WorldWideScience

Sample records for cementitious near-field sorption

  1. Cementitious Near-Field Sorption Data Base for Performance Assessment of an ILW Repository in Opalinus Clay

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Van Loon, L. R

    2003-08-01

    The present report describes a cement sorption database (SDB) for the safety-relevant radionuclides to be disposed of in the planned Swiss repository for long-lived intermediate-level radioactive wastes (ILW). This report is an update on earlier SDBs, which were compiled for the cementitious near field of a repository for low- and intermediate-level radioactive wastes (L/ILW) by BRADBURY + SAROTT (1995) and BRADBURY + VAN LOON (1998). The radionuclide inventories are determined by the waste streams to be disposed of in the ILW repository. A list of the safety-relevant radionuclides was provided based on the currently available information on ILW inventories. The compositions of the cement porewaters in the near fields of the L/ILW and ILW repositories, which had been calculated using well-established codes for modelling cement degradation, were compared to identify any differences in the near-field conditions and to assess their influence on radionuclide sorption. Sorption values were selected based on the previously reported SDBs for the near field of the L/ILW repository. Sorption values were revised if new information and/or data were available which allowed changes to or re-appraisals of the data to be made. The sorption values recommended in this report were either selected on the basis of data from in-house experimental studies or from literature data. For some key radioelements, i.e., Cs(l), Sr(II), Ni(II), Eu(lll), Th(IV) and Sn(IV), new data were available from in-house measurements. These elements had been selected for experimental studies due to their relevance to safety assessment and/or their importance as appropriate chemical analogues. Degradation products of bitumen and cellulose, concrete admixtures and cement-derived near-field colloids were taken into account as the main potential perturbations, which could reduce radionuclide sorption in the near field. Possible impacts of the perturbing factors on radionuclide mobility were considered and

  2. Sorption data base for the cementitious near-field of L/ILW and ILW repositories for provisional safety analyses for SGT-E2

    International Nuclear Information System (INIS)

    Wieland, E.

    2014-11-01

    The near-field of the planned Swiss repositories for low- and intermediate-level waste (L/ILW) and long-lived intermediate-level waste (ILW) consists of large quantities of cementitious materials. Hardened cement paste (HCP) is considered to be the most important sorbing material present in the near-field of L/ILW and ILW repositories. Interaction of radionuclides with HCP represents the most important mechanism retarding their migration from the near-field into the host rock. This report describes a cement sorption data base (SDB) for the safety-relevant radionuclides in the waste that will be disposed of in the L/ILW and ILW repositories. The current update on sorption values for radionuclides should be read in conjunction with the earlier SDBs CEM-94, CEM-97 and CEM-02. Sorption values have been selected based on procedures reported in these earlier SDBs. The values are revised if corresponding new information and/or data are available. The basic information results from a survey of sorption studies published between 2002 and 2013. The sorption values recommended in this report have either been selected from in-house experimental studies or from literature data, and they were further assessed with a view to the sorption values recently published in the framework of the safety analysis for the planned near surface disposal facility in Belgium. The report summarizes the sorption properties of HCP and compiles sorption values for safety-relevant radionuclides and low-molecular weight organic molecules on undisturbed and degraded HCP. A list of the safety-relevant radionuclides is provided. The radionuclide inventories are determined by the waste streams to be disposed of in the L/ILW and ILW repositories. Information on the elemental and mineral composition of HCP was obtained from hydration studies. The concentrations of the most important impurity elements in cement were obtained from dissolution studies on HCP. Particular emphasis is placed on summarizing our

  3. Cementitious near-field sorption data bases for performance assessment of a L/ILW repository in a Palfris marl host rock. CEM-94: update I, June 1997

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Loon, L.R. van

    1998-01-01

    This report is an update on an earlier cementitious sorption data base (SDB) prepared by Bradbury and Sarott (1994). The aim is to review any new information or data which have become available in the intervening time and modify the existing SDB appropriately. Discussions will be confined predominantly to areas which have led to significant changes to or reappraisals of the data/values or procedures for obtaining/modifying them. From this point of view this update and the previous SDB are closely related and belong together. The complexation of radionuclides with organic ligands from the chemical degradation of cellulose, and the subsequent negative effects on sorption properties, were identified as being processes of great importance. Since 1994 significant progress has been made in this field and a major part of this work is devoted to a reassessment of the impact of 'organics' on near-field sorption. In particular, the very conservative assumptions which had been made previously because of the general lack of good quality data available at that time, could be replaced by realistic parameter estimates based on new knowledge. For example, maximum likely concentrations of cellulose degradation products and cement additives in the cement pore waters could be calculated allowing the potential effects of these organic ligands on sorption to be bounded. Sorption values for safety relevant radionuclides corresponding to the three broad stages of cement/concrete degradation during the lifetime of the repository are presented in tabulated form. The influence of the wide variety of organic ligands existing in the different waste categories, SMA-1 to SMA-4, is quantified in terms of sorption reduction factors. In the compilation of this cement SDB update, radionuclide uptake onto the vast quantities of aggregate materials and corrosion products from iron/steel was not taken into account. (author) 10 figs., 8 tabs., refs

  4. A review of sorption of radionuclides under the near- and far-field conditions of an underground radioactive waste repository. Pt. 2

    International Nuclear Information System (INIS)

    Berry, J.A.

    1992-01-01

    This report, a bibliography, has been prepared, presenting work carried out world-wide since 1970 on the sorption of radionuclides under near- and far-field conditions. Work has been included where the results are relevant to the disposal of low- and intermediate-level radioactive waste in a cementitious repository in the UK. The bibliography has been prepared using the INIS database and includes eight hundred references, listed both by subject and by country. In addition to these indexes, full abstracts are presented in reverse chronological order. A brief description of the relevance and measurement of sorption parameters is included. (author)

  5. Technetium Sorption By Cementitious Materials Under Reducing Conditions

    International Nuclear Information System (INIS)

    Kaplan, Daniel I.; Estes, Shanna L.; Arai, Yuji; Powell, Brian A.

    2013-01-01

    The objective of this study was to measure Tc sorption to cementitious materials under reducing conditions to simulate Saltstone Disposal Facility conditions. Earlier studies were conducted and the experimental conditions were found not to simulate those of the facility. Through a five month subcontract with Clemson University, sorption of 99 Tc to four cementitious materials was examined within an anaerobic glovebag targeting a 0.1% H 2 (g)/ 99.9% N 2 (g) atmosphere. Early experiments based on Tc sorption and Eh indicated that 0.1% H 2 (g) (a reductant) was necessary to preclude experimental impacts from O 2 (g) diffusion into the glovebag. Preliminary data to date (up to 56 days) indicates that sorption of 99 Tc to cementitious materials increased with increasing slag content for simulated saltstone samples. This is consistent with the conceptual model that redox active sulfide groups within the reducing slag facilitate reduction of Tc(VII) to Tc(IV). These experiments differ from previous experiments where a 2% H 2 (g) atmosphere was maintained (Kaplan et al., 2011 (SRNL-STI-2010-00668)). The impact of the 2% H 2 (g) reducing atmosphere on this data was examined and determined to cause the reduction of Tc in experimental samples without slag. In the present ongoing study, after 56 days, Tc sorption by the 50-year old cement samples (no slag) was undetectable, whereas Tc sorption in the cementitious materials containing slag continues to increase with contact time (measured after 1, 4, 8, 19 and 56 days). Sorption was not consistent with spike concentrations and steady state has not been demonstrated after 56 days. The average conditional K d value for the Vault 2 cementitious material was 873 mL/g (17% slag), for the TR547 Saltstone (45% slag) the conditional K d was 168 mL/g, and for TR545 (90% slag) the conditional K d was 1,619 mL/g. It is anticipated that additional samples will be collected until steady state conditions are established to permit measuring

  6. The measurement and estimation method of the sorption of lead onto cementitious materials

    International Nuclear Information System (INIS)

    Nakanishi, Kiyoshi; Tsukamoto, Masaki; Fujita, Tomonari; Sugiyama, Daisuke

    2002-01-01

    Cementitious material is a potential waste packaging material for radioactive waste disposal, and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cementitious material is a very important parameter when considering the release of radionuclides from radioactive waste. In this study, sorption of lead, onto hydrated Ordinary Portland Cement (OPC), OPC/Blast Furnace Slag blended cement (BFS), Highly containing Flyash and Silica Fume Cement (HFSC) and cement constituent minerals (portlandite, ettringite, hydrotalcite and C-S-H gels (Ca/Si = 0.9 and 1.65)) was measured using the batch sorption technique. Lead is one of the important nuclides for safety assessment. The obtained distribution ratios, Rd values, for sorption of lead onto hydrated (freshly cured) OPC and HFSC are very high:>1000 cm3g-1. The distribution ratio for sorption of lead onto OPC/BFS could not be determined quantitatively due to the precipitation of PbS. Comparing the Rd values onto cements and minerals, it was suggested the sorption onto C-S-H gel phases dominate the sorption for lead onto hydrated cements. Once a cementitious material is altered in the disposal environment, its sorption ability may be affected. The sorption of lead onto degraded OPC and degraded HFSC, which were altered in the presence of distilled water, was also measured. It was observed that the alteration did not cause changes that decreased the sorption of lead onto OPC and HFSC. An approach, in which it is assumed that each of the component phases contributes to the composite material, is proposed and discussed to describe the sorption of lead onto cement using a knowledge of the phase components in a linear additive manner. The results showed reasonably good agreement between the predicted and measured Rd values for lead onto freshly cured and altered cements. (author)

  7. The solubility of uranium in cementitious near-field chemical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Brownsword, M.; Cross, J.E.; Hobley, J.; Moreton, A.D.; Smith-Briggs, J.L.; Thomason, H.P. [AEA Decommissioning and Waste Management, Harwell (United Kingdom)

    1993-05-01

    Tetravalent and hexavalent uranium solubilities have been measured in cement-equilibriated water for pH values from 4 to 13. Tetravalent uranium solubilities at pH 12 have been measured by three experimental techniques: oversaturation, undersaturation and by the use of an electrochemical cell which controlled the redox conditions. The experimentally obtained data have been simulated using the thermodynamic equilibrium program HARPHRQ in conjunction with three different sets of thermodynamic data for uranium. In each case, differences were found between the predicted and measured uranium behaviour. For hexavalent uranium at high pH values the model suggested the formation of anionic hydrolysis products which led to the prediction of uranium solubilities significantly higher than those observed. Refinement of the thermodynamic data used in the model enabled the derivation of maximum values for the formation constants of these species under cementitious conditions. Similarly, the experimental data have been used to refine a model of tetravalent uranium solubility under cementitious near-field conditions. (author).

  8. The solubility of uranium in cementitious near-field chemical conditions

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Brownsword, M.; Cross, J.E.; Hobley, J.; Moreton, A.D.; Smith-Briggs, J.L.; Thomason, H.P.

    1993-05-01

    Tetravalent and hexavalent uranium solubilities have been measured in cement-equilibriated water for pH values from 4 to 13. Tetravalent uranium solubilities at pH 12 have been measured by three experimental techniques: oversaturation, undersaturation and by the use of an electrochemical cell which controlled the redox conditions. The experimentally obtained data have been simulated using the thermodynamic equilibrium program HARPHRQ in conjunction with three different sets of thermodynamic data for uranium. In each case, differences were found between the predicted and measured uranium behaviour. For hexavalent uranium at high pH values the model suggested the formation of anionic hydrolysis products which led to the prediction of uranium solubilities significantly higher than those observed. Refinement of the thermodynamic data used in the model enabled the derivation of maximum values for the formation constants of these species under cementitious conditions. Similarly, the experimental data have been used to refine a model of tetravalent uranium solubility under cementitious near-field conditions. (author)

  9. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-11-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 m g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great as those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  10. Sorption on inactive repository components

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1990-07-01

    The near-field of an intermediate level/low level radioactive waste repository will contain significant quantities of iron and steel, Magnox and Zircaloy. Their corrosion products may possess significant sorption capacity for radioelements. The sorption of americium and plutonium onto magnesium hydroxide, zirconium hydroxide, colloidal magnetite and colloidal haematite has been studied under conditions typical of the porewater of a cementitious near-field. R D values ≥ 10 5 ml g -1 were measured for both actinides on the oxides and hydroxides. These values are at least as great at those measured on crushed 3:1 Blast Furnace Slag/Ordinary Portland Cement. Competitive sorption experiments have shown that sorption onto the corrosion products does not take place in preference to that on the cement or the converse. Magnetite and haematite colloids are positively charged in cement-equilibrated water whilst zirconium hydroxide is negatively charged. Crushed cement was found to be positively charged. Simple experiments show that only a small proportion of haematite colloids is potentially mobile through a column of crushed cement. (author)

  11. Implications of cementitious evolution for solubility and retention of radionuclides over long timescales

    International Nuclear Information System (INIS)

    Williams, Steve; Norris, Simon

    2012-01-01

    Simon Norris of the NDA described the current status of understanding of radionuclide solubility and retention in cementitious materials based on experience in the United Kingdom. Cementitious materials play a number of roles in the long-term management and disposal of radioactive wastes. One of these roles is to contribute to the post-closure containment and retention of radionuclides within a disposal facility by imposing conditions that minimise radionuclide solubility and provide sites for radionuclide sorption. The chemical containment provided by the highly-alkaline, chemically reducing environment imposed by cementitious materials plays an important role in the long-term retention of many radionuclides. However, the mineralogy and other properties of cementitious materials that contribute to their physical and chemical barrier performance within the engineered barrier system will evolve due to several processes, including: - Leaching. - Reaction with groundwater solutes. - Hydration and crystallisation. - Reaction with wastes, their degradation products, and with non-cementitious waste forms. - Cracking. Some of these processes are better understood than others. For example, the evolution of pH within a homogeneous repository near field can be modelled based on knowledge of cement dissolution combined with expected groundwater compositions and flow rates. The calculated changes in pH can then be coupled to radionuclide solubility and sorption in safety assessment models. Other processes are not as well constrained. Reaction of cementitious materials with groundwater will lead to changes in the mineralogical composition of the cements, accompanied by changes in porosity and permeability, and cracking can lead to localised water flow along the cracks and preferential leaching or deposition of reaction products. These processes can also alter the sorption properties of the cementitious materials. Additional complexities result from the heterogeneous

  12. Sorption databases for the cementitious near-field of a L/ILW repository for performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Sarott, F.A.

    1995-03-01

    Approximately 95% of the material in the L/ILW repository for short-lived low- and intermediate-level wastes consists of concrete; the remaining approx. 5% consists of steel (4%) and high molecular weight organic waste components (1%). Radionuclide sorption onto concrete represents one of the most important retardation mechanisms in the disposal caverns. This report compiles the sorption properties of hydrated cement, the most important sorbing material present in concrete, in the form of data sets for safety relevant nuclides under repository conditions; these data can then be used directly in performance assessment. Processes which affect sorption onto cement in the disposal caverns are documented in different data sets in this report. In this report, the distribution coefficients for radionuclides on cement are based to a large extent on values measured under repository-relevant conditions; this is true for cement without complexants in particular. (author) figs., tabs., refs

  13. A combined wet chemistry and EXAFS study of U(VI) uptake by cementitious materials

    International Nuclear Information System (INIS)

    Wieland, E.; Harfouche, M.; Tits, J.; Kunz, D.; Daehn, R.; Fujita, T.; Tsukamoto, M.

    2006-01-01

    radionuclides in a cementitious near-field of a repository for radioactive waste to be made

  14. On the derivation of a sorption database

    International Nuclear Information System (INIS)

    Ewart, F.T.; Haworth, A.; Wisbey, S.J.

    1992-01-01

    The safety arguments in support of many radioactive waste repository concepts are heavily dependent on the existence of a sorption reaction. Such a reaction will, in the near field, reduce the magnitude of the release of a number of hazardous radionuclides so that their release to the geosphere is dispersed in time. In the geosphere, the sorption reactions provide a mechanism whereby the migration of the elements released from the repository is retarded and the radioisotopes then subsequently decay. The processes involved in sorption cannot in many cases be satisfactorily represented in thermodynamic terms such as are employed in the description of dissolution and precipitation. Experiments that investigate these reactions are not easy to perform. The sorption parameters that are obtained experimentally for the near field relate, in the UK case, to sorption on to a cementitious surface. These surfaces, since they consist substantially of calcium hydroxide or calcium silicate hydrates, control the aqueous chemistry, do not permit pH changes to be made and limit the range of concentrations of sorbate that may be used. In the far field, on the other hand, the surfaces are not in general so active with respect to the solution chemistry and data can be obtained across a wide spectrum of aqueous chemistries. These data, although they may be useful in testing and parameterizing models, may not have validity under field conditions since the minerals will, inevitably, react to the changes in water chemistry, over geological timescales. The uncertainties in the experimental data are, for many elements and solids, balanced by a reasonable agreement between workers in the values of the parameters used to describe sorption. 22 refs., 1 fig., 1 tab

  15. Geochemical evolution of the L/ILW near-field

    International Nuclear Information System (INIS)

    Kosakowski, G.; Berner, U.; Wieland, E.; Glaus, M.; Degueldre, C.

    2014-10-01

    lower values (Ca/Si < 0.84). In a very late phase the formation of carbonates, clays or zeolites will cause the pH to drop to near neutral values. The geochemical evolution of the cementitious near-field is influenced by processes like interactions with the host rock and the waste, and degradation of cement minerals by alkali-silica-aggregate reactions. The exchange of pore water between the cementitious near-field and the host rocks gives rise to mineral reactions and changes of the pore water pH. Mineral reactions were investigated with the help of numerical models. The clay minerals of the host rock are dissolved and transformed into secondary minerals up to a distance of a few dm to 1 m in 100,000 years (period considered in safety analysis for the L/ILW repository) depending on water fluxes in the host rock. The sorption capacity of host rocks with low water fluxes and where transport is diffusion-dominated is not affected by these mineral changes. Further into the host rock, a zone develops with an elevated pH of 8 - 9, but without significant mineralogical changes. It extends a few meters into the host rock in the case of a diffusive transport regime, whereas in the downstream direction it may reach more than thousand meters in the case of higher water fluxes and very low host rock porosities. For a diffusion dominated regime the portlandite in the cementitious near-field is dissolved up to a distance of 2 m from the near-field -- host rock interface; the concrete pore water pH will drops to values corresponding to the third phase of the cement degradation. If the concrete aggregate contains SiO_2 the cement minerals may degrade due to an alkali-silica-aggregate reaction. Silicon dioxide reacts with portlandite and forms C-S-H phases. This causes a decrease of the pore water pH and results in a complete dissolution of the cement minerals within some hundreds to a thousand years. The degradation of organic waste in a cementitious repository happens predominantly

  16. Geochemical evolution of the L/ILW near-field

    Energy Technology Data Exchange (ETDEWEB)

    Kosakowski, G.; Berner, U.; Wieland, E.; Glaus, M.; Degueldre, C.

    2014-10-15

    lower values (Ca/Si < 0.84). In a very late phase the formation of carbonates, clays or zeolites will cause the pH to drop to near neutral values. The geochemical evolution of the cementitious near-field is influenced by processes like interactions with the host rock and the waste, and degradation of cement minerals by alkali-silica-aggregate reactions. The exchange of pore water between the cementitious near-field and the host rocks gives rise to mineral reactions and changes of the pore water pH. Mineral reactions were investigated with the help of numerical models. The clay minerals of the host rock are dissolved and transformed into secondary minerals up to a distance of a few dm to 1 m in 100,000 years (period considered in safety analysis for the L/ILW repository) depending on water fluxes in the host rock. The sorption capacity of host rocks with low water fluxes and where transport is diffusion-dominated is not affected by these mineral changes. Further into the host rock, a zone develops with an elevated pH of 8 - 9, but without significant mineralogical changes. It extends a few meters into the host rock in the case of a diffusive transport regime, whereas in the downstream direction it may reach more than thousand meters in the case of higher water fluxes and very low host rock porosities. For a diffusion dominated regime the portlandite in the cementitious near-field is dissolved up to a distance of 2 m from the near-field -- host rock interface; the concrete pore water pH will drops to values corresponding to the third phase of the cement degradation. If the concrete aggregate contains SiO{sub 2} the cement minerals may degrade due to an alkali-silica-aggregate reaction. Silicon dioxide reacts with portlandite and forms C-S-H phases. This causes a decrease of the pore water pH and results in a complete dissolution of the cement minerals within some hundreds to a thousand years. The degradation of organic waste in a cementitious repository happens

  17. Influence of Cracks in Cementitious Engineered Barriers in a Near-Surface Disposal System: Assessment Analysis of the Belgian Case

    International Nuclear Information System (INIS)

    Perko, Janez; Seetharam, Suresh C.; Jacques, Diederik; Mallants, Dirk; Cool, Wim; Vermarien, Elise

    2013-01-01

    In large cement-based structures such as a near surface disposal facility for radioactive waste voids and cracks are inevitable. However, the pattern and nature of cracks are very difficult to predict reliably. Cracks facilitate preferential water flow through the facility because their saturated hydraulic conductivity is generally higher than the conductivity of the cementitious matrix. Moreover, sorption within the crack is expected to be lower than in the matrix and hence cracks in engineered barriers can act as a bypass for radionuclides. Consequently, understanding the effects of crack characteristics on contaminant fluxes from the facility is of utmost importance in a safety assessment. In this paper we numerically studied radionuclide leaching from a crack-containing cementitious containment system. First, the effect of cracks on radionuclide fluxes is assessed for a single repository component which contains a radionuclide source (i.e. conditioned radwaste). These analyses reveal the influence of cracks on radionuclide release from the source. The second set of calculations deals with the safety assessment results for the planned near-surface disposal facility for low-level radioactive waste in Dessel (Belgium); our focus is on the analysis of total system behaviour in regards to release of radionuclide fluxes from the facility. Simulation results are interpreted through a complementary safety indicator (radiotoxicity flux). We discuss the possible consequences from different scenarios of cracks and voids. (authors)

  18. Field-scale predictions of soil contaminant sorption using visible–near infrared spectroscopy

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Hermansen, Cecilie; Knadel, Maria

    2016-01-01

    . By means of the vis–NIR spectra we were able to predict phenanthrene (R2 = 0.95, RMSECV = 31 L kg−1) and glyphosate (R2 = 0.79, RMSECV = 45 L kg−1) sorption capacities. A model using vis–NIR spectra plus pH values improved the prediction of glyphosate sorption capacity (R2 = 0.88, RMSECV = 34 L kg−1......) and glyphosate (sorbed on mineral fractions). Forty-five bulk soil samples were collected from an agricultural field in Estrup, Denmark, in a 15 m × 15 m grid. Samples were air-dried, sieved to 2 mm and analysed for selected soil properties. Sorption coefficients were obtained from a batch equilibration...

  19. A review of sorption of radionuclides under the near- and far-field conditions of an underground radioactive waste repository. Pt. 1

    International Nuclear Information System (INIS)

    Berry, J.A.

    1992-01-01

    This report presents and discusses work funded by the Department of the Environment and UK Nirex Ltd in the area of sorption of radionuclides under near-field and far-field conditions as related to the underground disposal of radioactive waste in the UK. It is intended as a basis for comparison with work undertaken world-wide in the sorption area, presented in Part II of this review. The UK and overseas work are compared in Part III. From lists of reports and papers supplied by DOE (HMIP) and Nirex, those publications believed to be relevant were selected and are listed here by subject. Summaries of all these reports are included in the form of abstracts, or where available, executive summaries. The work presented is further summarised and discussed. Sections on sorption and laboratory experimental methods are included, along with a section on the level of understanding and outstanding issues. (Author)

  20. A review of sorption of radionuclides under the near- and far-field conditions of an underground radioactive waste repository. Pt. 3

    International Nuclear Information System (INIS)

    Berry, J.A.

    1992-01-01

    This report summarises work funded by the Department of the Environment and UK Nirex Ltd in the area of sorption of radionuclides under the near-field and far-field conditions pertaining to the underground disposal of radioactive waste in the UK that was presented and discussed in Part I. The report also summarises comparable research undertaken overseas (presented in Part II). (author)

  1. Evolution of near-field physico-chemical characteristics of the SFR repository

    Energy Technology Data Exchange (ETDEWEB)

    Savage, D [Quintessa Ltd., Nottingham (United Kingdom); Stenhouse, M [Monitor Scientific LLC, Denver, CO (United States); Benbow, S [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10{sup -3} M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10{sup -3} M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR

  2. Evolution of sorption properties in large-scale concrete structures accounting for long-term physical-chemical concrete degradation - 59297

    International Nuclear Information System (INIS)

    Perko, Janez; Jacques, Diederik; Mallants, Dirk; Seetharam, Suresh

    2012-01-01

    , Belgium: (i) The procedure begins by the selection of sorption and solubility values pertinent to the type of concrete used for the Dessel near-surface facility. The selection procedure is transparently documented and published in two NIRAS/ONDRAF reports . These reports define sorption values for four distinct chemical degradation states of concrete used in the safety assessments. Most of the selected data is based on experimental sorption data at laboratory scale with benchmark cements. (ii) Cement, however, occupies only a fraction of the total volume of concrete and rescaling of cement sorption values to concrete is an important issue. Though very obvious, this rescaling could be a source of wrong interpretation and, to authors' knowledge, has never been addressed in long-term safety assessments. (iii) Long term evolution of concrete is modelled by the use of a geochemical model supported by a state-of-the-art thermodynamic database. The long-term evolution of the cementitious near field SSCs at the Dessel facility is based on leaching of the reactive phases from the concrete. Evolution of sorption parameters follows the evolution of these cement phases. Distinct sorption values for specific chemical degradation states are linked to the evolution of the calcium silicate hydrates (C-S-H phases) in the cement because they were judged to offer the most robust and unique behaviour applicable to all radionuclides. (iv) Final use of sorption values in safety assessment depends on the conceptual model and purpose of the model. Few examples are discussed in this paper. (authors)

  3. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    International Nuclear Information System (INIS)

    Berner, U.

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In this case, significant

  4. Project Opalinus Clay: Radionuclide Concentration Limits in the Cementitious Near-Field of an ILW Repository

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U

    2003-05-01

    The disposal feasibility study currently performed by Nagra includes a succession of quantitative models, aiming at describing the fate of radionuclides potentially escaping from the repository system. In this chain of models the present report provides the so called 'solubility limits' (maximum expected concentrations) for safety relevant radionuclides from ILW wastes, disposed of in a chemically reducing, cementitious environment. From a chemical point of view, the pore waters of hydrated cement matrices provide an exceptional environment. Compared with usual ground waters exhibiting pH-values of around 8, cement pore waters are strongly alkaline with pH-values from 12.5 to 13.5 and contain nearly no carbonate and only little sulfate. Oxides and hydroxides mainly determine solubility and speciation of the elements. Solubility and speciation calculations in cementitious pore waters were performed using the very recently updated Nagra/PSI Chemical Thermodynamic Data Base (TDB) for the majority of the 36 elements addressed as potentially relevant. Wherever possible, maximum concentrations compiled in this report were based on geochemical calculations. In order to ensure full traceability, all thermodynamic data not included in the TDB are explicitly specified in the document. For similar reasons the compilation of results (Table 1) clearly distinguishes between calculated and recommended items. The heading 'CALCULATED' lists maximum concentrations based on data fully documented in the TDB; results under the heading 'RECOMMENDED' include data from other sources. The pH sensitivity of the results was examined by performing calculations at pH 13.4, in accordance with the pH of non-altered cement pore water. Solubility increases predominantly for elements that tend to form anionic hydroxide complexes (Sn, Pd, Zr, Ni, Eu, Cd, Mo, Co). Oxidizing conditions around +350 mV might be expected in the environment of nitrate-containing wastes. In

  5. Microbiological activities in a shallow-ground repository with cementitious wasteform

    International Nuclear Information System (INIS)

    Varlakova, G.A.; Dyakonova, A.T.; Netrusov, A.I.; Ojovan, M.I.

    2012-01-01

    Cementitious wasteform with immobilised nuclear power plant operational radioactive waste disposed in a near surface testing repository for about 20 years have been analysed for microbiological activities. Clean cultures were selected from the main metabolic groups expected within repository environment e.g. anaerobic de-nitrifying, fermenting, sulphur-reducing, iron-reducing, and oxidizing, thio-bacterium and mushrooms. Microbiological species were identified within cementitious wasteform, in the clayey soil near the wasteform and in the contacting water. The most populated medium was the soil with microbial populations Bacillus, Pseudomonas and Micrococcus, and densities of populations up to 3.6*10 5 colony/g. Microbial populations of generic type Bacillus, Pseudomonas, Rhodococcus, Alcaligenes, Micrococcus, Mycobacterium, and Arthrobacter were identified within cementitious wasteform. Populations of Arthrobacter, Pseudomonas, Alcaligenes, Rhodococcus, Bacillus and Flavobacterium were identified in the water samples contacting the cementitious wasteform. Microbiological species identified are potential destructors of cementitious wasteform and containers. (authors)

  6. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities In Assessing The Degradation Of Cementitious Barriers

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. III [Savannah River Site (SRS), Aiken, SC (United States); Brown, K. G. [Vanderbilt University, Nashville, TN (United States); Kosson, D. S. [Vanderbilt University, Nashville, TN (United States); Garrabrants, A. C. [Vanderbilt University, Nashville, TN (United States); Sarkar, S. [Vanderbilt University, Nashville, TN (United States); van der Sloot, H. [Hans van der Sloot Consultancy (The Netherlands); Meeussen, J. C.L. [Nuclear Research and Consultancy Group, Petten (The Netherlands); Samson, E. [SIMCO Technologies Inc. , 1400, boul. du Parc - Technologique , Suite 203, Quebec (Canada); Mallick, P. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW , Washington, DC (United States); Esh, D. W. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Fuhrmann, M. J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States); Philip, J. [U .S. Nuclear Regulatory Commission , Washington, DC (United States)

    2013-01-11

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in Kd/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software

  7. Evolution of near-field physico-chemical characteristics of the SFR repository

    International Nuclear Information System (INIS)

    Savage, D.; Stenhouse, M.; Benbow, S.

    2000-08-01

    The evaluation of the post-closure performance of the SFR repository needs to consider time dependent evolution of the repository environment. Time-dependent reaction of near-field barriers (cement, steel, bentonite) with saturating groundwater will lead to the development of hyper alkaline repository pore fluids, chemically reducing conditions, and ultimately, the generation of gas through anaerobic corrosion of metals. Cement and concrete will act as chemical conditioning agents to minimise metal corrosion and ultimately, maximise radioelement sorption. The chemical and physical evolution of cement and concrete through reaction with ambient groundwater will thus affect sorption processes through changes in pH, complexing ligands, and solid surface properties. It is desirable that these changes be incorporated into the safety assessment. The sorption behaviour of radionuclides in cementitious systems has been reviewed in detail. The available evidence from experimental work carried out on the influence of organic materials on the sorption behaviour of radionuclides, indicates that most organic degradation products will not affect sorption significantly at the concentrations expected in a cementitious repository. The notable exception to this conclusion involves the degradation products of cellulose and, in particular, polycarboxylic acids represented by iso-saccharinic acid (ISA). Results using ISA indicate a significant reduction in sorption of Pu, by several orders of magnitude, for an ISA concentration of about 10 -3 M. More recent data indicate that the negative effect is not as great, though still significant. Therefore, some scoping calculations are advisable to determine how realistic an ISA concentration of about 10 -3 M would be for the SFR repository and to estimate concentrations of other relevant organic compounds, in particular EDTA, for comparison. Scoping calculations relevant to the longevity of hyper alkaline pore fluid conditions at SFR have been

  8. The Cementitious Barriers Partnership (CBP) Software Toolbox Capabilities in Assessing the Degradation of Cementitious Barriers - 13487

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.; Burns, H.H.; Langton, C.; Smith, F.G. III [Savannah River National Laboratory, Savannah River Site, Aiken SC 29808 (United States); Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S. [Vanderbilt University, Nashville, TN (United States); Van der Sloot, H. [Hans Van der Sloot Consultancy (Netherlands); Meeussen, J.C.L. [Nuclear Research and Consultancy Group, Petten (Netherlands); Samson, E. [SIMCO Technologies Inc., 1400, boul. du Parc-Technologique, Suite 203, Quebec (Canada); Mallick, P.; Suttora, L. [United States Department of Energy, 1000 Independence Ave. SW, Washington, DC (United States); Esh, D.W.; Fuhrmann, M.J.; Philip, J. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2013-07-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in K{sub d}/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP

  9. Sorption of caesium and strontium onto calcium silicate hydrate in saline groundwater

    International Nuclear Information System (INIS)

    Sugiyama, D.; Fujita, T.

    2005-01-01

    Full text of publication follows: In the concept for radioactive waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. The sorption of radionuclides onto cement materials, which controls the aqueous concentrations of elements in the pore-water, is a very important parameter when considering the release of radionuclides from the near field of a cementitious radioactive waste repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium (10 -5 ∼ 10 -2 mol dm -3 ) and sodium (10 -4 ∼ 10 -1 mol dm -3 ) onto Calcium Silicate Hydrate (C-S-H gel, Ca/Si 0.65 ∼ 1.2) at a liquid:solid ratio of 100:1, to support the assumption. In addition, the competitive sorption between caesium or strontium, and sodium is studied by sorption measurements using a range of sodium chloride concentration to simulate different ionic strengths in saline groundwater. The initial and equilibrated aqueous compositions were measured in the sorption experiments and it was found that caesium, strontium and sodium were sorbed by substitution for Ca in C-S-H phases by examining the mass balance. Based on the experimental results, we propose a modelling approach in which the ion-exchange model is employed and the presence of some calcium sites with different ion-exchange log K values in C-S-H is assumed by considering the composition and the structure of C-S-H. The modelling calculation results predict the measured Rd values well and also describe the competition of sorption of caesium or strontium, and sodium in the experiments. The log K values for sorption of each cation element decreased as Ca/Si ratio of C-S-H gel increased. This agrees with the trend that C-S-H gel is negatively charged at low

  10. Near-field solubility studies

    International Nuclear Information System (INIS)

    Thomason, H.P.; Williams, S.J.

    1992-02-01

    Experimental determinations of the solubilities of americium, plutonium, neptunium, protactinium, thorium, radium, lead, tin, palladium and zirconium are reported. These elements have radioactive isotopes of concern in assessments of radioactive waste disposal. All measurements were made under the highly alkaline conditions typical of the near field of a radioactive waste repository which uses cementitious materials for many of the immobilisation matrices, the backfill and the engineered structures. Low redox potentials, typical of those resulting from the corrosion of iron and steel, were simulated for those elements having more than one accessible oxidation state. The dissolved concentrations of the elements were defined using ultrafiltration. In addition, the corrosion of iron and stainless steel was shown to generate low redox potentials in solution and the solubility of iron(II) at high pH was measured and found to be sufficient for it to act as a redox buffer with respect to neptunium and plutonium. (author)

  11. Variability Of KD Values In Cementitious Materials And Sediments

    International Nuclear Information System (INIS)

    Almond, P.; Kaplan, D.; Shine, E.

    2012-01-01

    values and solubility values differ from the sandy sediments. The K d value range and distribution currently used in the PA are estimated to range between 0.25*K d and 1.75*K d , where the minimum and maximum values of the ranges reflect the 95% confidence level for the mean K d value (Kaplan 2010). The objective of the research with cementitious materials was to measure the range and distribution of a monovalent (Cs) and I - (anion), divalent (Sr), and trivalent (Eu) ions for a variety of laboratory-prepared saltstone surrogate samples to establish a K d range other than that which is presently used in the PA. It has been observed in laboratory samples that cure temperature profiles can affect properties such as heat of hydration, permeability, porosity, compressive strength, and set time (Harbour et al. 2009). The intent was to identify a range and distribution that could be used by stochastic modelers for the PA. Furthermore, the intent was to replace the arbitrarily selected distributions based on geological sandy sediments and to base it on actual cementitious materials. The scope of this study did not include understanding saltstone sorption mechanisms responsible for increasing or decreasing sorption. Similar to the work with cementitious materials, the purpose of the Pu sediment K d dataset was not to attempt to understand through statistics how to better understand Pu sorption to sediments or to lower Pu K d variance. The sediment Pu K d data is included in this study because it is a key risk driver for the PAs on the SRS, and there is presently no direct studies of Pu variability in SRS soils. Instead the distribution of Pu sediment K d values was assumed to be similar to other cations, as presented by Kaplan (2010).

  12. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    International Nuclear Information System (INIS)

    Wieland, E.

    2001-06-01

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH) 2 - controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the

  13. Near Field sorption Data Bases for Compacted MX-80 Bentonite for Performance Assessment of a High-Level Radioactive Waste Repository in Opalinus Clay Host Rock

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.; Baeyens, B

    2003-08-01

    Bentonites of various types and compacted forms are being investigated in many countries as backfill materials in high-level radioactive waste disposal concepts. Nagra is currently considering an Opalinus clay (OPA) formation in the Zuercher Weinland as a potential location for a high-level radioactive waste repository. A compacted MX-80 bentonite is foreseen as a potential backfill material. Performance assessment studies will be performed for this site and one of the requirements for such an assessment are sorption data bases (SDB) for the bentonite near-field. The purpose of this report is to describe the procedures used to develop the SDB. One of the pre-requisites for developing a SDB is a water chemistry for the compacted bentonite porewater. For a number of reasons mentioned in the report, and discussed in more detail elsewhere, this is not a straightforward task. There are considerable uncertainties associated with the major ion concentrations and in particular with the system pH and Eh. The MX-80 SDB was developed for a reference bentonite porewater (pH = 7.25) which was calculated using the reference OPA porewater. In addition, two further SDBs are presented for porewaters calculated at pH values of 6.9 and 7.9 corresponding to lower and upper bound values calculated for the range of groundwater compositions anticipated for the OPA host rock. 'In house' sorption isotherm data were measured for Cs(I), Ni(II), Eu(III), Th(IV), Se(IV) and 1(-1) on the 'as received' MX-80 material equilibrated with a simulated porewater composition. Complementary 'in house' sorption edge and isotherm measurements on conditioned Na/Ca montmorillonites were also available for many of these radionuclides. These data formed the core of the SDB. Nevertheless, some of the required sorption data still had to be obtained from the open literature. An important part of this report is concerned with describing selection procedures and the modifications

  14. Prediction of the glyphosate sorption coefficient across two loamy agricultural fields

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Norgaard, Trine; Moldrup, Per

    2015-01-01

    , suggesting that different properties control glyphosate sorption in different locations and at different scales of analysis. Better predictions were obtained for the best-four set for the field in Estrup (R2 = 0.87) and for both fields (R2 = 0.70), while the field in Silstrup showed a lower predictability (R......2 = 0.36). Possibly, the low predictability for the field in Silstrup originated from opposing gradients in clay and oxalate-extractable Fe across the field. Also, whereas a lower clay content in Estrup may be the limiting variable for glyphosate sorption, the field in Silstrup has a higher clay...... sorption coefficient, Kd, from easily measurable soil properties in two loamy, agricultural fields in Denmark: Estrup and Silstrup. Forty-five soil samples in Estrup and 65 in Silstrup were collected fromthe surface in a rectangular grid of 15 × 15-mfromeach field, and selected soil properties...

  15. Radionuclide and metal sorption on cement and concrete

    CERN Document Server

    Ochs, Michael; Wang, Lian

    2016-01-01

    Cementitious materials are being widely used as solidification/stabilisation and barrier materials for a variety of chemical and radioactive wastes, primarily due to their favourable retention properties for metals, radionuclides and other contaminants. The retention properties result from various mineral phases in hydrated cement that possess a high density and diversity of reactive sites for the fixation of contaminants through a variety of sorption and incorporation reactions. This book presents a state of the art review and critical evaluation of the type and magnitude of the various sorption and incorporation processes in hydrated cement systems for twenty-five elements relevant for a broad range of radioactive and industrial wastes. Effects of cement evolution or ageing on sorption/incorporation processes are explicitly evaluated and quantified. While the immobilisation of contaminants by mixing-in during hydration is not explicitly addressed, the underlying chemical processes are similar. A quantitativ...

  16. Effects of cellulosic degradation products on uranium sorption in the geosphere

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Boult, K.A.; Brownsword, M.; Linklater, C.M.

    1994-01-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  17. Effects of cellulosic degradation products on uranium sorption in the geosphere

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Berry, J.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Bond, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Boult, K.A. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Brownsword, M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom)); Linklater, C.M. (AEA Technology, Harwell, Didcot, Oxon OX11 0RA (United Kingdom))

    1994-10-01

    The current design concept for intermediate- and some low-level radioactive waste disposal in the UK involves emplacement in a cementitious repository deep underground. The movement of radionuclides away from such a repository through the host rock formation towards the biosphere is expected to be retarded to a significant degree by sorption processes. One major issue being studied is the effect on uranium sorption of degradation products arising from organic waste matter, especially cellulosic materials. The sorption of uranium could be reduced by degradation products, either because of complexation, or through the organic materials competing for sorption sites. Because of the complexity of authentic degradation products, work has also been carried out using gluconate and iso-saccharinate as well-characterised simulants. In the presence of high concentrations of either the authentic or simulated degradation products, significant reductions in uranium sorption have been observed. However, in the presence of lower concentrations of these organic materials, such as would be present in the repository, sorption was reduced at most by only a small margin and, in some cases, the results suggested a slight increase. ((orig.))

  18. Modelling Long-Term Evolution of Cementitious Materials Used in Waste Disposal

    International Nuclear Information System (INIS)

    Jacques, D.; Perko, J.; Seetharam, S.; Govaerts, J.; Mallants, D.

    2013-01-01

    This report summarizes the latest developments at SCK-CEN in modelling long-term evolution of cementitious materials used as engineered barriers in waste disposal. In a first section chemical degradation of concrete during leaching with rain and soil water types is discussed. The geochemical evolution of concrete thus obtained forms the basis for all further modelling. Next we show how the leaching model is coupled with a reactive transport module to determine leaching of cement minerals under diffusive or advective boundary conditions. The module also contains a simplified microstructural model from which hydraulic and transport properties of concrete may be calculated dynamically. This coupled model is simplified, i.e. abstracted prior to being applied to large-scale concrete structures typical of a near-surface repository. Both the original and simplified models are then used to calculate the evolution of hydraulic, transport, and chemical properties of concrete. Characteristic degradation states of concrete are further linked to distribution ratios that describe sorption onto hardened cement via a linear and reversible sorption process. As concrete degrades and pH drops the distribution ratios are continuously updated. We have thus integrated all major chemical and physical concrete degradation processes into one simulator for a particular scale of interest. Two simulators are used: one that can operate at relatively small spatial scales using all process details and another one which simulates concrete degradation at the scale of the repository but with a simplified cement model representation. (author)

  19. Effects of organic degradation products on the sorption of actinides

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH ∝ 11) and at the edge of the zone of migration of the alkaline plume (pH ∝ 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.)

  20. Yucca Mountain Project far-field sorption studies and data needs

    International Nuclear Information System (INIS)

    Meijer, A.

    1990-09-01

    Batch sorption experiments in which radionuclides dissolved in groundwaters from Yucca Mountain were sorbed onto samples of crushed tuff have resulted in a substantial database of sorption coefficients for radionuclides of interest to the repository program. Although this database has been useful in preliminary evaluations of Yucca Mountain as a potential site for a nuclear waste repository, the database has limitations that must be addressed before it can be used for performance assessment calculations in support of a license application for a waste repository. The purpose of this paper is to: review the applicability of simple (constant) sorption coefficients in transport calculations; review and evaluate alternative methods for the derivation of sorption coefficients; summarize and evaluate the present YMP sorption database to identify areas of data sufficiency and significant data gaps; summarize our current understanding of pertinent sorption mechanisms and associated kinetic parameters; evaluate the significance to the YMP of potential problems in the experimental determination and field application of sorption coefficients as enumerated by the NRC (Nuclear Regulatory Commission, 1987) in its technical position paper on sorption; formulate and evaluate strategies for the resolution of NRC concerns regarding experimental problems; and formulate a position on the sorption coefficient database and the level of understanding of sorption mechanisms likely to be required in the licensing application. 75 refs., 1 fig., 2 tabs

  1. Experimental studies on the inventory of cement-derived colloids in the pore water of a cementitious backfill material

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E

    2001-06-01

    The potential role of near-field colloids for the colloid-facilitated migration of radionuclides has stimulated investigations concerning the generation and presence of colloids in the near-field of a repository for low- and intermediate level waste (L/ILW). The highly gas permeable mortar (Nagra designation: mortar M1) is currently favoured as backfill material for the engineered barrier of the planned Swiss L/ILW repository. The cementitious backfill is considered to be a chemical environment with some potential for colloid generation. In a series of batch-style laboratory experiments the physico-chemical processes controlling the inventory of colloids in cement pore water of the backfill were assessed for chemical conditions prevailing in the initial stage of the cement degradation. In these experiments, backfill mortar M1 or quartz, respectively, which may be used as aggregate material for the backfill, were immersed in artificial cement pore water (a NaOH/KOH rich cement fluid). Colloid concentrations in the cement pore water were recorded as a function of time for different experimental settings. The results indicate that a colloid-colloid interaction process (coagulation) controlled the colloid inventory. The mass concentration of dispersed colloids was found to be typically lower than 0.02 ppm in undisturbed batch systems. An upper-bound value was estimated to be 0.1 ppm taking into account uncertainties on the measurements. To assess the potential for colloid generation in a dynamic system, colloid concentrations were determined in the pore water of a column filled with backfill mortar. The chemical conditions established in the mortar column corresponded to conditions observed in the second stage of the cement degradation (a Ca(OH){sub 2{sup -}} controlled cement system). In this dynamic system, the upper-bound value for the colloid mass concentration was estimated to be 0.1 ppm. Implications for radionuclide mobility were deduced taking into account the

  2. Effects of carbonation, irradiation and temperature onto strontium immobilization into a cementitious matrix

    International Nuclear Information System (INIS)

    Bar-Nes, G.; Arbel-Haddad, M.; Chomat, L.; Poyet, S.; Mace, N.; Hossepied, C.

    2015-01-01

    In the present study, the decoupled effects of carbonation, irradiation and temperature on strontium immobilization in a CEM-I cement matrix are described. After 6 months of treatment, mineralogical characterization (X-ray diffraction - XRD and thermogravimetric analysis - TGA), leaching tests (according to ANSI.ANS-16.1 standard method) and sorption experiments were carried out. The mineralogical evolution was shown to be similar for samples submitted to irradiation at atmospheric conditions or carbonation at a controlled temperature of 40 C. degrees. The main mineralogical change during these two treatments is the formation of calcium carbonate; calcite is detected at the sample surface and the two carbonate metastable phases (aragonite and vaterite) in the depth of the sample. Although it was not possible to identify, by the techniques used, the association of Sr with any specific cementitious phase present in the investigated samples, the leaching results showed that the fraction of Sr leached from samples exposed to carbonation during their degradation process, was approximately 6 times lower compared to the corresponding samples degraded under inert conditions. The sorption experiments onto the hydrated cement paste show a small but significant retention of Sr in these matrices without allowing a possible identification of the phase responsible for the retention. Post leaching mineralogical characterization is to be performed in order to study the effect of the leaching process on the sample mineralogy and to locate the binding sites of the Sr ions within the cementitious paste. (authors)

  3. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    International Nuclear Information System (INIS)

    Lenell, Brian A.; Arai, Yuji

    2017-01-01

    Graphical abstract: Ammonium adsorption enhanced ReO 4 − adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O 2 . • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O 4 − , in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O 4 − , as an analogue for Tc(VII)O 4 − . Batch Re(VII)O 4 − sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O 2 (s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH 4 + (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO 4 − under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  4. Chemical effects in the near-field

    International Nuclear Information System (INIS)

    Ewart, F.T.; Tasker, P.W.

    1987-01-01

    A research program is described which is designed to investigate the chemical conditions in the near-field of a concrete based repository and the behavior of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a new coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. Results are reported for plutonium, americium, neptunium and lead; these results have been under to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behavior of plutonium and americium, under the same conditions, have been studied, the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio

  5. Effects of organic degradation products on the sorption of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M. (AEA Decommissioning and Radwaste, Harwell Lab. (United Kingdom))

    1992-01-01

    Previous work has shown that products from the chemical degradation of cellulosic matter can significantly reduce sorption of uranium(VI) and plutonium(IV) on geological materials. Uranium(IV) batch sorption experiments have now been performed to study the effect of organic degradation products in a reducing environment. Thorium(IV) sorption has also been studied since thorium is an important radioelement in its own right and has potential use as a simulant for other tetravalent actinides. Sorption onto London clay, Caithness flagstones and St. Bees sandstone was investigated. Experimental conditions were chosen to simulate both those expected close to cementitious repository (pH [proportional to] 11) and at the edge of the zone of migration of the alkaline plume (pH [proportional to] 8). Work was carried out with both authentic degradation products and with gluconate, acting as a well-characterized simulant for cellulosic degradation products. The results show that the presence of organic species can cause a reduction in sorption. This is especially so in the presence of a high concentration of gluconate ions, but the reduction is significantly less with authentic degradation products. (orig.).

  6. The solubility of nickel and its migration through the cementitious backfill of a geological disposal facility for nuclear waste.

    Science.gov (United States)

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Holt, J D; Taylor, S E; Read, D

    2016-08-15

    This work describes the solubility of nickel under the alkaline conditions anticipated in the near field of a cementitious repository for intermediate level nuclear waste. The measured solubility of Ni in 95%-saturated Ca(OH)2 solution is similar to values obtained in water equilibrated with a bespoke cementitious backfill material, on the order of 5×10(-7)M. Solubility in 0.02M NaOH is one order of magnitude lower. For all solutions, the solubility limiting phase is Ni(OH)2; powder X-ray diffraction and scanning transmission electron microscopy indicate that differences in crystallinity are the likely cause of the lower solubility observed in NaOH. The presence of cellulose degradation products causes an increase in the solubility of Ni by approximately one order of magnitude. The organic compounds significantly increase the rate of Ni transport under advective conditions and show measurable diffusive transport through intact monoliths of the cementitious backfill material. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ancient analogues concerning stability and durability of cementitious wasteform

    International Nuclear Information System (INIS)

    Jiang, W.; Roy, D.M.

    1994-01-01

    The history of cementitious materials goes back to ancient times. The Greeks and Romans used calcined limestone and later developed pozzolanic cement by grinding together lime and volcanic ash called open-quotes pozzolanclose quotes which was first found near Port Pozzuoli, Italy. The ancient Chinese used lime-pozzolanic mixes to build the Great Wall. The ancient Egyptians used calcined impure gypsum to build the Great Pyramid of Cheops. The extraordinary stability and durability of these materials has impressed us, when so much dramatically damaged infrastructure restored by using modern portland cement now requires rebuilding. Stability and durability of cementitious materials have attracted intensive research interest and contractors' concerns, as does immobilization of radioactive and hazardous industrial waste in cementitious materials. Nuclear waste pollution of the environment and an acceptable solution for waste management and disposal constitute among the most important public concerns. The analogy of ancient cementitious materials to modern Portland cement could give us some clues to study their stability and durability. This present study examines selected results of studies of ancient building materials from France, Italy, China, and Egypt, combined with knowledge obtained from the behavior of modern portland cement to evaluate the potential for stability and durability of such materials in nuclear waste forms

  8. Diffusion and sorption on hardened cement pastes - experiments and modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Jakob, A.; Sarott, F.-A.; Spieler, P.

    1999-08-01

    Large parts of repositories for low and intermediate level radioactive waste consist of cementitious materials. Radionuclides are transported by diffusion in the cement matrix or, in case of fractured or highly permeable cement, by advection and dispersion. In this work we aim at a mechanistic understanding of diffusion processes of some reactive tracers. On the laboratory scale, ten through-diffusion experiments were performed to study these processes for Cl{sup -}, I{sup -}, Cs{sup +} and Ni{sup 2+} ions in a Sulphate Resisting Portland Cement (SRPC) equilibrated with an artificial pore water. Some of the experiments continued up to nearly three years with daily measurements. In all the experiments, a cement disk initially saturated with an artificial pore water was exposed on one side to a highly diluted solution containing the species of interest. On the second side, a near-zero concentration boundary was maintained to drive through-diffusion of the tracer. The changes of concentrations on both sides of the samples were monitored, allowing careful mass balances. From these data, values of the diffusive flux and the mass of tracer taken up by the cementitious material were determined as a function of time. In the subsequent modelling, the time histories of these tracer breakthroughs were fitted using five different models. The simplest model neglects all retarding mechanisms except pure diffusion. More complex models either account for instantaneous equilibrium sorption in form of linear or non-linear (Freundlich) sorption or for first-order sorption kinetics where the forward reaction may be linear or non-linear according to the Freundlich isotherm, while the back-reaction is linear. Hence, the analysis allows the extraction of the diffusion coefficient and parameter values for the sorption isotherm or rate-constants for sorption and desorption. The fits to the experimental data were carried out by an automated Marquardt-Levenberg procedure yielding error

  9. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  10. Description of near-tip fracture processes in strain hardening cementitious composites using image-based analysis and the compact tension test

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2013-01-01

    The cracking mechanisms assume a key role in the composite behavior of Strain Hardening Cementitious Composites (SHCCs). Due to their importance, in previous studies the mechanical behavior of SHCC materials, as well as of other strain softening fiber reinforced cementitious composites......, was characterized under eccentric tensile loading using the Compact Tension Test (CTT). The present research further extends this investigation, with particular emphasis on cementitious composites reinforced with multiple types of fibers. The experimental tensile load-displacement results are discussed and compared...

