleobiological counterpart of sequence stratigraphy is evolutionary paleoecology, reconstructing communities in deep time. The foraminifera are perfectly suited to investigate the possibility (or likelihood) that global environmental shifts have controlled community turnover in the pelagic, neritic and terrestrial realms.

  17. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Science.gov (United States)

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  18. Seismic facies and stratigraphy of the Cenozoic succession in McMurdo Sound, Antarctica: Implications for tectonic, climatic and glacial history

    Science.gov (United States)

    Fielding, C.R.; Whittaker, J.; Henrys, S.A.; Wilson, T.J.; Nash, T.R.

    2007-01-01

    A new stratigraphic model is presented for the evolution of the Cenozoic Victoria Land Basin of the West Antarctic Rift, based on integration of seismic reflection and drilling data. The Early Rift phase (?latest Eocene to Early Oligocene) comprises wedges of strata confined by early extensional faults, and which contain seismic facies consistent with drainage via coarse-grained fans and deltas into discrete, actively subsiding grabens and half-grabens. The Main Rift phase (Early Oligocene to Early Miocene) comprises a lens of strata that thickens symmetrically from the basin margins into a central depocenter, and in which stratal events pass continuously over the top of the Early Rift extensional topography. Internal seismic facies and lithofacies indicate a more organized, cyclical shallow marine succession, influenced increasingly upward by cycles of glacial advance and retreat into the basin. The Passive Thermal Subsidence phase (Early Miocene to ?) comprises an evenly distributed sheet of strata that does not thicken appreciably into the depocentre, with more evidence for clinoform sets and large channels. These patterns are interpreted to record accumulation under similar environmental conditions but in a regime of slower subsidence. The Renewed Rifting phase (? to Recent, largely unsampled by coring thus far) has been further divided into 1, a lower interval, in which the section thickens passively towards a central depocentre, and 2. an upper interval, in which more dramatic thickening patterns are complicated by magmatic activity. The youngest part of the stratigraphy was accumulated under the influence of flexural loading imposed by the construction of large volcanic edifices, and involved minimal sediment supply from the western basin margin, suggesting a change in environmental (glacial) conditions at possibly c. 2 Ma.

  19. Uncertainty of climate change impacts and consequences on the prediction of future hydrological trends

    International Nuclear Information System (INIS)

    In the future, water is very likely to be the resource that will be most severely affected by climate change. It has been shown that small perturbations in precipitation frequency and/or quantity can result in significant impacts on the mean annual discharge. Moreover, modest changes in natural inflows result in larger changes in reservoir storage. There is however great uncertainty linked to changes in both the magnitude and direction of future hydrological trends. This presentation discusses the various sources of this uncertainty and their potential impact on the prediction of future hydrological trends. A companion paper will look at adaptation potential, taking into account some of the sources of uncertainty discussed in this presentation. Uncertainty is separated into two main components: climatic uncertainty and 'model and methods' uncertainty. Climatic uncertainty is linked to uncertainty in future greenhouse gas emission scenarios (GHGES) and to general circulation models (GCMs), whose representation of topography and climate processes is imperfect, in large part due to computational limitations. The uncertainty linked to natural variability (which may or may not increase) is also part of the climatic uncertainty. 'Model and methods' uncertainty regroups the uncertainty linked to the different approaches and models needed to transform climate data so that they can be used by hydrological models (such as downscaling methods) and the uncertainty of the models themselves and of their use in a changed climate. The impacts of the various sources of uncertainty on the hydrology of a watershed are demonstrated on the Peribonka River basin (Quebec, Canada). The results indicate that all sources of uncertainty can be important and outline the importance of taking these sources into account for any impact and adaptation studies. Recommendations are outlined for such studies. (author)

  20. Cenozoic macroevolution in the deep-sea microfossil record: can we let go of species richness?

    Science.gov (United States)

    Hannisdal, Bjarte; Liow, Lee Hsiang

    2014-05-01

    The deep-sea microfossil record is an outstanding resource for the study of macroevolutionary changes in planktonic groups. Studies of plankton evolution and its possible link to climate changes over the Cenozoic have typically targeted apparent trends in species richness. However, most species are rare, and fossil richness is particularly vulnerable to the imperfections (incompleteness, reworking, age and taxonomic errors) of existing microfossil occurrence databases. Here we use an alternative macroevolutionary quantity: Summed Common Species Occurrence Rate (SCOR). By focusing on the most commonly occurring species, SCOR is decoupled from species richness, robust to preservation/sampling variability, yet sensitive to relative changes in the overall abundance of a group. Numerical experiments are used to illustrate the sampling behavior of SCOR and its relationship to (sampling-standardized) species richness. We further show how SCOR estimated from the NEPTUNE database (ODP/DSDP) can provide a new perspective on long-term evolutionary and ecological changes in major planktonic groups (e.g. coccolithophores and forams). Finally, we test possible linkages between planktonic SCOR records and proxy reconstructions of climate changes over the Cenozoic.

  1. Prediction Research of Climate Change Trends over North China in the Future 30 Years

    Institute of Scientific and Technical Information of China (English)

    LIU Yanxiang; YAN Jinghui; WU Tongwen; GUO Yufu; CHEN Lihua; WANG Jianping

    2008-01-01

    A simulation of climate change trends over North China in the past 50 years and future 30 years was performed with the actual greenhouse gas concentration and IPCC SRES B2 scenario concentration by IAP/LASG GOALS 4.0 (Global Ocean-Atmosphere-Land system coupled model), developed by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). In order to validate the model,the modern climate during 1951-2000 was first simulated by the GOALS model with the actual greenhouse gas concentration, and the simulation results were compared with observed data. The simulation results basically reproduce the lower temperature from the 1960s to mid-1970s and the warming from the 1980sfor the globe and Northern Hemisphere, and better the important cold (1950-1976) and warm (1977-2000)periods in the past 50 years over North China. The correlation coefficient is 0.34 between simulations and observations (significant at a more than 0.05 confidence level). The range of winter temperature departures for North China is between those for the eastern and western China's Mainland. Meanwhile, the summer precipitation trend turning around the 1980s is also successfully simulated. The climate change trends in the future 30 years were simulated with the CO2 concentration under IPCC SRES-B2 emission scenario.The results show that, in the future 30 years, winter temperature will keep a warming trend in North China and increase by about 2.5℃ relative to climate mean (1960-1990). Meanwhile, summer precipitation will obviously increase in North China and decrease in South China, displaying a south-deficit-north-excessive pattern of precipitation.

  2. Management and Climate Controls on Fire Trends in the Continental United States

    Science.gov (United States)

    Lin, H.; McCarty, J. L.; Wang, D.; Rogers, B. M.; Morton, D. C.; Collatz, G. J.; Randerson, J. T.

    2012-12-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by forest fires in both scale and in the resources invested for management. Here we quantified decadal trends, interannual variability, and seasonality of satellite observations of active fires as a function of management type in the continental U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity Database (MTBS) to identify the location of large wildland fires and the MODIS Land Cover Type Product (MCD12Q1) to identify agricultural burning in croplands. A third class of fires, defined as prescribed or other fires included all residual fires not attributed to wildland or cropland fire types. Wildland fires dominated the interannual variation for U.S. active fires; however, there were no significant trends by region over the last decade. Agricultural and other/prescribed fires were responsible for 70% of total active fires, 50% of which were in the south and southeastern United States where contributions from wildland fires was relatively small. In the west, agricultural fires had a decreasing trend at a rate of 6% per year, mainly during the harvest season of October. Except for the west, prescribed fires were in-phase with agricultural fires on both seasonal and interannual timescales, possibly reflecting the similar management strategies. We also performed correlation analysis between fires and potential evapotranspiration (PE) to examine how climate controls varied by fire type. While climate is the dominant factor for wildland fires, agricultural and other non-wildland fires show no direct relationship to PE. Our result suggests that by targeting agricultural and prescribed fire management, there is potential to significantly reduce landscape fire emissions within the U.S., despite expected changes in climate over the next several decades. The trends (p < 0.01) in annual active fire detections across the

  3. Multidecadal variations and trends of central European temperature in simulated climates

    Science.gov (United States)

    Mikšovský, Jiří; Farda, Aleš; Belda, Michal

    2016-04-01

    Despite the steady advances in numerical modelling, the current generation of climate simulations still struggles to reliably reproduce some of the processes in the climate system and their effects. Aside from the long-term variations, related to the responses to anthropogenic and natural forcings, a great deal of attention is also being devoted to the ability of the climate models to mimic the multidecadal variability observed in the climatic records, including the possible imprints of phenomena such as Atlantic Multidecadal Oscillation or Pacific Decadal Oscillation. In this presentation, we deliver some of our findings resulting from an analysis of observed and simulated temperature variability in central Europe - a region with long history of climatic measurements, with some of the records extending back to (or even beyond) the 19th century. Comparison of the measured temperature data to multiple historical runs of the CNRM-CM5 global climate model is performed, over the 19th and 20th centuries. For the period since 1850, an analysis is also carried out for temperature series originating from various simulations within the Coupled Model Intercomparison Project Phase 5 (CMIP5). We show that while many of the studied models exhibit relatively good skill in capturing the basic statistical characteristics of regional temperature, their representation of long-term trends and multidecadal variability in the temperature series often differs substantially from the observations.

  4. Recent trends and climatic perspectives of hailstorms frequency and intensity in Tuscany and Central Italy

    Directory of Open Access Journals (Sweden)

    F. Piani

    2005-01-01

    Full Text Available The damages from climatic extremes have dramatically increased in the last decades in Europe, as likely outcomes of climate change: floods, droughts, heat waves and hailstorms have brought local as well as widespread damages to farmers, industry, infrastructures and society, to insurance and reinsurance companies; in this work we deal with the hailstorm hazard. The NCEP-NCAR Reanalysis (2.5 by 2.5° lat-lon over the Italian area and the hailstorm reports at several sites are used to identify few forcings for hailstorms; statistical relationships linking forcings and hailstorm frequencies are derived. Such relationships are applied to the same forcings derived from the CGCM2-A2 climate scenario provided by the Canadian Centre for Climate modeling and analysis (CCCma; resolution approximately 3.75 by 3.75° lat-lon, to evaluate the expected changes of the frequency of hailstorms. The time series of the forcings from the NCEP-NCAR Reanalysis and the CCCma climate scenario in the past decades are compared in order to assess the reliability and accuracy of the predictions of the future hailstorm hazard. It is shown that the climate scenario provides a fairly faithful representation of the past trends of the forcings relevant to the hailstorms frequency and that such quantity, hence the hailstorm hazard, is growing and will likely grow in the future over the limited area taken into consideration in this study.

  5. Climatic modulation of recent trends in ocean acidification in the California Current System

    Science.gov (United States)

    Turi, G.; Lachkar, Z.; Gruber, N.; Münnich, M.

    2016-01-01

    We reconstruct the evolution of ocean acidification in the California Current System (CalCS) from 1979 through 2012 using hindcast simulations with an eddy-resolving ocean biogeochemical model forced with observation-based variations of wind and fluxes of heat and freshwater. We find that domain-wide pH and {{{Ω }}}{arag} in the top 60 m of the water column decreased significantly over these three decades by about -0.02 decade-1 and -0.12 decade-1, respectively. In the nearshore areas of northern California and Oregon, ocean acidification is reconstructed to have progressed much more rapidly, with rates up to 30% higher than the domain-wide trends. Furthermore, ocean acidification penetrated substantially into the thermocline, causing a significant domain-wide shoaling of the aragonite saturation depth of on average -33 m decade-1 and up to -50 m decade-1 in the nearshore area of northern California. This resulted in a coast-wide increase in nearly undersaturated waters and the appearance of waters with {{{Ω }}}{arag}\\lt 1, leading to a substantial reduction of habitat suitability. Averaged over the whole domain, the main driver of these trends is the oceanic uptake of anthropogenic CO2 from the atmosphere. However, recent changes in the climatic forcing have substantially modulated these trends regionally. This is particularly evident in the nearshore regions, where the total trends in pH are up to 50% larger and trends in {{{Ω }}}{arag} and in the aragonite saturation depth are even twice to three times larger than the purely atmospheric CO2-driven trends. This modulation in the nearshore regions is a result of the recent marked increase in alongshore wind stress, which brought elevated levels of dissolved inorganic carbon to the surface via upwelling. Our results demonstrate that changes in the climatic forcing need to be taken into consideration in future projections of the progression of ocean acidification in coastal upwelling regions.

  6. Trends and Projections of Climatic Extremes in the Black Volta Basin, West Africa: Towards Climate Change Adaptation.

    Science.gov (United States)

    Aziz, F.

    2015-12-01

    The water resources of the Black Volta Basin in West Africa constitute a major resource for the four countries (Burkina Faso, Ghana, Côte d'Ivoire, Mali) that share it. For Burkina Faso and Ghana, the river is the main natural resource around which the development of the diverse sectors of the two economies is built. Whereas Ghana relies heavily on the river for energy, land-locked Burkina Faso continuously develops the water for agricultural purposes. Such important role of the river makes it an element around which there are potential conflicts: either among riparian countries or within the individual countries themselves. This study documents the changes in temperature and precipitation extremes in the Black Volta Basin region for the past (1981-2010) and makes projections for the mid-late 21st century (2051-2080) under two emission scenarios; RCP 2.6 and RCP 8.5. The Expert Team on Climate Change Detection and Indices (ETCCDI) temperature- and precipitation-based indices are computed with the RClimdex software. Observed daily records and downscaled CORDEX data of precipitation and maximum and minimum temperatures are used for historical and future trend analysis respectively. In general low emission scenarios show increases in the cold extremes. The region shows a consistent pattern of trends in hot extremes for the 1990's. An increasing trend in hot extremes is expected in the future under RCP 8.5 while RCP 2.5 shows reductions in hot extremes. Regardless of the emission scenario, projections show more frequent hot nights in the 21st century. Generally, the region shows variability in trends for future extreme precipitation indices with only a few of the trends being statistically significant (5% level). Results obtained provide a basic and first step to understanding how climatic extremes have been changing in the Volta Basin region and gives an idea of what to expect in the future. Such studies will also help in making informed decisions on water management

  7. Streamflow Trends and Responses to Climate Variability and Land Cover Change in South Dakota

    Directory of Open Access Journals (Sweden)

    Karishma Niloy Kibria

    2016-01-01

    Full Text Available Trends in high, moderate, and low streamflow conditions from United States Geological Survey (USGS gauging stations were evaluated for a period of 1951–2013 for 18 selected watersheds in South Dakota (SD using a modified Mann-Kendall test. Rainfall trends from 21 rainfall observation stations located within 20-km of the streamflow gauging stations were also evaluated for the same study period. The concept of elasticity was used to examine sensitivity of streamflow to variation in rainfall and land cover (i.e., grassland in the study watersheds. Results indicated significant increasing trends in seven of the studied streams (of which five are in the east and two are located in the west, nine with slight increasing trends, and two with decreasing trends for annual streamflow. About half of the streams exhibited significant increasing trends in low and moderate flow conditions compared to high flow conditions. Ten rainfall stations showed slight increasing trends and seven showed decreasing trends for annual rainfall. Streamflow elasticity analysis revealed that streamflow was highly influenced by rainfall across the state (five of eastern streams and seven of western streams. Based on this analysis, a 10% increase in annual rainfall would result in 11%–30% increase in annual streamflow in more than 60% of SD streams. While streamflow appears to be more sensitive to rainfall across the state, high sensitivity of streamflow to rapid decrease in grassland area was detected in two western watersheds. This study provides valuable insight into of the relationship between streamflow, climate, and grassland cover in SD and would support further research and stakeholder decision making about water resources.

  8. New gridded daily climatology of Finland: Permutation-based uncertainty estimates and temporal trends in climate

    Science.gov (United States)

    Aalto, Juha; Pirinen, Pentti; Jylhä, Kirsti

    2016-04-01

    Long-term time series of key climate variables with a relevant spatiotemporal resolution are essential for environmental science. Moreover, such spatially continuous data, based on weather observations, are commonly used in, e.g., downscaling and bias correcting of climate model simulations. Here we conducted a comprehensive spatial interpolation scheme where seven climate variables (daily mean, maximum, and minimum surface air temperatures, daily precipitation sum, relative humidity, sea level air pressure, and snow depth) were interpolated over Finland at the spatial resolution of 10 × 10 km2. More precisely, (1) we produced daily gridded time series (FMI_ClimGrid) of the variables covering the period of 1961-2010, with a special focus on evaluation and permutation-based uncertainty estimates, and (2) we investigated temporal trends in the climate variables based on the gridded data. National climate station observations were supplemented by records from the surrounding countries, and kriging interpolation was applied to account for topography and water bodies. For daily precipitation sum and snow depth, a two-stage interpolation with a binary classifier was deployed for an accurate delineation of areas with no precipitation or snow. A robust cross-validation indicated a good agreement between the observed and interpolated values especially for the temperature variables and air pressure, although the effect of seasons was evident. Permutation-based analysis suggested increased uncertainty toward northern areas, thus identifying regions with suboptimal station density. Finally, several variables had a statistically significant trend indicating a clear but locally varying signal of climate change during the last five decades.

  9. Climate change effects on human health in a gender perspective: some trends in Arctic research

    Directory of Open Access Journals (Sweden)

    Kukarenko Natalia

    2011-09-01

    Full Text Available Background: Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective: To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods: A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results: Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion: Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both

  10. Climate reconstructions of the NH mean temperature: Can underestimation of trends and variability be avoided?

    Science.gov (United States)

    Christiansen, Bo

    2010-05-01

    Knowledge about the climate in the period before instrumental records are available is based on climate proxies obtained from tree-rings, sediments, ice-cores etc. Reconstructing the climate from such proxies is therefore necessary for studies of climate variability and for placing recent climate change into a longer term perspective. More than a decade ago pioneering attempts at using a multi-proxy dataset to reconstruct the Northern Hemisphere (NH) mean temperature resulted in the much published "hockey-stick"; a NH mean temperature that did not vary much before the rapid increase in the last century. Subsequent reconstructions show some differences but the overall "hockey-stick" structure seems to be a persistent feature However, there has been an increasing awareness of the fact that the applied reconstruction methods underestimate the low-frequency variability and trends. The recognition of the inadequacies of the reconstruction methods has to a large degree originated from pseudo-proxy studies, i.e., from long climate model experiments where artificial proxies have been generated and reconstructions based on these have been compared to the known model climate. It has also been found that reconstructions contain a large element of stochasticity which is revealed as broad distributions of skills. This means that it is very difficult to draw conclusions from a single or a few realizations. Climate reconstruction methods are based on variants of linear regression models relating temperatures and proxies. In this contribution we review some of the theory of linear regression and error-in-variables models to identify the sources of the underestimation of variability. Based on the gained insight we formulate a reconstruction method supposed to minimize this underestimation. The method is tested by applying it to an ensemble of surrogate temperature fields based on two climate simulations covering the last 500 and 1000 years. Compared to the RegEM TTLS method and a

  11. The end of trend-estimation for extreme floods under climate change?

    Science.gov (United States)

    Schulz, Karsten; Bernhardt, Matthias

    2016-04-01

    An increased risk of flood events is one of the major threats under future climate change conditions. Therefore, many recent studies have investigated trends in flood extreme occurences using historic long-term river discharge data as well as simulations from combined global/regional climate and hydrological models. Severe floods are relatively rare events and the robust estimation of their probability of occurrence requires long time series of data (6). Following a method outlined by the IPCC research community, trends in extreme floods are calculated based on the difference of discharge values exceeding e.g. a 100-year level (Q100) between two 30-year windows, which represents prevailing conditions in a reference and a future time period, respectively. Following this approach, we analysed multiple, synthetically derived 2,000-year trend-free, yearly maximum runoff data generated using three different extreme value distributions (EDV). The parameters were estimated from long term runoff data of four large European watersheds (Danube, Elbe, Rhine, Thames). Both, Q100-values estimated from 30-year moving windows, as well as the subsequently derived trends showed enormous variations with time: for example, estimating the Extreme Value (Gumbel) - distribution for the Danube data, trends of Q100 in the synthetic time-series range from -4,480 to 4,028 m³/s per 100 years (Q100 =10,071m³/s, for reference). Similar results were found when applying other extreme value distributions (Weibull, and log-Normal) to all of the watersheds considered. This variability or "background noise" of estimating trends in flood extremes makes it almost impossible to significantly distinguish any real trend in observed as well as modelled data when such an approach is applied. These uncertainties, even though known in principle are hardly addressed and discussed by the climate change impact community. Any decision making and flood risk management, including the dimensioning of flood

  12. Cenozoic uplift and subsidence in the North Atlantic region

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Artemieva, Irina

    2009-01-01

    studies, mass balance calculations and extrapolation of seismic profiles to onshore geomorphological features. The integration of about 200 published results reveal a clear pattern of topographic changes in the North Atlantic region during the Cenozoic: (1) The first major phase of Cenozoic regional......The topographic evolution of the "passive" margins of the North Atlantic during the last 65 Myr is the subject of extensive debate due to inherent limitations of the geological, geomorphological and geophysical methods used for studies of uplift and subsidence. We have compiled a database of sign......, time and amplitude (where possible) of topographic changes in the North Atlantic region during the Cenozoic (65-0 Ma). Our compilation is based on published results from reflection seismic studies, AFT (apatite fission track) studies, VR (vitrinite reflectance) trends, maximum burial, sediment supply...

  13. The Drivers of Climate Change -- Tracking Global Greenhouse Gas Trends and their Warming Influence

    Science.gov (United States)

    Butler, J. H.; Tans, P. P.; Montzka, S. A.; Dlugokencky, E. J.; Hall, B. D.; Masarie, K. A.; Elkins, J. W.; Dutton, G. S.; Miller, B. R.

    2014-12-01

    Of the National Physical Climate Indicators, two stand out as primary drivers of climate change - the Global Monthly Average of Carbon Dioxide Concentration and the Annual Greenhouse Gas Index. Both of these are products of high quality, long-term, globally distributed monitoring of greenhouse gases in the atmosphere. To support monitoring of the trends of these gases over decades, NOAA maintains the WMO World Calibration Scales for the major contributors to radiative forcing and its own universally accepted scales for most of the minor greenhouse gases. Maintenance of these scales over time ensures the consistency of measurements from decade to decade. Further quality control through use of internal and external comparisons of on-going measurements places tight constraints on spatial and temporal bias. By far the most influential greenhouse gas contributing to radiative forcing is carbon dioxide (CO2). Its amount at Mauna Loa is reported on-line daily and its global trend updated monthly on NOAA's global monitoring website and at climate.gov. This is one of the most closely watched records of atmospheric composition, as its accelerating rate of increase is a constant reminder that society has yet to deal successfully with its emissions of this gas. Much of CO2 emitted remains in the atmosphere for 1000s of years, which is why it is of substantial concern. But atmospheric CO2 is not alone in warming the planet and driving climate change. Many other gases contribute in a lesser way to this long-term trend and are captured along with CO2 in NOAA's Annual Greenhouse Gas Index (AGGI). The AGGI is a normalized compilation of the radiative forcing (RF) of five major long-lived greenhouse gases (96% of RF) and 15 minor gases (4% of RF). Because it does not include short lived gases (living in. This presentation discusses the development of these two indexes and their national and global use.

  14. The importance of external climate forcing for the variability and trends of coastal upwelling in past and future climate

    Science.gov (United States)

    Tim, Nele; Zorita, Eduardo; Hünicke, Birgit; Yi, Xing; Emeis, Kay-Christian

    2016-06-01

    The eastern boundary upwelling systems, located in the subtropics at the eastern boundary of the Atlantic and Pacific oceans and mainly driven by the trade winds, are the major coastal upwelling regions. Previous studies have suggested that the intensity of upwelling in these areas in the past centuries may have been influenced by the external radiative forcing, for instance by changes in solar irradiance, and it will also be influenced in the future by the increasing atmospheric greenhouse gases. Here, we analyse the impact of the external climate forcing on these upwelling systems in ensembles of simulations of two Earth system models. The ensembles contain three simulations for each period covering the past millennium (900-1849) and the 20th century (1850-2005). One of these Earth system models additionally includes the near future (2006-2100). Using a set of simulations, differing only in their initial conditions, enables us to test whether the observed variability and trends are driven by the external radiative forcing. Our analysis shows that the variability of the simulated upwelling is largely not affected by the external forcing and that, generally, there are no significant trends in the periods covering the past and future. Only in future simulations with the strongest increase of greenhouse gas concentrations the upwelling trends are significant and appear in all members of the ensemble.

  15. Recent Trends in the Ebro River Basin: Is It All "Just" Climate Change?

    Science.gov (United States)

    Lutz, Stefanie; Merz, Ralf

    2016-04-01

    Water resources are under pressure from a variety of stressors such as industry, agriculture, water abstraction or pollution. Changing climate can potentially enhance the impact of these stressors, especially under water scarcity conditions. The aim of the GLOBAQUA project ("Managing the effects of multiple stressors on aquatic ecosystems under water scarcity") is, therefore, to analyze the combined effect of multiple stressors in the context of increasing water scarcity. As part of the GLOBAQUA project, this study examines recent trends in climate, water quantity and quality parameters in the Ebro River Basin in Northern Spain to identify stressors and determine their joint impact on water resources. Mann-Kendall trend analyses of temperature, precipitation, streamflow, groundwater level, streamwater and groundwater quality data (spanning between 15 and 40 years) were performed. Moreover, anthropogenic pressures such as land use and alteration of natural flow by reservoirs were considered. Climate data indicate increasing temperatures in the Ebro River Basin especially in summer and autumn, and decreasing precipitation particularly in summer. In contrast, precipitation mostly shows upwards trends in autumn, but these are counterbalanced by greater evapotranspiration due to higher temperatures. Overall, this results in annual and seasonal streamflow decreases at the majority of gauging stations. Declining trends in streamflow are most pronounced during summer and are also observed in subbasins without reservoirs. Diminishing water resources become also apparent in generally decreasing groundwater levels in the Ebro River Basin. This decrease is most pronounced in areas where groundwater serves as main origin for irrigation water, which demonstrates how land use acts as a local rather than regional driver of change. Increasing air temperatures correlate with increasing water temperatures over the past 30 years, which indicates the effect of changing climate on water

  16. Trends in wintertime climate in the northeastern United States: 1965-2005

    Science.gov (United States)

    Burakowski, Elizabeth A.; Wake, Cameron P.; Braswell, Bobby; Brown, David P.

    2008-10-01

    Humans experience climate variability and climate change primarily through changes in weather at local and regional scales. One of the most effective means to track these changes is through detailed analysis of meteorological data. In this work, monthly and seasonal trends in recent winter climate of the northeastern United States (NE-US) are documented. Snow cover and snowfall are important components of the region's hydrological systems, ecosystems, infrastructure, travel safety, and winter tourism and recreation. Temperature, snowfall, and snow depth data were collected from the merged United States Historical Climate Network (USHCN) and National Climatic Data Center Cooperative Network (COOP) data set for the months of December through March, 1965-2005. Monthly and seasonal time series of snow-covered days (snow depth >2.54 cm) are constructed from daily snow depth data. Spatial coherence analysis is used to address data quality issues with daily snowfall and snow depth data, and to remove stations with nonclimatic influences from the regional analysis. Monthly and seasonal trends in mean, minimum, and maximum temperature, total snowfall, and snow-covered days are evaluated over the period 1965-2005, a period during which global temperature records and regional indicators exhibit a shift to warmer climate conditions. NE-US regional winter mean, minimum, and maximum temperatures are all increasing at a rate ranging from 0.42° to 0.46°C/decade with the greatest warming in all three variables occurring in the coldest months of winter (January and February). The regional average reduction in number of snow-covered days in winter (-8.9 d/decade) is also greatest during the months of January and February. Further analysis with additional regional climate modeling is required to better investigate the causal link between the increases in temperature and reduction in snow cover during the coldest winter months of January and February. In addition, regionally averaged

  17. Health in climate change research from 1990 to 2014: positive trend, but still underperforming

    Directory of Open Access Journals (Sweden)

    Glenn Verner

    2016-06-01

    Full Text Available Background: Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. Design: We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. Results: The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively until around 2006 (1,332 and 4,319, respectively, which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014. However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs, remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development, predominantly in Europe and North America. Conclusions: There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly

  18. Health in climate change research from 1990 to 2014: positive trend, but still underperforming

    Science.gov (United States)

    Verner, Glenn; Schütte, Stefanie; Knop, Juliane; Sankoh, Osman; Sauerborn, Rainer

    2016-01-01

    Background Climate change has been recognized as both one of the biggest threats and the biggest opportunities for global health in the 21st century. This trend review seeks to assess and characterize the amount and type of scientific literature on the link between climate change and human health. Design We tracked the use of climate-related terms and their co-occurrence with health terms during the 25 years since the first Intergovernmental Panel on Climate Change (IPCC) report, from 1990 to 2014, in two scientific databases and in the IPCC reports. We investigated the trends in the number of publications about health and climate change through time, by nature of the health impact under study, and by geographic area. We compared the scientific production in the health field with that of other sectors on which climate change has an impact. Results The number of publications was extremely low in both databases from 1990 (325 and 1,004, respectively) until around 2006 (1,332 and 4,319, respectively), which has since then increased exponentially in recent years (6,079 and 17,395, respectively, in 2014). However, the number of climate change papers regarding health is still about half that of other sectors. Certain health impacts, particularly malnutrition and non-communicable diseases (NCDs), remain substantially understudied. Approximately two-thirds of all published studies were carried out in OECD countries (Organization for Economic Cooperation and Development), predominantly in Europe and North America. Conclusions There is a clear need for further research on the links between climate change and health. This pertains particularly to research in and by those countries in which health will be mostly affected and capacity to adapt is least. Specific undertreated topics such as NCDs, malnutrition, and mental health should gain the priority they deserve. Funding agencies are invited to take note of and establish calls for proposals accordingly. Raising the interest

  19. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions

    Science.gov (United States)

    Bernardino, Angelo F.; Netto, Sérgio A.; Pagliosa, Paulo R.; Barros, Francisco; Christofoletti, Ronaldo A.; Rosa Filho, José S.; Colling, André; Lana, Paulo C.

    2015-12-01

    Estuaries are threatened coastal ecosystems that support relevant ecological functions worldwide. The predicted global climate changes demand actions to understand, anticipate and avoid further damage to estuarine habitats. In this study we reviewed data on polychaete assemblages, as a surrogate for overall benthic communities, from 51 estuaries along five Marine Ecoregions of Brazil (Amazonia, NE Brazil, E Brazil, SE Brazil and Rio Grande). We critically evaluated the adaptive capacity and ultimately the resilience to decadal changes in temperature and rainfall of the polychaete assemblages. As a support for theoretical predictions on changes linked to global warming we compared the variability of benthic assemblages across the ecoregions with a 40-year time series of temperature and rainfall data. We found a significant upward trend in temperature during the last four decades at all marine ecoregions of Brazil, while rainfall increase was restricted to the SE Brazil ecoregion. Benthic assemblages and climate trends varied significantly among and within ecoregions. The high variability in climate patterns in estuaries within the same ecoregion may lead to correspondingly high levels of noise on the expected responses of benthic fauna. Nonetheless, we expect changes in community structure and productivity of benthic species at marine ecoregions under increasing influence of higher temperatures, extreme events and pollution.

  20. Future trends of snowfall days in northern Spain from ENSEMBLES regional climate projections

    Science.gov (United States)

    Pons, M. R.; Herrera, S.; Gutiérrez, J. M.

    2016-06-01

    In a previous study Pons et al. (Clim Res 54(3):197-207, 2010. doi: 10.3354/cr01117g) reported a significant decreasing trend of snowfall occurrence in the Northern Iberian Peninsula since the mid 70s. The study was based on observations of annual snowfall frequency (measured as the annual number of snowfall days NSD) from a network of 33 stations ranging from 60 to 1350 m. In the present work we analyze the skill of Regional Climate Models (RCMs) to reproduce this trend for the period 1961-2000 (using both reanalysis- and historical GCM-driven boundary conditions) and the trend and the associated uncertainty of the regional future projections obtained under the A1B scenario for the first half of the twenty-first century. In particular, we consider the regional simulation dataset from the EU-funded ENSEMBLES project, consisting of thirteen state-of-the-art RCMs run at 25 km resolution over Europe. While ERA40 severely underestimates both the mean NSD and its observed trend (-2.2 days/decade), the corresponding RCM simulations driven by the reanalysis appropriately capture the interannual variability and trends of the observed NSD (trends ranging from -3.4 to -0.7, -2.1 days/decade for the ensemble mean). The results driven by the GCM historical runs are quite variable, with trends ranging from -8.5 to 0.2 days/decade (-1.5 days/decade for the ensemble mean), and the greatest uncertainty by far being associated with the particular GCM used. Finally, the trends for the future 2011-2050 A1B runs are more consistent and significant, ranging in this case from -3.7 to -0.5 days/decade (-2.0 days/decade for the ensemble mean), indicating a future significant decreasing trend. These trends are mainly determined by the increasing temperatures, as indicated by the interannual correlation between temperature and NSD (-0.63 in the observations), which is preserved in both ERA40- and GCM-driven simulations.

  1. Yield gap analysis and assessment of climate-induced yield trends of irrigated rice in selected provinces of the Philippines

    Directory of Open Access Journals (Sweden)

    Reiner Wassmann

    2012-04-01

    Full Text Available This study describes a combined empirical/modeling approach to assess the possible impact of climate variability on rice production in the Philippines. We collated climate data of the last two decades (1985-2002 as well as yield statistics of six provinces of the Philippines, selected along a North-South gradient. Data from the climate information system of NASA were used as input parameters of the model ORYZA2000 to determine potential yields and, in the next steps, the yield gaps defined as the difference between potential and actual yields. Both simulated and actual yields of irrigated rice varied strongly between years. However, no climate-driven trends were apparent and the variability in actual yields showed no correlation with climatic parameters. The observed variation in simulated yields was attributable to seasonal variations in climate (dry/wet season and to climatic differences between provinces and agro-ecological zones. The actual yield variation between provinces was not related to differences in the climatic yield potential but rather to soil and management factors. The resulting yield gap was largest in remote and infrastructurally disfavored provinces (low external input use with a high production potential (high solar radiation and day-night temperature differences. In turn, the yield gap was lowest in central provinces with good market access but with a relatively low climatic yield potential. We conclude that neither long-term trends nor the variability of the climate can explain current rice yield trends and that agroecological, seasonal, and management effects are over-riding any possible climatic variations. On the other hand the lack of a climate-driven trend in the present situation may be superseded by ongoing climate change in the future.

  2. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data

    NARCIS (Netherlands)

    Hofstra, N.; New, M.; McSweeney, C.

    2010-01-01

    We study the influence of station network density on the distributions and trends in indices of area-average daily precipitation and temperature in the E-OBS high resolution gridded dataset of daily climate over Europe, which was produced with the primary purpose of Regional Climate Model evaluation

  3. Cenozoic Climate-Tectonic Interactions in the Western Himalaya Recorded in the Indus Submarine Fan: Initial Results from IODP Expedition 355

    Science.gov (United States)

    Clift, Peter; Pandey, Dhananjai; Kulhanek, Denise; Andò, Sergio; Zhou, Peng; 355 Scientists Expedition

    2016-04-01

    The Indus Submarine Fan is the largest repository of clastic sediment eroded from the Western Himalayas since the start of India-Eurasia collision, likely around 50 Ma. Interpreting this sedimentary archive is central to understanding how the Asian monsoon and Himalaya have evolved together. Models indicate linkages between surface processes, controlled by climatic influences, and the tectonics of the solid Earth. The development of large-scale duplexes within the Lesser Himalaya starting in the Late Miocene may be linked to changes in erosion intensity and location, especially spanning the 7-8 Ma climatic transition previously identified in the foreland basin and offshore Oman. Although some of these issues can be addressed by studies onshore, erosion has removed much of the older record from the crystalline basement itself and the Siwalik Group foreland sediment tend to image limited stretches of the Himalayan front rather than supplying a basin-wide record. The sediment record of the Arabian Sea must be used to understand how the Indus catchment responds to changes in monsoon strength. Drilling by International Ocean Discovery Program Expedition 355 in the Eastern Arabian Sea has recovered two submarine fan sections spanning the last ca. 11 Ma, predated by a mass transport deposit. These should allow us to reconstruct how the Western Himalaya have responded to climate change since the late Miocene. Autocyclic processes within the fan and a major mass transport deposit mean that the record is not continuous, but is largely complete. Initial results indicate that the Indus Submarine Fan was receiving materials from Himalayan high-grade metamorphic rocks since at least ca. 14-17 Ma and that there was a direct connection with the suture, likely close to the western syntaxis, dating from the late Miocene. However, initial postcruise results now indicate that there has been significant flux directly from the Indian Peninsular, especially since 3 Ma that disrupts the

  4. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon

    Science.gov (United States)

    Saha, Anamitra; Ghosh, Subimal; Sahana, A. S.; Rao, E. P.

    2014-10-01

    Impacts of climate change on Indian Summer Monsoon Rainfall (ISMR) and the growing population pose a major threat to water and food security in India. Adapting to such changes needs reliable projections of ISMR by general circulation models. Here we find that, majority of new generation climate models from Coupled Model Intercomparison Project phase5 (CMIP5) fail to simulate the post-1950 decreasing trend of ISMR. The weakening of monsoon is associated with the warming of Southern Indian Ocean and strengthening of cyclonic formation in the tropical western Pacific Ocean. We also find that these large-scale changes are not captured by CMIP5 models, with few exceptions, which is the reason of this failure. Proper representation of these highlighted geophysical processes in next generation models may improve the reliability of ISMR projections. Our results also alert the water resource planners to evaluate the CMIP5 models before using them for adaptation strategies.

  5. Trends in the mortality effects of hot spells in central Europe: adaptation to climate change?

    Science.gov (United States)

    Kysely, J.; Plavcova, E.

    2013-12-01

    Europe has recently been affected by several long-lasting and severe heat waves, particularly in July-August 2003 (western Europe), June-July 2006 (central Europe), July 2007 (southeastern Europe) and July 2010 (western Russia). The heat waves influenced many sectors of human activities, with enormous socio-economic and environmental impacts. With estimated death tolls exceeding 50,000, the 2003 and 2010 heat waves were the worst natural disasters in Europe over the last 50 years, yielding an example of how seriously may also high-income societies be affected by climate change. The present study examines temporal changes in mortality associated with spells of large positive temperature anomalies (hot spells) in the population of the Czech Republic (around 10 million inhabitants, central Europe). Declining trends in the mortality impacts since 1986 are found, in spite of rising temperature trends. The findings remain unchanged if possible confounding effects of within-season acclimatization to heat and the mortality displacement effect are taken into account, and they are similar for all-cause mortality and mortality due to cardiovascular diseases. Recent positive socio-economic development, following the collapse of communism in central and eastern Europe in 1989, and better public awareness of heat-related risks are likely the primary causes of the declining vulnerability in the examined population (Kyselý and Plavcová, 2012). The results are also consistent with those reported for other developed regions of the world (the US, western Europe, Australia) and suggest that climate change may have relatively little influence on heat-related deaths, since changes in other factors that affect vulnerability of the population are dominant instead of temperature trends. It is essential to better understand the observed non-stationarity of the temperature-mortality relationship and the role of adaptation and its limits, both physiological and technological, and to address

  6. Alaska tundra vegetation trends and their links to the large-scale climate

    Science.gov (United States)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.

    2011-12-01

    The arctic Normalized Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic (Bhatt et al. 2010). Land warming over North America has displayed larger trends (+30%) when compared to Eurasia (+16%) since 1982. In the tundra of northern Alaska the greatest change was found in absolute maximum NDVI along the Beaufort Sea coast (+14%). In contrast, tundra areas in southwest Alaska along the Bering Sea have seen a decline (-4%). Greenup date in these regions has been occurring as much as 1-4 days earlier per decade, but trends are mixed. Winter snow water equivalent (SWE) has only increased slightly (+0.1 mm/yr) in the Arctic region of Alaska since 1987 (R. Muskett, personal communication). These findings suggest that there have been changes in the seasonal climate in Alaska during the NDVI record. The tundra trends are further investigated by evaluating remotely sensed sea ice, surface air temperature, SWE, daily snow cover, and NDVI3g. While the snow data has a relatively short record (1999-2010), notable trends can be observed in snow melt, occurring as much 15 days earlier per decade in northern Alaska. Unfortunately, other snow data sets have been found to be problematic and could not be used to extend our analysis. This highlights the need for a long-term pan-arctic snow data set that is suitable for climate analysis. Possible climate drivers are also investigated. Results show that the summer tundra, in terms of NDVI and summer warmth index (SWI), has few direct links with the large-scale climate. However, the sea ice concentration along the coast of the tundra regions has strong preseason links to the large-scale climate. This suggests that the large-scale climate influences the sea ice concentration which then affects the NDVI and SWI. Three tundra regions

  7. Population Trends of Central European Montane Birds Provide Evidence for Adverse Impacts of Climate Change on High-Altitude Species.

    Directory of Open Access Journals (Sweden)

    Jiří Flousek

    Full Text Available Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše, where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta. It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.

  8. Decadal stream water quality trends under varying climate, land use, and hydrogeochemical setting in, Iowa, USA

    Science.gov (United States)

    Green, Christopher; Bekins, Barbara; Kalkhoff, Stephen; Hirsch, Robert; Liao, Lixia; Barnes, Kimberlee

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in agricultural practices and climatic variations is important for improving water quality in agricultural settings. In the central United States, intensification of corn cropping in support of ethanol production led to increases in N application rates in the 2000s during a period including both extreme dry and wet conditions. To examine the effect of these recent changes, a study was conducted on surface water quality in 10 major Iowa Rivers. Long term (~20 to 30 years) water quality and flow data were analyzed with Weighted Regression on Time, Discharge and Season (WRTDS), a statistical method that provides internally consistent estimates of the concentration history and reveals decadal trends that are independent of random variations of stream flow from seasonal averages. Trends of surface water quality showed constant or decreasing flow-normalized concentrations of nitrate+nitrite-N from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to annual concentrations. The recent declining concentration trends can be attributed to both very high and very low streamflow discharge in the 2000's and to the long (e.g. 8-year) subsurface residence times in some basins. Dilution of surface water nitrate and depletion of stored nitrate may occur in years with very high discharge. Limited transport of N to streams and accumulation of stored N may occur in years with very low discharge. Central Iowa basins showed the greatest reduction in concentrations, likely because extensive tile-drains limit the effective volumes for storage of N and reduce residence times, and because the glacial sediments in these basins promote denitrification. Changes in nitrogen fluxes resulting from ethanol production and other factors will likely be delayed for years or decades in peripheral basins of Iowa, and may be obscured in the central

  9. Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses

    Science.gov (United States)

    Koch, Dorothy; Bauer, Susanne E.; Del Genio, Anthony; Faluvegi, Greg; McConnell, Joseph R.; Menon, Surabi; Miller, Ronald L.; Rind, David; Ruedy, Reto; Schmidt, Gavin A.; Shindell, Drew

    2011-01-01

    The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, black carbon (BC), organic carbon, nitrate, sea salt, and dust. Direct and BC snow-albedo radiative effects are included. Model BC and sulfur trends agree fairly well with records from Greenland and European ice cores and with sulfur deposition in North America; however, the model underestimates the sulfur decline at the end of the century in Greenland. Global BC effects peak early in the century (1940s); afterward the BC effects decrease at high latitudes of the Northern Hemisphere but continue to increase at lower latitudes. The largest increase in aerosol optical depth occurs in the middle of the century (1940s-80s) when sulfate forcing peaks and causes global dimming. After this, aerosols decrease in eastern North America and northern Eurasia leading to regional positive forcing changes and brightening. These surface forcing changes have the correct trend but are too weak. Over the century, the net aerosol direct effect is -0.41 Watts per square meter, the BC-albedo effect is -0.02 Watts per square meter, and the net ozone forcing is +0.24 Watts per square meter. The model polar stratospheric ozone depletion develops, beginning in the 1970s. Concurrently, the sea salt load and negative radiative flux increase over the oceans around Antarctica. Net warming over the century is modeled fairly well; however, the model fails to capture the dynamics of the observedmidcentury cooling followed by the late century warming.Over the century, 20% of Arctic warming and snow ice cover loss is attributed to the BC albedo effect. However, the decrease in this effect at the end of the century contributes to Arctic cooling. To test the climate responses to sulfate and BC pollution, two experiments were branched from 1970 that removed

  10. Historic Trends in U. S. Drought Forcing in a Warming Climate

    CERN Document Server

    Muschinski, T

    2014-01-01

    The mean North American and world climates have warmed significantly since the beginning of climatologically significant anthropogenic emission of greenhouse gases in the 19th Century. It has been suggested that warming may increase the frequency or severity of droughts. We define and study the statistics of an aridity index that describes the precipitation forcing function of a drought, considering drought to be a season with low enough precipitation to be significant for agriculture. Our aridity index is a reciprocal function of the seasonal precipitation, which is more significant for agriculture than mean precipitation. Using NOAA data from sites in 13 diverse climate regimes in the 48 contiguous United States with time series running over the period 1940--1999 but including two data series from 1900 or 1910, and computing their decadal averages, we search for linear trends in their aridity indices. We find no linear trends significant at the $2\\sigma$ level. At five sites $3\\sigma$ upper bounds on any sy...

  11. Long-term trend of climate variables in the upper Dong Nai river basin in Vietnam

    Science.gov (United States)

    Truong, Nguyen Cung Que; Nguyen, Hong Quan; Kondoh, Akihiko

    2015-04-01

    Dong Nai river and Mekong delta downstream are located in and supplied the major water resources to the whole Southern of Vietnam. In the state of continuous changes in water resources due to climate changes, there are several controversy about the potential impact of sediment transport and river flows downstream due to either the cascade hydroelectric power plant system or dam construction in the upper of Mekong delta. Therefore, management and planning for efficient use of Dong Nai river water resource is very important. Furthermore, that it is necessary to consider the hydrological regime change by the effects of climate variable. On the other hand, solving the problems of water shortage in the dry season and flood control in rainy season are also important for issues of water management at Dong Nai river basin. In this study we evaluated changes in two main factors of the water balance equation (both rainfall and evapotranspiration) to assess long-term change in the hydrological regime in the upper area of Dong Nai river basin. This key theme was divided into the following two sub-goals. The first goal was to analyze long term spatial and temporal rainfall trends. The second goal was to analyze the long-term trend of meteorological factors determining evapotranspiration such as air temperature, wind speed, solar radiation and sunshine duration. The results were used to assess their impact to evapotranspiration. The meteorological and hydrological data of the basin for the last 20 years (from 1993 to 2012) were analyzed based on the Empirical Mode Decomposition (EMD) method. The EMD method has been pioneered by Huang et al. (1998) for adaptively representing nonstationary time-series data as sum of zero-mean amplitude modulation-frequency modulation (AM-FM) components by iteratively conducting the sifting process. These components called Intrinsic Mode Functions (IMFs) allow the calculation of a meaningful multi-component instantaneous frequency. The results

  12. Contrasted climatic trends in the Atlantic vs. Pacific gateways of the Arctic Ocean during the Holocene

    Science.gov (United States)

    de Vernal, A.; Hillaire-Marcel, C.; Rochon, A.

    2013-12-01

    The reconstruction of sea-surface conditions including sea ice cover was undertaken based on about 20 marine sediment cores collected in the Arctic Ocean and subarctic seas. The approach has been standardized and mostly relies on the modern analogue technique applied to dinoflagellate cyst assemblages, which permit simultaneous estimates of sea ice cover, summer sea-surface temperature and salinity. The results show some regionalism in both trends, amplitude and overall variability. In general, changes of small amplitude are recorded in the Canadian Arctic whereas a slight cooling trend with an increasing sea ice cover characterizes the Northern Baffin Bay and Fram Strait areas from mid to late Holocene. In contrast, the Chukchi Sea records show large amplitude variations with millennial pacing making difficult to define any trend. The Chukchi Sea data indicate reduced sea ice and warmer conditions during the mid-Holocene, notably around 6.5 and 3.5 ka, and also point to important variations during the last millennium. The overall results suggest a higher variability thus sensitivity to climate change, in the Chukchi Sea area than in the Eastern parts of the Arctic and subarctic regions, which are largely influenced by northern branches of the North Atlantic Drift. The climate sensitivity of the Chukchi Sea area may be related to the proximity of the Pacific gateway. Strong linkages between sea-surface conditions, sea ice cover and export rate seem tightly linked there with large scale atmospheric synopses in the North Pacific and possibly the tropical Pacific. The apparent consistency of the Mount Logan record (Fisher et al., the Holocene 2008) with those of the Chukchi Sea (de Vernal et al., Quat. Sci. Rev. 2013) tends to support the hypothesis of a strong influence of North Pacific atmospheric teleconnections on sea-surface conditions in the Western Arctic.

  13. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal

    Directory of Open Access Journals (Sweden)

    A. A. Paulo

    2012-05-01

    Full Text Available Distinction between drought and aridity is crucial to understand water scarcity processes. Drought indices are used for drought identification and drought severity characterisation. The Standardised Precipitation Index (SPI and the Palmer Drought Severity Index (PDSI are the most known drought indices. In this study, they are compared with the modified PDSI for Mediterranean conditions (MedPDSI and the Standardised Precipitation Evapotranspiration Index (SPEI. MedPDSI results from the soil water balance of an olive crop, thus real evapotranspiration is considered, while SPEI uses potential (climatic evapotranspiration. Similarly to the SPI, SPEI can be computed at various time scales. Aiming at understanding possible impacts of climate change, prior to compare the drought indices, a trend analysis relative to precipitation and temperature in 27 weather stations of Portugal was performed for the period 1941 to 2006. A trend for temperature increase was observed for some weather stations and trends for decreasing precipitation in March and increasing in October were also observed for some locations. Comparisons of the SPI and SPEI at 9- and 12-month time scales, the PDSI and MedPDSI were performed for the same stations and period. SPI and SPEI produce similar results for the same time scales concerning drought occurrence and severity. PDSI and MedPDSI correlate well between them and the same happened for SPI and SPEI. PDSI and MedPDSI identify more severe droughts than SPI or SPEI and identify drought occurrence earlier than these indices. This behaviour is likely to be related with the fact that a water balance is performed with PDSI and MedPDSI, which better approaches the supply-demand balance.

  14. Identification of dominant climate factor for pan evaporation trend in the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaomang; ZHENG Hongxing; ZHANG Minghua; LIU Changming

    2011-01-01

    Despite the observed increase in global temperature,observed pan evaporation in many regions has been decreasing over the past 50 years,which is known as the “pan evaporation paradox”.The “pan evaporation paradox” also exists in the Tibetan Plateau,where pan evaporation has decreased by 3.06 mm a-2 (millimeter per annum).It is necessary to explain the mechanisms behind the observed decline in pan evaporation because the Tibetan Plateau strongly influences climatic and environmental changes in China,Asia and even in the Northern Hemisphere.In this paper,a derivation based approach has been used to quantitatively assess the contribution rate of climate factors to the observed pan evaporation trend across the Tibetan Plateau.The results showed that,provided the other factors remain constant,the increasing temperature should have led to a 2.73 mm a-2 increase in pan evaporation annually,while change in wind speed,vapor pressure and solar radiation should have led to a decrease in pan evaporation by 2.81 mm a-2,1.96 mm a-2 and 1.11 mm a-2 respectively from 1970 to 2005.The combined effects of the four climate variables have resuited in a 3.15 mm a-2 decrease in pan evaporation,which is close to the observed pan evaporation trend with a relative error of 2.94%.A decrease in wind speed was the dominant factor for the decreasing pan evaporation,followed by an increasing vapor pressure and decreasing solar radiation,all of which offset the effect of increasing temperature across the Tibetan Plateau.

  15. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation.

    Science.gov (United States)

    Lawrence, Dan; Philip, Graham; Hunt, Hannah; Snape-Kennedy, Lisa; Wilkinson, T J

    2016-01-01

    Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term. PMID:27018998

  16. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation.

    Directory of Open Access Journals (Sweden)

    Dan Lawrence

    Full Text Available Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term.

  17. Long Term Population, City Size and Climate Trends in the Fertile Crescent: A First Approximation

    Science.gov (United States)

    Lawrence, Dan; Philip, Graham; Hunt, Hannah; Snape-Kennedy, Lisa; Wilkinson, T. J.

    2016-01-01

    Over the last 8000 years the Fertile Crescent of the Near East has seen the emergence of urban agglomerations, small scale polities and large territorial empires, all of which had profound effects on settlement patterns. Computational approaches, including the use of remote sensing data, allow us to analyse these changes at unprecedented geographical and temporal scales. Here we employ these techniques to examine and compare long term trends in urbanisation, population and climate records. Maximum city size is used as a proxy for the intensity of urbanisation, whilst population trends are modelled from settlement densities in nine archaeological surveys conducted over the last 30 years across the region. These two measures are then compared with atmospheric moisture levels derived from multiple proxy analyses from two locations close to the study area, Soreq Cave in Israel and Lake Van in south-eastern Turkey, as well as wider literature. The earliest urban sites emerged during a period of relatively high atmospheric moisture levels and conform to a series of size thresholds. However, after the Early Bronze Age maximum urban size and population levels increase rapidly whilst atmospheric moisture declines. We argue that although the initial phase of urbanization may have been linked to climate conditions, we can see a definitive decoupling of climate and settlement patterns after 2000 BC. We relate this phenomenon to changes in socio-economic organisation and integration in large territorial empires. The complex relationships sustaining urban growth during this later period resulted in an increase in system fragility and ultimately impacted on the sustainability of cities in the long term. PMID:27018998

  18. Observing Decadal Trends in Atmospheric Feedbacks and Climate Change with Zeus and CLARREO

    Science.gov (United States)

    Revercomb, H. E.; Best, F. A.; Knuteson, R. O.; Tobin, D. C.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.; Tobin, D. C.

    2012-12-01

    New technologies for observing decadal trends in atmospheric feedbacks and climate change from space have been recently demonstrated via a NASA Instrument Incubator Program (IIP) project of our group and the Anderson Group of Harvard University. Using these new technologies, a mission named Zeus has been proposed to the first NASA Earth Venture Instruments opportunity (EVI-1). Zeus would provide a low cost mechanism to initiate a new era in high spectral resolution IR climate Benchmark and Intercalibration observations, the basis for which has been established by definition of the CLARREO mission in the 2007 NRC "Decadal Survey" and by the Science Definition Team established by NASA LaRC to further the full blown CLARREO mission. Zeus EVI is a low-cost, low-risk, and high-value EVI mission that will deploy an Absolute Radiance Interferometer (ARI) instrument to measure absolute spectrally resolved infrared radiance over much of the Earth-emitted spectrum with ultra-high accuracy (attractive baseline option for Zeus EVI is the 51.6 degrees inclination orbit of the International Space Station (ISS). For Zeus deployment on the ISS, higher latitude climate benchmark information will be obtained from operational sounders intercalibrated by Zeus. A key aspect of the Zeus ARI instrument is the On-orbit Verification and Test System (OVTS) for verifying its accuracy by reference to International Standards (SI) and testing on orbit. The OVTS includes an On-orbit Absolute Radiance Standard (OARS), which is a high emissivity cavity blackbody that can be operated over a wide range of temperatures to verify ARI calibration. The OARS uses multiple small phase change cells to establish its fundamental temperature scale to better than 5 mK absolute and a broad-band heated-halo source for monitoring its cavity spectral emissivity throughout the mission. A Quantum Cascade Laser (QCL) is also used by the OVTS to monitor the ARI instrument spectral lineshape and the emissivity of its

  19. Grassland communities in the USA and expected trends associated with climate change

    Directory of Open Access Journals (Sweden)

    David Paul Belesky

    2016-06-01

    Full Text Available Grasslands, including managed grazinglands, represent one of the largest ecosystems on the planet. Managed grazinglands in particular tend to occupy marginal climatic and edaphic resource zones, thus exacerbating responses in net primary productivity relative to changes in system resources, including anthropogenic factors. Climate dynamism, as evident from the fossil record, appears to be a putative feature of our planet. Recent global trends in temperature and precipitation patterns seem to differ from long-term patterns and have been associated with human activities linked with increased greenhouse gas emissions; specifically CO2. Thus grasslands, with their diverse floristic components, and interaction with and dependence upon herbivores, have a remarkable ability to persist and sustain productivity in response to changing resource conditions. This resistance and resilience to change, including uncertain long-term weather conditions, establishes managed grasslands as an important means of protecting food security. We review responses of grassland communities across regions of the USA and consider the responses in productivity and system function with respect to climatic variation. Research is needed to identify plant resources and management technologies that strengthen our ability to capitalize upon physiological and anatomical features prevalent in grassland communities associated with varying growing conditions.

  20. Decadal surface water quality trends under variable climate, land use, and hydrogeochemical setting in Iowa, USA

    Science.gov (United States)

    Green, Christopher T.; Bekins, Barbara A.; Kalkhoff, Stephen J.; Hirsch, Robert M.; Liao, Lixia; Barnes, Kimberlee K.

    2014-01-01

    Understanding how nitrogen fluxes respond to changes in agriculture and climate is important for improving water quality. In the midwestern United States, expansion of corn cropping for ethanol production led to increasing N application rates in the 2000s during a period of extreme variability of annual precipitation. To examine the effects of these changes, surface water quality was analyzed in 10 major Iowa Rivers. Several decades of concentration and flow data were analyzed with a statistical method that provides internally consistent estimates of the concentration history and reveals flow-normalized trends that are independent of year-to-year streamflow variations. Flow-normalized concentrations of nitrate+nitrite-N decreased from 2000 to 2012 in all basins. To evaluate effects of annual discharge and N loading on these trends, multiple conceptual models were developed and calibrated to flow-weighted annual concentrations. The recent declining concentration trends can be attributed to both very high and very low discharge in the 2000s and to the long (e.g., 8 year) subsurface residence times in some basins. Dilution of N and depletion of stored N occurs in years with high discharge. Reduced N transport and increased N storage occurs in low-discharge years. Central Iowa basins showed the greatest reduction in flow-normalized concentrations, likely because of smaller storage volumes and shorter residence times. Effects of land-use changes on the water quality of major Iowa Rivers may not be noticeable for years or decades in peripheral basins of Iowa, and may be obscured in the central basins where extreme flows strongly affect annual concentration trends.

  1. Diagnosing streamflow trends to understand ecohydrologic sensitivity and feedbacks to climate change in the mountain west

    Science.gov (United States)

    Luce, C.

    2010-12-01

    Shifts in climate may have negative consequences to forest vegetation in the mountains of the western U.S. Given our knowledge of the effects of land management on the hydrologic cycle, there is an expectation for feedbacks to streamflow from vegetation changes as well. Several recent papers reveal historical streamflow declines and increases in interannual variability in the western U.S. Although uncertainty in precipitation representation in GCM's makes the direct connection between streamflow changes and anthropogenic greenhouse gas accumulation unclear, we can gain insights about sensitivity of the ecohydroclimatic system to change by looking more carefully at the declines of the last half-century and their connection to other trends. One theory is that streaflow declines result from increased evapotranspiration caused by increased forest stocking and warmer air temperatures. The relative contribution of transpiration increases versus precipitation decreases is important, because it indicates the degree to which vegetation feedbacks could ameliorate declining streamflows. The distinction is also critical because precipitation trends may reverse while temperature trends are not expected to. Consideration of theoretical and empirical relationships from the Budyko curve and decades of small watershed experiments would suggest that if increased evaporative demand is driving observed streamflow declines, we should expect the greatest declines in wet years. Examination of the trends in dry years versus wet years across 43 stations in the Pacific Northwest, however, suggests that evapotranspiration changes may be small relative to precipitation driven changes. These results are confirmed with observations from a large paired basin with major vegetation changes from wildfire. Contrasting these results with precipitation observations across the region, however, raises difficult questions, including the potential need for more detailed screening for non-stationarity from

  2. Simulating future trends in hydrological regime of a large Sudano-Sahelian catchment under climate change

    Science.gov (United States)

    Ruelland, D.; Ardoin-Bardin, S.; Collet, L.; Roucou, P.

    2012-03-01

    SummaryThis paper assesses the future variability of water resources in the short, medium and long terms over a large Sudano-Sahelian catchment in West Africa. Flow simulations were performed with a daily conceptual model. A period of nearly 50 years (1952-2000) was chosen to capture long-term hydro-climatic variability. Calibration and validation were performed on the basis of a multi-objective function that aggregates a variety of goodness-of-fit indices. The climate models HadCM3 and MPI-M under SRES-A2 were used to provide future climate scenarios over the catchment. Outputs from these models were used to generate daily rainfall and temperature series for the 21st century according to: (i) the unbias and delta methods application and (ii) spatial and temporal downscaling. A temperature-based formula was used to calculate present and future potential evapotranspiration (PET). The daily rainfall and PET series were introduced into the calibrated and validated hydrological model to simulate future discharge. The model correctly reproduces the observed discharge at the basin outlet. The Nash-Sutcliffe efficiency criterion is over 89% for both calibration and validation periods, and the volume error between simulation and observation is close to null for the overall considered period. With regard to future climate, the results show clear trends of reduced rainfall over the catchment. This rainfall deficit, together with a continuing increase in potential evapotranspiration, suggests that runoff from the basin could be substantially reduced, especially in the long term (60-65%), compared to the 1961-1990 reference period. As a result, the long-term hydrological simulations show that the catchment discharge could decrease to the same levels as those observed during the severe drought of the 1980s.

  3. Wave climate in the Arctic 1992-2014: seasonality and trends

    Science.gov (United States)

    Stopa, Justin E.; Ardhuin, Fabrice; Girard-Ardhuin, Fanny

    2016-07-01

    Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992-2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave-ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.

  4. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    D. V. Kent

    2013-03-01

    -feedback mechanism that (usually inhibits the complete collapse of atmospheric pCO2 is the accelerating formation of thick cation-deficient soils that retard chemical weathering of the underlying bedrock. Nevertheless, equatorial climate seems to be relatively insensitive to pCO2 greenhouse forcing and thus with availability of some rejuvenating relief as in arc terranes or thick basaltic provinces, silicate weathering in this venue is not subject to a strong negative feedback, providing an avenue for ice ages. The safety valve that prevents excessive atmospheric pCO2 levels is the triggering of silicate weathering of continental areas and basaltic provinces in the temperate humid belt. Excess organic carbon burial seems to have played a negligible role in atmospheric pCO2 over the Late Cretaceous and Cenozoic.

  5. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt

    Directory of Open Access Journals (Sweden)

    G. Muttoni

    2012-09-01

    -feedback mechanism that (usually inhibits the complete collapse of atmospheric pCO2 is the accelerating formation of thick cation-deficient soils that retard chemical weathering of the underlying bedrock. Nevertheless, equatorial climate seems to be relatively insensitive to pCO2 greenhouse forcing and thus with availability of some rejuvenating relief as in arc terranes or thick basaltic provinces, silicate weathering in this venue is not subject to a strong negative feedback, providing an avenue for sporadic ice ages. The safety valve that prevents excessive atmospheric pCO2 levels is the triggering of silicate weathering of continental areas and basaltic provinces in the temperate humid belt. Increase in Mg/Ca ratio of seawater over the Cenozoic may be due to weathering input from continental basaltic provinces.

  6. Report on ICDP workshop CONOSC (COring the NOrth Sea Cenozoic)

    Science.gov (United States)

    Westerhoff, Wim; Donders, Timme; Luthi, Stefan

    2016-08-01

    ICDP workshop COring the NOrth Sea Cenozoic focused on the scientific objectives and the technical aspects of drilling and sampling. Some 55 participants attended the meeting, ranging from climate scientists, drilling engineers, and geophysicists to stratigraphers and public outreach experts. Discussion on the proposed research sharpened the main research lines and led to working groups and the necessary technical details to compile a full proposal that was submitted in January 2016.

  7. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  8. Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology for characterizing climate-related risk

    International Nuclear Information System (INIS)

    Typhoons originating in the west Pacific are major contributors to climate-related risk over the Korean peninsula. The current perspective regarding improved characterization of climatic risk and the projected increases in the intensity, frequency, duration, and power dissipation of typhoons during the 21st century in the western North Pacific region motivated a reappraisal of historical trends in precipitation. In this study, trends in the magnitude and frequency of seasonal precipitation in the five major river basins in Korea are analyzed on the basis of a separation analysis, with recognition of moisture sources (typhoon and non-typhoon). Over the 1966-2007 period, typhoons accounted for 21-26% of seasonal precipitation, with the largest values in the Nakdong River Basin. Typhoon-related precipitation events have increased significantly over portions of Han, Nakdong, and Geum River Basins. Alongside broad patterns toward increases in the magnitude and frequency of precipitation, distinct patterns of trends in the upper and lower quartiles (corresponding to changes in extreme events) are evident. A trend typology-spatially resolved characterization of the combination of shifts in the upper and lower tails of the precipitation distribution-shows that a number of sub-basins have undergone significant changes in one or both of the tails of the precipitation distribution. This broader characterization of trends illuminates the relative role of causal climatic factors and an identification of 'hot spots' likely to experience high exposure to typhoon-related climatic extremes in the future.

  9. Precipitation trends over the Korean peninsula: typhoon-induced changes and a typology for characterizing climate-related risk

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Suk [School of Energy and Environment, City University of Hong Kong, Hong Kong, People' s Republic of China (China); Jain, Shaleen, E-mail: shaleen.jain@maine.edu [Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469-5711 (United States)

    2011-07-15

    Typhoons originating in the west Pacific are major contributors to climate-related risk over the Korean peninsula. The current perspective regarding improved characterization of climatic risk and the projected increases in the intensity, frequency, duration, and power dissipation of typhoons during the 21st century in the western North Pacific region motivated a reappraisal of historical trends in precipitation. In this study, trends in the magnitude and frequency of seasonal precipitation in the five major river basins in Korea are analyzed on the basis of a separation analysis, with recognition of moisture sources (typhoon and non-typhoon). Over the 1966-2007 period, typhoons accounted for 21-26% of seasonal precipitation, with the largest values in the Nakdong River Basin. Typhoon-related precipitation events have increased significantly over portions of Han, Nakdong, and Geum River Basins. Alongside broad patterns toward increases in the magnitude and frequency of precipitation, distinct patterns of trends in the upper and lower quartiles (corresponding to changes in extreme events) are evident. A trend typology-spatially resolved characterization of the combination of shifts in the upper and lower tails of the precipitation distribution-shows that a number of sub-basins have undergone significant changes in one or both of the tails of the precipitation distribution. This broader characterization of trends illuminates the relative role of causal climatic factors and an identification of 'hot spots' likely to experience high exposure to typhoon-related climatic extremes in the future.

  10. Wave climate in the Arctic 1992-2014: seasonality, trends, and wave-ice influence

    Science.gov (United States)

    Girard-Ardhuin, Fanny; Stopa, Justin; Ardhuin, Fabrice

    2016-04-01

    The diminishing sea ice has direct implications on the wave field which is mainly dependent on the ice-free area and wind. Over the past decade, the Arctic sea ice has diminished which directly impacts the wave field. This study characterizes the wave climate in the Arctic using detailed sea state information from a wave hindcast and merged altimeter dataset spanning 1992-2014. The waves are driven by winds from the Climate Forecast System Reanalysis. Ice concentrations derived from satellites with a grid spacing of 12.5 km are sufficiently able to resolve important features in the marginal ice zone. Before implementation, suitable wind forcing is identified and the validity and consistency of the wave hindcast is verified with altimeters. The seasonal ice advance and retreat largely dictates the waves and creates distinct features in the wind-waves and swells. The Nordic-Greenland Sea is dominated by swells from the North Atlantic while the coastal regions and semi-enclosed seas of the Kara, Laptev, Chukchi, and Beaufort have a more equal proportion of wind-waves and swells. Trends in the altimeters and model are in agreement and show increasing wave activities in the Baffin Bay, Beaufort, Chukchi, Laptev, and Kara Seas due to the loss of sea ice. In the Nordic-Greenland Sea, there is a decreasing trend related to changes in the wind field by North Atlantic Oscillation. The waves also influence the sea ice. Two distinctly different wave-ice environments are identified and selected events demonstrate the importance of waves in the marginal ice zone. The crux of the research identifies the need for continued study and improvement of wave-ice interaction.

  11. Repository Profiles for Atmospheric and Climate Sciences: Capabilities and Trends in Data Services

    Science.gov (United States)

    Hou, C. Y.; Thompson, C. A.; Palmer, C. L.

    2014-12-01

    As digital research data proliferate and expectations for open access escalate, the landscape of data repositories is becoming more complex. For example, DataBib currently identifies 980 data repositories across the disciplines, with 117 categorized under Geosciences. In atmospheric and climate sciences, there are great expectations for the integration and reuse of data for advancing science. To realize this potential, resources are needed that explicate the range of repository options available for locating and depositing open data, their conditions of access and use, and the services and tools they provide. This study profiled 38 open digital repositories in the atmospheric and climate sciences, analyzing each on 55 criteria through content analysis of their websites. The results provide a systematic way to assess and compare capabilities, services, and institutional characteristics and identify trends across repositories. Selected results from the more detailed outcomes to be presented: Most repositories offer guidance on data format(s) for submission and dissemination. 42% offer authorization-free access. More than half use some type of data identification system such as DOIs. Nearly half offer some data processing, with a similar number providing software or tools. 78.9% request that users cite or acknowledge datasets used and the data center. Only 21.1% recommend specific metadata standards, such as ISO 19115 or Dublin Core, with more than half utilizing a customized metadata scheme. Information was rarely provided on repository certification and accreditation and uneven for transfer of rights and data security. Few provided policy information on preservation, migration, reappraisal, disposal, or long-term sustainability. As repository use increases, it will be important for institutions to make their procedures and policies explicit, to build trust with user communities and improve efficiencies in data sharing. Resources such as repository profiles will be

  12. A reversal of climatic trends in the North Atlantic since 2005

    Science.gov (United States)

    Robson, Jon; Ortega, Pablo; Sutton, Rowan

    2016-07-01

    In the mid-1990s the North Atlantic subpolar gyre warmed rapidly, which had important climate impacts such as increased hurricane numbers and changes to rainfall over Africa, Europe and North America. Evidence suggests that the warming was largely due to a strengthening of the ocean circulation, particularly the Atlantic Meridional Overturning Circulation. Since the mid-1990s direct and indirect measurements have suggested a decline in the strength of the ocean circulation, which is expected to lead to a reduction in northward heat transport. Here we show that since 2005 a large volume of the upper North Atlantic Ocean has cooled significantly by approximately 0.45 °C or 1.5 × 1022 J, reversing the previous warming trend. By analysing observations and a state-of-the-art climate model, we show that this cooling is consistent with a reduction in the strength of the ocean circulation and heat transport, linked to record low densities in the deep Labrador Sea. The low density in the deep Labrador Sea is primarily due to deep ocean warming since 1995, but a long-term freshening also played a role. The observed upper ocean cooling since 2005 is not consistent with the hypothesis that anthropogenic aerosols directly drive Atlantic temperatures.

  13. Climate change trend and its effects on reference evapotranspiration at Linhe Station, Hetao Irrigation District

    Directory of Open Access Journals (Sweden)

    Xu-ming WANG

    2014-07-01

    Full Text Available Linhe National Meteorological Station, a representative weather station in the Hetao Irrigation District of China, was selected as the research site for the present study. Changes in climatic variables and reference evapotranspiration (ET0 (estimated by the Penman-Monteith method were detected using Mann-Kendall tests and Sen’s slope estimator, respectively. The authors analyzed the relationship between the change and each climatic variable’s change. From 1954 to 2012, the air temperature showed a significant increasing trend, whereas relative humidity and wind speed decreased dramatically. These changes resulted in a slight increase in . The radiative component of total increased from 50% to 57%, indicating that this component made a greater contribution to the increase in total than the aerodynamic component, especially during the crop growing season (from April to October. The sensitivity analysis showed that in Hetao is most sensitive to mean daily air temperature (11.8%, followed by wind speed (−7.3% and relative humidity (4.8%. Changes in sunshine duration had only a minor effect on over the past 59 years.

  14. Conservation in metropolitan regions: assessing trends and threats of urban development and climate change

    Science.gov (United States)

    Thorne, J. H.; Santos, M. J.; Bjorkman, J.

    2011-12-01

    Two global challenges to successful conservation are urban expansion and climate change. Rapid urban growth threatens biodiversity and associated ecosystem services, while climate change may make currently protected areas unsuitable for species that exist within them. We examined three measures of landscape change for 8800 km2 of the San Francisco Bay metropolitan region over 80 years past and future: urban growth, protected area establishment, and natural vegetation type extents. The Bay Area is a good test bed for conservation assessment of the impacts of temporal and spatial of urban growth and land cover change. The region is geographically rather small, with over 40% of its lands already dedicated to protected park and open space lands, they are well-documented, and, the area has had extensive population growth in the past and is projected to continue to grow. The ten-county region within which our study area is a subset has grown from 1.78 million people in 1930, to 6.97 million in 2000 and is estimated to grow to 10.94 million by 2050. With such an influx of people into a small geographic area, it is imperative to both examine the past urban expansion and estimate how the future population will be accommodated into the landscape. We quantify these trends to assess conservation 'success' through time. We used historical and current landcover maps to assess trend, and a GIS-based urban modeling (UPlan) to assess future urban growth impacts in the region, under three policy scenarios- business as usual, smart growth, and urban redevelopment. Impacts are measured by the amount of open space targeted by conservation planners in the region that will be urbanized under each urban growth policy. Impacts are also measured by estimates of the energy consumption projected for each of the scenarios on household and business unit level. The 'business as usual' and 'smart growth' scenarios differed little in their impacts to targeted conservation lands, because so little

  15. Response of phytoplankton dynamics to 19-year (1991-2009) climate trends in Potter Cove (Antarctica)

    Science.gov (United States)

    Schloss, Irene R.; Abele, Doris; Moreau, Sébastien; Demers, Serge; Bers, A. Valeria; González, Oscar; Ferreyra, Gustavo A.

    2012-04-01

    King George Island (KGI, Isla 25 de Mayo) is located within one of the most rapidly warming regions on Earth at the north-western tip of the Antarctic Peninsula. Since 1991 hydrographical characteristics and phytoplankton dynamics were monitored at two stations in Potter Cove, a fjord-like environment on the south-eastern KGI coastline. Seawater temperature and salinity, total suspended particulate matter (TSPM) and chlorophyll- a (Chl- a, a proxy for phytoplankton biomass) concentrations were measured in summer and winter over a 19-year period, together with local air temperature. Mean air temperatures rose by 0.39 and 0.48 °C per decade in summer and winter, respectively. Positive anomalies characterized wind speeds during the decade between the mid '90 and the mid 2000 years, whereas negative anomalies were observed from 2004 onwards. Day of sea ice formation and retreat, based on satellite data, did not change, although total sea ice cover diminished during the studied period. Surface water temperature increased during summer (0.36 °C per decade), whereas no trend was observed in salinity. Summer Chl- a concentrations were around 1 mg m - 3 Chl- a with no clear trend throughout the study period. TSPM increased in surface waters of the inner cove during the spring-summer months. The Southern Annular Mode (SAM) climate signal was apparent in the fluctuating interannual pattern of the hydrographic variables in the outer Potter Cove and bottom waters whereas surface hydrography was strongly governed by the local forcing of glacier melt. The results show that global trends have significant effects on local hydrographical and biological conditions in the coastal marine environments of Western Antarctica.

  16. Management and climate contributions to satellite-derived active fire trends in the contiguous United States

    Science.gov (United States)

    Lin, Hsiao-Wen; McCarty, Jessica L.; Wang, Dongdong; Rogers, Brendan M.; Morton, Douglas C.; Collatz, G. James; Jin, Yufang; Randerson, James T.

    2014-04-01

    Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems.

  17. The Cenozoic evolution of the San Joaquin Valley, California

    Science.gov (United States)

    Bartow, J. Alan

    1991-01-01

    homocline, the western limb of the valley syncline between the Stockton arch and Panoche Creek, consists of a locally faulted homocline with northeast dips. Deformation is mostly late Cenozoic, is complex in its history, and has included up-to-the-southwest reverse faulting. The west-side fold belt, the southwestern part of the valley syncline between Panoche Creek and Elk Hills and including the southern Diablo and Temblor Ranges, is characterized by a series of folds and faults trending slightly oblique to the San Andreas fault. Paleogene folding took place in the northern part of the belt; however, most folding took place in Neogene time, during which the intensity of deformation increased southeastward along the belt and southwestward toward the San Andreas fault. The Maricopa-Tejon subbasin and the south-margin deformed belt are structurally distinct, but genetically related, regions bounded by the Bakersfield arch on the north, the San Emigdio Mountains on the south, the Tehachapi Mountains on the east, and the southeast end of the fold belt on the west. This combined region, which is the most deformed part of the basin, has undergone significant late Cenozoic shortening through north-directed thrust faulting at the south margin, as well as extreme Neogene basin subsidence north of the thrust belt. The sedimentary history of the San Joaquin basin, recorded in terms of unconformity-bounded depositional sequences, has been controlled principally by tectonism, but it has also been controlled by eustatic sea-level changes and, to a lesser degree, by climate. Plate tectonic events that had an influence on the basin include (1) subduction during the early Tertiary that changed from oblique to normal convergence in the later part of the Eocene, (2) the mid-Oligocene encounter of the Pacific-Farallon spreading ridge with the trench, and the consequent establishment of the San Andreas transform, (3) the northwestward migration of the Mendocino triple junction that in

  18. Impact of climate change on UK estuaries: A review of past trends and potential projections

    Science.gov (United States)

    Robins, Peter E.; Skov, Martin W.; Lewis, Matt J.; Giménez, Luis; Davies, Alan G.; Malham, Shelagh K.; Neill, Simon P.; McDonald, James E.; Whitton, Timothy A.; Jackson, Suzanna E.; Jago, Colin F.

    2016-02-01

    UK estuarine environments are regulated by inter-acting physical processes, including tidal, wave, surge, river discharge and sediment supply. They regulate the fluxes of nutrients, pollutants, pathogens and viruses that determine whether coastlines achieve the Good Environmental Status (GEnS) required by the EU's Marine Strategy Directive. We review 20th century trends and 21st century projections of changes to climatic drivers, and their potential for altering estuarine bio-physical processes. Sea-level rise will cause some marine habitats to expand, and others diminish in area extent. The overall consequences of estuarine morphodynamics to these habitat shifts, and vice-versa, are unknown. Increased temperatures could intensify microbial pathogen concentrations and increase public health risk. The patterns of change of other climatic drivers are difficult to predict (e.g., river flows and storm surges). Projected increased winter river flows throughout UK catchments will enhance the risks of coastal eutrophication, harmful algal blooms and hypoxia in some contexts, although there are spatial variabilities in river flow projections. The reproductive success of estuarine biota is sensitive to saline intrusion and corresponding turbidity maxima, which are projected to gradually shift landwards as a result of sea-level rise. Although more-frequent flushing events in winter and longer periods of drought in summer are predicted, whereby the subsequent estuarine mixing and recovery rates are poorly understood. With rising estuarine salinities, subtidal species can penetrate deeper into estuaries, although this will depend on the resilience/adaptation of the species. Many climate and impact predictions lack resolution and spatial cover. Long-term monitoring and increased research, which considers the catchment-river-estuary-coast system as a whole, is needed to support risk predicting and mitigatory strategies.

  19. Diverse growth trends and climate responses across Eurasia’s boreal forest

    Science.gov (United States)

    Hellmann, Lena; Agafonov, Leonid; Charpentier Ljungqvist, Fredrik; Churakova (Sidorova, Olga; Düthorn, Elisabeth; Esper, Jan; Hülsmann, Lisa; Kirdyanov, Alexander V.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz H.; Solomina, Olga; Tegel, Willy; Büntgen, Ulf

    2016-07-01

    The area covered by boreal forests accounts for ˜16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth’s carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ≤ 0.01). By revealing complex climate constraints on the productivity of Eurasia’s northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks.

  20. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    Science.gov (United States)

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B

  1. Dengue Fever Trends and Climate Change in San Juan, Puerto Rico

    Science.gov (United States)

    Muller-Karger, F. E.; Mendez-Lazaro, P.; Otis, D. B.; McCarthy, M.; Pena-Orellana, M.

    2014-12-01

    Climate change has important implications for public health. We developed and tested the hypothesis that conditions for dengue fever transmission in San Juan (Puerto Rico, USA) are becoming favorable as a result of meteorological drivers being modified with climate change. Sea level pressure, mean sea level (MSL), wind, sea surface temperature (SST), air surface temperature (AST), rainfall, and confirmed dengue cases were variables examined over the past 30 years, or longer for some variables. Statistical tools used included Principal Component Analysis, Pearson correlation coefficient, Mann-Kendall trend tests, and logistic regressions. Results show that dry days are increasing and that wet days are decreasing. MSL is steadily increasing, which increases the risk of dengue cases along the coast, as the perimeter of the San Juan Bay estuary expands and the shoreline moves inland. Warming is evident in both SST and AST. Maximum and minimum air surface temperature extremes have also increased. Incidence of dengue is accelerating along with environmental change. For example, between 2000-2011, dengue transmission increased by a factor of 3.4 (95% CI: 1.9-6.1) for each 1ºC increase in SST. Between 2007 and 2011, this risk factor increased to 5.2 (95% CI: 1.9-13.9) for every 1ºC increase in SST. An important but difficult to examine problem is how social and economic factors affect such dengue fever transmission rates in light of environmental change. A concern is that the patterns observed in San Juan are representative of potential incidence of dengue virus in other parts of the island of Puerto Rico and in other Caribbean nations. These results help understand patterns of disease spreading, and allow public health officials to evaluate scenarios and interventions intended to mitigate the impacts of climate change.

  2. Climate-driven trends in the occurrence of major floods across North America and Europe

    Science.gov (United States)

    Hodgkins, Glenn A.; Whitfield, Paul H.; Burn, Donald H.; Hannaford, Jamie; Renard, Benjamin; Stahl, Kerstin; Fleig, Anne K.; Madsen, Henrik; Mediero, Luis; Korhonen, Johanna; Murphy, Conor; Crochet, Philippe; Wilson, Donna

    2016-04-01

    Every year river floods cause enormous damage around the world. Recent major floods in North America and Europe, for example, have received much press, with some concluding that these floods are more frequent in recent years as a result of anthropogenic warming. There has been considerable scientific effort invested in establishing whether observed flood records show evidence of trends or variability in flood frequency, and to determine whether these patterns can be linked to climatic changes. However, the river catchments used in many published studies are influenced by direct human alteration such as reservoir regulation and urbanisation, which can confound the interpretation of climate-driven variability. Furthermore, a majority of previous studies have analysed changes in low magnitude floods, such as the annual peak flow, at a national scale. Few studies are known that have analysed changes in large floods (greater than 25-year floods) on a continental scale. To fill this research gap, we present a study analysing flood flows from reference hydrologic networks (RHNs) or RHN-like gauges across a large study domain embracing North America and much of Europe. RHNs comprise gauging stations with minimally disturbed catchment conditions, which have a near-natural flow regime and provide good quality data; RHN analyses thus allow hydro-climatic variability to be distinguished from direct artificial disturbances or data inhomogeneities. One of the key innovations in this study is the definition of an RHN-like network consisting of 1204 catchments on a continental scale. The network incorporates existing, well-established RHNs in Canada, the US, the UK, Ireland and Norway, alongside RHN-like catchments from Europe (France, Switzerland, Iceland, Denmark, Sweden, Finland, Spain), which have been incorporated in the network following a major effort to ensure RHN-like status of candidate gauges through consultation with local experts. As the aim of the study is to examine

  3. A climatology of Brazilian surface wind speed trends using in-situ and climate reanalysis datasets from 1980-2014

    Science.gov (United States)

    Gilliland, J. M.; Keim, B. D.

    2015-12-01

    Wind speed trends have been extensively researched for the Northern Hemisphere and Australia. The general consensus among scientists is that wind speeds have declined over the past century. However, a minimal amount of research has focused on understanding how wind speeds changed across Brazil based on temporal and geographical perspectives. Therefore, this study provides a climatological assessment of wind speed trends across Brazil using in-situ and climatic model datasets from 1980-2014. Seasonal and annual trends are determined across the study area using linear and quantile regression. Geographical Information Systems is used to interpret and understand how wind speed trends have changed across Brazil. Preliminary results show two distinct wind speed trend patterns exist across Brazil. The largest wind speed magnitude increases occurred along northeastern and coastal Brazil, where as decreasing wind speeds have been observed for central and southeastern Brazil. Furthermore, quantile regression also shows the largest seasonal and annual wind trend fluctuations occur at lower (5%) and upper percentiles (95%) for both in-situ and climate model datasets. As a result, these findings indicate possible alterations in atmospheric and oceanic circulations could be affecting wind speed trends across Brazil and warrants further investigation and research.

  4. Climatization

    DEFF Research Database (Denmark)

    Grant, Stephen; Tamason, Charlotte Crim; Jensen, Peter Kjær Mackie

    2015-01-01

    by climate change, in order to reach an intended goal or to distractthe discussion from the real problem which might have a different root course than caused bythe climate change effects. The implications of climatization are currently unclear – particularly to what extent climatizinga disaster might......In recent years, there has been a developing trend of labelling some disasters as ‘climatechange disasters’. In doing so, a discursive phenomenon can emerge that the authors havecoined ‘climatization’ which is specified as framing a disastrous event or degraded environmentalcondition as caused...... in the context of Bangladesh – a country that is expectedto be among the worst affected by climate change and a country in which some peopleclaim the effects of climate change can already be seen. A qualitative field study whichincluded key informant interviews, focus group discussions and a literature review...

  5. Climatic and chemical drivers of trends in DOC in northern surface waters in Europa and North America

    Science.gov (United States)

    de Wit, Heleen A.; Monteith, Don T.; Stoddard, John L.

    2016-04-01

    Concentrations of DOC in boreal surface waters have increased to levels that create challenges for water treatment plants, and that potentially impact lake habitat through increased anoxia and thermal mixing, and productivity. Aquatic transport of DOC from land to oceans is likely to increase, even if runoff patterns would remain stable. Reduced acid deposition appears to be a dominant driver behind the increase in DOC concentrations, through increasing organic matter solubility. We hypothesize that the higher solubility of organic matter makes DOC more susceptible to climate change. Here, we present trends in DOC from circa 500 lakes and streams in subarctic, boreal and temperate headwater catchments in Europe (UK, Fennoscandia, Czech Republic, Slovakia) and North America (Northeastern US, Ontario, Atlantic Canada) from 1990 until 2012; an extension of the trend analysis presented in Monteith et al. (2007). The water chemical data stem from national monitoring networks, assembled by the ICP Waters network. Sampling frequencies vary from 1 to 52 samples per year. Climate data were obtained from Climate Research Unit in the UK. Trends were calculated using the Mann-Kendall test and the Sen-slope estimator. We test 1) if DOC responds to changes in the rate of decline in acid deposition, and 2) if trends in temperature and precipitation affect trends and variability in DOC. Positive trends dominate: the median (±2.5% quartile) of the absolute and relative DOC trends is +0.06 (+0.36 to -0.02) mg C L-1 yr-1 and +1.4 (+4.7 to -0.9) % yr-1, respectively. Overall, the trends do not level off when comparing 1990-2004, and 1998-2012, except in the UK and Atlantic Canada. These two regions are strongly impacted by seasalt deposition but may also experience stronger warming than elsewhere. The response of DOC to changes in SO4 (expressed as trend ratios) is stronger in 1998-2012 than in 1990-2004. We will explore whether this changing relates to increasing dominance of

  6. Climate and hydrological changes in the northeastern United States: recent trends and implications for forested and aquatic ecosystems

    Science.gov (United States)

    Huntington, Thomas G.; Richardson, Andrew D.; McGuire, Kevin J.; Hayhoe, Katharine

    2009-01-01

    We review twentieth century and projected twenty-first century changes in climatic and hydrologic conditions in the northeastern United States and the implications of these changes for forest ecosystems. Climate warming and increases in precipitation and associated changes in snow and hydrologic regimes have been observed over the last century, with the most pronounced changes occurring since 1970. Trends in specific climatic and hydrologic variables differ in their responses spatially (e.g., coastal vs. inland) and temporally (e.g., spring vs. summer). Trends can differ depending on the period of record analyzed, hinting at the role of decadal-scale climatic variation that is superimposed over the longer-term trend. Model predictions indicate that continued increases in temperature and precipitation across the northeastern United States can be expected over the next century. Ongoing increases in growing season length (earlier spring and later autumn) will most likely increase evapotranspiration and frequency of drought. In turn, an increase in the frequency of drought will likely increase the risk of fire and negatively impact forest productivity, maple syrup production, and the intensity of autumn foliage coloration. Climate and hydrologic changes could have profound effects on forest structure, composition, and ecological functioning in response to the changes discussed here and as described in related articles in this issue of the Journal.

  7. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.

    Science.gov (United States)

    Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A

    2015-09-01

    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. PMID:26283032

  8. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    Science.gov (United States)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  9. Climate-influenced ponderosa pine (Pinus ponderosa seed masting trends in western Montana, USA

    Directory of Open Access Journals (Sweden)

    Christopher R. Keyes

    2015-04-01

    Full Text Available Aim of study: The aim of this study was to analyze 10-year records of ponderosa pine (Pinus ponderosa seed production, in order to confirm synchronic seed production and to evaluate cyclical masting trends, masting depletion effect, and climate-masting relationships. Area of study: The study area was located in a P. ponderosa stand in the northern Rocky Mountains (western Montana, USA. Material and methods: The study was conducted in one stand that had been subjected to a silvicultural study of uneven-aged management techniques that was carried out in 1984, and which resulted in three separate units consisting of one control, one cut/no-burn treatment, and one cut/burn treatment. Seeds were collected during the 10 years following treatment in 15 traps systematically deployed within each of the stand’s three units. The total numbers of seeds collected in each unit were plotted over time to analyze crop synchrony, with Spearman rank correlation coefficient used to test for masting cycles and crop depletion after a mast year. Meteorological records over the period 1983-1994 were related to the occurrence of a mast event (defined as crops exceeding 50,000 viable seeds/ha. Main results: The seed production pattern was non-cyclical, synchronous, and independent of silvicultural treatment history. A mast-depletion effect was evident but was not statistically significant. Mast events seem to be promoted by the occurrence of optimum mean temperatures at the beginning of spring during both the first (11 °C and second (9 °C years of cone maturation. The probability of a mast year was also affected by summer temperature (number of late frost days; negative effect and precipitation amount (positive effect. All these factors would seemingly explain the observed synchronous pattern in cone production. Research highlights: The non-cyclical trend of ponderosa pine seed mast years is influenced by specific climate determinants. Fluctuations in mean early

  10. Modelling trends in tropical column ozone with the UKCA chemistry-climate model

    Science.gov (United States)

    Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John

    2016-04-01

    Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.

  11. Meso-Cenozoic Mineralization Pattern in the Continent of China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on the complex structure and material resources,the complex geological setting of the Mesozoic-Cenozoic continent of China controlled four kinds of dynamic mechanisms of the continental tectonic-mineralization pattern, i.e. the dynamic mechanisms related to (1) underthrusting or collision, (2) activation of old tectonic belts or activity of new tectonic belts, (3) upwelling of mantle material and heat, and (4) interaction between the atmosphere, hydrosphere, biosphere and lithosphere. The four dynamic factors are related to and interact with each other; and the mantle-crust interaction leads to the regulhar time-space zonation of endogenetic deposits on a regional scale. The Meso-Cenozoic mineralization pattern in China can be outlined as the network tectono-metallogenic pattern constructed by NNE- and E-W-trending tectonics in eastern China, and multi-layer ring tectono-metallogenic pattern in the Qinghai-Tibet plateau and its northern and eastern neighbouring areas.

  12. Patterns of Cenozoic sediment flux from western Scandinavia

    DEFF Research Database (Denmark)

    Gołędowski, Bartosz; Nielsen, S.B.; Clausen, O.R.

    2012-01-01

    tectonism, climate and climate change. Western Scandinavia, the northern British Isles and the Faeroe-Shetland Platform were significant sediment sources during the Paleocene, which is well founded in tectonic causes related to the opening of the North Atlantic. From the Eocene and onward, variations in the...... sediment flux from western Scandinavia correlate better with climate and climate change. During the Eocene, sediment production was low. From the late Eocene onward, increased seasonality may have contributed to stimulating the sediment flux. Significant climatic cooling episodes correlate with Oligocene......The significance of variations in the sediment flux from western Scandinavia during the Cenozoic has been a matter of debate for decades. Here we compile the sediment flux using seismic data, boreholes and results from other publications and discuss the relative importance of causal agents such as...

  13. Cenozoic carbon cycle imbalances and a variable weathering feedback

    Science.gov (United States)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, 1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has increased the reactivity of the surface of the Earth. Increasing feedback strength through the Cenozoic reconciles mass balance in the carbon cycle with

  14. Cenozoic carbon cycle imbalances and a variable weathering feedback

    Science.gov (United States)

    Caves, Jeremy K.; Jost, Adam B.; Lau, Kimberly V.; Maher, Kate

    2016-09-01

    The long-term stability of Earth's climate and the recovery of the ocean-atmosphere system after carbon cycle perturbations are often attributed to a stabilizing negative feedback between silicate weathering and climate. However, evidence for the operation of this feedback over million-year timescales and in response to tectonic and long-term climatic change remains scarce. For example, the past 50 million years of the Cenozoic Era are characterized by long-term cooling and declining atmospheric CO2 (pCO2). During this interval, constant or decreasing carbon fluxes from the solid Earth to the atmosphere suggest that stable or decreasing weathering fluxes are needed to balance the carbon cycle. In contrast, marine isotopic proxies of weathering (i.e., 87Sr/86Sr, δ7 Li , and 187Os/188Os) are interpreted to reflect increasing weathering fluxes. Here, we evaluate the existence of a negative feedback by reconstructing the imbalance in the carbon cycle during the Cenozoic using the surface inventories of carbon and alkalinity. Only a sustained 0.25-0.5% increase in silicate weathering is necessary to explain the long-term decline in pCO2 over the Cenozoic. We propose that the long-term decrease in pCO2 is due to an increase in the strength of the silicate weathering feedback (i.e., the constant of proportionality between the silicate weathering flux and climate), rather than an increase in the weathering flux. This increase in the feedback strength, which mirrors the marine isotope proxies, occurs as transient, temperature decline in response, the integrated weathering flux over >1 million year timescales remains invariant to match the long-term inputs of carbon. Over the Cenozoic, this results in stable long-term weathering fluxes even as pCO2 decreases. We attribute increasing feedback strength to a change in the type and reactivity of rock in the weathering zone, which collectively has increased the reactivity of the surface of the Earth. Increasing feedback strength

  15. The Research of Cenozoic Migrant Worker Satisfaction

    Institute of Scientific and Technical Information of China (English)

    于海霞

    2010-01-01

    The phenomenon of Cenozoic migrant worker shortage is a realism problem of China's enterprise,and Cenozoic migrant worker has become an important force occupied the social structure.So the study of Cenozoic migrant worker's status and the demand is imperative.Understand employees"both psychological and physiological satisfaction of enterprises'environmental factors,and make some corresponding changes is of great help to reduce the employee turnover rate.This paper commenced to research from the Cenozoic migrant worker's characteristics,analyzed conditions and puts forward the corresponding countermeasures.

  16. Natural hazards and climate change in Dhaka: future trends, social adaptation and informal dynamics

    Science.gov (United States)

    Thiele-Eich, I.; Aßheuer, T.; Simmer, C.; Braun, B.

    2009-04-01

    . Findings are then applied to future global climate scenario runs to obtain a first estimate of trends for the frequency and magnitude of weather extremes and their impact on spatial and temporal characteristics of floods in the Greater Dhaka region. From this estimate, a prediction method for the spatial patterns of flooding within the Dhaka area will be developed. The social part of the project analyzes the vulnerability and resilience of economic and social systems within high-risk areas by utilizing methods such as e.g. quantitative household surveys in Dhaka and qualitative expert interviews. Geographers are hoping to identify adaptation and recovery strategies of slum dwellers and informal businesses (e.g. brickfields, tanneries), analyze the role of social capital as well as formal and informal institutions for building up resilience, and analyze possibilities and limits of adaptation strategies under conditions of further urban growth and climate change. By paying attention to the important behavioral patterns of the informal sector, a meteorological early warning system can then be developed to make better use of weather predictions to mitigate weather-related risks for Greater Dhaka. If successful, this project poses as an exemplary intersection of social science and natural hazards research.

  17. Climatic Redistribution of Canada's Water Resources (CROCWR): An analysis of spatial and temporal hydrological trends and patterns in western Canada

    Science.gov (United States)

    Bawden, A. J.; Burn, D. H.; Prowse, T. D.

    2012-12-01

    Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non

  18. Key trends of climate change in the ASEAN countries. The IPAT decomposition analysis 1980-2005

    Energy Technology Data Exchange (ETDEWEB)

    Vehmas, J.; Luukkanen, J.; Kaivo-oja, J.; Panula-Ontto, J.; Allievi, F.

    2012-07-01

    has been widely recognized. Energy and climate policy planning requires in-depth analyses of current trends and structures of energy production systems and related emission flows. Possibilities to reduce greenhouse gas emissions depend critically on economic growth and on the development of energy efficiency in economywide production systems. The ASEAN Leaders have expressed their concern and commitment for ASEAN to play a proactive role in addressing climate change through their declarations to the 2007 Bali and 2009 Copenhagen UN Conferences on Climate Change. They view the protection of the environment and the sustainable use and management of natural resources as essential to the long-term economic growth and social development of countries in the region. The ASEAN Vision 2020 calls for 'a clean and green ASEAN' with fully established mechanisms to ensure the protection of the environment, sustainability of natural resources, and high quality of life of people in the region. ASEAN Leaders have noted that: 'We acknowledged the energy cooperation between ASEAN and Japan in promoting energy efficiency and conservation as well as new and renewable energy, and stressed the need for closer cooperation. The ASEAN Leaders welcomed Japan's efforts to create a low-carbon society. We appreciated Thailand's offer for the use of the Practical Energy Management Training Center in Thailand which was established with funding from Japan to other ASEAN Member States interested in energy conservation in factories.' Thus, low carbon society is key energy policy target of ASEAN countries. Our analysis in this e-book gives analytical background to this strategy. This e-book also indicates that ASEAN countries have very different kind of challenges for low carbon strategy. The e-book provides useful information for ASEAN energy policy formulation and implementation of the Bali Roadmap. This study presents a comparative analysis of the driving forces behind

  19. Local climate policy in practice. Use of the playing field, impact of trends and the integration of climate care in municipal policy

    International Nuclear Information System (INIS)

    The result of the first research phase of the project was an outline of the playing field of local climate policy. The use of options and instruments from the playing field is examined on the basis of literature and interviews with local governments. In the process, barriers for the implementation of options are illustrated. The evaluation of the playing field in practise shows that local governments often only use part of their playing field. Even local governments that excel and are familiar throughout the country in relation to one particular task area ignore other task areas. The reasons why options and instruments are not fully utilised vary per task area: not enough internal support; lack of clear policy framework; climate policy must join in with other targets or local governments depend on cooperation of other actors. Nevertheless, generally speaking the success and failure factors in utilising options in the local government playing field are often related to the sphere of cooperation with other parties and the input of knowledge in the organisation of the local government. Moreover, the importance of climate is not made explicit enough in many task areas. The options in climate policy for local governments are influenced by social developments. In the study three trends are examined with respect to their influence: developments in the area of liberalisation of the energy market, the position of local governments in national environmental policy and changes in local democracy. These trends result in a complication of the role of local governments. Local governments must show more initiative than in the past. Liberalisation leads to a more business-oriented relationship with energy companies and probably lower energy prices. Larger freedom of policy results in more space for establishing local priorities, but does not necessarily result in more attention for local climate policy. Participation can result in a larger support for climate policy but also

  20. Communicating confidence in the detection and attribution of trends relevant to climate change

    Science.gov (United States)

    Ebi, K. L.