  11. Carbonation of ternary cementitious concrete systems containing fly ash and silica fume

    Directory of Open Access Journals (Sweden)

    Eehab Ahmed Badreldin Khalil

    2015-04-01

    Full Text Available Carbonation is quite a complex physical negative effect phenomenon on concrete especially in the ones containing ternary blends of Portland Cement, fly ash, and silica fume. Nine selected concrete mixtures were prepared with various water to cementitious materials’ ratios and various cementitious contents. The concrete mixtures were adapted in such a way to have the same workability and air content. The fresh concrete properties were kept near identical in slump, air content, and unit weight. The variation was in the hardened concrete mechanical properties of compression and tension strength. The carbonation phenomenon was studied for these mixes showing at which mixes of ternary cementitious content heavy carbonation attacks maybe produced. The main components of such mixes that do affect the carbonation process with time were presented.

  12. Field tests on migration of TRU-nuclide, (2). Migration test for engineered barrier materials in aerated soil

    International Nuclear Information System (INIS)

    Maeda, Toshikatsu; Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Field tests on migration of radionuclides for engineered barrier materials such as bentonite and cementitious materials were performed. The tests were run under both wet conditions with artificial rainfall and dry conditions with natural rainfall. Laboratory experiments such as batch adsorption tests were also conducted to analyze the result of field test. The results of field tests agreed with the predicted moisture conditions and the migration behaviors observed at the laboratory experiment that is reported so far. For bentonite material, the movements of the tracer were calculated using known information such as the results of batch sorption tests and migration mechanism. Comparing the result of field test and calculations, it is suggested that tracer migration behavior in bentonite material in field can be evaluated quantitatively by the known migration mechanism and the results of laboratory experiments such as batch sorption test. (author)

  13. Perrhenate sorption kinetics in zerovalent iron in high pH and nitrate media

    Energy Technology Data Exchange (ETDEWEB)

    Lenell, Brian A.; Arai, Yuji, E-mail: yarai@illinois.edu

    2017-01-05

    Graphical abstract: Ammonium adsorption enhanced ReO{sub 4}{sup −} adsorption in ZVI under alkaline conditions (modified from Cho et al., 2015) [39]. - Highlights: • ZVI effectively sorbs Re(VII) at near neutral pH. • Sorption of Re(VII) in ZVI is attributed to the reductive precipitation of Re(IV)O{sub 2}. • The extent of Re(VII) sorption in ZVI decreases with increasing pH from 8 to 10. • The rate of Re(VII) sorption in ZVI increases with increasing nitrate concentration. - Abstract: Technetium(Tc)-99 is one of major risk drivers in low level radioactive liquid waste at the U.S. Department of Energy sites. Cementitious waste technology (CWT) has been considered immobilizing pertechnetate, Tc(VII)O{sub 4}{sup −}, in brine and alkaline waste solutions, as Tc(IV) oxides and/or sulfides with the use of reducing agents like slag. In this study, zero valent iron (ZVI) was evaluated as a potential reducing agent in CWT as a function of pH and [nitrate] (0–0.1 M) using perrhenate, Re(VII)O{sub 4}{sup −}, as an analogue for Tc(VII)O{sub 4}{sup −}. Batch Re(VII)O{sub 4}{sup −} sorption experiments in conjunction with X-ray absorption spectroscopic analysis showed that the Re(VII) sorption occurred via the reductive precipitation of Re(IV)O{sub 2}(s) and the extent of sorption decreased with increasing pH from 8 to 10. Interestingly, pseudo 2nd order kinetic rates increased with increasing [nitrate] which was attributed to co-adsorption of NH{sub 4}{sup +} (i.e., a reaction product of reduced nitrate by ZVI), facilitating electrostatic attraction towards ReO{sub 4}{sup −} under alkaline conditions. Considering the thermodynamically favorable reduction of Tc(VII) over Re(VII), ZVI might have potential for improving the reduction capacity of the current CWT.

  14. Cementitious Barriers Partnership FY2013 End-Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States); Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States); Kosson, D. S. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Brown, K. G. [Vanderbilt University, School of Engineering, Nashville, TN (United States); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Meeussen, J. C.L. [Nuclear Research and Consultancy Group (NRG), Petten (The Netherlands); van der Sloot, H. A. [Hans van der Sloot Consultancy, Langedijk (The Netherlands); Garboczi, E. J. [Materials & Construction Research Division, National Institute of Standards and Technology, Gaithersburg, MD (United States)

    2013-11-01

    hydraulic and constituent mass transfer parameters needed in modeling. Two CBP software demonstrations were conducted in FY2013, one to support the Saltstone Disposal Facility (SDF) at SRS and the other on a representative Hanford high-level waste tank. The CBP Toolbox demonstration on the SDF provided analysis on the most probable degradation mechanisms to the cementitious vault enclosure caused by sulfate and carbonation ingress. This analysis was documented and resulted in the issuance of a SDF Performance Assessment Special Analysis by Liquid Waste Operations this fiscal year. The two new software tools supporting chloride attack and dual-regime flow will provide additional degradation tools to better evaluate performance of DOE and commercial cementitious barriers. The CBP SRNL experimental program produced two patent applications and field data that will be used in the development and calibration of CBP software tools being developed in FY2014. The CBP software and simulation tools varies from other efforts in that all the tools are based upon specific and relevant experimental research of cementitious materials utilized in DOE applications. The CBP FY2013 program involved continuing research to improve and enhance the simulation tools as well as developing new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools through laboratory experiments and analysis of field specimens are ongoing and will continue into FY2014 to quantify and reduce the uncertainty associated with performance assessments. This end-year report summarizes FY2013 software development efforts and the various experimental programs that are providing data for calibration and validation of the CBP developed software.

  15. Prediction of transport phenomena in near and far field: interaction solid phase/fluid phase

    International Nuclear Information System (INIS)

    Mingarro, E.

    1995-01-01

    The prediction of transport phenomena in near and far field is presented in the present report. The study begins with the analysis of solid phases stability: solubility of storage waste: UO 2 and solubility of radionuclides the redox and sorption-desorption conditions are the last aspects studied to predict the transport phenomena

  16. A literature survey of mineral-specific sorption data on radionuclides with relevance to the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Delakowitz, B.; Meinrath, G.; Spiegel, W.

    1996-01-01

    A comparative review of mineral-specific radionuclide sorption databases created for performance assessment and reported in both the open literature and 'grey literature' (e.g. technical reports) has in part shown poor quality of documentation describing the database selection procedures. Inadequate information is available on the chemical species of the radionuclide under consideration and the laboratory conditions for determining K d -values. Sorption data derived from literature are neither comparable nor generally applicable due to the wide range in the composition of the aqueous and the solid phase applied in migration experiments. Subsequently, standardized characterization and determination procedures are needed. To improve the reliability of a mathematical model for the prediction of radionuclide sorption on cementitious and ash-type binder materials, determination of mineral-specific sorption coefficients is indispensable. (author). 31 refs., 1 fig., 2 tabs

  17. Sorption mechanisms and sorption models

    International Nuclear Information System (INIS)

    Fedoroff, M.; Lefevre, G.; Duc, M.; Neskovic, C.; Milonjic, S.

    2004-01-01

    Sorption at the solid-liquid interfaces play a major role in many phenomena and technologies: chemical separations, catalysis, biological processes, transport of toxic and radioactive species in surface and underground waters. The long term safety of radioactive waste repositories is based on artificial and natural barriers, intended to sorb radionuclides after the moment when the storage matrixes and containers will be corroded. Predictions on the efficiency of sorption for more than 10 6 years have to be done in order to demonstrate the safety of such depositories, what is a goal never encountered in the history of sciences and technology. For all these purposes, and, especially for the long term prediction, acquiring of sorption data constitutes only a first step of studies. Modeling based on a very good knowledge of sorption mechanisms is needed. In this review, we shall examine the main approaches and models used to quantify sorption processes, including results taken from the literature and from our own studies. We shall compare sorption models and examine their adequacy with sorption mechanisms. The cited references are only a few examples of the numerous articles published in that field. (orig.)

  18. Determination of field-based sorption isotherms for Cd, Cu, Pb and Zn in Dutch soils

    NARCIS (Netherlands)

    Otte JG; Grinsven JJM van; Peijnenburg WJGM; Tiktak A; LBG; ECO

    1999-01-01

    Sorption isotherms for metals in soil obtained in the laboratory generally underpredict the observed metal content in the solid phase in the field. Isotherms based on in-situ data are therefore required. The aim of this study is to obtain field-based sorption isotherms for Cd, Cu, Pb and Zn as input

  19. Influence of sorption competition on sorption data for MX-80 bentonite used in performance assessment

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.; Marques Fernandes, M.

    2012-01-01

    Document available in extended abstract form only. In order to obtain a (quasi) mechanistic understanding of radionuclide uptake on clay minerals and argillaceous rocks, the majority of sorption experiments have been carried out on purified clay minerals such as montmorillonite and illite at trace concentrations (sorption edges), or as a function of concentration (sorption isotherms), with a single radionuclide under well-defined conditions in simple background electrolytes. As a result of such studies the 2 site proto-lysis non electrostatic surface complexation cation exchange (2SPNE SC/CE) sorption model, was developed and has been successfully applied to quantitatively describe the uptake of numerous radionuclides of differing valences as a function of pH and concentration on montmorillonite. In a deep geological repository for high level waste, stable impurities arise from many sources: they are present in the pore waters, in the tunnel back fill materials and host rock formations, they arise from the corrosion of the carbon steel canister and finally they are dissolved from the spent fuel and vitrified high level waste simultaneously with the radionuclides. These impurities, which are an integral part of a realistic repository system, can potentially compete with radionuclides for the sorption sites on the backfill materials and host rock and thus reduce their uptake on them. The influence of competitive sorption is not intrinsically included (or only partly so) in the sorption model. It is clearly an inherently important issue to quantify the influence of sorption competition on the transport of released radionuclides through the multi-barrier system in a deep repository. In this study an extreme case of a competitive sorption scenario in the near field of a HLW repository is presented. Two factors are considered: one associated with the high concentrations and the other with competitive sorption effects. The tendency in both cases is to cause a reduction in

  20. Assessment of the safety reserve offered by a concrete buffer in case of a geological repository in clay

    International Nuclear Information System (INIS)

    Govaerts, Joan; Weetjens, Eef; Marivoet, Jan

    2012-01-01

    Performance assessment calculations have been performed to investigate if the sorption of 14 C, 36 Cl and 129 I on the cementitious materials occurring in the near field of the repository on the diffusion would offer an extra safety reserve to deep disposal of vitrified HLW. Four cases have been studied: a reference case with no cementitious material and three cases in which the considered concrete region was subsequently extended to the buffer, backfill and gallery liner. The results show a beneficial impact on peak dose and residence time of the three radionuclides. The effect on total released fractions is very high for 14 C, moderate for 36 Cl and small for 129 I

  1. Studies of the effects of organic materials on the sorption of uranium and plutonium

    International Nuclear Information System (INIS)

    Berry, J.A.; Bond, K.A.; Ferguson, D.R.; Pilkington, N.J.

    1989-10-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium and plutonium on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH ∼ 11) and at the edge of the zone of migration of the calcium plume (pH ∼ 8). Work was carried out (i) under baseline conditions, in the absence of organic materials (ii) with gluconate, acting as a well-characterised simulant (iii) with authentic degradation products. These experimental studies are complemented by thermodynamic modelling work, the results of which are presented in a companion paper. The results have shown that organic degradation products can have a marked effect on sorption and the present work provides further evidence of the need to take account of the presence of such materials in safety assessment modelling. (author)

  2. Predictivity strength of the spatial variability of phenanthrene sorption across two sandy loam fields

    DEFF Research Database (Denmark)

    Soares, Antonio; Paradelo Pérez, Marcos; Møldrup, Per

    2015-01-01

    Sorption is commonly suggested as the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, studies focusing in spatial variability at the field scale in particular are still scarce. In order to investigate the sorption of phenanthrene...

  3. Crack formation in cementitious materials used for an engineering barrier system and their impact on hydraulic conductivity from the viewpoint of performance assessment of a TRU waste disposal system

    International Nuclear Information System (INIS)

    Hirano, Fumio; Mihara, Morihiro; Honda, Akira; Otani, Yoshiteru; Kyokawa, Hiroyuki; Shimizu, Hiroyuki

    2016-01-01

    The mechanical analysis code MACBECE2014 has been developed at the Japan Atomic Energy Agency (JAEA) to make realistic simulations of the physical integrity of the near field for performance assessment of the geological disposal of TRU waste in Japan. The MACBECE2014 code can be used to evaluate long-term changes in the mechanical behavior of the near field and any subsequent changes in the permeability of engineering barrier components, including crack formation in cementitious materials caused by expansion due to metal corrosion. Cracks in cementitious materials are likely to channel the flow of groundwater and so the represent preferred flow paths of any released radionuclides. Mechanical analysis was conducted using the MACBECE2014 code to investigate the concept of the TRU waste disposal system described in JAEA's Second Progress TRU Report. Simulated results of a disposal system with a bentonite buffer demonstrated that the low permeability of the engineering barrier system could be maintained for long time periods because the physical integrity of the bentonite buffer remained intact even if cracks in the cementitious components had formed locally. Simulated results of the disposal system with a concrete backfill instead of a bentonite buffer showed that crack formation leads to a significant increase in the permeability of the engineering barrier system. (author)

  4. Compositions and use of cementitious materials: experience from Onkalo

    International Nuclear Information System (INIS)

    Hansen, Johanna

    2012-01-01

    Johanna Hansen of Posiva in Finland summarised experiences of working with cementitious materials in the Finnish disposal programme. Posiva is responsible for geological disposal of spent nuclear fuel from the Finnish nuclear power plants at Loviisa and Olkiluoto. Posiva plans to submit a construction license application in 2012 and, if approved, repository construction will begin in 2014-2015. The geologic disposal facility will be a KBS-3 type repository at a depth of 400 to 500 m in crystalline bedrock. Construction of the repository will require using a large quantity of cementitious materials. A 2007 estimate indicated that approximately 20 million kilograms of cementitious material will be introduced into the repository, although much of this material will be removed, with only approximately 6 million kilograms remaining in the repository after closure, mostly in the form of tunnel plugs. To minimise the potential negative effects of cementitious materials, low-pH cement and colloidal silica both were studied as alternative materials. Based on experience gained in constructing the ONKALO underground characterisation facility, Posiva decided that from the spring 2008 onwards, mainly low-pH cement will be used as grouting material because the grout cannot be removed for repository closure. The low-pH grout is composed of Portland cement, silica fume, and super-plasticizer. Various recipes were tested in the laboratory, and field mixing and grouting tests were conducted at ONKALO. The effects of organics on radionuclide retention and the leaching of organics from the cement also were evaluated. The studies indicated no impediments to the use of low-pH grout at ONKALO and showed that low-pH cementitious grout has better penetration ability and stiffness than regular grout. It was also concluded that the amount of cementitious materials in the repository can be reduced with careful design; for this, cooperation is needed between repository designers and long

  5. Radionuclide sorption from the safety evaluation perspective

    International Nuclear Information System (INIS)

    1992-01-01

    Research and development directed towards the assessment of the long-term performance of radioactive waste disposal systems has been recognised as a priority area with a strong need for international co-operation and co-ordination. The ultimate aims is to promote the quality and credibility of safety assessment techniques for radioactive waste disposal. Sorption in the geosphere is one of the key processes for retarding the transport of radionuclide from the underground disposal facility to the biosphere. In many cases, sorption in the near field and in the biosphere is also important. A workshop, organised to favor discussion around a small number of invited papers, was held in October 1991: - to evaluate critically the way sorption processes are incorporated in performance assessment models; - to identify open issues of high priority, and; - to propose future activities to resolve these issues. These proceedings reproduce the invited papers and the conclusions and recommendations adopted by the workshop. Eight papers are in the INIS SCOPE. The main subjects studied are: sorption database comparison, sorption database development and three case studies, experimental techniques, adsorption models

  6. Cementitious materials for radioactive waste management within IAEA coordinated research project - 59021

    International Nuclear Information System (INIS)

    Drace, Zoran; Ojovan, Michael I.

    2012-01-01

    The IAEA Coordinated Research Project (CRP) on cementitious materials for radioactive waste management was launched in 2007 [1, 2]. The objective of CRP was to investigate the behaviour and performance of cementitious materials used in radioactive waste management system with various purposes and included waste packages, waste-forms and backfills as well as investigation of interactions and interdependencies of these individual elements during long term storage and disposal. The specific research topics considered were: (i) cementitious materials for radioactive waste packaging: including radioactive waste immobilization into a solid waste form, (ii) waste backfilling and containers; (iii) emerging and alternative cementitious systems; (iv) physical-chemical processes occurring during the hydration and ageing of cement matrices and their influence on the cement matrix quality; (v) methods of production of cementitious materials for: immobilization into wasteform, backfills and containers; (vi) conditions envisaged in the disposal environment for packages (physical and chemical conditions, temperature variations, groundwater, radiation fields); (vii) testing and non-destructive monitoring techniques for quality assurance of cementitious materials; (viii) waste acceptance criteria for waste packages, waste forms and backfills; transport, long term storage and disposal requirements;and finally (ix) modelling or simulation of long term behaviours of cementations materials used for packaging, waste immobilization and backfilling, especially in the post-closure phase. The CRP has gathered overall 26 research organizations from 22 Member States aiming to share their research and practices on the use of cementitious materials [2]. The main research outcomes of the CRP were summarized in a summary report currently under preparation to be published by IAEA. The generic topical sections covered by report are: a) conventional cementitious systems; b) novel cementitious

  7. Prediction of water vapour sorption isotherms and microstructure of hardened Portland cement pastes

    International Nuclear Information System (INIS)

    Burgh, James M. de; Foster, Stephen J.; Valipour, Hamid R.

    2016-01-01

    Water vapour sorption isotherms of cementitious materials reflect the multi-scale physical microstructure through its interaction with moisture. Our ability to understand and predict adsorption and desorption behaviour is essential in the application of modern performance-based approaches to durability analysis, along with many other areas of hygro-mechanical and hygro-chemo-mechanical behaviour. In this paper, a new physically based model for predicting water vapour sorption isotherms of arbitrary hardened Portland cement pastes is presented. Established thermodynamic principles, applied to a microstructure model that develops with hydration, provide a rational basis for predictions. Closed-form differentiable equations, along with a rational consideration of hysteresis and scanning phenomena, makes the model suitable for use in numerical moisture simulations. The microstructure model is reconciled with recently published 1 H NMR and mercury intrusion porosimetry results.

  8. Reactive transport model and apparent Kd of Ni in the near field of a HLW repository in granite

    Science.gov (United States)

    Lu, Chuanhe; Samper, Javier; Luis Cormenzana, José; Ma, Hongyun; Montenegro, Luis; Ángel Cuñado, Miguel

    2012-12-01

    Current performance assessment models for radionuclide migration through the near field of high-level radioactive waste repositories often rely on the assumption of a constant Kd for sorption. The validity of such assumption is evaluated here with a reactive transport model for Ni2+ in the near field of a repository in granite. Model results show that Ni2+ sorbs mainly by surface complexation on weak sorption sites. The apparent Kd of Ni2+, Kda, depends on the concentration of dissolved Ni and pH and is constant only when the concentration of dissolved Ni is smaller than 10-6 mol/L. The results of the sensitivity runs show that Kda is sensitive to the water flux at the bentonite-granite interface, the effective diffusion of the bentonite and the concentration of weak sorption sites of the bentonite. The competition of other nuclides such as Cs+ on Ni2+ sorption is not important. Corrosion products, however, affect significantly the sorption of Ni2+ on the bentonite. The model with a constant Kd does not reproduce the release rates of Ni2+ from the bentonite into the granite. A model with a variable Kd which depends on the concentration of dissolved Ni2+ and pH may provide an acceptable surrogate of the multicomponent reactive transport model for the conditions of the repository considered in our model. Simulations using the Kd-approach were performed with GoldSim based on the interpolation in the pH and concentration table, while the reactive transport model simulations were performed with CORE2D which incorporates multisite surface complexation.

  9. Concrete with supplementary cementitious materials

    OpenAIRE

    Jensen, Ole M; Kovler, Konstantin; De Belie, Nele

    2016-01-01

    This volume contains the proceedings of the MSSCE 2016 conference segment on “Concrete with Supplementary Cementitious Materials” (SCM). The conference segment is organized by the RILEM technical committee TC 238-SCM: Hydration and microstructure of concrete with supplementary cementitious materials. TC 238-SCM started activities in 2011 and has about 50 members from all over the world. The main objective of the committee is to support the increasing utilisation of hydraulic...

  10. Cementitious Barriers Partnership Accomplishments And Relevance To The DOE Complex

    International Nuclear Information System (INIS)

    Burns, H.; Langton, C.; Flach, G.; Kosson, D.

    2010-01-01

    The Cementitious Barriers Partnership (CBP) was initiated to reduce risk and uncertainties in the performance assessments that directly impact U.S. Department of Energy (DOE) environmental cleanup and closure programs. The CBP is supported by the DOE Office of Environmental Management (DOE-EM) and has been specifically addressing the following critical EM program needs: (i) the long-term performance of cementitious barriers and materials in nuclear waste disposal facilities and (ii) increased understanding of contaminant transport behavior within cementitious barrier systems to support the development and deployment of adequate closure technologies. To accomplish this, the CBP has two initiatives: (1) an experimental initiative to increase understanding of changes in cementitious materials over long times (> 1000 years) over changing conditions and (2) a modeling initiative to enhance and integrate a set of computational tools validated by laboratory and field experimental data to improve understanding and prediction of the long-term performance of cementitious barriers and waste forms used in nuclear applications. In FY10, the CBP developed the initial phase of an integrated modeling tool that would serve as a screening tool which could help in making decisions concerning disposal and tank closure. The CBP experimental programs are underway to validate this tool and provide increased understanding of how CM changes over time and under changing conditions. These initial CBP products that will eventually be enhanced are anticipated to reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the DOE assessment process. These tools have application to low activity waste forms, high level waste tank closure, D and D and entombment of major nuclear facilities, landfill waste acceptance criteria, and in-situ grouting and immobilization of vadose zone contamination. This paper

  11. Engineering feasibility for the fabrication and emplacement of cementitious repository materials: results from the EC-ESDRED project

    International Nuclear Information System (INIS)

    Alonso, Maria Cruz; Garcia-Sineriz, Jose Luis

    2012-01-01

    Maria Cruz Alonso of the Spanish National Research Council gave a presentation that summarised relevant findings on cementitious materials from the EC ESDRED (Engineering Studies and Demonstration of Repository Designs) Project. Concrete will be used for different purposes during the construction of geologic repositories for radioactive waste. These purposes include grouting, tunnel and drift lining, and tunnel plugging and sealing. Although some of the concrete may be removed before repository closure, a significant amount of concrete will remain in the repository. An important concern regarding the use of cementitious materials in geologic repositories for HLW and spent fuel is their interaction with the bentonite buffer, backfill material, and the host rock close to the repository near-field. For this reason, the ESDRED project has developed a low-pH concrete formulation as an alternative to standard ordinary Portland cement (OPC) concrete formulations with the aim of reducing the interaction of the cementitious materials with the near-field components. The main functional requirement required in the development of the low-pH material was a pore fluid pH < 11, which is considered acceptable for preventing or reducing the alteration of the bentonite EBS. Other functional requirements considered in the development of the low-pH concrete were: - Hydraulic conductivity. - Mechanical properties. - Durability. - Workability and pumpability. - Slumping. - Peak hydration temperature. - Thermal conductivity. - Use of organic components. - Use of other products. The development of the low-pH concrete involved laboratory work, as well as field testing at the Aespoe underground research laboratory (URL) in Sweden, and in the Grimsel URL and at the Hagerbach site in Switzerland. The ESDRED project demonstrated that low-pH cements can be formulated and used for production of concrete plugs and rock support. OPC can be used as the cement included in low-pH blends, but at least

  12. Service life prediction and fibre reinforced cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis addresses the service life concept on the fibre reinforced cementitious composites. The advantages and problems of adding fibre to a cementitious matrix and the influence on service life are described. In SBI Report 221, Service life prediction and cementitious somposites......, the factors affecting the pure cementitious composite are described. Different sizes and types of fibre reinforced crmentitious composites have been chosen to illustrate different ageing and deterioration mechanisms. Some ageing mechanisms can be accelerated and others cannot which is demonstrated in a test...... programme. Moisture, micro structural and mechanical properties were measured before, during and after ageing, with the purpose of giving a detailed "picture" of the materials during ageing....

  13. CEMENTITIOUS BARRIERS PARTNERSHIP FY13 MID-YEAR REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H.; Flach, G.; Langton, C.; KOSSON, D.; BROWN, K.; SAMSON, E.; MEEUSSEN, J.; SLOOT, H.; GARBOCZI, E.

    2013-05-01

    presentations from the CBP Software Toolbox Demonstration and User Workshop, which are briefly described below, can be accessed from the CBP webpage at http://cementbarriers.org/. The website was recently modified to describe the CBP Software Toolbox and includes an interest form for application to use the software. The CBP FY13 program is continuing research to improve and enhance the simulation tools as well as develop new tools that model other key degradation phenomena not addressed in Version 1.0. Also efforts to continue to verify the various simulation tools thru laboratory experiments and analysis of field specimens are ongoing to quantify and reduce the uncertainty associated with performance assessments are ongoing. This mid-year report also includes both a summary on the FY13 software accomplishments in addition to the release of Version 1.0 of the CBP Software Toolbox and the various experimental programs that are providing data for calibration and validation of the CBP developed software. The focus this year for experimental studies was to measure transport in cementitious material by utilization of a leaching method and reduction capacity of saltstone field samples. Results are being used to calibrate and validate the updated carbonation model.

  14. Cementitious Barriers Partnership (CBP): Training and Release of CBP Toolbox Software, Version 1.0 - 13480

    International Nuclear Information System (INIS)

    Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S.; Flach, G.; Langton, C.; Smith, F.G. III; Burns, H.; Van der Sloot, H.; Meeussen, J.C.L.; Samson, E.; Mallick, P.; Suttora, L.; Esh, D.; Fuhrmann, M.; Philip, J.

    2013-01-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the Office of Tank Waste Management within the Office of Environmental Management of U.S. Department of Energy (US DOE). The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that improve understanding and predictions of the long-term hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program are intended to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1,000 years for waste management purposes. CBP software tools were made available to selected DOE Office of Environmental Management and field site users for training and evaluation based on a set of important degradation scenarios, including sulfate ingress/attack and carbonation of cementitious materials. The tools were presented at two-day training workshops held at U.S. National Institute of Standards and Technology (NIST), Savannah River, and Hanford included LeachXS TM /ORCHESTRA, STADIUM R , and a CBP-developed GoldSim Dashboard interface. Collectively, these components form the CBP Software Toolbox. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF) were also presented. The CBP Dashboard uses a custom Dynamic-link library developed by CBP to couple to the LeachXS TM /ORCHESTRA and STADIUM R codes to simulate reactive transport and degradation in cementitious materials for selected performance assessment scenarios. The first day of the workshop introduced participants to the software components via presentation materials, and the second day included hands-on tutorial exercises followed by discussions

  15. Engineered cementitious composites with low volume of cementitious materials

    NARCIS (Netherlands)

    Zhou, J.; Quian, S.; Van Breugel, K.

    2010-01-01

    Engineered cementitious composite (ECC) is an ultra ductile cement-based material reinforced with fibers. It is characterized by high tensile ductility and tight crack width control. Thanks to the excellent performance, ECC is emerging in broad applications to enhance the loading capacity and the

  16. Progress in Research on Carbon Nanotubes Reinforced Cementitious Composites

    Directory of Open Access Journals (Sweden)

    Qinghua Li

    2015-01-01

    Full Text Available As one-dimensional (1D nanofiber, carbon nanotubes (CNTs have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.

  17. Amagnetic field-enhanced filtration/sorption Device and its potential for inexpensive water and wastewater treatment

    International Nuclear Information System (INIS)

    Navratil, J.D.

    2000-01-01

    A magnetic field-enhanced filtration/sorption device is described for removal of radioactive and heavy metals from water and wastewater. The device consists of a column of supported magnetite surrounded by a movable permanent magnet. The mineral magnetite, or synthetically prepared iron ferrite (Fe O Fe 2 O 3 ), is typically supported on various materials to permit adequate water passage through the column. In the presence of the external magnetic field, enhanced capacity was observed in using supported magnetite for removal of actinides and heavy metals from wastewater. The enhanced capacity is primarily due to magnetic filtration of colloidal and submicron particles along with some complex and ion exchange sorption mechanisms. The loaded magnetite can easily be regenerated by the removal of the magnetic field and use of a regenerating solution. This paper will review previous work on the use of iron oxides for wastewater treatment and discuss the development and potential of the magnetic filtration/sorption process for water and wastewater treatment

  18. Chemical evolution of cementitious materials

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Wieland, Erich

    2012-01-01

    Barbara Lothenback of EMPA, Switzerland gave an overview of the status of thermodynamic modelling for cementitious systems. Thermodynamic modelling of cementitious systems has been greatly facilitated in recent years by the development of more sophisticated geochemical software, of solid solution models for various cement phases, and by the collection of thermodynamic data for minerals relevant to cementitious systems over a wide range of temperature (0 to 100 deg. C). Based on these developments, thermodynamic modelling, coupled with kinetic equations that describe the dissolution of clinker as a function of time, can be used to: - Quantify the liquid and solid phase compositions of ordinary Portland cement and blended cements during the hydration process. - Evaluate compositional changes that occur in cementitious materials due to the use of various aggregates and other mineral additives (e.g. silica fume and blast furnace slag). - Predict degradation of cement in contact with the repository environment. Discussion of the paper included: What is our understanding of where aluminium resides in low-pH cements and what is our ability to model the behaviour of aluminium in these systems? The location of aluminium in low-pH cements depends on the overall Ca/Si ratio of the system and on the pH, but some aluminium enters the CSH gel as a CASH gel phase. The Swiss disposal programme is currently conducting some experiments to investigate this topic

  19. Studies of the effects of organic materials on the sorption of uranium(IV) and thorium(IV) on London clay and Caithness flagstones

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1991-08-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium (IV) and thorium(IV) on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH ∼11) and at the edge of the zone of migration of the alkaline plume (pH ∼ 8). Work was carried out (i) under baseline conditions, in the absence of organic materials; (ii) with 2 x 10 -3 M gluconate, acting as a well-characterised degradation product simulant; (iii) with authentic degradation products. The results show that the presence of authentic degradation products has a small effect on sorption and the presence of gluconate at a high concentration has a marked impact. (author)

  20. Studies of the effects of organic materials on the sorption of uranium(IV) and thorium(IV) on London clay and Caithness flagstones

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Bond, K.A.; Brownsword, M.; Linklater, C.M.

    1991-08-01

    The effects of the presence of cellulosic degradation products on the sorption of uranium (IV) and thorium(IV) on London clay and Caithness flagstones have been studied using the batch sorption method. Experimental conditions were chosen to simulate both those expected close to a cementitious repository (pH {approx}11) and at the edge of the zone of migration of the alkaline plume (pH {approx} 8). Work was carried out (i) under baseline conditions, in the absence of organic materials; (ii) with 2 x 10{sup -3}M gluconate, acting as a well-characterised degradation product simulant; (iii) with authentic degradation products. The results show that the presence of authentic degradation products has a small effect on sorption and the presence of gluconate at a high concentration has a marked impact. (author).

  1. Disassembly Properties of Cementitious Finish Joints Using an Induction Heating Method

    Science.gov (United States)

    Ahn, Jaecheol; Noguchi, Takafumi; Kitagaki, Ryoma

    2015-01-01

    Efficient maintenance and upgrading of a building during its lifecycle are difficult because a cementitious finish uses materials and parts with low disassembly properties. Additionally, the reuse and recycling processes during building demolition also present numerous problems from the perspective of environmental technology. In this study, an induction heating (IH) method was used to disassemble cementitious finish joints, which are widely used to join building members and materials. The IH rapidly and selectively heated and weakened these joints. The temperature elevation characteristics of the cementitious joint materials were measured as a function of several resistor types, including wire meshes and punching metals, which are usually used for cementitious finishing. The disassembly properties were evaluated through various tests using conductive resistors in cementitious joints such as mortar. When steel fiber, punching metal, and wire mesh were used as conductive resistors, the cementitious modifiers could be weakened within 30 s. Cementitious joints with conductive resistors also showed complete disassembly with little residual bond strength.

  2. Corrosion aspects of steel radioactive waste containers in cementitious materials

    International Nuclear Information System (INIS)

    Smart, Nick

    2012-01-01

    Nick Smart from Serco, UK, gave an overview of the effects of cementitious materials on the corrosion of steel during storage and disposal of various low- and intermediate-level radioactive wastes. Steel containers are often used as an overpack for the containment of radioactive wastes and are routinely stored in an open atmosphere. Since this is an aerobic and typically humid environment, the steel containers can start to corrode whilst in storage. Steel containers often come into contact with cementitious materials (e.g. grout encapsulants, backfill). An extensive account of different steel container designs and of steel corrosion mechanisms was provided. Steel corrosion rates under conditions buffered by cementitious materials have been evaluated experimentally. The main conclusion was that the cementitious environment generally facilitates the passivation of steel materials. Several general and localised corrosion mechanisms need to be considered when evaluating the performance of steel containers in cementitious environments, and environmental thresholds can be defined and used with this aim. In addition, the consequences of the generation of gaseous hydrogen by the corrosion of carbon steel under anoxic conditions must be taken into account. Discussion of the paper included: Is crevice corrosion really significant in cementitious systems? Crevice corrosion is unlikely in the cementitious backfill considered because it will tend to neutralise any acidic conditions in the crevice. What is the role of microbially-induced corrosion (MIC) in cementitious systems? Microbes are likely to be present in a disposal facility but their effect on corrosion is uncertain

  3. OCRWM Science and Technology Program Cementitious Materials Technologies

    International Nuclear Information System (INIS)

    DOE

    2004-01-01

    This potential project will develop and test cost effective cementitious materials for construction of Yucca Mountain (YM) inverts, drift liners, and bulkheads. These high silica cementitious materials will be designed to buffer the pH and Eh of the groundwater, to slow corrosion of waste packages (WP), and to retard radionuclide migration. While being compatible with YM repository systems, these materials are expected to be less expensive to produce, and as strong, and more durable than ordinary Portland Cement (OPC). Therefore, building out the repository with these cementitious materials may significantly reduce these costs and reduce uncertainty in short-( 10,000 yr) repository performance. Both laboratory development and natural analog studies are anticipated using a unique combination of expertise at ORNL, UT, UC Berkeley, and Minatom to develop and test high-silica hydraulic, cementitious binders for use at YM. The major tasks of this project are to (1) formulate and make candidate cementitious materials using high-silica hydraulic hinders, (2) measure the physical and chemical properties of these materials, (3) expose combinations of these materials and WP materials to static and flowing YM groundwater at temperatures consistent with the expected repository conditions, (4) examine specimens of both the cementitious materials and WP materials periodically for chemical and mineralogical changes to determine reaction mechanisms and kinetics, and (5) predict the long-term performance of the material by thermodynamic and transport modeling and by comparisons with natural analogs

  4. Non-cementitious compositions comprising vaterite and methods thereof

    Science.gov (United States)

    Devenney, Martin; Fernandez, Miguel; Morgan, Samuel O.

    2015-09-15

    Non-cementitious compositions and products are provided. The compositions of the invention include a carbonate additive comprising vaterite such as reactive vaterite. Additional aspects of the invention include methods of making and using the non-cementitious compositions and products.

  5. Re-evaluation of the sorption behaviour of Bromide and Sulfamethazine under field conditions using leaching data and modelling methods

    Science.gov (United States)

    Gassmann, Matthias; Olsson, Oliver; Höper, Heinrich; Hamscher, Gerd; Kümmerer, Klaus

    2016-04-01

    The simulation of reactive transport in the aquatic environment is hampered by the ambiguity of environmental fate process conceptualizations for a specific substance in the literature. Concepts are usually identified by experimental studies and inverse modelling under controlled lab conditions in order to reduce environmental uncertainties such as uncertain boundary conditions and input data. However, since environmental conditions affect substance behaviour, a re-evaluation might be necessary under environmental conditions which might, in turn, be affected by uncertainties. Using a combination of experimental data and simulations of the leaching behaviour of the veterinary antibiotic Sulfamethazine (SMZ; synonym: sulfadimidine) and the hydrological tracer Bromide (Br) in a field lysimeter, we re-evaluated the sorption concepts of both substances under uncertain field conditions. Sampling data of a field lysimeter experiment in which both substances were applied twice a year with manure and sampled at the bottom of two lysimeters during three subsequent years was used for model set-up and evaluation. The total amount of leached SMZ and Br were 22 μg and 129 mg, respectively. A reactive transport model was parameterized to the conditions of the two lysimeters filled with monoliths (depth 2 m, area 1 m²) of a sandy soil showing a low pH value under which Bromide is sorptive. We used different sorption concepts such as constant and organic-carbon dependent sorption coefficients and instantaneous and kinetic sorption equilibrium. Combining the sorption concepts resulted in four scenarios per substance with different equations for sorption equilibrium and sorption kinetics. The GLUE (Generalized Likelihood Uncertainty Estimation) method was applied to each scenario using parameter ranges found in experimental and modelling studies. The parameter spaces for each scenario were sampled using a Latin Hypercube method which was refined around local model efficiency maxima

  6. Review of durability of cementitious engineered barriers in repository environments

    International Nuclear Information System (INIS)

    Parrott, L.J.; Lawrence, C.D.

    1992-01-01

    This report is concerned with the durability of cementitious engineered barriers in a repository for low and intermediate level nuclear waste. Following the introduction the second section of the review identifies the environmental conditions associated with a deep, hard rock repository for ILW and LLW that are relevant to the durability of cementitious barriers. Section three examines the microstructure and macrostructure of cementitious materials and considers the physical and chemical processes of radionuclide immobilization. Potential repository applications and compositions of cementitious materials are reviewed in Section four. The main analysis of durability is dealt with in Section five. The different types of cementitious barrier are considered separately and their most probable modes of degradation are analysed. Concluding remarks that highlight critical technical matters are given in Section six. (author)

  7. Ion-sorption pumps with an electrostatic field

    International Nuclear Information System (INIS)

    Larionov, L.S.; Leksakov, O.P.; Serbinov, A.N.

    1979-01-01

    Parameters are investigated and the choise of optimal operation regimes is made to develop the construction and production of an ion-sorption pump with an electrostatic field (orbitron). Described is the construction of ''Orbitron'' type and the results of bench marks, given are optimal operation regimes, dependence of pumping-out rate on pressure and other parameters. Operarion experience of these pumps on EG-8, EG-5 electrostatic accelerators, as well as on the KGE-300 accelerator in JINR showed their reliable operation during a long period of time and service simplicity. The parameters of the operation regime little differed from those, obtained earlier during bench marks

  8. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Roger Ray

    2002-08-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing an overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  9. Entombment Using Cementitious Materials: Design Considerations and International Experience

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, R.R.

    2002-05-15

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective.

  10. Entombment Using Cementitious Materials: Design Considerations and International Experience

    International Nuclear Information System (INIS)

    Seitz, R.R.

    2002-01-01

    Cementitious materials have physical and chemical properties that are well suited for the requirements of radioactive waste management. Namely, the materials have low permeability and durability that is consistent with the time frame required for short-lived radionuclides to decay. Furthermore, cementitious materials can provide a long-term chemical environment that substantially reduces the mobility of some long-lived radionuclides of concern for decommissioning (e.g., C-14, Ni-63, Ni-59). Because of these properties, cementitious materials are common in low-level radioactive waste disposal facilities throughout the world and are an attractive option for entombment of nuclear facilities. This paper describes design considerations for cementitious barriers in the context of performance over time frames of a few hundreds of years (directed toward short-lived radionuclides) and time frames of thousands of years (directed towards longer-lived radionuclides). The emphasis is on providing a n overview of concepts for entombment that take advantage of the properties of cementitious materials and experience from the design of low-level radioactive waste disposal facilities. A few examples of the previous use of cementitious materials for entombment of decommissioned nuclear facilities and proposals for the use in future decommissioning of nuclear reactors in a few countries are also included to provide global perspective

  11. REVIEW OF MECHANISTIC UNDERSTANDING AND MODELING AND UNCERTAINTY ANALYSIS METHODS FOR PREDICTING CEMENTITIOUS BARRIER PERFORMANCE

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Kosson, D.

    2009-11-30

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focus of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various

  12. Review Of Mechanistic Understanding And Modeling And Uncertainty Analysis Methods For Predicting Cementitious Barrier Performance

    International Nuclear Information System (INIS)

    Langton, C.; Kosson, D.

    2009-01-01

    Cementitious barriers for nuclear applications are one of the primary controls for preventing or limiting radionuclide release into the environment. At the present time, performance and risk assessments do not fully incorporate the effectiveness of engineered barriers because the processes that influence performance are coupled and complicated. Better understanding the behavior of cementitious barriers is necessary to evaluate and improve the design of materials and structures used for radioactive waste containment, life extension of current nuclear facilities, and design of future nuclear facilities, including those needed for nuclear fuel storage and processing, nuclear power production and waste management. The focus of the Cementitious Barriers Partnership (CBP) literature review is to document the current level of knowledge with respect to: (1) mechanisms and processes that directly influence the performance of cementitious materials (2) methodologies for modeling the performance of these mechanisms and processes and (3) approaches to addressing and quantifying uncertainties associated with performance predictions. This will serve as an important reference document for the professional community responsible for the design and performance assessment of cementitious materials in nuclear applications. This review also provides a multi-disciplinary foundation for identification, research, development and demonstration of improvements in conceptual understanding, measurements and performance modeling that would be lead to significant reductions in the uncertainties and improved confidence in the estimating the long-term performance of cementitious materials in nuclear applications. This report identifies: (1) technology gaps that may be filled by the CBP project and also (2) information and computational methods that are in currently being applied in related fields but have not yet been incorporated into performance assessments of cementitious barriers. The various

  13. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  14. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  15. On the Interaction between Superabsorbent Hydrogels and Cementitious Materials

    Science.gov (United States)

    Farzanian, Khashayar

    Autogenous shrinkage induced cracking is a major concern in high performance concretes (HPC), which are produced with low water to cement ratios. Internal curing to maintain high relative humidity in HPC with the use of an internal water reservoir has proven effective in mitigating autogenous shrinkage in HPC. Superabsorbent polymers (SAP) or hydrogels have received increasing attention as an internal curing agent in recent years. A key advantage of SAP is its versatility in size distribution and absorption/desorption characteristics, which allow it to be adapted to specific mix designs. Understanding the behavior of superabsorbent hydrogels in cementitious materials is critical for accurate design of internal curing. The primary goal of this study is to fundamentally understand the interaction between superabsorbent hydrogels and cementitious materials. In the first step, the effect of chemical and mechanical conditions on the absorption of hydrogels is investigated. In the second step, the desorption of hydrogels in contact with porous cementitious materials is examined to aid in understanding the mechanisms of water release from superabsorbent hydrogels (SAP) into cementitious materials. The dependence of hydrogel desorption on the microstructure of cementitious materials and relative humidity is studied. It is shown that the capillary forces developed at the interface between the hydrogel and cementitious materials increased the desorption of the hydrogels. The size of hydrogels is shown to influence desorption, beyond the known size dependence of bulk diffusion, through debonding from the cementitious matrix, thereby decreasing the effect of the Laplace pressure on desorption. In the third step, the desorption of hydrogels synthesized with varied chemical compositions in cementitious materials are investigated. The absorption, chemical structure and mechanical response of hydrogels swollen in a cement mixture are studied. The effect of the capillary forces on

  16. Electrochemical migration technique to accelerate ageing of cementitious materials

    Directory of Open Access Journals (Sweden)

    Abbas Z.

    2013-07-01

    Full Text Available Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen’s micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  17. Electrochemical migration technique to accelerate ageing of cementitious materials

    Science.gov (United States)

    Babaahmadi, A.; Tang, L.; Abbas, Z.

    2013-07-01

    Durability assessment of concrete structures for constructions in nuclear waste repositories requires long term service life predictions. As deposition of low and intermediate level radioactive waste (LILW) takes up to 100 000 years, it is necessary to analyze the service life of cementitious materials in this time perspective. Using acceleration methods producing aged specimens would decrease the need of extrapolating short term data sets. Laboratory methods are therefore, needed for accelerating the ageing process without making any influencing distortion in the properties of the materials. This paper presents an electro-chemical migration method to increase the rate of calcium leaching from cementitious specimens. This method is developed based on the fact that major long term deterioration process of hardened cement paste in concrete structures for deposition of LILW is due to slow diffusion of calcium ions. In this method the cementitious specimen is placed in an electrochemical cell as a porous path way through which ions can migrate at a rate far higher than diffusion process. The electrical field is applied to the cell in a way to accelerate the ion migration without making destructions in the specimen's micro and macroscopic properties. The anolyte and catholyte solutions are designed favoring dissolution of calcium hydroxide and compensating for the leached calcium ions with another ion like lithium.

  18. Cementitious Barriers Partnership (CBP): Training and Release of CBP Toolbox Software, Version 1.0 - 13480

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.; Sarkar, S. [Vanderbilt University, School of Engineering, CRESP, Nashville, TN 37235 (United States); Flach, G.; Langton, C.; Smith, F.G. III; Burns, H. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Van der Sloot, H. [Hans Van der Sloot Consultancy, Dorpsstraat 216, 1721BV Langedijk (Netherlands); Meeussen, J.C.L. [Nuclear Research and Consultancy Group, Westerduinweg 3, Petten (Netherlands); Samson, E. [SIMCO Technologies, Inc., Quebec (Canada); Mallick, P.; Suttora, L. [U.S. Department of Energy, Washington, DC (United States); Esh, D.; Fuhrmann, M.; Philip, J. [U.S. Nuclear Regulatory Commission, Washington, DC (United States)

    2013-07-01

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the Office of Tank Waste Management within the Office of Environmental Management of U.S. Department of Energy (US DOE). The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that improve understanding and predictions of the long-term hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program are intended to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1,000 years for waste management purposes. CBP software tools were made available to selected DOE Office of Environmental Management and field site users for training and evaluation based on a set of important degradation scenarios, including sulfate ingress/attack and carbonation of cementitious materials. The tools were presented at two-day training workshops held at U.S. National Institute of Standards and Technology (NIST), Savannah River, and Hanford included LeachXS{sup TM}/ORCHESTRA, STADIUM{sup R}, and a CBP-developed GoldSim Dashboard interface. Collectively, these components form the CBP Software Toolbox. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF) were also presented. The CBP Dashboard uses a custom Dynamic-link library developed by CBP to couple to the LeachXS{sup TM}/ORCHESTRA and STADIUM{sup R} codes to simulate reactive transport and degradation in cementitious materials for selected performance assessment scenarios. The first day of the workshop introduced participants to the software components via presentation materials, and the second day included hands-on tutorial exercises followed

  19. Impact assessment of shallow land burial for low-level waste: modelling of the water flow and transport of radionuclides in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Walravens, J; Volckaert, G

    1996-09-18

    The Belgian concept for disposal of low-level waste consists of storage of waste drums into a concrete vault backfilled with a cementitious grout. The vault is placed above the water table and will be covered with a multilayer cap of clay, gravel, and sandy materials. The SCK/CEN is charged with the long-term performance assessment of the disposal site. The main processes and parameters determining the radioactivity release from the site are identified. The principal processes are the infiltration through the top cover and the sorption of waste on the backfill. The release of radionuclides from the site was modelled with the PORFLOW numerical code.

  20. Service life prediction and cementitious composites

    DEFF Research Database (Denmark)

    Stoklund Larsen, E.

    The present Ph.D.thesis describes and discusses the applicability of a systematic methodology recommended by CIB W80/RILEM-PSL for sevice life prediction. The report describes the most important inherent and environmental factors affecting the service life of structures of cementitious composites....... On the basis of this discription of factors and experience from a test programme described in SBI Report 222, Service life prediction and fibre reinforced cementitious composites, the applicabillity of the CIB/RILEM methodology is discussed....

  1. Data for the sorption of actinides on candidate materials for use in repositories

    International Nuclear Information System (INIS)

    Morgan, R.D.; Pryke, D.C.; Rees, J.H.

    1988-02-01

    The sorptive behaviour of the actinides uranium, neptunium, plutonium and americium has been investigated under air-saturated conditions on a number of candidate near-field materials by batch sorption experiments. Distribution ratios were measured with respect to initial actinide concentration, the solid:liquid ratio and contact time. Desorption experiments were carried out to help elucidate the mechanism of sorption. The fit of the data to the Freundlich isotherm was assessed. This work contains the data obtained in the investigation. (author)

  2. A mechanistic approach to the generation of sorption databases

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1992-01-01

    Sorption of radionuclides in the near and far fields of an underground nuclear waste repository is one of the most important processes retarding their release to the environment. In the vast majority of cases sorption data have been presented in terms of empirical parameters such as distribution coefficients and isotherm equations. A consequence of this empirical methodology is that the sorption data are only strictly valid under the experimental conditions at which they were measured. Implicit in this approach is the need to generate large amounts of data and fitting parameters necessary for an empirical description of sorption under all realistically conceivable conditions which may arise in space and time along the migration pathway to Man. An alternative approach to the problem is to try to understand, and develop model descriptions of, underlying retention mechanisms and to identify those systems parameters which essentially determine the extent of sorption. The aim of this work is to see to what extent currently existing mechanistic models, together with their associated data, can be applied to predict sorption data from laboratory experiments on natural systems. This paper describes the current status of this work which is very much in an early stage of development. An example is given whereby model predictions are compared with laboratory results for the sorption of Np at trace concentrations under oxidizing conditions on a series of minerals relevant to granite formations. 31 refs., 11 figs., 5 tabs

  3. Microfibres and hydrogels to promote autogenous healing in cementitious materials

    OpenAIRE

    Snoeck, Didier; Dubruel, Peter; De Belie, Nele

    2013-01-01

    Cementitious materials are sensitive to crack formation and it would be beneficial if the material could stop the crack propagation, repair the damage and reach again the original liquid-tightness and/or strength. Therefore, a cementitious material with synthetic microfibres and superabsorbent polymers (SAPs) is proposed. Upon crack formation, the microfibres will become active and due to the bridging action, they will stop the opening of a crack, forcing the cementitious material to crack so...

  4. Radiation effects on materials in the near-field of a nuclear waste repository. 1997 annual progress report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1997-01-01

    'Sheet silicates (e.g. micas and clays) are important constituents of a wide variety of geological formations such as granite, basalt, and sandstone. Sheet silicates, particularly clays such as bentonite are common materials in near-field engineered barriers in high-level nuclear waste (HLW) repositories. This is because migration of radionuclides from an underground HLW repository to the geosphere may be significantly reduced by sorption of radionuclides (e.g., Pu, U and Np) onto sheet silicates (e.g., clays and micas) that line the fractures and pores of the rocks along groundwater flowpaths. In addition to surface sorption, it has been suggested that some sheet silicates may also be able to incorporate many radionuclides, such as Cs and Sr, in the inter-layer sites of the sheet structure. However, the ability of the sheet silicates to incorporate radionuclides and retard release and migration of radionuclides may be significantly affected by the near-field radiation due to the decay of fission products and actinides. for example, the unique properties of the sheet structures will be lost completely if the structure becomes amorphous due to irradiation effects. Thus, the study of irradiation effects on sheet-structures, such as structural damage and modification of chemical properties, are critical to the performance assessment of long-term repository behavior.'

  5. Project-90 Near-field calculations using CALIBRE

    International Nuclear Information System (INIS)

    Worgan, K.; Robinson, P.

    1992-02-01

    A comprehensive set of near-field calculations for the Swedish Nuclear Power Inspectorates Project-90 safety assessment has been performed using the CALIBRE model. In the majority of cases considered the redox front migrates through the bentonite buffer and into the rock, where it becomes effectively immobilised. The fracture remains in a reducing state, which means that for solubility-limited nuclides, the concentration at the bentonite/fracture interface can never be greater than the reducing solubility limit. The calculations also show that significant retardation occurs for nuclides which are even moderately sorbed. The effect is less pronounced in the wider fracture and high flow cases, as the opportunity for diffusion from the fracture to the rock matrix is reduced. In contrast, the release from the near-field of poorly-sorbed nuclides which are not solubility limited is governed by the release rate from the fuel, the diffusive mass transfer resistance of the buffer, rock matrix and fracture, the initial inventories and the nuclide half-lives. In the reference case, the maximum dose potential of nuclides emerging from the near-field occur for I-129 and was 3.2 x 10 -7 Sv per canister-year, assuming the flux to be discharged directly into the wall receptor biosphere. The parameters which have the most impact on the reference base results are high flow, wide aperture and poor chemistry (i.e. high solubility limits and low sorption distribution coefficients). The effects of combining extreme values of parameters does not give results which are in proportion to their effect when applied in isolation. In the worst case variant (early canister failure high flow, wide aperture and poor chemistry) the maximum dose potential is 1.0 x 10 -4 Sv per canister-year, compared with 8.9 x 10 -6 Sv in the high flow case, 4.5 x 10 -7 in the wide aperture case, 2.3 x 10 -6 in the poor chemistry case and 3.9 x 10 -6 in the early failure, wide aperture and high flow case. (au)

  6. Micro- and macroscale coefficients of friction of cementitious materials

    International Nuclear Information System (INIS)

    Lomboy, Gilson; Sundararajan, Sriram; Wang, Kejin

    2013-01-01

    Millions of metric tons of cementitious materials are produced, transported and used in construction each year. The ease or difficulty of handling cementitious materials is greatly influenced by the material friction properties. In the present study, the coefficients of friction of cementitious materials were measured at the microscale and macroscale. The materials tested were commercially-available Portland cement, Class C fly ash, and ground granulated blast furnace slag. At the microscale, the coefficient of friction was determined from the interaction forces between cementitious particles using an Atomic Force Microscope. At the macroscale, the coefficient of friction was determined from stresses on bulk cementitious materials under direct shear. The study indicated that the microscale coefficient of friction ranged from 0.020 to 0.059, and the macroscale coefficient of friction ranged from 0.56 to 0.75. The fly ash studied had the highest microscale coefficient of friction and the lowest macroscale coefficient of friction. -- Highlights: •Microscale (interparticle) coefficient of friction (COF) was determined with AFM. •Macroscale (bulk) COF was measured under direct shear. •Fly ash had the highest microscale COF and the lowest macroscale COF. •Portland cement against GGBFS had the lowest microscale COF. •Portland cement against Portland cement had the highest macroscale COF

  7. Experimental and modelling studies of the near-field chemistry for Nirex repository concepts

    International Nuclear Information System (INIS)

    Atkinson, A.; Ewart, F.T.; Pugh, S.Y.R.; Rees, J.H.; Sharland, S.M.; Tasker, P.W.; Wilkins, J.D.

    1988-02-01

    A research programme is described which is designed to investigate the chemical conditions in the near field of a concrete based repository and the behaviour of the radiologically important nuclides under these conditions. The chemical conditions are determined by the corrosion of the iron components of the repository and by the soluble components of the concrete. Both of these have been investigated experimentally and models developed which have been validated by further experiment. The effect of these reactions on the repository pH and Eh, and how these develop in time and space have been modelled using a coupled chemical equilibrium and transport code. The solubility of the important nuclides are being studied experimentally under these conditions, and under sensible variations. These data have been used to refine the thermodynamic data base used for the geochemical code PHREEQE. The sorption behaviour of plutonium and americium, under the same conditions, have been studied; the sorption coefficients were found to be large and independent of the concrete formulation, particle size and solid liquid ratio. Recent experimental results from sorption/exchange experiments with lead and 14-carbon are also reported. The programme has also investigated experimentally the possible perturbation of the repository chemistry by microbial action and by natural and added organic material. A final set of experiments combine all the repository components and the waste in a long term equilibration experiment. (author)

  8. Modeling of Cementitious Representative Volume Element with Additives

    Science.gov (United States)

    Shahzamanian, M. M.; Basirun, W. J.

    CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200μm at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.

  9. Cementitious backfill in mining

    Energy Technology Data Exchange (ETDEWEB)

    Taute, A; Spice, J; Wingrove, A C [Van Niekerk, Kleyn Edwards (South Africa)

    1993-03-01

    This article describes the need for increased usage of backfill material in mining and presents some of the considerations for use of cemented materials. Laboratory test results obtained using a variety of cementitious binders and mine tailings are presented. 3 figs., 1 tab.

  10. Sorption data bases for generic Swiss argillaceous rock systems

    International Nuclear Information System (INIS)

    Bradbury, M. H.; Baeyens, B.; Thoenen, T.

    2010-09-01

    implies, these factors were used to convert the (predominantly) illite sorption values into sorption values valid for the defined generic conditions with regard to mineralogy and porewater composition. Conversion factors were used to adapt sorption values to mineralogy (CF min ), to pH value (CF pH ) and to radionuclide speciation (CF spec ). Finally, a Lab→Field conversion factor (CF Lab→Field ) was applied to adapt sorption data measured in dispersed systems (batch experiments) to intact rock under in-situ conditions. Calcareous rock is used in safety analyses as being representative of a clay rock which has lost most of its favorable sorption properties due to near-field effects such as alteration by an alkaline plume and subsequent processes. It is assumed that calcareous rocks do not contain any significant quantities of phyllosilicates and that only uptake data on calcite are relevant. Sorption data on calcite are extremely sparse and the uptake mechanisms are not fully understood. However, when the existing sorption data (log R d values) are plotted against the ionic radii of the respective metals, an acceptable linear correlation between these two quantities is found. This so-called linear free energy relationship is used to complement the sparse experimental data in the SDB for calcareous systems. (authors)

  11. Ultrasonic assessment of early age property development in hydrating cementitious materials

    Science.gov (United States)

    Wang, Xiaojun

    The internal structure (microstructure) of cementitious materials, such as cement paste, mortar and concrete, evolves over time because of cement hydration. The microstructure of the cementitious phase plays a very important role in determining the strength, the mechanical properties and the long-term durability of cementitious materials. Therefore any understanding of the strength gain and the long-term durability of cementitious materials requires a proper assessment of the microstructure of its cementitious phase. Current methods for evaluating the microstructure of the cement are invasive and primarily laboratory-based. These methods are not conducive for studying the pore structure changes in the first few hours after casting since the changes in microstructure occur on a time scale that is an order of magnitude faster than the time required for sample preparation. The primary objective of the research presented in this thesis is to contribute towards advancing the current state-of-the-art in assessing the microstructure of cementitious systems. An ultrasonic wave reflection technique which allows for real-time assessment of the porosity and the elastic modulus of cementitious materials is developed. The test procedure for monitoring changes in the amplitude of horizontally polarized ultrasonic shear waves from the surface of hydrating cement paste is presented. A theoretical framework based on a poro-elastic idealization of the hydrating cementitious material is developed for interpreting the ultrasonic reflection data. The poro-elastic representation of hydrating cementitious material is shown to provide simultaneous, realistic estimates of porosity and shear modulus for hydrating cement paste and mortar through setting and early strength gain. The porosity predicted by the poro-elastic representation is identical to the capillary water content within the cement paste predicted by Powers' model. The shear modulus of the poro-elastic skeleton was compares

  12. Development of ductile cementitious composites incorporating microencapsulated phase change materials

    NARCIS (Netherlands)

    Savija, B.; Lukovic, M.; Chaves Figueiredo, S.; de Mendoca Filho, Fernando Franca; Schlangen, H.E.J.G.

    2017-01-01

    Abstract In the past two decades, much research has been devoted to overcoming the inherent brittleness of cementitious materials. To that end, several solutions have been proposed, mainly utilizing fibres. One of the most promising classes of materials is strain hardening cementitious composite

  13. The effect of nitrates on the alteration of the cementitious material

    International Nuclear Information System (INIS)

    Takei, Akihiko; Owada, Hitoshi; Fujita, Hideki; Negishi, Kumi

    2002-02-01

    TRU waste includes various chemical compounds such as nitrates. The influence of the chemical compounds on the performance of the barrier system should be estimated. Since the temperature of the deep-underground is higher than that of the near surface and a part of the TRU waste generates the heat accompanied with the decay of the radioactive nuclides, the influences of the heat to the barrier material also should be taken into account. In this study, we estimated the influence of sodium nitrate and also that of the leachate from the ROBE-waste (borate-solidified body of concentrated low-level waste) to the degradation of the cementitious material. We also obtained the mineralogical data of cementitious mineral after alteration in elevated temperature conditions. Results in this year are described below. 1) Alteration of characteristics of cementitious material in nitrate solution were evaluated by the water permeation test using sodium nitrate solution. The enhancement of the alteration of cementitious material due to sodium nitrate was observed. The dissolution quantity of the calcium of sodium nitrate solution permeated sample was larger than that of deionized water permeated sample (denoted as 'blank' in following). Hydraulic conductivity of sodium nitrate solution permeated sample was lower than blank, but after changing permeation liquid from sodium nitrate solution to deionized water, hydraulic conductivity rose quickly. The increase of porosity and the decrease of compressive strength were observed in the case of sodium nitrate solution compared with blank. In the nitrate solution, sulfate type and carbonate type of AFm changed into the nitrate type AFm. The nitrate type AFm altered to the carbonate type AFm when the nitrate concentration was lowered. 2) The influence of the leachate from the two types of ROBE-waste on the dissolution of the cementitious material was evaluated by the leaching experiments. Dissolution of the calcium from the cementitious

  14. Self-degradable Cementitious Sealing Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Butcher, T., Lance Brothers, Bour, D.

    2010-10-01

    A self-degradable alkali-activated cementitious material consisting of a sodium silicate activator, slag, Class C fly ash, and sodium carboxymethyl cellulose (CMC) additive was formulated as one dry mix component, and we evaluated its potential in laboratory for use as a temporary sealing material for Enhanced Geothermal System (EGS) wells. The self-degradation of alkali-activated cementitious material (AACM) occurred, when AACM heated at temperatures of {ge}200 C came in contact with water. We interpreted the mechanism of this water-initiated self-degradation as resulting from the in-situ exothermic reactions between the reactants yielded from the dissolution of the non-reacted or partially reacted sodium silicate activator and the thermal degradation of the CMC. The magnitude of self-degradation depended on the CMC content; its effective content in promoting degradation was {ge}0.7%. In contrast, no self-degradation was observed from CMC-modified Class G well cement. For 200 C-autoclaved AACMs without CMC, followed by heating at temperatures up to 300 C, they had a compressive strength ranging from 5982 to 4945 psi, which is {approx}3.5-fold higher than that of the commercial Class G well cement; the initial- and final-setting times of this AACM slurry at 85 C were {approx}60 and {approx}90 min. Two well-formed crystalline hydration phases, 1.1 nm tobermorite and calcium silicate hydrate (I), were responsible for developing this excellent high compressive strength. Although CMC is an attractive, as a degradation-promoting additive, its addition to both the AACM and the Class G well cement altered some properties of original cementitious materials; among those were an extending their setting times, an increasing their porosity, and lowering their compressive strength. Nevertheless, a 0.7% CMC-modified AACM as self-degradable cementitious material displayed the following properties before its breakdown by water; {approx}120 min initial- and {approx}180 min final

  15. A study of sorption mechanism onto cement hydrates by isotherm measurements

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari

    2003-01-01

    In the concept for TRU waste disposal in Japan, cement is a potential waste packaging and backfilling material and is expected to provide chemical containment. In particular, the sorption of radionuclides onto cement material, which controls the aqueous concentrations of elements in the porewater, is a very important parameter when considering the release of radionuclides from the near field of a repository. Many safety assessment calculations currently assume radionuclide retardation as linear sorption equilibrium and describe it with a distribution ratio (R d value). In this study, the sorption mechanism is discussed by measuring the sorption isotherm of caesium, strontium and thorium onto Ordinary Portland Cement (OPC) and Calcium Silicate Hydrate (C-S-H gel), to justify and support this assumption. In addition, the effect of competitive sorption between thorium and uranium and other groundwater ions is studied by examining sorption using a range of sodium chloride concentrations to simulate different groundwater ionic strengths. Based on the experimental results, we have showed that: Caesium and strontium sorb by substitution for Ca in C-S-H phases and the presence of some calcium sites with different ion-exchange log K values is suggested; Thorium would be fixed in a surface co-precipitation to form a solubility-limiting phase. The results of sorption experiments are reasonably well modelled by the ion-exchange model for caesium and strontium and the surface co-precipitation model for thorium, respectively. (author)

  16. Injection grout for deep repositories - Low-pH cementitious grout for larger fractures. Field testing in Finland, Pilot tests

    International Nuclear Information System (INIS)

    Sievaeen, U.; Syrjaenen, P.; Ranta-aho, S.

    2005-10-01

    Posiva, SKB and NUMO have cooperated for developing a low pH injection grout for sealing of the deep repositories for spent nuclear fuel. A project 'Injection grout for deep repositories' was divided into four subprojects. The development of low pH cementitious grout for > 100 μm fractures was carried out in Finland. The development of non-cementitious low pH grout for < 100 μm fractures was carried out in Sweden. This report concerns the cementitious grout. Requirements for pH and penetration ability were set for the grouts to be developed. Besides these, the grouts were desired to fulfil certain targets set for viscosity, bleeding, shear strength, yield value, compressive strength and open time. Also durability, availability of the components and known history in practical engineering were given as requirements. The object of the work presented here was to test if the grout properties developed in laboratory can be met in field conditions. Only the most promising binder material combinations, which have fulfilled the main requirements in laboratory, were tested in field. Evaluations of environmental aspects are included in this report. In the pilot test 1, carried out in a multi-purpose tunnel in Helsinki, Portland cement-cilicasystem and blast furnace slag-based system were chosen to be tested. In field conditions, mixed with ordinary mixer, all grout properties achieved in laboratory, were not verified. Penetration ability was typically good, but fluidity and strength development were not satisfying. The main conclusion was that water to dry material ratio should be diminished. In order to get better rheological properties at the same time, superplastizicer was needed in further development of the mixes. Also accurate dosing and mixing seemed to be very important. Blast furnace slag - system was after this pilot test ruled out due to high leaching of sulphide from the product, not due to the bad technical properties. The development work continued with

  17. Isothermal titration calorimetry of sorption processes. A promising approach

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Norbert; Foerstendorf, Harald [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Drobot, B. [Technische Univ. Dresden (Germany); Fahmy, Karim [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biophysics; Reder, Christian

    2017-06-01

    As a consequence of nuclear waste disintegration heat, elevated temperatures in the near field may influence radionuclide retention significantly. However, there is a nearly complete lack of spectroscopic investigations of sorption processes at elevated temperatures. In addition, experimental data on free Gibbs energy (Δ{sub R}G), enthalpy (Δ{sub R}H) and entropy (Δ{sub R}S) of reactions of most radionuclides including fission products such as {sup 79}Se are sparse. Using the Se(IV)/hematite system, we show that microcalorimetry can provide these thermodynamic parameters with high accuracy and in a manner that allows studying various radionuclides.

  18. Thermal energy storage based on cementitious materials: A review

    Directory of Open Access Journals (Sweden)

    Khadim Ndiaye

    2018-01-01

    Full Text Available Renewable energy storage is now essential to enhance the energy performance of buildings and to reduce their environmental impact. Many heat storage materials can be used in the building sector in order to avoid the phase shift between solar radiation and thermal energy demand. However, the use of storage material in the building sector is hampered by problems of investment cost, space requirements, mechanical performance, material stability, and high storage temperature. Cementitious material is increasingly being used as a heat storage material thanks to its low price, mechanical performance and low storage temperature (generally lower than 100 °C. In addition, cementitious materials for heat storage have the prominent advantage of being easy to incorporate into the building landscape as self-supporting structures or even supporting structures (walls, floor, etc.. Concrete solutions for thermal energy storage are usually based on sensible heat transfer and thermal inertia. Phase Change Materials (PCM incorporated in concrete wall have been widely investigated in the aim of improving building energy performance. Cementitious material with high ettringite content stores heat by a combination of physical (adsorption and chemical (chemical reaction processes usable in both the short (daily, weekly and long (seasonal term. Ettringite materials have the advantage of high energy storage density at low temperature (around 60 °C. The encouraging experimental results in the literature on heat storage using cementitious materials suggest that they could be attractive in a number of applications. This paper summarizes the investigation and analysis of the available thermal energy storage systems using cementitious materials for use in various applications.

  19. A mathematical model in charactering chloride diffusivity in unsaturated cementitious material

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Pecur, I.B.; Baricevic, A.; Stirmer, N; Bjegovic, D.

    2017-01-01

    In this paper, a new analytic model for predicting chloride diffusivity in unsaturated cementitious materials is developed based on conductivity theory and Nernst-Einstein equation. The model specifies that chloride diffusivity in unsaturated cementitious materials can be mathematically described as

  20. SKB WP-cave project. Radionuclide release from the near-field in a WP-cave repository

    International Nuclear Information System (INIS)

    Lindgren, M.; Skagius, K.

    1989-04-01

    The release of radionuclides from the bentonite-sand barrier (near-field) in a WP-cave repository for high level radioactive waste has been studied. Calculations were made for two cases; a Low Flow Through Case and a High Flow Through Case. The difference between the two cases lies in the assumed hydraulic properties of the bentonite-sand barrier and the system inside the barrier. The effect on the nuclide release of solubility limitations, sorption capacity of the barriers, radiolytic fuel oxidation rate as well as the thickness of the bentonite-sand barrier, were also investigated for the Low Flow Through Case. (authors)

  1. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Susen [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany); Iwasaki, Masahide; Ogawa, Naoto [Shizuoka University, Faculty of Agriculture, Department of Biological and Environmental Science, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Kreuzig, Robert, E-mail: r.kreuzig@tu-bs.de [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany)

    2013-01-15

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K{sub d} and K{sub OC} values were 15 and 298 L kg{sup −1} for the Japanese tea field soil as well as 16 and 1610 L kg{sup −1} for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L{sup −1}. In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT{sub 50} > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are

  2. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    International Nuclear Information System (INIS)

    Hartung, Susen; Iwasaki, Masahide; Ogawa, Naoto; Kreuzig, Robert

    2013-01-01

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K d and K OC values were 15 and 298 L kg −1 for the Japanese tea field soil as well as 16 and 1610 L kg −1 for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L −1 . In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT 50 > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are necessary to elucidate fate and

  3. Far-field sorption data bases for performance assessment of a L/ILW repository in an undisturbed Palfris marl host rock

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1997-12-01

    A Palfris marl formation at Wellenberg (Gemeinde Wolfenschiessen, NW) has been chosen by NAGRA as a potential repository site for low- and intermediate-level radioactive waste, L/ILW. In the coming years a series of performance assessment studies will be performed for this site. One set of key data required for such safety analysis calculations is sorption data bases (SDB) for safety relevant radionuclides in the far-field. The purpose of this report is to describe the procedures used to generate sorption data bases appropriate for the in situ conditions existing along the different potential flow paths in an undisturbed marl host rock formation. An important aim was to document the sources of sorption data used and, in particular, the processes by which data selections were mad.e. The main guiding principles here were 'transparency' and 'traceability'. Inherent within this whole process is also the justification for, and defensibility of, the selected values. Much of the sorption data used to generate the SDB for marl came from the open literature. A major part of this report is concerned with describing the procedures whereby these initial literature values are modified so that they apply to the actual marl mineralogies and groundwater chemistries. The resulting 'reference R d values' are then further modified using so called Lab -> Field transfer factors to produce sorption values which are appropriate to the in situ bulk rock conditions. The Lab -> Field transfer factors attempt to correct for the differences in sorption site availability between the crushed rock state used in batch tests and the intact rock state existing in reality in the host rock. There are two main groundwater chemistries and five characteristic mineralogical compositions which cover the three broad types of flow paths which have been identified in the Palfris marl formation. In principle the methodology described here to construct sorption data bases for marl is applicable to any type of

  4. Far-field sorption data bases for performance assessment of a L/ILW repository in an undisturbed Palfris marl host rock

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H.; Baeyens, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-12-01

    A Palfris marl formation at Wellenberg (Gemeinde Wolfenschiessen, NW) has been chosen by NAGRA as a potential repository site for low- and intermediate-level radioactive waste, L/ILW. In the coming years a series of performance assessment studies will be performed for this site. One set of key data required for such safety analysis calculations is sorption data bases (SDB) for safety relevant radionuclides in the far-field. The purpose of this report is to describe the procedures used to generate sorption data bases appropriate for the in situ conditions existing along the different potential flow paths in an undisturbed marl host rock formation. An important aim was to document the sources of sorption data used and, in particular, the processes by which data selections were mad.e. The main guiding principles here were `transparency` and `traceability`. Inherent within this whole process is also the justification for, and defensibility of, the selected values. Much of the sorption data used to generate the SDB for marl came from the open literature. A major part of this report is concerned with describing the procedures whereby these initial literature values are modified so that they apply to the actual marl mineralogies and groundwater chemistries. The resulting `reference R{sub d} values` are then further modified using so called Lab -> Field transfer factors to produce sorption values which are appropriate to the in situ bulk rock conditions. The Lab -> Field transfer factors attempt to correct for the differences in sorption site availability between the crushed rock state used in batch tests and the intact rock state existing in reality in the host rock. There are two main groundwater chemistries and five characteristic mineralogical compositions which cover the three broad types of flow paths which have been identified in the Palfris marl formation. In principle the methodology described here to construct sorption data bases for marl is applicable to any

  5. X-ray Computed Microtomography technique applied for cementitious materials: A review.

    Science.gov (United States)

    da Silva, Ítalo Batista

    2018-04-01

    The main objective of this article is to present a bibliographical review about the use of the X-ray microtomography method in 3D images processing of cementitious materials microstructure, analyzing the pores microstructure and connectivity network, enabling tthe possibility of building a relationship between permeability and porosity. The use of this technique enables the understanding of physical, chemical and mechanical properties of cementitious materials by publishing good results, considering that the quality and quantity of accessible information were significant and may contribute to the study of cementitious materials development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Densimetry for the Quantification of Sorption Phenomena on Nonporous Media Near the Dew Point of Fluid Mixtures.

    Science.gov (United States)

    Richter, Markus; McLinden, Mark O

    2017-07-21

    Phase equilibria of fluid mixtures are important in numerous industrial applications and are, thus, a major focus of thermophysical property research. Improved data, particularly along the dew line, are needed to improve model predictions. Here we present experimental results utilizing highly accurate densimetry to quantify the effects of sorption and capillary condensation, which exert a distorting influence on measured properties near the dew line. We investigate the (pressure, density, temperature, composition) behaviour of binary (CH 4  + C 3 H 8 ) and (Ar + CO 2 ) mixtures over the temperature range from (248.15 to 273.15) K starting at low pressures and increasing in pressure towards the dew point along isotherms. Three distinct regions are observed: (1) minor sorption effects in micropores at low pressures; (2) capillary condensation followed by wetting in macro-scale surface scratches beginning approximately 2% below the dew-point pressure; (3) bulk condensation. We hypothesize that the true dew point lies within the second region.

  7. Microstructural changes in a cementitious membrane due to the application of a DC electric field.

    Science.gov (United States)

    Covelo, Alba; Diaz, Belen; Freire, Lorena; Novoa, X Ramon; Perez, M Consuelo

    2008-07-01

    The use of electromigration techniques to accelerate chloride ions motion is commonly employed to characterise the permeability of cementitious samples to chlorides, a relevant parameter in reinforced concrete corrosion. This paper is devoted to the study of microstructure's changes occurring in mortar samples when submitted to natural diffusion and migration experiments. The application of an electric field reduces testing time in about one order of magnitude with respect to natural diffusion experiments. Nevertheless, the final sample's microstructure differs in both tests. Impedance Spectroscopy is employed for real time monitoring of microstructural changes. During migration experiments the global impedance undergoes important increase in shorter period of time compared to natural diffusion tests. So, the forced motion of ions through the concrete membrane induces significant variations in the porous structure, as confirmed by Mercury Intrusion Porosimetry. After migration experiments, an important increase in the capillary pore size (10-100 nm) was detected. Conversely, no relevant variations are found after natural diffusion tests. Results presented in this work cast doubt on the significance of diffusion coefficient values obtained under accelerated conditions.

  8. In situ precipitation and sorption of arsenic from groundwater: Laboratory and ex situ field tests

    International Nuclear Information System (INIS)

    Whang, J.M.; Adu-Wusu, K.; Frampton, W.H.; Staib, J.G.

    1997-01-01

    Permeable, reactive walls may provide long term, low-maintenance prevention of off-site migration of contaminated groundwater. Laboratory and ex situ field tests conducted on several arsenic-contaminated groundwaters indicate that both precipitation and sorption can remove arsenic to levels of less than 10 ppb. Precipitation has been induced by adjusting pH, adding selected cations, and/or reducing the oxidation-reduction potential. Adjusting pH or adding cations was most effective when there were high levels of other ionic species with which arsenic could coprecipitate. Reducing the oxidation-reduction potential was effective on a variety of groundwaters. Humate was an effective sorbent at low pH; aluminum and iron materials were effective over a large range of conditions. Long term performance of precipitation systems can be limited by formation of precipitate on reactive surfaces. Long term sorption can be reduced by competing ions, such as phosphate. Laboratory and ex situ field tests indicate that reactive walls may have lifetimes of decades or more

  9. Phenanthrene sorption on biochar-amended soils

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo Pérez, Marcos

    2014-01-01

    on their influences on the sorption of environmental contaminants. In a field-based study at two experimental sites in Denmark, we investigated the effect of birch wood-derived biochar (Skogans kol) on the sorption of phenanthrene in soils with different properties. The soil sorption coefficient, Kd (L kg-1......), of phenanthrene was measured on sandy loam and loamy sand soils which have received from zero up to 100 t ha-1 of biochar. Results show that birch wood biochar had a higher Kd compared to soils. Furthermore, the application of birch wood biochar enhanced the sorption of phenanthrene in agricultural soils...... carbon, while it negatively correlated with clay content. The results also revealed that biochar-mineral interactions play an important role in the sorption of phenanthrene in biochar-amended soil....

  10. The solubility and sorption of nickel and niobium under high pH conditions

    International Nuclear Information System (INIS)

    Pilkington, N.J.; Stone, N.S.

    1990-01-01

    The solubilities of nickel and niobium were measured in a range of cement-equilibrated waters. For nickel the effects of cellulose degradation products and of chloride were examined and the dependence of nickel solubility on pH was measured. The sorption of nickel and niobium on to cement representative of the ''near field'' of a radioactive waste repository was also measured. (author)

  11. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulate...

  12. Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.

    Science.gov (United States)

    2011-12-01

    "This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulat...

  13. Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines

    Directory of Open Access Journals (Sweden)

    M.I. Khan

    2017-10-01

    Full Text Available The outcomes of the research in modern cementitious composites have paved the way for their wide use in construction industry. The introduction of short, discontinuous and randomly distributed fibers to these composites has altered their inherent brittleness. Extensive research has been carried out on the effects of using of mono-fibers in a cementitious composite. However, limited reports in the approachable references on the use of hybrid fibers are available. The synergetic interaction between hybrid fibers have beneficial impact on cementitious composites. The incorporation of micro- and nano-pozzolanic materials, such as fly ash and silica fume have been used to develop high performance cementitious composites such as reactive powder concrete, DUCTAL and CEMTEC multiscale. Further developments were recently achieved by the development of ultra-high performance cementitious composites. The matter of developing high and ultrahigh cementitious composites using various kinds of fibers and particles has received enormous attention from the scientific community. This paper presents a comprehensive critical literature review on the area of high and ultra-high performance cement-based materials.

  14. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials

    DEFF Research Database (Denmark)

    Michel, Alexander; Pease, Brad J.; Peterova, Adela

    2014-01-01

    This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current-induced c......This paper describes experimental investigations on corrosion-induced deterioration in reinforced cementitious materials and the subsequent development and implementation of a novel conceptual model. Rejnforced mortar specimens of varying water-to-cement ratios were subjected to current......-dependent concentrations of corrosion products averaged through the specimen thickness. Digital image correlation (DIC) was used to measure corrosion-induced deformations including deformations between steel and cementitious matrix as well as formation and propagation of corrosion-induced cracks. Based on experimental...... observations, a conceptual model was developed to describe the penetration of solid corrosion products into capillary pores of the cementitious matrix. Only capillary pores within a corrosion accommodating region (CAR), i.e. in close proximity of the steel reinforcement, were considered accessible...

  15. Retention/sorption and geochemical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, D.; Grandia, F.; Domenech, C. [Enviros Spain, S.L., Barcelona (Spain); SCK-CEN, Mol (Belgium); Sellin, P. [SKB - Swedish Nuclear Fuel and Waste Management, SE, Stockholm (Sweden); Hunter, F.M.I.; Bate, F.; Heath, T.G.; Hoch, A. [Serco Assurance, Oxfordshire (United Kingdom); Werme, L.O. [SKB - Svensk Karnbranslehantering AB, Stockholm (Sweden); Bruggeman, C.; Maes, I.A.; Breynaert, E.; Vancluysen, J. [Leuven Katholieke Univ., Lab. for Colloid Chemistry (Belgium); Montavon, G.; Guo, Z. [Ecole des Mines, 44 - Nantes (France); Riebe, B.; Bunnenberg, C.; Meleshyn, A. [Leibniz Univ. Hannover, Zentrum fur Strahlenschutz und Radiookologie, Hannover (Germany); Dultz, S. [Leibniz Univ. Hannover, Institut fur Bodenkunde, Hannover (Germany)

    2007-07-01

    This session gathers 4 articles dealing with: the long-term geochemical evolution of the near field of a KBS-3 HLNW repository: insights from reactive transport modelling (D. Arcos, F. Grandia, C. Domenech, P. Sellin); the investigation of iron transport into bentonite from anaerobically corroding steel: a geochemical modelling study (F.M.I. Hunter, F. Bate, T.G. Heath, A. Hoch, L.O. Werme); SeO{sub 3}{sup 2-} adsorption on conditioned Na-illite: XAS spectroscopy, kinetics, surface complexation model and influence of compaction (C. Bruggeman, A. Maes, G. Montavon, E. Breynaert, Z. Guo, J. Vancluysen); the influence of temperature and gamma-irradiation on the anion sorption capacity of modified bentonites (B. Riebe, C. Bunnenberg, A. Meleshyn, S. Dultz)

  16. REFERENCE CASES FOR USE IN THE CEMENTITIOUS BARRIERS PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2009-01-06

    The Cementitious Barriers Project (CBP) is a multidisciplinary cross cutting project initiated by the US Department of Energy (DOE) to develop a reasonable and credible set of tools to improve understanding and prediction of the structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The period of performance is >100 years for operating facilities and > 1000 years for waste management. The CBP has defined a set of reference cases to provide the following functions: (1) a common set of system configurations to illustrate the methods and tools developed by the CBP, (2) a common basis for evaluating methodology for uncertainty characterization, (3) a common set of cases to develop a complete set of parameter and changes in parameters as a function of time and changing conditions, and (4) a basis for experiments and model validation, and (5) a basis for improving conceptual models and reducing model uncertainties. These reference cases include the following two reference disposal units and a reference storage unit: (1) a cementitious low activity waste form in a reinforced concrete disposal vault, (2) a concrete vault containing a steel high-level waste tank filled with grout (closed high-level waste tank), and (3) a spent nuclear fuel basin during operation. Each case provides a different set of desired performance characteristics and interfaces between materials and with the environment. Examples of concretes, grout fills and a cementitious waste form are identified for the relevant reference case configurations.

  17. Preliminary experimental study on the deterioration of cementitious materials by an acceleration method

    International Nuclear Information System (INIS)

    Saito, H.; Nakane, S.; Ikari, S.; Fujiwara, A.

    1992-01-01

    Development of a deterioration model for cementitious materials is important in assessing long-term integrity of nuclear waste repositories. The authors preliminarily examined a new test method for acceleration of aging of mortar specimens by application of electrical potential gradients and observed whether the method could throw light on the deterioration process of cementitious materials under repository conditions. As a result, it was concluded that the application of a potential gradient to a mortar specimen might be useful as an accelerated test method for assessing the deterioration behavior of cementitious materials due to leaching. (orig.)

  18. Thin fiber and textile reinforced cementitious systems

    National Research Council Canada - National Science Library

    Aldea, Corina-Maria

    2007-01-01

    This Special Publication (SP) contains ten papers which provide insight on the topics of state of the art of thin fiber and textile-reinforced cementitious systems both in academia and the industry...

  19. Radionuclide sorption behavior in particulate matter in near coastal marine environments

    International Nuclear Information System (INIS)

    Hansen, A.M.; Ortega-Lara, V.; Leckie, J.O.

    1997-01-01

    Full text: In order to evaluate the migration behavior of radioactive cesium and strontium while transported from continental aquatic systems to marine environments, the sorption behaviors for these metals were evaluated in several different environments. Laboratory experiments using radioactive tracers, and equilibrium as well as time dependent modeling were used to evaluate and quantify the distribution of the two elements as a function of element chemistry, solid substrate characteristics and solution composition. The experimental conditions reflected salinities ranging from those found in rivers and lakes through estuaries to the ocean. Adsorption constants were obtained for strontium in natural sediments from these aquatic environments. The strontium specification was evaluated in solution as well as in the adsorbed state. Sorption of strontium occurred mainly as outer sphere complexes. Major cations, ligands (soluble and particulate), ionic strength, and pH were among parameters that affected the distribution of cesium and strontium between adsorbed and dissolved forms. Time-dependent sorption behaviors were observed under study dissolved salt and suspended sediment conditions. Desorption occurred to some degree for all sediment types. Cesium was exchanged with potassium and sodium in clay minerals and was therefore less desorbed than would be expected. The results allowed the description of migration behaviors of two important pollutants from the atomic energy industry

  20. SALTSTONE AND RADIONUCLIDE INTERACTIONS: RADIONUCLIDE SORPTION AND DESORPTION, AND SALTSTONE REDUCTION CAPACITY

    International Nuclear Information System (INIS)

    Kaplan, D; Roberts, Kimberly; Serkiz, Steven; Siegfried, Matthew

    2008-01-01

    The overall objective of this study was to measure a number of key input parameters quantifying geochemical processes in the subsurface environment of the Savannah River Site's (SRS's) Saltstone Facility. For the first time, sorption (K d ) values of numerous radionuclides were measured with Saltstone and Vault 2 concrete. Particular attention was directed at understanding how Tc adsorbs and desorbs from these cementitious materials with the intent to demonstrate that desorption occurs at a much slower rate than adsorption, thus permitting the use of kinetic terms instead of (or along with) the steady state K d term. Another very important parameter measured was the reduction capacity of these materials. This parameter is used to estimate the duration that the Saltstone facility remains in a reduced chemical state, a condition that maintains several otherwise mobile radionuclides in an immobile form. Key findings of this study follow. K d values for Am, Cd, Ce, Co, Cs, Hg, I, Np, Pa, Pu, Se, Sn, Tc, U, and Y for Saltstone and Vault 2 concrete were measured under oxidized and reduced conditions. Precipitation of several of the higher valence state radionuclides was observed. There was little evidence that the Vault 2 and Saltstone K d values differed from previous SRS K d values measured with reducing grout (Kaplan and Coates 2007). These values also supported a previous finding that K d values of slag-containing cementitious materials, tend to be greater for cations and about the same for anions, than regular cementitious materials without slag. Based on these new findings, it was suggested that all previous reducing concrete K d values be used in future PAs, except Np(V) and Pu(IV) K d values, which should be increased, and I values, which should be slightly decreased in all three stages of concrete aging. The reduction capacity of Saltstone, consisting of 23 wt-% blast furnace slag, was 821.8 microequivalents per gram ((micro)eq/g). This value was approximately

  1. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-01-01

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  2. Sorption of cesium in intact rock

    International Nuclear Information System (INIS)

    Puukko, E.

    2014-04-01

    The mass distribution coefficient K d is used in performance assessment (PA) to describe sorption of a radionuclide on rock. The R d is determined using crushed rock which causes uncertainty in converting the R d values to K d values for intact rock. This work describes a method to determine the equilibrium of sorption on intact rock. The rock types of the planned Olkiluoto waste disposal site were T-series mica gneiss (T-MGN), T-series tonalite granodiorite granite gneiss (T-TGG), P-series tonalite granodiorite granite gneiss (P-TGG) and pegmatitic granite (PGR). These rocks contain different amount of biotite which is the main sorbing mineral. The sorption of cesium on intact rock slices was studied by applying an electrical field to speed up migration of cesium into the rock. Cesium is in the solution as a noncomplex cation Cs + and it is sorbed by ion exchange. The tracer used in the experiments was 134 Cs. The experimental sorption on the intact rock is compared with values calculated using the in house cation exchange sorption model (HYRL model) in PHREEQC program. The observed sorption on T-MGN and T-TGG rocks was close to the calculated values. Two PGR samples were from a depth of 70 m and three samples were from a depth of 150 m. Cesium sorbed more than predicted on the two 70 m PGR samples. The sorption of Cs on the three 150 m PGR samples was small which was consistent with the calculations. The pegmatitic granite PGR has the smallest content of biotite of the four rock types. In the case of P-TGG rock the observed values of sorption were only half of the calculated values. Two kind of slices were cut from P-TGG drill core. The slices were against and to the direction of the foliation of the biotite rims. The sorption of cesium on P-TGG rock was same in both cases. The results indicated that there was no effect of the directions of the electric field and the foliation of biotite in the P-TGG rock. (orig.)

  3. Nuclide release from the near-field of a L/ILW repository

    International Nuclear Information System (INIS)

    Karlsson, L.G.; Hoeglund, L.O.; Pers, K.

    1986-12-01

    For Project Gewaehr 1985, the release of nuclides from a repository for low- and intermediate-level radioactive waste is calculated. The calculations are made for a reference design repository located in the marl host rock at the Oberbauen Stock reference site. The results are limited to the release of the nuclides from the waste through the engineered barriers into the surrounding host rock and will, therefore, constitute a source term for the far-field and biosphere calculations. The most probable nuclide transport mechanism is diffusion and releases are thus influenced by the nuclide diffusivities in the barriers, nuclide sorption and nuclide solubility limits. Degradation of the engineered concrete barriers is taken into account. The effects of convective flow through the barriers are described elsewhere. A near-field release model is presented. It consists of a set of computer programs suited to handel different repository designs, solubility limitations and the different waste categories. The release calculations were made for a base case in which best estimates of the parameters were used. Sensitivity to the choice of the most important parameters was tested by parameter variations. The numerical models used were checked by comparative calculations with different codes and similar data. The results of the base calculations show that near-field barriers will cause both a delay of the release to the far-field and a reduced rate of release. The sorbed nuclides, comprising the actinides and some activation and fission products, will be delayed by 10'000 years and have a maximum release rate of less than 10 -3 Ci/a each. The non-sorbed nuclides are delayed by only about 100 years and the maximum release rate is less than 10 -2 Ci per year and nuclide. The parameter variations and the design model tests gave only limited deviations from the base case results. (author)

  4. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  5. Exploring Polymer-Modified Concrete and Cementitious Coating with High-Durability for Roadside Structures in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Yinchuan Guo

    2017-01-01

    Full Text Available The concrete roadside structures in Xinjiang, China, such as roadside barriers, bridge rails, and drainage holes, are severely damaged by the coupled effect of seasonal freeze-thaw cycles and deicer salts. To solve the corrosion problems of roadside structures, polymer-modified concrete was recommended for the future construction of roadside structures and polymer-modified cementitious coating was suggested for the protection of the current corroded ones. In this study, air-entraining agent and carboxylated styrene-butadiene latex were added for concrete modification and the corresponding performance tests were conducted. In addition, the performances of six types of readily available coating materials, including the acrylic latex modified cementitious coating designed in this study, were tested in freeze-thaw condition with the presence of chloride ions. The results show that 0.013% of the air-entraining agent and 10% of the carboxylated styrene-butadiene latex were appropriate dosage rates for the modification of Portland cement concrete, in terms of the improvement of the freeze-thaw resistance, compressive strength, and chloride impermeability. For the protection of the current corroded roadside structures, the acrylic-modified cementitious coating material demonstrated a good performance and the field monitoring confirmed that the coating is suitable for the protection of the roadside structures in Xinjiang.

  6. A fully general and adaptive inverse analysis method for cementitious materials

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Damkilde, Lars; Lövgren, Ingemar

    2016-01-01

    The paper presents an adaptive method for inverse determination of the tensile σ - w relationship, direct tensile strength and Young’s modulus of cementitious materials. The method facilitates an inverse analysis with a multi-linear σ - w function. Usually, simple bi- or tri-linear functions...... are applied when modeling the fracture mechanisms in cementitious materials, but the vast development of pseudo-strain hardening, fiber reinforced cementitious materials require inverse methods, capable of treating multi-linear σ - w functions. The proposed method is fully general in the sense that it relies...... of notched specimens and simulated data from a nonlinear hinge model. The paper shows that the results obtained by means of the proposed method is independent on the initial shape of the σ - w function and the initial guess of the tensile strength. The method provides very accurate fits, and the increased...

  7. The influence of Fe(II) competition on the sorption and migration of Ni(II) in MX-80 bentonite

    International Nuclear Information System (INIS)

    Pfingsten, Wilfried; Bradbury, Mike; Baeyens, Bart

    2011-01-01

    Highlights: → We model the diffusion of Ni(II) through bentonite using different sorption models. → We examine sorption competition of Fe(II) and Ni(II) at different concentrations. → Ni(II) breakthrough is 15 times earlier with Fe(II) sorption competition. → Ni(II) sorption is non-linear and depends on the Fe(II) concentration levels. → Sorption competition is important and has to be modelled by reactive transport codes. - Abstract: The results from batch sorption experiments on montmorillonite systems have demonstrated that bivalent transition metals compete with one another for sorption sites. For safety analysis studies of high level radioactive waste repositories with compacted bentonite near fields, the importance of competitive sorption on the migration of radionuclides needs to be evaluated. Under reducing conditions, the bentonite porewater chosen has a Fe(II) concentration of ∼5.3 x 10 -5 M through saturation with siderite. The purpose of this paper is to assess the influence of such high Fe(II) concentrations on the transport of Ni(II) through compacted bentonite, Ni(II) was chosen as an example of a bivalent transition metal. The one-dimensional calculations were carried out at different Ni(II) equilibrium concentrations at the boundary (Ni(II) EQBM ) with the reactive transport code MCOTAC incorporating the two site protolysis non electrostatic surface complexation/cation exchange sorption model, MCOTAC-sorb. At a Ni(II) EQBM level of 10 -7 M without Fe(II) competition, the reactive transport calculations using a constant K d approach and the MCOTAC-sorb calculation yielded the same breakthrough curves. At higher Ni(II) EQBM (10 -5 M), the model calculations with MCOTAC-sorb indicated a breakthrough which was shifted to later times by a factor of ∼5 compared with the use of the constant K d approach. When sorption competition was included in the calculations, the magnitude of the influence depended on the sorption characteristics of the

  8. An investigation of the characteristics of humic acid and of its effects on the chemistry of the near field of a radioactive waste repository

    International Nuclear Information System (INIS)

    Bates, C.I.; Bayliss, S.; Gardiner, M.P.; Hobley, J.; Smith, A.J.; Williams, S.J.

    1992-07-01

    The work described in this report attempts to assess the possible effects of humic substances in the near field of a radioactive waste repository. Two samples of humic acid were studied by analytical ultracentrifugation. It was found to be an advantage to reduce sample polydispersity before carrying out molecular weight determinations. Ultrafiltration experiments showed that calcium concentrations of greater than 10 -3 M were sufficient to cause precipitation of humic acid. Boom clay extracts in sodium hydroxide solution were able to maintain high concentrations of americium in the aqueous phase. Extracts of Boom clay in cement-equilibrated water showed less ability to increase americium concentrations. The sorption of americium on BFS/OPC was studied. Distribution ratios of 600 ml g -1 in the absence of humic acid and 500 ml g -1 in its presence were obtained. Size distribution studies on americium showed that humic acid had little effect on the concentration of the radioelement in solutions passed through filters with up to 2 μm pore size. However, size distribution studies on plutonium revealed that more plutonium was associated with each filtered fraction in the experiments which contained Boom clay extract than in those which used cement-equilibrated water. Measurements of the sorption of neptunium on cements showed that this radioelement was strongly sorbed onto both 9:1 BFS/OPC and the Nirex reference backfill. The presence of humic acid extracted from Boom clay did not cause any discernible decrease in the sorption of this radioelement on cement. Thermodynamic calculations, using a simple model, illustrate the important role which calcium could play in controlling the concentrations of actinide humates in the near-field porewater. (author)

  9. A unidirectional subwavelength focusing near-field plate

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F.; Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-01-28

    Near-field plates consist of non-periodically patterned surfaces that can overcome the diffraction limit and confine electromagnetic fields to subwavelength dimensions. Previous near-field plates experimentally demonstrated extreme field tailoring capabilities. However, their performance suffered from radiation/reflection in undesired directions, those other than the subwavelength focus. This issue can limit the practical use of near-field plates. In this paper, we address this issue by designing a unidirectional near-field plate that can form a subwavelength focal pattern, while suppressing the field radiated/reflected in other directions. The design and operation of the proposed unidirectional near-field plate are verified through full-wave simulation. The unidirectional near-field plate may find application in high resolution imaging and probing, high density data storage, and wireless power transfer systems. As an example, its utility as a high resolution probe is demonstrated through full-wave electromagnetic simulation.

  10. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Constanze

    2015-11-05

    A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca{sup 2+} on U(VI) uptake on the minerals was studied. The

  11. Sorption of environmentally relevant radionuclides (U(VI), Np(V)) and lanthanides (Nd(III)) on feldspar and mica

    International Nuclear Information System (INIS)

    Richter, Constanze

    2015-01-01

    A safe storage of radioactive waste in repositories is an important task to protect humans and the environment from radio- and chemotoxicity. Long-term safety assessments predict the behavior of potential environmental contaminants like the actinides plutonium, uranium, or neptunium, in the near and far field of repositories. For such safety assessments, it is necessary to know the migration behavior of the contaminants in the environment, which is mainly dependent on the aquatic speciation, the solubility product of relevant solid phases, and the retardation due to sorption on surrounding minerals. Thus, an investigation of sorption processes of contaminants onto different minerals as well as the derivation of mineral specific surface complexation model (SCM) parameters is of great importance. Feldspar and mica are widely distributed in nature. They occur as components of granite, which is considered as a potential host rock for a repository in Germany, and in numerous other rocks, and thus also in the far field of nearly all repositories. However, their sorption behavior with actinides has only been scarcely investigated until now. In order to better characterize these systems and subsequently to integrate these minerals into the long-term safety assessments, this work focuses on the investigation of the sorption behavior of U(VI), Np(V), and Nd(III) as analogue for An(III) onto the minerals orthoclase and muscovite, representing feldspars and mica, respectively. All investigations were performed under conditions relevant to the far field of a repository. In addition to the extensive characterization of the minerals, batch sorption experiments, spectroscopic investigations, and surface complexation modeling were performed to elucidate the uptake and speciation of actinides on the mineral surfaces. In addition, the influence of microorganisms naturally occurring on the mineral surfaces and the effect of Ca 2+ on U(VI) uptake on the minerals was studied. The

  12. Near-field and far-field modeling of scattered surface waves. Application to the apertureless scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Muller, J.; Parent, G.; Fumeron, S.; Jeandel, G.; Lacroix, D.

    2011-01-01

    The detection of surface waves through scanning near-field optical microscopy (SNOM) is a promising technique for thermal measurements at very small scales. Recent studies have shown that electromagnetic waves, in the vicinity of a scattering structure such as an atomic force microscopy (AFM) tip, can be scattered from near to far-field and thus detected. In the present work, a model based on the finite difference time domain (FDTD) method and the near-field to far-field (NFTFF) transformation for electromagnetic waves propagation is presented. This model has been validated by studying the electromagnetic field of a dipole in vacuum and close to a dielectric substrate. Then simulations for a tetrahedral tip close to an interface are presented and discussed.

  13. Fast sorption measurements of volatile organic compounds on building materials: Part 1 – Methodology developed for field applications

    Directory of Open Access Journals (Sweden)

    M. Rizk

    2016-03-01

    Full Text Available A Proton Transfer Reaction-Mass Spectrometer (PTR-MS has been coupled to the outlet of a Field and Laboratory Emission Cell (FLEC, to measure volatile organic compounds (VOC concentration during a sorption experiments (Rizk et al., this issue [1]. The limits of detection of the PTR-MS for three VOCs are presented for different time resolution (2, 10 and 20 s. The mass transfer coefficient was calculated in the FLEC cavity for the different flow rates. The concentration profile obtained from a sorption experiment performed on a gypsum board and a vinyl flooring are also presented in comparison with the profile obtained for a Pyrex glass used as a material that do not present any sorption behavior (no sink. Finally, the correlation between the concentration of VOCs adsorbed on the surface of the gypsum board at equilibrium (Cse and the concentration of VOCs Ce measured in the gas phase at equilibrium is presented for benzene, C8 aromatics and toluene.

  14. Calcining natural zeolites to improve their effect on cementitious mixture workability

    International Nuclear Information System (INIS)

    Seraj, Saamiya; Ferron, Raissa D.; Juenger, Maria C.G.

    2016-01-01

    Despite the benefits to long-term concrete durability, the use of natural zeolites as supplementary cementitious materials (SCMs) is uncommon due to their high water demand. The motivation of the research presented here was to better understand how the physical and chemical characteristics of natural zeolites influenced the workability of cementitious mixtures and whether those properties could be modified through calcination to mitigate the high water demand of natural zeolites. In this research, three different natural zeolites were characterized in their original and calcined states using x-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area measurements. Rheology experiments were then conducted on cementitious pastes containing these natural zeolites, in their original and calcined states, to assess mixture viscosity and yield stress. Results showed that calcination destabilized the structure of the natural zeolites and reduced their surface area, which led to an improvement in mixture viscosity and yield stress.

  15. INFLUENCES OF SOIL PROPERTIES ON CHROMIUM (III SORPTION

    Directory of Open Access Journals (Sweden)

    R. Salmasi, F. Salmasi

    2007-07-01

    Full Text Available Soil adsorbing properties reduce sorption ability of the metal, which in turn may influence decision for remediation at contaminated sites. The objective of this study is presentation of a model based on soil properties to estimate the sorption of Cr(III in chromium contaminated soils. Twenty uncontaminated soil samples, with properties similar to the contaminated soils were selected from around of city of Tabriz and treated with Cr as CrCl3. A multiple regression analysis with statgraph software was used to drive an expression that related Cr sorption to common soil properties. The results showed that four soil properties were important in determining the amount of Cr adsorbed by the soils including pH, cation exchange capacity, total inorganic carbon and clay content with nearly 80% variability in Cr sorption and a reasonable level of confidence by this model. The obtained model suggested that Cr(III sorption was enhanced by higher soil pH, more total inorganic carbon, more clay, and higher cation exchange capacity.

  16. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  17. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  18. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction

    International Nuclear Information System (INIS)

    Hillenbrand, Rainer

    2004-01-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si 3 N 4 . Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics--a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics

  19. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  20. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    Science.gov (United States)

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  1. Assessing the Contribution of the CFRP Strip of Bearing the Applied Load Using Near-Surface Mounted Strengthening Technique with Innovative High-Strength Self-Compacting Cementitious Adhesive (IHSSC-CA

    Directory of Open Access Journals (Sweden)

    Alyaa Mohammed

    2018-01-01

    Full Text Available Efficient transfer of load between concrete substrate and fibre reinforced polymer (FRP by the bonding agent is the key factor in any FRP strengthening system. An innovative high-strength self-compacting non-polymer cementitious adhesive (IHSSC-CA was recently developed by the authors and has been used in a number of studies. Graphene oxide and cementitious materials are used to synthesise the new adhesive. The successful implementation of IHSSC-CA significantly increases carbon FRP (CFRP strip utilization and the load-bearing capacity of the near-surface mounted (NSM CFRP strengthening system. A number of tests were used to inspect the interfacial zone in the bonding area of NSM CFRP strips, including physical examination, pore structure analysis, and three-dimensional laser profilometery analysis. It was deduced from the physical inspection of NSM CFRP specimens made with IHSSC-CA that a smooth surface for load transfer was found in the CFRP strip without stress concentrations in some local regions. A smooth surface of the adhesive layer is very important for preventing localized brittle failure in the concrete. The pore structure analysis also confirmed that IHSSC-CA has better composite action between NSM CFRP strips and concrete substrate than other adhesives, resulting in the NSM CFRP specimens made with IHSSC-CA sustaining a greater load. Finally, the results of three-dimensional laser profilometery revealed a greater degree of roughness and less deformation on the surface of the CFRP strip when IHSSC-CA was used compared to other adhesives.