    2015-12-01

    Readily understandable and consistent language for describing confidence in detection and attribution statements can be developed based on the approach used by the International Agency for Research on Cancer (IARC). IARC was founded in 1965 to provide government authorities with expert, independent, scientific opinion on the causes of human cancer. IARC developed four standard terms for evaluations of the strength of evidence for carcinogenicity arising from human and experimental animal data, and for the strength of mechanistic evidence. Evidence is categorized as sufficient, limited, inadequate, and lack of carcinogenicity. The IARC process then combines theory, evidence, and degree of agreement into a summary evaluation that includes concise statements of the principal line(s) of argument that emerged, the conclusions of the working group on the strength of the evidence for each group of studies, citations to indicate which studies were pivotal to these conclusions, and the reasons for any differential weighting of data. The summary IARC categories are: Group 1 for agents carcinogenic to humans; Group 2 includes Group 2A (probably carcinogenic to humans) or Group 2B (possibly carcinogenic to humans) on the basis of epidemiological and experimental evidence of carcinogenicity and mechanistic and other relevant data; Group 3 for agents is not classifiable as to its carcinogenicity to humans; and Group 4 for agents probably not carcinogenic to humans. There are obvious parallels with describing confidence in key findings on detection and attribution of a trend to anthropogenic climate change with the confidence statements used by the IARC. Developing and consistent application of similar categories along with accompanying explanations of the principal lines of evidence, would be a helpful step in clearing communicating the degree and sources of certainty in the findings of detection and attribution.

  1. Varying trends in surface energy fluxes and associated climatebetween 1960-2002 based on transient climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Larissa; Menon, Surabi

    2005-07-20

    The observed reduction in land surface radiation over the last several decades (1960-1990)---the so-called ''dimming effect''--- and the more recent evidence of a reversal in ''dimming'' over some locations beyond 1990 suggest several consequences on climate, notably on the hydrological cycle. Such a reduction in radiation should imply reduced surface temperature (Ts) and precipitation, which have not occurred. We have investigated the possible causes for the above climate features using a climate model coupled to a dynamic ocean model under natural and anthropogenic conditions. To isolate the aerosol influence on surface radiation trends, we have analyzed transient climate simulations from1960 to 2002 with and without anthropogenic aerosols. Based on a linear trend with aerosol effects included, the global mean change in the surface solar radiation absorbed over land is -0.021+-0.0033 Wm-2yr-1. Although the overall trend is negative, we do note a reversal in dimming after 1990, consistent with observations. Without aerosol effects, the surface solar radiation absorbed over land increases throughout 1960 to 2002, mainly due to the decrease in cloud cover associated with increased greenhouse warming. In spite of a simulated increase in Ts of 0.012 Kyr-1 for 1960 to 2002, the global mean latent heat flux and associated intensity of the hydrological cycle decrease overall, however with increases over some land locations due mainly to moisture advection. Simulated changes correspond more closely to observed changes when accounting for aerosol effects on climate.

  2. Characteristics of climatic trends and correlation between pan-evaporation and environmental factors in the last 40 years over China

    Institute of Scientific and Technical Information of China (English)

    ZUO Hongchao; LI Dongliang; HU Yinqiao; BAO Yan; L(U) Shihua

    2005-01-01

    Using the data observed by 62 Chinese Routine Meteorological Stations (CRMS) with long term radiation observation, the climatic trends and the relationship between pan-evaporation and its environmental factors are analyzed comprehensively. The results show that during the last 40 years, the relative humidity is uptrend in west China, downtrend in east China, and their extrema are 0.20%/a and -0.22%/a respectively; the precipitations of about 61% CRMS keep uptrend, its maximum can reach 10.52 mm/a2 while the cloud amounts of about 79% CRMS keep downtrend slightly. About 98% CRMS display the air temperature uptrend, and the maximum is 0.11℃/a. About 76% CRMS display the land surface temperature uptrend. About 87% CRMS show the daily range of temperature downtrend. The global radiations observed by about 85% CRMS and the 10 m wind speeds observed by about 77% CRMS hold downtrend. The annual pan-evaporations of about 66% CRMS hold descend trend, and the biggest descent reaches -24.9 mm/a2. The pan-evaporation has good relationship with many environmental factors, but the relationship with the relative humidity is the best. All of the climatic trends respond to the global climate changes.

  3. Variations and trends of terrestrial NPP and its relation to climate change in the 10 CMIP5 models

    Indian Academy of Sciences (India)

    Suosuo Li; Shihua Lü; Yuanpu Liu; Yanhong Gao; Yinhuan Ao

    2015-03-01

    Using global terrestrial ecosystem net primary productivity (NPP) data, we validated the simulated multi-model ensemble (MME) NPP, analyzed the spatial distribution of global NPP and explored the relationship between NPP and climate variations in historical scenarios of 10 CMIP5 models. The results show that the global spatial pattern of simulated terrestrial ecosystem NPP, is consistent with IGBP NPP, but the values have some differences and there is a huge uncertainty. Considering global climate change, near surface temperature is the major factor affecting the terrestrial ecosystem, followed by the precipitation. This means terrestrial ecosystem NPP is more closely related to near surface temperature than precipitation. Between 1976 and 2005, NPP shows an obvious increasing temporal trend, indicating the terrestrial ecosystem has had a positive response to climate change. MME NPP has increased 3.647PgC during historical period, which shows an increasing temporal trend of 3.9 gCm−2∙100 yr−2 in the past 150 years, also indicating that the terrestrial ecosystem has shown a positive response to climate change in past 150 years.

  4. Cenozoic evolution of the eastern Danish North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Huuse, M.; Lykke-Andersen, H.; Michelsen, O.

    2003-12-01

    This paper provides a review of recent high-resolution and conventional seismic investigations in the eastern Danish North Sea and destribes their implications for the development of the eastern North Sea Basin. The results tomprise detailed timestructure maps of four major unconformities in the eastern Danish North Sea: the Top Chalk surface (mid-Paleogene), near top Oligocene, the mid-Miocene unconformity, and base Quatemary. The maps show that the eastem Danish North Sea has been affected by fauldng and salt diapirism throughout the Cenozoic. Carbonate mounds, erosional valleys and pockmark- or karstlike struttures were identitied at the top of the Upper Cretaceous-Danian Chalk Group. Strike-parallel erosional features and depositional geometries observed at near top Oligocene and at the mid-Miocene unconformity indicate that these major sequence boundarics tan be attributed to large-scale lateral changes in sediment supply directions. Increases in sediment flux to the southeastern North Sea at the Eocene/Oligocene transition and in the post-Middle Miocene appear to correlate with similar events world wide and with long term {delta} {sup 18} O increases, indicating forting by global factors, i.e. eustasy and climate. Stratal geometries observed on the seismic data indicate that the socalled `Neogene uplift' of the Bastern Danish North Sea may have been hundreds of metres less than previously suggested. lt is argued that late Cenozoic uplift of the basin margin and of mountain peaks in southern Norway may have been caused entirely by isostatic uplift of the trust in response to accelerated late Cenozoic denudation and dissection of topography created in the Paleogene. The late Cenozoic periods of accelerated denudation and incision rates were most likely driven by climatic deterioration and long term eustatic lowering rather than active late Cenozoic tectonics, the cause of which is conjectural. A series of shallow thrust struttures and an associated system

  5. Seasonal and Interannual Trends in Largest Cholera Endemic Megacity: Water Sustainability - Climate - Health Challenges in Dhaka, Bangladesh

    Science.gov (United States)

    Akanda, Ali S.; Jutla, Antarpreet; Faruque, Abu S. G.; Huq, Anwar; Colwell, Rita R.

    2014-05-01

    The last three decades of surveillance data shows a drastic increase of cholera prevalence in the largest cholera-endemic city in the world - Dhaka, Bangladesh. Emerging megacities in the region, especially those located in coastal areas also remain vulnerable to large scale drivers of cholera outbreaks. However, there has not been any systematic study on linking long-term disease trends with related changes in natural or societal variables. Here, we analyze the 30-year dynamics of urban cholera prevalence in Dhaka with changes in climatic or anthropogenic forcings: regional hydrology, flooding, water usage, changes in distribution systems, population growth and density in urban settlements, as well as shifting climate patterns and frequency of natural disasters. An interesting change is observed in the seasonal trends of cholera prevalence; while an endemic upward trend is seen in the dry season, the post-monsoon trend is epidemic in nature. In addition, the trend in the pre-monsoon dry season is significantly stronger than the post-monsoon wet season; and thus spring is becoming the dominant cholera season of the year. Evidence points to growing urbanization and rising population in unplanned settlements along the city peripheries. The rapid pressure of growth has led to an unsustainable and potentially disastrous situation with negligible-to-poor water and sanitation systems compounded by changing climatic patterns and increasing number of extreme weather events. Growing water scarcity in the dry season and lack of sustainable water and sanitation infrastructure for urban settlements have increased endemicity of cholera outbreaks in spring, while record flood events and prolonged post-monsoon inundation have contributed to increased epidemic outbreaks in fall. We analyze our findings with the World Health Organization recommended guidelines and investigate large scale water sustainability challenges in the context of climatic and anthropogenic changes in the

  6. Correcting the Cenozoic δ18O deep-sea temperature record

    NARCIS (Netherlands)

    Oerlemans, J.

    2004-01-01

    The oxygen isotope signal in benthic foraminifera from deep-sea cores is mainly determined by deep-ocean temperature and land ice volume. Separating the temperature and ice volume signals is a key step in understanding the evolution of Cenozoic climate. Except for the last few million years, fluctua

  7. Climatic trends in the North Atlantic region during the last 2,000 years in an orbitally forced AOGCM simulation

    Science.gov (United States)

    Wagner, S.; Zorita, E.

    2013-12-01

    The global coverage of temporal highly resolved proxy-based climate reconstructions is extending to cover the last 2,000 years. It is thus important to fully understand the effect of the orbital forcing at these time scales, as the imprint of the orbital forcing becomes clearer when analyzing climate on time scales longer than the last 1,000 years. The slow-varying orbital parameters affect the seasonal distribution of the incoming solar radiation. Although changes are not as pronounced compared to the mid-Holocene, still distinct differences exist, with lower insolation between February and May and higher insolation between July and October over the mid- and high northern latitudes 2,000 years ago compared to present. Here, we analyze a simulation with the coupled climate model ECHO-G forced only with changes in orbital variations for the last 2,000 years. Other factors such as solar activity and greenhouse gas changes are set to constant pre-industrial values. The modeled near-surface temperature trends reflect the expected orbitally induced insolation trends over the northern hemispheric continents and the Arctic, with increased temperatures during May and reduced temperatures during October. Over the North Atlantic Ocean, however SST trends are not directly consistent to changes in orbital forcing throughout the year, mostly showing little or slight uniform cooling trends. The strength of the maximum overturning circulation in the North Atlantic Ocean also shows no clear-cut trends that can be linked to changes in external forcings. Other variables related to oceanic convection and surface heat fluxes indicate, however, spatially heterogeneous trend patterns. For example, regions south of Greenland and off Labrador show increases in convection that compensate the decreases over the Labrador and the Norwegian Sea. This pattern varies in intensity and spatial extent between the different winter half year months. Changes in oceanic convection and surface heat

  8. Interrelationship of rainfall, temperature and reference evapotranspiration trends and their net response to the climate change in Central India

    Science.gov (United States)

    Kundu, Sananda; Khare, Deepak; Mondal, Arun

    2016-09-01

    The monthly rainfall data from 1901 to 2011 and maximum and minimum temperature data from 1901 to 2005 are used along with the reference evapotranspiration (ET0) to analyze the climate trend of 45 stations of Madhya Pradesh. ET0 is calculated by the Hargreaves method from 1901 to 2005 and the computed data is then used for trend analysis. The temporal variation and the spatial distribution of trend are studied for seasonal and annual series with the Mann-Kendall (MK) test and Sen's estimator of slope. The percentage of change is used to find the rate of change in 111 years (rainfall) and 105 years (temperatures and ET0). Interrelationships among these variables are analyzed to see the dependency of one variable on the other. The results indicate a decreasing rainfall and increasing temperatures and ET0 trend. A similar pattern is noticeable in all seasons except for monsoon season in temperature and ET0 trend analysis. The highest increase of temperature is noticed during post-monsoon and winter. Rainfall shows a notable decrease in the monsoon season. The entire state of Madhya Pradesh is considered as a single unit, and the calculation of overall net change in the amount of the rainfall, temperatures (maximum and minimum) and ET0 is done to estimate the total loss or gain in monthly, seasonal and annual series. The results show net loss or deficit in the amount of rainfall and the net gain or excess in the temperature and ET0 amount.

  9. The 13 million year Cenozoic pulse of the Earth

    Science.gov (United States)

    Chen, Jiasheng; Kravchinsky, Vadim A.; Liu, Xiuming

    2015-12-01

    The geomagnetic polarity reversal rate changes radically from very low to extremely high. Such process indicates fundamental changes in the Earth's core reorganization and core-mantle boundary heat flow fluctuations. However, we still do not know how critical such changes are to surface geology and climate processes. Our analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of the changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ∼13 Myr during most of the time. The periodicity is disrupted only during the last 20 Myr. Such periodic behavior suggests that large scale climate and tectonic changes at the Earth's surface are closely connected with the million year timescale cyclical reorganization of the Earth's interior.

  10. Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway

    Directory of Open Access Journals (Sweden)

    H. A. de Wit

    2008-03-01

    Full Text Available Controls of stream water NO3 in mountainous and forested catchments are not thoroughly understood. Long-term trends in stream water NO3 are positive, neutral and negative, often apparently independent of trends in N deposition. Here, time series of NO3 in four small acid-sensitive catchments in southern Norway were analysed in order to identify likely drivers of long-term changes in NO3. In two sites, stream water NO3 export declined ca 50% over a period of 25 years while in the other sites NO3 export increased with roughly 20%. Discharge and N deposition alone were poor predictors of these trends. The most distinct trends in NO3 were found in winter and spring. Empirical models explained between 45% and 61% of the variation in weekly concentrations of NO3, and described both upward and downward seasonal trends tolerably well. Key explaining variables were snow depth, discharge, temperature and N deposition. All catchments showed reductions in snow depth and increases in winter discharge. In two inland catchments, located in moderate N deposition areas, these climatic changes appeared to drive the distinct decreases in winter and spring concentrations and fluxes of NO3. In a coast-near mountainous catchment in a low N deposition area, these climatic changes appeared to have the opposite effect, i.e. lead to increases in especially winter NO3. This suggests that the effect of a reduced snow pack may result in both decreased and increased catchment N leaching depending on interactions with N deposition, soil temperature regime and winter discharge.

  11. Winter climate affects long-term trends in stream water nitrate in acid-sensitive catchments in southern Norway

    Directory of Open Access Journals (Sweden)

    H. A. de Wit

    2007-09-01

    Full Text Available Controls of stream water NO3 in mountainous and forested catchments are not thoroughly understood. Long-term trends in stream water NO3 are positive, neutral and negative, often apparently independent of trends in N deposition. Here, time series of NO3 in four small acid-sensitive catchments in southern Norway were analysed in order to identify likely drivers of long-term changes in NO3. In two sites, stream water NO3 export declined ca 50% over a period of 25 years while in the other sites NO3 export increased with roughly 20%. Discharge and N deposition alone were poor predictors of these trends. The most distinct trends in NO3 were found in winter and spring. Empirical models explained between 45% and 61% of the variation in weekly concentrations of NO3, and described both upward and downward seasonal trends tolerably well. Key explaining variables were snow depth, discharge, temperature and N deposition. All catchments showed reductions in snow depth and increases in winter discharge. In two inland catchments, located in moderate N deposition areas, these climatic changes appeared to drive the distinct decreases in winter and spring concentrations and fluxes of NO3. In a coast-near mountainous catchment in a low N deposition area, these climatic changes appeared to have the opposite effect, i.e. lead to increases in especially winter NO3. This suggests that the effect of a reduced snow pack may result in both decreased and increased catchment N leaching depending on interactions with N deposition, soil temperature regime and winter discharge.

  12. Climate trends and impacts on crop production in the Koshi River basin of Nepal

    NARCIS (Netherlands)

    Bhatt, D.; Maskey, S.; Babel, M.S.; Uhlenbrook, S.; Prasad, K.C.

    2014-01-01

    Understanding crop responses to climate is essential to cope with anticipated changes in temperature and precipitation. We investigated the climate–crop yield relationship and the impact of historical climate on yields of rice, maize and wheat in the Koshi basin of Nepal. The results show significan

  13. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends.

    Directory of Open Access Journals (Sweden)

    Sarah M Eglington

    Full Text Available Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends has not overtaken land-use intensity as the dominant driver of bird populations.

  14. Climatic trends over the Tibetan Plateau during 1971-2000%1971-2000年青藏高原气候变化趋势

    Institute of Scientific and Technical Information of China (English)

    吴绍洪; 尹云鹤; 郑度; 杨勤业

    2007-01-01

    Trends of annual and monthly temperature, precipitation, potential evapotranspiration and aridity index were analyzed to understand climate change during the period 1971-2000 over the Tibetan Plateau which is one of the most special regions sensitive to global climate change. FAO56-Penmen-Monteith model was modified to calculate potential evapotranspiration which integrated many climatic elements including maximum and minimum temperatures, solar radiation, relative humidity and wind speed. Results indicate generally warming trends of the annual averaged and monthly temperatures, increasing trends of precipitation except in April and September, decreasing trends of annual and monthly potential evapotranspiration, and increasing aridity index except in September. It is not the isolated climatic elements that are important to moisture conditions, but their integrated and simultaneous effect. Moreover, potential evapotranspiration often changes the effect of precipitation on moisture conditions. The climate trends suggest an important warm and humid tendency averaged over the southern plateau in annual period and in August. Moisture conditions would probably get drier at large area in the headwater region of the three rivers in annual average and months from April to November, and the northeast of the plateau from July to September. Complicated climatic trends over the Tibetan Plateau reveal that climatic factors have nonlinear relationships, and resulte in much uncertainty together with the scarcity of observation data. The results would enhance our understanding of the potential impact of climate change on environment in the Tibetan Plateau. Further research of the sensitivity and attribution of climate change to moisture conditions on the plateau is necessary.

  15. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    Science.gov (United States)

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. PMID:24130084

  16. Montane ecosystem productivity responds more to global circulation patterns than climatic trends

    International Nuclear Information System (INIS)

    Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies. (letter)

  17. Biodiversity in a changing climate: a synthesis of current and projected trends in the US

    Science.gov (United States)

    Staudinger, Michelle D.; Carter, Shawn L.; Cross, Molly S.; Dubois, Natalie S.; Duffy, J. Emmett; Enquist, Carolyn; Griffis, Roger; Hellmann, Jessica J.; Lawler, Joshua J.; O’Leary, John; Morrison, Scott A.; Sneddon, Lesley; Stein, Bruce A.; Thompson, Laura M.; Turner, Woody

    2013-01-01

    This paper provides a synthesis of the recent literature describing how global biodiversity is being affected by climate change and is projected to respond in the future. Current studies reinforce earlier findings of major climate-change-related impacts on biological systems and document new, more subtle after-effects. For example, many species are shifting their distributions and phenologies at faster rates than were recorded just a few years ago; however, responses are not uniform across species. Shifts have been idiosyncratic and in some cases counterintuitive, promoting new community compositions and altering biotic interactions. Although genetic diversity enhances species' potential to respond to variable conditions, climate change may outpace intrinsic adaptive capacities and increase the relative vulnerabilities of many organisms. Developing effective adaptation strategies for biodiversity conservation will not only require flexible decision-making and management approaches that account for uncertainties in climate projections and ecological responses but will also necessitate coordinated monitoring efforts.

  18. Evidence for a climate signal in trends of global crop yield variability over the past 50 years

    International Nuclear Information System (INIS)

    Low variability of crop production from year to year is desirable for many reasons, including reduced income risk and stability of supplies. Therefore, it is important to understand the nature of yield variability, whether it is changing through time, and how it varies between crops and regions. Previous studies have shown that national crop yield variability has changed in the past, with the direction and magnitude dependent on crop type and location. Whilst such studies acknowledge the importance of climate variability in determining yield variability, it has been assumed that its magnitude and its effect on crop production have not changed through time and, hence, that changes to yield variability have been due to non-climatic factors. We address this assumption by jointly examining yield and climate variability for three major crops (rice, wheat and maize) over the past 50 years. National yield time series and growing season temperature and precipitation were de-trended and related using multiple linear regression. Yield variability changed significantly in half of the crop–country combinations examined. For several crop–country combinations, changes in yield variability were related to changes in climate variability. (letter)

  19. Review of monsoons, interannual variability and decadal trends that underpin climate prediction

    OpenAIRE

    Susanto, D.; Vinayachandran, P.; Hacker, P.; Masumoto, Y.; Webster, P.; Godfrey, S; Meyers, G

    2002-01-01

    Understanding and predicting the interannual variations of the whole monsoon climate system has been, and will continue to be, one of the major reasons for studying the oceanography of the Indian Ocean; but there are other reasons. Knowledge about Indian Ocean current systems may have diverse practical applications, from fisheries through search and rescue to management of Exclusive Economic Zones. Our discussion mainly concerns the open ocean and the climate applications, but the resul...

  20. Algal constraints on the Cenozoic history of atmospheric CO2?

    Directory of Open Access Journals (Sweden)

    R. E. M. Rickaby

    2007-01-01

    Full Text Available An urgent question for future climate, in light of increased burning of fossil fuels, is the temperature sensitivity of the climate system to atmospheric carbon dioxide (pCO2. To date, no direct proxy for past levels of pCO2 exists beyond the reach of the polar ice core records. We propose a new methodology for placing an upper constraint on pCO2 over the Cenozoic based on the living geological record. Specifically, our premise is that the contrasting calcification tolerance of various extant species of coccolithophore to raised pCO2 reflects an "evolutionary memory" of past atmospheric composition. The different times of first emergence of each morphospecies allows an upper constraint of past pCO2 to be placed on Cenozoic timeslices. Further, our hypothesis has implications for the response of marine calcifiers to ocean acidification. Geologically "ancient" species, which have survived large changes in ocean chemistry, are likely more resilient to predicted acidification.

  1. Climate Change Vulnerability and Resilience: Current Status and Trends for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ibarraran , Maria E.; Malone, Elizabeth L.; Brenkert, Antoinette L.

    2008-12-30

    Climate change alters different localities on the planet in different ways. The impact on each region depends mainly on the degree of vulnerability that natural ecosystems and human-made infrastructure have to changes in climate and extreme meteorological events, as well as on the coping and adaptation capacity towards new environmental conditions. This study assesses the current resilience of Mexico and Mexican states to such changes, as well as how this resilience will look in the future. In recent studies (Moss et al. 2000, Brenkert and Malone 2005, Malone and Brenket 2008, Ibarrarán et al. 2007), the Vulnerability-Resilience Indicators Model (VRIM) is used to integrate a set of proxy variables that determine the resilience of a region to climate change. Resilience, or the ability of a region to respond to climate variations and natural events that result from climate change, is given by its adaptation and coping capacity and its sensitivity. On the one hand, the sensitivity of a region to climate change is assessed, emphasizing its infrastructure, food security, water resources, and the health of the population and regional ecosystems. On the other hand, coping and adaptation capacity is based on the availability of human resources, economic capacity and environmental capacity.

  2. Trend Change Study of Climate Variables in Xin’anjiang-Fuchunjiang Watershed, China

    Directory of Open Access Journals (Sweden)

    Muhammad Zaman

    2015-01-01

    Full Text Available This study emphasizes the precipitation and the maximum and minimum temperature trend and presents the results of study in temporal and spatial scales, after performing statistical analysis of the Xin’anjiang-Fuchunjiang watershed. Statistical Mann Kendall and Theil Sen techniques were used to determine the trend and its magnitude, respectively, and for determining the start and abrupt change in the trend, Sequential Mann Kendall test has been performed. Furthermore, statistical tests were performed to determine the overall trend in the area at a regional basis. For the removal of the serial effect of the data, prewhitening technique is applied. In this study, statistical tests were performed at 1901–2013 precipitation and temperature series and then after detection of the change year precipitation data were divided into two different scenarios of 1901–1960 period and 1961–2013 period. The results showed that precipitation trend is insignificant while maximum and minimum temperature have increased during 1901–2013 period except for some stations of autumn and summer seasons.

  3. Population trends in northern spotted owls: Associations with climate in the Pacific Northwest

    Science.gov (United States)

    Glenn, E.M.; Anthony, R.G.; Forsman, E.D.

    2010-01-01

    We used reverse time capture-mark-recapture models to describe associations between rate of population change (??) and climate for northern spotted owls (Strix occidentalis caurina) at six long-term study areas in Washington and Oregon, USA. Populations in three of six areas showed strong evidence of declining populations, while populations in two additional areas were likely declining as well. At four areas, ?? was positively associated with wetter-than-normal conditions during the growing season, which likely affects prey availability. Lambda was also negatively associated with cold, wet winters and nesting seasons, and the number of hot summer days. The amount of annual variation in ?? accounted for by climate varied across study areas (3-85%). Rate of population change was more sensitive to adult survival than to recruitment; however, there was considerable variation among years and across study areas for all demographic rates. While annual survival was more closely related to regional climate conditions, recruitment was often associated with local weather. In addition to climate, declines in recruitment at four of six areas were associated with increased presence of barred owls. Climate change models predict warmer, wetter winters and hotter, drier summers for the Pacific Northwest in the first half of the 21st century. Our results indicate that these conditions have the potential to negatively affect annual survival, recruitment, and consequently population growth rates for northern spotted owls. ?? 2010 Elsevier Ltd.

  4. Predcition of Long term Water table Trends in Response to Groundwater Irrigation and Climate Change in an Indian Context

    Science.gov (United States)

    Thekkemeppilly Sivakumar, I.; Steenhuis, T. S.; Walter, M. F.; Ghosh, S.; Salvi, K. A.

    2015-12-01

    Intensified groundwater irrigation is a major factor that contributes to water table decline. This phenomenon has been documented in many parts of the world. This study investigates trends in water table in response to agriculture intensification to meet increasing food demand, water management practices and climate change. A shallow-aquifer model based on the extended Thornthwaite-Mather procedure is used to predict groundwater levels in response to precipitation, evapotranspiration, and groundwater pumping for irrigation. Krishna district in the state of Andhra Pradesh in southern India which has a sub-humid, monsoon climate and Calicut district of Kerala state with a wet tropical monsoon climate have been chosen as sites for this study. The effect of increasing food demand by a growing population is investigated by increasing the number of crops per year from one to three. We consider three climate scenarios and two water management practices in this study. The three climate scenarios are the ones those envisaged by the Intergovernmental Panel for Climate Change (IPCC). The two water management practices considered are the traditional flooded agriculture and the system of rice intensification method which does not use total flooding. The results show that single crop agriculture in Krishna district is sustainable for all climate scenarios and water management practices with a maximum depth to water table around 6 - 7 m at the end of dry season and the water table recovers to the surface most of the time. Increasing crop production with two or three crops per year with groundwater irrigation is unsustainable with the water table levels dropping potentially to 200 - 1000 m at the end of 21st century. We found that climate change and better irrigation water management practices affected ground water levels only minimally compared to the growing more than one crop per year. Our study leads to the conclusion that ground water irrigated rice can only be sustainable

  5. A New Weighting Function for Estimating Microwave Sounding Unit Channel 4 Temperature Trends Simulated by CMIP5 Climate Models

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xuanze; ZHENG Xiaogu; YANG Chi; LUO San

    2013-01-01

    A new static microwave sounding unit (MSU) channel 4 weighting function is obtained from using Coupled Model Inter-comparison Project,Phase 5 (CMIP5) historical multimodel simulations as inputs into the fast Radiative Transfer Model for TOVS (RTTOV vl0).For the same CMIP5 model simulations,it is demonstrated that the computed MSU channel 4 brightness temperature (T4) trends in the lower stratosphere over both the globe and the tropics using the proposed weighting function are equivalent to those calculated by RTTOV,but show more cooling than those computed using the traditional UAH (University of Alabama at Huntsville) or RSS (Remote Sensing Systems in Santa Rosa,California) static weighting functions.The new static weighting function not only reduces the computational cost,but also reveals reasons why trends using a radiative transfer model are different from those using a traditional static weighting function.This study also shows that CMIP5 model simulated T4 trends using the traditional UAH or RSS static weighting functions show less cooling than satellite observations over the globe and the tropics.Although not completely removed,this difference can be reduced using the proposed weighting function to some extent,especially over the tropics.This work aims to explore the reasons for the trend differences and to see to what extent they are related to the inaccurate weighting functions.This would also help distinguish other sources for trend errors and thus better understand the climate change in the lower stratosphere.

  6. Dual scale trend analysis to evaluate climatic and anthropogenic effects on the vegetated land surface in agricultural Russia

    Science.gov (United States)

    de Beurs, Kirsten; Henebry, Geoffrey

    2010-05-01

    Russia's population is projected to shrink by a staggering 29% by 2050. Differential dynamics among rural populations are correlated with ethnicity and constitute a key driver in the spatial disintegration of rural Russia. Currently, Russia is slowly transitioning into a country with an internal "archipelago" of islands of productive agriculture around cities set within a matrix of much less productive and abandoned croplands. This heterogeneous spatial pattern is mainly driven by depopulation of the least favorable parts of the countryside, where "least favorable" is some function of lower fertility of land, higher remoteness from urban markets, or both. Our aim is to improve current understanding of the interactions of climate change and the spatio-temporal impacts of agricultural reform in European Russia. We present a dual scale trend analysis to characterize change in agricultural European Russia. We selected a global NASA MODIS product (MCD43C4 and MCD43A4) at a 0.05° (~5.6 km) and 500m spatial resolution and a 16-day temporal resolution from 2000 through 2008. We applied a refinement of the Seasonal Kendal trend method to Normalized Difference Vegetation Index (NDVI) image series at both scales. We only incorporated composites during the vegetative growing season which was delineated by start of season and end of season estimates based on analysis of Normalized Difference Infrared Index (NDII) data. Trend patterns revealed areas of increasing NDVI trend in Russia which was linked through the dual scale analysis with agricultural land cover change. The coarser scale analysis was relevant to atmospheric boundary layer processes, while the finer scale data revealed trends that were more relevant to human decision-making and regional economics. We evaluated the weather patterns and land surface phenologies for the areas with increasing NDVI over the past 9 years and compared the results with agricultural areas without change. This analysis improved our

  7. Cenozoic sequence stratigraphy in the eastern North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, O.; Thomsen, E.; Danielsen, M.; Heilmann-Clausen, C.; Jordt, H.; Laursen, G.V.

    1995-05-01

    The Cenozoic evolution of the epicontinental North Sea Basin is described on the basis of sequence stratigraphy, comprising analyses of seismic sections, petrophysical logs, and biostratigraphic studies of foraminifera, dinoflagellates, and calcareous nannofossils. Stratigraphic, palaeogeographic, and palaeoecological information from the Danish onshore area is integrated in the study. The deposits are subdivided into 21 sequences, which groups into seven informal major units. The sequence boundaries are identified by differences in seismic facies and by seismic onlap, toplap, and truncation features. The maximum flooding surface is placed at an internal downlap surface which correlates with high values on the gamma ray log. The source of sediments and the direction of sediment transport changed several times during the Cenozoic. Transport was mainly from the north during the Late Paleocene and Early Eocene, from the west during the Middle and Late Eocene, and from the north and northwest during the Oligocene to quaternary. The depocenters of the seven major units are generally located marginally, probably adjoining the source areas. There is only minor evidence for changes in subsidence rates in the basin. A constant rate is assumed from the Paleocene to the mid Middle Miocene. For the remaining part of the Cenozoic and increased rate is indicated. A tentative relative sea-level curve for the North Sea Basin is proposed. The overall trends of the curve are broadly comparable with the global sea-level curve of Haq et al. Discrepancies may be caused by differences in the biostratigraphic calibrations. The most pronounced Oligocene sea-level fall is dated ot the latest Oligocene. (au) (83 refs.)

  8. The characteristic trends of karst springs discharges in relation to climate change (examples from the Classical Karst, SE Slovenia)

    Science.gov (United States)

    Ravbar, Natasa; Kovacic, Gregor

    2016-04-01

    Changes in the large-scale hydrological cycle induced by global warming are among the biggest actual concerns. The observed records and climate simulations are consistent in projecting changing precipitation and temperature patterns worldwide. Particularly the incidence of changed precipitation amount, intensity and variability may increase changes in hydrological regimes, and could have implications on water quantity and quality in many areas. This may affect freshwater dependant ecosystems and several socio-economic activities. Groundwater resources availability, stability of access and utilisation may further provoke difficulties for many services, such as drinking water supply, agriculture, industry, hydropower, etc. Karst aquifers are due to their specific nature (i.e. rapid infiltration rates and underground water flow, highly controlled by conduits) highly dependent on respective hydrological conditions. The goal of this study was to better understand how and to what extent impacts of the climate change may affect karst groundwater resources and to quantify the role of karst aquifers in flood attenuation and baseflow maintenance. The characteristic linear trends of mean, minimal and maximal annual discharge values of nine selected karst springs in SE Slovenia have been assessed and compared with the linear trends of annual precipitation amount and air temperature covering a 52-year period (1961 - 2013). The data have also been evaluated in respect to the individual spring's catchment characteristics (e.g. storage capacity). Obtained results and analysis reveal the impacts of climate (environmental) change on karst groundwater and call for urgent adherence of standards for karst water sources protection, monitoring and rational use in the relevant management strategies.

  9. Trend and concentration characteristics of precipitation and related climatic teleconnections from 1982 to 2010 in the Beas River basin, India

    Science.gov (United States)

    Yin, Yixing; Xu, Chong-Yu; Chen, Haishan; Li, Lu; Xu, Hongliang; Li, Hong; Jain, Sharad K.

    2016-10-01

    The Beas River, located in the Western Himalayan mountainous regions in India, is one of the major tributaries of the Indus River. However, recent changes of precipitation and related climatic teleconnections in this river basin have rarely been investigated yet. In this study, the trend and concentration characteristics of precipitation during1982-2010 are investigated by using Mann-Kendall trend test and two kinds of concentration indices. The climatic teleconnections are explored with the help of cross correlation, wavelet transform and composite analysis, revealing the relationship of precipitation with climatic indices of Indian summer monsoon (ISM), El Nino/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and North Atlantic Oscillation (NAO). The results indicate that: (1) Precipitation of most of the stations increased in the monsoon season while precipitation of all the stations decreased in the non-monsoon seasons. As a result, the annual precipitation of the majority of the stations was on the decrease. (2) A general increase in the precipitation Gini coefficient and precipitation concentration degree (PCD) was detected. Moreover, the precipitation concentration period (PCP) is mainly within the period from May to August, and more PCP occurred in the monsoon months recently. (3) The relationship between monsoon precipitation and ISM is not significant in the Beas River basin. The relationship between precipitation and ENSO in winter is less significant than in the monsoon season, and the relationship of monsoon/winter precipitation with IOD is not as evident as that with ENSO. Besides, ENSO and NAO play important roles in the changes of monsoon and winter precipitation in the Beas River basin.

  10. Addressing Air, Land & Water Nitrogen Issues under Changing Climate Trends & Variability

    Science.gov (United States)

    The climate of western U.S. dairy producing states is anticipated to change significantly over the next 50 to 75 years. A multimedia modeling system based upon the “nitrogen cascade” concept has been configured to address three aspects of sustainability (environmenta...

  11. Trends in marine climate change research in the Nordic region since the first IPCC report

    NARCIS (Netherlands)

    Pedersen, M.W.; Kokkalis, A.; Bardarson, H.; Bonanomi, S.; Boonstra, W.J.; Butler, W.E.; Diekert, F.K.; Fouzai, N.; Holma, M.; Holt, R.E.; Kvile, K.; Nieminen, E.; Ottosen, K.M.; Richter, A.P.; Rogers, L.A.; Romagnoni, G.; Snickars, M.; Tornroos, A.; Weigel, B.; Whittington, J.D.; Yletyinen, J.; Ferreira, A.S.A.

    2016-01-01

    Oceans are exposed to anthropogenic climate change shifting marine systems toward potential instabilities. The physical, biological and social implications of such shifts can be assessed within individual scientific disciplines, but can only be fully understood by combining knowledge and expertise a

  12. Recent Trends in National Policy on Education for Sustainable Development and Climate Change Education

    Science.gov (United States)

    Laessøe, Jeppe; Mochizuki, Yoko

    2015-01-01

    Climate change education (CCE) is a new phenomenon which is gaining increasing significance in the work of international organizations and international non-governmental organizations. Based primarily on a cross-national desk study of national policy documents relevant to CCE in 17 countries, which was commissioned by UNESCO to gain a robust…

  13. Long term variations in small mammal composition of a snake diet do not mirror climate change trends

    Science.gov (United States)

    Rugiero, Lorenzo; Milana, Giuliano; Capula, Massimo; Amori, Giovanni; Luiselli, Luca

    2012-08-01

    The study of the dietary changes which have intervened over the years in generalist and opportunist predators may provide useful information on the temporal modifications of their prey communities, especially under a climate change scenario. In this study, we analysed the quantitative changes in the small mammal portion of the diet of a generalist and opportunist predator, the asp viper (Vipera aspis) at a forest zone in central Italy, for the period 1987-2010. In addition, small mammals were trapped in five of these years. Apodemus spp., Mus musculus, and Myodes glareolus were the main prey for vipers. Among the various taxa eaten by vipers, only two showed significantly consistent trends over the years, with M. glareolus increasing and Sorex spp. declining in the viper diet. There were no significant relationships between the number of years passed after the first year of sampling and the diversity and dominance indexes of prey composition. We also found a significantly positive relationship between small mammal abundance in the field and their relative frequency of occurrence in the viper's diet, thus demonstrating that vipers really sampled the small mammal species in relation to their local availability. Despite being temperate-zone forest-associated species, hence likely adversed by global warming, Sorex spp. and M. glareolus showed opposite trends over the years, thus suggesting that such trends may reflect more local scale perturbations (local forest overgrowth and diminution of logging).

  14. Dynamic topography and the Cenozoic carbonate compensation depth

    Science.gov (United States)

    Campbell, S. M.; Moucha, R.; Raymo, M. E.; Derry, L. A.

    2015-12-01

    The carbonate compensation depth (CCD), the ocean depth at which the calcium carbonate accumulation rate goes to zero, can provide valuable insight into climatic and weathering conditions over the Cenozoic. The paleoposition of the CCD can be inferred from sediment core data. As the carbonate accumulation rate decreases linearly with depth between the lysocline and CCD, the CCD can be calculated using a linear regression on multiple sediment cores with known carbonate accumulation rates and paleodepths. It is therefore vital to have well-constrained estimates of paleodepths. Paleodepths are typically calculated using models of thermal subsidence and sediment loading and compaction. However, viscous convection-related stresses in the mantle can warp the ocean floor by hundreds of meters over broad regions and can also vary significantly over millions of years. This contribution to paleobathymetry, termed dynamic topography, can be calculated by modeling mantle flow backwards in time. Herein, we demonstrate the effect dynamic topography has on the inference of the late Cenozoic CCD with an example from the equatorial Pacific, considering sites from IODP Expeditions 320/321. The equatorial Pacific, given its large size and high productivity, is closely tied to the global carbon cycle. Accordingly, long-term changes in the equatorial Pacific CCD can be considered to reflect global changes in weathering fluxes and the carbon cycle, in addition to more regional changes in productivity and thermohaline circulation. We find that, when the dynamic topography contribution to bathymetry is accounted for, the equatorial Pacific CCD is calculated to be appreciably shallower at 30 Ma than previous estimates would suggest, implying a greater deepening of the Pacific CCD over the late Cenozoic.

  15. A fractal climate response function can explain global temperature trends of the modern era and the past millennium

    CERN Document Server

    van Hateren, J H

    2013-01-01

    A climate response function is introduced that consists of six exponential (low-pass) filters with weights depending as a power law on their e-folding times. The response of this function to the combined forcings of solar irradiance, greenhouse gases, and SO2-related aerosols is fitted simultaneously to reconstructed temperatures of the past millennium, the response to solar cycles, the response to the 1991 Pinatubo volcanic eruption, and the modern 1850-2010 temperature trend. The quite adequate fit produces a climate response function with an equilibrium response to doubling of CO2 concentration of 2.0 \\pm 0.3 ^{\\circ}C (mean \\pm standard error), of which about 50% is realized with e-folding times of 0.5 and 2 years, about 30% with e-folding times of 8 and 32 years, and about 20% with e-folding times of 128 and 512 years. The transient climate response (response after 70 years of 1% yearly rise of CO2 concentration) is 1.5 \\pm 0.2 ^{\\circ}C. The temperature rise from 1820-1950 can be attributed for about 70...

  16. Modelling trends in climatic time series using the state space approach

    Science.gov (United States)

    Laine, Marko; Kyrölä, Erkki

    2014-05-01

    A typical feature of an atmospheric time series is that they are not stationary but exhibit both slowly varying and abrupt changes in the distributional properties. These are caused by external forcing such as changes in the solar activity or volcanic eruptions. Further, the data sampling is often nonuniform, there are data gaps, and the uncertainty of the observations can vary. When observations are combined from various sources there will be instrument and retrieval method related biases. The differences in sampling lead to uncertainties, also. Dynamic regression with state space representation of the underlying processes provides flexible tools for these challenges in the analysis. By explicitly allowing for variability in the regression coefficients we let the system properties change in time. This change in time can be modelled and estimated, also. Furthermore, the use of unobservable state variables allows modelling of the processes that are driving the observed variability, such as seasonality or external forcing, and we can explicitly allow for some modelling error. The state space approach provides a well-defined hierarchical statistical model for assessing trends defined as long term background changes in the time series. The modelling assumptions can be evaluated and the method provides realistic uncertainty estimates for the model based statements on the quantities of interest. We show that a linear dynamic model (DLM) provides very flexible tool for trend and change point analysis in time series. Given the structural parameters of the model, the Kalman filter and Kalman smoother formulas can be used to estimate the model states. Further, we provide an efficient way to account for the structural parameter uncertainty by using adaptive Markov chain Monte Carlo (MCMC) algorithm. Then, the trend related statistics can be estimated by simulating realizations of the estimated processes with fully quantified uncertainties. This presentation will provide a

  17. Recent climate trends and multisecular climate variability: temperature and precipitation during the cold season (October-March) in the Ebro Basin (NE of Spain) betrween 1500 and 2008

    Science.gov (United States)

    Saz-Sanchez, M.-A.; Cuadrat-Prats, J.-M.

    2009-09-01

    One of the goals of Paleoclimatology is to assess the importance and the exceptional nature of recent climate trends related to the anthropogenic climate change. Instrumental data enable the analysis of last century's climate, but do not give any information on previous periods' precipitation and temperature, during which there was no anthropic intervention on the climate system. Dendroclimatology is one of the paleoclimatic reconstruction sources giving best results when it comes to reconstructing the climate of the time before instruments could be used. This work presents the reconstructed series of precipitation and temperature of the cold season (October-March) In the central sector of the Ebro Valley (NE of Spain). The chronologies used for the reconstruction come on the one hand from the International Tree-Ring Data Bank (ITRDB) and on the other hand from the dendrochronological information bank created in the northern half of the Iberian Peninsula within the framework of the Spanish Interministerial Commission for Science and Technology (CICYT) CLI96-1862 project. The climate data used for chronology calibration and the reconstruction of the temperature and precipitation values are those of the instrumental observatory number 9910 (Pallaruelo) belonging to the Spanish State Meteorological Agency (Agencia Estatal de Meteorología or AEMET), located in the central sector of the Ebro Valley. The reconstruction obtained covers the 1500-1990 period. In order to extend the series up to 2008, instrumental information has been used. Thanks to data from a set of AEMET instrumental observatories close to the one used for chronology calibration, a regional series of temperatures as well as a precipitation one were generated. The series reconstructed through dendroclimatic methods and the regional series do not show statistically significant differences in their mean and variance values. R values between both series exceed 0.85. Taking these statistical characteristics

  18. Differentiating between Land Use and Climate-driven Change using Long-term Vegetation Index Trends adjusted for Precipitation on the Mongolian Plateau

    Science.gov (United States)

    John, R.; Chen, J.; Kim, Y.; Yang, Z.; Xiao, J.; Shao, C.; Batkhishig, O.

    2014-12-01

    The Mongolian plateau is undergoing consistent warming in addition to an increase in extreme climatic events. Land cover/land use change has accelerated over the past three decades, owing to post liberalization socio-economic changes in Inner Mongolia, China (IM) Mongolia (MG) which have different political systems. Extensive anthropomorphic modifications of ecosystems have the ability to alter the structure and function of ecosystems and ecological processes such as the carbon and water cycle and it is therefore important to differentiate between such changes from climate-driven changes. This study identified climate-driven and human-induced changes in vegetation cover on the Mongolian plateau across desert, grassland and forest biomes as well as administrative divisions. We applied non-parametric trend tests on time series of vegetation index datasets that include MODIS EVI, Vegetation Index and Phenology (VIP) EVI2, and GIMMS 3g as well as precipitation and temperature obtained from TRMM and MERRA reanalysis datasets. We then correlated the VI trends with the climate drivers to determine and isolate primary climate drivers. VI residuals obtained from the regression of composites of peak season maximum VI and JJA monthly accumulated rainfall were analyzed for detection of trends in vegetation greenness not explained by rainfall dynamics over different time periods (2000-2012, and 1981 to 2010). In addition, we obtained trends in socioeconomic variables like total livestock and population density which were closely correlated with VI residual trends adjusted for rainfall. Some administrative subdivisions in IM and MG showed a decreasing trend in residuals that could be attributed to anthropogenic activity such as grazing, or urbanization, while other subdivisions showed an increasing trend in residuals increasing trend in residuals suggest that vegetation cover has improved and perhaps be attributed to restoration and conservation efforts.

  19. TRENDS IN ATMOPSHERIC CLIMATE PARAMETERS MEASURED AT SRS 1964-2013

    Energy Technology Data Exchange (ETDEWEB)

    Weinbeck, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-20

    Meteorological data collected at SRS since the mid-1960’s have been analyzed for trends in minimum and maximum temperature, heating and cooling degree days, precipitation and relative humidity. The trends in meteorological data collected have been relatively small compared to the interannual variability that is observed. The observed increases, while small, appear to be real (statistically significant). Overnight low temperatures (3.1°F) have increased over twice as fast as the increases in daytime highs (1.4°F). Similarly, there are statistically significant increases in the number of cooling degree days as well. There has been a similar decrease in the number of HDD and freezing days, consistent with the overall increase in overnight low temperatures.

  20. The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae.

    Directory of Open Access Journals (Sweden)

    Agustín Estrada-Peña

    Full Text Available The impact of climate trends during the period 1901-2009 on the life cycle of Hyalomma marginatum in Europe was modeled to assess changes in the physiological processes of this threat to public health. Monthly records of temperature and water vapour at a resolution of 0.5° and equations describing the life cycle processes of the tick were used. The climate in the target region affected the rates of the life cycle processes of H. marginatum: development rates increased, mortality rates in molting stages decreased, and the survival rates of questing ticks decreased in wide territories of the Mediterranean basin. The modeling framework indicated the existence of critical areas in the Balkans, central Europe, and the western coast of France, where the physiological processes of the tick improved to extents that are consistent with the persistence of populations if introduced. A spatially explicit risk assessment was performed to detect candidate areas where active surveys should be performed to monitor changes in tick density or persistence after a hypothetical introduction. We detected areas where the critical abiotic (climate and biotic (host density factors overlap, including most of the Iberian peninsula, the Mediterranean coast of France, eastern Turkey, and portions of the western Black Sea region. Wild ungulate densities are unavailable for large regions of the territory, a factor that might affect the outcome of the study. The risk of successfully establishing H. marginatum populations at northern latitudes of its current colonization range seems to be still low, even if the climate has improved the performance of the tick in these areas.

  1. Polar ozone depletion and trends as represented by the Whole Atmospheric Community Climate Model (WACCM)

    Science.gov (United States)

    Kinnison, Douglas; Solomon, Susan; Ivy, Diane; Mills, Michael; Neely, Ryan, III; Schmidt, Anja; Garcia, Rolando; Smith, Anne

    2016-04-01

    The Whole Atmosphere Community Climate Model, Version 4 (WACCM4) is a comprehensive numerical model, spanning the range of altitude from the Earth's surface to the lower thermosphere [Garcia et al., JGR, 2007; Kinnison et al., JGR, 2007; Marsh et al., J. of Climate, 2013]. WACCM4 is based on the framework of the NCAR Community Atmosphere Model, version 4 (CAM4), and includes all of the physical parameterizations of CAM4 and a finite volume dynamical core for the tracer advection. This version has a detailed representation of tropospheric and middle atmosphere chemical and physical processes. Simulations completed for the SPARC Chemistry Climate Model Initiative (CCMI), REFC1, REFC2, SENSC2, and REFC1SD scenarios are examined (see Eyring et al., SPARC Newsletter, 2013). Recent improvements in model representation of orographic gravity wave processes strongly impact temperature and therefore polar ozone depletion as well as its subsequent recovery. Model representation of volcanic events will also be shown to be important for ozone loss. Evaluation of polar ozone depletion processes (e.g., dehydration, denitrification, chemical activation) with key observations will be performed and the impact on future ozone recovery will be identified.

  2. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades

    International Nuclear Information System (INIS)

    In many discussions of climate change impacts in agriculture, the large magnitudes of expected impacts toward the end of the century are used to emphasize that most of the risks are to future generations. However, this perspective misses the important fact that demand growth for food is expected to be much slower after 2050 than before it, and that the next two decades represent the bulk of growth before 2050. Thus, impacts of smaller magnitude in the near-term can be as or more consequential for food prices or food security as larger magnitude impacts in the future. Here we estimate the risks that climate trends over the next 10 or 20 years could have large impacts on global yields of wheat and maize, with a focus on scenarios that would cut the expected rates of yield gains in half. We find that because of global warming, the chance of climate trends over a 20 year period causing a 10% yield loss has increased from a less than 1 in 200 chance arising from internal climate variability alone, to a 1 in 10 chance for maize and 1 in 20 chance for wheat. Estimated risks for maize are higher because of a greater geographic concentration than wheat, as well as a slightly more negative aggregate temperature sensitivity. Global warming has also greatly increased the chance of climate trends large enough to halve yield trends over a 10 year period, with a roughly 1 in 4 chance for maize and 1 in 6 chance for wheat. Estimated risks are slightly larger when using climate projections from a large ensemble of a single climate model that more fully explores internal climate variability, than a multi-model ensemble that more fully explores model uncertainty. Although scenarios of climate impacts large enough to halve yield growth rates are still fairly unlikely, they may warrant consideration by institutions potentially affected by associated changes in international food prices. (paper)

  3. 1982–2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations

    Directory of Open Access Journals (Sweden)

    Abdoul Khadre Traore

    2014-09-01

    Full Text Available Light and water use by vegetation at the ecosystem level, are key components for understanding the carbon and water cycles particularly in regions with high climate variability and dry climates such as Africa. The objective of this study is to examine recent trends over the last 30 years in Light Use Efficiency (LUE and inherent Water Use Efficiency (iWUE* for the major biomes of Africa, including their sensitivities to climate and CO2. LUE and iWUE* trends are analyzed using a combination of NOAA-AVHRR NDVI3g and fAPAR3g, and a data-driven model of monthly evapotranspiration and Gross Primary Productivity (based on flux tower measurements and remote sensing fAPAR, yet with no flux tower data in Africa and the ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms process-based land surface model driven by variable CO2 and two different gridded climate fields. The iWUE* data product increases by 10%–20% per decade during the 1982–2010 period over the northern savannas (due to positive trend of vegetation productivity and the central African forest (due to positive trend of vapor pressure deficit. In contrast to the iWUE*, the LUE trends are not statistically significant. The process-based model simulations only show a positive linear trend in iWUE* and LUE over the central African forest. Additionally, factorial model simulations were conducted to attribute trends in iWUE and LUE to climate change and rising CO2 concentrations. We found that the increase of atmospheric CO2 by 52.8 ppm during the period of study explains 30%–50% of the increase in iWUE* and >90% of the LUE trend over the central African forest. The modeled iWUE* trend exhibits a high sensitivity to the climate forcing and environmental conditions, whereas the LUE trend has a smaller sensitivity to the selected climate forcing.

  4. Geomorphology and regional stratigraphic model of Cenozoic deposits from "Continental to Marine" of Western Peninsular Malaysia and Strait of Malacca.

    Science.gov (United States)

    Menier, David; Mansor, Yazid; Sautter, Benjamin; Pubellier, Manuel; Estournes, Guilhem; Meng Choong, Chee; Ghosh Deva, Prasad; Proust, Jean-Noel; Goubert, Evelyne

    2014-05-01

    Coastal basins have been greatly influenced worldwide by their geological heritage (lithology, structural control) and eustatic sea-level fluctuations. Along the western side of Peninsular Malaysia, both the structures of the tertiary-quaternary basement and the geomorphology are poorly known. The coast is characterized landward by an absence of tertiary deposits on the alluvial and coastal plains and seaward by numerous deeply incised valleys although the incision potential is low. Offshore, in the Strait of Malacca, the thickness of sediments increases drastically, particularly at the apex of some N-S elongated basins (> 2 Km), and in the central part of the Strait of Malacca. Onshore, the geomorphology of the Western Peninsular Malaysia is controlled mostly by climatic effects on an old (Indosinian) orogen affected by transtensional brittle tectonics during the Tertiary. We investigate the effects of Tertiary extension and associated vertical motions on the Cenozoic geomorphology and stratigraphy. The study is based on a combined morphobathymetric approach of based on GEBCO data, supported by low and recent high resolution offshore seismic data, and DTM data from ASTER and SRTM. The main results are the followings: (1) the structural control appears to be responsible of the positioning and preservation of the Tertiary deposits; while the Quaternary (marine) deposits thinner, drowned the western Malaysia Peninsular coast, independently of the geomorphological and structural context; (2) The offshore Tertiary deposits seem disconnected from the modern drainage network, suggesting probable uplift during the late Tertiary period, which reactivated NW-SE trending faults and fractures; (3) The orientation, the shape and the depth of the ancient and modern incised valleys (Perak, Kerian , Kinta rivers) are controlled by the structural context and lithological contrast; (4) Finally, from a landward to a seaward directions, the Cenozoic deposits seems to have transited

  5. Historical Trends in Lake and River Ice Cover in Norway : signs of a changing climate

    OpenAIRE

    2013-01-01

    Recent studies have shown that the duration of seasonal ice cover on lakes and rivers over the Northern Hemisphere has declined over the 19th and 20th Centuries, mainly as a consequence of rising temperatures. However, lake and river ice trends have not been well documented in Norway. Quality control and homogeneity testing were performed on ice cover data from 48 Norwegian lake and river sites with long records. A total of 142 individual records of ice phenology (freeze-up, break-up and ice ...

  6. The Trends of Climate Change Convention and the Countermeasures of Korea after Marrakesh Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Woo, S.H. [Korea Energy Management Corporation, Yongin (Korea)

    2002-01-01

    The year of 2001 produced a reversal drama in Climate Change Convention with a dramatic plot. The Forth Session of Conference of the Parties, which was held in Argentina having severe economic difficulty now in the year after a historic Kyoto Protocol, just agreed to a two-year schedule, called as a Buenos Aires Action Plan. Conference of the Parties (COP) at its resumed sixth session in Bonn, Germany was the turning point to decide whether Kyoto Protocol can survive, a different protocol has to start again for a few years, or the already effectuated Climate Change Convention ends as a kind of an international happening. Finally, COP concluded Bonn Agreement, a dramatic settlement except USA, and the Agreement was succeeded to Marrakesh Agreement, which is an actual international agreement even though it goes far from historic Kyoto principle and has a doubt of practical results. Afterward, each country will proceed the ratifying process with Marrakesh Agreement -implementing measures of Kyoto Protocol. If advanced countries including EU, leading the ratification, perform the intended plan, the effectuation of Kyoto Protocol will be declared, regardless of types, in Rio+10 World Summit on Environment, which will be hold in Johannesburg, the Republic of South Africa, in September 2002.

  7. Creating climate quality global datasets for studying trends, variability and extremes

    Science.gov (United States)

    Willett, K.; Thorne, P.

    2010-09-01

    Historical instrumental records are essential for climate monitoring and climate research, yet the data are riddled with issues of quality and inhomogeneity. This leaves uncertainty surrounding any conclusions drawn from the data. It is essential that data are quality controlled and homogenised. Furthermore, this must be done in an objective, reproducible and globally consistent manner that enables quantification of uncertainty. The Met Office Hadley Centre is pursuing the quality control and homogenisation of 6000+ stations sub-daily synoptic near-surface temperature data. The data focus mainly on temperature and dewpoint temperature but also include sea level pressure, wind speed and cloud cover. Quality control efforts address many known issues with observational data in an automated manner including outliers and spikes (individual and clusters), repeated values, wet-bulb reservoir drying/freezing and frequently occurring values to name a few. Homogenisation is still work in progress but makes use of ‘pseudo-data' to validate breakpoint detection and adjustment methods. An bootstrap approach will be used on application of homogenisation covering a wide spread of decision parameters with which to estimate uncertainties. This paper details an automated quality control system and presents efforts to date to homogenise these data.

  8. A decadal trend of juvenile European sea bass (Dicentrarchus labrax, L. responses to climate patterns in the Mondego estuary, Portugal

    Directory of Open Access Journals (Sweden)

    Eduardo Granja Bento

    2015-11-01

    Full Text Available Estuarine systems support the life cycle stages of commercially important marine fish and are influenced by large and local-scale climatic patterns. Also, extreme events triggered by climate changes may influence the functioning of nursery grounds and recruitment for several fish species. In this study, performed in the Mondego estuary, Portugal, we used an 11-year database (2003-2013 for analyzing the variability in the population of a marine juvenile migrant fish, the European sea bass Dicentrarchus labrax, regarding changes in abundance, population structure, growth rates and secondary production and annual day of peak abundance. Higher densities and production occurred at the beginning of the study, but no differences in 0-group growth could be observed. In order to detect change points in both biological and climatic data, the cumulative sum (CUSUM of the deviations from the mean for the 2003-2013 period were determined for each parameter. The relationship between large- and local-scale drivers and 0-group abundance, secondary production and day of peak abundance were evaluated using a Pearson correlation analysis of CUSUM of biological and environmental data, considering the correspondent yearly values and with a time-lag of 1 year. The North Atlantic Oscillation (NAO index, sea surface temperature (SST and their respective winter values were tested as large-scale factors, while river runoff, salinity and water temperature were considered as local climate patterns. River runoff was the significant factor explaining D. labrax 0-group abundances and the NAO and water temperature were also significant predictors considering the 1-year lag. Regarding D. labrax 0-group secondary production, salinity and water temperature were the significant predictors. The NAO with 1-year lag was also negatively correlated with the day of peak abundance. The observed variability regarding yearly trends in abundance of juvenile fish was mostly linked to local

  9. Herbarium specimens reveal the footprint of climate change on flowering trends across north-central North America.

    Science.gov (United States)

    Calinger, Kellen M; Queenborough, Simon; Curtis, Peter S

    2013-08-01

    Shifting flowering phenology with rising temperatures is occurring worldwide, but the rarity of co-occurring long-term observational and temperature records has hindered the evaluation of phenological responsiveness in many species and across large spatial scales. We used herbarium specimens combined with historic temperature data to examine the impact of climate change on flowering trends in 141 species collected across 116,000 km(2) in north-central North America. On average, date of maximum flowering advanced 2.4 days °C(-1), although species-specific responses varied from - 13.5 to + 7.3 days °C(-1). Plant functional types exhibited distinct patterns of phenological responsiveness with significant differences between native and introduced species, among flowering seasons, and between wind- and biotically pollinated species. This study is the first to assess large-scale patterns of phenological responsiveness with broad species representation and is an important step towards understanding current and future impacts of climate change on species performance and biodiversity. PMID:23786499

  10. DIVERSITY VARIATIONS OF THE LATE CENOZOIC MAMMALS IN THE LINXIA BASIN AND THEIR RESPONSE TO THE CLIMATIC AND ENVIRONMENTAL BACKGROUNDS%临夏盆地晚新生代哺乳动物的多样性变化及其对气候环境背景的响应

    Institute of Scientific and Technical Information of China (English)

    邓涛

    2011-01-01

    The Late Cenozoic deposits of the Linxia Basin in Gansu, China are relatively thick, bearing abundant mammalian fossils of different periods from the Late Oligocene to the Early Pleistocene. Until now, 172 species in 42 families of 10 orders have been found,all of which are extinct forms at the specific level and only a small number of genera have extant species. These fossils are important materials to study the evolution of mammalian faunas and their relationship with climatic and environmental backgrounds. The diversity and morphology of mammals are tightly related to climatic and environmental factors, and especially sensitive to changes of temperature, humidity and elevation. Interpretations to climatic and environmental changes reflect the evolution of mammals. Specific diversities, new records, and vanished species in the sedimentary sequence of the Linxia Basin are counted for each Chinese land mammal age. The diversity variations of mammals in the Linxia Basin were very noticeable throughout the Late Cenozoic,which are divided into different stages; the Middle Miocene,Late Miocene and Early Pleistocene have the highest diversities, the Late Oligocene and Early Miocene have the lowest, and the Pliocene has the moderate. The climatic and environmental variations of the Linxia Basin in different ages, which are judged from mammalian diversities, are highly consistent with other independent evidence, such as the result of the cenogram analysis, and closely relevant to the uplift of the Tibetan Plateau.%甘肃临夏盆地的晚新生代沉积物厚度巨大,其中富含从晚渐新世到早更新世各个时代的哺乳动物化石,目前已知包括10目42科131属172种,在种级水平上全部是绝灭类型,仅少数属有现生代表.这些化石是研究哺乳动物群演化及其与气候环境背景关系的重要材料.哺乳动物的多样性和形态特征与气候环境因素密切相关,对温度、湿度和海拔高度的变化尤其敏感.依据

  11. Dust interannual variability and trend in Central Asia from 2000 to 2014 and their climatic linkages

    Science.gov (United States)

    Xi, Xin; Sokolik, Irina N.

    2015-12-01

    We present a comprehensive analysis of the interannual variability and trend of dust aerosol in Central Asia (37°-55°N, 50°-80°E) from 2000 to 2014, based on a set of dust emission simulations using the WRF-Chem-DuMo modeling system, observations of dust frequency derived from surface station synoptic weather records, and dust optical depth (DOD) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) aerosol optical depth (AOD) products. Model simulations reveal that the soil grain size distribution has little impact on the interannual variability of dust fluxes but strongly affects their magnitude. The two physically based dust schemes based on Marticorena and Bergametti (1995) (MB) and Shao et al. (1996) (Shao) produce large differences in the dust flux magnitude and spatiotemporal distributions, largely due to different sensitivities of the threshold friction velocity to vegetation-induced surface roughness. By using a fixed threshold velocity, the dust scheme of Tegen and Fung (1995) (TF) relies on the dynamic dust source function to capture the dust variability associated with vegetation changes. Through a correlation analysis, the simulated dust fluxes show good consistency with the observed dust frequency, whereas only the Shao and TF dust fluxes are consistent with the MODIS Collection 5.1 and SeaWiFS DOD. The dust fluxes, dust frequency, and DOD (except MODIS Collection 6) are highly correlated with the frequency of strong surface winds but show different sensitivities to drought and soil erodibility factors (i.e., precipitation, soil moisture, and vegetation) which are influenced by El Niño-Southern Oscillation (ENSO). In general, La Niña years are associated with reduced precipitation, drier soils, less vegetation, and, consequently, more severe drought and enhanced dust activity in Central Asia. The averaged dust flux of the MB and Shao experiments shows a significant negative trend

  12. Major-elements trends in cenozoic volcanites of Hungary

    OpenAIRE

    Martín Fernández, Josep Antoni; Barceló i Vidal, Carles; Pawlowsky-Glahn, Vera; Kovács, L.Ó.; Kovács, G.P.

    2003-01-01

    Hungary lies entirely within the Carpatho-Pannonian Region (CPR), a dominant tectonic unit of eastern Central Europe. The CPR consists of the Pannonian Basin system, and the arc of the Carpathian Mountains surrounding the lowlands in the north, east, and southeast. In the west, the CPR is bounded by the Eastern Alps, whereas in the south, by the Dinaridic belt. (...) Geologische Vereinigung; Universitat de Barcelona, Equip de Recerca Arqueomètrica; Institut d’Estadística de Catalunya; Inte...

  13. Urbanization Trends (2001-2006) In The Conterminous United States And Regional Climate Impacts

    Science.gov (United States)

    Xian, G. Z.; Homer, C.

    2011-12-01

    More than 50% of the world population now lives in urban and suburban areas. The rate of urbanization in the world is expected to continue to accelerate in the near future. As urban areas expand by transforming the surrounding landscape into impervious surface, the changes of urban land cover (ULC) have significant implications for wide range consequences. Monitoring changes in large urban areas becomes increasingly important. The U.S. Geological Survey (USGS) recently published the National Land Cover Database (NLCD) 2006 products including land cover and percent impervious surface area (ISA) for the conterminous United States (CONUS). The percent ISA, which represents the fraction of impervious area in a 30 m grid, was estimated using regression tree algorithms with both Landsat and nighttime lights imagery. Generally, the approach comprises four major procedures: creating a training dataset, modeling a synthetic impervious surface, comparing model outputs for optimal selection and final product clean up. The ISA product was used to define four different ULC types by categorizing percent ISA and quantitatively determining the extent of ULC. We analyzed 2001 and 2006 imperviousness variations to summarize two areal increments: ISA, which calculates the area of imperviousness proportion in every 30 m pixels, and urban area, which totals the number of 30 m pixels that contain any impervious surface. The new ISA in 2006 increases 4.1% (4095 km2) from the 2001 base amount across the CONUS. The growth of ISA reached approximately 819 km2 per year during the period. The total ISA in 2006 reached 103,615 km2, which is slightly smaller than the state of Kentucky. The new urban area in 2006 was 12,365 km2 and the total urban area reached 500,153 km2, which is close to the size of California and Indiana combined. To analyze the interactions between ULC change and climate systems, we used both the gridded climate data from the Parameter-elevation Regressions on Independent

  14. Long-Term Trend and Abrupt Change for Major Climate Variables in the Upper Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis of the mean air temperature, precipitation, sunshine duration, and pan evaporation from 23 meteorological stations in the upper Yellow River Basin from 1960 to 2001, the feasibility of using hypothesis test techniques to detect the long-term trend for major climate variables has been investigated.Parametric tests are limited by the assumptions such as the normality and constant variance of the error terms. Nonparametric tests have not these additional assumptions and are better adapted to the trend test for hydro-meteorological time series. The possible trends of annual and monthly climatic time series are detected by using a non-parametric method and the abrupt changes have been examined in terms of 5-yr moving averaged seasonal and annual series by using moving T-test (MTT) method, Yamamoto method,and Mann-Kendall method. The results show that the annual mean temperature has increased by 0.8℃ in the upper Yellow River Basin during the past 42 years. The warmest center was located in the northern part of the basin. The nonlinear tendency for annual precipitation was negative during the same period.The declining center for annual precipitation was located in the eastern part and the center of the basin.The variation of annual precipitation in the upper Yellow River Basin during the past 42 years exhibited an increasing tendency from 1972 to 1989 and a decreasing tendency from 1990 to 2001. The nonlinear tendencies for annual sunshine duration and pan evaporation were also negative. They have decreased by 125.6 h and 161.3 mm during the past 42 years, respectively. The test for abrupt changes by using MTT method shows that an abrupt warming occurred in the late 1980s. An abrupt change of the annual mean precipitation occurred in the middle 1980s and an abrupt change of the mean sunshine duration took place in the early 1980s. For the annual mean pan evaporation, two abrupt changes took place in the 1980s and the early 1990s. The test results of the

  15. The effects of climate change on fungal diversity patterns in the UK and Greece: Contrasting trends and ecological interpretations

    Science.gov (United States)

    Damialis, A.; Gange, A. C.; Mohammad, A. B.; Halley, J. M.

    2013-05-01

    It is well known that climate change has been affecting the ecology of living organisms. However, very little research has been done concerning alterations in fungal ecology. The changes in climate are expected to have an impact on fungal biodiversity patterns. Such changes in turn might have implications for public health since the spores of certain fungal taxa (e.g. Alternaria, Cladosporium) cause respiratory problems in sensitised individuals, with symptoms manifested even as acute respiratory failure. The objectives of this study were: a) to perform a comprehensive analysis of trends in long-term time series of fungal fruiting and sporulation variables for a wide range of fungal taxa, b) to investigate the response of fungal abundance and diversity to environmental variability. Data from two different geoclimatic areas were used: a) England, UK from more than 350 fungal species belonging to 10 different functional groups and with phenological records of fungal fruiting (start, end and duration) since 1950, b) Thessaloniki, Greece for 14 airborne fungal types with quantitative records (total annual concentration) and phenological records (start, peak, end, duration) of the atmospheric spore season since 1987. In parallel, various meteorological factors were examined in both areas in order to elucidate the relationship between climate and fungal diversity patterns. Long-term trends were found in most cases: these were particularly pronounced in the UK, where more than 300 species (~82%) displayed trends. Of these, ~77% were towards an earlier beginning and ~81% towards a later ending of the fruiting season; overall, an extension of the fruiting season seems to occur in more than 200 species. On a per-functional-group basis, except for manure, soil and mycorrhizal deciduous fungal species, all the other (137 species) exhibited earlier first fruiting dates and extended seasons. On the other hand, in Greece, although a tendency was observed towards lower yearly

  16. On the ability of statistical wind-wave models to capture the variability and long-term trends of the North Atlantic winter wave climate

    OpenAIRE

    Martínez-Asensio, Adrián; Marcos, Marta; Tsimplis, Michael N.; Jordà, Gabriel; Feng, Xiangbo; Gomis, Damià

    2016-01-01

    A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and...

  17. Cenozoic volcanic rocks of Saudi Arabia

    Science.gov (United States)

    Coleman, R.G.; Gregory, R.T.; Brown, G.F.

    2016-01-01

    The Cenozoic volcanic rocks of Saudi Arabia cover about 90,000 km2, one of the largest areas of alkali olivine basalt in the world. These volcanic rocks are in 13 separate fields near the eastern coast of the Red Sea and in the western Arabian Peninsula highlands from Syria southward to the Yemen Arab Republic.

  18. Extreme Heat Wave over European Russia in Summer 2010: Anomaly or a Manifestation of Climatic Trend?

    Science.gov (United States)

    Razuvaev, V.; Groisman, P. Y.; Bulygina, O.; Borzenkova, I.

    2010-12-01

    Extraordinary temperature anomalies over European Russia (ER) in summer 2010 raised a legitimate question in the title of this presentation. A 60-days-long hot anticyclonic weather system with daily temperature anomalies as high as +10K and no or negligible amount of rainfall first decimated crops in the forest-steppe zone of ER, gradually dried wetlands in the forest zone and, finally, caused numerous natural and anthropogenic fires that at the time of this abstract preparation have not yet been extinguished. The extreme heat, lack of precipitation, and forest fires have caused hundreds of deaths and multimillion dollars in property losses. Indirect losses of lives due to this weather anomaly, with the ensuing fires and related air pollution, as well as the absence of air conditioning in apartments has yet to be estimated. The center of European Russia was well covered by meteorological observations for the past 130 years. These data, historical weather records (yearbooks or "letopisi" , which were carried on in the major Russian monasteries), and finally, dendroclimatological information, all show that this summer temperature anomaly was well above all known extremes in the past 1000 years. Like ocean waves and ocean tides, weather and climate variability go together strengthening (or mitigating) each other. We shall show the precursors of the current outbreak using principally the most accurate meteorological records of the past century updated to 2009 (at the Session, the 2010 data will also be presented). While a careful analyses of these records and thoughtful analyses of recent similar temperature outbreaks in Western Europe could not prevent the occurrence of this disaster, the lessons learned from these analyses (a) would warn about its increasing probability and (b) mitigation and adaptation measures could well be made to reduce its negative consequences. Among our arguments are: (1)There is a century-long tendency of reduction of equator minus pole

  19. Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands.

    Science.gov (United States)

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Herrero, Mario; Havlík, Petr; Wang, Xuhui; Sultan, Benjamin; Soussana, Jean-François

    2016-01-01

    Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE-GM a process-based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991-2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8-2.0 g C m(-2)  yr(-2) during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36-43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has 'inadvertently' enhanced soil C sequestration and reduced N2 O and CH4 emissions by 1.2-1.5 Gt CO2 -equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991-2010. Land-cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual - nonattributed - term (22-26% of the trend due to all drivers) indicating negative interactions between drivers.

  20. Recent Trends of Tree Growth in Relation to Climate Change in Hungary

    Directory of Open Access Journals (Sweden)

    SOMOGYI, Zoltán

    2008-01-01

    Full Text Available The paper addresses two related issues. One is whether, and how, growth patterns of standmean height have changed in Hungary in the last few decades, and the other is whether recentlyobserved increases in mean annual temperature might have caused changes in growth trends. Changesin tree growth were investigated for beech (Fagus sylvatica, sessile oak (Quercus petraea andTurkey oak (Quercus cerris by comparing stand mean heights over age using data from the forestinventories of 1981 and 2001, and for sessile oak using stand mean height data from permanentsample plots since 1961. Tree growth was found to have accelerated for each species mentioned, withTurkey oak showing the largest acceleration. To study the second issue, stand mean height was relatedto elevation, wich in turn was related to mean annual temperature and precipitation. For theseanalyses, too, data of many thousands of stands in the forest inventory was used. Stand mean heightwas found to increase with decreasing elevation, i.e. with increasing mean annual temperature, foreach of the three species. As the annual precipitation and air humidity decreases with decreasingelevation, it was concluded that increases of mean annual temperature could positively have affectedtree growth in the last few decades. However, this effect is expected to be soon limited by wateravailability.

  1. Relation between long-term trends of oxygen-18 isotope composition of precipitation and climate

    Science.gov (United States)

    Rozanski, Kazimierz; Araguas-Araguas, Luis; Gonfiantini, Roberto

    1992-11-01

    Stable isotope ratios of oxygen (O-18/O-16) and hydrogen (D/H) in water have long been considered powerful indicators of paleoclimate. However, quantitative interpretation of isotope variations in terms of climate changes is hampered by a limited understanding of physical processes controlling the global isotope behavior. Analysis was conducted of time series of O-18 content (delta O-18) of monthly precipitation and surface air temperature available through the International Atomic Energy Agency-World Meteorological Organization global network, 'Isotopes in Precipitation'. This study indicates that long-term changes of isotopic composition of precipitation over mid- and high-latitude regions during the past three decades closely followed long-term changes of surface air temperature with the average delta O-18-temperature coefficient around 0.6 per mil/deg C. HolderName> 2008 117 10.1007/s00603-006-0117-4 7 Numerical Modelling of the Effect of Rock Heterogeneity on Dynamic Tensile Strength Technical Note 771 779 2006 1 1 2005 8 23 2006 8 1 2007 1 16 Springer-Verlag 2007

  2. Hydro-climatic trends and water resource management implications based on multi-scale data for the Lake Victoria region, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Koutsouris, A J; Destouni, G; Jarsjoe, J; Lyon, S W, E-mail: steve.lyon@natgeo.su.se [Bert Bolin Centre for Climatic Research, Department of Physical Geography and Quaternary Geology, Stockholm University, 106 91 Stockholm (Sweden)

    2010-07-15

    Unreliable rainfall may be a main cause of poverty in rural areas, such as the Kisumu district by Lake Victoria in Kenya. Climate change may further increase the negative effects of rainfall uncertainty. These effects could be mitigated to some extent through improved and adaptive water resource management and planning, which relies on our interpretations and projections of the coupled hydro-climatic system behaviour and its development trends. In order to identify and quantify the main differences and consistencies among such hydro-climatic assessments, this study investigates trends and exemplifies their use for important water management decisions for the Lake Victoria drainage basin (LVDB), based on local scale data for the Orongo village in the Kisumu district, and regional scale data for the whole LVDB. Results show low correlation between locally and regionally observed hydro-climatic trends, and large differences, which in turn affects assessments of important water resource management parameters. However, both data scales converge in indicating that observed local and regional hydrological discharge trends are primarily driven by local and regional water use and land use changes.

  3. Trends and Issues in California's Low Carbon Fuel Standard - Learning from Response to Existing Climate Policy

    Science.gov (United States)

    Witcover, J.

    2015-12-01

    emissions in transportation, as other jurisdictions weigh similar climate policies and debate mechanisms and costs and California announced an ambitious target of halving petroleum use by 2030.

  4. The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data

    Energy Technology Data Exchange (ETDEWEB)

    Hofstra, Nynke [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Wageningen University, Environmental Systems Analysis Group, P.O. Box 47, Wageningen (Netherlands); New, Mark; McSweeney, Carol [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom)

    2010-10-15

    We study the influence of station network density on the distributions and trends in indices of area-average daily precipitation and temperature in the E-OBS high resolution gridded dataset of daily climate over Europe, which was produced with the primary purpose of Regional Climate Model evaluation. Area averages can only be determined with reasonable accuracy from a sufficiently large number of stations within a grid-box. However, the station network on which E-OBS is based comprises only 2,316 stations, spread unevenly across approximately 18,000 0.22 grid-boxes. Consequently, grid-box data in E-OBS are derived through interpolation of stations up to 500 km distant, with the distance of stations that contribute significantly to any grid-box value increasing in areas with lower station density. Since more dispersed stations have less shared variance, the resultant interpolated values are likely to be over-smoothed, and extreme daily values even more so. We perform an experiment over five E-OBS grid boxes for precipitation and temperature that have a sufficiently dense local station network to enable a reasonable estimate of the area-average. We then create a series of randomly selected station sub-networks ranging in size from four to all stations within the E-OBS interpolation search radii. For each sub-network realisation, we estimate the grid-box average applying the same interpolation methodology as used for E-OBS, and then evaluate the effect of network density on the distribution of daily values, as well as trends in extremes indices. The results show that when fewer stations have been used for the interpolation, both precipitation and temperature are over-smoothed, leading to a strong tendency for interpolated daily values to be reduced relative to the ''true'' area-average. The smoothing is greatest for higher percentiles, and therefore has a disproportionate effect on extremes and any derived extremes indices. For many regions of the

  5. Clinical Malaria Transmission Trends and Its Association with Climatic Variables in Tubu Village, Botswana: A Retrospective Analysis

    Science.gov (United States)

    Chimbari, Moses John; Ngwenya, Barbara Ntombi; Sartorius, Benn

    2016-01-01

    Good knowledge on the interactions between climatic variables and malaria can be very useful for predicting outbreaks and preparedness interventions. We investigated clinical malaria transmission patterns and its temporal relationship with climatic variables in Tubu village, Botswana. A 5-year retrospective time series data analysis was conducted to determine the transmission patterns of clinical malaria cases at Tubu Health Post and its relationship with rainfall, flood discharge, flood extent, mean minimum, maximum and average temperatures. Data was obtained from clinical records and respective institutions for the period July 2005 to June 2010, presented graphically and analysed using the Univariate ANOVA and Pearson cross-correlation coefficient tests. Peak malaria season occurred between October and May with the highest cumulative incidence of clinical malaria cases being recorded in February. Most of the cases were individuals aged >5 years. Associations between the incidence of clinical malaria cases and several factors were strong at lag periods of 1 month; rainfall (r = 0.417), mean minimum temperature (r = 0.537), mean average temperature (r = 0.493); and at lag period of 6 months for flood extent (r = 0.467) and zero month for flood discharge (r = 0.497). The effect of mean maximum temperature was strongest at 2-month lag period (r = 0.328). Although malaria transmission patterns varied from year to year the trends were similar to those observed in sub-Saharan Africa. Age group >5 years experienced the greatest burden of clinical malaria probably due to the effects of the national malaria elimination programme. Rainfall, flood discharge and extent, mean minimum and mean average temperatures showed some correlation with the incidence of clinical malaria cases. PMID:26983035

  6. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has committed to use its ''best efforts'' to ensure that entities that establish GHG emissions baselines and register their emissions will receive ''appropriate consideration under any future international, federal, or state regulatory scheme relating to greenhouse gas emissions.'' Reporting of GHG emissions involves documentation of both ''direct'' emissions from sources that are under the entity's control and indirect emissions controlled by others. Electricity generated by an off-site power source is consider ed to be an indirect GHG emission and is required to be included in the entity's report. Registry participants include businesses, non-profit organizations, municipalities, state agencies, and other entities. Participants are required to register the GHG emissions of all operations in California, and are encouraged to report nationwide. For the first three years of participation, the Registry only requires the reporting of carbon dioxide (CO2) emissions, although participants are encouraged to report the remaining five Kyoto Protocol GHGs (CH4, N2O, HFCs, PFCs, and SF6). After three years, reporting of all six Kyoto GHG emissions is required. The enabling legislation for the Registry (SB 527) requires total GHG emissions to be registered and requires reporting of ''industry-specific metrics'' once such metrics have been adopted by the Registry. The Ernest Orlando Lawrence Berkeley National

  7. Tropical cyclone losses in the USA and the impact of climate change - A trend analysis based on data from a new approach to adjusting storm losses

    International Nuclear Information System (INIS)

    Economic losses caused by tropical cyclones have increased dramatically. Historical changes in losses are a result of meteorological factors (changes in the incidence of severe cyclones, whether due to natural climate variability or as a result of human activity) and socio-economic factors (increased prosperity and a greater tendency for people to settle in exposed areas). This paper aims to isolate the socio-economic effects and ascertain the potential impact of climate change on this trend. Storm losses for the period 1950-2005 have been adjusted to the value of capital stock in 2005 so that any remaining trend cannot be ascribed to socio-economic developments. For this, we introduce a new approach to adjusting losses based on the change in capital stock at risk. Storm losses are mainly determined by the intensity of the storm and the material assets, such as property and infrastructure, located in the region affected. We therefore adjust the losses to exclude increases in the capital stock of the affected region. No trend is found for the period 1950-2005 as a whole. In the period 1971-2005, since the beginning of a trend towards increased intense cyclone activity, losses excluding socio-economic effects show an annual increase of 4% per annum. This increase must therefore be at least due to the impact of natural climate variability but, more likely than not, also due to anthropogenic forcings.

  8. Trends in lake chemistry in response to atmospheric deposition and climate in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming, 1993-2009

    Science.gov (United States)

    Mast, M. Alisa; Ingersoll, George P.

    2011-01-01

    In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation

  9. Using Carbon Isotopes in Cenozoic Soil Carbonates to Quantify Primary Productivity from Mid-Latitude Regions

    Science.gov (United States)

    Caves, J. K.; Kramer, S. H.; Ibarra, D. E.; Chamberlain, C. P.

    2015-12-01

    The carbon isotope composition of pedogenic carbonates (δ13Ccarb) from paleosols has been extensively used as a proxy to estimate atmospheric pCO2 over the Phanerozoic. However, a number of other factors - including the concentration of plant-respired CO2 and the isotopic composition of both atmospheric and plant-respired carbon - influence the δ13C of pedogenic carbonates. For example, δ13Ccarb records from the mid-latitudes in central Asia and western North America show increasing trends in δ13Ccarb despite decreasing pCO2 during the late Cenozoic, which suggests that other factors play an important role in determining the isotopic composition of pedogenic carbonates. Instead, we suggest that these records are primarily recording changes in primary productivity rather than changes in atmospheric pCO2 and therefore propose a novel use of paleosol carbonate records to understand paleo-ecosystem dynamics. Here, we compile existing paleosol carbonate records, and present three new records from Wyoming, to estimate soil respiration and primary productivity in western North America during the Paleogene and early Neogene. We observe both an overall increase in δ13Ccarb after the early Eocene, and spatially heterogeneous δ13Ccarb values across western US basins. We combine this δ13Ccarb data with compilations of atmospheric pCO2 to estimate soil respiration and plant productivity. The long-term increase in δ13Ccarb indicates a decrease in plant productivity as conditions became more arid across much of the western US, congruent with both records of regional uplift and of global cooling. Furthermore, significant spatial heterogeneity in δ13Ccarb indicates that regional factors, such as the presence of paleolakes and/or local paleotopography may have provided a second-order control on local and regional productivity. Thus, our results provide a first-order estimate linking changes in primary productivity with regional tectonics and global climatic change.

  10. Geochemical Evolution and Environmental Changes of Qinghai—Xizang Plateau Since Late Cenozoic

    Institute of Scientific and Technical Information of China (English)

    余素华; 文启忠; 等

    1998-01-01

    Long-and short-term climatic curves were preliminarily established based on the comprehensive analysis of geochemical information since the Late Cenozoic in the Qinghai Xizang(Qinghai-Tibet)Plateau.The curves show that the climate in the plateau was alternatively dry-warm and cold-wet during the period of 30-3.4 Ma when the plateau was not uplifted to an enough altitude and the monsoon was not completely formed either,In the period of 3.4-0.73 Ma.the climate fluctuated between dry-cold and wet-warm when the plateau was rapidly uplifted and the Asian monsoon was consequently formed.Since 0.73 Ma.the climate became even drier when the plateau continuously rose.In the Holocene period.the climate alternatively changed with a complex model of being cool-dry,warm-wet and cold-wet.

  11. Late Cenozoic onset of the latitudinal diversity gradient of North American mammals

    Science.gov (United States)

    Marcot, Jonathan D.; Fox, David L.; Niebuhr, Spencer R.

    2016-06-01

    The decline of species richness from equator to pole, or latitudinal diversity gradient (LDG), is nearly universal among clades of living organisms, yet whether it was such a pervasive pattern in the geologic past remains uncertain. Here, we calculate the strength of the LDG for terrestrial mammals in North America over the past 65 My, using 27,903 fossil occurrences of Cenozoic terrestrial mammals from western North America downloaded from the Paleobiology Database. Accounting for temporal and spatial variation in sampling, the LDG was substantially weaker than it is today for most of the Cenozoic and the robust modern LDG of North American mammals evolved only over the last 4 My. The strength of the LDG correlates negatively with global temperature, suggesting a role of global climate patterns in the establishment and maintenance of the LDG for North American mammals.

  12. LATE CREATACEOUS-CENOZOIC SEDIMENTS OF THE BAIKAL RIFT BASIN AND CHANGING NATURAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Viktor D. Mats

    2015-09-01

    Full Text Available The late Cretaceous-Cenozoic sediments of fossil soils and weathering crusts of the Baikal rift have been subject to long-term studies. Based on our research results, it is possible to distinguish the following litho-stratigraphic complexes which are related to particular stages of the rift development: the late Cretaceous–early Oligocene (crypto-rift Arheo-baikalian, the late Oligocene–early Pliocene (ecto-rift early orogenic Pra-baikalian, and the late Pliocene-Quaternary (ecto-rift late orogenic Pra-baikalian – Baikalian complexes. Changes of weathering modes (Cretaceous-quarter, soil formation (Miocene-quarter and differences of precipitation by vertical and lateral stratigraphy are analysed with regard to specific features of climate, tectonics and facial conditions of sedimentation. Tectonic phases are defined in the Cenozoic period of the Pribaikalie.

  13. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming?

    Directory of Open Access Journals (Sweden)

    G. Hoareau

    2015-07-01

    Full Text Available The 58–51 Ma interval was characterized by a long-term increase of global temperatures (+4 to +6 °C up to the Early Eocene Climate Optimum (EECO, 52.9–50.7 Ma, the warmest interval of the Cenozoic. It was recently suggested that sustained high atmospheric pCO2, controlling warm early Cenozoic climate, may have been released during Neo-Tethys closure through the subduction of large amounts of pelagic carbonates and their recycling as CO2 at arc volcanoes ("carbonate subduction factory". To analyze the impact of Neo-Tethys closure on early Cenozoic warming, we have modeled the volume of subducted sediments and the amount of CO2 emitted at active arc volcanoes along the northern Tethys margin. The impact of calculated CO2 fluxes on global temperature during the early Cenozoic have then been tested using a climate carbon cycle model (GEOCLIM. We first show that CO2 production may have reached up to 1.55 × 1018 mol Ma−1 specifically during the EECO, ~ 4 to 37 % higher that the modern global volcanic CO2 output, owing to a dramatic India–Asia plate convergence increase. In addition to the background CO2 degassing, the subduction of thick Greater Indian continental margin carbonate sediments at ~ 55–50 Ma may also have led to additional CO2 production of 3.35 × 1018 mol Ma−1 during the EECO, making a total of 85 % of the global volcanic CO2 outgassed. However, climate modelling demonstrates that timing of maximum CO2 release only partially fit with the EECO, and that corresponding maximum pCO2 values (750 ppm and surface warming (+2 °C do not reach values inferred from geochemical proxies, a result consistent with conclusions arise from modelling based on other published CO2 fluxes. These results demonstrate that CO2 derived from decarbonation of Neo-Tethyan lithosphere may have possibly contributed to, but certainly cannot account alone for early Cenozoic warming, including the EECO. Other commonly cited sources of excess CO2 such as

  14. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    Science.gov (United States)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean-atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on

  15. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.

    Science.gov (United States)

    Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka

    2014-06-01

    Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations

  16. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-06-01

    industry-specific metric for reporting and tracking GHG emissions trends to accurately reflect year to year changes while protecting proprietary data. This GHG intensity index changes while protecting proprietary data. This GHG intensity index would provide Registry participants with a means for demonstrating improvements in their energy and GHG emissions per unit of production without divulging specific values. For the second research area, Berkeley Lab evaluated various methods used to calculate baselines for documentation of energy consumption or GHG emissions reductions, noting those that use industry-specific metrics. Accounting for actions to reduce GHGs can be done on a project-by-project basis or on an entity basis. Establishing project-related baselines for mitigation efforts has been widely discussed in the context of two of the so-called ''flexible mechanisms'' of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto Protocol) Joint Implementation (JI) and the Clean Development Mechanism (CDM).

  17. A synthesis of Cenozoic sedimentation in the North Sea

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Rasmussen, E.S.

    2012-01-01

    sediment influx into the North Sea during the Cenozoic is more complex than previously suggested clockwise rotation from early northwestern to late southern sources. The Shetland Platform supplied sediment continuously, although at varying rates, until the latest Cenozoic. Sedimentation around Norway...... changed from early Cenozoic influx from the southwestern margin, to almost exclusively from the southern margin in the Oligocene and from all of southern Norway in the latest Cenozoic. Thick Eocene deposits in the Central Graben are sourced mainly from a western and a likely southern source, indicating...

  18. The Norwegian Danish Basin: A key to understanding the Cenozoic in the eastern North Sea

    Science.gov (United States)

    Rasmussen, Thomas L.; Clausen, Ole R.; Andresen, Katrine J.; Goledowski, Bartosz

    2015-04-01

    The Danish part of Norwegian-Danish Basin, which constitutes the eastern part of the North Sea Basin, has been the key area for sequence stratigraphic subdivision and analysis of the Cenozoic succession since the mid 1990's. Widespread 3D seismic data, in the central parts of the North Sea Basin, as well as more scattered 3D seismic data in the Danish part of the Norwegian-Danish Basin, have given a more detailed understanding of the sequences and indicate that climate is tenable for the origin of Cenozoic sequence boundaries. The previous sequence stratigraphic interpretations have been an integrated part of an ongoing debate concerning vertical movements of the Fennoscandian shield versus the impact of climate and erosion. A newly accessed coherent regional 2D and reprocessed 3D seismic data set, in the Norwegian part of the Norwegian-Danish Basin, constitute the database for a new sequence stratigraphic analysis of the entire area. The objective of the new study is to test previous subdivisions and introduce a coherent 3D sequence stratigraphic analysis and depositional model for the entire Norwegian-Danish Basin. This analysis is necessary to get out of the stalemate with the uplift discussion. The study shows that the original subdivision by Michelsen et al. (1995, 1998) stands. However, revision of few a sequence boundaries may have to be adjusted due to new biostratigraphic information published. Furthermore, high-angle clinoforms and geomorphological transport complexes observed in the Danish North Sea Basin can be traced into the Norwegian sector. This together with the recognition of several other high-angle clinoform complexes, and their associated seismic facies distribution maps and thickness-maps, enhances the level of detail and constrains the previous published paleogeographic reconstructions of the Cenozoic. The geometry of the Cenozoic infill, in the Norwegian part of the Norwegian-Danish Basin, is here interpreted to be controlled by relative sea

  19. Influence of climate and land use changes on recent trend of soil erosion within the Russian Plain

    Science.gov (United States)

    Golosov, Valentin; Yermolaev, Oleg; Rysin, Ivan; Litvin, Leonid; Kiryukhina, Zoya; Safina, Guzel

    2016-04-01

    flood levels decreased considerably - in particular, in small rivers. This is confirmed by a serious decrease of floodplain sedimentation rates since 1986 compared with the period from 1964 to 1986. As a result of both positive trend of extreme rainfall and negative trend of surface snow melting runoff, the proportion of sediments eroded from cultivated slopes and delivered by surface runoff to river channels decreased considerably during the last few decades in the southern part of the Russian Plain. Complex assessment of different erosion factors changes is undertaken for the different landscape zones of the Russian Plain. Given analysis allows evaluating of recent trend in erosion rates from cultivated lands. The other indicators of sediment redistribution dynamic (gully head retreat rate, floodplain sedimentation) are also used for assessment of soil erosion rate dynamic under land use and climate changes during last 25-30 years.

  20. Assessing the potential impact and uncertainty of climate, land use change and demographic trends on malaria transmission in Africa by 2050.

    Science.gov (United States)

    Tompkins, Adrian; Caporaso, Luca; Colon-Gonzalez, Felipe

    2014-05-01

    Previous analyses of data has shown that in addition to variability and longer term trends in climate variables, both land use change (LUC) and population mobility and urbanisation trends can impact malaria transmission intensities and socio-economic burden. With the new regional VECTRI dynamical malaria model it is now possible to examine these in an integrated modelling framework. Using 5 global climate models which were bias corrected using the WATCH data for the recent ISIMIP project, the four Representative Concentration Pathways (RCP), population projections disaggregated from the Shared Socioeconomic Pathways (SSP) and Land use change from the HYDE model output used in the CMIP5 process, we construct a multi-member ensemble of malaria transmission intensity projections for 2050. The ensemble integrations indicate that climate has the leading impact on malaria changes, but that population growth and urbanisation can offset the effect of climate locally. LUC impacts can also be significant on the local scale but their assessment is highly uncertain and only indicative in this study. It is argued that the study should be repeated with a range of malaria models or VECTRI configurations in order to assess the additional uncertainty due to the malaria model assumptions.

  1. On the ability of statistical wind-wave models to capture the variability and long-term trends of the North Atlantic winter wave climate

    Science.gov (United States)

    Martínez-Asensio, Adrián; Marcos, Marta; Tsimplis, Michael N.; Jordà, Gabriel; Feng, Xiangbo; Gomis, Damià

    2016-07-01

    A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance as well as with altimetry data. For the projections, it has been found that statistical models that use wind speed as independent variable predictor are able to capture a larger fraction of the winter SWH inter-annual variability (68% on average) and of the long term changes projected by the dynamical simulation. Conversely, regression models using climate indices, sea level pressure and/or pressure gradient as predictors, account for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically projected long term trends over the North Atlantic. Investigating the wind-sea and swell components separately, we have found that the combination of two regression models, one for wind-sea waves and another one for the swell component, can improve significantly the wave field projections obtained from single regression models over the North Atlantic.

  2. Early cenozoic differentiation of polar marine faunas.

    Directory of Open Access Journals (Sweden)

    J Alistair Crame

    Full Text Available The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  3. Construction of the seawater 87Sr/86Sr curve for the Cenozoic and Cretaceous: supporting data

    International Nuclear Information System (INIS)

    We present the data used to construct the Cenozoic and Cretaceous portion of the Phanerozoic curve of seawater 87Sr/86Sr that had been given in summary form by W.H. Burke and coworkers. All Cenozoic samples (128) and 22 Cretaceous samples are foram-nannofossil oozes and limestones from DSDP cores distributed among 13 sites in the Atlantic, Pacific and Indian Oceans, and the Caribbean Sea. Non-DSDP Cretaceous samples (126) include limestone, anhydrite and phosphate samples from North America, Europe and Asia. Determination of the 87Sr/86Sr value of seawater at particular times in the past is based on comparison of ratios derived from coeval marine samples from widely separated geographic areas. The general configuration of the Cenozoic and Cretaceous curve appears to be strongly influenced by the history of plate interactions and sea-floor spreading. Specific rises and falls in the 87Sr/86Sr of seawater, however, may be caused by a variety of factors such as variation in lithologic composition of the crust exposed to weathering, configuration and topographic relief of continents, volcanic activity, rate of sea-floor spreading, extent of continental inundation by epeiric seas, and variations in both climate and paleo-oceanographic conditions. Many or all of these factors are probably related to global tectonic processes, yet their combined effect on the temporal variation of seawater 87Sr/86Sr can complicate a direct plate-tectonic interpretation for portions of the seawater curve. (Auth.)

  4. Trend and climatic sensitivity of vegetation phenology in semiarid and arid ecosystems in the US Great Basin during 1982–2011

    Directory of Open Access Journals (Sweden)

    G. Tang

    2015-07-01

    Full Text Available We quantified the temporal trend and climatic sensitivity of vegetation phenology in dryland ecosystems in the US Great Basin during 1982–2011. Our results indicated that vegetation greenness in the Great Basin increased significantly during the study period, and this positive trend occurred in autumn but not spring and summer. Spatially, increases in vegetation greenness were more apparent in the northwestern, southeastern, and eastern Great Basin but less apparent in the central and southwestern Great Basin. In addition, the start of growing season (SOS was not advanced while the end of growing season (EOS was delayed significantly at a rate of 3.0 days per decade during the study period. The significant delay in EOS and lack of earlier leaf onset caused growing season length (GSL to increase at a rate of 3.0 days per decade during 1982–2011. Interestingly, we found that the variation of mean vegetation greenness in the period of March to November (SSA was not significantly correlated with its mean surface air temperature but was strongly correlated with its total precipitation. Seasonally, the variation of mean vegetation greenness in spring, summer, and autumn was mainly attributable to changes in pre-season precipitation in winter and spring. Nevertheless, climate warming played a strong role in extending GSL that in turn resulted in the upward trend in mean vegetation greenness during 1982–2011. Overall, our results suggested that changes in wintertime and springtime precipitation played a stronger role than temperature in affecting the interannual variability of vegetation greenness while climate warming was mainly responsible for the 30-year upward trend in the magnitudes of mean vegetation greenness in the dryland ecosystems during 1982–2011.