  2. Chloride diffusion in partially saturated cementitious material

    DEFF Research Database (Denmark)

    Nielsen, Erik Pram; Geiker, Mette Rica

    2003-01-01

    The paper proposes a combined application of composite theory and Powers' model for microstructural development for the estimation of the diffusion coefficient as a function of the moisture content of a defect-free cementitious material. Measurements of chloride diffusion in mortar samples (440 kg...

  3. The fate of organic compounds in a cement-based repository: impact on the engineered barrier and the release of C-14 from the near field

    International Nuclear Information System (INIS)

    Wieland, E.; Rothardt, J.; Schlotterbeck, G.

    2015-01-01

    The degradation of organic materials is taken into account in the safety analysis for a L/ILW (Low- and intermediate-level radioactive waste) repository in Switzerland with the aim of assessing possible impacts on the cement barrier. The waste forms to be disposed of in the planned L/ILW repository will contain HMW polymers and LMW monomeric organic materials. It is anticipated that these organic materials have different degradation rates and therefore different life times in a repository. While the decomposition of LMW organics is expected to be fast and complete during the oxic and early anoxic states of a repository, i.e. before and shortly after repository closure, the decomposition of the HMW polymeric materials is expected to be very slow and, for some materials, to occur over the entire life time of the repository. The degradation of organic materials generates CO 2 which gives rise to carbonation of the cement barrier. The maximum acceptable loading of organics in the near field with no detrimental effect on radionuclide immobilization can be estimated on the assumption that at maximum 2/3 of the total portlandite inventory of hydrated cement is allowed to convert to CaCO 3 in the case of waste compartments for which the cementitious barrier should remain intact. The maximum loading is determined by the inventory of the organic material under consideration as well as the carbon content and the oxidation state of carbon of the material. Carbon-14 bound in organic compounds is considered to be an important contributor to the annual dose released from a L/ILW repository. While the 14 C inventory is well known, the chemical speciation of 14 C in the cementitious near field upon liberation in the course of the corrosion of activated steel is only poorly understood. Preliminary corrosion tests with non-activated steel powders show the formation of gaseous and dissolved organic carbon species, e.g. alkanes/alkenes, alcohols, aldehydes, and carboxylic acids

  4. Overview Of The U.S. Department Of Energy And Nuclear Regulatory Commission Performance Assessment Approaches: Cementitious Barriers Partnership

    International Nuclear Information System (INIS)

    Langton, C.; Burns, H.

    2009-01-01

    Engineered barriers including cementitious barriers are used at sites disposing or contaminated with low-level radioactive waste to enhance performance of the natural environment with respect to controlling the potential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form/speciation, waste matrix properties, shallow water table, and humid climate that provides water for leaching the waste). This document comprises the first in a series of reports being prepared for the Cementitious Barriers Partnership. The document is divided into two parts which provide a summary of: (1) existing experience in the assessment of performance of cementitious materials used for radioactive waste management and disposal and (2) sensitivity and uncertainty analysis approaches that have been applied for assessments. Each chapter is organized into five parts: Introduction, Regulatory Considerations, Specific Examples, Summary of Modeling Approaches and Conclusions and Needs. The objective of the report is to provide perspective on the state of the practice for conducting assessments for facilities involving cementitious barriers and to identify opportunities for improvements to the existing approaches. Examples are provided in two contexts: (1) performance assessments conducted for waste disposal facilities and (2) performance assessment-like analyses (e.g., risk assessments) conducted under other regulatory regimes. The introductory sections of each section provide a perspective on the purpose of performance assessments and different roles of cementitious materials for radioactive waste management. Significant experience with assessments of cementitious materials associated with radioactive waste disposal concepts exists in the US Department of Energy Complex and the commercial nuclear sector. Recently, the desire to close legacy facilities has created

  5. OVERVIEW OF THE U.S. DEPARTMENT OF ENERGY AND NUCLEAR REGULATORY COMMISSION PERFORMANCE ASSESSMENT APPROACHES: CEMENTITIOUS BARRIERS PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Burns, H.

    2009-05-29

    Engineered barriers including cementitious barriers are used at sites disposing or contaminated with low-level radioactive waste to enhance performance of the natural environment with respect to controlling the potential spread of contaminants. Drivers for using cementitious barriers include: high radionuclide inventory, radionuclide characteristics (e.g., long half-live, high mobility due to chemical form/speciation, waste matrix properties, shallow water table, and humid climate that provides water for leaching the waste). This document comprises the first in a series of reports being prepared for the Cementitious Barriers Partnership. The document is divided into two parts which provide a summary of: (1) existing experience in the assessment of performance of cementitious materials used for radioactive waste management and disposal and (2) sensitivity and uncertainty analysis approaches that have been applied for assessments. Each chapter is organized into five parts: Introduction, Regulatory Considerations, Specific Examples, Summary of Modeling Approaches and Conclusions and Needs. The objective of the report is to provide perspective on the state of the practice for conducting assessments for facilities involving cementitious barriers and to identify opportunities for improvements to the existing approaches. Examples are provided in two contexts: (1) performance assessments conducted for waste disposal facilities and (2) performance assessment-like analyses (e.g., risk assessments) conducted under other regulatory regimes. The introductory sections of each section provide a perspective on the purpose of performance assessments and different roles of cementitious materials for radioactive waste management. Significant experience with assessments of cementitious materials associated with radioactive waste disposal concepts exists in the US Department of Energy Complex and the commercial nuclear sector. Recently, the desire to close legacy facilities has created

  6. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  7. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  8. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  9. Use of thermodynamic sorption models to derive radionuclide Kd values for performance assessment: Selected results and recommendations of the NEA sorption project

    Science.gov (United States)

    Ochs, M.; Davis, J.A.; Olin, M.; Payne, T.E.; Tweed, C.J.; Askarieh, M.M.; Altmann, S.

    2006-01-01

    For the safe final disposal and/or long-term storage of radioactive wastes, deep or near-surface underground repositories are being considered world-wide. A central safety feature is the prevention, or sufficient retardation, of radionuclide (RN) migration to the biosphere. To this end, radionuclide sorption is one of the most important processes. Decreasing the uncertainty in radionuclide sorption may contribute significantly to reducing the overall uncertainty of a performance assessment (PA). For PA, sorption is typically characterised by distribution coefficients (Kd values). The conditional nature of Kd requires different estimates of this parameter for each set of geochemical conditions of potential relevance in a RN's migration pathway. As it is not feasible to measure sorption for every set of conditions, the derivation of Kd for PA must rely on data derived from representative model systems. As a result, uncertainty in Kd is largely caused by the need to derive values for conditions not explicitly addressed in experiments. The recently concluded NEA Sorption Project [1] showed that thermodynamic sorption models (TSMs) are uniquely suited to derive K d as a function of conditions, because they allow a direct coupling of sorption with variable solution chemistry and mineralogy in a thermodynamic framework. The results of the project enable assessment of the suitability of various TSM approaches for PA-relevant applications as well as of the potential and limitations of TSMs to model RN sorption in complex systems. ?? by Oldenbourg Wissenschaftsverlag.

  10. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    International Nuclear Information System (INIS)

    Loh, Kenneth J; Gonzalez, Jesus

    2015-01-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens. (paper)

  11. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    Science.gov (United States)

    Loh, Kenneth J.; Gonzalez, Jesus

    2015-07-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens.

  12. About the possibility of obtaining cementitious soil composites of high strength on the basis of belozems of carbonate composition

    Science.gov (United States)

    Karapetyan, K. A.; Hayroyan, S. G.; Manukyan, E. S.

    2018-04-01

    The problem of manufacturing high strength cementitious soils based on belozems of carbonate composition, which experience compression (no less than 10 MPa), without application of surface active substances is considered. The portland cement of type 400 was used as a binding agent to develop compositions of cementitious soil composites, and the ordinary pipe water was used to obtain solutions of cementitious soils. The chemical and mineralogical composition of the initial ingredients and the granulometric composition of belozems were determined. The measurements showed that the upper and lower plasticity limits, the optimum moisture content, and the maximal density of the skeleton of belozems, as well as the considered compositions of cementitious soils, are insignificant, while the plasticity index of cementitious soils is less than one for belozems. It is experimentally proved that an increase in the portland cement amount lead to an increase in the compressive strength of cementitious soils with a decreasing speed. But for the same amount of portland cement used in the cementitious soil compositions, the values of the strength ratio of the pieces tested at the age of 60 and 28 days remain the same and are approximately equal to 1.2. A comparison of experimental data showed that it seems to be real to manufacture a cementitious soil on the basis of belozems of carbonate composition, which contain 10% of cement of the weight of dry mixture and have strength more than 10 MPa, without adding any surfactants to the material composition.

  13. The Expanded Capabilities Of The Cementitious Barriers Partnership Software Toolbox Version 2.0 - 14331

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Heather; Flach, Greg; Smith, Frank; Langton, Christine; Brown, Kevin; Kosson, David; Samson, Eric; Mallick, Pramod

    2014-01-10

    The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. The CBP Software Toolbox – “Version 1.0” was released early in FY2013 and was used to support DOE-EM performance assessments in evaluating various degradation mechanisms that included sulfate attack, carbonation and constituent leaching. The sulfate attack analysis predicted the extent and damage that sulfate ingress will have on concrete vaults over extended time (i.e., > 1000 years) and the carbonation analysis provided concrete degradation predictions from rebar corrosion. The new release “Version 2.0” includes upgraded carbonation software and a new software module to evaluate degradation due to chloride attack. Also included in the newer version are a dual regime module allowing evaluation of contaminant release in two regimes – both fractured and un-fractured. The integrated software package has also been upgraded with new plotting capabilities and many other features that increase the “user-friendliness” of the package. Experimental work has been generated to provide data to calibrate the models to improve the credibility of the analysis and reduce the uncertainty. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up to or longer than 100 years for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox is and will continue to produce tangible benefits to the working DOE

  14. An investigation of the characteristics of humic acid and of its effects on the chemistry of the near field of a radioactive waste repository

    International Nuclear Information System (INIS)

    Bates, C.I.; Bayliss, S.; Gardiner, M.P.; Hobley, J.; Smith, A.J.; Williams, S.J.

    1993-01-01

    The work described in this report attempts to assess the possible effects of humic substances in the near field of a radioactive waste repository. Two samples of humic acid were studied by analytical ultracentrifugation. It was found to be an advantage to reduce sample polydispersity before carrying out molecular weight determinations. Ultrafiltration experiments showed that calcium concentrations of greater than 10 -3 M were sufficient to cause precipitation of humic acid. Boom clay extracts in sodium hydroxide solution were able to maintain high concentrations of americium in the aqueous phase. Extracts of Boom clay in cement-equilibrated water showed less ability to increase americium concentrations. The sorption of americium on BFS/OPC was studied. Distribution ratios of 600 ml g -1 in the absence of humic acid and 500 ml g -1 in its presence were obtained. Size distribution studies on americium showed that humic acid had little effect on the concentration of the radioelement in solutions passed through filters with up to 2 μm pore size. However, size distribution studies on plutonium revealed that more plutonium was associated with each filtered fraction in the experiments which contained Boom clay extract than in those which used cement-equilibrated water. Measurements of the sorption of neptunium on cements showed that this radioelement was strongly sorbed onto both 9:1 BFS/OPC and the Nirex reference backfill. The presence of humic acid extracted from Boom clay did not cause any discernible decrease in the sorption of this radioelement on cement. Thermodynamic calculations, using a simple model, illustrate the important role which calcium could play in controlling the concentrations of actinide humates in the near-field porewater. 31 refs., 19 figs., 12 tabs

  15. Study of the sorption properties of the peat for removal of heavy metals

    International Nuclear Information System (INIS)

    Hayrapetyan, S.S.; Gevorgyan, S.A.; Hayrapetyan, L.S.; Bareghamyan, S.F.; Pirumyan, G.P.

    2016-01-01

    The processes of sorption of several heavy metals on peat samples taken from basin of lake Sevan (near Vardenis Gegharkunik region of Armenia) were investigated. The peat samples were taken from different locations from 1 m depth. The sorption processes have been done in the static mode. The peat samples were used without any modification, i.e. the sorption properties of natural raw peat were studied. The studies were conducted on the basis of synthetic solution containing ions of these following metals - Ni, Co, As, U, Ba. The sorption properties of peat were estimated by ICP-MS. Thus, peat can be a very effective sorption medium for removal of heavy metals from water. Most of them are absorbed in the first minutes of peat exposure to aqueous solution. For the sorption of barium, uranium, arsenic peat exhibits very high sorption efficiency. For comparison, their relative sorption values about 10 times more than those of cobalt, nickel and zinc.

  16. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    International Nuclear Information System (INIS)

    Naus, Dan J.; Mattus, Catherine H.; Dole, Leslie Robert

    2007-01-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a 'primer' on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a 'bench-scale' laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the 'primer,' a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures

  17. Final Report - Assessment of Potential Phosphate Ion-Cementitious Materials Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Naus, Dan J [ORNL; Mattus, Catherine H [ORNL; Dole, Leslie Robert [ORNL

    2007-06-01

    The objectives of this limited study were to: (1) review the potential for degradation of cementitious materials due to exposure to high concentrations of phosphate ions; (2) provide an improved understanding of any significant factors that may lead to a requirement to establish exposure limits for concrete structures exposed to soils or ground waters containing high levels of phosphate ions; (3) recommend, as appropriate, whether a limitation on phosphate ion concentration in soils or ground water is required to avoid degradation of concrete structures; and (4) provide a "primer" on factors that can affect the durability of concrete materials and structures in nuclear power plants. An assessment of the potential effects of phosphate ions on cementitious materials was made through a review of the literature, contacts with concrete research personnel, and conduct of a "bench-scale" laboratory investigation. Results of these activities indicate that: no harmful interactions occur between phosphates and cementitious materials unless phosphates are present in the form of phosphoric acid; phosphates have been incorporated into concrete as set retarders, and phosphate cements have been used for infrastructure repair; no standards or guidelines exist pertaining to applications of reinforced concrete structures in high-phosphate environments; interactions of phosphate ions and cementitious materials has not been a concern of the research community; and laboratory results indicate similar performance of specimens cured in phosphate solutions and those cured in a calcium hydroxide solution after exposure periods of up to eighteen months. Relative to the "primer," a separate NUREG report has been prepared that provides a review of pertinent factors that can affect the durability of nuclear power plant reinforced concrete structures.

  18. Analysis of Technical Status on the Application of Cementitious Materials for Radwaste Repository

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kwon, Sang Ki; Cho, Won Jin

    2008-12-01

    In this report, technical status on the application of cementitious materials and related research trends in Sweden, Switzerland and Japan etc. is listed based on the example of ONKALO in Finland. SKB and POSIVA have defined a pH limit ≤ 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate(CSH) gel with a Ca/Si ratio ≤ 0.8(Savage D. 2007). Silica fume as a blending agent is considered to be most promising for repository low-pH grouts. When adding silica fume to enhance cement quality, it demands high water content in cement paste. Then it is necessary to use additives such as superplasticiser to improve the workability of low-pH cement. Posiva, SKB and NUMO co-operated in developing low-pH grouts for deep repositories 2002-2005. Additionally, it is needed to study more about long-term performance characteristics, interaction of bentonite buffer material with high pH plume, influence on the migration/sorption of radionuclides and their performance numerical modeling. In this regards, international co-research projects such as ESDRED and IAEA CRP are being actively performed

  19. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  20. Liquid-solid interface project in nuclear engineering. Systematization of sorption theory in heterogeneous surface and it's application to radioactive waste disposal. JAERI's nuclear research promotion program, H10-032. Contract research

    International Nuclear Information System (INIS)

    Tanaka, Satoru

    2002-03-01

    Combining of the In-Situ and Ex-situ experiments with quantum chemical calculation, we can draw the following conclusions on the sorption at heterogeneous interfaces, based on the structure of solid surfaces and the profile of charge/electron at surface: (1) Redox sensitive species Np(V) is reduced to Np(IV) by Fe(II) contained in iron oxides. (2) Interactions of ions with C-S-H gels, which is a main component of cementitious materials, consist of replacement of Ca, association with Si and ion exchange. (3) Iodate ions adsorb on the two kinds of sorption sites located on the outer surface of hydrotalcite. (4) Interaction potential between particles and solid surfaces decrease due to the microscopic roughness of solid surface and localized distribution of charge on the surface, leading to the increase in the deposition of particles. (5) Some information on the association situation of water molecules on the metal oxides are obtained. These results suggests that the microscopic heterogeneity of solid surfaces facilities the interaction of ions and particles with solid surfaces. These phenomena can not be explained by the conventional sorption theory. We have to develop the sorption theory by considering the interactions from the microscopic point of view. (author)

  1. Effect of different dispersants in compressive strength of carbon fiber cementitious composites

    Science.gov (United States)

    Lestari, Yulinda; Bahri, Saiful; Sugiarti, Eni; Ramadhan, Gilang; Akbar, Ari Yustisia; Martides, Erie; Khaerudini, Deni S.

    2013-09-01

    Carbon Fiber Cementitious Composites (CFCC) is one of the most important materials in smart concrete applications. CFCC should be able to have the piezoresistivity properties where its resistivity changes when there is applied a stress/strain. It must also have the compressive strength qualification. One of the important additives in carbon fiber cementitious composites is dispersant. Dispersion of carbon fiber is one of the key problems in fabricating piezoresistive carbon fiber cementitious composites. In this research, the uses of dispersants are methylcellulose, mixture of defoamer and methylcellulose and superplasticizer based polycarboxylate. The preparation of composite samples is similar as in the mortar technique according to the ASTM C 109/109M standard. The additives material are PAN type carbon fibers, methylcellulose, defoamer and superplasticizer (as water reducer and dispersant). The experimental testing conducts the compressive strength and resistivity at various curing time, i.e. 3, 7 and 28 days. The results obtained that the highest compressive strength value in is for the mortar using superplasticizer based polycarboxylate dispersant. This also shown that the distribution of carbon fiber with superplasticizer is more effective, since not reacting with the cementitious material which was different from the methylcellulose that creates the cement hydration reaction. The research also found that the CFCC require the proper water cement ratio otherwise the compressive strength becomes lower.

  2. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  3. Radionuclide getters in the near-field chemistry of repositories

    International Nuclear Information System (INIS)

    Holland, T.R.; Lee, D.J.

    1990-08-01

    This programme of work has assessed the radionuclide sorption efficiency of selected inorganic 'getters' incorporated into cement as a means of enhancing the retention of radioactive species by the proposed repository backfill. The study has shown that most of the materials tested retained considerable sorptive properties for radium and caesium after incorporation into cement. However, poor retention of iodine prompted a search for a specific iodine getter. Apart from encapsulated activated carbon, the specific getters tested showed no improved sorption above that of the cement matrix. A study of factors influencing sorption, showed that the getter concentration was the only factor causing a major change in sorption efficiency. Retesting of samples after 12 months sorption indicated that, in general, a slight degree of desorption had taken place. An engineering assessment, examining the physical characteristics of a selected backfill formulation, was carried out, demonstrating the practicability of the process. (author)

  4. 3D morphological and micromechanical modeling of cementitious materials

    International Nuclear Information System (INIS)

    Escoda, Julie

    2012-01-01

    The goal of this thesis is to develop morphological models of cementitious materials and use these models to study their local and effective response. To this aim, 3D images of cementitious materials (mortar and concrete), obtained by micro-tomography, are studied. First, the mortar image is segmented in order to obtain an image of a real microstructure, to be used for linear elasticity computations. The image of concrete is used, after being processed, to determine various morphological characteristics of the material. A random model of concrete is then developed and validated by means of morphological data. This model is made up of three phases, corresponding to the matrix, aggregates and voids. The aggregates phase is modelled by implantation of Poisson polyhedra without overlap. For this purpose, an algorithm suited to the vector generation of Poisson polyhedra is introduced and validated with morphological measurements. Finally, the effective linear elastic properties of the mortar and other simulated microstructures are estimated with the FFT (Fast-Fourier Transform) method, for various contrasts between the aggregates and matrix' Young moduli. To complete this work, focused on effective properties, an analysis of the local elastic response in the matrix phase is undertaken, in order to determine the spatial arrangement between stress concentration zones in the matrix and the phases of the microstructure (aggregates and voids). Moreover, a statistical fields characterization, in the matrix, is achieved, including the determination of the Representative Volume Element (RVE) size. Furthermore, a comparison between effective and local elastic properties obtained from microstructures containing polyhedra and spheres is carried out. (author)

  5. Transport properties of damaged materials. Cementitious barriers partnership

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  6. Transport properties of damaged materials. Cementitious barriers partnership

    International Nuclear Information System (INIS)

    Langton, C.

    2014-01-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  7. Thermodynamics of Autogenous Self-healing in Cementitious Materials

    NARCIS (Netherlands)

    Huang, H.

    2014-01-01

    Concrete is a brittle composite cementitious material that easily fractures under tensile loading. Microcracks can appear throughout the concrete prior to application of any load because of temperature-induced strain and autogenous and drying shrinkage. There is no doubt that these cracks provide

  8. Europium sorption on zirconia at elevated temperatures: experimental study and modeling

    International Nuclear Information System (INIS)

    Eglizaud, N.; Catalette, H.

    2005-01-01

    Full text of publication follows: Direct disposal of spent nuclear fuel in deep underground repository is being considered by several countries. The waste package maintains an elevated temperature for thousands of years. As sorption is one of the main phenomenon limiting the dispersion of radionuclides in the environment, it has to be studied at elevated temperatures. Zirconia is an oxide produced by cladding oxidation which is suspected in the near field of a nuclear repository. It then could possibly be in contact with waste elements as Europium (III), the sorption of which is therefore studied on zirconia. Experiments were performed by the batch method at a solid/liquid ratio of 10 g.L-1. The sorption edges were recorded in the pH-range from 2 to 10 at 2.10 -5 mol.L -1 Eu(NO 3 ) 3 (I = 0.1 mol.L -1 KNO 3 ). An over-pressure device in an autoclave with an incorporated filtering system allowed the experiments, carbonate free, at 25 deg. C, 50 deg. C, 80 deg. C, 120 deg. C and 150 deg. C and in situ pH measurements. Filtrates were analyzed by the ICP-AES method. Sorption isotherms show an increase in the sorption phenomenon when the temperature raises. The half sorption pH decreases from 7 at 25 deg. C to 3,6 at 150 deg. C. The distribution coefficients that were obtained at elevated temperatures enriched the databases of integrated performance assessment codes. Raw data were modeled with the surface complexation theory using the double layer model (DLM). Several possible surface complexes were examined and discussed, taking into account aqueous hydrolyzed and precipitated species of Europium. A good agreement between experimental values and modeled isotherms was found at all studied temperatures. Results were consistent with a bidentate complex formed by Europium (III) on the zirconia surface. Associated formation constants were then determined with the geochemical computer code CHESS. (authors)

  9. Cementitious Barriers Partnership - FY2015 End-Year Report

    International Nuclear Information System (INIS)

    Burns, H. H.; Flach, G. P.; Langton, C. A.; Smith, F. G.; Kosson, D. S.; Meeussen, J. C. L.; Seignette, Paul; Van der Sloot, H. A.

    2015-01-01

    The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis) for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox - ''Version 3.0'', which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.

  10. Cementitious Barriers Partnership - FY2015 End-Year Report

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Langton, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kosson, D. S. [Vanderbilt Univ., Nashville, TN (United States). School of Engineering; Brown, K. G. [Vanderbilt Univ., Nashville, TN (United States). School of Engineering; Samson, E. [SIMCO Technologies, Inc., QC (Canada); Meeussen, J. C. L. [Nuclear Research and Consultancy Group (NRG); Seignette, Paul [Energy Research Center of the Netherlands; van der Sloot, H. A. [Hans van der Sloot Consultancy

    2015-09-17

    The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis) for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.

  11. SALTSTONE AND RADIONUCLIDE INTERACTIONS: RADIONUCLIDE SORPTION AND DESORPTION, AND SALTSTONE REDUCTION CAPACITY

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D; Kimberly Roberts, K; Steven Serkiz, S; Matthew Siegfried, M

    2008-10-30

    The overall objective of this study was to measure a number of key input parameters quantifying geochemical processes in the subsurface environment of the Savannah River Site's (SRS's) Saltstone Facility. For the first time, sorption (K{sub d}) values of numerous radionuclides were measured with Saltstone and Vault 2 concrete. Particular attention was directed at understanding how Tc adsorbs and desorbs from these cementitious materials with the intent to demonstrate that desorption occurs at a much slower rate than adsorption, thus permitting the use of kinetic terms instead of (or along with) the steady state K{sub d} term. Another very important parameter measured was the reduction capacity of these materials. This parameter is used to estimate the duration that the Saltstone facility remains in a reduced chemical state, a condition that maintains several otherwise mobile radionuclides in an immobile form. Key findings of this study follow. K{sub d} values for Am, Cd, Ce, Co, Cs, Hg, I, Np, Pa, Pu, Se, Sn, Tc, U, and Y for Saltstone and Vault 2 concrete were measured under oxidized and reduced conditions. Precipitation of several of the higher valence state radionuclides was observed. There was little evidence that the Vault 2 and Saltstone K{sub d} values differed from previous SRS K{sub d} values measured with reducing grout (Kaplan and Coates 2007). These values also supported a previous finding that K{sub d} values of slag-containing cementitious materials, tend to be greater for cations and about the same for anions, than regular cementitious materials without slag. Based on these new findings, it was suggested that all previous reducing concrete K{sub d} values be used in future PAs, except Np(V) and Pu(IV) K{sub d} values, which should be increased, and I values, which should be slightly decreased in all three stages of concrete aging. The reduction capacity of Saltstone, consisting of 23 wt-% blast furnace slag, was 821.8 microequivalents per

  12. Sorption of uranyl ions on hydrous silicon dioxide

    International Nuclear Information System (INIS)

    Lieser, K.H.; Quandt-Klenk, S.; Thybusch, B.

    1992-01-01

    Sorption of uranyl ions on SiO 2 .χH 2 O (silica gel) is investigated in absence and in presence of carbonate as function of pH. The curves obtained are very similar to those observed for sorption of uranyl ion on TiO 2 .χH 2 O, indicating the dominating influence of the uranium species in solution. Between pH 2 and 5 the sorption ratio R s increases with hydrolysis of uranyl ions (formation of UO 2 OH + ), around pH 7 it is nearly independent of pH, and at higher pH it decreases again. The equilibrium constants are calculated for these ranges. In presence of carbonate R s decreases drastically above pH 6, due to the formation of carbonato complexes in solution. Sorption of uranyl ions on SiO 2 .χH 2 O, on TiO 2 .χH 2 O, and on cryst. SiO 2 and Al 2 O 3 is compared. The problems of 'surface complexation' modelling are discussed. (orig.)

  13. Water absorption of superabsorbent polymers in a cementitious environment

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2011-01-01

    This paper focuses on the water absorption of superabsorbent polymers in a cementitious environment. The paper discusses different techniques to measure the water absorption capacity, and in particular it describes a technique which enables a simple and quick estimation of the water absorption...... capacity in a cementitious environment. The challenges met in defining the concept of water absorption capacity are treated, and the appropriateness of different types of superabsorbent polymers is also briefly dealt with. The concept “water absorption capacity” and its measurement seem straightforwardly...... simple, but a closer examination of the topic discloses many, significant difficulties. However, given proper cautiousness it is possible both to quickly estimate the water absorption capacity through a simple measurement as well as to examine how it will be influenced by different factors....

  14. Near Field Communication: Introduction and Implications

    Science.gov (United States)

    McHugh, Sheli; Yarmey, Kristen

    2012-01-01

    Near field communication is an emerging technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. Though primarily associated with mobile payment, near field communication has many different potential commercial applications, ranging from marketing to nutrition,…

  15. Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials

    Science.gov (United States)

    Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na

    2017-11-01

    Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.

  16. Cellulose nanomaterials as additives for cementitious materials

    Science.gov (United States)

    Tengfei Fu; Robert J. Moon; Pablo Zavatierri; Jeffrey Youngblood; William Jason Weiss

    2017-01-01

    Cementitious materials cover a very broad area of industries/products (buildings, streets and highways, water and waste management, and many others; see Fig. 20.1). Annual production of cements is on the order of 4 billion metric tons [2]. In general these industries want stronger, cheaper, more durable concrete, with faster setting times, faster rates of strength gain...

  17. Radionuclide sorption database for Swiss safety assessment

    International Nuclear Information System (INIS)

    McKinley, I.G.; Hadermann, J.

    1984-10-01

    Recommended sorption data for use in transport models for a Swiss High-Level Waste repository are presented. The models used in 'Project Gewaehr 1985' assume linear sorption isotherms and require elemental partition coefficient (Kd) data. On the basis of a literature search 'realistic' Kd data for 22 elements have been selected for weathered crystalline rock and sediments in contact with a reducing groundwater and also sediments with a less reducing groundwater. In an appendix sorption data for 28 elements on bentonite backfill are given. These data are supplemented with 'conservative' estimates taken to represent minimum reasonable values. Available data are discussed for each element clearly exhibiting (i) the large gaps in knowledge, (ii) their unbalanced distribution between different elements and, hence, (iii) the need for further experiments in the laboratory, the field and analogue studies. An overview of the theoretical concepts of sorption, experimental methodology and data interpretation is given in order to put the values into context. General problem areas are identified. (Auth.)

  18. Intensification of the process of sorption of copper ions by yeast of Saccharomyces cerevisiae 1968 by means of a permanent magnetic field

    International Nuclear Information System (INIS)

    Gorobets, Svetlana; Gorobets, Oksana; Ukrainetz, Anatoliy; Kasatkina, Taisiya; Goyko, Irina

    2004-01-01

    Possibility to replace mechanical stirring by magnetic field-induced one was shown for intensification of yeast biosorption and cementation. Combined method of metal ion recover, including Cu ion sorption by yeast Saccharomyces cerevisiae and Cu cementation on a surface of a steel matrix, is tested in a case of magnetic field-induced stirring

  19. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  20. Liquid-solid interface project in nuclear engineering. Systematization of sorption theory in heterogeneous surface and it's application to radioactive waste disposal. JAERI's nuclear research promotion program, H10-032. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru [Tokyo Univ., Graduate School of Engineering, Tokyo (Japan)

    2002-03-01

    Combining of the In-Situ and Ex-situ experiments with quantum chemical calculation, we can draw the following conclusions on the sorption at heterogeneous interfaces, based on the structure of solid surfaces and the profile of charge/electron at surface: (1) Redox sensitive species Np(V) is reduced to Np(IV) by Fe(II) contained in iron oxides. (2) Interactions of ions with C-S-H gels, which is a main component of cementitious materials, consist of replacement of Ca, association with Si and ion exchange. (3) Iodate ions adsorb on the two kinds of sorption sites located on the outer surface of hydrotalcite. (4) Interaction potential between particles and solid surfaces decrease due to the microscopic roughness of solid surface and localized distribution of charge on the surface, leading to the increase in the deposition of particles. (5) Some information on the association situation of water molecules on the metal oxides are obtained. These results suggests that the microscopic heterogeneity of solid surfaces facilities the interaction of ions and particles with solid surfaces. These phenomena can not be explained by the conventional sorption theory. We have to develop the sorption theory by considering the interactions from the microscopic point of view. (author)

  1. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    Chemical reactions control the performance, stability, and rate of degradation of natural and engineered barriers to waste repositories of the near field. Chemical processes are overviewed in this context. Temperature, and associated temperature gradients, are also important parameters in near-field performance assessment. The mechanical conditions of the near-field rock will be perturbed by construction of the underground repository. Mechanical analysis in the near field is further complicated by the introduction of HLW canisters and associated engineered barrier materials. Hydrological processes important to near-field performance include those associated with fluid transport. Considerable discussions and studies have been conducted on the issue of coupling among chemical-thermal-mechanical-hydrological processes; they are overviewed. (R.P.) 2 figs., 2 tabs

  2. Innovation in use and research on cementitious material

    International Nuclear Information System (INIS)

    Scrivener, Karen L.; Kirkpatrick, R. James

    2008-01-01

    In this paper we discuss innovations in concrete technology which are currently being applied in the field-namely high and ultra high performance (strength), and self consolidating concrete. We discuss the factors which have enabled these developments and ongoing needs in these areas. The importance of sustainability as the major driver for future innovations and prospects for development of new cementitious materials with lower environmental impact is briefly discussed. Finally the importance of innovation in research is examined. The dramatic development in experimental and computational techniques over recent years opens up wide-ranging possibilities for understanding the micro- and nano- scale chemical and physical processes which underlie performance at a macroscopic level. The example of computational approaches at the atomic and molecular scale is presented in detail. In order to exploit the opportunities presented by such new techniques, there needs to be greater efforts to structure interdisciplinary, multi-group research

  3. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter, Fabiano André; Ferreira, Tamara Santos; Sinhorin, Adilson Paulo; Lima, Larissa Borges de; Morais, Leidimar Alves de; Pacheco, Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diu...

  4. Mechanical Properties of High Performance Cementitious Grout (II)

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report is an update of the report “Mechanical Properties of High Performance Cementitious Grout (I)” [1] and describes tests carried out on the high performance grout MASTERFLOW 9500, marked “WMG 7145 FP”, developed by BASF Construction Chemicals A/S and designed for use in grouted...

  5. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    International Nuclear Information System (INIS)

    Flach, G. P; Smith, F. G. III

    2013-01-01

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed ''saltstone''. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate

  6. Degradation Of Cementitious Materials Associated With Saltstone Disposal Units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P; Smith, F. G. III

    2013-03-19

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative

  7. Sorption heat engines: simple inanimate negative entropy generators

    OpenAIRE

    Muller, Anthonie W. J.; Schulze-Makuch, Dirk

    2005-01-01

    The name 'sorption heat engines' is proposed for simple negative entropy generators that are driven by thermal cycling and work on alternating adsorption and desorption. These generators are in general not explicitly recognized as heat engines. Their mechanism is applicable to the fields of engineering, physics, chemistry, geology, and biology, in particular the origin of life. Four kinds of sorption heat engines are distinguished depending on the occurrence of changes in the adsorbent or ads...

  8. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  9. CEMENTITIOUS BARRIERS MODELING FOR PERFORMANCE ASSESSMENTS OF SHALLOW LAND BURIAL OF LOW LEVEL RADIOACTIVE WASTE - 9243

    International Nuclear Information System (INIS)

    Taylor, G.

    2009-01-01

    The Cementitious Barriers Partnership (CBP) was created to develop predictive capabilities for the aging of cementitious barriers over long timeframes. The CBP is a multi-agency, multi-national consortium working under a U.S. Department of Energy (DOE) Environmental Management (EM-21) funded Cooperative Research and Development Agreement (CRADA) with the Savannah River National Laboratory (SRNL) as the lead laboratory. Members of the CBP are SRNL, Vanderbilt University, the U.S. Nuclear Regulatory Commission (USNRC), National Institute of Standards and Technology (NIST), SIMCO Technologies, Inc. (Canada), and the Energy Research Centre of the Netherlands (ECN). A first step in developing advanced tools is to determine the current state-of-the-art. A review has been undertaken to assess the treatment of cementitious barriers in Performance Assessments (PA). Representatives of US DOE sites which have PAs for their low level waste disposal facilities were contacted. These sites are the Idaho National Laboratory, Oak Ridge National Laboratory, Los Alamos National Laboratory, Nevada Test Site, and Hanford. Several of the more arid sites did not employ cementitious barriers. Of those sites which do employ cementitious barriers, a wide range of treatment of the barriers in a PA was present. Some sites used conservative, simplistic models that even though conservative still showed compliance with disposal limits. Other sites used much more detailed models to demonstrate compliance. These more detailed models tend to be correlation-based rather than mechanistically-based. With the US DOE's Low Level Waste Disposal Federal Review Group (LFRG) moving towards embracing a risk-based, best estimate with an uncertainties type of analysis, the conservative treatment of the cementitious barriers seems to be obviated. The CBP is creating a tool that adheres to the LFRG chairman's paradigm of continuous improvement

  10. Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke

    International Nuclear Information System (INIS)

    Sheng Guanghong; Li Qin; Zhai Jianping; Li Feihu

    2007-01-01

    Self-cementitious properties of fly ash from circulating fluidized bed combustion boiler co-firing coal and high-sulphur petroleum coke (CPFA) were investigated. CPFA was self-cementitious which was affected by its fineness and chemical compositions, especially the contents of SO 3 and free lime (f-CaO). Higher contents of SO 3 and f-CaO were beneficial to self-cementitious strength; the self-cementitious strength increases with a decrease of its 45 μm sieve residue. The expansive ratio of CPFA hardened paste was high because of generation of ettringite (AFt), which was influenced by its water to binder ratio (W/A), curing style and grinding of the ash. The paste cured in water had the highest expansive ratio, and grinding of CPFA was beneficial to its volume stability. The hydration products of CPFA detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM) were portlandite, gypsum, AFt and hydrated calcium silicate (C-S-H)

  11. A study of sorption of pertechnetate anion on chitosan

    International Nuclear Information System (INIS)

    Pivarciova, L.; Rosskopfova, O.; Rajec, P.; Galambos, M.

    2015-01-01

    Chitosan is one of the natural materials of biological origin. The sorption of pertechnetate anions from aqueous solutions on chitosan was studied in a batch system. This work was aimed to study influence of the contact time, effect of pH and effect of different ions on sorption of pertechnetate anions on chitosan. This sorbent was characterized by BET-surface area and potentiometric titration. The point of zero charge (pH pzc ) was at pH=7.15. The highest percentage of technetium sorption on chitosan was near pH 3. The adsorption capacity of chitosan decreased with increase in pH value above 3. In the initial pH range of 4-10, final pHs are the same. The selectivity of chitosan for these cations with concentration above 1·10 -3 mol·dm -3 was in the order Na + > Ca 2+ > Fe 3+ > Fe 2+ . The competition effect of (SO 4 ) 2- towards TcO 4 - sorption was stronger than the competition effect (ClO 4 ) - of ions. (authors)

  12. Long Term Behaviour of Cementitious Materials in the Korean Repository Environment

    International Nuclear Information System (INIS)

    Park, J.-W.; Kim, C.-L.

    2013-01-01

    The safe management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. After the selection of the final candidate site for low- and intermediate-level waste (LILW) disposal in Korea, a construction and operation license was issued for the Wolsong LILW Disposal Center (WLDC) for the first stage of disposal. Underground silo type disposal has been determined for the initial phase. The engineered barrier system of the disposal silo consists of waste packages, disposal containers, backfills, and a concrete lining. Main objective of our study in this IAEA-CRP is to investigate closure concepts and cementitious backfill materials for the closure of silos. For this purpose, characterisation of cementitious materials, development of silo closure concept, and evaluation of long-term behaviour of cementitious materials, including concrete degradation in repository environment, have been carried out. The overall implementation plan for the CRP comprises performance testing for the physic-chemical properties of cementitious materials, degradation modelling of concrete structures, comparisons of performance for silo closure options, radionuclide transport modelling (considering concrete degradation in repository conditions), and the implementation of an input parameter database and quality assurance for safety/performance assessment. In particular, the concrete degradation modelling study has been focused on the corrosion of reinforcement steel induced by chloride attack, which was of primary concern in the safety assessment of the WLDC. A series of electrochemical experiments were conducted to investigate the effect of dissolved oxygen, pH, and Cl on the corrosion rate of reinforcing steel in a concrete structure saturated with groundwater. Laboratory-scale experiments and a thermodynamic modelling were performed to understand the porosity change of cement pastes, which were prepared using

  13. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Yazhao [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-05

    Highlights: • Cementitious material was designed according to [SiO{sub 4}] polymerization degree of raw materials. • The cementitious material composed of calcium silicate slag yields excellent physical and mechanical properties. • Amorphous C–A–S–H gel and rod-like ettringite are predominantly responsible for the strength development. • Leaching toxicity and radioactivity tests show the cementitious material is environmentally acceptable. - Abstract: Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al{sub 2}O{sub 3} from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C–A–S–H gel, rod-like ettringite and hexagonal-sheet Ca(OH){sub 2} with small amount of zeolite-like minerals such as CaAl{sub 2}Si{sub 2}O{sub 8}·4H{sub 2}O and Na{sub 2}Al{sub 2}Si{sub 2}O{sub 8}·H{sub 2}O. As the predominant hydration products, rod-like ettringite and amorphous C–A–S–H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  14. Macroscopic and spectroscopic investigations on the immobilization of radionuclides by hardened cement paste

    International Nuclear Information System (INIS)

    Wieland, E.; Bonhoure, I.; Tits, J.; Scheidegger, A.M.; Bradbury, M.H.

    2002-01-01

    The uptake of safety-relevant radionuclides was studied using a combination of macroscopic (wet chemistry) and spectroscopic (X-ray absorption fine structure (XAFS) spectroscopy) techniques with the aim of gaining a mechanistic understanding of the uptake processes on hardened cement paste (HCP) and deducing robust sets of sorption values. HCP contains impurities of metal cations in the ppb to ppm concentration range. As a consequence, the inventories of stable isotopes are expected to be significant in a cementitious near-field and may even exceed the radionuclide inventories of the waste matrix for many safety-relevant radioelements. In view of the significant inventories of stable isotopes, it is suggested that isotopic exchange - replacement of stable isotopes by their radioactive counterparts in the cement matrix - is an important immobilisation process in HCP. However, it is not a priori known what proportion of each elemental inventory is available for isotopic exchange. Wet chemistry studies with Cs and Sr show that the total inventory of these elements is reversibly bound and that their partitioning between HCP and pore water can be modelled using the distribution values deduced from studies of the corresponding tracers ( 137 Cs and 85 Sr). This finding corroborates the relevance of isotopic exchange in cementitious systems. Wet chemistry investigations need to be complemented by spectroscopic techniques, e.g., XAFS, in order to gain a mechanistic understanding of the chemical processes by which waste ions become immobilised in cement-based matrices. XAFS can be used to obtain information at the atomic/molecular level, i.e., the type, number and distance of neighbouring atoms. XAFS studies on cementitious systems are still rather rare, and therefore information on the potential and limitations of this technique is sparse. Mechanistic aspects of the immobilisation processes are discussed for some safety-relevant radionuclides (e.g. Ni and Sr) using the

  15. Sorption of lead onto two gram-negative marine bacteria in seawater

    Science.gov (United States)

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  16. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    The aim of this chapter is to describe the performance assessment (PA) context in which near-field models have been developed and applied. An overview is given of a number of PA studies. Although the focus is on near-field models, the overview covers the full context in which the PAs have been performed, including the purpose of the studies and regulatory context. Special emphasis has been given to the scenarios analyzed in the assessments; the scenarios set the framework for model development and application. Another aspect to consider in a study of near-field modeling from the perspective of total PA is the linking between near-field and far-field assessment. (R.P.) 6 tabs

  17. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials

    International Nuclear Information System (INIS)

    Zhang, Na; Li, Hongxu; Liu, Xiaoming

    2016-01-01

    Highlights: • Nanocrystalline regions in size of ∼5 nm were found in the amorphous C-A-S-H gel. • A hydration model was proposed to clarify the hydration mechanism. • The developed cementitious materials are environmentally acceptable. - Abstract: A deep investigation on the hydration mechanism of bauxite-calcination-method red mud-coal gangue based cementitious materials was conducted from viewpoints of hydration products and hydration heat analysis. As a main hydration product, the microstructure of C-A-S-H gel was observed using high resolution transmission electron microscopy. It was found that the C-A-S-H gel is composed of amorphous regions and nanocrystalline regions. Most of regions in the C-A-S-H gel are amorphous with continuous distribution, and the nanocrystalline regions on scale of ∼5 nm are dispersed irregularly within the amorphous regions. The hydration heat of red mud-coal gangue based cementitious materials is much lower than that of the ordinary Portland cement. A hydration model was proposed for this kind of cementitious materials, and the hydration process mainly consists of four stages which are dissolution of materials, formation of C-A-S-H gels and ettringite, cementation of hydration products, and polycondensation of C-A-S-H gels. There are no strict boundaries among these four basic stages, and they proceed crossing each other. Moreover, the leaching toxicity tests were also performed to prove that the developed red mud-coal gangue based cementitious materials are environmentally acceptable.

  18. Hydration mechanism and leaching behavior of bauxite-calcination-method red mud-coal gangue based cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-15

    Highlights: • Nanocrystalline regions in size of ∼5 nm were found in the amorphous C-A-S-H gel. • A hydration model was proposed to clarify the hydration mechanism. • The developed cementitious materials are environmentally acceptable. - Abstract: A deep investigation on the hydration mechanism of bauxite-calcination-method red mud-coal gangue based cementitious materials was conducted from viewpoints of hydration products and hydration heat analysis. As a main hydration product, the microstructure of C-A-S-H gel was observed using high resolution transmission electron microscopy. It was found that the C-A-S-H gel is composed of amorphous regions and nanocrystalline regions. Most of regions in the C-A-S-H gel are amorphous with continuous distribution, and the nanocrystalline regions on scale of ∼5 nm are dispersed irregularly within the amorphous regions. The hydration heat of red mud-coal gangue based cementitious materials is much lower than that of the ordinary Portland cement. A hydration model was proposed for this kind of cementitious materials, and the hydration process mainly consists of four stages which are dissolution of materials, formation of C-A-S-H gels and ettringite, cementation of hydration products, and polycondensation of C-A-S-H gels. There are no strict boundaries among these four basic stages, and they proceed crossing each other. Moreover, the leaching toxicity tests were also performed to prove that the developed red mud-coal gangue based cementitious materials are environmentally acceptable.

  19. Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres

    Science.gov (United States)

    Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli

    2018-02-01

    In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.

  20. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  1. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  2. Sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions.

    Science.gov (United States)

    Baik, Min Hoon; Lee, Seung Yeop; Jeong, Jongtae

    2013-12-01

    The sorption and reduction of selenite on chlorite surfaces in the presence of Fe(II) ions were investigated as a function of pH, Se(IV) concentration, and Fe(II) concentration under an anoxic condition. The sorption of Se(IV) onto chlorite surfaces followed the Langmuir isotherm regardless of the presence of Fe(II) ions in the solution. The Se(IV) sorption was observed to be very low at all pH values when the solution was Fe(II)-free or the concentration of Fe(II) ions was as low as 0.5 mg/L. However, the Se(IV) sorption was enhanced at a pH > 6.5 when the Fe(II) concentration was higher than 5 mg/L because of the increased sorption of Fe(II) onto the chlorite surfaces. XANES (X-ray absorption near edge structure) spectra of the Se K-edge showed that most of the sorbed Se(IV) was reduced to Se(0) by Fe(II) sorbed onto the chlorite surfaces, especially at pH > 9. The combined results of field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) also showed that elemental selenium and goethite were formed and precipitated on the chlorite surfaces during the sorption of selenite. Consequently it can be concluded that Se(IV) can be reduced to Se(0) in the presence of Fe(II) ions by the surface catalytic oxidation of Fe(II) into Fe(III) and the formation of goethite at neutral and particularly alkaline conditions. Thus the mobility of selenite in groundwater is expected to be reduced by the presence of a relatively higher concentration of Fe(II) in subsurface environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Enriched fluoride sorption using alumina/chitosan composite

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Natrayasamy, E-mail: natrayasamy_viswanathan@rediffmail.com [Department of Chemistry, Anna University Tiruchirappalli - Dindigul Campus, Dindigul 624 622, Tamil Nadu (India); Meenakshi, S., E-mail: drs_meena@rediffmail.com [Department of Chemistry, Gandhigram Rural University, Gandhigram 624 302, Tamil Nadu (India)

    2010-06-15

    Alumina possesses an appreciable defluoridation capacity (DC) of 1566 mg F{sup -}/kg. In order to improve its DC, it is aimed to prepare alumina polymeric composites using the chitosan. Alumina/chitosan (AlCs) composite was prepared by incorporating alumina particles in the chitosan polymeric matrix, which can be made into any desired form viz., beads, candles and membranes. AlCs composite displayed a maximum DC of 3809 mg F{sup -}/kg than the alumina and chitosan (52 mg F{sup -}/kg). The fluoride removal studies were carried out in batch mode to optimize the equilibrium parameters viz., contact time, pH, co-anions and temperature. The equilibrium data was fitted with Freundlich and Langmuir isotherms to find the best fit for the sorption process. The calculated values of thermodynamic parameters indicate the nature of sorption. The surface characterisation of the sorbent was performed by FTIR, AFM and SEM with EDAX analysis. A possible mechanism of fluoride sorption by AlCs composite has been proposed. Suitability of AlCs composite at field conditions was tested with a field sample taken from a nearby fluoride-endemic village. This work provides a potential platform for the development of defluoridation technology.

  4. Durability of low-pH cementitious materials based on OPC or CAC

    International Nuclear Information System (INIS)

    Garcia Calvo, J.L.; Sanchez, M.; Alonso, M.C.; Fernandez Luco, L.

    2015-01-01

    Low pH cementitious materials are considered to be used in underground repositories for high level waste but there are still some characteristics related to their long-term durability that must be analyzed in depth. In this sense, different shrinkage tests have been made using low-pH cement formulations based on Ordinary Portland Cement (OPC) or Calcium Aluminate Cement (CAC), on mortar and concrete specimens. The obtained results show that, regarding the autogenous shrinkage, low-pH cementitious materials show similar values than those observed in the reference samples. In fact, the main shrinkage problems in the low-pH materials are related with those based on OPC with high silica fume contents in drying conditions. Besides, as the use of reinforced concrete can be required in underground repositories, the susceptibility of reinforcements to corrosion when using low-pH cementitious materials based on OPC was analyzed, using two different reinforcements: carbon steel and galvanized steel. The lower pore solution pH of the low-pH OPC based materials generates the corrosion of the carbon steel reinforcement. However, when galvanized steels are used, any corrosion problem is detected regardless of the cement formulation. (authors)

  5. Experimental determination of sorption in fractured flow systems

    Science.gov (United States)

    Zimmerman, Mitchell D.; Bennett, Philip C.; Sharp, John M.; Choi, Wan-Joo

    2002-09-01

    Fracture "skins" are alteration zones on fracture surfaces created by a variety of biological, chemical, and physical processes. Skins increase surface area, where sorption occurs, compared to the unaltered rock matrix. This study examines the sorption of organic solutes on altered fracture surfaces in an experimental fracture-flow apparatus. Fracture skins containing abundant metal oxides, clays, and organic material from the Breathitt Formation (Kentucky, USA) were collected in a manner such that skin surface integrity was maintained. The samples were reassembled in the lab in a flow-through apparatus that simulated ˜2.7 m of a linear fracture "conduit." A dual-tracer injection scheme was utilized with the sorbing or reactive tracer compared to a non-reactive tracer (chloride) injected simultaneously. Sorption was assessed from the ratio of the first temporal moments of the breakthrough curves and from the loss of reactive tracer mass and evaluated as a function of flow velocity and solute type. The breakthrough curves suggest dual-flow regimes in the fracture with both sorbing and non-sorbing flow fields. Significant sorption occurs for the reactive components, and sorption increased with decreasing flow rate and decreasing compound solubility. Based on moment analysis, however, there was little retardation of the center of solute mass. These data suggest that non-equilibrium sorption processes dominate and that slow desorption and boundary layer diffusion cause extensive tailing in the breakthrough curves.

  6. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing.

    Science.gov (United States)

    Koting, Suhana; Karim, Mohamed Rehan; Mahmud, Hilmi; Mashaan, Nuha S; Ibrahim, Mohd Rasdan; Katman, Herdayati; Husain, Nadiah Md

    2014-01-01

    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  7. Ruthenium complexing in sorption by granulated sorbents with ethylene diamine and diethyl amine groups

    International Nuclear Information System (INIS)

    Simanova, S.A.; Kolmakova, A.I.; Konovalov, L.V.; Kukushkin, Yu.N.; Kalalova, E.