  5. Impact of socio-economic trends and climate variability on the occurrence and severity of blue water shortage and stress events at the global scale

    Science.gov (United States)

    Veldkamp, Ted I. E.; Wada, Yoshihide; de Moel, Hans; Kummu, Matti; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2014-05-01

    Changes in available fresh water resources (i.e. water in rivers, lakes, and reservoirs), together with changes in water use, force our society to adapt continuously to drought and water scarcity conditions. The inadequate amount of fresh water is recognized as one of the most important global risks for the near future. Whilst several studies assess the role of long term climate change and socio-economic trends on global blue water availability and scarcity events, the impact of climate variability is less well understood. Taking into account inter-annual climate variability, however, is important as it may offset other factors of change (e.g. socio-economic development, long term climate change) at the regional scale, impacting the efficiency of adaptation strategies. The tailoring of adaptation strategies to specific regions requires also more insights in the specific character of water scarcity events, being solely demand (sector-specific)- or population-driven, or driven by both. Only few studies, however, have executed such assessment and a global analysis distinguishing water use sector- and climate variability-specific water scarcity events is lacking. In this contribution, we evaluate the impact of socio-economic trends and inter-annual climate variability on the occurrence and severity of blue water scarcity events. This is done at the global scale over the time period 1960-2000, while distinguishing two main types of scarcity: apparent, demand-driven, water stress and real, population-driven, water shortage. Subsequently, demand-driven water stress was broken down into water stress being solely irrigation-, economy-, or population-driven, or driven by all the causes. The results indicate that both socio-economic trends and climate variability impact the frequency and severity of water shortage and stress events. The results differ significantly regionally, both in sign (+/-) and in relative contribution. Furthermore, the results show a spatial

  6. Spatial and temporal trends in summertime climate and water quality indicators in the coastal embayments of Buzzards Bay, Massachusetts

    Science.gov (United States)

    Rheuban, J. E.; Williamson, S.; Costa, J. E.; Glover, D. M.; Jakuba, R. W.; McCorkle, D. C.; Neill, C.; Williams, T.; Doney, S. C.

    2016-01-01

    Degradation of coastal ecosystems by eutrophication is largely defined by nitrogen loading from land via surface water and groundwater flows. However, indicators of water quality are highly variable due to a myriad of other drivers, including temperature and precipitation. To evaluate these drivers, we examined spatial and temporal trends in a 22-year record of summer water quality data from 122 stations in 17 embayments within Buzzards Bay, MA (USA), collected through a citizen science monitoring program managed by Buzzards Bay Coalition. To identify spatial patterns across Buzzards Bay's embayments, we used a principle component and factor analysis and found that rotated factor loadings indicated little correlation between inorganic nutrients and organic matter or chlorophyll a (Chl a) concentration. Factor scores showed that embayment geomorphology in addition to nutrient loading was a strong driver of water quality, where embayments with surface water inputs showed larger biological impacts than embayments dominated by groundwater influx. A linear regression analysis of annual summertime water quality indicators over time revealed that from 1992 to 2013, most embayments (15 of 17) exhibited an increase in temperature (mean rate of 0.082 ± 0.025 (SD) °C yr-1) and Chl a (mean rate of 0.0171 ± 0.0088 log10 (Chl a; mg m-3) yr-1, equivalent to a 4.0 % increase per year). However, only seven embayments exhibited an increase in total nitrogen (TN) concentration (mean rate 0.32 ± 0.47 (SD) µM yr-1). Average summertime log10(TN) and log10(Chl a) were correlated with an indication that the yield of Chl a per unit total nitrogen increased with time suggesting the estuarine response to TN may have changed because of other stressors such as warming, altered precipitation patterns, or changing light levels. These findings affirm that nitrogen loading and physical aspects of embayments are essential in explaining the observed ecosystem response. However, climate

  7. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    Directory of Open Access Journals (Sweden)

    D. G. Streets

    2012-04-01

    Full Text Available We calculate decadal aerosol direct and indirect (warm cloud radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970–1990, with values over the eastern US (east of 100° W of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2, nitrate (−0.2 W m−2, organic carbon (−0.2 W m−2, and black carbon (+0.4 W m−2. The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50%. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect, mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  8. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    Science.gov (United States)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  9. Latino Population Growth, Characteristics, and Settlement Trends: Implications for Social Work Education in a Dynamic Political Climate

    Science.gov (United States)

    Vidal de Haymes, Maria; Kilty, Keith M.

    2007-01-01

    This paper identifies a number of significant contemporary trends in the Latino population, including the striking growth of the community, new points of entry and settlement for recent immigrants, the mixed-status nature of families, and the increase in the proportion of U.S. households that speak Spanish. The implications of these trends for…

  10. Influence of two different geo-climatic zones on the prevalence and time trends of asthma symptoms among Spanish adolescents and schoolchildren

    Science.gov (United States)

    García-Marcos, Luis; Batllés-Garrido, José; Blanco-Quirós, Alfredo; García-Hernández, Gloria; Guillén-Grima, Francisco; González-Díaz, Carlos; García-Merino, Águeda; Arnedo-Pena, Alberto; Busquets-Monge, Rosa M.; Morales-Suárez-Varela, María; López-Silvarrey-Varela, Ángel; García-Andoin, Nekane

    2009-01-01

    Few studies have focused on the long-term influence of the climate on the prevalence of asthma. The aim of this study is to establish the influence of geo-climatic conditions on the prevalence of asthma symptoms both in adolescents and schoolchildren, and to discover if this influence is associated with their time trends. Eight centres in Spain performed both ISAAC phases I (1994) and III (2002) in children 13-14 years old. Six of them also surveyed children 6-7 years old. For each age group and phase, about 3,000 children were surveyed per centre. This study examines the prevalence of current wheeze and severe current wheeze in two different geo-climatic zones, coast and plateau, considering their relative humidity and temperature range. In both age groups, the mean asthma prevalence on the coast, for phase I and III, was significantly higher than on the plateau. Living on the plateau was an independent protective factor for current wheeze and severe current wheeze for the two age groups. Within the coastal centres, the increase of the annual relative humidity was a statistical significant risk factor for current wheeze, the same trend existing for current severe wheeze. These effects were independent of the sex and of the phase of the study. The prevalence of asthma and severe asthma symptoms is more frequent on the coast of Spain as compared to the inner plateau. This finding was repeated both in 1994 and in 2002.

  11. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong; Reich, Peter B; Searle, Eric B; Biswas, Shekhar R

    2016-09-01

    The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change.

  12. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong; Reich, Peter B; Searle, Eric B; Biswas, Shekhar R

    2016-09-01

    The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change. PMID:27465040

  13. Mesozoic-Cenozoic Basin Features and Evolution of Southeast China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The Late Triassic to Paleogene (T3-E) basin occupies an area of 143100 km2, being the sixth area of the whole of SE China; the total area of synchronous granitoid is about 127300 km2; it provides a key for understanding the tectonic evolution of South China. From a new 1:1500000 geological map of the Mesozoic-Cenozoic basins of SE China, combined with analysis of geometrical and petrological features, some new insights of basin tectonics are obtained. Advances include petrotectonic assemblages,basin classification of geodynamics, geometric features, relations of basin and range. According to basin-forming geodynamical mechanisms, the Mesozoic-Cenozoic basin of SE China can be divided into three types, namely: 1) para-foreland basin formed from Late Triassic to Early Jurassic (T3-J1)under compressional conditions; 2) rift basins formed during the Middle Jurassic (J2) under a strongly extensional setting; and 3) a faulted depression formed during Early Cretaceous to Paleogene (K1-E)under back-arc extension action. From the rock assemblages of the basin, the faulted depression can be subdivided into a volcanic-sedimentary type formed mainly during the Early Cretaceous (K1) and a red-bed type formed from Late Cretaceous to Paleogene (K2-E). Statistical data suggest that the area of all para-foreland basins (T3-J1) is 15120 km2, one of rift basins (J2) occupies 4640 km2, and all faulted depressions equal to 124330 km2 including the K2-E red-bed basins of 37850 km2. The Early Mesozoic(T3-J1) basin and granite were mostly co-generated under a post-collision compression background,while the basins from Middle Jurassic to Paleogene (J2-E) were mainly constrained by regional extensional tectonics. Three geological and geographical zones were surveyed, namely: 1) the Wuyishan separating zone of paleogeography and climate from Middle Jurassic to Tertiary; 2) the Middle Jurassic rift zone; and 3) the Ganjiang separating zone of Late Mesozoic volcanism. Three types of basin

  14. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.

    Science.gov (United States)

    Macdonald, R W; Harner, T; Fyfe, J

    2005-04-15

    possibility, presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finally, biotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway-in the Arctic, change in the distribution of ice and temperature may already have caused such changes. Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift tracks). Perhaps the most dramatic changes will occur because our view of the Arctic Ocean will change as it becomes more amenable to transport, tourism and mineral exploration on the shelves. Radionuclides have tended not to produce a radiological problem in the Arctic; nevertheless one pathway, the ice, remains a risk because it can accrue, concentrate and transport radio-contaminated sediments. This pathway is sensitive to where ice is produced, what the transport pathways of ice are, and where ice is finally melted-all strong candidates for change during the coming century. The changes that have already occurred in the Arctic and those that are projected to occur have an effect on contaminant time series including direct measurements (air, water, biota) or proxies (sediment cores, ice cores, archive material). Although these 'system' changes can alter the flux and concentrations at given sites in a number of obvious ways, they have been all but ignored in the interpretation of such time series. To understand properly what trends mean, especially in complex 'recorders' such as seals, walrus and polar bears, demands a more thorough approach to time series by collecting data in a number of media coherently. Presently, a major reservoir for contaminants and the one most directly connected to biological uptake in species at greatest risk-the ocean-practically lacks such time series. PMID:15866268

  15. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data

    International Nuclear Information System (INIS)

    possibility, presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finally, biotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway-in the Arctic, change in the distribution of ice and temperature may already have caused such changes. Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift tracks). Perhaps the most dramatic changes will occur because our view of the Arctic Ocean will change as it becomes more amenable to transport, tourism and mineral exploration on the shelves. Radionuclides have tended not to produce a radiological problem in the Arctic; nevertheless one pathway, the ice, remains a risk because it can accrue, concentrate and transport radio-contaminated sediments. This pathway is sensitive to where ice is produced, what the transport pathways of ice are, and where ice is finally melted-all strong candidates for change during the coming century. The changes that have already occurred in the Arctic and those that are projected to occur have an effect on contaminant time series including direct measurements (air, water, biota) or proxies (sediment cores, ice cores, archive material). Although these 'system' changes can alter the flux and concentrations at given sites in a number of obvious ways, they have been all but ignored in the interpretation of such time series. To understand properly what trends mean, especially in complex 'recorders' such as seals, walrus and polar bears, demands a more thorough approach to time series by collecting data in a number of media coherently. Presently, a major reservoir for contaminants and the one most directly connected to biological uptake in species at greatest risk-the ocean-practically lacks such time series

  16. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data.

    Science.gov (United States)

    Macdonald, R W; Harner, T; Fyfe, J

    2005-04-15

    possibility, presently difficult to predict, is combination of immune suppression together with expanding ranges of disease vectors. Finally, biotransport through migratory species is exceptionally vulnerable to changes in migration strength or in migration pathway-in the Arctic, change in the distribution of ice and temperature may already have caused such changes. Hydrocarbons, which tend to impact surfaces, will be mostly affected by change in the ice climate (distribution and drift tracks). Perhaps the most dramatic changes will occur because our view of the Arctic Ocean will change as it becomes more amenable to transport, tourism and mineral exploration on the shelves. Radionuclides have tended not to produce a radiological problem in the Arctic; nevertheless one pathway, the ice, remains a risk because it can accrue, concentrate and transport radio-contaminated sediments. This pathway is sensitive to where ice is produced, what the transport pathways of ice are, and where ice is finally melted-all strong candidates for change during the coming century. The changes that have already occurred in the Arctic and those that are projected to occur have an effect on contaminant time series including direct measurements (air, water, biota) or proxies (sediment cores, ice cores, archive material). Although these 'system' changes can alter the flux and concentrations at given sites in a number of obvious ways, they have been all but ignored in the interpretation of such time series. To understand properly what trends mean, especially in complex 'recorders' such as seals, walrus and polar bears, demands a more thorough approach to time series by collecting data in a number of media coherently. Presently, a major reservoir for contaminants and the one most directly connected to biological uptake in species at greatest risk-the ocean-practically lacks such time series.

  17. Cenozoic rift formation in the northern Caribbean

    Science.gov (United States)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  18. The Cenozoic Volcanoes in Northeast China

    Institute of Scientific and Technical Information of China (English)

    LIU Jiaqi; HAN Jingtai; GUO Zhengfu

    2002-01-01

    There are more than 600 Cenozoic volcanic cones and craters with abeut 50 000 km2of lava flows in northeast China, which formed many volcanic clusters and shown the features of the continental rift - type volcanoes. Most volcanic activities in this area, especially in the east part of Songliao graben, were usually controlled by rifts and faults with the main direction of NE / NNE in parallel and become younger from the central graben towards its both sides, especially to the east continental margin. It is revealed that the volcanism occurred in northeast China was as strong as that occurred in Japan during the Miocene and the Quaternary. The Quaternary basalt that is usually distributed along river valley is called "valley basalt"while Neogene basalt usually distributed in the top of mounts is called "high position basalt". These volcanoes and volcanic rocks are usually composed of alkaline basalts with ultramafic inclusions, except Changbaishan volcano that is built by trachyte and pantellerite.

  19. The impact of climate change on indigenous Arabica coffee (Coffea arabica: predicting future trends and identifying priorities.

    Directory of Open Access Journals (Sweden)

    Aaron P Davis

    Full Text Available Precise modelling of the influence of climate change on Arabica coffee is limited; there are no data available for indigenous populations of this species. In this study we model the present and future predicted distribution of indigenous Arabica, and identify priorities in order to facilitate appropriate decision making for conservation, monitoring and future research. Using distribution data we perform bioclimatic modelling and examine future distribution with the HadCM3 climate model for three emission scenarios (A1B, A2A, B2A over three time intervals (2020, 2050, 2080. The models show a profoundly negative influence on indigenous Arabica. In a locality analysis the most favourable outcome is a c. 65% reduction in the number of pre-existing bioclimatically suitable localities, and at worst an almost 100% reduction, by 2080. In an area analysis the most favourable outcome is a 38% reduction in suitable bioclimatic space, and the least favourable a c. 90% reduction, by 2080. Based on known occurrences and ecological tolerances of Arabica, bioclimatic unsuitability would place populations in peril, leading to severe stress and a high risk of extinction. This study establishes a fundamental baseline for assessing the consequences of climate change on wild populations of Arabica coffee. Specifically, it: (1 identifies and categorizes localities and areas that are predicted to be under threat from climate change now and in the short- to medium-term (2020-2050, representing assessment priorities for ex situ conservation; (2 identifies 'core localities' that could have the potential to withstand climate change until at least 2080, and therefore serve as long-term in situ storehouses for coffee genetic resources; (3 provides the location and characterization of target locations (populations for on-the-ground monitoring of climate change influence. Arabica coffee is confimed as a climate sensitivite species, supporting data and inference that existing

  20. Cenozoic geodynamics of the Bering Sea region

    Science.gov (United States)

    Chekhovich, V. D.; Sukhov, A. N.; Sheremet, O. G.; Kononov, M. V.

    2012-05-01

    In the Early Cenozoic before origination of the Aleutian subduction zone 50-47 Ma ago, the northwestern (Asian) and northeastern (North American) parts of the continental framework of the Pacific Ocean were active continental margins. In the northwestern part, the island-arc situation, which arose in the Coniacian, remained with retention of the normal lateral series: continent-marginal sea-island arc-ocean. In the northeastern part, consumption of the oceanic crust beneath the southern margin of the continental Bering shelf also continued from the Late Cretaceous with the formation of the suprasubduction volcanic belt. The northwestern and northeastern parts of the Paleopacific were probably separated by a continuation of the Kula-Pacific Transform Fracture Zone. Change of the movement of the Pacific oceanic plates from the NNW to NW in the middle Eocene (50-47 Ma ago) was a cause of the origin of the Aleutian subduction zone and related Aleutian island arc. In the captured part of the Paleopacific (proto-Bering Sea), the ongoing displacement of North America relative to Eurasia in the middle-late Eocene gave rise to the formation of internal structural elements of the marginal sea: the imbricate nappe structure of the Shirshov Ridge and the island arc of the Bowers Ridge. The Late Cenozoic evolution was controlled by subduction beneath the Kamchatka margin and its convergence with the Kronotsky Terrane in the south. A similar convergence of the Koryak margin with the Goven Terrane occurred in the north. The Komandorsky minor oceanic basin opened in the back zone of this terrane. Paleotectonic reconstructions for 68-60, 56-52, 50-38, 30-15, and 15-6 Ma are presented.

  1. Trans- and Interdisciplinarity in K-14 Climate Change Education: Trends Emerging from Recent Reports by the National Research Council

    Science.gov (United States)

    Storksdieck, M.

    2012-12-01

    A recent report by the National Research Council placed climate change or climate science education deeply into the curriculum of K-12 science education in the US (A Framework for K-12 Science Education). The NRC Framework is currently being translated into the Next Generation Science Standards (NGSS), an effort by 26 states, representing 57% of the US school-aged population, under the leadership of the educational nonprofit Achieve. A first draft version of the NGSS was made available to public audiences in June of 2012, and a revised draft will be available for a second round of reviews in later November of 2012; the final version of the NGSS which will likely feature climate change and climate science as part of Earth Systems Science, but also embedded in other areas of the science curriculum, is expected to be released in the spring of 2013. It has already become apparent, though, that successful implementation of the new standards down into effective classroom-based instruction will require a deep analysis of current and likely future barriers and opportunities for engaging K-14 students in climate change education. A recently released report on an NRC workshop conducted in 2011 summarizes these discussions (Climate Change Education in Formal Settings, K-14: A Workshop Summary). The proceedings of the workshop highlight the need to think in trans- or interdisciplinary ways about educating children in primary, secondary and early post-secondary education. This report builds on a 2010 workshop that addressed how to best reach general audiences on the issue of climate change education, particularly if the desired outcome is seen as building adaptive capacity in children and adults alike. This workshop was summarized in a report entitled Climate Change Education: Goals, Audiences, and Strategies. Opportunities for engaging students in trans- or interdisciplinary exploration of climate science or climate change-related topics, while available to K-12 students

  2. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    WANG; Xi-kui

    2001-01-01

    Ke-qin, 1997. Paleoclimatic and environmental change since 2000a B. P. recorded in ice Core[J]. The Front of Ceo-science, 4(1): 95-100.(in Chiniese)[13]ZHANG Zhen-ke, WU Rui-jin, WANG Su-min, 1998. Paleoenvironmeal evolution during historic time reflected by frequency susceptibility of the lacustrine sediment in Daihai[J]. Geography Reaserch. 17(3) :297-300. (in Chinese)[14]ZHANG Pi-yuan, 1996. Climatic Changes During Historic Time in China[J]. Jinan: Shandong Science and Technology Press, 434-435. (in Chinese)[15]ZHANG Pi-yuan, GE Quan-sheng, 1997. The stage and abrupt ness of climatic evolution[J]. The Front of Geo-science, 4(1):122-126. (in Chinese)[16]ZHONG Wei, XIONG Hei-gang, Tashplati etal., 1998a. The preliminary study on the Spore-pollen combination of the Tagele section in Cele oasis[J]. Arid Zone Research, 15 (3):14-17. (in Chinese)[17]ZHONG Wei, XIONG Hei-gang, 1998b. Preliminary study on paleoclimatic evolution since about 12ka B.P. in Bosten Lake, southern Xinjiang, China[J]. Journal of Arid Land Resources and Enviorment, 12(3) :28-35. (in Chinese)[18]ZHU Ke-zhen. 1973, Preliminary study of climatic changes since about 5000 years in China[J]. Science in China, (2):291-296. (in Chinese)[19]CHEN Mo-xiang, WANG Ji-yang, DENG Xiao, 1994. Geothermal Resources in China[M] . Beijing: Science Press, 139 -159. (in Chinese)[20]CHEN Wen-ji, LI Da-ming, LI Qi et al. , 1992. Chronology and geochemistry of basalts in Lower Liaohe Basin[A] . In: LIU Ruo-xin. Chronology and Geochemistry of Cenozoic Volcanic Rocks in China [C] . Beijing: Seismological Press, 44-80. (in Chinese)[21]E Mo-lan, ZHAO Da-sheng, 1987. Cenozoic Basalts and Deep Source Rock Inclusions[M] . Beijing: Science Press, 86-132. (in Chinese)[22]LIU Jia-qi, 1987. Research on chronology of Cenozoic volcanic rocks in Northeast China[J]. Acta Petrologica Sinica, 3(4):21-31. (in Chinese)[23]MACHIDA H, ARAI F, 1983. Extensive ash falls in and around the Sea of Japan

  3. Mechanisms of Cenozoic deformation in the Bohai Basin, Northeast China: Physical modelling and discussions

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Jianxun; ZHOU; Jiansheng

    2006-01-01

    The Bohai Basin is a Cenozoic petroliferous extensional basin in China and has apparent geometrical and kinematic similarities with the other Meso-Cenozoic extensional basins located along the eastern margin of Eurasian Plate. However, the deformation mechanisms of the basin are still in dispute. Physcial modelling referring to the Huanghua Depression, located in the central part of the Bohai Basin was conducted employing four sets of planar sandbox experimental models with different extension directions. Only experimental results of the model with N-S extension show good structural similarity with the depression. The results also indicate that complex variations of fault strike in a rift basin are not necessarily the results of complex kinematic mechanisms or polyphase deformation. Based on comparison of experimental results with the actual structures and the good structural similarity between Huanghua Depression and the whole Bohai Basin, it is concluded that the Bohai Basin was formed by the N-S extension. The strike slip deformation along the NNE-trending border faults of the basin resulted from the N-S extension and played the role of lateral transformation for the N-S extension. In addition, according to the apparent geometrical and kinematic similarities among the Bohai Basin and other Meso-Cenozoic extensional basins located along the eastern margin of the Eurasian Plate, it is proposed that: (1) this "N-S extension" model provides a better kinematic interpretation for the formation of Bohai Basin and the other adjacent basins located along the eastern margin of the Eurasian Plate; and (2) the N-S extension was probably the effect of the "slab window" formed by the subduction of the nearly E-W trending oceanic ridge between the Kula and Pacific Plates. The "slab window" effect can also provide reasonable explanations for the phenomena that initial rifting ages of basins become progressively younger westwards along the eastern margin of the Eurasian Plate

  4. Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability

    Science.gov (United States)

    Roshan, Gholamreza; Yousefi, Robabe; Fitchett, Jennifer M.

    2016-01-01

    Tourism is a rapidly growing international sector and relies intrinsically on an amenable climate to attract visitors. Climate change is likely to influence the locations preferred by tourists and the time of year of peak travel. This study investigates the effect of climate change on the Tourism Climate Index (TCI) for Iran. The paper first calculates the monthly TCI for 40 cities across Iran for each year from 1961 to 2010. Changes in the TCI over the study period for each of the cities are then explored. Increases in TCI are observed for at least one station in each month, whilst for some months no decreases occurred. For October, the maximum of 45 % of stations demonstrated significant changes in TCI, whilst for December only 10 % of stations demonstrated change. The stations Kashan, Orumiyeh, Shahrekord, Tabriz, Torbat-e-Heidarieh and Zahedan experienced significant increases in TCI for over 6 months. The beginning of the change in TCI is calculated to have occurred from 1970 to 1980 for all stations. Given the economic dependence on oil exports, the development of sustainable tourism in Iran is of importance. This critically requires the identification of locations most suitable for tourism, now and in the future, to guide strategic investment.

  5. Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability.

    Science.gov (United States)

    Roshan, Gholamreza; Yousefi, Robabe; Fitchett, Jennifer M

    2016-01-01

    Tourism is a rapidly growing international sector and relies intrinsically on an amenable climate to attract visitors. Climate change is likely to influence the locations preferred by tourists and the time of year of peak travel. This study investigates the effect of climate change on the Tourism Climate Index (TCI) for Iran. The paper first calculates the monthly TCI for 40 cities across Iran for each year from 1961 to 2010. Changes in the TCI over the study period for each of the cities are then explored. Increases in TCI are observed for at least one station in each month, whilst for some months no decreases occurred. For October, the maximum of 45% of stations demonstrated significant changes in TCI, whilst for December only 10% of stations demonstrated change. The stations Kashan, Orumiyeh, Shahrekord, Tabriz, Torbat-e-Heidarieh and Zahedan experienced significant increases in TCI for over 6 months. The beginning of the change in TCI is calculated to have occurred from 1970 to 1980 for all stations. Given the economic dependence on oil exports, the development of sustainable tourism in Iran is of importance. This critically requires the identification of locations most suitable for tourism, now and in the future, to guide strategic investment.

  6. Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan

    International Nuclear Information System (INIS)

    We present a dual scale trend analysis for characterizing and comparing two contrasting areas of change in Russia and Kazakhstan that lie less than 800 km apart. We selected a global NASA MODIS (moderate resolution imaging spectroradiometer) product (MCD43C4 and MCD43A4) at a 0.05 deg. (∼5.6 km) and 500 m spatial resolution and a 16-day temporal resolution from 2000 to 2008. We applied a refinement of the seasonal Kendall trend method to the normalized difference vegetation index (NDVI) image series at both scales. We only incorporated composites during the vegetative growing season which was delineated by start of season and end of season estimates based on analysis of normalized difference infrared index data. Trend patterns on two scales pointed to drought as the proximal cause of significant declines in NDVI in Kazakhstan. In contrast, the area of increasing NDVI trend in Russia was linked through the dual scale analysis with agricultural land cover change. The coarser scale analysis was relevant to atmospheric boundary layer processes, while the finer scale data revealed trends that were more relevant to human decision-making and regional economics.

  7. 气候谈判集团的演化过程与演变趋势分析%Evolution Process and Trend of Climate Negotiation Groups

    Institute of Scientific and Technical Information of China (English)

    牟初夫; 王礼茂

    2015-01-01

    首先对气候谈判集团的发展和演变过程进行了系统的分析,并根据不同阶段的特征,将其演化过程划分为四个阶段。接着从政治干预、科学认知和利益驱动三个方面对影响气候谈判集团成员立场的因素进行了归纳,在此基础上对欧盟、伞形集团、七十七国集团+中国的谈判立场未来演变趋势进行了分析,并得出了以下结论:1)现有的三大气候谈判集团将呈现不同的分化趋势;2)未来共同的利益驱动将是决定今后各国气候谈判立场和气候谈判集团重组的关键;3)区域和跨区域合作组织开始在气候合作领域发挥作用,对气候谈判集团的演化产生影响。%This study systematically analyzed the development and evolution process of climate negotiation groups, and divided its evolution process into four stages according to the characteristics of different stages. Then we summarized the factors that influenced the standpoint of members of climate negotiation groups from three aspects——political intervention, science cognition and driving interest. On the basis of the above, we analyzed the future evolution trend of the European Union, the Umbrella Group and the Group of 77 plus China and drew the following conclusions: (1) the existing three Climate negotiation groups will show differentiated trends; (2) mutual interests will be the key to the future recombination of climate negotiation groups; (3) regional and cross-regional cooperation organizations begin to play a role in climate cooperation and influence the evolution of climate negotiation groups.

  8. Analyzing global trends of different cloud types and their potential impacts on climate by using the ISCCP D2 dataset

    Institute of Scientific and Technical Information of China (English)

    DING Shouguo; SHI Guangyu; ZHAO Chunsheng

    2004-01-01

    The International Satellite Cloud Climatology Project (ISCCP) D2 dataset is used to study the global distribution of low, middle and high cloud amounts and their trends of 1983-2001. Evidences have shown that global warming has accelerated over the past 20 a and the 1990s was the warmest decade in the instrumental records since 1861. Trends of various clouds amounts over this period are analyzed by employing the linear regression method. The results show that global mean total cloud amounts, in general,have tended to reduce over the past 20 a. But there are slightly increasing by about 2% before 1987 and decreasing by about 4% since then. Cloudiness trends of both low and high clouds decrease while increase for the middle cloud.And there exist remarkable discrepancies in different regions.The preliminary analyses suggest that it is likely that the cloud change occurring over the past 20 a is a positive feedback to global warming.

  9. Modern and Cenozoic records of magnesium behaviour from foraminiferal Mg isotopes

    Directory of Open Access Journals (Sweden)

    P. A. E. Pogge von Strandmann

    2014-05-01

    Full Text Available Magnesium is an element critically involved in the carbon cycle, because weathering of Ca–Mg silicates removes atmospheric CO2 into rivers, and formation of Ca–Mg carbonates in the oceans removes carbon from the ocean–atmosphere system. Hence the Mg cycle holds the potential to provide valuable insights into Cenozoic climate-system history, and the shift during this time from a greenhouse to icehouse state. We present Mg isotope ratios for the past 40 Myr using planktic foraminifers as an archive. Modern foraminifera, which discriminate against elemental and isotopically heavy Mg during calcification, show no correlation between the Mg isotope composition (δ26Mg and temperature, Mg / Ca or other parameters such as carbonate saturation (Δ CO3. However, inter-species isotopic differences imply that only well-calibrated single species should be used for reconstruction of past seawater. Seawater δ26Mg inferred from the foraminiferal record decreased from ~ 0‰ at 15 Ma, to −0.83‰ at the present day, which coincides with increases in seawater lithium and oxygen isotope ratios. It strongly suggests that neither Mg concentrations nor isotope ratios are at steady-state in modern oceans, given its ~ 10 Myr residence time. From these data, we have developed a dynamic box model to understand and constrain changes in Mg sources to the oceans (rivers and Mg sinks (dolomitisation and hydrothermal alteration. Our estimates of seawater Mg concentrations through time are similar to those independently determined by pore waters and fluid inclusions. Modelling suggests that dolomite formation and the riverine Mg flux are the primary controls on the δ26Mg of seawater, while hydrothermal Mg removal and the δ26Mg of rivers are more minor controls. Using riverine flux and isotope ratios inferred from the 87Sr / 86Sr record, the modelled Mg removal by dolomite formation shows minima in the Oligocene and at the present day (with decreasing trends from 15

  10. Preserving species populations in the boreal zone in a changing climate: contrasting trends of bird species groups in a protected area network

    Directory of Open Access Journals (Sweden)

    Raimo Virkkala

    2012-12-01

    Full Text Available A protected area network should ensure the maintenance of biodiversity. Because of climate change, species ranges are expected to move polewards, causing further demand for the protected area network to be efficient in preserving biota. We compared population changes of different bird species groups according to their habitat preferences in boreal protected areas in Finland on the basis of large-scale censuses carried out in 1981–1999 and in 2000–2009. Population densities of common forest habitat generalists remained the same between the two periods, while densities of species of conservation concern showed contrasting trends: species preferring old-growth forests increased, but those living in mires and wetlands, and species of Arctic mountains decreased. These trends are most probably connected with climate change, but successional changes in protected areas and regional habitat alteration should also be taken into account. Of species preferring old-growth forests, a larger proportion are southern than among species of mires and wetlands, or of Arctic mountains, most or all of which, respectively, had a northerly distribution. In general, northern species have decreased and southern increased with the exception of northern species of old-growth forests which had not declined. On the other hand, bird species of mires and wetlands decreased also in the northernmost protected areas although mires had not been drained in the region in contrast with southern and central Finland thus indicating that regional-scale direct habitat loss did not cause the decline of these species in the north. It is suggested that climate change effects on species in natural boreal and Arctic habitats most probably are habitat-specific with large differences in response times and susceptibility.

  11. Countries’ contributions to climate change: effect of accounting for all greenhouse gases, recent trends, basic needs and technological progress

    NARCIS (Netherlands)

    Elzen, M.J.; Olivier, J.J.; Hoehne, N.E.; Janssens-Maenhout, G.

    2013-01-01

    In the context of recent discussions at the UN climate negotiations we compared several ways of calculating historical greenhouse gas (GHG) emissions, and assessed the effect of these different approaches on countries’ relative contributions to cumulative global emissions. Elements not covered befor

  12. A fractal climate response function can simulate global average temperature trends of the modern era and the past millennium

    NARCIS (Netherlands)

    Hateren, J.H. van

    2013-01-01

    A climate response function is introduced that consists of six exponential (low-pass) filters with weights depending as a power law on their e-folding times. The response of this two-parameter function to the combined forcings of solar irradiance, greenhouse gases, and SO2-related aerosols is fitted

  13. Trends in the breeding population of Adélie penguins in the Ross Sea, 1981-2012: a coincidence of climate and resource extraction effects.

    Science.gov (United States)

    Lyver, Phil O'B; Barron, Mandy; Barton, Kerry J; Ainley, David G; Pollard, Annie; Gordon, Shulamit; McNeill, Stephen; Ballard, Grant; Wilson, Peter R

    2014-01-01

    Measurements of the size of Adélie penguin (Pygoscelis adeliae) colonies of the southern Ross Sea are among the longest biologic time series in the Antarctic. We present an assessment of recent annual variation and trends in abundance and growth rates of these colonies, adding to the published record not updated for more than two decades. High angle oblique aerial photographic surveys of colonies were acquired and penguins counted for the breeding seasons 1981-2012. In the last four years the numbers of Adélie penguins in the Ross and Beaufort Island colonies (southern Ross Sea metapopulation) reached their highest levels since aerial counts began in 1981. Results indicated that 855,625 pairs of Adélie penguins established breeding territories in the western Ross Sea, with just over a quarter (28%) of those in the southern portion, constituting a semi-isolated metapopulation (three colonies on Ross Island, one on nearby Beaufort Island). The southern population had a negative per capita growth rate of -0.019 during 1981-2000, followed by a positive per capita growth rate of 0.067 for 2001-2012. Colony growth rates for this metapopulation showed striking synchrony through time, indicating that large-scale factors influenced their annual growth. In contrast to the increased colony sizes in the southern population, the patterns of change among colonies of the northern Ross Sea were difficult to characterize. Trends were similar to southern colonies until the mid-1990s, after which the signal was lost owing to significantly reduced frequency of surveys. Both climate factors and recovery of whale populations likely played roles in the trends among southern colonies until 2000, after which depletion of another trophic competitor, the Antarctic toothfish (Dissostichus mawsoni), may explain the sharp increasing trend evident since then.

  14. Trends in the breeding population of Adelie penguins in the Ross Sea, 1981-2012: a coincidence of climate and resource extraction effects.

    Directory of Open Access Journals (Sweden)

    Phil O'B Lyver

    Full Text Available Measurements of the size of Adélie penguin (Pygoscelis adeliae colonies of the southern Ross Sea are among the longest biologic time series in the Antarctic. We present an assessment of recent annual variation and trends in abundance and growth rates of these colonies, adding to the published record not updated for more than two decades. High angle oblique aerial photographic surveys of colonies were acquired and penguins counted for the breeding seasons 1981-2012. In the last four years the numbers of Adélie penguins in the Ross and Beaufort Island colonies (southern Ross Sea metapopulation reached their highest levels since aerial counts began in 1981. Results indicated that 855,625 pairs of Adélie penguins established breeding territories in the western Ross Sea, with just over a quarter (28% of those in the southern portion, constituting a semi-isolated metapopulation (three colonies on Ross Island, one on nearby Beaufort Island. The southern population had a negative per capita growth rate of -0.019 during 1981-2000, followed by a positive per capita growth rate of 0.067 for 2001-2012. Colony growth rates for this metapopulation showed striking synchrony through time, indicating that large-scale factors influenced their annual growth. In contrast to the increased colony sizes in the southern population, the patterns of change among colonies of the northern Ross Sea were difficult to characterize. Trends were similar to southern colonies until the mid-1990s, after which the signal was lost owing to significantly reduced frequency of surveys. Both climate factors and recovery of whale populations likely played roles in the trends among southern colonies until 2000, after which depletion of another trophic competitor, the Antarctic toothfish (Dissostichus mawsoni, may explain the sharp increasing trend evident since then.

  15. Disentangling the Relative Importance of Changes in Climate and Land-Use Intensity in Driving Recent Bird Population Trends

    OpenAIRE

    Eglington, Sarah M.; Pearce-Higgins, James W.

    2012-01-01

    Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function...

  16. The influence of DOC trends on light climate and periphyton biomass in the Ganga River, Varanasi, India.

    Science.gov (United States)

    Pandey, Usha

    2013-01-01

    Investigations on periphyton along an eutrophication gradient (NO(3)(-) = 0.23-0.96 mg L(-1); PO(4)(-3) = 0.16-0.86 mg L(-1)) of Ganga River indicated that benthic algal biomass decreased with increasing concentrations of nutrients and dissolved organic carbon (DOC). Periphyton biomass showed negative relationship (R(2) = 0.98; p climate and consequently the fate of benthic primary producers in Ganga River.

  17. Evaluation of metrics and baselines for tracking greenhouse gas emissions trends: Recommendations for the California climate action registry

    OpenAIRE

    Price, Lynn; Murtishaw, Scott; Worrell, Ernst

    2003-01-01

    Executive Summary: The California Climate Action Registry, which was initially established in 2000 and began operation in Fall 2002, is a voluntary registry for recording annual greenhouse gas (GHG) emissions. The purpose of the Registry is to assist California businesses and organizations in their efforts to inventory and document emissions in order to establish a baseline and to document early actions to increase energy efficiency and decrease GHG emissions. The State of California has...

  18. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma

    Directory of Open Access Journals (Sweden)

    D'Amato Gennaro

    2011-02-01

    Full Text Available Abstract Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries. There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide and particulate inhalable components of air pollution. A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma. Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures.

  19. Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B.

    1980-05-10

    The Coso Range lies at the west edge of the Great Basin, adjacent to the southern part of the Sierra Nevada. A basement complex of pre-Cenozoic plutonic and metamorphic rocks is partly buried by approx.35 km/sup 3/ of late Cenozoic volcanic rocks that were erupted during two periods, as defined by K-Ar dating: (1) 4.0--2.5 m.y., approx.31 km/sup 3/ of basalt, rhyodacite, dacite, andesite, and rhyolite, in descending order of abundance, and (2) < or =1.1 m.y., nearly equal amounts of basalt and rhyolite, most of the rhyolite being < or =0.3 m.y. old. Vents for the volcanic rocks of the younger period are localized on and near a horst of basement rocks within a concavity defined by the distribution of vents of the older period. The alignment of many vents and the presence of a considerable number of roughly north-trending normal faults of late Cenozoic age reflect basin and range tectonics dominated by roughly east-west lithospheric extension. Fumaroles, intermittently active thermal springs, and associated altered rocks occur within and immediately east of the central part of the field of Quaternary rhyolite, in an area characterized by various geophysical anomalies that are evidently related to an active hot-water geothermal system. This system apparently is heated by a reservoir of silicic magma at > or =8-km depth, itself produced and sustained through partial melting of crustal rocks by thermal energy contained in mantle-derived basaltic magma that intrudes the crust in repsonse to lithospheric extension.

  20. Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona

    Science.gov (United States)

    Anderson, S.R.

    1987-01-01

    This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern

  1. Which downscaled rainfall data for climate change impact studies in urban areas? Review of current approaches and trends

    Science.gov (United States)

    Gooré Bi, Eustache; Gachon, Philippe; Vrac, Mathieu; Monette, Frédéric

    2015-10-01

    Changes in extreme precipitation should be one of the primary impacts of climate change (CC) in urban areas. To assess these impacts, rainfall data from climate models are commonly used. The main goal of this paper is to report on the state of knowledge and recent works on the study of CC impacts with a focus on urban areas, in order to produce an integrated review of various approaches to which future studies can then be compared or constructed. Model output statistics (MOS) methods are increasingly used in the literature to study the impacts of CC in urban settings. A review of previous works highlights the non-stationarity nature of future climate data, underscoring the need to revise urban drainage system design criteria. A comparison of these studies is made difficult, however, by the numerous sources of uncertainty arising from a plethora of assumptions, scenarios, and modeling options. All the methods used do, however, predict increased extreme precipitation in the future, suggesting potential risks of combined sewer overflow frequencies, flooding, and back-up in existing sewer systems in urban areas. Future studies must quantify more accurately the different sources of uncertainty by improving downscaling and correction methods. New research is necessary to improve the data validation process, an aspect that is seldom reported in the literature. Finally, the potential application of non-stationarity conditions into generalized extreme value (GEV) distribution should be assessed more closely, which will require close collaboration between engineers, hydrologists, statisticians, and climatologists, thus contributing to the ongoing reflection on this issue of social concern.

  2. Variability and climate change trend in vegetation phenology of recent decades in the Greater Khingan Mountain area, Northeastern China

    Directory of Open Access Journals (Sweden)

    Huan Tang

    2015-09-01

    Full Text Available Vegetation phenology has been used in studies as an indicator of an ecosystem’s responses to climate change. Satellite remote sensing techniques can capture changes in vegetation greenness, which can be used to estimate vegetation phenology. In this study, a long-term vegetation phenology study of the Greater Khingan Mountain area in Northeastern China was performed by using the Global Inventory Modeling and Mapping Studies (GIMMS normalized difference vegetation index version 3 (NDVI3g dataset from the years 1982–2012. After reconstructing the NDVI time series, the start date of the growing season (SOS, the end date of the growing season (EOS and the length of the growing season (LOS were extracted using a dynamic threshold method. The response of the variation in phenology with climatic factors was also analyzed. The results showed that the phenology in the study area changed significantly in the three decades between 1982 and 2012, including a 12.1-day increase in the entire region’s average LOS, a 3.3-day advance in the SOS and an 8.8-day delay in the EOS. However, differences existed between the steppe, forest and agricultural regions, with the LOSs of the steppe region, forest region and agricultural region increasing by 4.40 days, 10.42 days and 1.71 days, respectively, and a later EOS seemed to more strongly affect the extension of the growing season. Additionally, temperature and precipitation were closely correlated with the phenology variations. This study provides a useful understanding of the recent change in phenology and its variability in this high-latitude study area, and this study also details the responses of several ecosystems to climate change.

  3. Means, Variability and Trends of Precipitation in the Global Climate as Determined by the 25-year GEWEWGPCP Data Set

    Science.gov (United States)

    Adler, R. F.; Gu, G.; Curtis, S.; Huffman, G. J.

    2004-01-01

    The Global Precipitation Climatology Project (GPCP) 25-year precipitation data set is used as a basis to evaluate the mean state, variability and trends (or inter-decadal changes) of global and regional scales of precipitation. The uncertainties of these characteristics of the data set are evaluated by examination of other, parallel data sets and examination of shorter periods with higher quality data (e.g., TRMM). The global and regional means are assessed for uncertainty by comparing with other satellite and gauge data sets, both globally and regionally. The GPCP global mean of 2.6 mdday is divided into values of ocean and land and major latitude bands (Tropics, mid-latitudes, etc.). Seasonal variations globally and by region are shown and uncertainties estimated. The variability of precipitation year-to-year is shown to be related to ENS0 variations and volcanoes and is evaluated in relation to the overall lack of a significant global trend. The GPCP data set necessarily has a heterogeneous time series of input data sources, so part of the assessment described above is to test the initial results for potential influence by major data boundaries in the record.

  4. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  5. An elevational trend of body size variation in a cold-climate agamid lizard,Phrynocephalus theobaldi

    Institute of Scientific and Technical Information of China (English)

    Yuanting JIN; Pinghu LIAO

    2015-01-01

    The pattern that many ectotherms have smaller body sizes in cold environments follows the converse to Bergmann’s rule and is most frequently found in lizards. Allen’s rule predicts animals from warm climates usually have longer tails and limbs, while these traits tend to be shorter in individuals from cold climates. We examined body size variation in an endemic Chinese lizardPhrynocephalus theobaldi along a broad elevational gradient (3,600–5,000 m on the Qinghai-Tibetan Plateau). Female body size showed a U-shaped cline, decreasing with increased elevation within the range 3,600–4,200 m, but increasing at eleva-tions > 4200 m. Male body size continued to increase with increasing elevations. Both sexes showed an increased pattern of ex-tremity length with elevation that does not conform to Allen’s rule. Limb length and tail length increased along the elevational gradients. In terms of color pattern, an abdominal black speckled area appears at elevations >4,200 m. This trait increases in size with increased elevation. Unlike most studies, our results indicated that annual sunshine hours corresponding to the activity pe-riod of the lizards could play an important role on the positive body size cline in environments at very high elevations > 4200 m [Current Zoology 61 (3): 444–453, 2015].

  6. Structural deformation pattern within the NW Qaidam Basin in the Cenozoic era and its tectonic implications

    Science.gov (United States)

    Mao, Liguang; Xiao, Ancheng; Zhang, Hongwei; Wu, Zhankui; Wang, Liqun; Shen, Ya; Wu, Lei

    2016-09-01

    The Qaidam Basin is located in the northeastern Tibetan Plateau and provides an excellent field laboratory in understanding the history and mechanism of the plateau growth. It deformed widely over the northwest during the Cenozoic but with little thrust loading along the margins, where no foreland depression is observed. Based on satellite images, seismic and borehole data, we investigated the structural deformation pattern (including the structural style and timing of deformation) and its formation mechanism within the northwestern Qaidam Basin during the Cenozoic era. Mapping of surface geology shows that the modern Qaidam Basin is characterized by five SE-trending anticlinal belts. Each belt consists of several right-step en echelon anticlines with plenty of normal and strike-slip faults crossing the crests. Those anticlines are generally dominated by double fault systems at different depths: an upper thrust fault system, controlling the anticlines identified on the surface and a lower dextral transpressional fault system characterized by typical flower structures. They are separated by weak layers in the upper Xiaganchaigou or the Shangganchaigou formations. The upper system yields shortening strain 2-5 times larger than that of the lower system and the additional strain is interpreted to be accommodated by hinge-parallel elongation in the upper system. Growth strata indicate that deformation within the Qaidam Basin initiated in the middle Miocene ( 15 Ma) and accelerated in the late Miocene ( 8 Ma). A simple Riedel-P-Shear model is used to explain the deformation mechanism within the northwestern Qaidam Basin.

  7. New findings on increasing solar trend that can change Earth climate: are we entering new great solar minima?

    Science.gov (United States)

    Rozelot, J. P.

    2009-10-01

    Studies of the Sun-Earth relationships during the past years have dramatically changed our view on Solar- Terrestrial Physics. Neither is the interplanetary medium unstructured or quasi-static, nor is it a simple magnetic stratified object. Thus, the interaction of the solar electromagnetic radiation (photons), hot plasma (electrons, protons and other ions), cosmic rays, microscopic dust particles, and magnetic fields (primarily from the Sun) with the upper environment of our Earth leads to a complex physics which is far to be understandable. This new science is growing rapidly, as well as for the physical problems which arise as for its growing impact on our societies. This last case is well illustrated by the emergence of the so-called Space Weather. In spite of a great number of papers and books written on this subject and on a broader one devoted to Solar-Terrestrial links, the different terms deserve to be clarified. In this paper, we will first establish a clear distinction between Space Weather, Space Climate, Space Physics, Sun-Earth connections, and Helioclimatology, this last word being introduced to describe the role of the Sun in the Earth's climate forcing. In a second step, we will emphasize the key role of the ranging time on which the effects may act. We will then underline the necessity to better predict solar activity showing the physical difficulties for such an exercise, yielding the extreme complexity for forecasting specific events. The three dataset, past Earth's temperature (since AD 630), solar shape variability (since AD 1600) and strength of umbral/sunspots magnetic field (since AD 1995) lead all to a Next Grand Minima predictable for 2015-2018. We will conclude by giving some imprints for the future.

  8. Relating Cenozoic North Sea sediments to topography in southern Norway:

    DEFF Research Database (Denmark)

    Anell, Ingrid Anna Margareta; Thybo, Hans; Stratford, Wanda Rose

    2010-01-01

    sources for progradational influx of clastic sediments from Scotland, the Shetland platform and, to a lesser degree, southwestern Norway. The Eocene sedimentation pattern was similar to the Palaeocene, with lower rates of accumulation associated with flooding and tectonic quiescence. Sediment influx from...... the Shetland platform continued throughout the Cenozoic while supply from southern Norway increased markedly around the Eocene–Oligocene, coeval with the greenhouse–icehouse transition. Mass balance calculations of sediment and eroded rock volumes suggest that while some topography along the western...... margin of Norway may be pre-Cenozoic, significant uplift of the main Paleic surface in southern Norway occurred around the early Oligocene. Sedimentation rates were almost ten-fold higher than the Cenozoic average in the Plio-Pleistocene, slightly higher than the global average. Mass balance calculations...

  9. Considering Global Climate Change from the Trend of Sandstorms in China%从沙尘暴变化趋势看全球气候变化

    Institute of Scientific and Technical Information of China (English)

    丰华; 刘植; 李平原; 刘秀铭; 吕镔; 赵国永; 马明明; 郭晖; 陈渠

    2012-01-01

    Receiving growing concerns in recent years,global climate change has grown from a scientific and environmental issue into an international political issue,which will be related to the long-term developments of international community.This paper summarizes trends and regional differences of dust storm frequency in recent China,and discusses responding mechanism of the frequency to global climate change.The study finds a negative correlation between the dust storm frequency in China and the change of global temperature.Overall,the frequency of dust storms in China decreases in recent years,going with an increasing trend of temperature in China,which is possibly one of the secondary fluctuations in the general trend of global cooling.%近年来人们对全球气候变化的问题尤为关注,因为,如今气候变化不仅仅是科学问题、环境问题,还是一个国际政治问题、经济问题,事关社会的长远发展.本研究以沙尘暴为切入点,在前人研究的基础上,总结了近年来沙尘暴及沙尘天气发生频率的变化趋势及其地域性差异,并进一步讨论了沙尘暴发生频率变化趋势与温度变化的响应机制,认为沙尘暴发生频率变化与气温变化呈负相关关系.近年来中国沙尘暴发生频率呈整体下降趋势,表明近年来中国气温有整体升高的趋势,这可能是全球变冷大趋势中的次级波动.

  10. Continental-scale assessment of long-term trends in wet deposition trajectories: Role of anthropogenic and hydro-climatic drivers

    Science.gov (United States)

    Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.

    2012-12-01

    The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a

  11. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.

    Science.gov (United States)

    Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U

    2013-02-01

    To analyse trends in greenhouse gas (GHG) emissions from production and consumption of animal products in Sweden, life cycle emissions were calculated for the average production of pork, chicken meat, beef, dairy and eggs in 1990 and 2005. The calculated average emissions were used together with food consumption statistics and literature data on imported products to estimate trends in per capita emissions from animal food consumption. Total life cycle emissions from the Swedish livestock production were around 8.5 Mt carbon dioxide equivalents (CO2e) in 1990 and emissions decreased to 7.3 Mt CO2e in 2005 (14% reduction). Around two-thirds of the emission cut was explained by more efficient production (less GHG emission per product unit) and one-third was due to a reduced animal production. The average GHG emissions per product unit until the farm-gate were reduced by 20% for dairy, 15% for pork and 23% for chicken meat, unchanged for eggs and increased by 10% for beef. A larger share of the average beef was produced from suckler cows in cow-calf systems in 2005 due to the decreasing dairy cow herd, which explains the increased emissions for the average beef in 2005. The overall emission cuts from the livestock sector were a result of several measures taken in farm production, for example increased milk yield per cow, lowered use of synthetic nitrogen fertilisers in grasslands, reduced losses of ammonia from manure and a switch to biofuels for heating in chicken houses. In contrast to production, total GHG emissions from the Swedish consumption of animal products increased by around 22% between 1990 and 2005. This was explained by strong growth in meat consumption based mainly on imports, where growth in beef consumption especially was responsible for most emission increase over the 15-year period. Swedish GHG emissions caused by consumption of animal products reached around 1.1 t CO2e per capita in 2005. The emission cuts necessary for meeting a global temperature

  12. Climate dominated topography in a tectonically active mountain range

    Science.gov (United States)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  13. Understanding Climate Change on the California Coast: Accounting for Extreme Daily Events among Long-Term Trends

    Directory of Open Access Journals (Sweden)

    Christopher Potter

    2014-02-01

    Full Text Available The majority of weather station records indicate that surface air temperatures have been warming in California between 1950 and 2005. Temperature data from the mid-1990s to the present were analyzed for stations on California Central Coast near Big Sur (Monterey County to better understand potential for climate change in this biologically unique region. Results showed that daily temperatures in both the winter and summer seasons have cooled the Big Sur coast, particularly after 2003. A current hypothesis is that observed coastal California cooling derives from greenhouse gas-induced regional warming of the inland Central Valley and Sierra Nevada foothill areas, resulting in stronger sustained on-shore sea-breeze flow. Closer examination of daily temperature records at a station location near the Big Sur coast revealed that, even as average monthly maximum temperatures (Tmax have decreased gradually, the number of extreme warm summer days (Tmax > 37 °C has also increased by several fold in frequency. Overall patterns in the station records since the mid-1990s indicated that diurnal temperature ranges are widening on the Big Sur coast, with markedly cooler nighttime temperatures (frequently in the wet winter season followed by slightly higher-than-average daytime temperatures, especially during the warm, dry summer season.

  14. Microbial Contamination Detection in Water Resources: Interest of Current Optical Methods, Trends and Needs in the Context of Climate Change

    Directory of Open Access Journals (Sweden)

    Aude-Valérie Jung

    2014-04-01

    Full Text Available Microbial pollution in aquatic environments is one of the crucial issues with regard to the sanitary state of water bodies used for drinking water supply, recreational activities and harvesting seafood due to a potential contamination by pathogenic bacteria, protozoa or viruses. To address this risk, microbial contamination monitoring is usually assessed by turbidity measurements performed at drinking water plants. Some recent studies have shown significant correlations of microbial contamination with the risk of endemic gastroenteresis. However the relevance of turbidimetry may be limited since the presence of colloids in water creates interferences with the nephelometric response. Thus there is a need for a more relevant, simple and fast indicator for microbial contamination detection in water, especially in the perspective of climate change with the increase of heavy rainfall events. This review focuses on the one hand on sources, fate and behavior of microorganisms in water and factors influencing pathogens’ presence, transportation and mobilization, and on the second hand, on the existing optical methods used for monitoring microbiological risks. Finally, this paper proposes new ways of research.

  15. From Arctic greenhouse to icehouse: the Cenozoic development of the West Greenland-Baffin Bay margin and the case for scientific drilling

    Science.gov (United States)

    Knutz, Paul; Gregersen, Ulrik; Hopper, John R.; Dybkjær, Karen; Nøhr-Hansen, Henrik; Sheldon, Emma; Huuse, Mads

    2016-04-01

    The long-term evolution of glaciated margins plays an essential role in understanding the driving forces and interactions that determine the build-up and decay of ice sheets. The Greenland continental margin towards Baffin Bay is densely covered by industry seismic data and several exploration wells have been drilled, providing a regional stratigraphic framework for the sedimentary successions. This presentation provides an overview of the major depositional units and stratigraphy of the mid-late Cenozoic (since mid-Eocene), with examples demonstrating the different processes that have formed this margin. A sedimentary succession up to 3.5 km thick, of mid-Eocene to mid-Miocene age (mega-unit D), infills the pronounced ridge-basin structures of the rifted and tectonically inverted margin. The lower part of this interval, presumably late Eocene-Oligocene in age, is interpreted as basin-floor fan deposits, while the upper section, of early-middle Miocene age, is mainly marine mudstone. The basin infilling strata are overlain by a late Miocene-Pliocene succession consisting of two mega-units (B and C), with typical thicknesses of 0.5-1 km. The units are characterised by upslope-climbing sediment waves and along-slope trending sedimentary prisms reminiscent of giant contourite drifts. The borehole data associates the prism accumulations with a deep shelf environment influenced by strong marine currents and nearby fluvial sources. On the slope and in the deep basin of Baffin Bay the late Neogene succession is strongly influenced by mass wasting correlated with erosional scars updip. The uppermost seismic mega-unit (A) is dominated by aggradational wedges and prograding fan deposits displaying depocentres >3 km thick, formed at the terminus of palaeo-ice streams. Borehole information associates this interval with deposition of primarily diamict sediments and suggests a late Pliocene onset of major shelf based glaciations on the NW Greenland margin. The southwest margin

  16. Fluid Composititon and Carbon & Oxygen Isotope Geochemistry of Cenozoic Alkali Basalts in Eastern China

    Institute of Scientific and Technical Information of China (English)

    张铭杰; 王先彬; 等

    1999-01-01

    The fluid compositions of Cenozoic alkali basalts in eastern China have been determined by the pyrolysis-MS method,meanwhile the carbon and oxygen isotopic compositions of CO2 released from these samples at different heating temperatures have been analyzed by the vacuum step-heating method.The data show the volatiole heterogeneity in upper-mantle sources and different evolution trends of alkali basaltic magmas in eastern China,and these alkali basaltic magmas may be generated in the oxidizing milieu,as compared with mantle-derived xenoliths in these alkali basalts,and exotic volatile components were mixed into these magmas in the process of their formation and development.

  17. Meso-Cenozoic basin evolution in northern Korean Peninsula

    Institute of Scientific and Technical Information of China (English)

    PAK Hyon Uk; LYANG To Jun; LIU Yongjiang; HYON Yun Su; KIM Gyong Chol

    2009-01-01

    In the Korean Peninsula the Meso-Cenozoic basins were mainly formed due to fault block and block movement. The Mesozoic fracture structures correspond basically to modern large rivers in direction. Such faults were usually developed to rift and formed lake-type tectonic basin, such as the Amrokgang-, Taedonggang-, Ryesonggang-, Hochongang-, Jangphari-, Susongchon-, Pujon-, and Nampho basins. The Mesozoic strata are considered to be divided into the Lower Jurassic Taedong System, Upper Jurassic Jasong System, Upper Jurassic- -early Lower Cretaceous Taebo System, and the Upper Cretaceous- -Paleocene (Chonjaebong, Hongwon, Jaedok Series). The Cenozoic block movement succeeded the Mesozoic fault block movement. The Kilju-Myongchon Graben and Tumangang Basin, etc, are the basins related to the fault zones developed from the Oligocene to Miocene. In addition, the Tertiary basins were formed in many areas in the Miocene (e.g. Sinhung, Oro, Hamhung, Yonghung, Anbyon, Cholwon, etc). The Cenozoic sedimentation occurred mainly from the late Oligocene to Miocene. The Kilju-Myongchon Graben was the fore deep connected to the sea and the basins inclined in the Chugaryong Fault Zone are intramountain basins. Therefore, coal-bearing beds and clastic rocks in the intramountain basins and rare marine strata and terrigenous clastic rocks are main sedimentary sequences in the Cenozoic.

  18. Paleoclimate from fossil plants and application to the early Cenozoic Rocky Mountains

    Science.gov (United States)

    Wing, S. L.

    2011-12-01

    Wladimir Köppen called vegetation "crystallized, visible climate," and his metaphor encouraged paleobotanists to climb the chain of inference from fossil plants to paleovegetation to paleoclimate. Inferring paleovegetation from fossils has turned out to be very difficult, however, and today most paleobotanical methods for inferring paleoclimate do not try to reconstruct paleovegetation as a first step. Three major approaches are widely use to infer paleoclimate from plant fossils: 1) phylogenetic inferences rely on the climatic distributions of extant relatives of fossils, 2) morphological inferences use present-day correlations of climate with plant morphology (e.g, leaf shape, wood anatomy), and 3) chemical inferences rely on correlations between climate and the stable isotopic composition of plants or organic compounds. Each approach makes assumptions that are hard to verify. Phylogenetic inference depends on accurate identification of fossils, and also assumes that evolution and/or extinction has not shifted the climatic distributions of plant lineages through time. On average this assumption is less valid for older time periods, but probably it is not radically wrong for the early Cenozoic. Morphological approaches don't require taxonomic identification of plant fossils, but do assume that correlations between plant form and climate have been constant over time. This assumption is bolstered if the ecophysiological cause of the morphology-climate correlation is well understood, but often it isn't. Stable isotopic approaches assume that present-day correlations between isotopic composition and climate apply to the past. Commonly the chemical and physiological mechanisms responsible for the correlation are moderately well known, but often the variation among different taxonomic and functional groups of plants is poorly characterized. In spite of limitations and uncertainties on all methods for inferring paleoclimate from fossil plants, broad patterns emerge from

  19. Glacier response to changing climate condition : the role of circulation variability and long-term trends over the Tibetan Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Caidong, C.

    2008-07-01

    This study focuses on glacier response to changing climatic condition, the role of atmospheric circulation variability and long-term trends over the Tibetan Plateau (TP). In particular, this study concerns circulation regimes over the TP and related precipitation and temperature variations in Tibet Autonomous Region; modelled mass balance response of the Xibu glacier (which is situated in the Nyainqentanglha mountain range) to the circulation variability and the mass balance response to long term trends that is not directly related to circulation variability. The research was motivated by the importance of understanding present-day climate condition over the Tibetan Plateau and to understand how much of last decade's increases in temperature and glacier retreat could be linked to circulation changes and how much was due to other causes. The first paper, the focus is on using the six years of the Tropical Rainfall Monitoring Mission (TRMM) satellite data (1998 - 2005) to identify the spatial pattern of the dry season (October - April) precipitation over the TP which is small, but important for snow accumulation over the plateau. The paper outline the use of k-mean clustering as a method for finding different weather types and the precipitation variability is tried explained with physical interpretation of the associated atmospheric circulation patterns using daily reanalysis from NCEP/NCAR (1957 - 2005). The results show how the topographic effect and flow direction plays an important role in controlling the distribution of precipitation rates over the plateau. The Himalayas and Karakorum Mountain ranges act as barriers for south and south-west moist air flow and deplete the air of much of its moisture before it reaches the Plateau. In addition, when the air begin to descend on the leeward side of the mountains, they are creating a rain shadow. According to the TRMM satellite estimates average October-April Tibetan Plateau (defined as areas higher than 4,000 m

  20. Future climate trends from a first-difference atmospheric carbon dioxide regression model involving emissions scenarios for business as usual and for peak fossil fuel

    CERN Document Server

    Leggett, L M W

    2014-01-01

    This paper investigates the implications of the future continuation of the demonstrated past (1960-2012) strong correlation between first-difference atmospheric CO2 and global surface temperature. It does this, for the period from the present to 2050, for a comprehensive range of future global fossil fuel energy use scenarios. The results show that even for a business-as-usual (the mid-level IPCC) fossil fuel use estimate, global surface temperature will rise at a slower rate than for the recent period 1960-2000. Concerning peak fossil fuel, for the most common scenario the currently observed (1998-2013)temperature plateau will turn into a decrease. The observed trend to date for temperature is compared with that for global climate disasters: these peaked in 2005 and are notably decreasing. The temperature and disaster results taken together are consistent with either a reduced business-as-usual fossil fuel use scenario into the future, or a peak fossil fuel scenario, but not with the standard business-as-usu...

  1. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    Science.gov (United States)

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar

  2. Long-term variations and trends in the simulation of the middle atmosphere 1980–2004 by the chemistry-climate model of the Meteorological Research Institute

    Directory of Open Access Journals (Sweden)

    M. Deushi

    2008-05-01

    Full Text Available A middle-atmosphere simulation of the past 25 years (from 1980 to 2004 has been performed with a chemistry-climate model (CCM of the Meteorological Research Institute (MRI under observed forcings of sea-surface temperature, greenhouse gases, halogens, volcanic aerosols, and solar irradiance variations. The dynamics module of MRI-CCM is a spectral global model truncated triangularly at a maximum wavenumber of 42 with 68 layers extending from the surface to 0.01 hPa (about 80 km, wherein the vertical spacing is 500 m from 100 to 10 hPa. The chemistry-transport module treats 51 species with 124 reactions including heterogeneous reactions. Transport of chemical species is based on a hybrid semi-Lagrangian scheme, which is a flux form in the vertical direction and an ordinary semi-Lagrangian form in the horizontal direction. The MRI-CCM used in this study reproduced a quasi-biennial oscillation (QBO of about a 20-month period for wind and ozone in the equatorial stratosphere. Multiple linear regression analysis with time lags for volcanic aerosols was performed on the zonal-mean quantities of the simulated result to separate the trend, the QBO, the El Chichón and Mount Pinatubo, the 11-year solar cycle, and the El Niño/Southern Oscillation (ENSO signals. It is found that MRI-CCM can more or less realistically reproduce observed trends of annual mean temperature and ozone, and those of total ozone in each month. MRI-CCM also reproduced the vertical multi-cell structures of tropical temperature, zonal-wind, and ozone associated with the QBO, and the mid-latitude total ozone QBO in each winter hemisphere. Solar irradiance variations of the 11-year cycle were found to affect radiation alone (not photodissociation because of an error in making the photolysis lookup table. Nevertheless, though the heights of the maximum temperature (ozone in the tropics are much higher (lower than observations, MRI-CCM could reproduce the second maxima of temperature and

  3. The Middle Miocene Climate Transition in the Central Mediterranean. Geologica Ultraiectina (326)

    NARCIS (Netherlands)

    Mourik, A.A.

    2010-01-01

    The Middle Miocene Climate Transition (~15-13.7 Ma) is one of the major steps in Cenozoic climate evolution. The rapid expansion of the East Antarctic Ice Sheet at ~13.9 – 13.7 Ma caused important climate changes on a global scale. The aim of this PhD research has been to study the effects of the Mi

  4. Cenozoic Uplift, Erosion and Dynamic Support of Madagascar

    Science.gov (United States)

    Stephenson, Simon; White, Nicky

    2016-04-01

    The physiography of Madagascar is characterised by high-elevation but low-relief topography; 42% of the landscape is above 500 m in elevation. Eocene (marine) nummulitic (marine) limestones at elevations of ˜400 m above sea level and newly dated, emergent 125 ka coral reefs suggest that Madagascar has experienced differential vertical motions during Cenozoic times. Malagasy rivers are often deeply incised and contain steepened reaches, implying that they have responded to changes in regional uplift rate. However, low temperature thermochronology and 10Be derived erosion rates suggest that both Cenozoic and Recent average denudation rates have been low. Extensive laterite-capped, low-relief surfaces also suggest that there have been long periods of tectonic quiescence. In contrast, the modern landscape is characterised by erosional gullies (i.e. lavaka), with very high local erosion rates. To bridge the gap between this disparate evidence, we inverted 2566 longitudinal river profiles using a damped non-negative, least-squares linear inversion to determine the history of regional uplift. We used a simplified version of the stream power erosional law. River profiles were extracted from the 3 arc-second Shuttle Radar Topography Mission (SRTM) digital elevation model. Calibration of the stream power erosional law is based upon Cenozoic limestones and new radiometrically dated marine terraces. The residual misfit between observed and calculated river profiles is small. Results suggest that Malagasy topography grew diachronously by 1-2 km over the last 15-20 Ma. Calculated uplift and denudation are consistent with independent observations. Thus drainage networks contain coherent signals that record regional uplift. The resultant waves of incision are the principal trigger for modern erosional processes. Admittance calculations, the history of basaltic volcanism and nearby oceanic residual age-depth measurements all suggest that as much as 0.8 - 1.1 km of Cenozoic uplift

  5. Streamflow trends and hydrological response to climatic change in Tarim headwater basin%塔里木河流域径流变化趋势及其对气候变化的响应

    Institute of Scientific and Technical Information of China (English)

    蒋艳; 周成虎; 程维明

    2007-01-01

    This paper has studied the change of streamflow and the impact of climatic variability conditions on regional hydrological cycle in the headwater of the Tarim River Basin.This study investigates possible causes of observed trends in streamflow in an environment which is highly variable in terms of atmospheric conditions, and where snow and ice melt play an important role in the natural hydrological regime. The discharge trends of three head streams have a significant increase trend from 1957 to 2002 with the Mann-Kendall test.Complex time-frequency distributions in the streamflow regime are demonstrated especially by Morlet wavelet analysis over 40 years. The purpose is to ascertain the nature of climatic factors spatial and temporal distribution, involved the use of EOF (Empirical Orthogonal Function) to compare the dominant temperature, precipitation and evaporation patterns from normally climatic records over the Tarim's headwater basin. It shows that the first principal component was dominated since the 1990s for temperature and precipitation, which identifies the significant ascending trend of spatial and temporal pattern characteristics under the condition of the global warming. An exponential correlation is highlighted between surface air temperature and mean river discharge monthly, so the regional runoff increases by 10%-16% when surface air temperature rises by 1 ℃. Results suggest that headwater basins are the most vulnerable environments from the point of view of climate change, because their watershed properties promote runoff feeding by glacier and snow melt water and their fundamental vulnerability to temperature changes affects rainfall, snowfall, and glacier and ice melt.

  6. Declining sensitivity of the carbonate compensation depth to sea level during the Cenozoic

    Science.gov (United States)

    Armstrong McKay, David I.; Tyrrell, Toby; Wilson, Paul A.

    2016-04-01

    Over the course of the Cenozoic the global carbonate compensation depth (CCD), the depth in the ocean below which carbonate deposited on the seafloor is not preserved, has shifted from a relatively shallow average position (~3000 to 3500 m in the equatorial Pacific) in the Palaeocene to a relatively deep position (~4600 m in the equatorial Pacific) today. Various hypotheses have been proposed to explain this shift, including increased input of terrestrial weathering products to the ocean, decreased bottom-water corrosivity due to increased ocean ventilation, and the decline of shelf carbonates leading to carbonate burial shifting to the deep ocean (known as 'shelf-basin carbonate burial fractionation'). Here we build on earlier attempts to quantify the impacts of carbonate burial fractionation on the CCD by analysing global hypsometric and carbonate burial data and determining the relationship between sea level, shelf carbonate burial extent, and the CCD. We show that if carbonate burial rates remain constant across the Cenozoic then carbonate burial fractionation can explain between 550 and 800 m of the long-term ~1600 m CCD deepening in the equatorial Pacific, ~430 m of which occurring across the Eocene-Oligocene Transition (EOT) ~34 million years ago when the CCD permanently deepened by ~500 m. This finding indicates that other processes dominated CCD change before and after the EOT and during events such as the Mid-Eocene Climatic Optimum (MECO), but a higher resolution global CCD record is required to better constrain the global magnitude of CCD change during these times. We find that the sensitivity of the CCD to sea level change was at its greatest prior to the EOT and then declined by approximately half due to the loss of extensive carbonate platforms at the end of the Eocene and the intersection of the CCD with large tracts of the abyssal plain.

  7. Long-term stability of global erosion rates and weathering during late-Cenozoic cooling.

    Science.gov (United States)

    Willenbring, Jane K; von Blanckenburg, Friedhelm

    2010-05-13

    Over geologic timescales, CO(2) is emitted from the Earth's interior and is removed from the atmosphere by silicate rock weathering and organic carbon burial. This balance is thought to have stabilized greenhouse conditions within a range that ensured habitable conditions. Changes in this balance have been attributed to changes in topographic relief, where varying rates of continental rock weathering and erosion are superimposed on fluctuations in organic carbon burial. Geological strata provide an indirect yet imperfectly preserved record of this change through changing rates of sedimentation. Widespread observations of a recent (0-5-Myr) fourfold increase in global sedimentation rates require a global mechanism to explain them. Accelerated uplift and global cooling have been given as possible causes, but because of the links between rates of erosion and the correlated rate of weathering, an increase in the drawdown of CO(2) that is predicted to follow may be the cause of global climate change instead. However, globally, rates of uplift cannot increase everywhere in the way that apparent sedimentation rates do. Moreover, proxy records of past atmospheric CO(2) provide no evidence for this large reduction in recent CO(2) concentrations. Here we question whether this increase in global weathering and erosion actually occurred and whether the apparent increase in the sedimentation rate is due to observational biases in the sedimentary record. As evidence, we recast the ocean dissolved (10)Be/(9)Be isotope system as a weathering proxy spanning the past approximately 12 Myr (ref. 14). This proxy indicates stable weathering fluxes during the late-Cenozoic era. The sum of these observations shows neither clear evidence for increased erosion nor clear evidence for a pulse in weathered material to the ocean. We conclude that processes different from an increase in denudation caused Cenozoic global cooling, and that global cooling had no profound effect on spatially and

  8. Climate Sensitivity, Sea Level, and Atmospheric CO2

    CERN Document Server

    Hansen, James; Russell, Gary; Kharecha, Pushker

    2012-01-01

    Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Pleistocene climate oscillations imply a fast-feedback climate sensitivity 3 {\\pm} 1 {\\deg}C for 4 W/m2 CO2 forcing for the average of climate states between the Holocene and Last Glacial Maximum (LGM), the error estimate being large and partly subjective because of continuing uncertainty about LGM global surface climate. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity. Ice sheet response time is poorly defined, but we suggest that hysteresis and slow response in current ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding a strong increase in sensitivity when global temperature reaches early Cenozoic and higher levels, as increased water vapor eliminates the tropopause. It follows that...

  9. China's National Assessment Report on Climate Change (Ⅰ): Climate change in China and the future trend%气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势

    Institute of Scientific and Technical Information of China (English)

    丁一汇; 任国玉; 石广玉

    2007-01-01

    The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country.

  10. First fossil evidence of Connaraceae R. Br. from Indian Cenozoic and its phytogeographical significance

    Science.gov (United States)

    Khan, Mahasin Ali; Bera, Subir

    2016-07-01

    Fossil leaflet impression described here as a new species Rourea miocaudata sp. nov., showing close resemblance with the modern leaflets of Rourea caudata Planch. (Connaraceae R. Br.), has been recorded from the lower part of the Siwalik sediments (Dafla Formation, middle-upper Miocene) exposed at the road-cutting section of Pinjoli area in West Kameng district, Arunachal Pradesh. The important morphological characters of the fossil are its narrow elliptic leaflet, cuneate base, long caudate apex, entire margin, eucamptodromous to brochidodromous secondary veins, presence of intersecondary veins, percurrent and reticulate tertiary veins and orthogonally reticulate quaternary veins. This is the first authentic record of the occurrence of leaflet comparable to R. caudata of Connaraceae from the Cenozoic sediments of India and abroad. At present R. caudata does not grow in India and is restricted only in southeast Asia especially in China and Myanmar. This taxon probably migrated to these southeast Asian regions after lower Siwalik sedimentation (middle-upper Miocene) due to climatic change caused by post-Miocene orogenic movement of the Himalaya. The recovery of this species and other earlier-described evergreen taxa from the same formation, suggests the existence of a tropical, warm and humid climatic conditions during the depositional period.

  11. First fossil evidence of Connaraceae R. Br. from Indian Cenozoic and its phytogeographical significance

    Indian Academy of Sciences (India)

    Mahasin Ali Khan; Subir Bera

    2016-07-01

    Fossil leaflet impression described here as a new species Rourea miocaudata sp. nov., showing close resemblance with the modern leaflets of Rourea caudata Planch. (Connaraceae R. Br.), has been recorded from the lower part of the Siwalik sediments (Dafla Formation, middle–upper Miocene) exposed at the road-cutting section of Pinjoli area in West Kameng district, Arunachal Pradesh. The importantmorphological characters of the fossil are its narrow elliptic leaflet, cuneate base, long caudate apex, entire margin, eucamptodromous to brochidodromous secondary veins, presence of intersecondary veins, percurrent and reticulate tertiary veins and orthogonally reticulate quaternary veins. This is the first authentic record of the occurrence of leaflet comparable to R. caudata of Connaraceae from the Cenozoic sediments of India and abroad. At present R. caudata does not grow in India and is restricted only in southeast Asia especially in China and Myanmar. This taxon probably migrated to these southeast Asian regions after lower Siwalik sedimentation (middle–upper Miocene) due to climatic change causedby post-Miocene orogenic movement of the Himalaya. The recovery of this species and other earlierdescribed evergreen taxa from the same formation, suggests the existence of a tropical, warm and humid climatic conditions during the depositional period.

  12. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    Science.gov (United States)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value noise to the signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p 100 kg N ha-1 yr-1). We conclude that, despite the lags due to pluri annual nitrate transfer through the unsaturated and satured zones in catchments of Western France, significant decrease in nitrate concentration in groundwater and streams should be visible within less than 10 years after implementation of an efficient program of measures. Spatial heterogeneity in the implementation of programs of measures (i.e. reduction of N surplus) is a likely cause of slow, sometimes undetectable, reduction in nitrate

  13. The structural evolution of the Ghadames and Illizi basins during the Paleozoic, Mesozoic and Cenozoic: Petroleum implications

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, F.J. [Anadarko Petroleum Corp., Houston, TX (United States); Boudjema, A. [Somatrach, Algiers (Algeria); Lounis, R. [Anadarko Algeria Corp., Houston, TX (United States)

    1995-08-01

    The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over large distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.

  14. Early Cenozoic Multiple Thrust in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Zhenhan Wu

    2013-01-01

    Full Text Available Recently completed regional geological mapping at a scale of 1 : 250,000 or larger across all of the Tibetan Plateau coupled with deep seismic surveys reveals for the first time a comprehensive depiction of the major early Cenozoic thrust systems resulting from the northward subduction of the Indian Continental Plate. These systems define a series of overlapping north-dipping thrust sheets that thickened the Tibetan crust and lead to the rise of the plateau. The few south-dipping thrusts present apparently developed within a sheet when the back moved faster than the toe. Many of the thrusts are shown to extend to the middle-lower crustal depths by seismic data. The regional thrust systems are the Main Central, Renbu-Zedong, Gangdese, Central Gangdese, North Gangdese, Bangoin-Nujiang, Qiangtang, Hohxil, and South Kunlun Thrusts. The minimal southward displacements of the South Kunlun, Hohxil, South Qiangtang, and Central Gangdese Thrusts are estimated to be 30 km, 25 km, 150 km and 50 km, respectively. Deep thrusting began in the Himalaya-Tibetan region soon after India-Eurasia continental collision and led to crustal thickening and subsequent uplift of the Tibetan Plateau during Late Eocene-Early Miocene when the systems were mainly active. The major thrust systems ceased moving in Early Miocene and many were soon covered by lacustrine strata. This activity succeeded in the late Cenozoic to crustal extension and strike-slip movement in the central Tibetan Plateau. The revelation of the full array of the early Cenozoic thrust systems provides a much more complete understanding of the tectonic framework of the Tibetan Plateau.

  15. Cenozoic Methane-Seep Faunas of the Caribbean Region.

    Directory of Open Access Journals (Sweden)

    Steffen Kiel

    Full Text Available We report new examples of Cenozoic cold-seep communities from Colombia, Cuba, the Dominican Republic, Trinidad, and Venezuela, and attempt to improve the stratigraphic dating of Cenozoic Caribbean seep communities using strontium isotope stratigraphy. Two seep faunas are distinguished in Barbados: the late Eocene mudstone-hosted 'Joes River fauna' consists mainly of large lucinid bivalves and tall abyssochrysoid gastropods, and the early Miocene carbonate-hosted 'Bath Cliffs fauna' containing the vesicomyid Pleurophopsis, the mytilid Bathymodiolus and small gastropods. Two new Oligocene seep communities from the Sinú River basin in Colombia consist of lucinid bivalves including Elongatolucina, thyasirid and solemyid bivalves, and Pleurophopsis. A new early Miocene seep community from Cuba includes Pleurophopsis and the large lucinid Meganodontia. Strontium isotope stratigraphy suggests an Eocene age for the Cuban Elmira asphalt mine seep community, making it the oldest in the Caribbean region. A new basal Pliocene seep fauna from the Dominican Republic is characterized by the large lucinid Anodontia (Pegophysema. In Trinidad we distinguish two types of seep faunas: the mudstone-hosted Godineau River fauna consisting mainly of lucinid bivalves, and the limestone-hosted Freeman's Bay fauna consisting chiefly of Pleurophopsis, Bathymodiolus, and small gastropods; they are all dated as late Miocene. Four new seep communities of Oligocene to Miocene age are reported from Venezuela. They consist mainly of large globular lucinid bivalves including Meganodontia, and moderately sized vesicomyid bivalves. After the late Miocene many large and typical 'Cenozoic' lucinid genera disappeared from the Caribbean seeps and are today known only from the central Indo-Pacific Ocean. We speculate that the increasingly oligotrophic conditions in the Caribbean Sea after the closure of the Isthmus of Panama in the Pliocene may have been unfavorable for such large

  16. 分离趋势产量和气候产量的方法探讨%Exploration of method for discrimination between trend crop yield and climatic fluctuant yield

    Institute of Scientific and Technical Information of China (English)

    房世波

    2011-01-01

    The impact of climate change on crops yields had become one of the hotspots in the research on global climate change.The empirical researches of long time-sequence analysis were effective approaches for analysis of relations between crops yields and meteorological factors.In most of empirical researches,the long time-sequence crops yield is generally decomposed into trend yield(which fits the real crop yield by a trend line depended on mathematic model and which is considered as a result of agricultural technology development and agriculture investment),climatic fluctuant yields(which are considered as contribution of climate fluctuation) and random error.As different trend yields come from different mathematic fitting model,it would get different climatic fluctuant yields,even diametrical result(3-point moving average and 5-point moving average may have negative effect in some years).It is the critical steps that how to simulate the trend yield and separate the trend yield to get an correct or more accurate climatic fluctuant yield in such studies.In this paper,a series rules were put forward to show how to choose a more accurate fitting model to calculate trend yield,which may overcome the disadvantage of random choosing models.Take climate change effect on cotton output for an example,the paper wants to explain how to choose fitting model to get an correct trend yield.Puts forward three rules for method selection:trends yield simulation curve should accord with the process of social technology development reality,the variation characteristics of trends yield should have the same or similar trend in whole research region or country(namely the development of social and technical level no significant difference),different administrative regions which have similar climatic conditions should have strong correlation,and the key climate factors of model obtained which affect the research object(crop) growth should be consistent with the crop

  17. Uranium and thorium in Cenozoic basaltods of Kamchatka

    International Nuclear Information System (INIS)

    Regularities in distribution of radioactive elements (RAE) in basaltoids of Kamchatka have been analyzed. The RAE concentration in samples was determined by γ-spectrometric method. The results compared with the instrumental neutron-activation analysis data are found to be in agreement. Results of evaluating the average contents of U, Th and roch-forming elements in ce-- nozoic basaltoids are presented. The radiogeochemical data enable to associate the origin of the Kamchatka Cenozoic basaltoids with both fractional melting of the upper mantle depleted of radioactive elements and the development of magmatic chambers in submerged blocks of the Pre-Cretaceous melanocratic basement the composition of which is close to oceanic tholeiite

  18. 1961—2008年中国西南地区极端气候变化幅度的海拔效应%Altitude dependency of trends of daily climate extremes in southwestern China, 1961-2008

    Institute of Scientific and Technical Information of China (English)

    LI Zongxing; HE Yuanqing; Wilfred H.THEAKSTONE; WANG Xufeng; ZHANG Wei; CAO Weihong; DU Jiankuo; XIN Huijuan; CHANG LI

    2012-01-01

    @@%A total of 12 indices of temperature extremes and 11 indices of precipitation extremes at 111 stations in southwestern China at altitudes of 285-4700 m were examined for the period 1961-2008.Significant correlations of temperature extremes and elevation included the trends of diurnal temperature range,frost days,ice days,cold night frequency and cold day frequency.Regional trends of growing season length,warm night frequency,coldest night and warmest night displayed a statistically significant positive correlation with altitude.These characteristics indicated the obvious warming with altitude.For precipitation extreme indices,only the trends of consecutive dry days,consecutive wet days,wet day precipitation and the number of heavy precipitation days had significant correlations with increasing altitude owing to the complex influence of atmospheric circulation.It also indicated the increased precipitation mainly at higher altitude areas,whereas the increase of extreme precipitation events mainly at lowers altitude.In addition,the clearly local influences are also crucial on climate extremes.The analysis revealed an enhanced sensitivity of climate extremes to elevation in southwestern China in the context of recent warming.

  19. Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System

    NARCIS (Netherlands)

    Luijendijk, E.; Voorde, M. ter; Balen, R. van; Verweij, H.; Simmelink, E.

    2011-01-01

    We performed a detailed analysis of the thermal state of the Cenozoic Roer Valley Graben, the north-western branch of the European Cenozoic Rift System, based on a new set of temperature data. We developed a numerical technique for correcting bottom hole temperatures, including an evaluation of the

  20. Detection of long-term trends in monthly hydro-climatic records of Colombia and the Amazon River basin through Empirical Mode Decomposition

    Science.gov (United States)

    Carmona, A. M.; Poveda, G.

    2011-12-01

    We search for long-term trends in 25- to 50-year records of monthly rainfall (100 stations), average river discharges (42 stations), and mean and minimum air temperature records (37 stations) in Colombia, as well as monthly records in 29 rain gauges within the Amazon River basin. Time series of average monthly river discharges are selected from 10 Colombian river basins with gauging stations located downstream along the main channel. The Empirical Mode Decomposition (EMD) method is used as a filtering process to decompose a given time series into a finite number of intrinsic mode functions (IMF), assuming that diverse simple oscillatory modes of different frequencies coexist in the series, and that the residual captures the long-term trend of the record. The Mann-Kendall test for autocorrelated data is used to assess the statistical significance of the trends, and the Sen test is used for the magnitude of the trends. Results show that 62% of monthly river discharge series exhibit decreasing trends between 0.01-1.92 m3/s yr-1. The identified trends are strongly consistent downstream, albeit with contrasting results for the ratios between the magnitude of the trend and mean discharges. Most minimum temperature series (87%) show increasing trends [0.01-0.08°C yr-1]. Results on precipitation are inconclusive as monthly records exhibit a mixed pattern of increasing (41%, between 0.1-7.0 mm yr-1) and decreasing (44%, between 0.1-7.4 mm yr-1) trends, except for the Pacific region, which shows clear-cut positive trends, consistently with an increasing trend identified in the strength of the Chocó low-level jet winds over the Pacific coast of Colombia, the main moisture advection mechanism into the region. Maximum trend magnitudes in precipitation records on the Amazon basin were found to be decreasing (53%, between 0.04 -9.1 mm yr-1), mostly around the basin's central and south-eastern regions. The highest decreasing trend magnitude in the Amazon was found to be -9.1mm

  1. Knickzone propagation in the Black Hills and northern High Plains: a different perspective on the late Cenozoic exhumation of the Laramide Rocky Mountains

    Science.gov (United States)

    Zaprowski, Brent J.; Evenson, Edward B.; Pazzaglia, Frank J.; Epstein, Jack B.

    2001-01-01

    Geomorphic research in the Black Hills and northern High Plains poses an intriguing hypothesis for the Cenozoic evolution of this salient of the Laramide Rockies. Most recently, geologists have appealed to late Cenozoic epeirogenic uplift or climate change to explain the post-Laramide unroofing of the Rockies. On the basis of field mapping and the interpretation of long-valley profiles, we conclude that the propagation of knickzones is the primary mechanism for exhumation in the Black Hills. Long profiles of major drainages show discrete breaks in the slope of the channel gradient that are not coincident with changes in rock type. We use the term knickzones to describe these features because their profiles are broadly convex over tens of kilometers. At and below the knickzone, the channel is incising into bedrock, abandoning a flood plain, and forming a terrace. Above the knickzone, the channel is much less incised, resulting in a broad valley bottom. Numerous examples of stream piracy are documented, and in each case, the capture is recorded in the same terrace level. These observations are consistent with migrating knickzones that have swept through Black Hills streams, rearranging drainages in their wake. We demonstrate there are two knickzone fronts associated with mapped terraces. Preliminary field evidence of soil development shows that these terraces are time transgressive in nature. Our data strongly suggest that knickzone propagation must be considered a viable mechanism driving late Cenozoic fluvial incision and exhumation of the northern High Plains and adjacent northern Rocky Mountains.

  2. Features and dynamic mechanisms of Cenozoic tectonic migration and its impact on the hydrocarbon accumulation in the northern South China Sea

    Institute of Scientific and Technical Information of China (English)

    YIN Zhengxin; CAI Zhourong; WAN Zhifeng; LYU Baofeng

    2015-01-01

    The northern continental margin of the South China Sea (SCS) is located within the tectonic system of Southeast Asia, an area with a great deal of tectonic migration due to the regional tectonic movements. The available geological and geophysical data of the area are comprehensively analyzed in order to demonstrate the typical migration patterns of the Cenozoic tectonics in the northern SCS caused by the episodes of the Cenozoic tectonic movement. Furthermore, the lateral variation characteristics of the strata and the differ-ent evolution patterns of the main basins' features are assessed. It primarily focus on: (1) the Cenozoic epi-sodic rifting from north to south in the continental margin of the northern SCS; (2) the rifting and depression time of the main basins progressively become younger as one goes from north to south, signifying that the migration of both the tectonics and the sediments within the northern SCS travelled from north to south during the Cenozoic; and (3) the lateral tectonic migration on the direction of EW is not regular in total, but in some local areas the trending of the tectonic migration is from west to east. The analysis of the tectonic migration features of the northern SCS, in combination with the regional tectonic evolution background, indicates that the observed remote lagging effect, resulted from the India-Eurasia plate collision, is the main dynamic mechanism involved in the tectonic migration within the northern SCS. The tectonic migration has significant influence on both the organization of petroleum deposits and on the hydrocarbon accumulation within the basins in the northern SCS; comprehensive understanding of this dynamic system is of great reference value in predicting the hydrocarbon accumulation and has the potential to have an enormous impact in discovering new deep reservoirs for the future oil-gas exploration.

  3. North Chilean forearc tectonics and cenozoic plate kinematics

    Science.gov (United States)

    Buddin, Tim S.; Stimpson, Ian G.; Williams, Graham D.

    1993-04-01

    The continental forearc of northern Chile has been subjected to contemporaneous extension and compression. Here, cross-sections constructed across the forearc are presented which show that since initial shortening, deformation of the forearc has occurred in two tectonically distinct areas. These inner and outer forearc areas are separated by the strain discontinuity of the Atacama fault system and the tectonically neutral Central Depression. The outer forearc, the Coastal Cordillera, exhibits extensional tectonics, with large (up to 300 m) normal fault scarps preserved. These faults cut the earlier thrusts responsible for the elevation of Jurassic rocks at the coast above their regional elevation. The normal faults have been re-activated, displacing Quaternary salt deposits in the Salar Grande. This re-activation of the basement faults is probably due to the subduction of anomalously thick oceanic crust, producing an isostatic imbalance in the outer forearc. In the inner forearc, cross-sections through the Sierra del Medio and Cordillera de Domeyko show that structures of the Pre-Cordillera are best explained by a thick-skinned thrust system, with localized thin-skinned tectonics controlled by evaporite detachment horizons. Current forearc deformation features indicate a strong degree of correlation between subduction zone geometry and forearc tectonics. The timing of Cenozoic tectonism also fits well with established plate motion parameters, and the spatial and temporal variation in the state of stress of the forearc shows a close relationship throughout the Cenozoic to the plate kinematics and morphology of the subducting Nazca plate.

  4. Interannual climate variability and spatially heterogeneous improvement of agricultural management impede detection of a decreasing trend in nitrate pollution in an agricultural catchment

    Science.gov (United States)

    Fovet, Ophélie; Dupas, Rémi; Durand, Patrick; Gascuel-Odoux, Chantal; Gruau, Gérard; Hamon, Yannick; Petitjean, Patrice

    2016-04-01

    Despite widespread implementation of the nitrate directive in the European Union since the 1990s, the impact on nitrate concentration in rivers is limited (Bouraoui and Grizzetti, 2011). To assess whether this lack of response is due to the long time lags of nitrate transfer or to inadequate programs of measure, long term river and groundwater monitoring data are necessary. This study analyses 15 years of daily nitrate concentration data at the outlet of an intensively farmed catchment in Western France (Kervidy-Naizin, 5 km²) and quarterly nitrate concentration data in the groundwater of two hillslopes equipped with piezometers (Kerroland and Gueriniec) within the same catchment. In this catchment groundwater contribution to annual stream flow is dominant. The objectives of this study were to i) disentangle the influence of interannual climate variability and improvement of agricultural practices (i.e. reduction in N surplus) in the stream chemistry and ii) discuss the reasons for slow catchment recovery from nitrate pollution by comparing trends in groundwater and stream concentrations. Analysis of stream data showed that flow-weighted mean annual concentration at the outlet of the Kervidy-Naizin catchment has decreased by 1.2 mg NO3- l-1 yr-1 from 1999 to 2015. This decrease was slow but significant (p value signal: i) deviation in the linear model of nitrate decrease with time was negatively correlated with annual runoff (r = -0.54, p signal of linear decrease in stream concentration. Analysis of groundwater data showed a significant and sharp decrease in nitrate concentration in the Kerroland piezometer transect (4.0 mg NO3- l-1 yr-1) and no significant evolution in the Gueriniec piezometer transect, from 1999 to 2015. This contrasting evolution of groundwater nitrate concentration between the two transects was consistent with data on soil surface nitrogen surplus, with a balanced fertilisation in the Kerroland transect (N surplus close to 0 kg N ha-1 yr-1

  5. Confronting Climate Model Simulations with Satellite-Based Evaluation of Warm Rain Formation: Can We Reconcile "Bottom-up" Process-Based Constraints with the "Top-Down" Temperature Trend Constraints?

    Science.gov (United States)

    Golaz, J. C.; Suzuki, K.; Guo, H.

    2014-12-01

    Cloud parameterizations in climate models include a number of adjustable parameters that arise from uncertainties in cloud processes. These parameters are often tuned to best reproduce specific aspects of the observed climate, such as the energy balance at the top of the atmosphere. Starting with the CMIP5 GFDL CM3 coupled climate model, we construct alternate model configurations that achieve the desired energy balance using different, but plausible, combinations of parameters. The present-day climate is nearly indistinguishable in all configurations, but the evolution of the surface temperature from pre-industrial to present-day differs markedly among these configurations due to a large spread in the magnitude of the aerosol indirect effect. Details of the cloud-to-rain conversion processes are found to be the source for this large spread. Recently developed methodologies to analyze the CloudSat and A-Train satellite observations are employed to construct the statistical "fingerprint" process-level signatures of the cloud-to-rain processes. These methodologies are applied to both satellite observations and climate models. Such comparisons can be used to help constrain uncertain parameters included in cloud parameterizations. One of the highlighted results demonstrates that the model predictability of twentieth-century historical temperature trends contradicts the process-based constraint on a tunable cloud parameter. This implies the presence of compensating errors at a fundamental level, and underscores the importance of observation-based, process-level constraints on model microphysics uncertainties for more reliable predictions of the aerosol indirect effect. This uncertainty in the magnitude of the aerosol indirect effect ultimately limits our ability to constrain the climate sensitivity.

  6. 未来气候情景下西藏地区的干湿状况变化趋势%Trends Of Tibet's Dry-Wet Condition under Future Climate Scenario

    Institute of Scientific and Technical Information of China (English)

    赵俊芳; 郭建平; 房世波; 毛飞

    2011-01-01

    The drought is one of the important meteorological disasters in Tibet, and occurs in varying degrees each year. The drought has a great impact on the agriculture and livestock production. It has an important significance that forecasting the trends of Tibet's dry-wet condition under future climate scenario for prevention and reduction of losses caused by drought in the region. Based on the daily data of A2 climate scenario (2011 -2050) and baseline climate condition (1961 -1990) from the regional climate model PRECIS with resolution of 50km × 50km, reference crop evapotranspiration was calculated according to Penman-Monteith equation recommended by FAO. In terms of grades of wetness index from Chinese Climate Classification Criterion, Tibet is classified into arid, semi-arid, semi-humid and humid zones, respectively. The possible temporal-spatial changes of dry-wet condition in Tibet from 2011 to 2050 were analyzed based on wetness index. The results showed that: the amount of precipitation and reference crop evapotranspiration in the most regions of Tibet would increase from 2011 to 2050 compared with the baseline climate conditions from 1961 to 1990. The increase range of reference crop evapotranspiration was less than that of precipitation. However, the inter-regional differences were both significant; in the next 40 years, Tibet's climate showed a warming and wetting trend in general. The reducing trends in arid and semi-arid areas were clear. And the increase range of average temperature was far greater than that of wetness index. Environmental water and heat factors were higher and drought gradually decreased. It was more conducive to the improvement of ecological environment; however, the different climatic zones in dry-wet conditions at different times showed different trends. The area's reducing trend in the arid and semiarid region and the expanding trend in the humid and semi-humid region during 2021 to 2030 would be obvious compared with the

  7. Time series analysis of Cenozoic era sea level and paleotemperature data

    Science.gov (United States)

    Rosenfield, George H.; Huffman, Tod E.

    1983-01-01

    A statistical analysis of Cenozoic era sea level and paleotemperature data was performed to determine the cycles of each data set and the correspondence between them. Accordingly, each of the four time series were first analyzed independently in the univariate mode of a spectral analysis. The two basic data sets were then analyzed in a paired cross-spectral analysis. The prominent periodic cycles remaining in the data sets after linear trend removal, were: sea level surface from seismic stratigraphy--9.6 million years, updated version of sea level surface from seismic stratigraphy--9.5 million years, continental paleotemperatures from paleobotanical interpretations--9.6 million years, and marine paleotemperatures from foraminiferal isotopic data--12.7 million years. The cross-correlation properties between the data sets of continental paleotemperatures from paleobotanical interpretations and sea level surface from seismic stratigraphy at the common prominent period of 9.6 million years were: (1) The squared coherency value which measures cross correlation between the two data sets has the value 0.30, and (2) the amount by which the continental paleotemperatures from paleobotanical interpretations data lags the sea level surface from seismic stratigraphy data is 2.70 million years.

  8. Late Cenozoic Tectonic Deformation in the Dongsha Islands and Adjacent Sea Area

    Institute of Scientific and Technical Information of China (English)

    WU Shiguo(吴时国); LIU Zhan(刘展); WANG Wanyin(王万银); GUO Junhua(郭军华); T. Lüdmann; H. K. Wong

    2003-01-01

    Dongsha Island and the adjacent sea area locate at the northern continental margin of the South China Sea (SCS), and is connected to the east by the Manila Trench. Analyses of seismic stratigraphy and gravity, magnetic and drilling wells data led to the discovery of three post-fault sequences (V, VI, VII). Extensive tectonic uplift, magma activity and erosion occurred in Dongsha Island and the adjacent area, where most of the faults in the northeastern SCS were still active during Pliocene and Quaternary. Two groups of faults trending NEE and NW were developed during Late Cenozoic. We conclude that three important tectonic movements, especially Dongsha movement (4.4-5.2 Ma) and Liuhua movement (1.4-1.89 Ma), controlled the structural framework in the Dongsha rise; whose deformation in the east is stronger than that in the west and whose stress field variation suggests that the tectonic uplift in the study area contributed to magmato-tectonic events correlated to the main collision phases between the East China and Taiwan 5-3 and 3-0 Ma ago.