    1986-01-01

    The sorption process of ruthenium (4) chlorocomplexes - K 2 (RuCl 6 ) macroporous granulated copolymers of glycidylmethacrylate ethylene dimethacrylate with ethylene diamine and diethyl amine has been studied. Sorption has been carried out under the static conditions (at 20 and 98 deg C) from 0.1-2.0 MxHCl and 1.0 M NaCl solutions. It is established that the sorption from acidic solutions proceeds according to anion exchange mechanism with formation of onium chlorocomplexes in the sorbent phase, subjecting to Anderson regrouping during the heating. During the sorption from neutral solutions the second-sphere coordination of polymer amino groups accirs near ruthenium atom and amino-chloride complexes are formed in the sorbent phase

  8. Performance of alusilica as mineral admixture in cementitious systems

    DEFF Research Database (Denmark)

    Chi, Lin; Jensen, Ole Mejlhede

    2016-01-01

    This paper presents a preliminary study of the effect of alusilica (ALS) as a mineral admixture on the fresh properties and development of mechanical properties of cementitious systems. Cement was substituted with ALS with the ratio of 10% during grinding or blended during mixing. The produced ALS...

  9. Pollution and pollution tolerance as regards the sorption of organic chemicals in urban soils; Sorption organischer Chemikalien

    Energy Technology Data Exchange (ETDEWEB)

    Blume, H.P.; Wu Qinglan; Strehl, M. [Kiel Univ. (Germany). Inst. fuer Pflanzenernaehrung und Bodenkunde; Abend, S. [Kiel Univ. (Germany). Inst. fuer Anorganische Chemie; Rexilius, L. [Pflanzenschutzamt des Landes Schleswig-Holstein, Kiel (Germany); Schleuss, U. [Kiel Univ. (Germany). Oekologie-Zentrum]|[Zentrum fuer Agrarlandschafts- und Landnutzungsforschung Muencheberg (Germany)

    1997-12-31

    The behaviour of pollutants in soils concerning, for example, their immobilisation, transport, biodegradation, or uptake by useful plants is to large degree determined by the sorption properties of the soil in question. The degree of sorption is an all-important parameter in any model description of the behaviour of pollutants in soils. The aim of the present part-project was to estimate by means of simple field methods the binding capacity of anthropogenic urban soils for environmentally consequential organic chemicals and to assess the results with regard to soil and water protection. [Deutsch] Das Verhalten von Schadstoffen in Boeden, wie z.B. Immobilisierung, Transport, biologischer Abbau, Aufnahme durch Kulturpflanzen, wird von den Sorptionseigenschaften im Boden wesentlich beeinflusst. Bei allen Modellbeschreibungen ueber das Verhalten von Schadstoffen in Boeden ist die Staerke der Sorption ein unersetzbarer Parameter. Ziel dieses Teilprojektes war es, das Bindungsvermoegen der anthropogenen Stadtboeden fuer umweltrelevante organische Chemikalien mittels einfacher Feldmethoden abzuschaetzen und im Hinblick auf Boden- und Gewaesserschutz zu bewerten. (orig./SR)

  10. Rigid-body-spring model numerical analysis of joint performance of engineered cementitious composites and concrete

    Science.gov (United States)

    Khmurovska, Y.; Štemberk, P.; Křístek, V.

    2017-09-01

    This paper presents a numerical investigation of effectiveness of using engineered cementitious composites with polyvinyl alcohol fibers for concrete cover layer repair. A numerical model of a monolithic concaved L-shaped concrete structural detail which is strengthened with an engineered cementitious composite layer with polyvinyl alcohol fibers is created and loaded with bending moment. The numerical analysis employs nonlinear 3-D Rigid-Body-Spring Model. The proposed material model shows reliable results and can be used in further studies. The engineered cementitious composite shows extremely good performance in tension due to the strain-hardening effect. Since durability of the bond can be decreased significantly by its degradation due to the thermal loading, this effect should be also taken into account in the future work, as well as the experimental investigation, which should be performed for validation of the proposed numerical model.

  11. Near-Field Optical Microscopy of Fractal Structures

    DEFF Research Database (Denmark)

    Coello, Victor; Bozhevolnyi, Sergey I.

    1999-01-01

    Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern...

  12. Sorption data bases and mechanistic sorption studies

    International Nuclear Information System (INIS)

    Bradbury, M.H.

    2000-01-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  13. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  14. Antimony sorption properties of chitosan - nano TiO2 composite beads

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2015-01-01

    Routine decontamination campaigns of nuclear reactors are generally effective in removing various radionuclides such as cobalt, caesium, etc., and bring down the radiation field. However, during some of the decontamination campaigns, the radiation field at some surfaces was seen to have actually gone up. This was found to be due to lack of removal of antimony isotopes by the regular ion exchange resins used, which subsequently deposited over out of core surfaces leading to increased radiation field on those surfaces. Thus there exists a need for efficient antimony removal system. We have synthesised nano titania impregnated - epichlorohydrin crosslinked chitosan beads, which were found to have high sorption capacity for antimony. The beads, which were synthesised in formats suitable for large scale (column mode) applications, were shown to be effective sorbent of antimony in both +3 and +5 oxidation states. The sorbent exhibited complete removal of antimony from its aqueous solutions of concentration ranging from 150 ppb to 120 ppm. In order to understand the sorption mechanism and to fine tune the bead composition, the effect of crosslinker concentration used during the synthesis on the swelling and sorption properties of the beads was investigated in detail. The variation effected significant changes in physical parameters such as bead diameter, swelling ratio, equilibrium water content and true wet density. Sorption capacity, unlike with regular resins, was found to increase with increase in crosslinker amount. The antimony sorption capacity of the crosslinked beads prepared by crosslinking 0.3 g uncrosslinked beads with 6.4 mmol epichlorohydrin (crosslinker) was 493 μmol/g. Non-crosslinked beads showed a capacity of 75 μmol/g, while the crosslinked beads made with the least amount of crosslinker (0.64 mmol per 0.3 g beads) showed a capacity of 133 μmol/g. These results indicate the possible involvement of the crosslinker in the sorption. (author)

  15. Effects of Using Silica Fume and Polycarboxylate-Type Superplasticizer on Physical Properties of Cementitious Grout Mixtures for Semiflexible Pavement Surfacing

    Directory of Open Access Journals (Sweden)

    Suhana Koting

    2014-01-01

    Full Text Available Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.

  16. Engineered cementitious composites for strengthening masonry infilled reinforced concrete frames

    DEFF Research Database (Denmark)

    Dehghani, Ayoub; Nateghi-Alahi, Fariborz; Fischer, Gregor

    2015-01-01

    The results of the second part of a comprehensive experimental program, aimed at investigating the behavior of masonry infilled reinforced concrete (RC) frames strengthened with fiber reinforced engineered cementitious composites (ECC) used as an overlay on the masonry wall, are presented...

  17. Cementitious Materials in Safety Cases for Geological Repositories for Radioactive Waste: Role, Evolution and Interactions. A Workshop organised by the OECD/NEA Integration Group for the Safety Case and hosted by ONDRAF/NIRAS. Cementitious materials in safety cases for radioactive waste: role, evolution and interactions

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) Integration Group for the Safety Case (IGSC) organised a workshop to assess current understanding on the use of cementitious materials in radioactive waste disposal. The workshop was hosted by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (Ondraf/Niras), in Brussels, Belgium on 17-19 November 2009. The workshop brought together a wide range of people involved in supporting safety case development and having an interest in cementitious materials: namely, cement and concrete experts, repository designers, scientists, safety assessors, disposal programme managers and regulators. The workshop was designed primarily to consider issues relevant to the post-closure safety of radioactive waste disposal, but also addressed some related operational issues, such as cementitious barrier emplacement. Where relevant, information on cementitious materials from analogous natural and anthropogenic systems was also considered. This report provides a synthesis of the workshop, and summarises its main results and findings. The structure of this report follows the workshop agenda: - Section 2 summarises plenary and working group discussions on the uses, functions and evolution of cementitious materials in geological disposal, and highlights key aspects and discussions points. - Section 3 summarises plenary and working group discussions on interactions of cementitious materials with other disposal system components, and highlights key aspects and discussions points. - Section 4 summarises the workshop session on the integration of issues related to cementitious materials using the safety case. - Section 5 presents the main conclusions from the workshop. - Section 6 contains a list of references. - Appendix A presents the workshop agenda. - Appendix B contains the abstracts and, where provided, technical papers supporting oral presentations at the workshop. - Appendix C contains the abstracts and, where provided, technical

  18. Sorption of radionuclides from spent fuel in crystalline rocks

    International Nuclear Information System (INIS)

    Nikula, A.

    1982-10-01

    The safe disposal of spent nuclear fuel or reprocessed waste is an essential element in the expansion of the nuclear power industry. Stable rock formations e.g. granite are considered to be potential sites for disposal. A major factor in evaluating the degree of safety of the disposal is the sorption of radionuclides in rock, which affects their retardation. The report considers the chemical forms of the hazardous radionuclides of spent nuclear fuel in groundwater and the effects of the water's properties on them. In the groundwater near the Olkiluoto power plant site cesium, strontium and radium are in cationic form, iodine as I - . Technetium would occur as TcO +2 , but the pertechnetate form is also possible. Uranium most probably would be as U(VI) plutonium and neptunium as Np(IV) or Np(V). The valences for thorium, americium and curium are not changed in this groundwater and would be +4, +3 and +3, respectively. The actinides in groundwater are all in hydrated or complex form. An increase on the ionic stregth of the groundwater in most instances causes a decrease in the sorption of nuclides since the ion exchange capacity of the rock is limited. Anionic ligands also decrease sorption of cations by complex formation. In some case, on the other hand, high salt concentrations may cause formation of radiocolloids of lanthanides and neptunium and thus increase sorption. In all cases the degree of sorption described by the distribution ratio Ksub(d) was influenced by the pH of the groundwater. Sorption of cesium and strontium increased with growing pH. The sorption behaviour of actinides was in positive correlation with formation of hydroxide complexes at different pH values. The Ksub(d) values of Cs, Sr, Co, Ni and Am for Olkiluoto granites were found to agree with Swedish values, also determined at ambient atmospheric conditions

  19. X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites

    International Nuclear Information System (INIS)

    Fan, Shuai; Li, Mo

    2015-01-01

    Concrete cracking and deterioration can potentially be addressed by innovative self-healing cementitious materials, which can autogenously regain transport properties and mechanical characteristics after the damage self-healing process. For the development of such materials, it is crucial, but challenging, to precisely characterize the extent and quality of self-healing due to a variety of factors. This study adopted x-ray computed microtomography (μCT) to derive three-dimensional morphological data on microcracks before and after healing in engineered cementitious composite (ECC). Scanning electron microscope and energy dispersive x-ray spectroscopy were also used to morphologically and chemically analyze the healing products. This work showed that the evolution of the microcrack 3D structure due to self-healing in cementitious materials can be directly and quantitatively characterized by μCT. A detailed description of the μCT image analysis method applied to ECC self-healing was presented. The results revealed that the self-healing extent and rate strongly depended on initial surface crack width, with smaller crack width favoring fast and robust self-healing. We also found that the self-healing mechanism in cementitious materials is dependent on crack depth. The region of a crack close to the surface (from 0 to around 50–150 μm below the surface) can be sealed quickly with crystalline precipitates. However, at greater depths the healing process inside the crack takes a significantly longer time to occur, with healing products more likely resulting from continued hydration and pozzolanic reactions. Finally, the μCT method was compared with other self-healing characterization methods, with discussions on its importance in generating new scientific knowledge for the development of robust self-healing cementitious materials. (paper)

  20. Dynamic Moisture Sorption and Desorption in Fumed Silica-filled Silicone Foam

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    Characterizing dynamic moisture sorption and desorption in fumed silica-filled silicone foam is necessary for determining material compatibilities and life predictions, particularly in sealed environments that may be exposed to a range of environmental conditions. Thermogravimetric analysis (TGA) and near infrared spectroscopy (NIR) were performed on S5470 fumed silica-filled silicone foam to determine the weight percent of moisture at saturation. Additionally, TGA was used to determine the time, temperature, and relative humidity levels required for sorption and desorption of physisorbed moisture in S5470.

  1. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    Science.gov (United States)

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters.

  2. Nanomanipulation using near field photonics.

    Science.gov (United States)

    Erickson, David; Serey, Xavier; Chen, Yih-Fan; Mandal, Sudeep

    2011-03-21

    In this article we review the use of near-field photonics for trapping, transport and handling of nanomaterials. While the advantages of traditional optical tweezing are well known at the microscale, direct application of these techniques to the handling of nanoscale materials has proven difficult due to unfavourable scaling of the fundamental physics. Recently a number of research groups have demonstrated how the evanescent fields surrounding photonic structures like photonic waveguides, optical resonators, and plasmonic nanoparticles can be used to greatly enhance optical forces. Here, we introduce some of the most common implementations of these techniques, focusing on those which have relevance to microfluidic or optofluidic applications. Since the field is still relatively nascent, we spend much of the article laying out the fundamental and practical advantages that near field optical manipulation offers over both traditional optical tweezing and other particle handling techniques. In addition we highlight three application areas where these techniques namely could be of interest to the lab-on-a-chip community, namely: single molecule analysis, nanoassembly, and optical chromatography. This journal is © The Royal Society of Chemistry 2011

  3. Sorption and desorption of diuron in Oxisol under biochar application

    Directory of Open Access Journals (Sweden)

    Fabiano André Petter

    Full Text Available ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula and 3 doses of biochar (0, 8 and 16 Mg∙ha−1. In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorption and desorption of diuron, total organic carbon, fulvic acid, humic acid and humin, pH and partition coefficient to organic carbon were evaluated. The Freundlich isotherm was adjusted appropriately to describe diuron sorption kinetics in all the studied treatments. The application of biochar provided increment in the sorption (Kf and reduction in the desorption of diuron in 64 and 44%, respectively. This effect is attributed to the biochar contribution to the total organic carbon and C-humin and of these to diuron through hydrophobic interactions and hydrogen bonds. The positive correlation between the partition coefficient to organic carbon and Kf confirms the importance of soil organic compartment in the sorption of diuron. There was no competition of NPK fertilizer for the same sorption site of diuron. The increase and reduction in sorption and desorption, respectively, show that the application of biochar is an important alternative for the remediation of soil leaching of diuron, especially in sandy soils.

  4. Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Leyang Lv

    2016-12-01

    Full Text Available Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol–formaldehyde (PF microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size gradation of the synthesized microcapsules was achieved through a series of sieving processes. The shell thickness and the diameter of single microcapsules was accurately measured under environmental scanning electron microscopy (ESEM. The relationship between the physical properties of the synthesized microcapsules and their micromechanical properties were investigated using nanoindentation. The results of the mechanical tests show that, with the increase of the mean size of microcapsules and the decrease of shell thickness, the mechanical force required to trigger the self-healing function of microcapsules increased correspondingly from 68.5 ± 41.6 mN to 198.5 ± 31.6 mN, featuring a multi-sensitive trigger function. Finally, the rupture behavior and crack surface of cement paste with embedded microcapsules were observed and analyzed using X-ray computed tomography (XCT. The synthesized PF microcapsules may find potential application in self-healing cementitious materials.

  5. Preparation of Cementitious Material Using Smelting Slag and Tailings and the Solidification and Leaching of Pb2+

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2015-01-01

    Full Text Available The composite cementitious materials were prepared with lead-zinc tailings, lead-zinc smelting slag, and cement clinker. The effect of material ratio on the mechanical properties, the phase analysis, and microstructures were investigated. The effect of the pH and stripping time on the leaching amount of lead ion was discussed. The results show that the additive amount of the tailings should be minimized for the cementitious materials meeting the strength requirements, controlled within 10%. The leaching amount of cementitious materials remains low in a larger range of pH, which can effectively reduce the leaching of heavy metal lead. The leaching kinetics of lead ions in the three kinds of samples could be better described by the pseudo-second-model.

  6. Sorption data bases and mechanistic sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M.H

    2000-07-01

    In common with many other countries with a nuclear programme, the Swiss concept for the disposal of radioactive waste is focused on deep burial in specially constructed repositories in geologically stable host rocks. Under such conditions, the most likely means whereby radionuclides might return to the biosphere involves their transport in slowly moving groundwater. The sorption of radionuclides by solid phases in the engineered barriers within the repository, and in the surrounding geological media, limits their release and retards their movement. Performance assessment studies for disposal concepts are carried out by Nagra, the National Cooperative for the Disposal of Radioactive Waste, in which various release scenarios are examined, and 'doses to man' calculated. The uptake of radionuclides by immobile phases is one of the pillars upon which the safety case rests. Hence, sorption databases are very important data sets for performance assessments. The methodology lying behind the construction of sorption databases, and some aspects of the supporting experimental work, are briefly described in this report. Flexible, long-term, focused research programmes are required to properly understand the radionuclide/rock/groundwater system, and this is an essential pre-requisite for producing robust state-of-the-art sorption databases. (author)

  7. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  8. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  9. Characterization of near-field optical probes

    DEFF Research Database (Denmark)

    Vohnsen, Brian; Bozhevolnyi, Sergey I.

    1999-01-01

    Radiation and collection characteristics of four different near-field optical-fiber probes, namely, three uncoated probes and an aluminium-coated small-aperture probe, are investigated and compared. Their radiation properties are characterized by observation of light-induced topography changes...... in a photo-sensitive film illuminated with the probes, and it is confirmed that the radiated optical field is unambigiously confined only for the coated probe. Near-field optical imaging of a standing evanescent-wave pattern is used to compare the detection characteristics of the probes, and it is concluded...... that, for the imaging of optical-field intensity distributions containing predominantly evanescent-wave components, a sharp uncoated tip is the probe of choice. Complementary results obtained with optical phase-conjugation experiments with he uncoated probes are discussed in relation to the probe...

  10. Sorption of 237Pu by the diatom Asterionella formosa

    International Nuclear Information System (INIS)

    Conway, H.L.; Wahlgren, M.A.; Peterson, N.; Nelson, D.M.

    1976-01-01

    Knowledge of the behavior of the man-made radionuclide plutonium within aquatic environments is of fundamental importance in assessing its potential hazards and ecological impact. The sorption of plutonium by phytoplankton and other algae is the dominant factor in the biological transport of plutonium in the aquatic environment, and it has been suggested that sorption by phytoplankton may be responsible for the seasonal loss of plutonium from the epilimnion of Lake Michigan. A unialgal diatom culture was spiked with 237 Pu tracer solution in an attempt to simulate the behavior of fallout plutonium observed in field studies. The results were encouraging in that the 237 Pu in the filtered lake water medium exhibited strongly anionic properties similar to fallout plutonium in Lake Michigan, with limited sorption on container walls. The purpose of the present study was to extend the investigations of the sorption of plutonium by phytoplankton in a controlled environment using continuous culture techniques

  11. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    International Nuclear Information System (INIS)

    Nagasaki, S.

    2013-01-01

    Based on the sorption distribution coefficients (K d ) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K d values of Cs onto Mizunami granite carried out by JAEA with the K d values predicted by the model, the effect of the ionic strength on the K d values of Cs onto granite was evaluated. It was found that K d values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10 -2 to 5 x 10 -1 mol/dm 3 . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  12. Degradation of cementitious materials associated with salstone disposal units

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Smith, F. G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-09-01

    The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed “saltstone”. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of a saltstone disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions.

  13. Engineering Properties and Correlation Analysis of Fiber Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Wei-Ting Lin

    2014-11-01

    Full Text Available This study focuses on the effect of the amount of silica fume addition and volume fraction of steel fiber on the engineering properties of cementitious materials. Test variables include dosage of silica fume (5% and 10%, water/cement ratio (0.35 and 0.55 and steel fiber dosage (0.5%, 1.0% and 2.0%. The experimental results included: compressive strength, direct tensile strength, splitting tensile strength, surface abrasion and drop-weight test, which were collected to carry out the analysis of variance to realize the relevancy and significance between material parameters and those mechanical properties. Test results illustrate that the splitting tensile strength, direct tensile strength, strain capacity and ability of crack-arresting increase with increasing steel fiber and silica fume dosages, as well as the optimum mixture of the fiber cementitious materials is 5% replacement silica fume and 2% fiber dosage. In addition, the Pearson correlation coefficient was conducted to evaluate the influence of the material variables and corresponds to the experiment result.

  14. Treated Coconut Coir Pith as Component of Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Dana Koňáková

    2015-01-01

    Full Text Available The presented paper deals with utilization of raw and treated coir pith as potential component of cementitious composites. The studied material is coir pith originating from a coconut production. Its applicability as cement mixture component was assessed in terms of the physical properties of concrete containing different amount of coir pith. Basic physical properties, compressive and bending strength, and hygric transport characteristics as well as thermal properties belong among the studied characteristics. It was proved that the concrete with 5% (by mass of cement of this waste material shows appropriate physical properties and it gives rise to an applicable material for building structures. Generally, the coir pith can be regarded as lightening additive. When 10% of coir pith was added, it has led to higher deterioration of properties than what is acceptable since such dosing is greatly increasing the total porosity. The influence of chemical treatment of coir pith was evaluated as well; both tested treatment methods improved the performance of cementitious composites while the acetylation was somewhat more effective the treatment by NaOH.

  15. Batch-Versuche zur Bestimmung der Sorption und Reaktionskinetik von fluoreszierenden Tracern

    Science.gov (United States)

    Vaitl, Tobias; Wohnlich, Stefan

    2018-06-01

    For many tracer experiments, prior determination of interaction between solid medium and used tracers is of major interest in order to achieve efficient, economic and successful field experiments. In the present study, three different types of batch experiments were performed with three fluorescent dyes (Na-Fluorescein, Amidorhodamin G and Tinopal CBS-X) and three different rock types (sandstone, claystone and limestone), to determine distribution coefficients and reaction kinetics. All three rock types were analysed for organic carbon content, specific surface area and mineralogical composition to identify the main sorption mechanisms. For all tracers, different sorption properties were found depending on the type of rock. The strongest sorption was observed for Tinopal CBS-X in contact with claystone. Only Na-Fluorescein showed sorption (albeit limited) in contact with the sandstones. The investigated limestones indicated a high sorption for the tracer Tinopal CBS-X. Regarding reaction kinetics, in most cases, thermodynamic equilibrium conditions were reached after two weeks.

  16. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    simply by changing geometric parameters of the waveguide, keeping in mind the trade-off between confinement and propagation losses. A broad variety of plasmonic waveguides and waveguide components, including antennas for coupling the light in/out of the waveguide, requires correspondent characterization...... capabilities, especially on experimental side. The most straight-forward and powerful technique for such purpose is scanning near-field optical microscopy, which allows to probe and map near-field distribution and therefore becomes the main tool in this project. The detailed description of the used setups...

  17. Near-field probing of photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2006-01-01

    We report the design, fabrication and characterization of a photonic crystal directional with a size of ~20 x 20 mm2 fabricated in silicon-on-insulator material. Using a scanning near-field optical microscope we demonstrate a high coupling efficiency for TM polarized light at telecom wavelengths....... By comparing the near-field optical images recorded in and after the directional coupler area, the features of light distribution are analyzed. Finally, the scanning near-field optical microscope observations are found to be in agreement with the transmission measurements conducted with the same sample....

  18. Towards a common thermodynamic database for speciation models

    International Nuclear Information System (INIS)

    Lee, J. van der; Lomenech, C.

    2004-01-01

    Bio-geochemical speciation models and reactive transport models are reaching an operational stage, allowing simulation of complex dynamic experiments and description of field observations. For decades, the main focus has been on model performance but at present, the availability and reliability of thermodynamic data is the limiting factor of the models. Thermodynamic models applied to real and complex geochemical systems require much more extended thermodynamic databases with many minerals, colloidal phases, humic and fulvic acids, cementitious phases and (dissolved) organic complexing agents. Here we propose a methodological approach to achieve, ultimately, a common, operational database including the reactions and constants of these phases. Provided they are coherent with the general thermodynamic laws, sorption reactions are included as well. We therefore focus on sorption reactions and parameter values associated with specific sorption models. The case of sorption on goethite has been used to illustrate the way the methodology handles the problem of inconsistency and data quality. (orig.)

  19. Sorption behavior of neptunium on bentonite -- Effect of calcium ion on the sorption

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Muraoka, Susumu

    1995-01-01

    The sorption behavior of neptunium on bentonite was studied with batch type sorption and desorption experiments over a pH range of 2 to 8. A series of parallel studies using Na-smectite, Ca-smectite and admixtures of Na-smectite and calcite quantified the capacity of Ca 2+ (which occurs in bentonite as an exchangeable cation of smectite and as a component of calcite) to inhibit the sorption of neptunium. The distribution coefficient (K d ) of neptunium for bentonite was constant from pH 2 to 7, while for pure Na-smectite K d increased below pH 5 due to specific sorption of neptunium on Na-smectite. Specific sorption was defined as occurring when neptunium could be desorbed by a strong acid (1 M HCl) but was stable in the presence of 1 M KCl. It was found that the quantity of neptunium sorbed on Na-smectite was inversely proportional to the concentration of Ca 2+ in solution, an effect most pronounced at pH 2+ limits the specific sorption capacity of Na-smectite for neptunium. Similarly, in the mixture of Na-smectite and calcite, sufficient Ca 2+ was solubilized to depress neptunium sorption. This investigation demonstrates that Ca 2+ contained in bentonite as exchangeable cation and released from calcite reduces the specific sorption of neptunium

  20. Asymmetric active nano-particles for directive near-field radiation

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Thorsen, Rasmus O.

    2016-01-01

    In this work, we demonstrate the potential of cylindrical active coated nano-particles with certain geometrical asymmetries for the creation of directive near-field radiation. The particles are excited by a near-by magnetic line source, and their performance characteristics are reported in terms...... of radiated power, near-field and power flow distributions as well as the far-field directivity....

  1. Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Jin Wook Bang

    2015-01-01

    Full Text Available The purpose of this study is to develop ecoefficient engineered cementitious composites (ECC using supplementary cementitious materials (SCMs, including fly ash (FA and blast furnace slag (SL as a binder material. The cement content of the ECC mixtures was replaced by FA and SL with a replacement rate of 25%. In addition, the fine aggregate of the ECC was replaced by bottom ash aggregate (BA with a substitution rate of 10%, 20%, and 30%. The influences of ecofriendly aggregates on fresh concrete properties and on mechanical properties were experimentally investigated. The test results revealed that the substitution of SCMs has an advantageous effect on fresh concrete’s properties; however, the increased water absorption and the irregular shape of the BA can potentially affect the fresh concrete’s properties. The substitution of FA and SL in ECC led to an increase in frictional bond at the interface between PVA fibers and matrix, improved the fiber dispersion, and showed a tensile strain capacity ranging from 3.3% to 3.5%. It is suggested that the combination of SCMs (12.5% FA and 12.5% SL and the BA aggregate with the substitution rate of 10% can be effectively used in ECC preparation.

  2. A new system for crack closure of cementitious materials using shrinkable polymers

    International Nuclear Information System (INIS)

    Jefferson, Anthony; Joseph, Christopher; Lark, Robert; Isaacs, Ben; Dunn, Simon; Weager, Brendon

    2010-01-01

    This paper presents details of an original crack-closure system for cementitious materials using shrinkable polymer tendons. The system involves the incorporation of unbonded pre-oriented polymer tendons in cementitious beams. Crack closure is achieved by thermally activating the shrinkage mechanism of the restrained polymer tendons after the cement-based material has undergone initial curing. The feasibility of the system is demonstrated in a series of small scale experiments on pre-cracked prismatic mortar specimens. The results from these tests show that, upon activation, the polymer tendon completely closes the preformed macro-cracks and imparts a significant stress across the crack faces. The potential of the system to enhance the natural autogenous crack healing process and generally improve the durability of concrete structures is addressed.

  3. Far Field Sorption Data Bases for Performance Assessment of a High-Level Radioactive Waste Repository in an Undisturbed Opalinus Clay Host Rock

    International Nuclear Information System (INIS)

    Bradburry, M.; Baeyens, B.

    2003-08-01

    An Opalinus Clay formation in the Zuercher Weinland is under consideration by Nagra as a potential location for a high-level and long-Iived intermediate-level radioactive waste repository. Performance assessment studies will be performed for this site and the purpose of this report is to describe the procedures used to develop sorption data bases appropriate for an undisturbed Opalinus Clay host rock which are required for such safety analysis calculations. In tight, low water content argillaceous rock formations such as Opalinus Clay, there is uncertainty concerning the in situ pH/P CO 2 . In order to take this intrinsic uncertainty into account porewater chemistries were calculated for a reference case, pH = 7.24, and for two other pH values, 6.3 and 7.8. Sorption data bases are given for the three cases. The basis for the sorption data bases is 'in-house' sorption measurements for Cs(I), Sr(II), Ni(II), Eu(III), Sn(IV), Se(IV), Th(IV) and I(-I) carried out on Opalinus Clay samples from Mont Terri (Canton Jura) since at the time the experiments were performed no core samples from the Benken borehole (Zuercher Weinland) were available. The Opalinus Clay at Mont Terri and Benken are part of the same geological formation . Despite having directly measured data for the above key radionuclides, some of the required distribution ratios (Rd) used to generate the sorption data bases still came from the open literature. An important part of this report is concerned with describing the procedures whereby these selected literature Rd values were modified so as to apply to the Benken Opalinus Clay mineralogy and groundwater chemistries calculated at the three pH values given above. The resulting Rd values were then further modified using so-called Lab→Field transfer factors to produce sorption values which were appropriate to the in situ bulk rock for the selected range of water chemistry conditions. Finally, it is important to have some appreciation of the uncertainties

  4. Behaviour of cementitious materials: sulfates and temperature actions

    International Nuclear Information System (INIS)

    Barbarulo, Remi

    2002-09-01

    The research work presented in this Ph.D. thesis is related to the nuclear waste underground repository concept. Concrete could be used in such a repository, and would be subjected to variations of temperature in presence of sulfate, a situation that could induce expansion of concrete. The research was lead in three parts: an experimental study of the possibility of an internal sulfate attack on mortars; an experimental study and modeling of the chemical equilibriums of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system; and a modeling of the mechanisms of internal and external sulfate attacks, and the effect of temperature. The results show that mortars can develop expansions after a steam-cure during hydration, but also when a long steam-cure is applied to one-year-old mortars, which is a new point. Ettringite precipitation can be considered as responsible for these expansions. The experimental study of the CaO-SiO 2 -Al 2 O 3 -SO 3 -H 2 O system clarified the role of Calcium Silicate Hydrates (C-S-H) on chemical equilibriums of cementitious materials. Sulfate sorption on C-S-H has been studied in detail. The quantity of sulfate bound to the C-S-H mainly depends on the sulfate concentration in solution, on the Ca/Si ratio of the C-S-H and is not significantly influenced by temperature. Aluminium inclusion in the C-S-H seems to be a significant phenomenon. Temperature increases the calcium sulfo-aluminate solubilities and thus increases sulfates concentration in solution. A modeling of the chemical system is proposed. Simulations of external sulfate attack (15 mmol/L of Na 2 SO 4 ) predict ettringite precipitation at 20 and 85±C. Simulation of internal sulfate attack was performed at a local scale (a hydrated cement grain). An initial inhomogeneity can lead, after a thermal curing at 85±C, to ettringite precipitation in zones originally free from ettringite. This new-formed ettringite could be the origin of the expansions. (author) [fr

  5. Evaluation of sorption distribution coefficient of Cs onto granite using sorption data collected in sorption database and sorption model

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaki, S., E-mail: nagasas@mcmaster.ca [McMaster Univ., Hamilton, Ontario (Canada)

    2013-07-01

    Based on the sorption distribution coefficients (K{sub d}) of Cs onto granite collected from the JAERI Sorption Database (SDB), the parameters for a two-site model without the triple-layer structure were optimized. Comparing the experimentally measured K{sub d} values of Cs onto Mizunami granite carried out by JAEA with the K{sub d} values predicted by the model, the effect of the ionic strength on the K{sub d} values of Cs onto granite was evaluated. It was found that K{sub d} values could be determined using the content of biotite in granite at a sodium concentration ([Na]) of 1 x 10{sup -2} to 5 x 10{sup -1} mol/dm{sup 3} . It was suggested that in high ionic strength solutions, the sorption of Cs onto other minerals such as microcline should also be taken into account. (author)

  6. Can superabsorbent polymers mitigate shrinkage in cementitious materials blended with supplementary cementitious materials?

    DEFF Research Database (Denmark)

    Snoeck, Didier; Jensen, Ole Mejlhede; De Belie, Nele

    2016-01-01

    A promising way to mitigate autogenous shrinkage in cementitious materials with a low water-to-binder ratio is internal curing by the use of superabsorbent polymers. Superabsorbent polymers are able to absorb multiple times their weight in water and can be applied as an internal water reservoir...... to induce internal curing and mitigation of self-desiccation. Their purposefulness has been demonstrated in Portland cement pastes with and without silica fume. Nowadays, fly ash and blast-furnace slag containing binders are also frequently used in the construction industry. The results on autogenous...... shrinkage in materials blended with fly ash or blast-furnace slag remain scarce, especially after one week of age. This paper focuses on the autogenous shrinkage by performing manual and automated shrinkage measurements up to one month of age. Without superabsorbent polymers, autogenous shrinkage...

  7. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    International Nuclear Information System (INIS)

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-01-01

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of ''local equilibrium'' assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of

  8. High-Density Near-Field Optical Disc Recording

    Science.gov (United States)

    Shinoda, Masataka; Saito, Kimihiro; Ishimoto, Tsutomu; Kondo, Takao; Nakaoki, Ariyoshi; Ide, Naoki; Furuki, Motohiro; Takeda, Minoru; Akiyama, Yuji; Shimouma, Takashi; Yamamoto, Masanobu

    2005-05-01

    We developed a high-density near-field optical recording disc system using a solid immersion lens. The near-field optical pick-up consists of a solid immersion lens with a numerical aperture of 1.84. The laser wavelength for recording is 405 nm. In order to realize the near-field optical recording disc, we used a phase-change recording media and a molded polycarbonate substrate. A clear eye pattern of 112 GB capacity with 160 nm track pitch and 50 nm bit length was observed. The equivalent areal density is 80.6 Gbit/in2. The bottom bit error rate of 3 tracks-write was 4.5× 10-5. The readout power margin and the recording power margin were ± 30.4% and ± 11.2%, respectively.

  9. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Directory of Open Access Journals (Sweden)

    Oskar Modin

    Full Text Available New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC per g volatile suspend solids (VSS for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  10. Modelling the carbonation of cementitious matrixes by means of the unreacted-core model, UR-CORE

    International Nuclear Information System (INIS)

    Castellote, M.; Andrade, C.

    2008-01-01

    This paper presents a model for the carbonation of cementitious matrixes (UR-CORE). The model is based on the principles of the 'unreacted-core' systems, typical of chemical engineering processes, in which the reacted product remains in the solid as a layer of inert ash, adapted for the specific case of carbonation. Development of the model has been undertaken in three steps: 1) Establishment of the controlling step in the global carbonation rate, by using data of fractional conversion of different phases of the cementitious matrixes, obtained by the authors through neutron diffraction data experiments, and reported in [M. Castellote, C. Andrade, X. Turrillas, J. Campo, G. Cuello, Accelerated carbonation of cement pastes in situ monitored by neutron diffraction, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.07.002]. 2) Then, the model has been adapted and applied to the cementitious materials using different concentrations of CO 2 , with the introduction of the needed assumptions and factors. 3) Finally, the model has been validated with laboratory data at different concentrations (taken from literature) and for long term natural exposure of concretes. As a result, the model seems to be reliable enough to be applied to cementitious materials, being able to extrapolate the results from accelerated tests in any conditions to predict the rate of carbonation in natural exposure, being restricted, at present stage, to conditions with a constant relative humidity

  11. Non-contact transportation using near-field acoustic levitation

    Science.gov (United States)

    Ueha; Hashimoto; Koike

    2000-03-01

    Near-field acoustic levitation, where planar objects 10 kg in weight can levitate stably near the vibrating plate, is successfully applied both to non-contact transportation of objects and to a non-contact ultrasonic motor. Transporting apparatuses and an ultrasonic motor have been fabricated and their characteristics measured. The theory of near-field acoustic levitation both for a piston-like sound source and a flexural vibration source is also briefly described.

  12. Radiation Entropy and Near-Field Thermophotovoltaics

    Science.gov (United States)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  13. Radionuclide sorption kinetics and column sorption studies with Columbia River basalts

    International Nuclear Information System (INIS)

    Barney, G.S.

    1983-09-01

    The kinetics of radionuclide sorption and desorption reactions in basalt-groundwater systems were evaluated at 60 degrees C using a batch equilibration method. It was found that many sorption reactions on surfaces of fresh (unaltered) basalt from the Umtanum and Cohassett flows are slow. Some reactions require more than 50 days to reach a steady state. Sorption of neptunium and uranium in oxidizing (air saturated) groundwater appears to be controlled by slow reduction of these elements by the basalt surfaces. The resulting lower oxidation states are more strongly sorbed. Technetium and selenium, which are anionic under oxidizing conditions, are not measurably sorbed on fresh basalt surfaces, but are slightly sorbed on the altered surfaces of flow top basalt. Under reducing conditions, where the groundwater contains dilute hydrazine, sorption is faster for neptunium, uranium, technetium, selenium, and lead. Plutonium sorption rates were not affected by the groundwater Eh. It was shown that radium was precipitated rather than sorbed under the conditions of these experiments. Umtanum flow top material sorbed radionuclides much faster than fresh basalt surfaces due to its greater surface area and cation exchange capacity. Desorption rates for plutonium, uranium, neptunium, technetium, and selenium were generally much less than sorption rates (especially for reducing conditions). These radionuclides are irreversibly sorbed on the basalts. 25 refs., 20 figs., 19 tabs

  14. The geochemistry of the near-field

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-10-01

    This report describes a study of the Swiss disposal concept used in 'Project Gewaehr 1985' safety analysis. The main components of the near-field of a high level waste repository are the waste glass matrix, the thick steel canister and the surrounding backfill of compressed bentonite. In this report it is concluded that mineralogical alteration of the backfill will be negligibly small over the million year period considered. Its physical and chemical properties can thus be relied on for such a period. The canister will retain its integrity for > 10/sup 3/ y and thereafter will act as an Eh/pH buffer. The near-field buffers ensure more alkaline and reducing conditions than in the far-field. Complete degradation of the glass matrix will take > 10/sup 5/ years and nuclide release will be limited by their congruent dissolution although it may be further constrained by low solubility. Diffusion of dissolved nuclides through the backfill is so slow that many species decay to insignificance within it. The large uptake capacity of the bentonite also significantly extends the release duration for longer lived, non-solubility limited nuclides thus decreasing output mixima. Possible perturbing factors such as radiolysis and hydrogen production by anoxic corrosion are of little importance but modelling of speciation/solubility in the near-field and, in particular, colloid formation and mobility are identified as areas in which more work is required. Although the main analysis aims to err on the side of conservatism, the extent of such pessimism is assessed in a 'realistic' appraisal of the near-field. This suggests that the engineered barriers will prevent any radiologically significant releases over periods in excess of a million years which would strengthen their role in the multiple barrier safety concept. (author)

  15. Impact of an Alkaline Solution on the Chemistry, Mineralogy, and Sorption Properties of a Typic Rhodudult Soil

    Directory of Open Access Journals (Sweden)

    Jaqueline Alves de Almeida Calábria

    2017-11-01

    Full Text Available Abstract The preferred option for disposal of short-lived low and intermediate level radioactive wastes is a near surface disposal facility in which soil is one of the barriers that avoid radionuclide migration outside the controlled area. For construction of that kind of facility, concrete is widely used, and its interaction with water induces its degradation, resulting in a high pH solution. The alkaline solution may affect the near-field environment of radioactive waste repositories, including the soil, promoting mineralogical alterations that result in significant changes in key properties of materials, compromising their performance as safety components. In this study, a sample of a Brazilian Typic Rhodudult soil, previously investigated concerning its performance for Cs sorption, was subjected to interaction with the alkaline solution for 24 h and for 7, 14, and 28 days in order to evaluate the impact on its chemical, mineralogical, and sorption properties. X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDX, atomic absorption spectrometry (AAS, scanning electron microscopy (SEM, and electron microprobe analysis were performed before and after each alteration period. Results indicated dissolution of minerals, such as kaolinite and quartz, associated with incorporation of K and Ca from the alkaline solution, likely resulting in the formation of hydrated calcium silicate phases (CSH, which are expected to be worse sorbents for alkaline elements (e.g., Cs than the original minerals. The Kd values for Cs in the altered samples also decreased according to the alteration period, demonstrating that alkaline interaction effectively modifies the soil sorption properties for Cs.

  16. Effect of cementitious permanent formwork on moisture field of internal-cured concrete under drying

    Science.gov (United States)

    Wang, Jiahe; Zhang, Jun; Ding, Xiaoping; Zhang, Jiajia

    2018-02-01

    Drying shrinkage of concrete may still be the main source of cracking in concrete structures, even though the autogenous shrinkage of concrete can be effectively reduced by using internal curing. In the present paper, the effect of internal curing with pre-soaked lightweight aggregate and engineered cementitious composite permanent formwork (ECC-PF) on a moisture distribution in three kinds of concrete in a drying environment are investigated from both aspects of experiments and theoretical modeling. The test results show that the combination use of ECC-PF and internal curing can well maintain the humidity at a relatively high level not only at a place far from drying surface, but also at a place close to the drying surfaces. The developed model can well catch the characteristics of the moisture distribution in concrete under drying and the impacts of internal curing and ECC-PF can well be reflected as well. The model can be used for the design of concrete structures with combination use of internal curing and permanent formwork.

  17. RFID Antenna Near-field Characterization Using a New 3D Magnetic Field Probe

    Directory of Open Access Journals (Sweden)

    Kassem Jomaa

    2017-05-01

    Full Text Available In this paper the design of a new 3D magnetic field (H-field probe with a near-field scanning system is presented, then the near electromagnetic fields radiated by a Library RFID system is characterized. The proposed system is developed in order to determine the magnetic near-field emitted by electronic devices. The designed isotropic H-field probe consists of three orthogonal and identical loops each of diameter of 6 mm having 3 turns. The antenna factor of the designed probe is presented for a frequency range from 10 MHz to 1 GHz. The designed probe is tested and validated using a standard passive circuit as a device under test. An RFID reader antenna is also designed and simulated on HFSS (high frequency structural simulator and the radiated magnetic field, obtained by simulations, is then compared to the real measured one above the fabricated circuit. The obtained levels are checked if they satisfy the European and ICNIRP Electromagnetic Fields Guidelines.

  18. Spherical near-field scanning at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Hansen, J. E.; Jensen, F.

    1988-01-01

    The early work (1969-79) on spherical near-field antenna measurements at the Technical University of Denmark (TUD) is outlined. A spherical near-field transmission formula is described and the first probe-corrected spherical near-field measurements are discussed. The TUD-ESA (European Space Agency...

  19. Study on rich alumina alkali-activated slag clay minerals cementitious materials for immobilization of radioactive waste

    International Nuclear Information System (INIS)

    Li Yuxiang; Qian Guangren; Yi Facheng; Shi Rongming; Fu Yibei; Li Lihua; Zhang Jun

    1999-01-01

    The composition and some properties of its pastes of rich alumina alkali-activated slag clay minerals (RAAASCM) cementitious materials for immobilization of radioactive waste are studied. Experimental results show that heat activated kaolinite, Xingjiang zeolite, modified attapulgite clay are better constituents of RAAASCM. RAAASCM cementitious materials pastes exhibit high strength, low porosity, fewer harmful pore, and high resistance to sulphate corrosion as well as gamma irradiation. The Sr 2+ , Cs + leaching portion of the simulated radioactive waste forms based on RAAASCM, is low

  20. Setup of Extruded Cementitious Hollow Tubes as Containing/Releasing Devices in Self-Healing Systems

    Directory of Open Access Journals (Sweden)

    Alessandra Formia

    2015-04-01

    Full Text Available The aim of this research is to produce self-healing cementitious composites based on the use of cylindrical capsules containing a repairing agent. Cementitious hollow tubes (CHT having two different internal diameters (of 2 mm and 7.5 mm were produced by extrusion and used as containers and releasing devices for cement paste/mortar healing agents. Based on the results of preliminary mechanical tests, sodium silicate was selected as the healing agent. The morphological features of several mix designs used to manufacture the extruded hollow tubes, as well as the coatings applied to increase the durability of both core and shell materials are discussed. Three-point bending tests were performed on samples produced with the addition of the above-mentioned cementitious hollow tubes to verify the self-healing effectiveness of the proposed solution. Promising results were achieved, in particular when tubes with a bigger diameter were used. In this case, a substantial strength and stiffness recovery was observed, even in specimens presenting large cracks (>1 mm. The method is inexpensive and simple to scale up; however, further research is needed in view of a final optimization.

  1. Effect of humic acid & bacterial exudates on sorption-desorption interactions of 90Sr with brucite.

    Science.gov (United States)

    Ashworth, Hollie; Abrahamsen-Mills, Liam; Bryan, Nick; Foster, Lynn; Lloyd, Jonathan R; Kellet, Simon; Heath, Sarah

    2018-05-18

    One of the nuclear fuel storage ponds at Sellafield (United Kingdom) is open to the air, and has contained a significant inventory of corroded magnox fuel and sludge for several decades. As a result, some fission products have also been released into solution. 90Sr is known to constitute a small mass of the radionuclides present in the pond, but due to its solubility and activity, it is at risk of challenging effluent discharge limits. The sludge is predominantly composed of brucite (Mg(OH)2), and organic molecules are known to be present in the pond liquor with occasional algal blooms restricting visibility. Understanding the chemical interactions of these components is important to inform ongoing sludge retrievals and effluent management. Additionally, interactions of radionuclides with organics at high pH will be an important consideration for the evolution of cementitious backfilled disposal sites in the UK. Batch sorption-desorption experiments were performed with brucite, 90Sr and natural organic matter (NOM) (humic acid (HA) and Pseudanabaena catenata cyanobacterial growth supernatant) in both binary and ternary systems at high pH. Ionic strength, pH and order of addition of components were varied. 90Sr was shown not to interact strongly with the bulk brucite surface in binary systems under pH conditions relevant to the pond. HA in both binary and ternary systems demonstrated a strong affinity for the brucite surface. Ternary systems containing HA demonstrated enhanced sorption of 90Sr at pH 11.5 and vice versa, likely via formation of strontium-humate complexes regardless of the order of addition of components. The distribution coefficients show HA sorption to be reversible at all pH values studied, and it appeared to control 90Sr behaviour at pH 11.5. Ternary systems containing cyanobacterial supernatant demonstrated a difference in 90Sr behaviour when the culture had been subjected to irradiation in the first stages of its growth.

  2. Degradation of cellulosic materials under the alkaline conditions of a cementitious repository for low- and intermediate level radioactive waste. Pt. III. Effect of degradation products on the sorption of radionuclides on feldspar

    International Nuclear Information System (INIS)

    Loon, L.R. van; Glaus, M.A.; Laube, A.; Stallone, S.

    1999-01-01

    The effect of degradation products of different cellulosic materials on the sorption behaviour of Th(IV), Eu(III) and Ni(II) on feldspar at pH 13.3 was studied. For all three metals, a decrease in sorption could be observed with increasing concentration of organics in solution. For Th(IV), α-ISA is the effective ligand present in the solutions of degraded cellulose, independent on the type of cellulose studied. For Eu(III), α-ISA is the effective ligand in the case of pure cellulose degradation. In the case of other cellulosic materials, unknown ligands cause the sorption reduction. For Ni(II), also unknown ligands cause sorption reduction, independent on the type of cellulose studied. These unknown ligands are not formed during alkaline degradation of cellulose, but are present as impurities in certain cellulosic materials. (orig.)

  3. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  4. Sorption by cation exchange

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Baeyens, B.

    1994-04-01

    A procedure for introducing exchange into geochemical/surface complexation codes is described. Beginning with selectivity coefficients, K c , defined in terms of equivalent fractional ion occupancies, a general expression for the molar based exchange code input parameters, K ex , is derived. In natural systems the uptake of nuclides onto complex sorbents often occurs by more than one mechanism. The incorporation of cation exchange and surface complexation into a geochemical code therefore enables sorption by both mechanisms to be calculated simultaneously. The code and model concepts are tested against sets of experimental data from widely different sorption studies. A proposal is made to set up a data base of selectivity coefficients. Such a data base would form part of a more general one consisting of sorption mechanism specific parameters to be used in conjunction with geochemical/sorption codes to model and predict sorption. (author) 6 figs., 6 tabs., 26 refs

  5. Superhydrophobic engineered cementitious composites for highway bridge applications : technology transfer and implementation.

    Science.gov (United States)

    2013-09-01

    The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. Superhydrophobic : engineered cementitious composite (SECC) is a new advanced con...

  6. Computational lens for the near field

    DEFF Research Database (Denmark)

    Carney, P. Scott; Franzin, Richard A.; Bozhevolnyi, Sergey I.

    2004-01-01

    A method is presented to reconstruct the structure of a scattering object from data acquired with a photon scanning tunneling microscope . The data may be understood to form a Gabor type near-field hologram and are obtained at a distance from the sample where the field is defocused and normally...

  7. Sorption and desorption of diuron in Oxisol under biochar application

    OpenAIRE

    Petter,Fabiano André; Ferreira,Tamara Santos; Sinhorin,Adilson Paulo; Lima,Larissa Borges de; Morais,Leidimar Alves de; Pacheco,Leandro Pereira

    2016-01-01

    ABSTRACT The objective of this study was to verify the kinetics of sorption and desorption of diuron in an Oxisol under application of biochar. The samples were collected in a field experiment conducted in randomized design blocks consisted of 2 base fertilization levels (0 and 400 kg∙ha−1 NPK 00-20-20 fertilizer formula) and 3 doses of biochar (0, 8 and 16 Mg∙ha−1). In the evaluation of sorption and desorption, Batch Equilibrium method was used. The kinetics of sorpti...

  8. Near-field second-harmonic generation from gold nanoellipsoids

    Energy Technology Data Exchange (ETDEWEB)

    Celebrano, M; Zavelani-Rossi, M; Polli, D; Cerullo, G [Istituto di Fotonica e Nanotecnologie, CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Biagioni, P; Finazzi, M; Duo, L [LNESS - Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano (Italy); Labardi, M; Allegrini, M [CNR-INFM, polyLab, Dipartimento di Fisica ' Enrico Fermi' , Universita di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Grand, J; Adam, P M; Royer, P [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP 2060 10010 Troyes cedex (France)

    2008-07-01

    Second-harmonic generation from single gold nanofabricated particles is experimentally investigated by a nonlinear scanning near-field optical microscope (SNOM). High peak power femtosecond polarized light pulses at the output of a hollow pyramid aperture allow for efficient second-harmonic imaging, with sub-100-nm spatial resolution and high contrast. The near-field nonlinear response is found to be directly related to both local surface plasmon resonances and particle morphology. The combined analysis of linear and second-harmonic SNOM images allows one to discriminate among near-field scattering, absorption and re-emission processes, which would not be possible with linear techniques alone. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Surface charges and Np(V) sorption on amorphous Al- and Fe- silicates

    International Nuclear Information System (INIS)

    Del Nero, M.; Assada, A.; Barillon, R.; Duplatre, G.; Made, B.

    2005-01-01

    Full text of publication follows: Sorption onto Si-rich alteration layers of crystalline minerals and nuclear glasses, and onto amorphous secondary silicates of rocks and soils, are expected to retard the migration of actinides in the near- and far-field of HLW repositories. We present experimental and modeling studies on the effects of silicate structure and bulk chemistry, and of solution chemistry, on charges and adsorption of neptunyl ions at surfaces of synthetic, amorphous or poorly ordered silica, Al-silicates and Fe-silicates. The Al-silicates display similar pH-dependent surface charges characterized by predominant Si-O - Si sites, and similar surface affinities for neptunyl ions, irrespective to their Si/Al molar ratio (varying from 10 to 4.3). Such experimental features are explained by incorporation of Al atoms in tetrahedral position in the silicate lattice, leading to only trace amounts of high-affinity Al-OH surface groups due to octahedral Al. By contrast, the structure of the Fe-silicates ensures the occurrence of high-affinity Fe-OH surface groups, whose concentration is shown by proton adsorption measurements to increase with decreasing of the silicate Si/Fe molar ratio (from 10 to 2.3). Nevertheless, experimental data of the adsorption of neptunyl and electrolyte ions show unexpectedly weak effect of the Si/Fe ratio, and suggest predominant Si-OH surface groups. A possible explanation is that aqueous silicate anions, released by dissolution, adsorb at OH Fe - surface groups and / or precipitate as silica gel coatings, because experimental solutions were found at near-equilibrium with respect to amorphous silica. Therefore, the environmental sorption of Np(V) onto Si-rich, amorphous or poorly ordered Al-silicates may primarily depend on pH and silicate specific surface areas, given the low overall chemical affinity of such phases for dissolved metals. By contrast, the sorption of Np(V) on natural, amorphous or poorly ordered Fe-silicates may be a

  10. Near-Field Source Localization by Using Focusing Technique

    Science.gov (United States)

    He, Hongyang; Wang, Yide; Saillard, Joseph

    2008-12-01

    We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007) is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics.