  9. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic

    Institute of Scientific and Technical Information of China (English)

    李吉均; 方小敏; 马海州; 朱俊杰; 潘保田; 陈怀录

    1996-01-01

    Studies of the geomorphology and stratigraphy in the upper reaches of the Yellow River during the late Cenozoic demonstrate that the period of 30 - 3.4 Ma is characterized by a relatively stable tectonic setting, a persistently hot climate and a wide distribution of inland basins. This long-term stable environment resulted in a planation surface, the main surface on the Qinghai-Xizang (Qingzang) Plateau, on which red earth crust and karst arc formed. Since 3.4 Ma, the Qingzang Plateau was "uplifted as a whole massif, accompanied by the dissection and disintegration of the main surface, termination of deposition and deformation of stratigraphy in red basins, increasing relief and commencing accumulation of inland molasse formation mainly of conglomerate. Subsequent strong uplift of the Qingzang Plateau at 2.5 Ma and 1.7-1.66 Ma led to cormation of the basic geomorphological configuration of the Qingzang Plateau and occurrence of the Yellow River. These three strong uplifts of the Qingzang Plateau between

  10. Continuous and self-consistent CO2 and climate records over the past 20 Myrs

    NARCIS (Netherlands)

    Wal, R.S.W. van de; Boer, B. de; Lourens, L.J.; Köhler, P.; Bintanja, R.

    2011-01-01

    The gradual cooling of the climate during the Cenozoic has generally been attributed to a decrease in CO2 concentration in the atmosphere. The lack of transient climate models and in particular the lack of high-resolution proxy records of CO2, beyond the 5 ice-core record prohibit however a full und

  11. Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia

    Science.gov (United States)

    Carrapa, Barbara; DeCelles, Peter G.; Wang, Xin; Clementz, Mark T.; Mancin, Nicoletta; Stoica, Marius; Kraatz, Brian; Meng, Jin; Abdulov, Sherzod; Chen, Fahu

    2015-08-01

    Plate tectonics and eustatic sea-level changes have fundamental effects on paleoenvironmental conditions and bio-ecological changes. The Paratethys Sea was a large marine seaway that connected the Mediterranean Neotethys Ocean with Central Asia during early Cenozoic time. Withdrawal of the Paratethys from central Asia impacted the distribution and composition of terrestrial faunas in the region and has been largely associated with changes in global sea level and climate such as cooling associated with the Eocene/Oligocene transition (EOT). Whereas the regression has been dated in the Tarim basin (China), the pattern and timing of regression in the Tajik basin, 400 km to the west, remain unresolved, precluding a test of current paleogeographic models. Here we date the Paratethys regression in Tajikistan at ca. 39 million years ago (Ma), which is several million years older than the EOT (at ca. 34 Ma) marking the greenhouse to icehouse climate transition of the Cenozoic. Our data also show a restricted, evaporitic marine environment since the middle-late Eocene and establishment of desert like environments after ca. 39 Ma. The overall stratigraphic record from the Tajik basin and southern Tien Shan points to deposition in a foreland basin setting by ca. 40 Ma in response to active tectonic growth of the Pamir-Tibet Mountains at the same time. Combined with the northwestward younging trend of the regression in the region, the Tajik basin record is consistent with northward growth of the Pamir and suggests significant tectonic control on Paratethys regression and paleoenvironmental changes in Central Asia.

  12. Climate-forcing & Feedbacks of the Late Paleozoic Ice Age

    Science.gov (United States)

    Montanez, I. P.; Brand, U.; Poulsen, C. J.; Horton, D. E.

    2011-12-01

    Evaluating climate-forcing and feedbacks during pre-Cenozoic ice ages requires reconstructing marine-terrestrial linkages between atmospheric composition, the regional hydroclimate expression of mean climate change, ice sheets, and sea-level. Here we evaluate the role of different climate parameters and their linkages during the Carboniferous icehouse through integration of a recently developed ID-TIMS U-Pb constrained sea-level history, brachiopod stable isotope time-series from shallow marine regions of paleotropical Pangaea, atmospheric pCO2 inferred from paleosol minerals and fossil leaf stomatal indices, ice sheet variations constrained by the distribution of high-latitude Gondwanan glacial deposits, and paleoclimate simulations. Within chronostratigraphic uncertainty, long-term sea-level lowstands coincide with glacial maxima defined from high-latitude Gondwanan basins, whereas long-term highstands are coeval with glacial minima suggesting a dynamic late Paleozoic icehouse. Superimposed shorter-term sea-level events define a stepwise onset (late Mississippian) and contraction of Carboniferous ice sheets prior to the initiation of Early Permian ice sheets. Sea level fluctuations, at different temporal scales parallel trends defined by brachiopod oxygen and carbon isotope compositions and paleo-atmospheric pCO2 estimates inferred using mineral and biologic proxies. A protracted (~9 my) stepwise sea level rise beginning in the middle Pennsylvanian and culminating in an earliest Gzhelian peak is coincident with overall increasing CO2 levels throughout this interval and substantially decreased effective moisture in paleotropical Pangaea. This possibly CO2-forced period of waning continental ice sheets and sea-level highstand encompassed a large-scale floral turnover across the mid-to-late Pennyslvanian boundary and the onset of the demise of paleotropical rainforests across much of Pangaea. Ocean-atmosphere-ice sheet climate simulations for this period reveal a

  13. Mesozoic extension and Cenozoic contraction in an intraplate setting (Maestrat basin, Iberian Chain, E Spain)

    Science.gov (United States)

    Nebot Miralles, M.; Guimerà Roso, J.

    2013-12-01

    The Iberian Chain, located in the eastern Iberian Peninsula, is a fold-and-thrust belt developed during the Cenozoic, because of the contractional inversion of the Mesozoic Iberian Rift System. The extension in the Iberian Chain took place in two major rifting cycles (late Permian to late Triassic and late Oxfordian to late Albian) followed by episodes of lower rifting activity (early and middle Jurassic, and late Albian to Maastrichtian). The Maestrat basin (containing up to 6.5 km of Mesozoic sediments) is one of the most subsident basins during the late Oxfordian to late Albian cycle. A system of listric extensional faults, which involve the basement, bounded the basin, and also divided it into minor sub-basins, containing different thicknesses of the Mesozoic sedimentary fill. An E-W-trending, N-verging, fold-and-thrust belt developed in the northern boundary of the basin, as the result of the Cenozoic inversion. This belt involved the Mesozoic cover in the northern -foreland- areas, with a detachment level located within the Triassic: in the Middle Muschelkalk (Middle Triassic) and Keuper (Upper Triassic), both formed by lutites and evaporites. Southwards, the thrust-system also involved the Variscan basement. A study of the region containing the transition between the thin-skinned and the thick-skinned areas is presented, based on seismic profiles, oil-exploration wells and field data. A progressive northward thickening of Jurassic and lower Cretaceous units, related to a S-dipping listric extensional fault located to the N, can be observed both in the field and the seismic profiles. In the Triassic rocks, depositional thickness variations in the Middle Muschelkalk unit are observed, related to sub-vertical faults active during the Triassic rifting. Salt anticlines, pillows and welds are also observed in the Middle Muschelkalk. These halocynetic structures developed during the Keuper, as it is deduced from the onlap geometries of the Keuper seismic reflectors

  14. Unveiling the diversification dynamics of Australasian predaceous diving beetles in the Cenozoic.

    Science.gov (United States)

    Toussaint, Emmanuel F A; Condamine, Fabien L; Hawlitschek, Oliver; Watts, Chris H; Porch, Nick; Hendrich, Lars; Balke, Michael

    2015-01-01

    During the Cenozoic, Australia experienced major climatic shifts that have had dramatic ecological consequences for the modern biota. Mesic tropical ecosystems were progressively restricted to the coasts and replaced by arid-adapted floral and faunal communities. Whilst the role of aridification has been investigated in a wide range of terrestrial lineages, the response of freshwater clades remains poorly investigated. To gain insights into the diversification processes underlying a freshwater radiation, we studied the evolutionary history of the Australasian predaceous diving beetles of the tribe Hydroporini (147 described species). We used an integrative approach including the latest methods in phylogenetics, divergence time estimation, ancestral character state reconstruction, and likelihood-based methods of diversification rate estimation. Phylogenies and dating analyses were reconstructed with molecular data from seven genes (mitochondrial and nuclear) for 117 species (plus 12 outgroups). Robust and well-resolved phylogenies indicate a late Oligocene origin of Australasian Hydroporini. Biogeographic analyses suggest an origin in the East Coast region of Australia, and a dynamic biogeographic scenario implying dispersal events. The group successfully colonized the tropical coastal regions carved by a rampant desertification, and also colonized groundwater ecosystems in Central Australia. Diversification rate analyses suggest that the ongoing aridification of Australia initiated in the Miocene contributed to a major wave of extinctions since the late Pliocene probably attributable to an increasing aridity, range contractions and seasonally disruptions resulting from Quaternary climatic changes. When comparing subterranean and epigean genera, our results show that contrasting mechanisms drove their diversification and therefore current diversity pattern. The Australasian Hydroporini radiation reflects a combination of processes that promoted both diversification

  15. Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979-2008)

    Science.gov (United States)

    Prasad, A. K.; Yang, K.-H. S.; El-Askary, H. M.; Kafatos, M.

    2009-12-01

    Global warming or the increase of the surface and atmospheric temperatures of the Earth, is increasingly discernible in the polar, sub-polar and major land glacial areas. The Himalayan and Tibetan Plateau Glaciers, which are the largest glaciers outside of the Polar Regions, are showing a large-scale decrease of snow cover and an extensive glacial retreat. These glaciers such as Siachen and Gangotri are a major water resource for Asia as they feed major rivers such as the Indus, Ganga and Brahmaputra. Due to scarcity of ground measuring stations, the long-term observations of atmospheric temperatures acquired from the Microwave Sounding Unit (MSU) since 1979-2008 is highly useful. The lower and middle tropospheric temperature trend based on 30 years of MSU data shows warming of the Northern Hemisphere's mid-latitude regions. The mean month-to-month warming (up to 0.048±0.026°K/year or 1.44°K over 30 years) of the mid troposphere (near surface over the high altitude Himalayas and Tibetan Plateau) is prominent and statistically significant at a 95% confidence interval. Though the mean annual warming trend over the Himalayas (0.016±0.005°K/year), and Tibetan Plateau (0.008±0.006°K/year) is positive, the month to month warming trend is higher (by 2-3 times, positive and significant) only over a period of six months (December to May). The factors responsible for the reversal of this trend from June to November are discussed here. The inequality in the magnitude of the warming trends of the troposphere between the western and eastern Himalayas and the IG (Indo-Gangetic) plains is attributed to the differences in increased aerosol loading (due to dust storms) over these regions. The monthly mean lower-tropospheric MSU-derived temperature trend over the IG plains (dust sink region; up to 0.032±0.027°K/year) and dust source regions (Sahara desert, Middle East, Arabian region, Afghanistan-Iran-Pakistan and Thar Desert regions; up to 0.068±0.033°K/year) also shows

  16. Melting of major Glaciers in the western Himalayas: evidence of climatic changes from long term MSU derived tropospheric temperature trend (1979–2008

    Directory of Open Access Journals (Sweden)

    M. Kafatos

    2009-12-01

    Full Text Available Global warming or the increase of the surface and atmospheric temperatures of the Earth, is increasingly discernible in the polar, sub-polar and major land glacial areas. The Himalayan and Tibetan Plateau Glaciers, which are the largest glaciers outside of the Polar Regions, are showing a large-scale decrease of snow cover and an extensive glacial retreat. These glaciers such as Siachen and Gangotri are a major water resource for Asia as they feed major rivers such as the Indus, Ganga and Brahmaputra. Due to scarcity of ground measuring stations, the long-term observations of atmospheric temperatures acquired from the Microwave Sounding Unit (MSU since 1979–2008 is highly useful. The lower and middle tropospheric temperature trend based on 30 years of MSU data shows warming of the Northern Hemisphere's mid-latitude regions. The mean month-to-month warming (up to 0.048±0.026°K/year or 1.44°K over 30 years of the mid troposphere (near surface over the high altitude Himalayas and Tibetan Plateau is prominent and statistically significant at a 95% confidence interval. Though the mean annual warming trend over the Himalayas (0.016±0.005°K/year, and Tibetan Plateau (0.008±0.006°K/year is positive, the month to month warming trend is higher (by 2–3 times, positive and significant only over a period of six months (December to May. The factors responsible for the reversal of this trend from June to November are discussed here. The inequality in the magnitude of the warming trends of the troposphere between the western and eastern Himalayas and the IG (Indo-Gangetic plains is attributed to the differences in increased aerosol loading (due to dust storms over these regions. The monthly mean lower-tropospheric MSU-derived temperature trend over the IG plains (dust sink region; up to 0.032±0.027°K/year and dust source regions (Sahara desert, Middle East, Arabian region, Afghanistan-Iran-Pakistan and Thar Desert regions; up to 0.068±0.033

  17. Resolving climate change in the period 15-23 ka in Greenland ice cores: A new application of spectral trend analysis

    NARCIS (Netherlands)

    M.G.G. de Jong; D.S. Nio; A.R. Böhm; H.C. Seijmonsbergen; L.W.S. de Graaff

    2009-01-01

    Northern Hemisphere climate history through and following the Last Glacial Maximum is recorded in detail in ice cores from Greenland. However, the period between Greenland Interstadials 1 and 2 (15-23 ka), i.e. the period of deglaciation following the last major glaciation, has been difficult to res

  18. Petrogenetic significance of high Fe/Mn ratios of the Cenozoic basalts from Eastern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Cenozoic basalts from eastern China show commonly high Fe/Mn ratios (average = 68.6 ± 11.5) coupled with OIB-type trace element signature. The Cenozoic basalts form the northern margin and the southern margin of the North China Craton are studied in detail. Model calculations point out that the coupling feature of high Fe/Mn ratio with OIB-type trace element signature of these basalts cannot be produced by neither pyroxene/olivine crystallization nor remelting of previously melted mantle, but require partial melting of a garnet pyroxenite-rich mantle source. Combining these features of the Cenozoic basalts with the Phanerozoic lithospheric evolution of the eastern China, we suggest that the Cenozoic basalts were derived from a garnet pyroxenite-rich mantle source associated with continental crust delamination or oceanic crust subduction.

  19. Types of Cenozoic Mollusca from Java in the Martin Collection of Naturalis

    NARCIS (Netherlands)

    Leloux, J.; Wesselingh, F.P.

    2009-01-01

    An updated type catalogue of the Martin Collection (fossil Mollusca, predominantly from the Cenozoic of Java, Indonesia) is presented. Type specimen data, updated locality data, and illustrations are given.

  20. Preserving species populations in the boreal zone in a changing climate: contrasting trends of bird species groups in a protected area network

    OpenAIRE

    Raimo Virkkala; Ari Rajasärkkä

    2012-01-01

    A protected area network should ensure the maintenance of biodiversity. Because of climate change, species ranges are expected to move polewards, causing further demand for the protected area network to be efficient in preserving biota. We compared population changes of different bird species groups according to their habitat preferences in boreal protected areas in Finland on the basis of large-scale censuses carried out in 1981–1999 and in 2000–2009. Population densities of comm...

  1. Interaction between Cenozoic fault activity and sediment influx in the Arctic region: new thermochronologic data and seismic study

    Science.gov (United States)

    Bigot-Buschendorf, Maelianna; Mouthereau, Frédéric; Fillon, Charlotte; Loget, Nicolas; Labrousse, Loïc; Werner, Philippe; Bernet, Matthias; Ehlers, Todd

    2015-04-01

    The Alaskan Brooks Range and its canadian counterpart, the British Mountains result from the Meso-Cenozoic collision of the Arctic continental margin with accreted volcanic arcs and adjacent continental terranes. Because of its location and known potential for oil industries, more attention has been brought to this area for the last few years. While the timing of collisional events, duration, and rates of exhumation associated with mountain building is now better understood, the causes of these exhumation events are still largely unknown. Published constraints and our present data are consistent with progressive cooling from 105 to 25 Ma, with rates of exhumation constant across the range until 35-25 Ma. From 35 Ma onwards, exhumation likely slowed in concomitance with underplating/duplexing in the inner part of the belt (Doonerak window) and activation of the northernmost thrust. The earliest cooling stage (from 100 Ma) marking the onset of the Brookian orogeny is recorded by a low order coarsening upward sequence in the foreland. On the contrary, the latest stage of cooling (at 35 Ma) is not linked to the construction of the range but more likely due to a reorganization of the wedge possibly related to changes in the regional climatic or geodynamic boundary conditions. First, we aim at reconstructing the time-temperature evolution of the British Mountains by combining new (U-Th)/He and fission-tracks ages on zircon and apatite ; our first thermochronological data in the British Mountains show ages ranging from 110 to 25 Ma from range to basin. These data will permit to reconstruct the thermal history of the British Mountains and its basin, and to estimate the exhumation rates associated to the main unities. Then, we also examine the role of climate during the Tertiary period. Some markers indicate a climate change at this period which could be registered in the sedimentation. Therefore we determine the part of climate by analyzing seismic lines in the Beaufort

  2. Cenozoic crustal shortening and thickening contributions to Andean orogenesis: Preliminary results from structural mapping in the southern Peruvian Andes

    Science.gov (United States)

    Perez, N.; Horton, B. K.

    2012-12-01

    Estimates of Cenozoic crustal shortening and thickening from the southern Peruvian Andes are necessary to address ongoing debates regarding growth of the Andes and Altiplano plateau. However, limited regional studies in southern Peru prevent accurate assessments of the structural contributions to high topography. This study provides new structural mapping along a >200 km transect spanning the northernmost Altiplano to Subandes at 13-15.5°S and fills the gap between existing central Peruvian and northern Bolivian studies. New stratigraphic data, fault relationships and fold orientations are used to create an updated geologic map and provide insights into the style, timing and magnitude of crustal deformation. Preliminary cross sections accompanying these map transects illustrate deformation style and provide first-order estimates of shortening. Further cross section analyses will be balanced and provide estimates of total crustal shortening and associated thickening in southern Peru. The study transect is subdivided into belts according to the age of exposed rocks and style of deformation. From west to east these belts include: Cretaceous strata dominated by tight folds, closely spaced faults and multiple detachments; Permo-Triassic strata dominated by thicker thrust sheets and fault-fold orientations departing from typical Andean trends; and Paleozoic rocks characterized by thick thrust sheets and deformation focused near major faults. The Cretaceous belt is composed of marine limestones and upward coarsening, siltstone to coarse sandstone progradational sequences. Disharmonic and detachment folds in the Cretaceous section demonstrate the importance of interbedded gypsum and mudstone layers. Fault relationships suggest local shortening during the Early Cretaceous. The Permo-Triassic belt is composed of thick Permian carbonates (Copacabana Formation) and interbedded sandstones, conglomerates and volcanics of the Mitu Formation. This study defines the orientation of

  3. Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon)

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi H.; Comstock, John E.

    2014-11-01

    Sedimentary basins adjacent to plate boundaries contain key tectonic and stratigraphic elements to understand how stress is transmitted through plates. The Levant Basin is a place of choice to study such elements because it flanks the Levant Fracture System and the Africa/Anatolia boundary. This paper uses new high-quality 3-D seismic reflection data to unravel the tectonic evolution of the margin of this basin during the Cenozoic, the period corresponding to the formation of the Levant Fracture System, part of the Africa/Arabia plate boundary. Four major groups of structures are identified in the interpreted Cenozoic units: NW-SE striking normal faults, NNE-SSW striking thrust-faults, ENE-WSW striking dextral strike-slip faults, and NNE trending anticlines. We demonstrate that all structures, apart of the NW-SE striking normal faults, are inherited from Mesozoic faults. Their reactivation and associated folding started during the late Miocene prior to the Messinian salinity crisis due to a NW-SE compressional stress field. No clear evidence of shortening at present-day offshore Lebanon and no large NNE-SSW strike-slip faults parallel to the restraining bend are found indicating that the Levant Fracture System is mainly contained onshore at present day. The intermittent activity of the interpreted structures correlates with the two stages of Levant Fracture System movement during late Miocene and Pliocene. This paper provides a good example of the impact of the evolution of plate boundaries on adjacent basins and indicates that any changes in the stress field, as controlled by the plate boundary, will affect immediately the preexisting structures in adjacent basins.

  4. Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China:Evidence from apatite fission track analysis

    Institute of Scientific and Technical Information of China (English)

    Wenhao Tang; Zhicheng Zhang; Jianfeng Li; Ke Li; Zhiwen Luo; Yan Chen

    2015-01-01

    Apatite fission track (AFT) analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0e13.2 mm) mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassiceearly Cretaceous and the OligoceneeMiocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (>100 Ma), recording the earlier rapid uplift phase during the late JurassiceCretaceous, while the ages in the north pied-mont of the Bogda Mountain (namely the northeast part) are younger (<60 Ma), mainly reflecting the later rapid uplift phase in the OligoceneeMiocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.

  5. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  6. ACEX: A First Look at Arctic Ocean Cenozoic History

    Science.gov (United States)

    Moran, K.; Backman, J.

    2004-12-01

    The first Integrated Ocean Drilling Program mission specificplatform expedition (ACEX - Arctic Coring Expedition) drilled and recovered core from five holes at four sites through Cenozoic sediments draping the crest of the Lomonosov Ridge in the central Arctic Ocean. Coring continued into the underlying Cretaceous sedimentary bedrock. Sites are located only a few nautical miles apart along a single seismic line (AWI-91090), showing an identical and coherent Cenozoic seismostratigraphy. Preliminary results from shipboard investigations of core-catcher-based bio- and lithostratigraphy, pore water analyses and core logger data describe a thick (~160 m) middle Miocene through Pleistocene sequence that shows large amplitude, cyclic variability in the density, magnetic susceptibility and acoustic velocity of the sediments. Sediments are largely carbonate free. Pleistocene sedimentation rates are close to 3 cm/ka, whereas Pliocene sediments are by-and-large missing. A sharp change in physical properties at ~200 m defines the transition into a 200+ m thick Paleogene sequence that is initially dominated by large numbers of dinoflagellate cysts. The early Miocene, Oligocene and late Eocene appear to be largely missing in a hiatus. However, a 32 m thick interval separates the overlying middle Miocene from the underlying middle Eocene and presumably preserves some of the early Neogene and late Paleogene sections. Dinoflagellate cysts, diatoms, ebridians and silicoflagellates are common to abundant in the middle Eocene section, which bottoms in a spectacular layer showing massive occurrences of glochidia and massulae (megaspores) of the freshwater hydropterid fern Azolla (duckweed) at the early/middle Eocene boundary (~306 m), suggesting strongly reduced surface water salinity or perhaps even a brief episode of fresh water conditions at the surface. Biosilica is not present prior to the late early Eocene (~320 m). The (sub-) tropical dinoflagellate species Apectodinium augustum

  7. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    Science.gov (United States)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  8. Cenozoic History of Paleo-Currents through the Central American Seaway: Insights from Deep Sea Sediments and Outcrops in Panama

    Science.gov (United States)

    Waite, A. J.; Martin, E. E.

    2015-12-01

    Paleontologic, oceanographic, and ecologic studies suggest gradual shoaling of the Central American Seaway between ~15 to 2 Ma that caused a stepwise shutdown of deep, intermediate, and shallow water exchange between the Pacific Ocean and Caribbean Sea. This diminishing communication has been further associated with changes in surface and deep ocean currents, atmospheric flow, and ultimately regional and global climate. Recent studies of the Isthmus of Panama's exhumation history, palm phylogenies, and fossil/molecularly derived migration rates, however, suggest that the isthmus may have risen much earlier. An earlier rise scenario would call into question many accepted consequences of this gateway event under the 'Panama Hypothesis,' including strengthened thermohaline circulation, North Atlantic Deep Water production, the onset of Northern Hemisphere glaciation, and the Great American Biotic Interchange. Despite considerable research on the Neogene, few paleoceanographic studies have directly examined long-term changes in the adjacent oceans over the Cenozoic to evaluate the potential for earlier events in the closure history of the seaway. In this study, we extend records of bottom water circulation reconstructed from the Nd-isotopes of fish teeth from several Caribbean International Ocean Discovery Program sediment cores (ODP Sites 998, 999, 1000). These reconstructions clearly depict an increase in Pacific volcanism throughout the Cenozoic and sustained transport of Pacific waters into the Caribbean basin from ~50 to 9 Ma, although there appear to be interesting complexities within the Caribbean basin itself. We also present preliminary investigations into the potential of Nd-isotopic analyses on fossil fish teeth recovered from outcrops and exposures of marine strata across Panama to further elucidate the regional dynamics and shoaling history of the Central American Seaway.

  9. The late Miocene 'paradox' of the CO2 climate sensitivity (Invited)

    Science.gov (United States)

    Zhang, Y.; Pagani, M.

    2013-12-01

    Ancient climates provide opportunities for studying the impact of CO2 change on global temperatures. While advances in CO2-reconstruction techniques are yielding a clearer picture of the Cenozoic history of CO2 (Beerling and Royer, 2011), the late Miocene (~12-5 Ma) remains enigmatic. For example, recent sea-surface temperature reconstructions from 12-5 Ma have shown that mid-latitude and equatorial regions of the Pacific cooled 6°C (LaRiviere et al., 2012) and 2°C (Zhang et al., 2013), respectively. This cooling trend was probably initiated at the mid-Miocene climate transition (14 Ma), and continued into the Plio-Pleistocene. However, existing compilation of late Miocene - Pliocene CO2 records show little variability, with some indicating a rise in CO2 concurrent with global cooling. Here we present four continuous alkenone-based CO2 records using Pacific sediment samples (ODP Sites 769, 806, 850 and 1143), from late Miocene to Pliocene. Compound-specific carbon isotope measurements show a broad decrease in alkenone δ13C values in all four sites, suggesting increasing pCO2 levels in the late Miocene. Decreasing ocean temperature and increasing pCO2 in the late Miocene appears to challenge a leading climatic role for CO2 during this time. Alternatively, alkenone-CO2 estimates are flawed in the late Miocene because factors other than CO2, such as algal growth rate, cell geometry, and carbon-fixation pathways, can influence carbon isotopic fractionation during algae growth. We explore the uncertainty of the alkenone-CO2 methodology and assess the potential influence that non-CO2 variables have in producing spurious CO2 estimates and trends. Beerling, D.J., Royer, D.L., 2011. Convergent Cenozoic CO2 history. Nat. Geosci. 4, 418-420. LaRiviere, J.P., Ravelo, A.C., Crimmins, A., Dekens, P.S., Ford, H.L., Lyle, M., Wara, M.W., 2012. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97-100. Zhang, Y.G., Pagani, M., Liu, Z

  10. Trace Element Geochemistry of Cenozoic Volcanic Rocks in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    陈道公; 李彬贤; 等

    1989-01-01

    The Cenozoic volcanic rock of Shandong Province are mainly alkalic and strongly alkalic basaltic rocks.The Contents of major and trace elements including transitional,incompatible and rare-earth elements were determined.The chemical characterisitics of major and trace elements indicate that these basaltic rocks were derived from a mantle source and probably represent a primary magma,I,e.,unmodifiecd partical melts of mantle peridotite in terms of Mg values,correlatione between P2O5 and Ce,Sr,Ni and Rb concentrations,mantle xenoliths,etc.The abundances of trace elements vary systematically from west to east.The compatible transition elements such as Co,Ni,and Cr show a remarkable depletion,whereas the incompatible and rare-earth elements are abundant as viewed from the chondrite-nor-malized patterns.The chemical composition and correlation are consistent with the tectonic setting.According to the batch and fractional partial melting theory,the trace element contents of Shandong volcanic rocks can be calculated from the two-component mixing model.

  11. Successor Characteristics of the Mesozoic and Cenozoic Songliao Basins

    Institute of Scientific and Technical Information of China (English)

    LI Zhongquan; Timothy KUSKY; YING Danlin; GUO Xiaoyu; LI Hongkui

    2008-01-01

    The Songliao basin is a complex successor basin that was initiated in the Mesozoic and experienced multiple periods of reactivation. Based on seismic and drilling data, as well as regional geologic research, we suggest that the Songliao basin contains several different successor basins resting on top of Carboniferous-Permian folded strata forming the basement to the Songliao basin. These basins include the Triassic-Mid Jurassic Paleo-foreland basin, the Late Jurassic-Early Cretaceous downfaulted basin, and an early Cretaceous depressed basin (since the Denglouku Group). This paper presents a systematic study of the basin-mountain interactions, and reveals that there are different types of prototype basin at different geologic times. These prototype basins sequentially superimposed and formed the large Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin fills a Triassic-early Middle Jurassic gap in the geologic history of the Songliao basin. The paleoforeland basin, downfaulted basin, and depressed thermal subsidence basin all together represent the whole Mesozoic-Cenozoic geologic history and deformation of the Songliao basin. Discovery of the Triassic-early Middle Jurassic paleo-foreland basin plays an important role both for deep natural gas exploration and the study of basin-mountain coupling in north China and eastern China in general. This example gives dramatic evidence that we should give much more attention to the polyphase tectonic evolution of related basins for the next phase of exploration and study.

  12. Early Cenozoic "dome like" exhumation around the Irish Sea

    Science.gov (United States)

    Doepke, Daniel; Cogné, Nathan; Chew, David; Stuart, Fin

    2016-04-01

    Despite decades of research the Early Cenozoic exhumation history of Ireland and Britain is still poorly understood and subject to contentious debate (see Davis et al., 2012 and subsequent comments). Previous studies have attributed the Cenozoic exhumation history of Ireland and Britain mainly to: (a) Paleogene - Neogene far-field stress between the opening of the North Atlantic Ocean and the Alpine collision (Ziegler et al., 1995; Hillis et al., 2008) or (b) early Paleogene mantle driven magmatic underplating associated with the development of the proto-Iceland mantle plume beneath the Irish Sea (Brodie and White, 1994; Al-Kindi et al., 2003). The major differences between the two hypotheses are the pattern and timing of spatial exhumation. This project thus seeks to investigate the timing and mechanisms of late Mesozoic - early Cenozoic exhumation on the onshore part of the British Isles by using a combination of apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data, which we then model using the QTQt program of Gallagher (2012) to better constrain the modelled thermal histories. Our studied area centres on the margins of the Irish Sea, but includes all Ireland and western Britain. Overall we analysed 74 samples for AFT and 66 samples for AHe dating. In particular, our results include ten pseudo-vertical profiles. The AFT ages display a wide range of ages from early Carboniferous in Scotland to early Eocene in central Ireland. Our AHe ages range from mid Permian on Shetland to Eocene Ft-corrected. The AFT data do not show any specific spatial distribution, however, the Ft-corrected AHe ages around the Irish Sea only focus around late Cretaceous to Eocene suggesting an important thermal event around this time. The modelled thermal histories of samples located around the Irish Sea and western Scotland show a clear late Cretaceous to early Paleogene cooling event which is not present elsewhere. The distribution of this cooling event is broadly consistent

  13. Mid Cenozoic freshwater wetlands of the Sunda region

    Directory of Open Access Journals (Sweden)

    Robert J. Morley

    2013-08-01

    Full Text Available The Sunda region was the scene of widespread rifting during the mid-Cenozoic, resulting in the development of numerous large lake-filled rifts, analogous in scale to the rift valley system of East Africa. The Tonle Sap in Cambodia forms the closest modern analogue for these lakes in the Southeast Asian region. Many of the palaeolakes were long lived, continuing uninterrupted as open lakes for several millions of years during the Oligocene. Smaller rift systems infilled with fluvial sediments, but the larger ones remained as lakes, and with Late Oligocene subsidence, were transformed by brackish, and in the earliest Miocene, by marine incursion, into large inland seas. These seas reached their greatest extent at the time of the mid Miocene thermal maximum. This paper describes the development and eventual demise of these lakes following marine transgression, and, based on their rich content of pollen and spores, illustrates the variety of fresh and brackish water swamp communities which developed around their margins. The marginal swamps can be divided into: i seasonally inundated swamps, mainly during the Oligocene, characterised by Barringtonia, Lagerstroemia and grasses/sedges; ii fern swamps and iii from the Late Oligocene onward alluvial swamps, often characterised by Pandanus; and iv peat swamps. The latter can be differentiated into kerapah peat swamps, first occurring during the Oligocene, and basinal peat swamps, becoming widespread from the Early Miocene onward.

  14. New Trends and Implication of Climate Change Policy of United States%美国应对气候变化政策新动向及其影响

    Institute of Scientific and Technical Information of China (English)

    朱松丽; 王文涛; 高翔; 于宏源

    2013-01-01

    奥巴马第二任期开始以来,美国政府在应对气候变化方面有一系列新动向,包括发布美国国家气候评估报告(草案)、力促相关行政措施出台、推动中美签署《中美应对气候变化联合声明》、针对德班平台谈判提出“轴辐式协议”全球气候治理框架等。一方面,由于国内政治因素的影响,美国的气候变化政策不会发生大的变化;另一方面,由于美国在全球经济、政治和外交中具有强大的综合实力,这些最新动向仍将对国际气候制度走向和全球低碳发展产生一定影响。我国在推动建立公平合理有效的国际气候制度和新型中美大国关系过程中,需谨慎权衡利弊,同时,从立法、财税、金融、标准、低碳技术研发与推广应用方面切实推进我国低碳发展。%New trends of climate change policy of U.S. have been observed since the start of new administration of President Obama at the beginning of 2013, including launching the National Climate Change Assessment ( draft ), promoting administrative options to mitigate greenhouse gas emissions, pushing the signing of“Sino-US Joint Statement on Climate Change”and proposing“hub-spokes”mechanism under Durban Platform Negotiations. On the one hand, any signiifcant change is not expected since the complex of US climate politics;on the other hand, those new trends may have certain impact on global climate policy direction and low carbon economy development due to the US’s strong impacts on global economy, politics, and other international affairs. China should cautiously weight up the pros and cons when pushing an equal, rational and effective climate regime. At the same time, China should promote the low-carbon economy development by legislation, taxation, ifnancial levels, standards setting, as well as development of low-carbon technologies.

  15. Impact of climate change and man-made irrigation systems on the transmission risk, long-term trend and seasonality of human and animal fascioliasis in Pakistan

    Directory of Open Access Journals (Sweden)

    Kiran Afshan

    2014-05-01

    Full Text Available Large areas of the province of Punjab, Pakistan are endemic for fascioliasis, resulting in high economic losses due to livestock infection but also affecting humans directly. The prevalence in livestock varies pronouncedly in space and time (1-70%. Climatic factors influencing fascioliasis presence and potential spread were analysed based on data from five mete- orological stations during 1990-2010. Variables such as wet days (Mt, water-budget-based system (Wb-bs indices and the normalized difference vegetation index (NDVI, were obtained and correlated with geographical distribution, seasonality patterns and the two-decade evolution of fascioliasis in livestock throughout the province. The combined approach by these three indices proved to furnish a useful tool to analyse the complex epidemiology that includes (i sheep-goats and cattle- buffaloes presenting different immunological responses to fasciolids; (ii overlap of Fasciola hepatica and F. gigantica; (iii co-existence of highlands and lowlands in the area studied; and (iv disease transmission following bi-seasonality with one peak related to natural rainfall and another peak related to man-made irrigation. Results suggest a human infection situa- tion of concern and illustrate how climate and anthropogenic environment modifications influence both geographical dis- tribution and seasonality of fascioliasis risks. Increased fascioliasis risk throughout the Punjab plain and its decrease in the northern highlands of the province became evident during the study period. The high risk in the lowlands is worrying given that Punjab province largely consists of low-altitude, highly irrigated plains. The importance of livestock in this province makes it essential to prioritise adequate control measures. An annual treatment scheme to control the disease is recom- mended to be applied throughout the whole province.

  16. Impact of climate change and man-made irrigation systems on the transmission risk, long-term trend and seasonality of human and animal fascioliasis in Pakistan.

    Science.gov (United States)

    Afshan, Kiran; Fortes-Lima, Cesar A; Artigas, Patricio; Valero, Adela M; Qayyum, Mazhar; Mas-Coma, Santiago

    2014-05-01

    Large areas of the province of Punjab, Pakistan are endemic for fascioliasis, resulting in high economic losses due to livestock infection but also affecting humans directly. The prevalence in livestock varies pronouncedly in space and time (1-70%). Climatic factors influencing fascioliasis presence and potential spread were analysed based on data from five meteorological stations during 1990-2010. Variables such as wet days (Mt), water-budget-based system (Wb-bs) indices and the normalized difference vegetation index (NDVI), were obtained and correlated with geographical distribution, seasonality patterns and the two-decade evolution of fascioliasis in livestock throughout the province. The combined approach by these three indices proved to furnish a useful tool to analyse the complex epidemiology that includes (i) sheep-goats and cattlebuffaloes presenting different immunological responses to fasciolids; (ii) overlap of Fasciola hepatica and F. gigantica; (iii) co-existence of highlands and lowlands in the area studied; and (iv) disease transmission following bi-seasonality with one peak related to natural rainfall and another peak related to man-made irrigation. Results suggest a human infection situation of concern and illustrate how climate and anthropogenic environment modifications influence both geographical distribution and seasonality of fascioliasis risks. Increased fascioliasis risk throughout the Punjab plain and its decrease in the northern highlands of the province became evident during the study period. The high risk in the lowlands is worrying given that Punjab province largely consists of low-altitude, highly irrigated plains. The importance of livestock in this province makes it essential to prioritise adequate control measures. An annual treatment scheme to control the disease is recommended to be applied throughout the whole province.

  17. Heat waves and heat days in an arid city in the northwest of México: current trends and in climate change scenarios.

    Science.gov (United States)

    Cueto, Rafael O García; Martínez, Adalberto Tejeda; Ostos, Ernesto Jáuregui

    2010-07-01

    The aim of this work is to study heat waves (HWs) in Mexicali, Mexico, because numerous deaths have been reported in this city, caused by heatstroke. This research acquires relevancy because several studies have projected that the health impacts of HWs could increase under various climate change scenarios, especially in countries with low adaptive capacity, as is our case. This paper has three objectives: first, to analyze the observed change in the summer (1 June to 15 September) daily maximum temperature during the period from 1951 to 2006; secondly, to characterize the annual and monthly evolution of frequency, duration and intensity of HWs; and finally, to generate scenarios of heat days (HDs) by means of a statistical downscaling model, in combination with a global climate model (HadCM3), for the 2020 s, 2050 s, and 2080 s. The results show summer maximum temperatures featured warming and cooling periods from 1951 until the mid-1980s and, later, a rising tendency, which prevailed until 2006. The duration and intensity of HWs have increased for all summer months, which is an indicator of the severity of the problem; in fact, there are 2.3 times more HWs now than in the decade of the 1970s. The most appropriate distribution for modeling the occurrence of HDs was the Weibull, with the maximum temperature as co-variable. For the 2020 s, 2050 s, and 2080 s, HDs under a medium-high emissions scenario (A2) could increase relative to 1961-1990, by 2.1, 3.6, and 5.1 times, respectively, whereas under a medium-low emissions scenario (B2), HDs could increase by 2.4, 3.4, and 4.0, for the same projections of time.

  18. Trend of Sandstorm in the Manas River Basin Oasis and Its Correlation with Climatic Factors%玛纳斯河流域绿洲沙尘暴趋势及其与气候因子的关系

    Institute of Scientific and Technical Information of China (English)

    凌红波; 徐海量; 张青青

    2011-01-01

    利用玛纳斯河流域绿洲区3个气象站1959-2007年的气象资料,借助小波分析、混沌理论、R/S分析和非参数检验等方法,分析沙尘暴频数的趋势、周期、混沌特性以及气候因子对沙尘暴的影响。结果表明:玛纳斯河流域绿洲沙尘暴频数呈减少趋势,并集中于春、夏两季;该流域绿洲沙尘暴频数存在明显的4年和17年周期性变化;根据R/S分析,流域沙尘暴频数在未来的15年仍保持减少趋势;1959-2007年,流域内沙尘暴、蒸发量和大风日数减少趋势明显,且关联显著,而气温、降水量与最大日降水量表现为升高和增加走势,且关联性较差;流域绿洲沙尘暴频数与NAO指数在夏季存在显著的关联性。%The trends,periods and chaotic characteristics of sandstorm and the impacts of climatic factors on sandstorm variation were analyzed based on the meteorological data observed by 3 weather stations in the Manas River Bain oasis during the period of 1959-2007 and using the methods of wavelet analysis,chaotic theory,R/S analysis and nonparametric test.The results show that the sandstorm frequency was in a decrease trend,and sandstorm occurred mainly in spring and summer;there were the 4-year and 17-year periodic changes of sandstorm frequency in the Manas River Basin oasis;based on the R/S analysis,it is believable to predict that the decrease trend of sandstorm frequency will still maintained in next 15 years;there were the significant correlations between sandstorm and evaporation and gale,but the correlations between sandstorm and other climatic factors were not significant;the sandstorm is closely and significantly correlated with the NAO in summer.

  19. Soil temperature trends in Canada

    Science.gov (United States)

    Tretkoff, Ernie

    2011-04-01

    Global warming increasingly is becoming a concern for society. Most reported warming trends are based on measured increases in air temperatures. However, trends in soil temperatures, also an important indicator of climate change, are less often reported. Qian et al. analyzed soil temperature data from 30 climate stations across Canada covering the period from 1958 to 2008; the data cover soil temperatures at several depths up to 150 centimeters. They also analyzed air temperature, precipitation, and snow cover depth at the same locations. (Journal of Geophysical Research­Atmospheres, doi:10.1029/2010JD015012, 2011)

  20. 近50年西宁市旅游气候舒适度变化研究%Tourism Comfort Climate Trends of Xining City in the Past 50 Years

    Institute of Scientific and Technical Information of China (English)

    李春花; 陈蓉; 刘峰贵; 罗正霞

    2014-01-01

    Quantitative evaluation of the tourism climate resources not only provides a scientific basis for regional tourism sustainable development of resources,but also helps the tourists to choose the proper travel time.Using monthly average temperature,relative humidity,wind speed,sunshine time of Xining area during 1 961 - 2010,the authors'work is as follows:calculating temperature and humidity index (TH I )and wind effect index(K );analyzing the variation of the two indices during the year from January to December in the past fifty years;studying the change trend characteristics of two indices within four seasons over the past 50 years;making two indices corresponding the level of human physiological feel and obtaining comfort level of tourists each month from year by year in Xining City based on physiological climate classification indicators.The results show that:(1 )yearly temperature and humidity index curve appears inverted “U”,the index trend shows first rise and then decrease,the period of peak is from June to August,and yearly amplitude of TH I has a decreasing trend over time.The linear increasing rate of winter is 7 ~ 20 times of other seasons,TH I amplitude changes in different seasons are much more apparent,winter range in 2~3,spring range of 8~10,15~17 in summer,the autumn in 7~9,and the fluc-tuation amplitude of inter-annual variability of it is much larger than that of spring,summer and autumn;(2)yearly wind effect index curve continues to show inverted “U”type,the index trends shows a charac-teristic of first rise and then decrease,and the yearly amplitude also becomes smaller over time.Peak period (K >-600,human feelings for the cool,comfortable and warm)are extended by seven months of 1 975 to the nine months of 2005;Inter-annual K in various seasonal has obvious increasing trend,the linear increasing rate of summer is far higher than that of winter,reflect that the warm and comfortable trend of Xining region is more obvious;(3 )In the past 50

  1. Late Cenozoic extension in Anatolia and its implication for the tectonic escape model

    Science.gov (United States)

    Dhont, D.

    2009-04-01

    The westward motion of Anatolia is often used as a classic example of indentation-escape tectonics. In this model, the collision between Arabia and Eurasia is responsible for lateral extrusion of Anatolia toward the Aegean basin forming a free boundary. Anatolia is considered a rigid lithospheric block guided by the active right-lateral North Anatolian Fault (NAF) in the north and by the left-lateral East Anatolian Fault (EAF) in the southeast. Available GPS data show that the present-day movement of Anatolia can be described as a coherent counterclockwise rotation, favoring the model of a rigid westward tectonic extrusion of the Anatolian plate at a first approximation. However, the velocity field increases from East Anatolia to the Aegean region, which seems contradictory with the hypotheses that (1) Anatolia as a whole behaves as a rigid block and (2) the engine for Anatolian westward motion is indentation of Arabia. From our interpretation of remote sensing data and structural analysis in the field, we show that during the late Cenozoic Anatolia has been in large part subjected to extensional tectonics involving separate crustal blocks. Deformation is not localized along the NAF but distributed in triangular wedges bounded by the NAF and NE-trending adjacent fault systems cutting the Anatolian block. The eastern boundary of Anatolia seems to have migrated by successive jumps from west to east, creating fault zones parallel to the EAF. Compression is limited to the eastern Taurus belt and to a north-south elongate region running from the northern tip of the Amanos mountain belt to the Sivas basin, in relation with forced subduction of the African plate south of the Africa-Arabia-Anatolia triple junction. Here we develop the idea that crustal thickening and related uplift of the Anatolian orogen are not related to the Arabia-Eurasia collision. We propose that the Anatolian crustal thickness increased during a major shortening event that occurred in the Eocene

  2. Latitudinal-Related Variation in Wintering Population Trends of Greylag Geese (Anser Anser along the Atlantic Flyway: A Response to Climate Change?

    Directory of Open Access Journals (Sweden)

    Cristina Ramo

    Full Text Available The unusually high quality of census data for large waterbirds in Europe facilitates the study of how population change varies across a broad geographical range and relates to global change. The wintering population of the greylag goose Anser anser in the Atlantic flyway spanning between Sweden and Spain has increased from 120 000 to 610 000 individuals over the past three decades, and expanded its wintering range northwards. Although population sizes recorded in January have increased in all seven countries in the wintering range, we found a pronounced northwards latitudinal effect in which the rate of increase is higher at greater latitudes, causing a constant shift in the centre of gravity for the spatial distribution of wintering geese. Local winter temperatures have a strong influence on goose numbers but in a manner that is also dependent on latitude, with the partial effect of temperature (while controlling for the increasing population trend between years being negative at the south end and positive at the north end of the flyway. Contrary to assumptions in the literature, the expansion of crops exploited by greylag geese has made little contribution to the increases in population size. Only in one case (expansion of winter cereals in Denmark did we find evidence of an effect of changing land use. The expanding and shifting greylag population is likely to have increasing impacts on habitats in northern Europe during the course of this century.

  3. Paleomagnetic results from Cenozoic volcanics of Lusatia, NW Bohemian Massif

    Science.gov (United States)

    Schnabl, P.; Cajz, V.; Tietz, O.; Buechner, J.; Suhr, P.; Pecskay, Z.; Cizkova, K.

    2013-05-01

    Lusatia is situated in the NE continuation of the Ohre Rift (OR) behind Lusatian Overtrust. Compared to the neighbouring volcanic complex of the České stredohorí Mts. (CS) inside the OR. The scattered occurrences of basaltic bodies in Lusatia are spread on wider area. This can be caused by different tectonic development of the regions and from derived erosional conditions. The Lusatian Overtrust, high-order tectonic structure running across the course of the OR, separates Lusatian region into two different geological areas where Cretaceous sediments or granodiorites of Lusatian Massif represent the country rock of the Cenozoic volcanism, respectively. The age of volcanic activity ranges from 19 to 33 Ma, it's proved by newly obtained Ar-Ar data from Freiberg and K-Ar data from Debrecen. Forty two scattered remnants of Cenozoic volcanic products were sampled to get paleomagnetic data. The superficial volcanics with detectable geological position and volcanology were chosen preferentially, several dykes and separate vents were sampled as well. Paleomagnetic research was processed on more than 500 samples which were demagnetized using alternate field in the range 0-80 mT. Q-ratio was counted to prevent the lightning influence - solitary volcanic occurrences build positive morphology and thus, they are prone to be targeted by lightnings. The values of Q-ratio predominantly span from 0.1 to 7.0; those samples having the value over 10, were excluded for evaluation. The mean paleomagnetic direction (MPD) was acquired from several samples on each sampling site. Declination and Inclination show values of 11.8 deg and 62.7 deg (α95 = 9.3 deg) for normal polarity, or 182.1 deg and -59.2 deg (α95 = 6.1 deg) for reverse polarity, respectively,The corresponding paleolatitude of 41.9 deg was counted from the Inclination. This is 1000 km to the South, compared to recent position. The dispersions of the MPD are relatively wide. This coincides well with the idea of long

  4. Projected loss of soil organic carbon in temperate agricultural soils in the 21(st) century: effects of climate change and carbon input trends.

    Science.gov (United States)

    Wiesmeier, Martin; Poeplau, Christopher; Sierra, Carlos A; Maier, Harald; Frühauf, Cathleen; Hübner, Rico; Kühnel, Anna; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2016-01-01

    Climate change and stagnating crop yields may cause a decline of SOC stocks in agricultural soils leading to considerable CO2 emissions and reduced agricultural productivity. Regional model-based SOC projections are needed to evaluate these potential risks. In this study, we simulated the future SOC development in cropland and grassland soils of Bavaria in the 21(st) century. Soils from 51 study sites representing the most important soil classes of Central Europe were fractionated and derived SOC pools were used to initialize the RothC soil carbon model. For each site, long-term C inputs were determined using the C allocation method. Model runs were performed for three different C input scenarios as a realistic range of projected yield development. Our modelling approach revealed substantial SOC decreases of 11-16% under an expected mean temperature increase of 3.3 °C assuming unchanged C inputs. For the scenario of 20% reduced C inputs, agricultural SOC stocks are projected to decline by 19-24%. Remarkably, even the optimistic scenario of 20% increased C inputs led to SOC decreases of 3-8%. Projected SOC changes largely differed among investigated soil classes. Our results indicated that C inputs have to increase by 29% to maintain present SOC stocks in agricultural soils. PMID:27585648

  5. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    Science.gov (United States)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  6. Cenozoic right-lateral slip on the Great Glen Fault, Scotland: Additional Evidence and Possible Causes

    Science.gov (United States)

    Le Breton, E.; Cobbold, P. R.; Zanella, A.

    2012-04-01

    The Great Glen Fault (GGF) trends NNE-SSW across all of Northern Scotland, separating two Neoproterozoic supergroups (Moine and Dalradian). The GGF developed as a left-lateral fault during the Caledonian Orogeny (Ordovician to Early Devonian). However, according to previous studies (involving seismic data from the Moray Firth and analyses of Tertiary dyke swarms in NW Scotland), the GGF reactivated right-laterally in the Tertiary. Here we present additional evidence for this later phase, from a study of Jurassic outcrops along the GGF and the nearby Helmsdale Fault. At Eathie and Shandwick, on the NE coast of Scotland, Jurassic strata of marine origin (mostly shale) crop out along the GGF, in contact with Neoproterozoic basement or Devonian Old Red Sandstone. Minor folds and faults in these outcrops indicate post-depositional right-lateral slip, under transpression. In the shale, we have also found bedding-parallel calcite veins ('beef' and 'cone-in-cone'). If these veins provide evidence for overpressure development and maturation of organic matter at significant depth (as they do in other basins), the host sediment must have accumulated deeper offshore in the Moray Firth. Therefore, the Jurassic strata at Eathie and Shandwick must have been subject to Cenozoic exhumation during right-lateral displacement along the GGF. At Helmsdale, according to previous studies, the Jurassic 'Boulder Beds' accumulated during a period of normal faulting on the Helmsdale Fault. There the sedimentary facies are more proximal than those at Eathie and Shandwick and abundant conglomerate contains Devonian clasts but no 'beef'. However we have found steep calcite veins, which cut the entire Jurassic sequence. Their sigmoidal shapes indicate left-lateral slip along the Helmsdale fault zone. Such a motion is compatible with right-lateral displacement on the GGF. Indeed, according to previous studies, folds between the Helmsdale Fault and the GGF may have developed as a result of opposing

  7. Two Cenozoic tectonic events of N-S and E-W extension in the Lhasa Terrane: Evidence from geology and geochronology

    Science.gov (United States)

    Huang, Feng; Xu, Ji-Feng; Chen, Jian-Lin; Wu, Jian-Bin; Zeng, Yun-Chuan; Xiong, Qiu-Wei; Chen, Xue-Feng; Yu, Hong-Xia

    2016-02-01

    Cenozoic active structures in the Tibetan Plateau are mainly regional N-S trending extensional faults and grabens, and E-W trending extensional tracks that are related to the transition from syn- to post-collision between India and Asia. E-W trending tracks are parallel to the direction of Neo-Tethyan oceanic convergence and consist of extensional volcanic-sedimentary basins and magmatic dykes in the southern Lhasa Terrane, Tibet. N-S trending tracks comprise faults and grabens, which are widely developed in Tibet. It remains unknown how and when the geodynamic transition from E-W to N-S trending tectonic tracks occurred. This study describes both E-W and N-S trending tectonic tracks identified at Dazi area of southern Lhasa Terrane, where E-W trending mafic dykes intruded a granitoid and late-stage N-S trending felsic dykes cut across E-W trending mafic dykes. Zircons from four granitoid samples yield consistent crystallization ages of ca. 60 Ma and positive εHf(t) values (~+ 9). An altered dioritic vein, which cuts the mafic dykes, yields an age of ca. 53 Ma. These new dating results indicate that E-W trending dykes, which formed due to regional N-S extension, were emplaced between 60 and 53 Ma. In addition, two N-S trending monzonitic porphyritic dykes, which cut the mafic dykes, yield U-Pb zircon ages of ca. 17 Ma with moderate positive εHf(t) values (+ 3 to + 9.6), as well as a NNE-SSW trending quartz monzonitic dyke, which cuts all other types of dykes, yields U-Pb ages of ca. 13 Ma. This suggests that E-W extension took place between 17 and 13 Ma. These results, in combination with existing age data for Gangdese granitoids and mafic magmatism, indicate the occurrence of two major extensional events at 60-53 Ma and 17-13 Ma. In turn, this implies that the transition from E-W to N-S trending tectonic and the onset of E-W extension occurred at ca. 17 Ma or slightly earlier. Paleocene granitoids have geochemical characteristics that are indicative of both

  8. Aeromagnetic search for Cenozoic magmatism over the Admiralty Mountains Block (East Antarctica)

    Science.gov (United States)

    ,; ,; Ferraccioli, F.; Zunino, A.; Bozzo, E.; Rocchi, S.; Armienti, P.

    2007-01-01

    Cenozoic magmatic rocks of the Transantarctic Mountains provide an important window on the tectonic and magmatic processes of the West Antarctic Rift System. Previous aeromagnetic investigations in northern Victoria Land have delineated Cenozoic volcanic and intrusive complexes assigned to the McMurdo Volcanic Group and Meander Intrusives over the Transantarctic Mountains. We present a new aeromagnetic anomaly map for the region north of the Mariner Glacier to study the extent and spatial distribution of these Cenozoic rocks over the previously unexplored Admiralty Mountains. The new map shows that the Meander Intrusives are restricted to the coastal region between the Malta Plateau and the Daniell Peninsula. However, the McMurdo Volcanic Group rocks extend further inland, and may delineate a hitherto unrecognised volcano-tectonic rift zone, extending as far north as the Trafalgar Glacier.

  9. Cenozoic structures and the tectonic evolution of the eastern North Sea

    DEFF Research Database (Denmark)

    Clausen, O.R.; Nielsen, S.B.; Egholm, D.L.;

    2011-01-01

    of relaxation inversion (Nielsen et al. 2005). In conclusion, the Cenozoic structures in the North Sea area do not generally support ideas on Neogene basement tectonism. References: Clausen, O. R. and M. Huuse (1999). "Topography of the Top Chalk surface on- and offshore Denmark." Marine and Petroleum Geology......Abundant seismic sections and well data from the Cenozoic succession in the eastern North Sea area generally reveal normal faulting, salt tectonics and localized tectonic inversion. However, inferences on the Cenozoic dynamic evolution of the region require thorough analysis of interactions between...... detachment surfaces withinthe sedimentary succession and basement structures. Here we define basement structures by offsets in the pre Zechstein succession. Cover structures are confined to the post Zechstein succession, or part hereof, and detach internally along surfaces in the post Zechstein succession...

  10. Cenozoic tectonic evolution of the Bohai Bay Basin and its coupling relationship with Pacific Plate subduction

    Science.gov (United States)

    Liang, Jintong; Wang, Hongliang; Bai, Ying; Ji, Xinyuan; Duo, Xuemei

    2016-09-01

    The Bohai Bay Basin is a Mesozoic-Cenozoic rift basin in eastern China. Based mainly on a balanced-section analysis, this study compares the spatio-temporal differences of tectonic evolution in relation to strike-slip faults among different depressions within the basin. In combination with the analysis of subsidence characteristics, the study also attempts to clarify the Cenozoic tectonic evolution of the basin and its coupling relationship with the subduction of the Pacific Plate. It was found that: (1) the strike-slip faults were activated generally from south to north and from west to east during the Cenozoic; (2) there is a negative correlation between the intensity of tectonic activity in the Bohai Bay Basin and subduction rate of the Pacific Plate; and (3) the migration direction of the basin depocenters is consistent with the direction of Pacific Plate subduction.

  11. Review of Climate Scenarios

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Concept and application requirements of climate scenarios were introduced briefly,meanwhile,progresses on theoretical and applied aspects of climate scenarios creation techniques were discussed systematically.Two methods on predicted regional climate changing scenarios,elevating the spatial resolution output and downscaling method,could retrieve the insufficiencies respectively.And the statistical-dynamical downscaling method will be an important developing trend in the developing of downscaling techniques.

  12. The Cenozoic geological evolution of the Central and Northern North Sea based on seismic sequence stratigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Jordt, Henrik

    1996-03-01

    This thesis represents scientific results from seismic sequence stratigraphic investigations. These investigations and results are integrated into an ongoing mineralogical study of the Cenozoic deposits. the main results from this mineralogical study are presented and discussed. The seismic investigations have provided boundary conditions for a forward modelling study of the Cenozoic depositional history. Results from the forward modelling are presented as they emphasise the influence of tectonics on sequence development. The tectonic motions described were important for the formation of the large oil and gas fields in the North Sea.

  13. Early Eocene climatic optimum: Environmental impact on the North Iberian continental margin

    NARCIS (Netherlands)

    Payros, A.; Ortiz, S.; Millán, I.; Arostegi, J.; Orue-Etxebarria, X.; Apellaniz, E.

    2015-01-01

    The early Eocene climatic optimum, which constituted the peak of the long-term early Cenozoic global warming, had a significant impact on the environmental evolution of terrestrial and oceanic areas. Surprisingly, however, its influence on continental margins is poorly known. New insights are provid

  14. Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic

    Science.gov (United States)

    Baatsen, Michiel; van Hinsbergen, Douwe J. J.; von der Heydt, Anna S.; Dijkstra, Henk A.; Sluijs, Appy; Abels, Hemmo A.; Bijl, Peter K.

    2016-08-01

    Studies on the palaeoclimate and palaeoceanography using numerical model simulations may be considerably dependent on the implemented geographical reconstruction. Because building the palaeogeographic datasets for these models is often a time-consuming and elaborate exercise, palaeoclimate models frequently use reconstructions in which the latest state-of-the-art plate tectonic reconstructions, palaeotopography and -bathymetry, or vegetation have not yet been incorporated. In this paper, we therefore provide a new method to efficiently generate a global geographical reconstruction for the middle-late Eocene. The generalised procedure is also reusable to create reconstructions for other time slices within the Cenozoic, suitable for palaeoclimate modelling. We use a plate-tectonic model to make global masks containing the distribution of land, continental shelves, shallow basins and deep ocean. The use of depth-age relationships for oceanic crust together with adjusted present-day topography gives a first estimate of the global geography at a chosen time frame. This estimate subsequently needs manual editing of areas where existing geological data indicate that the altimetry has changed significantly over time. Certain generic changes (e.g. lowering mountain ranges) can be made relatively easily by defining a set of masks while other features may require a more specific treatment. Since the discussion regarding many of these regions is still ongoing, it is crucial to make it easy for changes to be incorporated without having to redo the entire procedure. In this manner, a complete reconstruction can be made that suffices as a boundary condition for numerical models with a limited effort. This facilitates the interaction between experts in geology and palaeoclimate modelling, keeping reconstructions up to date and improving the consistency between different studies. Moreover, it facilitates model inter-comparison studies and sensitivity tests regarding certain

  15. Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change

    OpenAIRE

    Green, Rhys E.; Collingham, Yvonne C.; Willis, Stephen G; Gregory, Richard D; Smith, Ken W.; Huntley, Brian

    2008-01-01

    Twenty-five-year population trends of 42 bird species rare as breeders in the UK were examined in relation to changes in climatic suitability simulated using climatic envelope models. The effects of a series of potential ‘nuisance’ variables were also assessed. A statistically significant positive correlation was found across species between population trend and climate suitability trend. The demonstration that climate envelope models are able to retrodict species' population trends provides ...

  16. Cenozoic Seawater Sr/Ca ratios: Implications for coral reef development through ocean de-acidification

    Science.gov (United States)

    Sosdian, S. M.; Grossman, E. L.; Lear, C. H.; Tao, K.; Rosenthal, Y.

    2010-12-01

    Records of seawater chemistry help constrain the temporal variation in geochemical processes that impact the global carbon cycle and global climate across Earth’s history. To date, various attempts to reconstruct Cenozoic seawater Sr/Ca ratios have produced markedly different results, with estimated Paleogene seawater Sr/Ca ranging from ~50% higher than today to 70% lower. We reconstruct seawater Sr/Ca using Eocene to Pliocene fossil mollusks collected from US Gulf Coast (Mississippi, Alabama, and Florida). We use Conus spp. and Turritella, taxa for which the Sr/Ca distribution coefficients have been determined as a function of temperature in modern specimens [1, 2]. Specimens were serially sampled perpendicular to growth to produce seasonal records of Sr/Ca. Fossil Conus shells show pronounced seasonal Sr/Ca cycles with a strong inverse correlation between Sr/Ca and δ18O, similar to those observed in modern specimens [1]. The fossil Turritella also show similar Sr/Ca cyclicity as modern specimens [2]. We calculate seawater Sr/Ca ratios using our Sr/Ca record, modern Sr/Ca-temperature calibrations for Conus and Turritella [1, 2], and a paleotemperature record based on oxygen isotopes from the same samples [3]. Seawater Sr/Ca increased from ~11.5 to 13.9 mmol/mol between the mid-Eocene (42 Ma) and early Oligocene (33 Ma) and decreased substantially from the mid-Miocene (11 mmol/mol) to the Pliocene (9 mmol/mol) and modern (8.5 mmol/mol). A mass balance model of variations in seawater Sr concentrations suggests a long-term decrease through the Neogene, which we attribute to a significant increase in the proportion of aragonite versus calcite deposition in shallow waters. The largest change is coincident with the proliferation of coral reefs, which occurred after the calcite-aragonite sea transition, and was likely ultimately driven by ocean de-acidification. [1] Sosdian et al. (2006) Geochemistry, Geophysics, Geosystems (G3) 7, Q11023, doi:10.1029/2005GC001233; [2

  17. Cenozoic vertical motions of the western continental margin of Peninsular India

    Science.gov (United States)

    Richards, Fred; Hoggard, Mark; White, Nicky

    2016-04-01

    Despite the cessation of rifting at ˜65 Ma and its remoteness from active convergence, the topography of Peninsular India is dominated by a dramatic, high-elevation escarpment along its western margin: the Western Ghats (˜1 - 1.5 km amsl). Inland of the escarpment, South Indian topography exhibits a long-wavelength (>1000 km), low-angle (˜0.1°) eastward tilt down to the Krishna-Godavari and Cauvery deltas on the eastern continental margin. Offshore, oceanic residual depth measurements show an identical long-wavelength asymmetry from highs of +1 km in the Arabian Sea to lows of -1.2 km in the Bay of Bengal. Strong evidence from margin stratigraphy, dated palaeosurfaces, thermochronology, cosmogenic nuclides and marine terraces combine to suggest that, following a period of relative quiescence from 50 Ma - 25 Ma, the present-day topography evolved in response to Neogene uplift and erosion along the western Indian margin. By jointly inverting 530 longitudinal river profiles for uplift rate and calibrating our inversions against these geological constraints, we successfully place this Cenozoic landscape evolution into a more complete spatio-temporal framework. The results demonstrate slow growth of the eastward tilt from 50 Ma - 25 Ma (≤0.02 mm a‑1), preceding a phase of increasingly rapid development - initiating in the south - from 25 Ma onwards (≤0.2 mm a‑1). The onset of rapid uplift pre-dates the initial intensification of the Indian monsoon by >15 Ma, suggesting that rock uplift and not climate change is primarily responsible for the modern-day relief of the peninsula. Previous studies have aimed to explain this topographic evolution by invoking flexural isostatic mechanisms involving denudation, sediment loading and/or underplating. However, seismological constraints show that South Indian topography deviates significantly from crustal isostatic expectations, while the 9.8‑2.2+3.8 km effective elastic thickness of the region generates ˜125 km

  18. Progress in faunal correlation of Late Cenozoic fluvial sequences 2000 4: the report of the IGCP 449 biostratigraphy subgroup

    Science.gov (United States)

    Schreve, D. C.; Keen, D. H.; Limondin-Lozouet, N.; Auguste, P.; Santisteban, Juan I.; Ubilla, M.; Matoshko, A.; Bridgland, D. R.; Westaway, R.

    2007-11-01

    Vertebrate and invertebrate faunal biostratigraphy is a well-tested method for establishing relative chronologies for fluviatile sequences that has proved useful in many parts of the world. The robust bones and teeth of large mammals are commonly found in fluviatile deposits, whereas small vertebrates can be readily recovered through systematic sieving of calcareous sediments, as can molluscs, the other major faunal group that has been used for biostratigraphical analysis of fluvial sequences. Because of their rapid and quantifiable rates of evolution, extinction, body mass change and dispersal during the Late Cenozoic, mammals are especially useful for ordering the fragmentary terrestrial sequence of interglacials and glacials, and proposing correlation with the global marine climatostratigraphic record. Other groups (e.g. reptiles and amphibians, ostracods) are as yet only in the initial stages of development as a dating tool, whereas some (e.g. fish, birds) still require substantial development in order to fully explore their utility. As part of IGCP 449, vertebrate and molluscan assemblages have made important contributions to datasets from a number of areas, notably northern France, central Germany, the Czech Republic and the Ukraine. Further south, mammalian assemblages have proved useful in separating discrete periods of climatic change in Iberia and Syria. At greater distances from the core area of fluvial biostratigraphical archives, significant contributions have come from South America (Uruguay River), South Africa (Vaal) and Australia (Riverine Plain and Lake Eyre drainage basin).

  19. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing

    Science.gov (United States)

    Saarinen, Juha J.; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Evans, Alistair R.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Sibly, Richard M.; Stephens, Patrick R.; Theodor, Jessica; Uhen, Mark D.; Smith, Felisa A.

    2014-01-01

    There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing. PMID:24741007

  20. Lagerstroemia L. from the middle Miocene Siwalik deposits, northern India: Implication for Cenozoic range shifts of the genus and the family Lythraceae

    Indian Academy of Sciences (India)

    Gaurav Srivastava; Rajan Gaur; R C Mehrotra

    2015-02-01

    Fossil leaves of Lagerstroemia (Lythraceae) are described from the Siwalik deposits (middle Miocene) of Kathgodam, Uttarakhand, India. The fossil records of the Lythraceae indicate its worldwide distribution in the Cenozoic. The family had its widest distribution during the Miocene but became less widespread during the Pliocene, followed by range expansion during the Quaternary. The present leaf fossil, along with the previous fossil records of Lagerstroemia, indicates that the genus followed the same pattern of expansion and retraction as the entire family Lythraceae suggesting that both the genus and the family adapted in similar ways. The fossil plant assemblage from the Lower Siwalik deposits indicates warm and humid climate with plenty of rainfall in the region during the depositional period.

  1. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia

    NARCIS (Netherlands)

    van Hinsbergen, D.J.J.; Lippert, P.; Dupont-Nivet, G.; McQuarrie, N.; Doubrovine, P.V.; Spakman, W.; Torsvik, T.H.

    2013-01-01

    Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. S

  2. Late Cenozoic tectonic deformation across the northern foreland of the Chinese Tian Shan

    NARCIS (Netherlands)

    Li, CX.; Guo, ZJ.; Dupont-Nivet, G.

    2011-01-01

    To understand the reactivation and intensified uplift of the Tian Shan range in the Cenozoic, the age of development of the associated series of anticlinal belts formed in the southern and northern foreland basins must be constrained. To estimate the shortening magnitude and rates in the northern fo

  3. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia

    NARCIS (Netherlands)

    Hinsbergen, D.J.J. van; Lippert, P.C.; Dupont-Nivet, G.; McQuarrie, N.; Doubrovine, P.V.; Spakman, W.; Torsvik, T.H.

    2012-01-01

    Cenozoic convergence between the Indian and Asian plates produced the archetypical continental collision zone comprising the Himalaya mountain belt and the Tibetan Plateau. How and where India–Asia convergence was accommodated after collision at or before 52 Ma remains a long-standing controversy. S

  4. The Amazonian Craton and its influence on past fluvial systems (Mesozoic-Cenozoic, Amazonia)

    NARCIS (Netherlands)

    C. Hoorn; M. Roddaz; R. Dino; E. Soares; C. Uba; D. Ochoa-Lozano; R. Mapes

    2010-01-01

    The Amazonian Craton is an old geological feature of Archaean/Proterozoic age that has determined the character of fluvial systems in Amazonia throughout most of its past. This situation radically changed during the Cenozoic, when uplift of the Andes reshaped the relief and drainage patterns of nort

  5. Climate directly influences Eocene mammal faunal dynamics in North America.

    Science.gov (United States)

    Woodburne, Michael O; Gunnell, Gregg F; Stucky, Richard K

    2009-08-11

    The modern effect of climate on plants and animals is well documented. Some have cautioned against assigning climate a direct role in Cenozoic land mammal faunal changes. We illustrate 3 episodes of significant mammalian reorganization in the Eocene of North America that are considered direct responses to dramatic climatic events. The first episode occurred during the Paleocene-Eocene Thermal Maximum (PETM), beginning the Eocene (55.8 Ma), and earliest Wasatchian North American Land Mammal Age (NALMA). The PETM documents a short (<170 k.y.) global temperature increase of approximately 5 degrees C and a substantial increase in first appearances of mammals traced to climate-induced immigration. A 4-m.y. period of climatic and evolutionary stasis then ensued. The second climate episode, the late early Eocene Climatic Optimum (EECO, 53-50 Ma), is marked by a temperature increase to the highest prolonged Cenozoic ocean temperature and a similarly distinctive continental interior mean annual temperature (MAT) of 23 degrees C. This MAT increase [and of mean annual precipitation (MAP) to 150 cm/y) promoted a major increase in floral diversity and habitat complexity under temporally unique, moist, paratropical conditions. Subsequent climatic deterioration in a third interval, from 50 to 47 Ma, resulted in major faunal diversity loss at both continental and local scales. In this Bridgerian Crash, relative abundance shifted from very diverse, evenly represented, communities to those dominated by the condylarth Hyopsodus. Rather than being "optimum," the EECO began the greatest episode of faunal turnover of the first 15 m.y. of the Cenozoic. PMID:19666605

  6. Late Cenozoic sedimentation in Pilot Knob Valley, California

    Science.gov (United States)

    Rittase, W. M.; Walker, J. D.; Kirby, E.; Andrew, J.; Wan, E.

    2012-12-01

    In Pilot Knob Valley (PKV), active inversion of a Pliocene-mid Pleistocene basin presents the opportunity to understand the spatial and temporal development of an enigmatic basin astride a major transform boundary in California. Here, a ~1000-m-thick package of exposed Late Cenozoic strata has been uplifted and tilted to the northeast. Based on new age and provenance data, we adopt the name Pilot Knob formation (PKfm) to describe much of these exposed rocks north of the Garlock fault (GF) and east of Christmas Canyon gate. Post-Miocene development of PKV is strongly influenced by the sinistral GF, the newly identified Marine Gate fault (MGF) and dextral Eastern California shear zone. The PKfm consists of three lithofacies members, from base to top: (1) rocks derived from Eagle Crags to the south; (2) Randsburg Wash lacustrine rocks; and (3) an upper member derived from the Slate Range. Tephrochronologic data from four PKfm ash samples brackets deposition of lacustrine Randsburg Wash Member rocks between 3.7-3.1 Ma and lacustrine rocks of the Slate Range Member between 1.2-0.6 Ma. A fifth tephrochronologic sample from lacustrine-distal alluvial sediments south of the GF near Christmas Canyon brackets deposition of a possible PKfm facies at ~3.1 Ma. A 3-stage tectonic model for northern PKV explains changing provenance patterns. Prior to ~3.1 Ma, the western PKV paleo-low lay north of the current GF adjacent to the southern Slate Range and connected to Searles Valley. The MGF cuts adjacent to the southern face of the Slate Range and southern Searles Valley with up to 7.5 km of sinistral oblique-normal slip between ~5-2.5 Ma. Eagle Crags fanglomerate deposition may continue after 3.7 Ma west of the Randsburg Wash-Searles Valley spillway, but these rocks have been eroded away. By ~3.7 Ma, northward progradation of Eagle Crags fanglomerate waned and lacustrine sediments were deposited north of the GF and east of the Randsburg Wash-Searles Valley spillway. At ~3.1 Ma

  7. Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the determination of composition of volcanic volatiles and petrologic estimation of the total mass of volatiles erupted,we showed important advances in the study of the impact of Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China.The volcanic activities include western Liaoning and Zhangjiakou Mesozoic intermediate-acidic explosive eruptions,southern Tibet and Shanwang Cenozoic volcanism,and Mt.Changbai volcanic eruption around one thousand years ago.The paper predominantly discusses the earth's surface temperature changes,ozone depletion,acidic rain formation and mass mortalities of vertebrate induced by the Mesozoic and Cenozoic volcanism in China.

  8. Dramatic increase in late Cenozoic alpine erosion rates recorded by cave sediment in the southern Rocky Mountains

    Science.gov (United States)

    Refsnider, Kurt A.

    2010-09-01

    Apparent increases in sedimentation rates during the past 5 Ma have been inferred at sites around the globe to document increased terrestrial erosion rates, but direct erosion rate records spanning this period are sparse. Modern and paleo-erosion rates for a small alpine catchment (3108 m above sea level) in the Southern Rocky Mountains are measured using the cosmogenic radionuclides (CRNs) 10Be and 26Al in cave sediment, bedrock on the overlying landscape surface, and coarse bedload in a modern fluvial drainage. The unique setting of the Marble Mountain cave system allows the inherited erosion rates to be interpreted as basin-averaged erosion rates, resulting in the first CRN-based erosion rate record from the Rocky Mountains spanning 5 Myr. Pliocene erosion rates, derived from the oldest cave sample (4.9 ± 0.4 Ma), for the landscape above the cave are 4.9 ± 1.1 m Myr - 1 . Mid Pleistocene erosion rates are nearly an order of magnitude higher (33.1 ± 2.7 to 41.3 ± 3.9 m Myr - 1 ), and modern erosion rates are similar; due to the effects of snow shielding, these erosion rate estimates are likely higher than actual rates by 10-15%. The most likely explanation for this dramatic increase in erosion rates, which likely occurred shortly before 1.2 Ma, is an increase in the effectiveness of periglacial weathering processes at high elevations related to a cooler and wetter climate during the Pleistocene, providing support for the hypothesis that changes in late Cenozoic climate are responsible for increased continental erosion.

  9. A Climate Trend Analysis of Niger

    Science.gov (United States)

    Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby

    2012-01-01

    This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies a substantial recovery of rainfall in Niger, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have increased during the past 20 years and have almost returned to 1960-89 levels. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant, and the population is growing very rapidly. * Niger has offset very rapid population growth with a large expansion of cultivated land. * If the expansion of farmland slows down, stagnant yields and population growth could lead to increased food insecurity.

  10. Cenozoic global sea level, sequences, and the New Jersey transect: Results from coastal plain and continental slope drilling

    Science.gov (United States)

    Miller, K.G.; Mountain, Gregory S.; Browning, J.V.; Kominz, M.; Sugarman, P.J.; Christie-Blick, N.; Katz, M.E.; Wright, J.D.

    1998-01-01

    The New Jersey Sea Level Transect was designed to evaluate the relationships among global sea level (eustatic) change, unconformity-bounded sequences, and variations in subsidence, sediment supply, and climate on a passive continental margin. By sampling and dating Cenozoic strata from coastal plain and continental slope locations, we show that sequence boundaries correlate (within ??0.5 myr) regionally (onshore-offshore) and interregionally (New Jersey-Alabama-Bahamas), implicating a global cause. Sequence boundaries correlate with ??18O increases for at least the past 42 myr, consistent with an ice volume (glacioeustatic) control, although a causal relationship is not required because of uncertainties in ages and correlations. Evidence for a causal connection is provided by preliminary Miocene data from slope Site 904 that directly link ??18O increases with sequence boundaries. We conclude that variation in the size of ice sheets has been a primary control on the formation of sequence boundaries since ~42 Ma. We speculate that prior to this, the growth and decay of small ice sheets caused small-amplitude sea level changes (sea level amplitudes are substantially lower than theirs. Lithofacies patterns within sequences follow repetitive, predictable patterns: (1) coastal plain sequences consist of basal transgressive sands overlain by regressive highstand silts and quartz sands; and (2) although slope lithofacies variations are subdued, reworked sediments constitute lowstand deposits, causing the strongest, most extensive seismic reflections. Despite a primary eustatic control on sequence boundaries, New Jersey sequences were also influenced by changes in tectonics, sediment supply, and climate. During the early to middle Eocene, low siliciclastic and high pelagic input associated with warm climates resulted in widespread carbonate deposition and thin sequences. Late middle Eocene and earliest Oligocene cooling events curtailed carbonate deposition in the coastal

  11. Late Cenozoic sedimentary process and its response to the slip history of the central Altyn Tagh fault, NW China

    Institute of Scientific and Technical Information of China (English)

    陈正乐; 张岳桥; 陈宣华; 王小凤; A.S.Ramon; W.B.Zack

    2001-01-01

    The ENE-striking Altyn Tagh fault (ATF), extending along the northern edge of the Tibetan Plateau, is one of the major important strike-slip faults, and has been known as one of the key areas to debate the eastward extrusion and crustral shortening models of the Tibetan Plateau during and after India-Asia collision. This paper mainly presents new evidence of Late Cenozoic sedimentary process to reconstruct the slip history of the ATF during the Late Cenozoic. Field measurements and laboratory analyses of the sedimentary characteristics in the Late Cenozoic basins in the central Altyn Tagh fault suggest that Late Cenozoic sedimentary sequence should be divided into three units according to facies changes. The paleo-topography reconstruction shows that the sedimentation in these basins was tightly related with the fault, indicating that the ATF has experienced at least three stages of strike slipping in the Late Cenozoic. New geological data from the Late Cenozoic sedimentary basins and the formation of th

  12. Characteristics and geological significance of olivine xenocrysts in Cenozoic volcanic rocks from western Qinling

    Institute of Scientific and Technical Information of China (English)

    SU Benxun; ZHANG Hongfu; XIAO Yan; ZHAO Xinmiao

    2006-01-01

    Cenozoic volcanic rocks from the Haoti, Dangchang County of the western Qinling Mountains, contain a few clearlyzoned olivines. These olivines are relatively big in grain sizes and usually have cracks or broken features. Their cores have similar compositions (Mg# = 90.4- 91.0) to those for the peridotitic xenoliths entrained in host volcanic rocks and their rims are close to the compositions of olivine phenocrysts (Mg# = 85.5 81.9). The CaO contents in these zoned olivines are lower than 0.1%. These features demonstrate that the clearly zoned olivines are xenocrysts and disaggregated from mantle peridotites. The zoned texture was the result of the interaction between the olivine and host magma. Available data show that the volcanic rocks would have been derived from the mantle source metasomatized by subducted hydrathermally-altered oceanic crust. The formation of these Cenozoic volcanic rocks was perhaps related to the rapid uplift of the Tibetan Plateau.

  13. Cenozoic Volcanism and Intraplate Subduction at the Northern Margin of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    邓万明

    1991-01-01

    Developed in the Mt.Kunlun orogenic belt at the northern margin of the Tibetan Plateau is an active Cenozoic volcanic zone which is more than 1000km in length and some ten to hundred kilometers in width.It extends east-westwards and is roughly parallet to the strike of Mt.Kunlun.The Cenozoic volcanic rocks are divided into the northern(N-)and southern(S-)subzones.Eruptions of volcanic lavas in the S-subzone are related to an initial rift zone within the north Qiangtang terrane,but the volcanic rocks in the N-subzone are relatively close to the contact zone between the Mt.Kunlun and the Tarim terrane.The space-time distribution,petrological and geochemical features can be explained by a model of southward intraplate subduction of the Tarim terrane.

  14. Cenozoic evolution of Neotethys and implications for the causes of plate motions

    OpenAIRE

    McQuarrie, N.; J. M. Stock; Verdel, C.; B. P. Wernicke

    2003-01-01

    Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations and new estimates of crustal shortening in Iran define the Cenozoic history of the Neotethyan ocean between Arabia and Eurasia. The new constraints indicate that Arabia-Eurasia convergence has been fairly constant at 2 to 3 cm/yr since 56 Ma with slowing of Africa-Eurasia motion to

  15. Cenozoic Volcanism in South China Sea and Its Vicinity and South China Sea Spreading

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The rock series, rock types and Sr-Nd isotopic dating of the Cenozoic volcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of the spreading age of the South China Sea, the Cenozoic volcanic rocks are divided into three stages: the pre-spreading stage, the spreading stage and the post-spreading stage. The deep process characteristics of the asthenosphere and lithosphere may be inferred from the study on primary basaltic magma. The top layers of the asthenosphere both in the spreading stage and in the pre-spreading stage are closer to the earth surface than that in the post-spreading stage. From the pre-spreading stage to the spreading stage, the top layer of the asthenosphere decreased in depth, while the amount of interstitial partial melts increased. The evolution of the primary basaltic magma shows a progressive evolution sequence of the rifting volcanism and a faster lithospheric spreading velocity. From the spreading stage to the post-spreading stage, the top layer of the asthenosphere gradually increased in depth, but the amount of interstitial partial melts decreased. The evolution of primary basaltic magma shows a retrogressive evolution sequence of the rifting volcanism and a gradual decrease in the lithospheric spreading velocity. The depth recognized by the study on the Cenozoic volcanism demonstrates the deep environment for the formation and evolution of the South China Sea.

  16. Metallogenic systems related to Mesozoic and Cenozoic granitoids in South China

    Institute of Scientific and Technical Information of China (English)

    华仁民; 陈培荣; 张文兰; 刘晓东; 陆建军; 林锦富; 姚军明; 戚华文; 张展适; 顾晟彦

    2003-01-01

    Large scale mineralizations of nonferrous, precious, and rare metals took place in South China in Mesozoic and Cenozoic Eras, which were mostly closely related with granitic magmatisms of different sources and features. Four metallogenic systems related to Mesozoic and Cenozoic granitoids are put forward in this paper. They are: (i) the porphyry-epithermal copper-gold system related to calc-alkaline volcanic-intrusive magmatism, (ii) rare metal (mainly W, Sn, Ta, Nb, etc) metallogenic system related with continental crust re-melting type granitoids, (iii) copper and polymetallic metallogenic system related with intra-plate high potassium calc-alkaline and shoshonitic magmatism, and (iv) Au-Cu and REE metallogenic system related to A-type granites. The main characteristics of these systems are briefly discussed. These Mesozoic and Cenozoic granitoids of different sources were the products of different periods of lithosphere evolution in that area under different tectonic-dynamic environments. Fundamentally speaking, however, the granitoids and related metallogeneses are the results of mantle-crust interactions under a tensile tectonic environment in South China.

  17. Cenozoic Mineralization in China, as a Key to Past Mineralization and a Clue to Future Prospecting

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the largest Pb-Zn deposit of China in Jinding, Yunnan, and the largest Au deposit of China in Jinguashi,Taiwan, were also formed in the Cenozoic. Why so many important "present" deposits formed during such a short period of geological history is the key problem. The major reason is that different tectonic settings control different kinds of magmatic activity and mineralization at the same time. In southwestern China, porphyry-type Cu deposits such as Yulong were formed during the early stage of the Himalayan orogeny, sediment-hosted Pb-Zn deposits such as Jinding were formed within intermontane basins related to deep faults, and carbonatite-related deposits such as the Maoniuping REE deposit and alkalic magmatic rock-related deposits such as the Beiya Au deposit originated from the mantle source. In southeastern China, the Fuwan Ag deposit was related to continental rifting which was triggered by the mantle plume. In Taiwan, the Jinguashi Au deposit was formed during the subduction process of an oceanic plate beneath a continental plate. Besides, the features such as the diversification, inheritance, large size, deep source of metals and fluids of the Cenozoic (Present or Recent ) mineralization can be used as a key to the search for past deposits.

  18. Cenozoic Antarctic DiatomWare/BugCam: An aid for research and teaching

    Science.gov (United States)

    Wise, S.W.; Olney, M.; Covington, J.M.; Egerton, V.M.; Jiang, S.; Ramdeen, D.K.; ,; Schrader, H.; Sims, P.A.; Wood, A.S.; Davis, A.; Davenport, D.R.; Doepler, N.; Falcon, W.; Lopez, C.; Pressley, T.; Swedberg, O.L.; Harwood, D.M.

    2007-01-01

    Cenozoic Antarctic DiatomWare/BugCam© is an interactive, icon-driven digital-image database/software package that displays over 500 illustrated Cenozoic Antarctic diatom taxa along with original descriptions (including over 100 generic and 20 family-group descriptions). This digital catalog is designed primarily for use by micropaleontologists working in the field (at sea or on the Antarctic continent) where hard-copy literature resources are limited. This new package will also be useful for classroom/lab teaching as well as for any paleontologists making or refining taxonomic identifications at the microscope. The database (Cenozoic Antarctic DiatomWare) is displayed via a custom software program (BugCam) written in Visual Basic for use on PCs running Windows 95 or later operating systems. BugCam is a flexible image display program that utilizes an intuitive thumbnail “tree” structure for navigation through the database. The data are stored on Micrsosoft EXCEL spread sheets, hence no separate relational database program is necessary to run the package

  19. Biogeographical consequences of Cenozoic tectonic events within East Asian margins: a case study of Hynobius biogeography.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the bayesian relaxed clock approach and infer dispersal/vicariance histories under the 'dispersal-extinction-cladogenesis' model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the 'vicariance'/'out of southwestern Japan' hypothesis. The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1 the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2 a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3 ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, 'Korean Peninsula and northeastern China' as well as northeastern Honshu during the Late Eocene-Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins.

  20. Solar trends and global warming

    Science.gov (United States)

    Benestad, R. E.; Schmidt, G. A.

    2009-07-01

    We use a suite of global climate model simulations for the 20th century to assess the contribution of solar forcing to the past trends in the global mean temperature. In particular, we examine how robust different published methodologies are at detecting and attributing solar-related climate change in the presence of intrinsic climate variability and multiple forcings. We demonstrate that naive application of linear analytical methods such as regression gives nonrobust results. We also demonstrate that the methodologies used by Scafetta and West (2005, 2006a, 2006b, 2007, 2008) are not robust to these same factors and that their error bars are significantly larger than reported. Our analysis shows that the most likely contribution from solar forcing a global warming is 7 ± 1% for the 20th century and is negligible for warming since 1980.

  1. Plate tectonics, seaways and climate in the historical biogeography of mammals.

    Science.gov (United States)

    Cox, C B

    2000-01-01

    The marsupial and placental mammals originated at a time when the pattern of geographical barriers (oceans, shallow seas and mountains) was very different from that of today, and climates were warmer. The sequence of changes in these barriers, and their effects on the dispersal of the mammal families and on the faunas of mammals in the different continents, are reviewed. The mammal fauna of South America changed greatly in the Pliocene/Pleistocene, when the newly-complete Panama Isthmus allowed the North American fauna to enter the continent and replace most of the former South American mammal families. Marsupial, but not placental, mammals reached Australia via Antarctica before Australia became isolated, while rats and bats are the only placentals that dispersed naturally from Asia to Australia in the late Cenozoic. Little is known of the early history of the mammal fauna of India. A few mammal families reached Madagascar from Africa in the early Cenozoic over a chain of islands. Africa was isolated for much of the early Cenozoic, though some groups did succeed in entering from Europe. Before the climate cooled in the mid-Cenozoic, the mammal faunas of the Northern Hemisphere were much richer than those of today.

  2. Plate tectonics, seaways and climate in the historical biogeography of mammals

    Directory of Open Access Journals (Sweden)

    C Barry Cox

    2000-08-01

    Full Text Available The marsupial and placental mammals originated at a time when the pattern of geographical barriers (oceans, shallow seas and mountains was very different from that of today, and climates were warmer. The sequence of changes in these barriers, and their effects on the dispersal of the mammal families and on the faunas of mammals in the different continents, are reviewed. The mammal fauna of South America changed greatly in the Pliocene/Pleistocene, when the newly-complete Panama Isthmus allowed the North American fauna to enter the continent and replace most of the former South American mammal families. Marsupial, but not placental, mammals reached Australia via Antarctica before Australia became isolated, while rats and bats are the only placentals that dispersed naturally from Asia to Australia in the late Cenozoic. Little is known of the early history of the mammal fauna of India. A few mammal families reached Madagascar from Africa in the early Cenozoic over a chain of islands. Africa was isolated for much of the early Cenozoic, though some groups did succeed in entering from Europe. Before the climate cooled in the mid-Cenozoic, the mammal faunas of the Northern Hemisphere were much richer than those of today.

  3. The relationship between the growth process of the ferromanganese crusts in the Pacific seamount and Cenozoic ocean evolvement

    Institute of Scientific and Technical Information of China (English)

    DING Xuan; GAO LianFeng; FANG NianQiao; QU Wendun; LIU Jian; LI JiangShan

    2009-01-01

    Base on the Os Isotope stratigraphy together with the empirical growth rate models using Co concentrations, the growth ages of the ferromanganese crusts MHD79 and MP3D10 distributed in the seamount of Pacific are confirmed. Through the contrast and research on the previous achievements including ODP Leg 144 and the crusts CD29-2, N5E-06 and N1-15 of the seamount of the Central Pacific,the uniform five growth and growth hiatus periods of them are found, and closely related to the Cenozoic ocean evolvement process. In the Paleocene Carbon Isotope Maximum (PClM), the rise of the global ocean productivity promoted the growth of the seamount crust; the first growth hiatus (Ⅰ) of the ferromanganese crust finished. In the Paleocene-Eocene Thermal Maximum (PETM), though the vertical exchange of seawater was weakened, the strong terrestrial chemical weathering led to the input of a great amount of the terrigenous nutrients, which made the bioproductivity rise, so there were no crust hiatuses. During 52-50 Me, the Early Eocene Optimum Climate (EECO), the two poles were warm, the latitudinal temperature gradient was small, the wind-driven sea circulation and upwelling activity were weak, the terrestrial weathering was also weakened, the open ocean bioproductivity decreased, and the ferromanganese crust had growth hiatus again (Ⅱ). From early Middle Eocene-Late Eocene, Oligocene,it was a long-term gradually cooling process, the strengthening of the sea circulation and upweUing led to a rise of bioproductivity, and increase of the content of the hydrogenous element Fe, Mn and Co and the biogenous element Cu, Zn, so that was the most favorable stage for the growth of ferromanganese crust (growth periods Ⅲ and IV) in the studied area. The hiatus Ⅲ corresponded with the Eocene-Oligocene boundary, is inferred to relate with the global climate transformation, celestial body impact event in the Eocene-Oligocene transition. From the early to the middle Miocene, a large

  4. The relationship between the growth process of the ferromanganese crusts in the Pacific seamount and Cenozoic ocean evolvement

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Base on the Os isotope stratigraphy together with the empirical growth rate models using Co concentrations, the growth ages of the ferromanganese crusts MHD79 and MP3D10 distributed in the seamount of Pacific are confirmed. Through the contrast and research on the previous achievements including ODP Leg 144 and the crusts CD29-2, N5E-06 and N1-15 of the seamount of the Central Pacific, the uniform five growth and growth hiatus periods of them are found, and closely related to the Cenozoic ocean evolvement process. In the Paleocene Carbon Isotope Maximum (PCIM), the rise of the global ocean productivity promoted the growth of the seamount crust; the first growth hiatus (I) of the ferromanganese crust finished. In the Paleocene-Eocene Thermal Maximum (PETM), though the vertical exchange of seawater was weakened, the strong terrestrial chemical weathering led to the input of a great amount of the terrigenous nutrients, which made the bioproductivity rise, so there were no crust hiatuses. During 52-50 Ma, the Early Eocene Optimum Climate (EECO), the two poles were warm, the latitudinal temperature gradient was small, the wind-driven sea circulation and upwelling activity were weak, the terrestrial weathering was also weakened, the open ocean bioproductivity decreased, and the ferromanganese crust had growth hiatus again (II). From early Middle Eocene-Late Eocene, Oligocene, it was a long-term gradually cooling process, the strengthening of the sea circulation and upwelling led to a rise of bioproductivity, and increase of the content of the hydrogenous element Fe, Mn and Co and the biogenous element Cu, Zn, so that was the most favorable stage for the growth of ferromanganese crust (growth periods III and IV) in the studied area. The hiatus III corresponded with the Eocene-Oligocene boundary, is inferred to relate with the global climate transformation, celestial body impact event in the Eocene-Oligocene transition. From the early to the middle Miocene, a large

  5. Climate plan 2004; Plan climat 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The Climate Plan is an action plan drawn up by the French Government to respond to the climate change challenge, first by 2010 (complying with the Kyoto Protocol target), and, secondly, beyond this date. Projections for France show that national emissions could be 10% higher than the Kyoto target in 2010 if no measures are taken. This is particularly due to increasing emissions in the sectors affecting daily life (residential-tertiary sectors, transport, etc.). For this reason, the Climate Plan contains measures affecting all sectors of the economy and the daily life of all French citizens with a view to economizing the equivalent of 54 million tonnes of CO{sub 2} each year by the year 2010, which will help to reverse the trend significantly. Beyond 2010, the Climate Plan sets out a strategy for technological research which will enable France to meet a target of reducing greenhouse gas emissions four or fivefold by 2050. (author)

  6. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied to...... isolate low-frequency variability from time series of SST anomalies for the 1982-2006 period. The first derived trend pattern reflects a systematic decrease in SST during the 25-year period in the equatorial Pacific and an increase in most of the global ocean. The second trend pattern reflects mainly ENSO...... variability in the Pacific Ocean. The examination of the contribution of these low-frequency modes to the globally averaged SST fluctuations indicates that they are able to account for most (>90%) of the variability observed in global mean SST. Trend-EOFs perform better than conventional EOFs when the...

  7. Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales

    Science.gov (United States)

    Berger, W. H.

    2007-10-01

    The evolution of large marine mammals and their invasion of the pelagic realm is tied to the availability of sufficient food, which in turn is linked to upwelling areas and other highly productive regions in the ocean, as has been recognized for some time. Here I propose that silicate-supported upwelling (which provides the shorter food chain and hence the higher yield for apex consumers) and deep mixing within the Southern Ocean are the crucial ingredients of the system providing the stage for the evolution of whales. The Circumpolar Current receives silicate from various sources but especially from the North Atlantic Deep Water introduced in the Atlantic sector. The silicate is largely trapped in the Ring, some in the water, and some in the sediment, and is made available to shallower waters by unusually deep mixing. From these shallower depths silica-rich waters can enter the thermocline all through the southern hemisphere, stimulating diatom growth in upwelling systems to the equator and beyond. From the link diatoms-krill-whales and diatoms-krill-small fishes, it is readily apparent that the link between the climate narrative and the narrative of whale evolution (both for mysticetes and odontocetes) is the silica cycle. Studying it will generate hypotheses about whale evolution that can be tested using fossils.

  8. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean

    Science.gov (United States)

    Hall, Robert

    2012-10-01

    The heterogeneous Sundaland region was assembled by closure of Tethyan oceans and addition of continental fragments. Its Mesozoic and Cenozoic history is illustrated by a new plate tectonic reconstruction. A continental block (Luconia-Dangerous Grounds) rifted from east Asia was added to eastern Sundaland north of Borneo in the Cretaceous. Continental blocks that originated in western Australia from the Late Jurassic are now in Borneo, Java and Sulawesi. West Burma was not rifted from western Australia in the Jurassic. The Banda (SW Borneo) and Argo (East Java-West Sulawesi) blocks separated from western Australia and collided with the SE Asian margin between 110 and 90 Ma, and at 90 Ma the Woyla intra-oceanic arc collided with the Sumatra margin. Subduction beneath Sundaland terminated at this time. A marked change in deep mantle structure at about 110°E reflects different subduction histories north of India and Australia since 90 Ma. India and Australia were separated by a transform boundary that was leaky from 90 to 75 Ma and slightly convergent from 75 to 55 Ma. From 80 Ma, India moved rapidly north with north-directed subduction within Tethys and at the Asian margin. It collided with an intra-oceanic arc at about 55 Ma, west of Sumatra, and continued north to collide with Asia in the Eocene. Between 90 and 45 Ma Australia remained close to Antarctica and there was no significant subduction beneath Sumatra and Java. During this interval Sundaland was largely surrounded by inactive margins with some strike-slip deformation and extension, except for subduction beneath Sumba-West Sulawesi between 63 and 50 Ma. At 45 Ma Australia began to move north; subduction resumed beneath Indonesia and has continued to the present. There was never an active or recently active ridge subducted in the Late Cretaceous or Cenozoic beneath Sumatra and Java. The slab subducted between Sumatra and east Indonesia in the Cenozoic was Cretaceous or older, except at the very western end

  9. Variations in Cenozoic seawater uranium reconstructed from well preserved aragonitic fossil corals

    Science.gov (United States)

    Gothmann, A. O.; Higgins, J. A.; Bender, M. L.; Stolarski, J.; Adkins, J. F.; McKeon, R. E.; Farley, K. A.; Wang, X.; Planavsky, N.

    2015-12-01

    U/Ca ratios were measured in a subset (n ≈ 30) of well preserved scleractinian fossil corals previously described by Gothmann et al. (2015) in order to investigate Cenozoic changes in seawater [U]. He/U dating studies and measurements of 234U/238U and δ238/235U provide constraints on fossil coral U preservation. He/U ages also demonstrate the ability of well preserved coral aragonite to retain most of its radiogenic He over million year timescales. We find that fossil coral U/Ca has increased by a factor of ~4 between the Early Cenozoic and today. This number is calculated from the change in seawater [Ca2+] implied by brine inclusions and other proxies, and the assumption that the U/Ca in shallow water corals equals the seawater ratio. The change cannot be attributed to a dependence of coral U uptake on seawater pH or [CO32-] (e.g., Inoue et al., 2011), which would lead to a decrease in U/Ca going forward in time. Instead, we suggest that seawater [U] has increased since the Early Cenozoic. Possible explana