  11. Near-Field Source Localization by Using Focusing Technique

    Directory of Open Access Journals (Sweden)

    Joseph Saillard

    2008-12-01

    Full Text Available We discuss two fast algorithms to localize multiple sources in near field. The symmetry-based method proposed by Zhi and Chia (2007 is first improved by implementing a search-free procedure for the reduction of computation cost. We present then a focusing-based method which does not require symmetric array configuration. By using focusing technique, the near-field signal model is transformed into a model possessing the same structure as in the far-field situation, which allows the bearing estimation with the well-studied far-field methods. With the estimated bearing, the range estimation of each source is consequently obtained by using 1D MUSIC method without parameter pairing. The performance of the improved symmetry-based method and the proposed focusing-based method is compared by Monte Carlo simulations and with Crammer-Rao bound as well. Unlike other near-field algorithms, these two approaches require neither high-computation cost nor high-order statistics

  12. New insights into the sorption mechanism of cadmium on red mud

    International Nuclear Information System (INIS)

    Luo Lei; Ma Chenyan; Ma Yibing; Zhang Shuzhen; Lv Jitao; Cui Mingqi

    2011-01-01

    Effectiveness and mechanism of cadmium (Cd) sorption on original, acidified and ball milling nano-particle red muds were investigated using batch sorption experiments, sequential extraction analysis and X-ray absorption near edge structure (XANES) spectroscopy. The maximum sorption capacity of Cd was 0.16, 0.19, and 0.21 mol/kg for the original, acidified, and nano-particle red muds at pH 6.5, respectively. Both acidification and ball-milling treatments significantly enhanced Cd sorption and facilitated transformation of Cd into less extractable fractions. The Cd L III -edge XANES analysis indicated the formation of inner-sphere complexes of Cd similar to XCdOH (X represents surface groups on red mud) on the red mud surfaces although outer-sphere complexes of Cd were the primary species. This work shed light on the potential application of red mud to remediate Cd-contaminated soils and illustrated the promising tool of XANES spectroscopy for speciation of multicomponent systems of environmental relevance. - Graphical abstract: Display Omitted Highlights: → Red mud has a strong affinity for Cd contaminants. → Ball-milling treatments significantly enhance Cd sorption on red mud. → Cadmium partially formed inner-sphere complexes on the red mud surfaces. → Red mud can be used to remediate Cd contaminated soils effectively. - Cadmium can be strongly sorbed and partially forms inner-sphere complexes on red mud.

  13. Far Field Sorption Data Bases for Performance Assessment of a High-Level Radioactive Waste Repository in an Undisturbed Opalinus Clay Host Rock

    Energy Technology Data Exchange (ETDEWEB)

    Bradburry, M.; Baeyens, B

    2003-08-01

    An Opalinus Clay formation in the Zuercher Weinland is under consideration by Nagra as a potential location for a high-level and long-Iived intermediate-level radioactive waste repository. Performance assessment studies will be performed for this site and the purpose of this report is to describe the procedures used to develop sorption data bases appropriate for an undisturbed Opalinus Clay host rock which are required for such safety analysis calculations. In tight, low water content argillaceous rock formations such as Opalinus Clay, there is uncertainty concerning the in situ pH/P{sub CO{sub 2}}. In order to take this intrinsic uncertainty into account porewater chemistries were calculated for a reference case, pH = 7.24, and for two other pH values, 6.3 and 7.8. Sorption data bases are given for the three cases. The basis for the sorption data bases is 'in-house' sorption measurements for Cs(I), Sr(II), Ni(II), Eu(III), Sn(IV), Se(IV), Th(IV) and I(-I) carried out on Opalinus Clay samples from Mont Terri (Canton Jura) since at the time the experiments were performed no core samples from the Benken borehole (Zuercher Weinland) were available. The Opalinus Clay at Mont Terri and Benken are part of the same geological formation . Despite having directly measured data for the above key radionuclides, some of the required distribution ratios (Rd) used to generate the sorption data bases still came from the open literature. An important part of this report is concerned with describing the procedures whereby these selected literature Rd values were modified so as to apply to the Benken Opalinus Clay mineralogy and groundwater chemistries calculated at the three pH values given above. The resulting Rd values were then further modified using so-called Lab{yields}Field transfer factors to produce sorption values which were appropriate to the in situ bulk rock for the selected range of water chemistry conditions. Finally, it is important to have some

  14. Analytical and numerical models of transport in porous cementitious materials

    International Nuclear Information System (INIS)

    Garboczi, E.J.; Bentz, D.P.

    1990-01-01

    Most chemical and physical processes that degrade cementitious materials are dependent on an external source of either water or ions or both. Understanding the rates of these processes at the microstructural level is necessary in order to develop a sound scientific basis for the prediction and control of the service life of cement-based materials, especially for radioactive-waste containment materials that are required to have service lives on the order of hundreds of years. An important step in developing this knowledge is to understand how transport coefficients, such as diffusivity and permeability, depend on the pore structure. Fluid flow under applied pressure gradients and ionic diffusion under applied concentration gradients are important transport mechanisms that take place in the pore space of cementitious materials. This paper describes: (1) a new analytical percolation-theory-based equation for calculating the permeability of porous materials, (2) new computational methods for computing effective diffusivities of microstructural models or digitized images of actual porous materials, and (3) a new digitized-image mercury intrusion simulation technique

  15. Migration chemistry and behaviour of iodine relevant to geological disposal of radioactive wastes. A literature review with a compilation of sorption data

    International Nuclear Information System (INIS)

    Liu, Y.; Gunten, H.R. von

    1988-09-01

    This report reviews the literature on iodine migration, chemistry and behaviour in the environment up to November 1987. It deals mainly with 129 I released from a land repository, with particular consideration of the Swiss scenario for the disposal of low- and medium-level radioactive waste. As a background to this review, the basic properties of radioiodine, its distribution, circulation in nature and radiological impact are presented. A large number of sorption and diffusion data for iodine on rocks, sediments, minerals, cements and other materials have been compiled from many different laboratories. Based on this information, an assessment of the sorption and retardation of radioiodine in geomedia is made and methodologies for obtaining sorption distribution ratios (R D values) are discussed. The review also covers natural analogue studies of 129 I, retardation of iodine by cement barriers and the possible influences of organic compounds and microorganisms on the behaviour of iodine. Some possibilities for further research on diffusion measurements and near-field chemistry of radioiodine are outlined. (author) 259 refs., 9 figs., 32 tabs

  16. Viscoelastic stress modeling in cementitious materials using constant viscoelastic hydration modulus

    NARCIS (Netherlands)

    Hansen, W.; Liu, Z.; Koenders, E.A.B.

    2014-01-01

    Viscoelastic stress modeling in ageing cementitious materials is of major importance in high performance concrete of low water cement ratio (e.g. w/c ~0.35) where crack resistance due to deformation restraint needs to be determined. Total stress analysis is complicated by the occurrence of internal

  17. Methyl methacrylate as a healing agent for self-healing cementitious materials

    International Nuclear Information System (INIS)

    Van Tittelboom, K; De Belie, N; Adesanya, K; Dubruel, P; Van Puyvelde, P

    2011-01-01

    Different types of healing agents have already been tested on their efficiency for use in self-healing cementitious materials. Generally, commercial healing agents are used while their properties are adjusted for manual crack repair and not for autonomous crack healing. Consequently, the amount of regain in properties due to self-healing of cracks is limited. In this research, a methyl methacrylate (MMA)-based healing agent was developed specifically for use in self-healing cementitious materials. Various parameters were optimized including the viscosity, curing time, strength, etc. After the desired properties were obtained, the healing agent was encapsulated and screened for its self-healing efficiency. The decrease in water permeability due to autonomous crack healing using MMA as a healing agent was similar to the results obtained for manually healed cracks. First results seem promising: however, further research needs to be undertaken in order to obtain an optimal healing agent ready for use in practice

  18. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because they are thought unlikely to occur to a significant degree, or because they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. (author) figs., tabs., refs

  19. Sorption of actinides onto nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Shiryaev, Andrei [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry; Kalmykov, Stepan [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Chemistry; Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Russian Academy of Sciences, Moscow (Russian Federation). Vernadsky Institute of Geochemistry and Analytical Chemistry

    2015-06-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  20. Sorption of actinides onto nanodiamonds

    International Nuclear Information System (INIS)

    Buchatskaya, Yulia; Romanchuk, Anna; Yakovlev, Ruslan; Kulakova, Inna; Shiryaev, Andrei; Russian Academy of Sciences, Moscow; Kalmykov, Stepan; Russian Academy of Sciences, Moscow; Russian Academy of Sciences, Moscow

    2015-01-01

    Detonation nanodiamonds (ND) present a significant part of nanocarbons group, which could be produced on commercial scale by detonation of explosives in a closed chamber. Their unique properties of high surface area, low weight and radiation resistance make ND a prospective candidate for applications in sorption processes in radiochemistry. To study the influence of surface chemistry on sorption properties, apristine sample of ND was treated with acids and hydrogen. The surface chemistry of the samples was characterised by infrared spectroscopy, X-ray photoelectron spectroscopy and Boehm titration. The sorption properties of ND were tested fordifferent radionuclides. The sorption capacity of ND was shown to be higher than those of commonly used radionuclide sorbents like activated carbon and compariable to other members of nanocarbon group like graphene oxide and carbon nanotubes. The sorption properties were shown to be influenced by the presence of oxygen-containing groups on the surface of ND. This represents an opportunity to increase the sorption capacity of ND.

  1. Enhancement Experiment on Cementitious Activity of Copper-Mine Tailings in a Geopolymer System

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2017-12-01

    Full Text Available Copper-mine tailings are the residual products after the extraction of precious copper metal from copper ores, and their storage can create numerous environmental problems. Many researchers have used copper-mine tailings for the preparation of geopolymers. This paper studies the enhancement of the cementitious activity of copper-mine tailings in geopolymer systems. First, copper-mine tailings are activated through mechanical grinding activation. Then, the mechanically activated copper-mine tailings are further processed through thermal activation and alkaline-roasting activation. The cementitious activity index of copper-mine tailings is characterized through the degree of leaching concentration of Si and Al. It was observed that the Si and Al leaching concentration of mechanically activated tailings was increased by 26.03% and 93.33%, respectively. The concentration of Si and Al was increased by 54.19% and 119.92%, respectively. For alkaline-roasting activation, roasting time, temperature and the mass ratio of copper-mine tailings to NaOH (C/N ratio were evaluated through orthogonal tests, and the best condition for activation was 120 min at 600 °C with a C/N ratio of 5:1. In this study, scanning electron microscopy (SEM, X-ray diffraction (XRD and infra-red (IR analysis show that mechanical, thermal and alkaline-roasting activation could be used to improve the cementitious activity index of copper-mine tailings.

  2. Motion of Charged Particles near Magnetic Field Discontinuities

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2000-01-01

    The motion of charged particles in slowly changing magnetic fields exhibits adiabatic invariance even in the presence of abrupt magnetic discontinuities. Particles near discontinuities in magnetic fields, what we call ''boundary particles'', are constrained to remain near an arbitrarily fractured boundary even as the particle drifts along the discontinuity. A new adiabatic invariant applies to the motion of these particles

  3. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    International Nuclear Information System (INIS)

    Choi, Hyeok; Al-Abed, Souhail R.

    2009-01-01

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K F (L kg -1 ) spanned several orders of magnitude, ranging from log K F of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  4. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyeok [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Al-Abed, Souhail R., E-mail: al-abed.souhail@epa.gov [National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States)

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K{sub F} (L kg{sup -1}) spanned several orders of magnitude, ranging from log K{sub F} of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  5. Determination of Sorption Coefficient of Phosphorus Applied for Sugarcane Production in Southwestern Florida.

    Science.gov (United States)

    Muwamba, A; Nkedi-Kizza, P; Morgan, K T

    2016-09-01

    Phosphorus is among the essential nutrients applied to sugarcane ( L.) fields in the form of a fertilizer mixture (N, P, and K) in southwestern Florida. Sorption coefficient is used for modeling P movement, and in this study, we hypothesized that the sorption coefficient determined using fertilizer mixture (N, P, and K) will be significantly different from values determined using KCl and CaCl, the electrolytes most commonly used for conducting sorption experiments. Supporting electrolytes, 0.01 mol L KCl, 0.005 mol L CaCl, deionized (DI) water, simulated Florida rain, and fertilizer mixture prepared in Florida rain were used to characterize P sorption. Immokalee (Sandy, siliceous, hyperthermic Arenic Alaquods) and Margate (Sandy, siliceous hyperthermic Mollic Psammaquents) are the dominant mineral soils used for sugarcane production in southwestern Florida; we used the A and B horizons of Margate soil and the A and B horizons of the Immokalee soil for sorption experiments in this study. Freundlich sorption isotherms described P sorption data. The Freundlich sorption isotherm coefficients followed the trend 0.005 mol L CaCl > 0.01 mol L KCl ≈ fertilizer mixture > simulated Florida rain ≈ DI water. Sorption coefficients were used for modeling P movement with HYDRUS 1D; similar P results were obtained with the 0.01 mol L KCl and fertilizer mixture electrolyte treatments. The sorption coefficient for DI water and simulated Florida rain overpredicted P movement. The P sorption data showed the importance of choosing the appropriate electrolyte for conducting experiments based on the composition of fertilizer. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Estimation of the behaviors of selenium in the near field of repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Min, Jae Ho; Baik, Min Hoon; Kim, Gye Nam; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-12-15

    The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(Cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

  7. Near-field optical recording based on solid immersion lens system

    Science.gov (United States)

    Hong, Tao; Wang, Jia; Wu, Yan; Li, Dacheng

    2002-09-01

    Near-field optical recording based on solid immersion lens (SIL) system has attracted great attention in the field of high-density data storage in recent years. The diffraction limited spot size in optical recording and lithography can be decreased by utilizing the SIL. The SIL near-field optical storage has advantages of high density, mass storage capacity and compatibility with many technologies well developed. We have set up a SIL near-field static recording system. The recording medium is placed on a 3-D scanning stage with the scanning range of 70×70×70μm and positioning accuracy of sub-nanometer, which will ensure the rigorous separation control in SIL system and the precision motion of the recording medium. The SIL is mounted on an inverted microscope. The focusing between long working distance objective and SIL can be monitored and observed by the CCD camera and eyes. Readout signal can be collected by a detector. Some experiments have been performed based on the SIL near-field recording system. The attempt of the near-field recording on photochromic medium has been made and the resolution improvement of the SIL has been presented. The influence factors in SIL near-field recording system are also discussed in the paper.

  8. New sorption-reagent materials for decontamination of liquid radioactive waste

    International Nuclear Information System (INIS)

    Avramenko, V.A.; Golikov, A.P.; Zheleznov, V.V.; Kaplun, E.V.; Marinin, D.V.; Sokolnitskaya, T.A.

    2001-01-01

    Full text: Use of selective sorbents in liquid radioactive waste (LRW) management is widely spread in the field of nuclear power objects liquid waste decontamination, since the main objective there is to remove long-lived radionuclides of the nuclear cycle. The latter include, first of all, cesium-137, strontium-90, cobalt-60 and a number of α-irradiators. In this case LRW composition for most of the nuclear power objects is rather simple, except acidic deactivation solutions. At the same time, liquid radioactive wastes of different research centers have a variable chemical and radiochemical composition depending on objectives and tasks of a given center research activities. As a result, application of sorption technologies in such waste decontamination determines special requirements to these sorbents selectivity: a wide spectrum of radionuclides that can be removed and fairly high selectivity enabling to remove radionuclides from solutions of complex chemical composition (containing surfactants, complexing agents etc.). This paper is concerned with studying properties of new materials selective to different radionuclides. These materials are capable to interact with solution components whether already contained in the waste or deliberately added into resulting solution. Such sorption-reagent materials combine universal character of co-precipitation methods with simplicity of sorption methods. In this work we studied sorption-reagent inorganic ion-exchange materials interacting with sulfate-, carbonate-, oxalate-, sulfide-, and permanganate-ions. Insoluble compounds formed as a result of this interaction increase tens- and hundreds-fold the sorption selectivity of different radionuclides - strontium, cobalt, mercury, iron, and manganese as compared to conventional ion-exchange system. By means of X-ray phase analysis, IR-spectroscopy, chemical and radiochemical analysis, we have studied the mechanism of radionuclide sorption on different sorption

  9. Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials

    NARCIS (Netherlands)

    Lv, Leyang; Schlangen, H.E.J.G.; Yang, Z.; Xing, Feng

    2016-01-01

    Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a

  10. Sorption of U(VI) and Am(III) on Eucalyptus Biochar

    International Nuclear Information System (INIS)

    Mishra, Vijayakriti; Sureshkumar, M.K.; Kaushik, C.P.

    2016-01-01

    Biochar is partially oxidized residues from substrates of biological origin. Due to their binding properties with various organic and inorganic pollutants, these materials are widely studied for pollutant abatement both in field studies and laboratory investigations. Though large quantity of information is available on the use of biochar of various origin for heavy metals, studies pertaining to their use in radionuclide sorption are scarce in literature. Here we are reporting the sorption characteristics of U(VI) and Am(III) on to eucalyptus biochar as a function of various operating parameters such as solution pH, initial metal ion concentration, contact time and ionic strength of the medium. Overall the present studies shows that eucalyptus biochar is a suitable sorbent for the sorption of heavy radionuclides from aqueous solutions

  11. Thermodynamics of the near field

    International Nuclear Information System (INIS)

    Apps, J.A.

    1985-01-01

    The near field is normally taken to mean the part of the geologic setting of a repository that is affected by mechanical or thermal perturbations resulting from repository excavations and emplacement of radioactive waste. The near-field host rocks, the waste package, and the intervening backfill constitute a series of engineered and natural barriers that should be designed to initially prevent and subsequently control radionuclide release. Nuclear Regulatory Commission regulations 10 CFR part 60 specify that the waste package must not allow any release of radionuclides for at least 300 years, and preferably 1000 years. Thereafter, the release rate of any radionuclide is not to exceed on part in 100,000 per year of the inventory that is calculated to be present 1000 years after closure. In this paper, the author briefly outlines recent developments and identifies important fundamental research in thermodynamics and related areas that is needed to resolve some of the current uncertainties

  12. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    Science.gov (United States)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  13. Bond Characteristics of Macro Polypropylene Fiber in Cementitious Composites Containing Nanosilica and Styrene Butadiene Latex Polymer

    Directory of Open Access Journals (Sweden)

    Jae-Woong Han

    2015-01-01

    Full Text Available This study evaluated the bond properties of polypropylene (PP fiber in plain cementitious composites (PCCs and styrene butadiene latex polymer cementitious composites (LCCs at different nanosilica contents. The bond tests were evaluated according to JCI SF-8, in which the contents of nanosilica in the cement were 0, 2, 4, 6, 8, and 10 wt%, based on cement weight. The addition of nanosilica significantly affected the bond properties between macro PP fiber and cementitious composites. For PCCs, the addition of 0–2 wt% nanosilica enhanced bond strength and interface toughness, whereas the addition of 4 wt% or more reduced bond strength and interface toughness. The bond strength and interfacial toughness of LCCs also increased with the addition of up to 6% nanosilica. The analysis of the relative bond strength showed that the addition of nanosilica affects the bond properties of both PCC and LCC. This result was confirmed via microstructural analysis of the macro PP fiber surface after the bond tests, which revealed an increase in scratches due to frictional forces and fiber tearing.

  14. Near-Field Resonance Microwave Tomography and Holography

    Science.gov (United States)

    Gaikovich, K. P.; Smirnov, A. I.; Yanin, D. V.

    2018-02-01

    We develop the methods of electromagnetic computer near-field microwave tomography of distributed subsurface inhomogeneities of complex dielectric permittivity and of holography (shape retrieval) of internally homogeneous subsurface objects. The methods are based on the solution of the near-field inverse scattering problem from measurements of the resonance-parameter variations of microwave probes above the medium surface. The capabilities of the proposed diagnostic technique are demonstrated in the numerical simulation for sensors with a cylindrical capacitor as a probe element, the edge capacitance of which is sensitive to subsurface inhomogeneities.

  15. Treated Coconut Coir Pith as Component of Cementitious Materials

    OpenAIRE

    Koňáková, Dana; Vejmelková, Eva; Čáchová, Monika; Siddique, Jamal Akhter; Polozhiy, Kirill; Reiterman, Pavel; Keppert, Martin; Černý, Robert

    2015-01-01

    The presented paper deals with utilization of raw and treated coir pith as potential component of cementitious composites. The studied material is coir pith originating from a coconut production. Its applicability as cement mixture component was assessed in terms of the physical properties of concrete containing different amount of coir pith. Basic physical properties, compressive and bending strength, and hygric transport characteristics as well as thermal properties belong among the studied...

  16. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  17. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  18. Review of international near-field modeling for high-level waste disposal

    International Nuclear Information System (INIS)

    Apted, M.J.; Andersson, K.; Pescatore, C.

    1993-01-01

    The primary components of nuclear waste repositories that mitigate radionuclide release are the near-field and the far-field subsystems. The near-field encompasses the waste package, which is composed of engineered barriers; the far-field includes the natural barriers. An international survey and review is being conducted on the latest developments in modeling of near-field performance, with particular emphasis on the conceptual and mathematical models for source-term calculations. The objectives of this review will be to establish the status and commonality among models and methods for assessing near-field performance, as well as to identify possible future needs for continued comparison and collaboration. In parallel with the technical evaluation, an international technical Workshop on near-field performance assessment will be held, in association with the Nuclear Energy Agency, on May 11-13, 1993 in Cadarache, France

  19. Contribution to the study of multi-physical phenomena in cementitious materials

    International Nuclear Information System (INIS)

    Bary, B.

    2010-09-01

    This document is a synthesis of the applied research studies undertaken by the author during ten years, first at the University of Marne-La-Vallee during the period 1999-2002, then at the CEA. These studies concern the modeling and the numerical simulations of the cementitious materials behavior subjected on the one hand to moderate thermomechanical and hydric loadings, and on the other hand to chemical attacks due to the migration of calcium, carbonate and sulfate ions. The developed approaches may be viewed as multi-physical in the sense that the models used for describing the behavior couple various fields and phenomena such as mechanics, thermal, hydric and ionic transfers, and chemistry. In addition, analytical up-scaling techniques are applied to estimate the physical properties associated with these phenomena (mechanical, hydraulic and diffusive parameters) as a function of the microstructure and the hydric state of the material. (author)

  20. Near-field photon wave mechanics in the Lorenz gauge

    International Nuclear Information System (INIS)

    Keller, Ole

    2007-01-01

    Optical near-field interactions are studied theoretically in the perspective of photon wave mechanics paying particular attention to the dynamics in the wave-vector time domain. A unitary transformation is used to replace the scalar and longitudinal photon variables by so-called near-field and gauge photon variables. Dynamical equations are established for these types of photon variables, and it is shown that these equations are invariant against gauge transformations within the Lorenz gauge. The near-field photon is absent in the free-field limit, and the gauge photon can be eliminated by a suitable gauge transformation. Implicit solutions for the near-field, gauge, and transverse photon variables are obtained and discussed. The general theory is applied to an investigation of transverse photon propagation in a uniform solid-state plasma dominated by the diamagnetic field-matter interaction. It is found that the diamagnetic response can be incorporated in a quantum mechanical wave equation for a massive transverse photon. The Compton wave number of the massive photon equals the plasma wave number of the electron system. A dynamical equation describing the emission of a massive transverse photon from a mesoscopic source embedded in the plasma is finally established

  1. Control and near-field detection of surface plasmon interference patterns.

    Science.gov (United States)

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  2. Phenomenological interpretation of the shear behavior of reinforced Engineered Cementitious Composite beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2016-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel Reinforced Engineered Cementitious Composites (R/ECC). This study investigates and quantifies the effect of ECC's strain hardening and multiple cracking behavior on the shear capacity of beams...

  3. Building Practical Apertureless Scanning Near-Field Microscopy

    Science.gov (United States)

    Gungordu, M. Zeki

    The fundamental objective of this study is to establish a functional, practical apertureless type scanning near-field optical microscope, and to figure out the working mechanism behind it. Whereas a far-field microscope can measure the propagating field's components, this gives us little information about the features of the sample. The resolution is limited to about half of the wavelength of the illuminating light. On the other hand, the a-SNOM system enables achieving non-propagating components of the field, which provides more details about the sample's features. It is really difficult to measure because the amplitude of this field decays exponentially when the tip is moved away from the sample. The sharpness of the tip is the only limitation for resolution of the a-SNOM system. Consequently, the sharp tips are achieved by using electrochemical etching, and these tips are used to detect near-field signal. Separating the weak a-SNOM system signals from the undesired background signal, the higher demodulation background suppression is utilized by lock-in detection.

  4. Cosmological models in globally geodesic coordinates. II. Near-field approximation

    International Nuclear Information System (INIS)

    Liu Hongya

    1987-01-01

    A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system

  5. Optimization of s-Polarization Sensitivity in Apertureless Near-Field Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Yuika Saito

    2012-01-01

    Full Text Available It is a general belief in apertureless near-field microscopy that the so-called p-polarization configuration, where the incident light is polarized parallel to the axis of the probe, is advantageous to its counterpart, the s-polarization configuration, where the incident light is polarized perpendicular to the probe axis. While this is true for most samples under common near-field experimental conditions, there are samples which respond better to the s-polarization configuration due to their orientations. Indeed, there have been several reports that have discussed such samples. This leads us to an important requirement that the near-field experimental setup should be equipped with proper sensitivity for measurements with s-polarization configuration. This requires not only creation of effective s-polarized illumination at the near-field probe, but also proper enhancement of s-polarized light by the probe. In this paper, we have examined the s-polarization enhancement sensitivity of near-field probes by measuring and evaluating the near-field Rayleigh scattering images constructed by a variety of probes. We found that the s-polarization enhancement sensitivity strongly depends on the sharpness of the apex of near-field probes. We have discussed the efficient value of probe sharpness by considering a balance between the enhancement and the spatial resolution, both of which are essential requirements of apertureless near-field microscopy.

  6. An alternative approach to the management of reactive metals: tolerant cementitious systems

    International Nuclear Information System (INIS)

    Swift, P.; Cox, J.; Wise, M.; McKinney, J.; Rhodes, C.

    2015-01-01

    In recent years research has focused on preventing or minimising corrosion of reactive metals to ensure long-term waste package integrity. An alternative approach to the encapsulation of reactive metals is being explored. The approach will identify a cementitious-based encapsulating material that will allow corrosion of reactive metals to occur in a controlled and predictable manner, rather than seeking to limit or prevent the corrosion, whilst retaining waste package integrity. A low strength grout will be developed that will be 'tolerant' to the expansive forces generated by the corrosion products of reactive metals. Novel cementitious systems (e.g. foamed cements, rubber composite cements, cenosphere composite cements, lime mortars, bentonite cements etc.) that may be tolerant to potentially expansive waste products, such as reactive metals will be considered and assessed in a series of small-scale preliminary trials (compressive strength, porosity, permeability, pore solution pH, etc.)

  7. Web-based sorption database (KAERI-SDB)

    International Nuclear Information System (INIS)

    Lee, Jae Kwang; Baik, Min Hoon

    2010-10-01

    Radionuclide sorption data is necessary for the safety assessment of radioactive waste disposal. However the accessibility to the nuclide sorption database is limited. The web-based sorption database (KAERI-SDB) was developed to provide sorption data in a convenient way. The development of the KAERI-SDB was achieved by improving the performance of pre-existing sorption DB programme (SDB-21C) and incorporating the user requirement. The KAERI-SDB was designed that users can access it by using a web browser. Main functions of the KAERI-SDB include (1) log-in/join, (2) search and store of sorption data and (3) scatter plot chart and index chart. It is expected that the KAERI-SDB is widely applied to the safety assessment of radioactive waste disposal by enhancing the accessibility to experts and practitioner related the nuclear industry and governmental administration. It is also expected that reliabilities for the radioactive waste disposal increased by opening the web-based sorption DB to public

  8. Detection of metal fibres in cementitious composites based on signal and image processing approaches

    Czech Academy of Sciences Publication Activity Database

    Vala, J.; Hobst, L.; Kozák, Vladislav

    2015-01-01

    Roč. 10, č. 1 (2015), s. 39-46 ISSN 1991-8747 Institutional support: RVO:68081723 Keywords : Cementitious composites * Computational simulation * Non-destructive testing Subject RIV: JI - Composite Materials

  9. Sorption of trivalent lanthanides and actinides onto montmorillonite: Macroscopic, thermodynamic and structural evidence for ternary hydroxo and carbonato surface complexes on multiple sorption sites.

    Science.gov (United States)

    Fernandes, M Marques; Scheinost, A C; Baeyens, B

    2016-08-01

    The credibility of long-term safety assessments of radioactive waste repositories may be greatly enhanced by a molecular level understanding of the sorption processes onto individual minerals present in the near- and far-fields. In this study we couple macroscopic sorption experiments to surface complexation modelling and spectroscopic investigations, including extended X-ray absorption fine structure (EXAFS) and time-resolved laser fluorescence spectroscopies (TRLFS), to elucidate the uptake mechanism of trivalent lanthanides and actinides (Ln/An(III)) by montmorillonite in the absence and presence of dissolved carbonate. Based on the experimental sorption isotherms for the carbonate-free system, the previously developed 2 site protolysis non electrostatic surface complexation and cation exchange (2SPNE SC/CE) model needed to be complemented with an additional surface complexation reaction onto weak sites. The fitting of sorption isotherms in the presence of carbonate required refinement of the previously published model by reducing the strong site capacity and by adding the formation of Ln/An(III)-carbonato complexes both on strong and weak sites. EXAFS spectra of selected Am samples and TRLFS spectra of selected Cm samples corroborate the model assumptions by showing the existence of different surface complexation sites and evidencing the formation of Ln/An(III) carbonate surface complexes. In the absence of carbonate and at low loadings, Ln/An(III) form strong inner-sphere complexes through binding to three Al(O,OH)6 octahedra, most likely by occupying vacant sites in the octahedral layers of montmorillonite, which are exposed on {010} and {110} edge faces. At higher loadings, Ln/An(III) binds to only one Al octahedron, forming a weaker, edge-sharing surface complex. In the presence of carbonate, we identified a ternary mono- or dicarbonato Ln/An(III) complex binding directly to one Al(O,OH)6 octahedron, revealing that type-A ternary complexes form with the one

  10. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  11. Near-field radiative heat transfer between clusters of dielectric nanoparticles

    International Nuclear Information System (INIS)

    Dong, J.; Zhao, J.M.; Liu, L.H.

    2017-01-01

    In this work, we explore the near-field radiative heat transfer between two clusters of silicon carbide (SiC) nanoparticles using the many-body radiative heat transfer theory. The effects of fractal dimension of clusters, many-body interaction between nanoparticles and relative orientation of clusters on the thermal conductance are studied. Meanwhile, the applicability of the equivalent volume spheres (EVS) approximation for near-field radiative heat transfer between clusters is examined. It is observed that the thermal conductance is larger for clusters with larger fractal dimension, which is more significant in the near-field. The thermal conductance of EVS resembles that of the clusters, but EVS overestimates the conductance of clusters, especially in the near-field. Compared to the case of two nanoparticles, the conductance of nanoparticle clusters decays much slower with increasing distance in the near-field, but shares similar dependence on the distance in the far-field. The thermal conductance of SiC nanoparticle clusters is inhibited by the many-body interaction when surface phonon polariton is supported but enhanced at frequencies close to the resonance frequency. The total thermal conductance is decreased due to many-body interaction among particles in the cluster. The relative orientation between the clusters is also an important factor in the near-field, especially for clusters with lower fractal dimension. - Highlights: • Near-field radiative heat transfer between clusters of nanoparticles is studied. • The many-body radiative heat transfer theory is applied for rigorous analysis. • The accuracy of equivalent volume spheres approximation is examined. • Clusters with larger fractal dimension have larger radiative thermal conductance. • Many-body interaction inhibits the total radiative thermal conductance.

  12. New developments in near-field acoustic holography

    NARCIS (Netherlands)

    Roozen, N.B.; Geerlings, A.C.; Verhaar, B.T.; Vliegenthart, T.

    2007-01-01

    In the field of noise-control engineering, information about the individual strength, andlocation, of the most dominant sources is of vital importance. This information allows theacoustic engineer to take effective measures in his effort to reduce the emitted acoustic noiselevels. Near-field

  13. Implications of the use of low-pH cementitious materials in high activity radioactive waste repositories

    International Nuclear Information System (INIS)

    Garcia Calvo, J.L.; Alonso, M.C.; Fernandez Luco, L.; Hidalgo, A.; Sanchez, M.

    2008-01-01

    One of the most accepted engineering construction concepts for high radioactive nuclear waste of underground repositories considers the use of low pH cementitious materials, in order to avoid the formation of an alkaline plume fluid which perturbs one of the engineered barriers of the repository, the bentonite. The accepted solution to maintain the bentonite stability, which is function of the pH, is to develop cementitious materials that generate pore waters with pH ≤ 11, because the corrosion velocity of the clay is significantly reduced below this value. The IETcc-CSIC has focused the research activity on low-pH cementitious materials using two cements: Ordinary Portland Cements (OPC) and Calcium Aluminates Cements (CAC). In both cases, the achievement of a low-pH environment implies the use of high content of mineral admixtures to prepare the binder. Obviously, the inclusion of high contents of mineral admixtures in the cement formulation modifies most of the concrete 'standard' properties and the microstructure of the obtained cement products. When designing a concrete based on low-pH binders, not only the functional requirements have to be reached but also the modifications of the basic properties of the concrete must be taken into account. Besides, due to the location and the long service life of this type of products, their durability properties must be also guaranteed. This paper deals with the procedure followed in the design of a specific application of low pH cements; for instance, the shotcrete plug fabrication. The challenge of this type of use (shotcreting) is more complex taking into account that requires the employment of additives that must be compatible with the concrete mixture. Furthermore, their effectiveness must be assured without increase the pH above the admissible levels. Therefore, their compatibility with admixtures is tested in the present work. The compliance of the requirements for a shotcrete plug was evaluated at laboratory scale

  14. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  15. Near-field levitated quantum optomechanics with nanodiamonds

    Science.gov (United States)

    Juan, M. L.; Molina-Terriza, G.; Volz, T.; Romero-Isart, O.

    2016-08-01

    We theoretically show that the dipole force of an ensemble of quantum emitters embedded in a dielectric nanosphere can be exploited to achieve near-field optical levitation. The key ingredient is that the polarizability from the ensemble of embedded quantum emitters can be larger than the bulk polarizability of the sphere, thereby enabling the use of repulsive optical potentials and consequently the levitation using optical near fields. In levitated cavity quantum optomechanics, this could be used to boost the single-photon coupling by combining larger polarizability to mass ratio, larger field gradients, and smaller cavity volumes while remaining in the resolved sideband regime and at room temperature. A case study is done with a nanodiamond containing a high density of silicon-vacancy color centers that is optically levitated in the evanescent field of a tapered nanofiber and coupled to a high-finesse microsphere cavity.

  16. Near field optics and nanoscopy

    CERN Document Server

    Fillard, J P

    1996-01-01

    This book contains the most recent information on optical nanoscopy. Far-Field and Near-Field properties on e.m. waves are presented which illustrate how optical images can be obtained from sub-micron objects. Scanning Probe techniques and computer processing are covered here. An explanation is given on how propagating photons or evanescent waves can behave over distances shorter than the wavelength, taking into account the presence of small objects. Quantum tunneling of photons is explained comparatively with the electron mechanism. Technical details are given on photon tunneling microscopes.

  17. Near-field mapping by laser ablation of PMMA coatings

    DEFF Research Database (Denmark)

    Fiutowski, J.; Maibohm, C.; Kostiucenko, O.

    2011-01-01

    The optical near-field of lithography-defined gold nanostructures, arranged into regular arrays on a gold film, is characterized via ablation of a polymer coating by laser illumination. The method utilizes femto-second laser pulses from a laser scanning microscope which induces electrical field...... that the different stages in the ablation process can be controlled and characterized making the technique suitable for characterizing optical near-fields of metal nanostructures....

  18. Modelling of water-flow, barrier degradation, chemistry and radionuclide transport in the near-field of a repository for L/ILW

    International Nuclear Information System (INIS)

    1989-11-01

    Performance assessment has been carried out for the near-field of a potential LLW/ILW repository in marl in Switzerland. The host rock is assumed to be characterised by a system with 'small fractures' and one with 'large fractures', the hydraulic conductivity ranges from 4.10 -10 -4.10 -9 [m.s -1 ] and the hydraulic gradient is 1 [m.m -1 ]. In the repository, low-and intermediate-level waste will be disposed. Waste in drums and concrete containers will be placed in concrete-lined caverns which will be filled with a porous backfill material. One option is to include an additional engineered hydraulic barrier in the repository system. Its effects on repository performance have been studied. The changes in physical and chemical properties of the barriers have been included in the assessment by calculating the leaching of mainly calcium from the concrete barriers. The hydraulic conductivities of the engineered barriers are assumed to vary between 10 -11 -10 -8 [m.s -1 ] after degradation. Radionuclide transport can be determined by both advection and diffusion, depending on the hydraulic conductivities in the near-field. The water flow rates within the barriers have been calculated. The results show that the water flow rates within the porous backfill may increase by more than one order of magnitude compared to the water flow rate in the undisturbed host rock. The water flow rate through the waste matrix is never significantly larger than that in the host rock because it has been assumed that the porous backfill always has higher hydraulic conductivity than the waste matrix. The water flow rates within the near-field have been used to calculate the fractional release rates of species with different sorption properties. (author) figs., tabs., 90 refs

  19. Diffusion and sorption properties of radionuclides in compacted bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Yu Ji-Wei; Neretnieks, I. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1997-07-01

    In this report, recent studies on sorption and diffusion of radionuclides in compacted bentonite have been reviewed. The sorption distribution coefficient and diffusion coefficient data obtained from experiments in the literature have been compiled. Based on these experimental data and the report SKB-TR--91-16 (Brandberg and Skagius, 1991), this report proposes a set of sorption distribution coefficient and diffusion coefficient values for modelling purpose for safety analysis of nuclear waste repositories. The variability and uncertainty of the diffusivity data span somewhat more than an order or magnitude up and down. Most of the nuclides have an effective diffusivity in around 10{sup -10} m{sup 2}/s. Ion exclusion effects are observed for C, Cl and for Tc in oxidizing waters. Effective diffusivities are nearly tow orders of magnitude lower for these elements and of the order of 10{sup -12} m{sup 2}/s. Surface diffusion effects are found for Cs, Ni, Pa, Pb, Ra, Sn, Sr and Zr. Effective diffusivities for these elements are of the order of 10{sup -8} m{sup 2}/s. The surface diffusion effect should decrease in saline waters which is seen for Cs and Sr where there are data available. It is also deemed that Ra will have this effect because of its similarity with Sr. The other nuclides should also show this decrease but no data is available. Sorption and diffusion mechanisms in compacted bentonite are discussed in the report. In highly compacted bentonite, sorption and hence its distribution coefficient is not well defined, and a pore diffusion coefficient or a surface diffusion coefficient is not well defined either. Therefore, an apparent diffusion coefficient and a total concentration gradient should be more relevant in describing the diffusion process in compacted bentonite. 99 refs.

  20. Study on reinforcement of soil for suppressing fugitive dust by bio-cementitious material

    Science.gov (United States)

    Zhan, Qiwei; Qian, Chunxiang

    2017-06-01

    Microbial-induced reinforcement of soil, as a new green and environmental-friendly method, is being paid extensive attention to in that it has low cost, simple operation and rapid effects. In this research, reinforcement of soil for suppressing fugitive dust by bio-cementitious material was investigated. Soil cemented by bio-cementitious material had superior mechanical properties, such as hardness, compressive strength, microstructure, wind-erosion resistance, rainfall-erosion resistance and freeze-thaw resistance. The average hardness of sandy soil, floury soil and clay soil is 18.9 º, 25.2 º and 26.1 º, while average compressive strength of samples is 0.43 MPa, 0.54 MPa and 0.69 MPa, respectively; meanwhile, the average calcite content of samples is 6.85 %, 6.09 %, and 5.96 %, respectively. Compared with the original sandy soil, floury soil and clay soil, the porosity decreases by 38.5 %, 33.7 % and 29.2 %. When wind speed is 12 m/s, the mass loss of sandy soil, floury soil and clay soil cemented by bio-cementitious material are all less than 30 g/(m2·h). After three cycles of rainfall erosion of 2.5 mm/h, the mass loss are less than 25 g/(m2·h) and the compressive strength residual ratio are more than 98.0 %. Under 25 cycles of freeze-thaw, the mass loss ratio are less than 3.0 %.

  1. The selection and use of a sorption database for the geosphere model in the Canadian nuclear fuel waste management program

    International Nuclear Information System (INIS)

    Vandergraaf, T.T.; Ticknor, K.V.; Melnyk, T.W.

    1992-01-01

    An extensively characterized intrusive granitic formation, the Lac du Bonnet batholith, is being used as a test case for environmental and safety assessment calculations of the impact of a hypothetical disposal vault. The conceptual vault has dimensions of 2 x 2 km and is located at a depth of 500 m, near the Whiteshell Nuclear Research Establishment (WNRE) (CANADA). Hydraulic investigations of the batholith have shown that the bulk of the groundwater flow will be limited to the existing network of water-bearing fractures. Groundwater flow and contaminant transport modelling is based on a porous-medium concept for both the fracture systems and the rock matrix. Geochemical investigations have identified a number of alteration minerals in these fracture systems. The geochemistry encountered along the flow field is too complex to allow the interaction of radionuclides with the geological material to be represented by a single sorption coefficient for each radionuclide on a single rock type. However, the level of understanding of radionuclide interaction with geological materials is not sufficiently well developed to calculate radionuclide transport using models based on chemical thermodynamics or on advanced sorption models based on surface complexation or mass action. Instead, a parametric model has been developed using the total dissolved solids and radionuclide concentrations as independent variables. The mineralogical complexity of the flow field is addressed by selecting sorption data on the nine most commonly occurring fracture infilling minerals in this batholith, four common rock-forming minerals, and on altered and unaltered granite. This approach produces two polynomial equations for each radionuclide/mineral combination, one under oxic and one under anoxic conditions. Where insufficient information is available, these polynomial expressions are reduced to an equation with one variable or to a single sorption coefficient. 48 refs., 6 figs., 4 tabs

  2. Some variations of the Kristallin-I near-field model

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P A; Curti, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs.

  3. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs

  4. Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters

    International Nuclear Information System (INIS)

    Dryakhlushin, V F; Veiko, V P; Voznesenskii, N B

    2007-01-01

    A brief review of modern applications of scanning near-field optical (SNO) devices in microscopy, spectroscopy, and lithography is presented in the introduction. The problem of the development of SNO probes, as the most important elements of SNO devices determining their resolution and efficiency, is discussed. Based on the works of the authors, two different methods for fabricating SNO probes by using the adiabatic tapering of an optical fibre are considered: the laser-heated mechanical drawing and chemical etching. A nondestructive optical method for controlling the nanometre aperture of SNO probes is proposed, substantiated, and tested experimentally. The method is based on the reconstruction of a near-field source with the help of a theoretical algorithm of the inverse problem from the experimental far-filed intensity distribution. Some prospects for a further refinement of the construction and technology of SNO probes are discussed. (optical microscopy)

  5. Geochemical performance of earthen and cementitious sealing materials for radioactive waste repositories

    International Nuclear Information System (INIS)

    Melchoir, D.; Glazier, R.; Marton, R.

    1988-01-01

    Earthen and cementitious materials are proposed as part of the sealing system for radioactive waste repositories. Compacted clay-bearing earthen materials could be used in sealing shafts and shaft entryways; and in the waste emplacement boundary areas in some repository designs. Earthen material mixtures are being considered because they can be engineered and emplaced to achieve low permeabilities, appropriate swelling characteristics, and adequate strength with little tendency to degrade during changing environmental conditions. The proposed earthen sealing materials include sodium and calcium mont-morillonites, illites, and mixtures with graded aggregates of sand. To assess the relative advantages and disadvantages of various pure and mixed materials, important geochemical processes (e.g., ion-exchange, phase transformation, dissolution, and precipitation of secondary minerals) need to be evaluated. These processes could impact seal integrity by changing permeability and/or mineral swell potential. Hydrous calcium-silicate-based cementitious materials such as grouts or concrete might also be used in some proposed sealing systems

  6. Fracture propagation in cementitious materials

    DEFF Research Database (Denmark)

    Skocek, Jan

    , it is experimentally observed and numerically veried that the cracking plays an important role in mode-I as well as compressive experiments. The approximative particle model extended for materials with heterogeneous matrices predicts strengths matching favorably experimental records in a qualitative way.......Mechanical behavior of structures made from cementitious materials has been successfully modeled using non-linear fracture mechanics in recent decades. On the structural scale, an assumption of homogeneity of the material is valid and well established theories can be applied. However, if focus...... is put on phenomena of a similar scale as is the characteristic size of inhomogeneities of the material, a model which re ects the heterogeneous nature of the material needs to be applied. This is, indeed, the case for prediction of mechanical properties of a material based on the knowledge of properties...

  7. Sorption and leaching properties of the composites and humic complexes of natural microporous materials

    International Nuclear Information System (INIS)

    Masasek, F.

    1998-01-01

    This contribution deals with scientific basis and engineering practices of natural microporous materials (NMM) which are projected for a millennia horizon of the environmental protection. Microcrystalline structure of inorganic microporous sorbents is discussed. Artificial formation composites and both inorganic and organic complexes of NMM is applied for> (1) field barriers, fills or supporting structures, (2) reagents and organic coating supports, (3) granules, pellets and column packings, (4) additives to cementitious fixation matrices, and (4) glass formulations

  8. A Compact RFID Reader Antenna for UHF Near-Field and Far-Field Operations

    Directory of Open Access Journals (Sweden)

    Lai Xiao zheng

    2013-01-01

    Full Text Available A compact loop antenna is presented for mobile ultrahigh frequency (UHF radio frequency identification (RFID application. This antenna, printed on a 0.8 mm thick FR4 substrate with a small size of 31 mm × 31 mm, achieves good impedance bandwidth from 897 to 928 MHz, which covers USA RFID Band (902–928 MHz. The proposed loop configuration, with a split-ring resonator (SRR coupled inside it, demonstrates strong and uniform magnetic field distribution in the near-field antenna region. Its linearly polarized radiation pattern provides available far-field gain. Finally, the reading capabilities of antenna are up to 56 mm for near-field and 1.05 m for far-field UHF RFID operations, respectively.

  9. Performance analysis of near-field thermophotovoltaic devices considering absorption distribution

    International Nuclear Information System (INIS)

    Park, K.; Basu, S.; King, W.P.; Zhang, Z.M.

    2008-01-01

    This paper elucidates the energy transfer and conversion processes in near-field thermophotovoltaic (TPV) systems, considering local radiation absorption and photocurrent generation in the TPV cell. Radiation heat transfer in a multilayered structure is modeled using the fluctuation-dissipation theorem, and the electric current generation is evaluated based on the photogeneration and recombination of electron-hole pairs in different regions of the TPV cell. The effects of near-field radiation on the photon penetration depth, photocurrent generation, and quantum efficiency are examined in the spectral region of interest. The detailed analysis performed in the present work demonstrates that, while the near-field operation can enhance the power throughput, the conversion efficiency is not much improved and may even be reduced. Subsequently, a modified design of near-field TPV systems is proposed to improve the efficiency

  10. Sorption and Transport of Sildenafil in Natural Soils

    Science.gov (United States)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using

  11. Numerical estimation of transport properties of cementitious materials using 3D digital images

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    A multi-scale characterisation of the transport process within cementitious microstructure possesses a great challenge in terms of modelling and schematization. In this paper a numerical method is proposed to mitigate the resolution problems in numerical methods for calculating effective transport

  12. Cementitious artificial aggregate particles for high-skid resistance pavements

    OpenAIRE

    DE LARRARD, François; MARTINEZ CASTILLO, Rafael; SEDRAN, Thierry; HAUZA, Philippe; POIRIER, Jean Eric

    2012-01-01

    For some critical road sections, a high skid resistance of wearing course is required to minimise the risk of traffic accidents. Nowadays this skid resistance is mainly brought by the use of special aggregates as calcined bauxite, a scarce and expensive material. The paper presents a patented technology, where a special high-performance mortar is produced and crushed at early age. These cementitious artificial aggregates (CAA) can display aggregate properties close to those of calcined bauxit...

  13. Crushing damage estimation for pavement with lightly cementitious bases

    CSIR Research Space (South Africa)

    De Beer, Morris

    2014-07-01

    Full Text Available . Department of Transport. Pretoria, South Africa. Litwinowicz and De Beer., 2013. Long term crushing performance of lightly cementitious pavement materials – update to the South African procedures. Road Materials and Pavement Design. Maina, J.W., De... Beer, M. and van Rensburg, Y., 2013. Modelling Tyre-Road Contact Stresses in Pavement Design and Analysis. Proceedings of 32nd Southern Africa transport conference, Pretoria, July 2013. pp 336-345: SAPDM, (2014). http://www.sapdm.co.za/, last...

  14. Convergence analysis in near-field imaging

    International Nuclear Information System (INIS)

    Bao, Gang; Li, Peijun

    2014-01-01

    This paper is devoted to the mathematical analysis of the direct and inverse modeling of the diffraction by a perfectly conducting grating surface in the near-field regime. It is motivated by our effort to analyze recent significant numerical results, in order to solve a class of inverse rough surface scattering problems in near-field imaging. In a model problem, the diffractive grating surface is assumed to be a small and smooth deformation of a plane surface. On the basis of the variational method, the direct problem is shown to have a unique weak solution. An analytical solution is introduced as a convergent power series in the deformation parameter by using the transformed field and Fourier series expansions. A local uniqueness result is proved for the inverse problem where only a single incident field is needed. On the basis of the analytic solution of the direct problem, an explicit reconstruction formula is presented for recovering the grating surface function with resolution beyond the Rayleigh criterion. Error estimates for the reconstructed grating surface are established with fully revealed dependence on such quantities as the surface deformation parameter, measurement distance, noise level of the scattering data, and regularity of the exact grating surface function. (paper)

  15. Transfer function and near-field detection of evanescent waves

    DEFF Research Database (Denmark)

    Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels

    2006-01-01

    of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....

  16. Sorption mechanisms of perfluorinated compounds on carbon nanotubes

    International Nuclear Information System (INIS)

    Deng Shubo; Zhang Qiaoying; Nie Yao; Wei Haoran; Wang Bin; Huang Jun; Yu Gang; Xing Baoshan

    2012-01-01

    Sorption of perfluorinated compounds (PFCs) on carbon nanotubes (CNTs) is critical for understanding their subsequent transport and fate in aqueous environments, but the sorption mechanisms remain largely unknown. In this study, the sorption of six PFCs on CNTs increased with increasing C-F chain length when they had a same functional group, and the CNTs with hydroxyl and carboxyl groups had much lower adsorbed amount than the pristine CNTs, indicating that hydrophobic interaction dominated the sorption of PFCs on the CNTs. Electrostatic repulsion suppressed the sorption of PFCs on the CNTs, resulting in the lower sorption with increasing pH. Hydrogen bonding interaction was negligible. The hydrophobic C-F chains can be closely adsorbed on the CNTs surface in parallel to the axis or along the curvature, making it impossible to form micelles on the CNT surface, leading to the lower sorption than other adsorbents. Highlights: ► Sorption capacities of PFOA on different CNTs are less than that on activated carbon and resins. ► Hydrophobic interaction is principally involved in the sorption of PFCs on CNTs. ► Electrostatic repulsion suppresses the sorption of PFCs on CNTs. - Hydrophobic interaction dominated the sorption of perfluorinated compounds on carbon nanotubes, while electrostatic repulsion suppressed their sorption.

  17. Sorption equilibria of ethanol on cork.

    Science.gov (United States)

    Lequin, Sonia; Chassagne, David; Karbowiak, Thomas; Bellat, Jean-Pierre

    2013-06-05

    We report here for the first time a thermodynamic study of gaseous ethanol sorption on raw cork powder and plate. Our study aims at a better understanding of the reactivity of this material when used as a stopper under enological conditions, thus in close contact with a hydroethanolic solution, wine. Sorption−desorption isotherms were accurately measured by thermogravimetry at 298 K in a large range of relative pressures. Sorption enthalpies were determined by calorimetry as a function of loading. Sorption−desorption isotherms exhibit a hysteresis loop probably due to the swelling of the material and the absorption of ethanol. Surprisingly, the sorption enthalpy of ethanol becomes lower than the liquefaction enthalpy as the filling increases. This result could be attributed to the swelling of the material, which would generate endothermic effects. Sorption of SO₂ on cork containing ethanol was also studied. When the ethanol content in cork is 2 wt %, the amount of SO₂ sorbed is divided by 2. Thus, ethanol does not enhance the sorption rate for SO₂ but, on the contrary, decreases the SO₂ sorption activity onto cork, probably because of competitive sorption mechanisms.

  18. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  19. Metal sorption on kaolinite

    International Nuclear Information System (INIS)

    Westrich, H.R.; Brady, P.V.; Cygan, R.T.; Nagy, K.L.; Anderson, H.L.

    1997-01-01

    A key issue in performance assessment of low-level radioactive waste sites is predicting the transport and retardation of radionuclides through local soils under a variety of hydrologic and geochemical conditions. Improved transport codes should include a mechanistic model of radionuclide retardation. The authors have been investigating metal sorption (Cs + , Sr 2+ , and Ba 2+ ) on a simple clay mineral (kaolinite) to better understand the geochemical interactions of common soil minerals with contaminated groundwaters. These studies include detailed characterizations of kaolinite surfaces, experimental adsorption measurements, surface complexation modeling, and theoretical simulations of cation sorption. The aluminol edge (010) site has been identified as the most likely site for metal sorption on kaolinite in natural solutions. Relative metal binding strengths decrease from Ba 2+ to Sr 2+ to Cs + , with some portion sorbed on both kaolinite edges and basal surfaces. Some Cs + also appears to be irreversibly sorbed on both sites. Molecular dynamics simulations suggest that Cs + is sorbed at aluminol (010) edge sites as an inner-sphere complex and weakly sorbed as an outer-sphere complex on (001) basal surfaces. These results provide the basis to understand and predict metal sorption onto kaolinite, and a framework to characterize sorption processes on more complex clay minerals

  20. Mass transfer in water-saturated concretes

    International Nuclear Information System (INIS)

    Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.

    1990-01-01

    Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed

  1. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  2. Near-field Spectroscopy of Surface Plasmons in Flat Gold Nanoparticles

    International Nuclear Information System (INIS)

    Achermann, Marc; Shuford, Kevin L.; Schatz, George C.; Dahanayaka, D.H.; Bumm, Lloyd A; Klimov, Victor I.

    2007-01-01

    We use near-field interference spectroscopy with a broadband femtosecond, white-light probe to study local surface plasmon resonances in flat gold nanoparticles (FGNPs). Depending on nanoparticle dimensions, local near-field extinction spectra exhibit none, one, or two resonances in the range of visible wavelengths (1.6-2.6 eV). The measured spectra can be accurately described in terms of interference between the field emitted by the probe aperture and the field reradiated by driven FGNP surface plasmon oscillations. The measured resonances are in good agreement with those predicted by calculations using discrete dipole approximation. We observe that the amplitudes of these resonances are dependent upon the spatial position of the near-field probe, which indicates the possibility of spatially selective excitation of specific plasmon modes

  3. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials.

    Science.gov (United States)

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-11-15

    In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, (27)Al MAS NMR and (29)Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si+Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al(IV) and Al(VI), but mainly in the form of Al(VI). Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO4] to [AlO6] and inhibits the combination between [AlO4] and [SiO4] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO4] in the hydration products declines. Published by Elsevier B.V.

  4. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.; Pala, Ragip A.; Brongersma, Mark L.

    2011-01-01

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  5. Photocurrent mapping of near-field optical antenna resonances

    KAUST Repository

    Barnard, Edward S.

    2011-08-21

    An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50nm) and wavelength-scale (∼1μm) metallic antennas as well as high-refractive-index semiconductor antennas. The data agree well with light-scattering measurements, full-field simulations and intuitive resonator models. © 2011 Macmillan Publishers Limited. All rights reserved.

  6. Near-field enhanced thermionic energy conversion for renewable energy recycling

    Science.gov (United States)

    Ghashami, Mohammad; Cho, Sung Kwon; Park, Keunhan

    2017-09-01

    This article proposes a new energy harvesting concept that greatly enhances thermionic power generation with high efficiency by exploiting the near-field enhancement of thermal radiation. The proposed near-field enhanced thermionic energy conversion (NETEC) system is uniquely configured with a low-bandgap semiconductor cathode separated from a thermal emitter with a subwavelength gap distance, such that a significant amount of electrons can be photoexcited by near-field thermal radiation to contribute to the enhancement of thermionic current density. We theoretically demonstrate that the NETEC system can generate electric power at a significantly lower temperature than the standard thermionic generator, and the energy conversion efficiency can exceed 40%. The obtained results reveal that near-field photoexcitation can enhance the thermionic power output by more than 10 times, making this hybrid system attractive for renewable energy recycling.

  7. Geochemical evolution of the near field of a KBS-3 repository

    International Nuclear Information System (INIS)

    Arcos, David; Grandia, Fidel; Domenech, Cristina

    2006-09-01

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier

  8. Geochemical evolution of the near field of a KBS-3 repository

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, David; Grandia, Fidel; Domenech, Cristina [Enviros Spain S.L., Barcelona (Spain)

    2006-09-15

    The Swedish concept developed by SKB for deep radioactive waste disposal, envisages an engineered multi-barrier system surrounding the nuclear waste (near field). In the present study we developed a numerical model to assess the geochemical evolution of the near field in the frame of the SKB's safety assessment SR-Can. These numerical models allow us to predict the long-term geochemical evolution of the near field system by means of reactive-transport codes and the information gathered in underground laboratory experiments and natural analogues. Two different scenarios have been defined to model this near field evolution, according to the pathway used by groundwater to contact the near field: a) through a fracture in the host rock intersecting the deposition hole; and b) through the material used to backfill the deposition tunnel. Moreover, we also modelled the effect of different groundwater compositions reaching the near field, as the up-rise of deep-seated brines and the intrusion of ice-melting derived groundwater. We also modelled the effect of the thermal stage due to the heat generated by spent fuel on the geochemical evolution of the bentonite barrier.

  9. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    Science.gov (United States)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  10. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  11. Interaction between microcapsules and cementitious matrix after cracking in a self-healing system

    NARCIS (Netherlands)

    Wang, X.; Xing, F.; Zhang, M.; Han, N.; Qian, Z.

    2013-01-01

    A new type of self-healing cementitious composites by using organic microcapsules is designed in Guangdong Key Laboratory of Durability for Coastal Civil Engineering, Shenzhen University. For the organic microcapsules, the shell material is urea formoldehyde (UF), and the core healing agent is

  12. Development of mechanistic sorption model and treatment of uncertainties for Ni sorption on montmorillonite/bentonite

    International Nuclear Information System (INIS)

    Ochs, Michael; Ganter, Charlotte; Tachi, Yukio; Suyama, Tadahiro; Yui, Mikazu

    2011-02-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in this barrier is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the detailed/coupled processes of sorption and diffusion in compacted bentonite and develop mechanistic /predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, JAEA has developed the integrated sorption and diffusion (ISD) model/database in montmorillonite/bentonite systems. The main goal of the mechanistic model/database development is to provide a tool for a consistent explanation, prediction, and uncertainty assessment of K d as well as diffusion parameters needed for the quantification of radionuclide transport. The present report focuses on developing the thermodynamic sorption model (TSM) and on the quantification and handling of model uncertainties in applications, based on illustrating by example of Ni sorption on montmorillonite/bentonite. This includes 1) a summary of the present state of the art of thermodynamic sorption modeling, 2) a discussion of the selection of surface species and model design appropriate for the present purpose, 3) possible sources and representations of TSM uncertainties, and 4) details of modeling, testing and uncertainty evaluation for Ni sorption. Two fundamentally different approaches are presented and compared for representing TSM uncertainties: 1) TSM parameter uncertainties calculated by FITEQL optimization routines and some statistical procedure, 2) overall error estimated by direct comparison of modeled and experimental K d values. The overall error in K d is viewed as the best representation of model uncertainty in ISD model/database development. (author)

  13. Neptunium(V) sorption on kaolinite

    Energy Technology Data Exchange (ETDEWEB)

    Amayri, S.; Jermolajev, A.; Reich, T. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry

    2011-07-01

    The sorption behavior of neptunium(V) onto the clay mineral kaolinite was studied in batch experiments under different experimental conditions: [Np(V)] = 7 x 10{sup -12}-8 x 10{sup -6} M, solid-to-liquid ratio 2-20 g L{sup -1}, I = 0.1 and 0.01 M NaClO{sub 4}, pH = 6-10, ambient air and Ar atmosphere. The short-lived isotope {sup 239}Np (T{sub 1/2} = 2.36 d) was used instead of {sup 237}Np (T{sub 1/2} = 2.14 x 10{sup 6} a) to study the sorption behavior of Np(V) at environmentally-relevant concentrations, i.e., 7 x 10{sup -12} M Np. In addition, {sup 239}Np(V) served as tracer to measure sorption isotherms over six orders of magnitude in Np concentration (4.8 x 10{sup -12}-1.0 x 10{sup -4} M). The results show that Np(V) sorption on kaolinite is strongly influenced by pH, CO{sub 2}, and ionic strength. The sorption of 8 x 10{sup -6} M Np(V) at pH 9.0, and ionic strength of 0.1 M NaClO{sub 4} was proportional to the solid-to-liquid ratio of kaolinite in the range of 2-10 g L{sup -1}. In the absence of CO{sub 2}, the Np(V) uptake increased continuously with increasing pH value up to 97% at pH 10. Under ambient CO{sub 2}, the sorption of Np decreased above pH 8 up to zero at pH 10. An increase of Np(V) concentration from 7 x 10{sup -12} to 8 x 10{sup -6} M resulted in a shift of the sorption pH edge by up to one pH unit to higher pH values. The ionic strength influenced the Np(V) sorption onto kaolinite only in the presence of ambient CO{sub 2}. Under Ar atmosphere the sorption of Np(V) was independent from ionic strength, indicating the formation of inner-sphere complexes of Np(V) with kaolinite. Time-dependent batch experiments at pH 9.0 under ambient CO{sub 2} showed that the sorption of Np(V) on kaolinite is fast and fully reversible over six orders in Np(V) concentration. (orig.)

  14. Sorption properties of wool

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Strict ecological legislation, especially in highly developed countries, imposed requirements for the purification of industrial effluents and the need for efficient oil clean up after sea and inland water spills. Although numerous processes have been developed, the application of sorbents is still one of the most efficient methods to remove heavy metal ions, dyes and crude oil from water. Recently, special attention was paid to sorbents based on natural fibres. A review of studies concerning the sorption properties of wool is presented in this paper. The presence of various functional groups on the wool fibre surface contributes to the efficient sorption of heavy metal ions and dyes. A hydrophobic, scaly surface and fibre crimp strongly influence the high sorption capacity of wool for oil. Wool has great sorption potential even as a recycled material. Accordingly, it can be used as a viable substitute to commercially available synthetic sorbents that show poor biodegradab ility.

  15. Acquisition of sorption isotherms for modified woods by the use of dynamic vapour sorption instrumentation. Principles and Practice

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Klamer, Morten; Venås, Thomas Mark

    2010-01-01

    The complex wood-water relationship has been the topic of numerous studies. Sorption isotherms – in particular – have been derived for hundreds of wood species, their sap- and heartwood sections as well as for decayed, engineered and modified wood materials. However, the traditional methods...... for obtaining sorption isotherms are very time consuming. With new dynamic vapour sorption (DVS) instrumentation, the acquisition of data for constructing sorption isotherms is suddenly dramatically lowered. Where the traditional methods often required months, data can now be obtained in a matter of days...... depending on the number of data points required. The fast data acquisition makes DVS a useful tool in studying the sorption properties of wood, and especially in studying the effect of different modification treatments on these properties. This study includes an investigation of the sorption properties...

  16. Interaction of low pH cementitious concretes with groundwaters

    International Nuclear Information System (INIS)

    Garcia Calvo, Jose Luis; Alonso, Maria Cruz; Hidalgo, Ana; Fernandez Luco, Luis

    2012-01-01

    Some engineering construction concepts for high level radioactive waste underground repositories consider the use of a bentonite barrier in contact with cementitious materials with a pore fluid pH value inferior or equal to 11 (based on low-pH cements) to maintain the bentonite stability. The research on low-pH cementitious materials is mainly addressed from two different approaches, one with Calcium Silicate Cements (OPC, Ordinary Portland Cement based), the other with Calcium Aluminates Cements (CAC based). The use of these both types of cements (OPC based or CAC based) implies the use of high mineral additions contents in the binder that should significantly modify most of the concrete 'standard' properties. Taking into account the long life expected in this type of repositories, parameters related to the durability of the low-pH concretes must be analyzed. This work shows some recent studies that deal with the evaluation of the resistance of low-pH concretes to long term groundwater aggression. After a presentation of the accelerated leaching test (based on a percolation method), results are given for the characterization of the leaching solution evolution and the evaluation of the modifications generated in the solid phases. Results show that the low-pH concretes evaluated have good resistance against groundwater interaction, although an altered front can be observed from the surface in all the tested samples

  17. Prediction of metal sorption in soils

    International Nuclear Information System (INIS)

    Westrich, Henry R.; Anderson, Harold L. Jr.; Arthur, Sara E.; Brady, Patrick V.; Cygan, Randall T.; Liang, Jianjie; Zhang, Pengchu; Yee, N.

    2000-01-01

    Radionuclide transport in soils and groundwaters is routinely calculated in performance assessment (PA) codes using simplified conceptual models for radionuclide sorption, such as the K D approach for linear and reversible sorption. Model inaccuracies are typically addressed by adding layers of conservativeness (e.g., very low K D 's), and often result in failed transport predictions or substantial increases in site cleanup costs. Realistic assessments of radionuclide transport over a wide range of environmental conditions can proceed only from accurate, mechanistic models of the sorption process. They have focused on the sorption mechanisms and partition coefficients for Cs + , Sr 2+ and Ba 2+ (analogue for Ra 2+ ) onto iron oxides and clay minerals using an integrated approach that includes computer simulations, sorption/desorption measurements, and synchrotron analyses of metal sorbed substrates under geochemically realistic conditions. Sorption of Ba 2+ and Sr 2+ onto smectite is strong, pH-independent, and fully reversible, suggesting that cation exchange at the interlayer basal sites controls the sorption process. Sr 2+ sorbs weakly onto geothite and quartz, and is pH-dependent. Sr 2+ sorption onto a mixture of smectite and goethite, however, is pH- and concentration dependent. The adsorption capacity of montmorillonite is higher than that of goethite, which may be attributed to the high specific surface area and reaction site density of clays. The presence of goethite also appears to control the extent of metal desorption. In-situ, extended X-ray absorption fine structure (EXAFS) spectroscopic measurements for montmorillonite and goethite show that the first shell of adsorbed Ba 2+ is coordinated by 6 oxygens. The second adsorption shell, however, varies with the mineral surface coverage of adsorbed Ba 2+ and the mineral substrate. This suggests that Ba 2+ adsorption on mineral surfaces involves more than one mechanism and that the stability of sorbed

  18. Review of sorption and diffusion data for SR 97

    Energy Technology Data Exchange (ETDEWEB)

    Stenhouse, M. [Monitor Scientific, LLC, Denver, CO (United States)

    2000-12-01

    studied. There is always likely to be a lack of experimental data to support what is effectively expert judgement. Therefore, the best management approach is to focus on those elements for which no data exist (to confirm or update current recommendations, as appropriate), or for radionuclides which appear as key contributors to dose. In the latter case, variation in K{sub d} values can be explored by sensitivity analysis and, where a factor of 10 reduction is significant in terms of a radionuclide's contribution to total dose, experimental work should be carried out. Thus, Andersson's recommendation for probabilistic cases should ensure that any K{sub d} -limiting cases are identified. Radionuclide transport through the bentonite buffer is taken into account via diffusion, with sorption where merited. The input parameters required, therefore, are effective diffusion coefficient, D{sub e}, distribution coefficient, K{sub d} , and porosity, {epsilon}. Andersson notes that the code used by SKB to model migration through the near field can use only one value of porosity, which leads to logistical problems regarding data input. In particular, K{sub d} values must be 'manipulated' to yield a D{sub e} (effective diffusion coefficient) value representative of the transport porosity and the true sorption capacity for that radionuclide. In this regard, comparison of K{sub d} values with other programmes must be treated with caution. For input to the work of Yu and Neretnieks, who provided recommendations on relevant K{sub d} values for sorption on compacted bentonite, the lack of a reference porewater seems a major omission. The omission may well have been influenced by the lack of a consensus in how to establish a reference porewater composition. It is now well established that K{sub d} values obtained from batch sorption experiments must be treated with caution when applying such values to sorption on compacted bentonite. In particular, measurements using

  19. Immobilization of inorganic ion-exchanger into bio-polymer foams - Application to cesium sorption

    International Nuclear Information System (INIS)

    Vincent, Chloe; Hertz, Audrey; Barre, Yves; Vincent, Thierry; Guibal, Eric

    2014-01-01

    Nickel-potassium ferrocyanide (along with other ferrocyanide sub-products, as shown by mineralization, SEM-EDX and XRD analyses) has been immobilized in highly porous discs of chitin for the sorption of Cs(I) from near neutral solutions. The immobilization process allows synthesizing stable materials that can bind up to 80 mg Cs g -1 (i.e., 240 mg Cs g -1 ion-exchanger). Cesium sorption is hardly affected by the pH between pH 2 and 8. The sorbent is selective to Cs(I) even in the presence of high concentrations of Na(I), K(I), Rb(I) or NH 4+ . The pseudo-second order rate equation fits well kinetic profiles: the rate coefficient increases with the flow rate of recirculation (to force the access to potentially non-interconnected pores), as an evidence of the control of uptake kinetics by diffusion properties. In fixed-bed columns, the breakthrough curve is accurately described by the Clark model and the sorption capacity (at sorbent saturation) is consistent with the values obtained in sorption isotherms. Preliminary tests performed on 137 Cs spiked solutions confirm the efficiency of the material for the treatment of effluents bearing radionuclides. (authors)

  20. Near field communication recent developments and library implications

    CERN Document Server

    McHugh, Sheli

    2014-01-01

    Near Field Communication is a radio frequency technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. This report on the progress of Near Field Communication reviews the features and functionality of the technology and summarizes the broad spectrum of its current and anticipated applications. We explore the development of NFC technology in recent years, introduce the major stakeholders in the NFC ecosystem, and project its movement toward mainstream adoption. Several examples of early implementation of NFC

  1. Towards more sustainable construction–application of superabsorbent polymers in cementitious matrices with reduced carbon footprint

    Directory of Open Access Journals (Sweden)

    Klemm Agnieszka J.

    2018-01-01

    Full Text Available Construction industry is constantly searching for sustainable innovations to mitigate negative environmental impacts. Ground granulated blast-furnace slag (GGBS is a well-known supplementary cementitious material which contributes to reduction of energy and CO2 emissions from cement industry. However, its use in cementitious systems leads to materials with high cracking susceptibility due to their greater autogenous shrinkage triggered by self-desiccation processes. This problem is even more pronounced when concrete is exposed to severe dry-hot weather conditions, such as in North Africa. In order to mitigate this negative effect of cracking, internal curing agents in the form of Superabsorbent polymers (SAP can be successfully used. This approach leads to more durable cement based materials and in turn more sustainable constructions.

  2. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    Science.gov (United States)

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  3. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2013-09-01

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  4. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-15

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  5. Soil Properties Control Glyphosate Sorption in Soils Amended with Birch Wood Biochar

    DEFF Research Database (Denmark)

    Kahawaththa Gamage, Inoka Damayanthi Kumari; Moldrup, Per; Paradelo, Marcos

    2016-01-01

    Abstract Despite a contemporary interest in biochar application to agricultural fields to improve soil quality and long-term carbon sequestration, a number of potential side effects of biochar incorporation in field soils remain poorly understood, e.g., in relation to interactions...... with agrochemicals such as pesticides. In a fieldbased study at two experimental sites in Denmark (sandy loam soils at Risoe and Kalundborg), we investigated the influence of birch wood biochar with respect to application rate, aging (7–19 months), and physico- chemical soil properties on the sorption coefficient......, Kd (L kg−1), of the herbicide glyphosate. We measured Kd in equilibrium batch sorption experiments with triplicate soil samples from 20 field plots that received biochar at different application rates (0 to 100 Mg ha−1). The results showed that pure biochar had a lower glyphosate Kd value as compared...

  6. Radiative heat transfer in the extreme near field.

    Science.gov (United States)

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  7. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Boden, Anders (Vattenfall Power Consultant AB, Vaellingby (Sweden)); Pettersson, Stig (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2011-04-15

    It is foreseen that cementitious products will be utilized in the construction of the final repository. The use of conventional cementitious material creates pulses in the magnitude of pH 12.13 in the leachates and release alkalis. Such a high pH is detrimental mainly to impairment of bentonite functioning, but also to possibly enhanced dissolution of spent fuel and alteration of fracture filling materials. It also complicates the safety analysis of the repository, as the effect of a high pH-plume should be considered in the evaluation. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis, although limiting the amount of low-pH cement is recommended. In earlier studies it was found that shotcreting, standard casting and rock bolting with low-pH cement (pH . 11 in the leachate) should be possible without any major development work. This report summarizes the results of development work done during 2008 and 2009 in the fields of low-pH rock bolt grout, low-pH shotcrete and steel corrosion in low-pH concrete. Development of low-pH rock bolt grout mixes and laboratory testing of the selected grout was followed by installation of twenty rock bolts for rock support at Aspo HRL using the chosen low-pH grout. The operation was successful and the bolts and grout are subject to follow up the next ten years. Low-pH shotcrete for rock support was initially developed within the ESDRED project, which was an Integrated Project within the European Commission sixth framework for research and technological development. ESDRED is an abbreviation for Engineering Studies and Demonstrations of Repository Designs. ESDRED was executed from 1st February 2004 to 31st January 2009. The development of the mix design described in this report was based on the results from ESDRED. After laboratory testing of the chosen mix, it was field tested in niche NASA 0408A at Aspo HRL. Further, some areas in the TASS-tunnel were

  8. Development of rock bolt grout and shotcrete for rock support and corrosion of steel in low-pH cementitious materials

    International Nuclear Information System (INIS)

    Boden, Anders; Pettersson, Stig

    2011-04-01

    It is foreseen that cementitious products will be utilized in the construction of the final repository. The use of conventional cementitious material creates pulses in the magnitude of pH 12.13 in the leachates and release alkalis. Such a high pH is detrimental mainly to impairment of bentonite functioning, but also to possibly enhanced dissolution of spent fuel and alteration of fracture filling materials. It also complicates the safety analysis of the repository, as the effect of a high pH-plume should be considered in the evaluation. As no reliable pH-plume models exist, the use of products giving a pH below 11 in the leachates facilitates the safety analysis, although limiting the amount of low-pH cement is recommended. In earlier studies it was found that shotcreting, standard casting and rock bolting with low-pH cement (pH . 11 in the leachate) should be possible without any major development work. This report summarizes the results of development work done during 2008 and 2009 in the fields of low-pH rock bolt grout, low-pH shotcrete and steel corrosion in low-pH concrete. Development of low-pH rock bolt grout mixes and laboratory testing of the selected grout was followed by installation of twenty rock bolts for rock support at Aspo HRL using the chosen low-pH grout. The operation was successful and the bolts and grout are subject to follow up the next ten years. Low-pH shotcrete for rock support was initially developed within the ESDRED project, which was an Integrated Project within the European Commission sixth framework for research and technological development. ESDRED is an abbreviation for Engineering Studies and Demonstrations of Repository Designs. ESDRED was executed from 1st February 2004 to 31st January 2009. The development of the mix design described in this report was based on the results from ESDRED. After laboratory testing of the chosen mix, it was field tested in niche NASA 0408A at Aspo HRL. Further, some areas in the TASS-tunnel were

  9. Near field communications handbook

    CERN Document Server

    Ahson, Syed A; Furht, Borko

    2011-01-01

    Near Field Communication, or NFC, is a short-range high frequency wireless communication technology that enables the exchange of data between devices over about a decimeter. The technology is a simple extension of the ISO 14443 proximity-card standard (contact less card, RFID) that combines the interface of a smart card and a reader into a single device with practical implications. A complete reference for NFC, this handbook provides technical information about all aspects of NFC, as well as applications. It covers basic concepts as well as research grade material and includes a discussion of

  10. Technical performance of cementitious grouting materials for ONKALO. Laboratory tests 2006

    International Nuclear Information System (INIS)

    Raivio, P.; Hansen, J.

    2007-09-01

    During 2006 the development of high and low-pH cementitious grouts for fractures > 100 μm designed for the ONKALO rock was continued within the LPHTEK/IMAproject. The main focus in laboratory was to study high pH micro cement grouts. The low pH (≥ 11.0) of the cementitious grout material is required in deep repository as natural pH plume deriving from pure cement paste is very high and moves via ground water circulation in bedrock. This may be deleterious to the protective covers of nuclear waste. The objective to study high pH grouts in laboratory was to optimise their composition and to get preliminary test results. Low pH grouts based on Portland cement + micro silica were also studied further in laboratory to understand their behaviour more thoroughly in different conditions and due to quality changes in materials and to compare the laboratory results with the field results. Alternative fine-grained glass material was briefly studied to replace silica in low pH grout. Low and high pH rock bolt mortars were also developed and tested to get the preliminary test results. The results of the 2006 laboratory work are presented in this report. The high pH micro cement mix U1 with no silica, mix 5/5 with moderate silica and low pH mix P308B rich in silica show generally good properties at fresh and hardening stage at +12 deg C. Lower temperature gives weaker strength build-up with all the mixes and weakens especially the Marsh fluidity and penetration ability of the mixes 5/5 and P308B as bulk density rises a little at lower temperature. Cement quality variation and insufficient mixing may also weaken the properties of all mixes. Deformation of the hardened mixes was observed in laboratory tests. This may weaken their durability if cracks are formed in the grouts at later ages and need to be studied more thoroughly. (orig.)

  11. Discrete Model for the Structure and Strength of Cementitious Materials

    Science.gov (United States)

    Balopoulos, Victor D.; Archontas, Nikolaos; Pantazopoulou, Stavroula J.

    2017-12-01

    Cementitious materials are characterized by brittle behavior in direct tension and by transverse dilatation (due to microcracking) under compression. Microcracking causes increasingly larger transverse strains and a phenomenological Poisson's ratio that gradually increases to about ν =0.5 and beyond, at the limit point in compression. This behavior is due to the underlying structure of cementitious pastes which is simulated here with a discrete physical model. The computational model is generic, assembled from a statistically generated, continuous network of flaky dendrites consisting of cement hydrates that emanate from partially hydrated cement grains. In the actual amorphous material, the dendrites constitute the solid phase of the cement gel and interconnect to provide the strength and stiffness against load. The idealized dendrite solid is loaded in compression and tension to compute values for strength and Poisson's effects. Parametric studies are conducted, to calibrate the statistical parameters of the discrete model with the physical and mechanical characteristics of the material, so that the familiar experimental trends may be reproduced. The model provides a framework for the study of the mechanical behavior of the material under various states of stress and strain and can be used to model the effects of additives (e.g., fibers) that may be explicitly simulated in the discrete structure.

  12. Sorption of radionuclides from Pb-Bi melt. Report 1

    International Nuclear Information System (INIS)

    Konovalov, Eh.E.; Il'icheva, N.S.; Trifonova, O.E.

    2015-01-01

    Results of laboratory investigations of sorption and interfacial distribution of 54 Mn, 59 Fe, 60 Co, 106 Ru, 125 Sb, 137 Cs, 144 Ce, 154,155 Eu and 235,238 U radionuclides in the system Pb-Bi melt - steel surface are analyzed. It is shown that 106 Ru and 125 Sb are concentrated in Pb-Bi melt and other radionuclides with higher oxygen affinity are sorbed on oxide deposits on structural materials. Temperature dependences of sorption efficiency of radionuclides are studied. It is shown that there is sharp increase of this value for all radionuclides near the temperature range 350-400 deg C. Recommendations are given on the use of 106 Ru and 125 Sb as a reference for fuel element rupture detection system with radiometric monitoring of coolant melt samples and 137 Cs, 134 Cs, 134m Cs with radiometric monitoring of sorbing samples [ru

  13. Sorption of neptunium under oxidizing and reducing groundwater conditions

    International Nuclear Information System (INIS)

    Hakanen, M.

    1991-01-01

    Sorption of neptunium was studied under aerobic, anoxic and reducing groundwater conditions using solutions with initial Np concentrations of 10 -14 to 10 -8 mol/l. Under aerobic conditions the sorption was the same for all concentrations. Under anoxic conditions the same proportion of neptunium (70-80%) was removed from the water. The neptunium sorbed on rock surfaces was of mixed oxidation states. Only Np(V) was found in waters. Under reducing groundwater conditions, nearly all the neptunium was removed from water. The sorbed neptunium was at first almost completely in the form of Np(IV). The submicrogram amounts of neptunium were partly oxidized with time, but Np(V) did not dissolve in reducing water. The holding oxidant character of the tonalite to Np(V) and, the holding reductant character of rocks to small amounts of Np(IV), was demonstrated under anaerobic and reducing groundwater conditions, respectively. (orig.)

  14. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  15. Quantification of source-term profiles from near-field geochemical models

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-01-01

    A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs

  16. A Broadband UHF Tag Antenna For Near-Field and Far-Field RFID Communications

    Directory of Open Access Journals (Sweden)

    M. Dhaouadi

    2014-12-01

    Full Text Available The paper deals with the design of passive broadband tag antenna for Ultra-High Frequency (UHF band. The antenna is intended for both near and far fields Radio Frequency Identification (RFID applications. The meander dipole tag antenna geometry modification is designed for frequency bandwidth increasing. The measured bandwidth of the proposed broadband Tag antenna is more than 140 MHz (820–960 MHz, which can cover the entire UHF RFID band. A comparison between chip impedance of datasheet and the measured chip impedance has been used in our simulations. The proposed progressive meandered antenna structure, with an overall size of 77 mm × 14 mm × 0.787 mm, produces strong and uniform magnetic field distribution in the near-field zone. The antenna impedance is matched to common UHF chips in market simply by tuning its capacitive and inductive values since a perfect matching is required in the antenna design in order to enhance the near and the far field communications. Measurements confirm that the designed antenna exhibits good performance of Tag identification for both near-field and far-field UHF RFID applications.

  17. Hydration and sorption characteristics of a polyfunctional weak-base anion exchanger after the sorption of vanillin and ethylvanillin

    Science.gov (United States)

    Rodionova, D. O.; Voronyuk, I. V.; Eliseeva, T. V.

    2016-07-01

    Features of the sorption of substituted aromatic aldehydes by a weak-base anion exchanger under equilibrium conditions are investigated using vanillin and ethylvanillin as examples. Analysis of the sorption isotherms of carbonyl compounds at different temperatures allows us to calculate the equilibrium characteristics of their sorption and assess the entropy and enthalpy contributions to the energy of the process. Hydration characteristics of the macroporous weak-base anion exchanger before and after the sorption of aromatic aldehydes are compared.

  18. Studies of solar magnetic fields. V. The true average field strengths near the poles

    Energy Technology Data Exchange (ETDEWEB)

    Howard, R [Hale Observatories, Pasadena, Calif. (USA)

    1977-05-01

    An estimate of the average magnetic field strength at the poles of the Sun from Mount Wilson measurements is made by comparing low latitude magnetic measurements in the same regions made near the center of the disk and near the limb. There is still some uncertainty because the orientation angle of the field lines in the meridional plane is unknown, but the most likely possibility is that the true average field strengths are about twice the measured values (0-2 G), with an absolute upper limit on the underestimation of the field strengths of about a factor 5. The measurements refer to latitudes below about 80/sup 0/.

  19. Unidirectional wireless power transfer using near-field plates

    International Nuclear Information System (INIS)

    Imani, Mohammadreza F.; Grbic, Anthony

    2015-01-01

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency

  20. Unidirectional wireless power transfer using near-field plates

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F., E-mail: mohamad.imani@gmail.com [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2015-05-14

    One of the obstacles preventing wireless power transfer from becoming ubiquitous is their leakage of power: high-amplitude electromagnetic fields that can interfere with other electronic devices, increase health concerns, or hinder power metering. In this paper, we present near-field plates (NFPs) as a novel method to tailor the electromagnetic fields generated by a wireless power transfer system while maintaining high efficiency. NFPs are modulated arrays or surfaces designed to form prescribed near-field patterns. The NFP proposed in this paper consists of an array of loaded loops that are designed to confine the electromagnetic fields of a resonant transmitting loop to the desired direction (receiving loop) while suppressing fields in other directions. The step-by-step design procedure for this device is outlined. Two NFPs are designed and examined in full-wave simulation. Their performance is shown to be in close agreement with the design predictions, thereby verifying the proposed design and operation. A NFP is also fabricated and experimentally shown to form a unidirectional wireless power transfer link with high efficiency.

  1. Sorption properties of carbon nanostructures

    International Nuclear Information System (INIS)

    Eletskii, Aleksandr V

    2004-01-01

    The current status of research in sorption properties of carbon nanotubes (CNTs) is reviewed. The structural peculiarities of CNTs, determining their sorption characteristics, are considered. The mechanisms of sorption of gaseous and condensed substances by such structures are analyzed. Special attention is paid to the problem of using CNTs for storing hydrogen and other gaseous substances. Methods for filling CNTs with liquid materials, based on capillary phenomena and wetting the graphite surface of the CNT with liquids of various nature, are considered. Properties of 'peapods' formed as a result of filling single-walled CNTs with fullerene molecules are reviewed. Also considered are perspectives on the applied usage of the sorption properties of CNTs in electrochemical and fuel cells, and material storage devices, as well as for producing superminiature metallic conductors. (reviews of topical problems)

  2. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero; Miroshnichenko, Andrey E.; Kivshar, Yuri S.; Fratalocchi, Andrea

    2016-01-01

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  3. Near-Field Nanolasers based on Nonradiating Anapole Modes

    KAUST Repository

    Gongora, J. S. Totero

    2016-05-31

    By employing ab-initio simulations of Maxwell-Bloch equations with a source of quantum noise, we study a new laser concept based on photonic dark-matter nanostructures that emit only in the near-field, with no far-field radiation pattern.

  4. Research on optimizing components of microfine high-performance composite cementitious materials

    International Nuclear Information System (INIS)

    Hu Shuguang; Guan Xuemao; Ding Qingjun

    2002-01-01

    The relationship between material components and mechanical properties was studied in terms of composite material principles and orthogonal experimental design. Moreover, the microstructure of microfine high-performance composite cementitious material (MHPCC) paste was investigated by means of scanning electron microscopy (SEM) methods. The results showed that the composite material consisting of blast furnace slag (BFS), gypsum (G 2 ) and expansive agent (EA) could obviously improve the strength of the cementitious material containing 40% fly ash (FA). Although microfine cement (MC) was merely 45% percent of the MHPCC, the compressive strength of MHPCC paste was higher than that of neat MC paste. BFS played an important role in MHPCC. The optimum-added quantity of BFS was 15%. The needle-shaped ettringite obtained from the EA reacting with Ca(OH) 2 forms a three-dimensional network structure, which not only improved the early strength of MHPCC paste but also increased its late strength. The reason was that the network structure, which was similar to a fiber-reinforced composite, was formed in the late period of hydration with the progress of hydration and the deposition of hydration products into the network structure

  5. RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite

    Science.gov (United States)

    Loreto, Giovanni; Babaeidarabad, Saman; Leardini, Lorenzo; Nanni, Antonio

    2015-12-01

    The interest in retrofit/rehabilitation of existing concrete structures has increased due to degradation and/or introduction of more stringent design requirements. Among the externally-bonded strengthening systems fiber-reinforced polymers is the most widely known technology. Despite its effectiveness as a material system, the presence of an organic binder has some drawbacks that could be addressed by using in its place a cementitious binder as in fabric-reinforced cementitious matrix (FRCM) systems. The purpose of this paper is to evaluate the behavior of reinforced concrete (RC) beams strengthened in shear with U-wraps made of FRCM. An extensive experimental program was undertaken in order to understand and characterize this composite when used as a strengthening system. The laboratory results demonstrate the technical viability of FRCM for shear strengthening of RC beams. Based on the experimental and analytical results, FRCM increases shear strength but not proportionally to the number of fabric plies installed. On the other hand, FRCM failure modes are related with a high consistency to the amount of external reinforcement applied. Design considerations based on the algorithms proposed by ACI guidelines are also provided.

  6. The inside–outside duality for inverse scattering problems with near field data

    International Nuclear Information System (INIS)

    Lechleiter, Armin; Peters, Stefan

    2015-01-01

    We derive an inside–outside duality for near field scattering data generated by time-harmonic scattering of acoustic point sources from a sound-soft scatterer. This duality in particular rigorously characterizes interior Dirichlet eigenvalues of the scattering object by near field operators for an interval of wave numbers. As a crucial new concept to prove this duality we exploit the numerical ranges of certain modifications of these near field operators. We also show that our theoretical results can be numerically used to approximate interior Dirichlet eigenvalues from multi-frequency near field measurements. (paper)

  7. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    Elzouka, Mahmoud; Ndao, Sidy

    2014-01-01

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  8. Application of simplified desorption method to sorption study. (2) Sorption of neptunium (V) on montmorillonite-based mixtures

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko

    2013-01-01

    To elucidate the sorption behaviors of radionuclides in multi-mineral systems and the mutual effects of minerals on the sorption, this paper carried out the sorption and desorption experiments of neptunium(V) on montmorillonite-based two-mineral mixtures. The Np sorbed on montmorillonite at pH from 4 to 8 was desorbed with 1M KCl solutions, indicating that the sorption was cation exchange. The Np sorbed on apatite and calcite was nondesorbable with 1M KCl solutions, which is in harmony with the knowledge that Np forms strong complexes with the phosphate groups of apatite and the carbonate groups of calcite. This study utilized these clear distinguishes of the desorption behaviors for examining the two-mineral systems. In montmorillonite-apatite mixtures, the sorption on the montmorillonite was decreased and Np was accumulated on the apatite. In montmorillonite-calcite mixtures, the sorption on the montmorillonite was decreased due to the interference by the calcium and carbonate ions dissolved from calcite while no accumulation of Np to calcite was observed. (author)

  9. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  10. Maximal near-field radiative heat transfer between two plates

    OpenAIRE

    Nefzaoui, Elyes; Ezzahri, Younès; Drevillon, Jérémie; Joulain, Karl

    2013-01-01

    International audience; Near-field radiative transfer is a promising way to significantly and simultaneously enhance both thermo-photovoltaic (TPV) devices power densities and efficiencies. A parametric study of Drude and Lorentz models performances in maximizing near-field radiative heat transfer between two semi-infinite planes separated by nanometric distances at room temperature is presented in this paper. Optimal parameters of these models that provide optical properties maximizing the r...

  11. Sorption of streptococcus faecium to glass

    International Nuclear Information System (INIS)

    Oerstavik, D.

    1977-01-01

    A method has been developed by which to study the sorption of Streptococcus faecium to soda-lime cover glasses. Conditions were chosen to minimize the influence on sorption of bacterial polymer production, passive sorption being studied rather than attachment mediated by metabolic activities. Sorption of S. faecium increased with increasing temperature (to 50degC), time, and cell concentration, but equilibrium apparently was not reached even after incubation for 8 hours or at a cell concentration of 3 x 10 10 per ml. Sorption increased with solute molarity up to 0.1 M concentration of NaCl and KCl, indicating an effect of the electrical double layers on the apposition of cells to the glass surface. Desorption of bacteria could be obtained after multiple washings of the glasses in buffer or by the action of Tween 80, but not if sorbed bacteria were left in distilled water, various salt solutions, urea, or in suspensions of unlabelled bacteria. It was concluded that sorption occurred as a result of chemical interactions between the glass and the cell surface. Tween 80 at a concentration of 1 per cent inhibited sorption to 26 per cent of buffer controls, 2 M urea was less effective, and 1 M NaCl was without effect. It is suggested that hydrophobic interactions may be of importance in the binding of S. faecium to glass. (author)

  12. Effect of total cementitious content on shear strength of high-volume fly ash concrete beams

    International Nuclear Information System (INIS)

    Arezoumandi, Mahdi; Volz, Jeffery S.; Ortega, Carlos A.; Myers, John J.

    2013-01-01

    Highlights: ► Existing design standards conservatively predicted the capacity of the HVFAC beams. ► In general, the HVFAC beams exceeded the code predicted shear strengths. ► The cementitious content did not have effect on the shear behavior of the HVFAC beams. - Abstract: The production of portland cement – the key ingredient in concrete – generates a significant amount of carbon dioxide. However, due to its incredible versatility, availability, and relatively low cost, concrete is the most consumed manmade material on the planet. One method of reducing concrete’s contribution to greenhouse gas emissions is the use of fly ash to replace a significant amount of the cement. This paper compares two experimental studies that were conducted to investigate the shear strength of full-scale beams constructed with high-volume fly ash concrete (HVFAC) – concrete with at least 50% of the cement replaced with fly ash. The primary difference between the two studies involved the amount of cementitious material, with one mix having a relatively high total cementitious content (502 kg/m 3 ) and the other mix having a relatively low total cementitious content (337 kg/m 3 ). Both mixes utilized a 70% replacement of portland cement with a Class C fly ash. Each of these experimental programs consisted of eight beams (six without shear reinforcing and two with shear reinforcing in the form of stirrups) with three different longitudinal reinforcement ratios. The beams were tested under a simply supported four-point loading condition. The experimental shear strengths of the beams were compared with both the shear provisions of selected standards (US, Australia, Canada, Europe, and Japan) and a shear database of conventional concrete (CC) specimens. Furthermore, statistical data analyses (both parametric and nonparametric) were performed to evaluate whether or not there is any statistically significant difference between the shear strength of both mixes. Results of these

  13. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    International Nuclear Information System (INIS)

    Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

    1995-07-01

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete

  14. Glass science tutorial: Lecture No. 8, introduction cementitious systems for Low-Level Waste immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.F.; Kirkpatrick, R.J.; Mason, T.O.; Brough, A.

    1995-07-01

    This report presents details about cementitious systems for low-level waste immobilization. Topics discussed include: composition and properties of portland cement; hydration properties; microstructure of concrete; pozzolans; slags; zeolites; transport properties; and geological aspects of long-term durability of concrete.

  15. Nitrate Sorption in an Agricultural Soil Profile

    Directory of Open Access Journals (Sweden)

    Wissem Hamdi

    2013-01-01

    Full Text Available Increasing concentrations of in surface water and groundwater can cause ecological and public health effects and has come under increased scrutiny by both environmental scientists and regulatory agencies. For many regions though, including the Sahel of Tunisia, little is known about the sorption capacity of soils. In this project we measured sorption by a profile of an iso-humic soil from Chott Meriem, Tunisia. Soil samples were collected from four soil depths (0–25, 25–60, 60–90, and 90–120 cm on 1 June 2011, and their sorption capacity was determined using batch experiments under laboratory conditions. The effects of contact time, the initial concentration, and the soil-solution ratio on sorption were investigated. In general, the results suggested that was weakly retained by the Chott Meriem soil profile. The quantity of sorption increased with depth, contact time, initial concentration, and soil-solution ratios. To evaluate the sorption capacities of the soil samples at concentrations ranging between 25 and 150 mg L−1 experimental data were fitted to both Freundlich and Langmuir isotherm sorption models. The results indicated that Freundlich model was better for describing sorption in this soil profile.

  16. Sorption of U(VI) species on hydroxyapatite

    International Nuclear Information System (INIS)

    Thakur, P.; Moore, R.C.; Choppin, G.R.

    2005-01-01

    The sorption of uranyl (UO 2 2+ ) cations to hydroxyapatite was studied as a function of the amount of sorbent, ionic strength, U(VI) concentration, pH and temperature. The rate of uranyl sorption on hydroxyapatite decreased with increased uranyl concentrations. The amount sorbed decreased with increased ionic strength and increased with pH to a maximum at 7-8. The sorption data for UO 2 2+ were fitted well by the Freundlich and Dubinin-Radushkevich (D-R) isotherms. The anions Cl - , NO 3 - , SO 4 2- and CH 3 COO - decreased the sorption of uranium on hydroxyapatite while S 2 O 3 2- slightly increased it. The sorbed uranium was desorbed by 0.10 M and 1.00 M solutions of HCl and HNO 3 . The thermodynamic parameters for the sorption of UO 2 2+ were measured at temperatures of 298, 313, 323 and 333 K. The temperature dependence confirmed an endothermic heat of sorption. The activation energy for the sorption process was calculated to be +2.75±0.02 kJ/mol. (orig.)

  17. Gold nanocone probes for near-field scanning optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Bastian; Schaefer, Christian; Nill, Peter; Fleischer, Monika; Kern, Dieter P. [Institute of Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)

    2010-07-01

    Apertureless near-field scanning optical microscopy (ANSOM) provides the possibility to collect simultaneously high-resolution topographical and sub-diffraction limited optical information from a surface. When optically excited, the scanning probes act as optical antennae with a strong near-field enhancement near the tip apex. Spatial resolution and optical near-field enhancement depend strongly on the properties and geometry of the scanning probe - in particular on very sharp tip radii. Various possibilities for fabricating good antennae have been pursued. Most commonly, scanning probes consist of electrochemically etched gold wires which are sharp but not well-defined in geometry. We present two different approaches for ultra sharp and well-defined antennae based upon fabricating gold nanocones with a tip radius smaller than 10 nm which can be used in ANSOM. A transfer process is presented that can be used to attach single gold nanocones to non-metallic probes such as sharp glass fiber tips. Alternatively, new processes are presented to fabricate cones directly on pillars of different materials such as silicon or bismuth, which can be applied to cantilever tips for ANSOM scanning applications.

  18. SORPTION OF Au(III BY Saccharomyces cerevisiae BIOMASS

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2010-07-01

    Full Text Available Au(III sorption by S. cerevisiae biomass extracted from beer waste industry was investigated. Experimentally, the sorption was conducted in batch method. This research involved five steps: 1 identification the functional groups present in the S. cerevisiae biomass by infrared spectroscopic technique, 2 determination of optimum pH, 3 determination of the sorption capacity and energy, 4 determination of the sorption type by conducting desorption of sorbed Au(III using specific eluents having different desorption capacity such as H2O (van der Waals, KNO3 (ion exchange, HNO3 (hydrogen bond, and tiourea (coordination bond, 5 determination of effective eluents in Au(III desorption by partial desorption of sorbed Au(III using thiourea, NaCN and KI. The remaining Au(III concentrations in filtrate were analyzed using Atomic Absorption Spectrophotometer. The results showed that: 1 Functional groups of S. cerevisiae biomass that involved in the sorption processes were hydroxyl (-OH, carboxylate (-COO- and amine (-NH2, 2 maximum sorption was occurred at pH 4, equal to 98.19% of total sorption, 3 The sorption capacity of biomass was 133.33 mg/g (6.7682E-04 mol/g and was involved sorption energy 23.03 kJ mol-1, 4 Sorption type was dominated by coordination bond, 5 NaCN was effective eluent to strip Au(III close to 100%.   Keywords: sorption, desorption, S. cerevisiae biomass, Au(III

  19. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris.

    Science.gov (United States)

    Rochman, Chelsea M; Hoh, Eunha; Hentschel, Brian T; Kaye, Shawn

    2013-02-05

    Concerns regarding marine plastic pollution and its affinity for chemical pollutants led us to quantify relationships between different types of mass-produced plastic and organic contaminants in an urban bay. At five locations in San Diego Bay, CA, we measured sorption of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) throughout a 12-month period to the five most common types of mass-produced plastic: polyethylene terephthalate (PET), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), and polypropylene (PP). During this long-term field experiment, sorption rates and concentrations of PCBs and PAHs varied significantly among plastic types and among locations. Our data suggest that for PAHs and PCBs, PET and PVC reach equilibrium in the marine environment much faster than HDPE, LDPE, and PP. Most importantly, concentrations of PAHs and PCBs sorbed to HDPE, LDPE, and PP were consistently much greater than concentrations sorbed to PET and PVC. These data imply that products made from HDPE, LDPE, and PP pose a greater risk than products made from PET and PVC of concentrating these hazardous chemicals onto fragmented plastic debris ingested by marine animals.

  20. Modeling of Coastal Effluent Transport: an Approach to Linking of Far-field and Near-field Models

    International Nuclear Information System (INIS)

    Yang, Zhaoqing; Khangaonkar, Tarang P.

    2008-01-01

    One of the challenges in effluent transport modeling in coastal tidal environments is the proper calculation of initial dilution in connection with the far-field transport model. In this study, an approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulate the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuca. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. In the present study, the hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. This study demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the far-field modeled dilution ratio and effluent concentration in the effluent discharge model grid cell match the concentration calculated by the near-field plume model

  1. The near-field acoustic levitation of high-mass rotors

    International Nuclear Information System (INIS)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B.

    2014-01-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope

  2. The near-field acoustic levitation of high-mass rotors

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z. Y.; Lü, P.; Geng, D. L.; Zhai, W.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-10-15

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  3. The near-field acoustic levitation of high-mass rotors.

    Science.gov (United States)

    Hong, Z Y; Lü, P; Geng, D L; Zhai, W; Yan, N; Wei, B

    2014-10-01

    Here we demonstrate that spherical rotors with 40 mm diameter and 0-1 kg mass can be suspended more than tens of micrometers away from an ultrasonically vibrating concave surface by near-field acoustic radiation force. Their rotating speeds exceed 3000 rpm. An acoustic model has been developed to evaluate the near-field acoustic radiation force and the resonant frequencies of levitation system. This technique has potential application in developing acoustic gyroscope.

  4. THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998

    Energy Technology Data Exchange (ETDEWEB)

    ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

  5. Near-field scanning optical microscopy based nanostructuring of glass

    International Nuclear Information System (INIS)

    Chimmalgi, A; Hwang, D J; Grigoropoulos, C P

    2007-01-01

    Nanofabrication, at lateral resolutions beyond the capability of conventional optical lithography techniques, is demonstrated here. Femtosecond laser was used in conjunction with Near-field Scanning Optical Microscopes (NSOMs) to nanostructure thin metal films. Also, the possibility of using these nanostructured metal films as masks to effectively transfer the pattern to the underlying substrate by wet etching process is shown. Two different optical nearfiled processing schemes were studied for near-field nanostructuring. In the first scheme, local field enhancement in the near-field of a scanning probe microscope (SPM) probe tip irradiated with femtosecond laser pulses was utilized (apertureless NSOM mode) and as a second approach, femtosecond laser beam was spatially confined by cantilevered NSOM fiber tip (apertured NOSM mode). The minimized heat- and shock-affected areas introduced during ultrafast laser based machining process, allows processing of even high conductivity thin metal films with minimized formation of any interfacial compounds between the metal films and the underlying substrate. Potential applications of this method may be in the fields of nanolithography, nanofluidics, nanoscale chemical and gas sensors, high-density data storage, nano-opto-electronics, as well as biotechnology related applications

  6. Valorisation of post-sorption materials: Opportunities, strategies, and challenges.

    Science.gov (United States)

    Harikishore Kumar Reddy, D; Vijayaraghavan, K; Kim, Jeong Ae; Yun, Yeoung-Sang

    2017-04-01

    Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m 2 /g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical

  7. Thermodynamic sorption modelling in support of radioactive waste disposal safety cases - NEA sorption project phase III

    International Nuclear Information System (INIS)

    2012-01-01

    A central safety function of radioactive waste disposal repositories is the prevention or sufficient retardation of radionuclide migration to the biosphere. Performance assessment exercises in various countries, and for a range of disposal scenarios, have demonstrated that one of the most important processes providing this safety function is the sorption of radionuclides along potential migration paths beyond the engineered barriers. Thermodynamic sorption models (TSMs) are key for improving confidence in assumptions made about such radionuclide sorption when preparing a repository's safety case. This report presents guidelines for TSM development as well as their application in repository performance assessments. They will be of particular interest to the sorption modelling community and radionuclide migration modellers in developing safety cases for radioactive waste disposal Contents: 1 - Thermodynamic sorption models and radionuclide migration: Sorption and radionuclide migration; Applications of TSMs in radioactive waste disposal studies; Requirements for a scientifically defensible, calibrated TSM applicable to radioactive waste disposal; Current status of TSMs in radioactive waste management; 2 - Theoretical basis of TSMs and options in model development: Conceptual building blocks of TSMs and integration with aqueous chemistry; The TSM representation of sorption and relationship with Kd values; Theoretical basis of TSMs; Example of TSM for uranyl sorption; Options in TSM development; Illustration of TSM development and effects of modelling choices; Summary: TSMs for constraining Kd values - impact of modelling choices; 3 - Determination of parameters for TSMs: Overview of experimental determination of TSM parameters; Theoretical estimation methods of selected model parameters; Case study: sorption modelling of trivalent lanthanides/actinides on illite; Indicative values for certain TSM parameters; Parameter uncertainty; Illustration of parameter sensitivity

  8. Field noise near ferromagnetic films

    Science.gov (United States)

    McMichael, Robert; Liu, Hau-Jian; Yoon, Seungha

    Thermally driven magnetization fluctuations can be viewed as a nuisance noise source or as interesting physics. For example, mag noise in a field sensor may set the minimum detectable field of that sensor. On the other hand, the field noise spectrum reflects the dynamics of the magnetic components, which are essential for device operation. Here, we model the field noise spectrum near the surface of a magnetic film due to thermal spin waves, and we calculate its effect on the T1 relaxation rate of a nearby nitrogen-vacancy (NV) center spin. The model incorporates four components: the spin wave dispersion of the magnetization in a finite-thickness film, thermal excitation of spin waves, the coupling geometry between waves in the film and an external point dipole and finally, the relaxation dynamics of the NV spin. At a distance of 100 nm above a 50 nm thick permalloy film, we find that the strongest stray fields are along the film normal and parallel to the magnetization, on the order of 1 mA m-1 Hz- 1 / 2 or 1 nT Hz- 1 / 2, yielding relaxation times on the order of 10 μs. The spin wave field noise can dominate the intrinsic relaxation, (T1 1 ms) of the NV center spin.

  9. Sorption of Heterocyclic Organic Compounds to Multiwalled Carbon Nanotubes.

    Science.gov (United States)

    Metzelder, Florian; Funck, Matin; Schmidt, Torsten C

    2018-01-16

    Sorption is an important natural and technical process. Sorption coefficients are typically determined in batch experiments, but this may be challenging for weakly sorbing compounds. An alternative method enabling analysis of those compounds is column chromatography. A column packed with the sorbent is used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. In this study, column chromatography was applied for the first time to study sorption of previously hardly investigated heterocyclic organic compounds to multiwalled carbon nanotubes (MWCNTs). Sorption data for these compounds are very limited in literature, and weak sorption is expected from predictions. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were well described by the Freundlich model and data showed reasonable agreement with predicted values. Sorption was exothermic and physisorption was observed. H-bonding may contribute to overall sorption, which is supported by reduced sorption with increasing ionic strength due to blocking of functional groups. Lowering pH reduced sorption of ionizable compounds, due to electrostatic repulsion at pH 3 where sorbent as well as sorbates were positively charged. Overall, column chromatography was successfully used to study sorption of heterocyclic compounds to MWCNTs and could be applied for other carbon-based sorbents.

  10. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Graphene as a local probe to investigate near-field properties of plasmonic nanostructures

    Science.gov (United States)

    Wasserroth, Sören; Bisswanger, Timo; Mueller, Niclas S.; Kusch, Patryk; Heeg, Sebastian; Clark, Nick; Schedin, Fredrik; Gorbachev, Roman; Reich, Stephanie

    2018-04-01

    Light interacting with metallic nanoparticles creates a strongly localized near-field around the particle that enhances inelastic light scattering by several orders of magnitude. Surface-enhanced Raman scattering describes the enhancement of the Raman intensity by plasmonic nanoparticles. We present an extensive Raman characterization of a plasmonic gold nanodimer covered with graphene. Its two-dimensional nature and energy-independent optical properties make graphene an excellent material for investigating local electromagnetic near-fields. We show the localization of the near-field of the plasmonic dimer by spatial Raman measurements. Energy- and polarization-dependent measurements reveal the local near-field resonance of the plasmonic system. To investigate the far-field resonance we perform dark-field spectroscopy and find that near-field and far-field resonance energies differ by 170 meV, much more than expected from the model of a damped oscillator (40 meV).

  12. Significance of Shrinkage Induced Clamping Pressure in Fiber-Matrix Bonding in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Stang, Henrik

    1996-01-01

    used in high performance cementitious composite materials.Assuming a Coulomb type of friction on the fiber/matrix interface andusing typical values for the frictional coefficient it is shownthat the shrinkage induced clamping pressure could be one of the mostimportant factors determining the frictional...

  13. Efficient Calculation of Near Fields in the FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2011-01-01

    When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law is prese...

  14. Prediction of Near-Field Wave Attenuation Due to a Spherical Blast Source

    Science.gov (United States)

    Ahn, Jae-Kwang; Park, Duhee

    2017-11-01

    Empirical and theoretical far-field attenuation relationships, which do not capture the near-field response, are most often used to predict the peak amplitude of blast wave. Jiang et al. (Vibration due to a buried explosive source. PhD Thesis, Curtin University, Western Australian School of Mines, 1993) present rigorous wave equations that simulates the near-field attenuation to a spherical blast source in damped and undamped media. However, the effect of loading frequency and velocity of the media have not yet been investigated. We perform a suite of axisymmetric, dynamic finite difference analyses to simulate the propagation of stress waves induced by spherical blast source and to quantify the near-field attenuation. A broad range of loading frequencies, wave velocities, and damping ratios are used in the simulations. The near-field effect is revealed to be proportional to the rise time of the impulse load and wave velocity. We propose an empirical additive function to the theoretical far-field attenuation curve to predict the near-field range and attenuation. The proposed curve is validated against measurements recorded in a test blast.

  15. Effect of competing cations on strontium sorption to surficial sediments

    International Nuclear Information System (INIS)

    Bunde, R.L.; Rosentreter, J.J.

    1995-01-01

    The following study was conducted to determine strontium distribution coefficients (K d 'S) of a surficial sediment at the Idaho National Engineering Laboratory (INEL), Idaho. Batch experimental techniques were used to determine K d 's which describe the partitioning of a solute between the solution and solid phase. A surficial sediment was mixed with synthesized aqueous solutions designed to chemically simulate wastewater disposed to infiltrations ponds near the Idaho Chemical Processing Plant at the INEL with respect to major ionic character and pH. The effects of variable concentrations of competing cations (sodium, potassium, calcium and magnesium) on strontium sorption were investigated at a fixed pH of 8.00. The pH of the natural system shows no appreciable variation, whereas a marked variability in cation concentration has been noted. Strontium sorption was impacted to a greater degree by the concentration of calcium and magnesium in solution than by the presence of sodium or potassium. However, extreme sodium solution concentrations of 1.0 to 5.0 g/L dramatically reduced strontium sorption. In all cases, strontium K d 's decreased as the concentration of calcium and magnesium in solution increased. Linear isotherm model K d 's ranged from 12.0 to 84.7 mL/g. Analysis of data from these experiments indicated that moderate concentrations of calcium and magnesium (less than 40 mg/L) and high concentrations of sodium (1.0 to 5.0 g/L) in wastewater increase strontium mobility by decreasing the sorption of strontium on surficial sediments beneath infiltration ponds at the INEL

  16. Influence of temperature on pentavalent Np Sorption and desorption onto Goethite, Montmorillonite

    International Nuclear Information System (INIS)

    Vial, M.A.; Sherman, C; Czerwinski, K.R.; Reed, D.

    2002-01-01

    Yucca Mountain Site has been selected by the United States Department of Energy as the repository for disposing the US HLW. The performance allocation analysis on a multi-barrier system for high-level radioactive waste disposal has pointed 237 Np as the dominant hazard at the inlet of the biosphere [1J. 2JNp is present in high-level radioactive wastes (HLW), although in smaller amounts in comparison to other radionuclides. Because of its long half-life of 2.14 million years and its mobile nature under aerobic conditions due to the high chemical stability of its pentavalent state, it is considered a possible long-term pollutant of the ecosystem. Understanding Np behavior is required in order to quantitatively describe its transport in surface groundwater systems. In the repository, many components are known to play an important role in Np and other actinides speciation through adsorption-, complexation-, dissolution-, precipitation- and, colloids or pseudocolloids generation reactions [1]. Inorganic Ligands (C0 3 - , OH - ), present in nearly all natural water at various degree, and organic ligands (humic acid) can react with Np and consequently affect its leachability through the formation of numerous compounds. The solubility limits of radionuclides may act as an initial barrier to radionuclide migration from the potential repository at Yucca Mountain for some radionuclides. However, once radionuclides have dissolved in water infiltrating the site, sorption of these radionuclides onto the surrounding mineral phases becomes a potentially important second barrier. The study of retardation of Np and other key actinides is of major importance in assessing the performance of the potential repository. Among the soil of interest montmorillonite and iron-based materials have generated lots of researches. Nagasaki et al. [2] recent researches on sorption equilibrium and kinetics of NpO 2 + on dispersed particles of Na-montmorillonite and Na-illite (batch experiments at p

  17. Superconducting Material - A study on the near field of a superconducting antenna

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Chil; Lee, Seung Chul; Doe, Joong Hoe; Hoe, Mi Ra [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    The pulse spectroscopy in combination with piezoelectric resonance makes an ideal non-disturbing tool for the measurement of electric field near an antenna. This new field sensing technique was used to investigate the field of a ring antenna the near field of which is widely used such as the plasma generation and NMR. The superconducting wire also have the dominant capacitive AC field in near regions, meaning that the net charge on the ring surface is not due to the ohm`s law as in DC. 23 refs., 8 figs. (author)

  18. Shear behavior of reinforced Engineered Cementitious Composites (ECC) beams

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2010-01-01

    This paper describes an experimental investigation of the shear behavior of beams consisting of steel reinforced Engineered Cementitious Composites (ECC). Based on the strain hardening and multiple cracking behavior of ECC, this study investigates the extent to which ECC can improve the shear...... capacity of beams loaded primarily in shear and if ECC can partially or fully replace the conventional transverse steel reinforcement in beams. However, there is a lack of understanding of how the fibers affect the shear carrying capacity and deformation behavior of structural members if used either...

  19. Kinetics and reversibility of micropollutant sorption in sludge.

    Science.gov (United States)

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  20. Column Chromatography To Obtain Organic Cation Sorption Isotherms.

    Science.gov (United States)

    Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A

    2016-08-02

    Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.

  1. Sorption-desorption dynamics of radiocaesium in organic matter soils

    International Nuclear Information System (INIS)

    Valcke, E.; Cremers, A.

    1994-01-01

    A systematic study has been carried out on the radiocaesium sorption properties of 25 soils (forest, peat) covering organic matter (OM) contents in the range of 10-97%. Predictions are made for radiocaesium partitioning between micaceous Frayed Edge Sites (FES) and regular exchange sites (RES) on the basis of specific radiocaesium interception potentials of the soil and overall exchange capacity. It is shown that for soils with a very high OM content (>80%), significant fractions are present in a readily reversible form in the OM phase. In soils of low-medium OM content (<40%), only a very minor fraction is present in the OM exchange complex. Experimental findings, based on a desorption screening with a variety of desorption agents are in agreement with these predictions. On the basis of a study of sorption kinetics, some additional tools are available for identifying problem soils. In cases of very high OM content, radiocaesium adsorption is completed within hours demonstrating the involvement of the OM sites. In soils for which interception occurs in the FES, sorption continues to proceed for periods of 2-3 weeks. In conclusion, some examples are presented on radiocaesium desorption using ion exchangers as radiocaesium sinks in promoting desorption. For a peaty soil, near quantitative desorption is accomplished. For forest soils with OM contents in a range of 10-40%, fixation levels of 30-50% are demonstrated

  2. Effects of pig slurry on the sorption of sulfonamide antibiotics in soil.

    Science.gov (United States)

    Thiele-Bruhn, S; Aust, M O

    2004-07-01

    Sorption of p-aminobenzoic acid (pABA) and five sulfonamide antibiotics to loess Chernozem topsoil amended with varied additions of pig slurry was investigated in batch trials. In unfertilized soil, partition coefficients (Kd) of sulfonamides ranged from 0.3 to 2.0. Strong sorption nonlinearity (1/n = 0.5 to 0.8) was best fitted by the Freundlich isotherm (R2 = 0.7 to 1.0) and was indicative for specific sorption mechanisms. Adsorption to pig slurry was much stronger, and nondesorbable portions were increased compared with soil. However, in a mixture of soil and slurry (50:1 w/w), sorption of the antibiotics was significantly decreased at a lower concentration range of pABA and the sulfonamides. This was attributed to competitive adsorption of dissolved organic matter (DOM) constituents from manure. An increase in pig slurry amendment resulted in increased total organic matter, DOM concentration, and ionic strength, but pH decreased. As a result, the nonadsorbed portions of pABA, sulfanilamide, and sulfadiazine (logD(ow) 0.1)--remained nearly constant in the presence of increased manure input. The pH changes caused by manure amendment strongly affected ionisation status of the latter compounds, thus resulting in increased adsorption, which compensated the mobilizing effect of DOM. It is suggested that the effect of manure be considered in test methods to determine the soil retention of pharmaceutical substances.

  3. Behavior of Samarium III during the sorption process

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia G, N.; Garcia R, G.

    2004-01-01

    In this work the results of the behavior of samarium in solution are presented, in front of a fine powder of zirconium silicate (zircon). For that which is necessary to characterize the zircon, studying the crystallinity, the morphology, the surface area and the isoelectric point. The behavior of samarium in solution is studied by means of the elaboration of isotherm of sorption, using the technique by lots. One observes that to pH values of nearer to the isoelectric point (pH = 7.23) the process of sorption of the samarium begins, reaching a maximum to near pH at 9. The technique of luminescence is used to determine the concentration of the sipped samarium (phosphorescence) and also to make the speciation of the species formed in the surface of the zircon (phosphorescence). The results can be extrapolated with the plutonium when making the modeling of the migration of alpha emitting coming from the repositories of radioactive waste since both they have similar chemical properties (they are homologous). (Author)

  4. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  5. THz near-field imaging of biological tissues employing synchrotron radiation

    International Nuclear Information System (INIS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2004-01-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin

  6. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials

    International Nuclear Information System (INIS)

    Liu, Xiaoming; Zhang, Na; Yao, Yuan; Sun, Henghu; Feng, Huan

    2013-01-01

    Highlights: • Al IV and Al VI both exist in the hydration products. • Increase of Ca/Si ratio promotes the conversion from [AlO 4 ] to [AlO 6 ]. • Polymerization degree of [SiO 4 ] in the hydration products declines. -- Abstract: In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, 27 Al MAS NMR and 29 Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si + Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al IV and Al VI , but mainly in the form of Al VI . Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO 4 ] to [AlO 6 ] and inhibits the combination between [AlO 4 ] and [SiO 4 ] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO 4 ] in the hydration products declines

  7. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  8. Dynamically important magnetic fields near accreting supermassive black holes.

    Science.gov (United States)

    Zamaninasab, M; Clausen-Brown, E; Savolainen, T; Tchekhovskoy, A

    2014-06-05

    Accreting supermassive black holes at the centres of active galaxies often produce 'jets'--collimated bipolar outflows of relativistic particles. Magnetic fields probably play a critical role in jet formation and in accretion disk physics. A dynamically important magnetic field was recently found near the Galactic Centre black hole. If this is common and if the field continues to near the black hole event horizon, disk structures will be affected, invalidating assumptions made in standard models. Here we report that jet magnetic field and accretion disk luminosity are tightly correlated over seven orders of magnitude for a sample of 76 radio-loud active galaxies. We conclude that the jet-launching regions of these radio-loud galaxies are threaded by dynamically important fields, which will affect the disk properties. These fields obstruct gas infall, compress the accretion disk vertically, slow down the disk rotation by carrying away its angular momentum in an outflow and determine the directionality of jets.

  9. High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs

    Science.gov (United States)

    Hu, Feng; Wen, Jian; Chen, Xiaofei

    2018-03-01

    We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.

  10. Superresolution Near-field Imaging with Surface Waves

    KAUST Repository

    Fu, Lei; Liu, Zhaolun; Schuster, Gerard T.

    2017-01-01

    We present the theory for near-field superresolution imaging with surface waves and time reverse mirrors (TRMs). Theoretical formulas and numerical results show that applying the TRM operation to surface waves in an elastic half-space can achieve

  11. Chemical and microbiological effects in the near field: current status

    International Nuclear Information System (INIS)

    Ewart, F.T.; Pugh, S.Y.R.; Wisbey, S.J.; Woodwark, D.R.

    1988-12-01

    The radionuclide inventory of a radioactive waste repository, influenced by the chemical conditions in the near-field, determines the source term for radionuclides entering the geosphere. The research described in this report is focussed on providing the information necessary to quantify this source term. The processes which interact to determine near field behaviour over a long period of time are complex and a simplified representation is required for radiological assessment modelling. The assumptions made in formulating the near field assessment methodology are discussed and justified in this report. The techniques for acquiring the necessary large body of data for a wide range of relevant radionuclides are also described and the values used in the CASCADE I exercise are given. (author)

  12. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  13. Sorption of strontium by magnetically modified yeast cells

    International Nuclear Information System (INIS)

    Hu Yantao; Ji Yanqin; Tian Qing; Shao Xianzhang; Shi Jianhe; Ivo Safarik; Zhang Shengdong; Li Jinying

    2008-01-01

    Magnetically modified fodder's yeast (Kluyveromyces fragilis) cells using water based magnetic fluid, were characterized by scanning electron microscopy (SEM) and Vibrating Sample Magnetometer (VSM). The sorption-desorption properties of Sr 2+ by these yeast cells from nitrate salt of Sr 2+ were studied. The results demonstrated that the Sr 2+ sorption volume by these cells enhanced with increasing pH and reached a plateau between pH 4.0 and 7.0. A minor effect by temperature was observed. The sorption volumes are 19.5 mg/g and 53.5 mg/g from 10 ppm and 40 ppm Sr 2+ solution respectively within 20 min. The sorption of Sr 2+ in these cells can be desorbed under 0.1 mol/L HNO 3 solution. The maximum Sr 2+ sorption volume is 96.7 mg/g at 20℃. The sorption characteristic fits Langmuir model well with 140.8 mg/g calculated maximum sorption volume by these yeast cells. (authors)

  14. Integrated sorption and diffusion model for bentonite. Part 1. Clay-water interaction and sorption modeling in dispersed systems

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro; Ochs, Michael

    2014-01-01

    To predict the long-term migration of radionuclides (RNs) under variable conditions within the framework of safety analyses for geological disposal, thermodynamic sorption models are very powerful tools. The integrated sorption and diffusion (ISD) model for compacted bentonite was developed to achieve a consistent combination of clay–water interaction, sorption, and diffusion models. The basic premise considered in the ISD model was to consistently use the same simple surface model design and parameters for describing RNs sorption/diffusion as well as clay surface and porewater chemistry. A simple 1-site non-electrostatic surface complexation model in combination with a 1-site ion exchange model was selected to keep sorption model characteristics relatively robust for compacted systems. Fundamental parameters for the proposed model were evaluated from surface titration data for purified montmorillonite. The resulting basic model was then parameterized on the basis of selected published sorption data-sets for Np(V), Am(III), and U(VI) in dispersed systems, which cover a range of key geochemical conditions such as pH, ionic strength, and carbonate concentration. The sorption trends for these RNs can be quantitatively described by the model considering a full suite of surface species including hydrolytic and carbonate species. The application of these models to the description of diffusive-sorptive transport in compacted bentonites is presented in Part 2. (author)

  15. Sorption studies of uranium in sediment-groundwater systems from the natural analogue sites of Needle's Eye and Broubster

    International Nuclear Information System (INIS)

    Higgo, J.J.; Falck, W.E.; Hooker, P.J.

    1990-01-01

    This report describes the results of sorption experiments designed to provide essential data for migration modelling. Sorption of 233 U from natural ground-water onto peat from Broubster and silt from Needle's Eye was studied under atmospheric conditions and different pH regimes. The temperature was maintained at 10 0 C and, in the case of Needle's Eye silt, the kinetics of sorption were followed. The results were analyzed in conjunction with speciation modelling in an attempt to understand the sorption mechanisms and to extrapolate the findings to cover the range of conditions likely to be met in the field. This work is part of the CEC project Mirage - Second phase, research area 'Natural analogues'

  16. Determination of sorption mechanisms of radionuclides onto clay minerals using extended x-ray absorption fine structure (EXAFS) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daehn, R.; Scheidegger, A.; Baeyens, B.; Bradbury, M.H

    2001-03-01

    Much of the experimental work in the Waste Management Laboratory at PSI concentrates on trying to understand the processes and mechanisms which govern the release of safety-relevant radionuclides from waste matrices, and their transport through engineered barrier systems and the surrounding geosphere. For this reason, detailed sorption studies of radionuclides (Cs, Sr, Ni, Zn, Eu, Am, Th and Se) in clay and cement systems are being conducted. The sorption and modelling studies are combined with kinetic investigations and advanced spectroscopic and microscopic methods in order to understand the sorption mechanism on an atomic level. This approach is part of a new multidisciplinary research field called Molecular Environmental Science (MES). In this paper, a case study of Ni sorption on montmorillonite is presented to illustrate how EXAFS can be used successfully to better understand sorption processes. (author)

  17. Determination of sorption mechanisms of radionuclides onto clay minerals using extended x-ray absorption fine structure (EXAFS) spectroscopy

    International Nuclear Information System (INIS)

    Daehn, R.; Scheidegger, A.; Baeyens, B.; Bradbury, M.H.

    2001-01-01

    Much of the experimental work in the Waste Management Laboratory at PSI concentrates on trying to understand the processes and mechanisms which govern the release of safety-relevant radionuclides from waste matrices, and their transport through engineered barrier systems and the surrounding geosphere. For this reason, detailed sorption studies of radionuclides (Cs, Sr, Ni, Zn, Eu, Am, Th and Se) in clay and cement systems are being conducted. The sorption and modelling studies are combined with kinetic investigations and advanced spectroscopic and microscopic methods in order to understand the sorption mechanism on an atomic level. This approach is part of a new multidisciplinary research field called Molecular Environmental Science (MES). In this paper, a case study of Ni sorption on montmorillonite is presented to illustrate how EXAFS can be used successfully to better understand sorption processes. (author)

  18. Sorption behavior of cesium onto bentonite colloid

    International Nuclear Information System (INIS)

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  19. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  20. Sorption of fission nuclides on model milk components. II. Sorption of radiostrontium on hydroxyapatite in milk and whey

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Kopunec, R.; Matel, L.; Macasek, F.

    1999-01-01

    In this work the whey was chosen as a model solution of liquid phase for sorption study of strontium on hydroxyapatite. The whey was obtained using two methods - ultracentrifugation and precipitation of casein. The sorption was studied at a different pH and at a different concentration of calcium. The sorption of strontium on hydroxyapatite from milk was studied, too. (authors)

  1. Secondary Waste Cementitious Waste Form Data Package for the Integrated Disposal Facility Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cozzi, Alex D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-16

    A review of the most up-to-date and relevant data currently available was conducted to develop a set of recommended values for use in the Integrated Disposal Facility (IDF) performance assessment (PA) to model contaminant release from a cementitious waste form for aqueous wastes treated at the Hanford Effluent Treatment Facility (ETF). This data package relies primarily upon recent data collected on Cast Stone formulations fabricated with simulants of low-activity waste (LAW) and liquid secondary wastes expected to be produced at Hanford. These data were supplemented, when necessary, with data developed for saltstone (a similar grout waste form used at the Savannah River Site). Work is currently underway to collect data on cementitious waste forms that are similar to Cast Stone and saltstone but are tailored to the characteristics of ETF-treated liquid secondary wastes. Recommended values for key parameters to conduct PA modeling of contaminant release from ETF-treated liquid waste are provided.

  2. Sorption of ionizable and ionic organic compounds to biochar, activated carbon and other carbonaceous materials.

    Science.gov (United States)

    Kah, Melanie; Sigmund, Gabriel; Xiao, Feng; Hofmann, Thilo

    2017-11-01

    The sorption of ionic and ionizable organic compounds (IOCs) (e.g., pharmaceuticals and pesticides) on carbonaceous materials plays an important role in governing the fate, transport and bioavailability of IOCs. The paradigms previously established for the sorption of neutral organic compounds do not always apply to IOCs and the importance of accounting for the particular sorption behavior of IOCs is being increasingly recognized. This review presents the current state of knowledge and summarizes the recent advances on the sorption of IOCs to carbonaceous sorbents. A broad range of sorbents were considered to evaluate the possibility to read across between fields of research that are often considered in isolation (e.g., carbon nanotubes, graphene, biochar, and activated carbon). Mechanisms relevant to IOCs sorption on carbonaceous sorbents are discussed and critically evaluated, with special attention being given to emerging sorption mechanisms including low-barrier, charge-assisted hydrogen bonds and cation-π assisted π-π interactions. The key role played by some environmental factors is also discussed, with a particular focus on pH and ionic strength. Overall the review reveals significant advances in our understanding of the interactions between IOCs and carbonaceous sorbents. In addition, knowledge gaps are identified and priorities for future research are suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Structural analysis of ternary actinyl(V/VI) sorption complexes on gibbsite. A combined quantum chemical and spectroscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Gueckel, Katharina

    2013-10-08

    For the safety assessment of high-level nuclear waste repositories, it is mandatory to know the transportation paths of contaminants, e.g. actinyl ions, in the geological barrier. The most attention needs to be focused on the transport in aquifers, because water contamination, depending on retention and migration processes of radionuclides in the geosphere, is of primary environmental concern. The migration behavior of actinides in ground water is mainly controlled by aquatic speciations and sorption processes at water-mineral interfaces. Hence, the investigation of complexspecies in aqueous solutions and at mineral surfaces becomes essential for the safety assessment in the near and far field of nuclear repositories. For deep ground repositories, clay and clay minerals are considered as possible host rocks, because they show a low permeability and are expected to have a high retention capacity towards actinyl ions. But the complexity of naturally occurring minerals in particular their surface often hampers the unequivocal interpretation of results obtained from sorption experiments. The use of model phases only showing one particular functional group at the surfaces with a well defined surface topology is an appropriate approach for the understanding of the basic sorption processes. Aluminum oxide and hydroxides are of special interest because they represent main components in clays and clay minerals. In particular, gibbsite is widely used as a model system because it represents not only the most common crystalline aluminum hydroxide but also a ubiquitous weathering product of alumosilicates. Furthermore, the elemental structural unit of gibbsite, that is the Al(OH)6 octahedron, occurs ubiquitously as part of the structure of common clay minerals like kaolinite. In the present study, the sorption processes of U(VI) and Np(V) on gibbsite were studied under consideration of the aqueous speciation.

  4. Development of low alkaline cementitious grouting materials for a deep geological repository

    International Nuclear Information System (INIS)

    Suzuki, Kenichiro; Miura, Norihiko; Iriya, Keishiro; Kobayashi, Yasushi

    2012-01-01

    In order to reduce uncertainties of long-term safety assessment for a High Level radioactive Waste (HLW) repository system, low alkaline cementitious grouting materials have been studied. The pH of the leachate from the grouting material is targeted to be below 11.0, since the degradation of the bentonite buffer and host rock is limited. The current work focused on the effects of pozzolanic reactions to reduce pH and the development of low alkaline cementitious injection materials in which super-micro ordinary Portland cement (SOPC) was partially replaced by silica fume (SF), micro silica (MS) and fly ash (FA). As it is important to realize how the grouting material will respond to a high injection pressure into the fracture, and in order to understand the penetrability of different low alkaline cement mixes and to observe their flow behavior through the fracture, injection tests were conducted by using a simulated model fracture of 2 m diameter made from parallel plates of acrylic acid resin and stainless steel. Experimental results of the basic properties for selecting suitable materials and that of injecting into a simulated fracture to assess the grouting performance are described

  5. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Radiation effects on materials in the near-field of nuclear waste repository. 1998 annual progress report

    International Nuclear Information System (INIS)

    Ewing, R.C.; Wang, L.M.

    1998-01-01

    'Site restoration activities at DOE facilities and the permanent disposal of nuclear waste generated at DOE facilities involve working with and within various types and levels of radiation fields. Once the nuclear waste is incorporated into a final form, radioactive decay will decrease the radiation field over geologic time scales, but the alpha-decay dose for these solids will still reach values as high as 10 18 alpha-decay events/gm in periods as short as 1,000 years. This dose is well within the range for which important chemical (e.g., increased leach rate) and physical (e.g., volume expansion) changes may occur in crystalline ceramics. Release and sorption of long-lived actinides (e.g., 237 Np) can provide a radiation exposure to backfill materials, and changes in important properties (e.g., cation exchange capacity) may occur. The objective of this research program is to evaluate the long term radiation effects in the materials in the near-field of a nuclear waste repository with accelerated experiments in the laboratory using energetic particles (electrons, ions and neutrons). Experiments on the microstructural evolution during irradiation of two important groups of materials, sheet silicates (e.g., clays) and zeolites (analcime), have been conducted; and studies of radiation-induced changes in chemical properties (e.g. cation exchange capacity) are underway. As of the mid-2nd year of the 3-year project, experiments on the microstructural evolution during irradiation of two important group of materials, sheet silicates (mica) and zeolites (analcime), have been conducted; and studies of radiation-induced changes in chemical properties (e.g., cation exchange capacity) are underway.'

  7. Phased Array Excitations For Efficient Near Field Wireless Power Transmission

    Science.gov (United States)

    2016-09-01

    channeled to the battery or power plant. Figure 2. WPT System Block Diagram for Battery Charging. Source : [2]. Wireless power transfer has gained...EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION by Sean X. Hong September 2016 Thesis Advisor: David Jenn Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE PHASED ARRAY EXCITATIONS FOR EFFICIENT NEAR-FIELD WIRELESS POWER TRANSMISSION 5

  8. Development of JAEA sorption database (JAEA-SDB). Update of sorption/QA data in FY2015

    International Nuclear Information System (INIS)

    Tachi, Yukio; Suyama, Tadahiro

    2016-03-01

    Sorption and diffusion of radionuclides in buffer materials (bentonite) and rocks are the key processes in the safe geological disposal of radioactive waste, because migration of radionuclides in these barrier materials is expected to be diffusion-controlled and retarded by sorption processes. It is therefore necessary to understand the sorption and diffusion processes and develop databases compiling reliable data and mechanistic/predictive models, so that reliable parameters can be set under a variety of geochemical conditions relevant to performance assessment (PA). For this purpose, Japan Atomic Energy Agency (JAEA) has developed databases of sorption and diffusion parameters in bentonites and rocks. These sorption and diffusion databases (SDB/DDB) were firstly developed as an important basis for the H12 PA of high-level radioactive waste disposal, and have been provided through the Web. JAEA has been continuing to improve and update the SDB/DDB in view of potential future data needs, focusing on assuring the desired quality level and testing the usefulness of the databases for possible applications to PA-related parameter setting. The present report focuses on improving and updating of the sorption database (JAEA-SDB) as basis of integrated approach for PA-related K d setting and mechanistic sorption model development. This includes an overview of database structure, contents and functions including additional data evaluation function focusing on statistical data evaluation and grouping of data related to potential perturbations. K d data and their QA results are updated by focusing our recent activities on the K d setting and mechanistic model development. As a result, 11,206 K d data from 83 references were added, total number of K d values in the JAEA-SDB reached about 58,000. The QA/classified K d data reached about 60% for all K d data in JAEA-SDB. The updated JAEA-SDB is expected to make it possible to obtain quick overview of the available data, and to

  9. Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition.

    Science.gov (United States)

    Niazi, Nabeel Khan; Burton, Edward D

    2016-11-01

    Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO 4 3- ) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO 4 3- on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO 4 3- (at 0.01-1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (K d ) values spanning 0.76-15 L g -1 (which corresponds to removal of 87-98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher K d values (6.3-93.4 L g -1 ) than those for As(V) (K d  = 0.21-0.96 L g -1 ). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As 2 S 3 -like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As 2 S 3 -like species and the partial oxidation of As(III) to As(V) (despite the strictly O 2 -free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO 4 3- . This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO 4 3- . Copyright © 2016 Elsevier Ltd. All

  10. Iodine sorption by microwave irradiated hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, S.P. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico); Instituto Politecnico Nacional, ESIQIE, C.P. 07738, Mexico, D.F. (Mexico); Fetter, G. [Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, C.P. 72570, Puebla, Pue (Mexico)]. E-mail: geolarfetter@yahoo.com.mx; Bosch, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, C.P. 04510, Mexico, D.F. (Mexico); Bulbulian, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801, Mexico, D.F. (Mexico)

    2006-12-15

    Mg-Al hydrotalcite-like compounds (HT) were prepared by the microwave method on the one hand with ethoxide-acetylacetonate and on the other with acetylacetonate as precursors. They presented a maximum sorption capacity of 2.179 and 1.517 meq of {sup 131}I{sup -}/g of hydrotalcite respectively. When the hydrotalcites were calcined and rehydrated in a {sup 131}I{sup -} solution, iodine sorption decreased in both samples to 1.515 and 1.446, respectively. The corresponding value for nitrated hydrotalcite which was prepared by the conventional method for comparison purposes, was 0.570. The radionuclide content in hydrotalcites was determined by {gamma}-spectrometry. {sup 131}I{sup -} sorption is dependent on two main parameters: one is the type of the interlayer organic material and the second the surface area. It was found that hydrotalcites prepared with ethoxide-acetylacetonate were better sorbents for {sup 131}I{sup -} than those with acetylacetonate. Still, if the specific surface area increased, {sup 131}I{sup -}sorption increased as well; nitrated HT resulted in low specific surface area and a low sorption capacity. It is, therefore, concluded that organic residues present in the samples prepared by the microwave method favor the sorption of radioactive anions, in particular {sup 131}I{sup -} if compared with nitrated and/or carbonate interlayered hydrotalcites.

  11. Nanohybrids Near-Field Optical Microscopy: From Image Shift to Biosensor Application

    Directory of Open Access Journals (Sweden)

    Nayla El-Kork

    2016-01-01

    Full Text Available Near-Field Optical Microscopy is a valuable tool for the optical and topographic study of objects at a nanometric scale. Nanoparticles constitute important candidates for such type of investigations, as they bear an important weight for medical, biomedical, and biosensing applications. One, however, has to be careful as artifacts can be easily reproduced. In this study, we examined hybrid nanoparticles (or nanohybrids in the near-field, while in solution and attached to gold nanoplots. We found out that they can be used for wavelength modulable near-field biosensors within conditions of artifact free imaging. In detail, we refer to the use of topographic/optical image shift and the imaging of Local Surface Plasmon hot spots to validate the genuineness of the obtained images. In summary, this study demonstrates a new way of using simple easily achievable comparative methods to prove the authenticity of near-field images and presents nanohybrid biosensors as an application.

  12. Near-field photometry for organic light-emitting diodes

    Science.gov (United States)

    Li, Rui; Harikumar, Krishnan; Isphording, Alexandar; Venkataramanan, Venkat

    2013-03-01

    Organic Light Emitting Diode (OLED) technology is rapidly maturing to be ready for next generation of light source for general lighting. The current standard test methods for solid state lighting have evolved for semiconductor sources, with point-like emission characteristics. However, OLED devices are extended surface emitters, where spatial uniformity and angular variation of brightness and colour are important. This necessitates advanced test methods to obtain meaningful data for fundamental understanding, lighting product development and deployment. In this work, a near field imaging goniophotometer was used to characterize lighting-class white OLED devices, where luminance and colour information of the pixels on the light sources were measured at a near field distance for various angles. Analysis was performed to obtain angle dependent luminous intensity, CIE chromaticity coordinates and correlated colour temperature (CCT) in the far field. Furthermore, a complete ray set with chromaticity information was generated, so that illuminance at any distance and angle from the light source can be determined. The generated ray set is needed for optical modeling and design of OLED luminaires. Our results show that luminance non-uniformity could potentially affect the luminaire aesthetics and CCT can vary with angle by more than 2000K. This leads to the same source being perceived as warm or cool depending on the viewing angle. As OLEDs are becoming commercially available, this could be a major challenge for lighting designers. Near field measurement can provide detailed specifications and quantitative comparison between OLED products for performance improvement.

  13. Near-field interference for the unidirectional excitation of electromagnetic guided modes.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Marino, Giuseppe; Ginzburg, Pavel; O'Connor, Daniel; Martínez, Alejandro; Wurtz, Gregory A; Zayats, Anatoly V

    2013-04-19

    Wave interference is a fundamental manifestation of the superposition principle with numerous applications. Although in conventional optics, interference occurs between waves undergoing different phase advances during propagation, we show that the vectorial structure of the near field of an emitter is essential for controlling its radiation as it interferes with itself on interaction with a mediating object. We demonstrate that the near-field interference of a circularly polarized dipole results in the unidirectional excitation of guided electromagnetic modes in the near field, with no preferred far-field radiation direction. By mimicking the dipole with a single illuminated slit in a gold film, we measured unidirectional surface-plasmon excitation in a spatially symmetric structure. The surface wave direction is switchable with the polarization.

  14. High-Accuracy Spherical Near-Field Measurements for Satellite Antenna Testing

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2017-01-01

    The spherical near-field antenna measurement technique is unique in combining several distinct advantages and it generally constitutes the most accurate technique for experimental characterization of radiation from antennas. From the outset in 1970, spherical near-field antenna measurements have...... matured into a well-established technique that is widely used for testing antennas for many wireless applications. In particular, for high-accuracy applications, such as remote sensing satellite missions in ESA's Earth Observation Programme with uncertainty requirements at the level of 0.05dB - 0.10d......B, the spherical near-field antenna measurement technique is generally superior. This paper addresses the means to achieving high measurement accuracy; these include the measurement technique per se, its implementation in terms of proper measurement procedures, the use of uncertainty estimates, as well as facility...

  15. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    Science.gov (United States)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  16. Applicability of microautoradiography to sorption studies

    International Nuclear Information System (INIS)

    Thompson, J.L.; Wolfsberg, K.

    1979-01-01

    The technique of microautoradiography was applied to the study of the sorption of uranium and americium on five rock types which exist at the Nevada Test Site. It was found that autoradiograms could be prepared in a few days which would allow the specific minerals responsible for sorption to be identified. Furthermore, the state of aggregation of the sorbed species was clearly indicated. It was concluded that microautoradiography was a useful adjunct to currently used methods for studying sorption of certain radionuclides

  17. Optical near-field lithography on hydrogen-passivated silicon surfaces

    DEFF Research Database (Denmark)

    Madsen, Steen; Müllenborn, Matthias; Birkelund, Karen

    1996-01-01

    by the optical near field, were observed after etching in potassium hydroxide. The uncoated fibers can also induce oxidation without light exposure, in a manner similar to an atomic force microscope, and linewidths of 50 nm have been achieved this way. (C) 1996 American Institute of Physics.......We report on a novel lithography technique for patterning of hydrogen-passivated amorphous silicon surfaces. A reflection mode scanning near-field optical microscope with uncoated fiber probes has been used to locally oxidize a thin amorphous silicon layer. Lines of 110 nm in width, induced...

  18. Extracting 220 Hz information from 55 Hz field data by near-field superresolution imaging

    KAUST Repository

    Dutta, Gaurav

    2016-05-31

    Field experiments are used to unequivocally demonstrate seismic superresolution imaging of subwavelength objects in the near-field region of the source. The field test is for a conventional hammer source striking a metal plate near subwavelength scatterers and the seismic data are recorded by vertical-component geophones in the far-field locations of the sources. Time-reversal mirrors (TRMs) are then used to refocus the scattered energy with subwavelength resolution to the position of the original source. A spatial resolution of lambda/10, where lambda is the dominant wavelength associated with the data, is seen in the field tests that exceeds the Abbe resolution limit of lambda/2.

  19. Extracting 220 Hz information from 55 Hz field data by near-field superresolution imaging

    KAUST Repository

    Dutta, Gaurav; AlTheyab, Abdullah; Tarhini, Ahmad; Hanafy, Sherif; Schuster, Gerard T.

    2016-01-01

    Field experiments are used to unequivocally demonstrate seismic superresolution imaging of subwavelength objects in the near-field region of the source. The field test is for a conventional hammer source striking a metal plate near subwavelength scatterers and the seismic data are recorded by vertical-component geophones in the far-field locations of the sources. Time-reversal mirrors (TRMs) are then used to refocus the scattered energy with subwavelength resolution to the position of the original source. A spatial resolution of lambda/10, where lambda is the dominant wavelength associated with the data, is seen in the field tests that exceeds the Abbe resolution limit of lambda/2.

  20. Intended long term performances of cementitious engineered barriers for future storage and disposal facilities for radioactive wastes in Romania

    Directory of Open Access Journals (Sweden)

    Sociu F.

    2013-07-01

    Full Text Available Considering the EU statements, Romania is engaged to endorse in the near future the IAEA relevant publications on geological repository (CNCANa, to update the Medium and Long Term National Strategy for Safe Management of Radioactive Waste and to approve the Road Map for Geological Repository Development. Currently, for example, spent fuel is wet stored for 6 years and after this period it is transported to dry storage in MACSTOR-200 (a concrete monolithic module where it is intended to remain at least 50 years. The present situation for radioactive waste management in Romania is reviewed in the present paper. Focus will be done on existent disposal facilities but, also, on future facilities planned for storage / disposal of radioactive wastes. Considering specific data for Romanian radioactive waste inventory, authors are reviewing the advance in the radioactive waste management in Romania considering its particularities. The team tries to highlight the expected limitations and unknown data related with cementitious engineered barriers that has to be faced in the near future incase of interim storage or for the upcoming long periods of disposal.

  1. Development of Web-based Software for Sorption Database

    International Nuclear Information System (INIS)

    Han, Byoung Sub; Lee, Jae Min; Seo, Min Seok; Kim, Dong Keon

    2009-08-01

    Sorption studies of radionuclides are important parts of research on radioactive waste disposal which is commonly faced in most countries where nuclear programs (power production, a variety of peaceful applications, and research) are implemented. The Sorption Database (DB) plays a very important role in the safety assessment of the radioactive waste disposal. The Sorption DB which is opened externally can be used as reference material of establishing a national policy by improving and changing the pre-developed Sorption program to be web-based. From the industrial point of view, if the Sorption DB is opened to the outside, the safety-related confidence can be achieved for nuclear industry. As the information of Sorption DB is opened, not only credibility can be provided to the administration, local governments and nearby residents, but also input of the collected information can be achieved by online. In addition, the reference material and external awareness/reliability about the domestic level of the Sorption DB management system and the current state can be achieved internationally. In order to provide the information of Sorption DB to users in more efficient way, the analysis and complement of management and search capability for the existing Sorption DB program have been performed and web-based management system has been built to provide services to users. In addition, by applying statistical techniques, it has been designed and implemented to display the accuracy and error of the information

  2. Investigation on the Activity Activation and Cementitious Property of Coal Gangue with High Iron and Silica Contents

    Science.gov (United States)

    Wu, Hong; Li, Yu; Teng, Min; Yang, Yu

    2017-11-01

    The activity of coal gangue by thermal activation and composite activation technologies was investigated. The crystal composition, framework structure and morphology change were analyzed by XRD, FT-IR and SEM, respectively. The cementitious property of coal gangue was measured by strength test. The results showed that thermal activation decomposed kaolinite in coal gangue, and formed the metastable structure with a porous state, multiple internal broken bonds and large specific surface areas. Based on thermal activation, the added lime provided the alkaline environment, then this reduced the bond energy of reactant particles and the degree of crystallinity of quartz in coal gangue. The two activation methods could effectively improve the cementitious property of coal gangue based unburned bricks, and that the composite activation technology was superior performance.

  3. Cobalt sorption onto Savannah River Plant soils

    International Nuclear Information System (INIS)

    Hoeffner, S.L.

    1985-06-01

    A laboratory study of cobalt-60 sorption was conducted using Savannah River Plant soil and groundwater from the low-level waste burial ground. Systematic variation of soil and water composition indicates that cobalt sorption is most strongly a function of pH. Over a pH range of 2 to 9, the distribution coefficient ranged from 2 to more than 10,000 mL/g. Changes in clay content and in K + , Ca 2+ , or Mg 2+ concentrations influence cobalt sorption indirectly through the slight pH changes which result. The ions Na + , Cl - , and NO 3 - have no effect on cobalt sorption. Ferrous ion, added to groundwater to simulate the condition of water at the bottom of the waste trenches, accounts for part of the decrease in cobalt sorption observed with trench waters. 17 refs., 3 figs., 4 tabs

  4. Artificial Weathering of Biotite and Uranium Sorption Characteristics

    International Nuclear Information System (INIS)

    Lee, Seung Yeop; Baik, Min Hoon; Lee, Jae Kwang

    2009-01-01

    An experiment for uranium sorption onto fresh and weathered biotites was performed. After centrifugation, concentrations of uranium in the supernatants were analyzed using ICP-MS, and biotite samples were investigated using XRD and SEM. With powdered biotites (<3 mm in size), we have conducted uranium sorption experiments about fresh and weathered biotites to obtain uranium sorption amounts in various pH conditions. The uranium sorption was not high at a low pH (e.g., pH 3), but increased with increasing pH. There were lower uranium sorption by the weathered biotites than by the fresh ones, and the difference was much larger at higher pH (e.g., pH 11). The lower sorption values of uranium by the weathered biotites may be caused by a change of mineral surfaces and a chemical behavior of surrounding dissolved elements. It seems that the uranium-mineral interaction has been diminished, especially, in the weathered biotite by a destruction and dissolution of preferential sorption sites on the mineral surfaces and by the colloidal formation from dissolved elements.

  5. Control strategies for active noise barriers using near-field error sensing

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper active noise control strategies for noise barriers are presented which are based on the use of sensors near the noise barrier. Virtual error signals are derived from these near-field sensor signals such that reductions of the far-field sound pressure are obtained with the active

  6. Computational modelling of fibre-reinforced cementitious composites : An analysis of discrete and mesh-independent techniques

    NARCIS (Netherlands)

    Radtke, F.K.F.

    2012-01-01

    Failure patterns and mechanical behaviour of high performance fibre-reinforced cementitious composites depend to a large extent on the distribution of fibres within a specimen. A discrete treatment of fibres enables us to study the influence of various fibre distributions on the mechanical

  7. Geochemical modelling of the sorption of tetravalent radioelements

    International Nuclear Information System (INIS)

    Bond, K.A.; Tweed, C.J.

    1991-05-01

    The results of an experimental study of the sorption of a range of tetravalent radioelements, plutonium (IV), tin (IV), thorium(IV) and uranium(IV), onto clay at pH8 and pH11 have been successfully simulated using a triple layer sorption model. The model has been incorporated into HARPHRQ, a geochemical program based on PHREEQE. The model has been parameterised using data for sorption onto ferric oxyhydroxide and goethite. The effects of hydroxycarboxylic acids on the sorption process have also been investigated experimentally. It was generally observed that in the presence of 2x10 -3 M gluconate, sorption was reduced by up two orders of magnitude. The model has satisfactorily simulated these lower sorptivities, through assuming competing sorption and complexation reactions. This work, therefore, further confirms the need to take account of such organic materials in safety assessment modelling. (author)

  8. Heavy ion beam measurement of the hydration of cementitious materials

    International Nuclear Information System (INIS)

    Livingston, R.A.; Schweitzer, J.S.; Rolfs, C.; Becker, H.-W.; Kubsky, S.; Spillane, T.; Zickefoose, J.; Castellote, M.; Viedma, P.G. de; Cheung, J.

    2010-01-01

    The setting and development of strength of Portland cement concrete depends upon the reaction of water with various phases in the Portland cement. Nuclear resonance reaction analysis (NRRA) involving the 1 H( 15 N,α,γ) 12 C reaction has been applied to measure the hydrogen depth profile in the few 100 nm thick surface layer that controls the early stage of the reaction. Specific topics that have been investigated include the reactivity of individual cementitious phases and the effects of accelerators and retarders.

  9. Shear crack formation and propagation in reinforced Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Paegle, Ieva; Fischer, Gregor

    2011-01-01

    capacity of beams loaded primarily in shear. The experimental program consists of ECC with short randomly distributed polyvinyl alcohol (PVA) fiber beams with different stirrup arrangements and conventional reinforced concrete (R/C) counterparts for comparison. The shear crack formation mechanism of ECC......This paper describes an experimental investigation of the shear behaviour of beams consisting of steel reinforced Engineered Cementitious Composites (R/ECC). Based on the strain hardening and multiple cracking behaviour of ECC, this study investigates the extent to which ECC influences the shear...

  10. Micro-structural characterization of the hydration products of bauxite-calcination-method red mud-coal gangue based cementitious materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoming [State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Na [Green Construction Materials and Circulation Economy Center, Architectural Design and Research Institute of Tsinghua University Co., Ltd., Beijing 100084 (China); Yao, Yuan, E-mail: yuanyaocas@163.com [School of Engineering and Computer Science, University of the Pacific, Stockton, CA 95211 (United States); Sun, Henghu; Feng, Huan [School of Engineering and Computer Science, University of the Pacific, Stockton, CA 95211 (United States)

    2013-11-15

    Highlights: • Al{sup IV} and Al{sup VI} both exist in the hydration products. • Increase of Ca/Si ratio promotes the conversion from [AlO{sub 4}] to [AlO{sub 6}]. • Polymerization degree of [SiO{sub 4}] in the hydration products declines. -- Abstract: In this research, the micro-structural characterization of the hydration products of red mud-coal gangue based cementitious materials has been investigated through SEM-EDS, {sup 27}Al MAS NMR and {sup 29}Si MAS NMR techniques, in which the used red mud was derived from the bauxite calcination method. The results show that the red mud-coal gangue based cementitious materials mainly form fibrous C-A-S-H gel, needle-shaped/rod-like AFt in the early hydration period. With increasing of the hydration period, densification of the pastes were promoted resulting in the development of strength. EDS analysis shows that with the Ca/Si of red mud-coal gangue based cementitious materials increases, the average Ca/Si and Ca/(Si + Al) atomic ratio of C-A-S-H gel increases, while the average Al/Si atomic ratio of C-A-S-H gel decreases. MAS NMR analysis reveals that Al in the hydration products of red mud-coal gangue based cementitious materials exists in the forms of Al{sup IV} and Al{sup VI}, but mainly in the form of Al{sup VI}. Increasing the Ca/Si ratio of raw material promotes the conversion of [AlO{sub 4}] to [AlO{sub 6}] and inhibits the combination between [AlO{sub 4}] and [SiO{sub 4}] to form C-A-S-H gel. Meanwhile, the polymerization degree of [SiO{sub 4}] in the hydration products declines.

  11. Radionuclide sorption on crushed and intact granitic rock

    International Nuclear Information System (INIS)

    Eriksen, Tryggve E.; Locklund, Birgitta

    1989-05-01

    The specific surface areas and distribution ratios for sorption of 85 Sr, 137 Cs and 152 Eu were measured for crushed and intact granite rock. The experimental data can be accommodated by a sorption model encompassing sorption on outer and inner surface. It is clearly demonstrated that the time required to obtain reliable Kd-values for the sorption of strongly sorbing radionuclides like 152 Eu is very long due to solution depletion and slow diffusion into the rock. A combination of surface area measurements and batch sorption with small particles may therefore be preferable when studying strongly sorbing nuclides. (authors) (17 figs., 6 tabs.)

  12. Sorption of uranyl ions on hydrous oxides

    International Nuclear Information System (INIS)

    Gupta, A.R.; Venkataramani, B.

    1988-01-01

    Sorption of uranyl ions on hydrous titanium oxide (HTiO), magnetite (MAG), and hydrous thorium oxide (HThO) has been studied as a function of pH. Hydrous oxides have been characterized by their pH-titration curves, intrinsic dissociation constants (pK ai * ) and point of zero charge (pH pzc ). The fraction of protonated surface hydroxyl groups as well as the surface pH (pH surf ) as a function of solution pH have been computed. The distribution of various hydrolyzed species of uranyl ions with solution pH have been compared with uranyl sorption isotherm on these oxides. Sorption edge in all the cases occurs when free hydroxyl groups are available on the surface and pH surf is sufficiently high to favor the formation of dimer-like species on the surface. A new model for the sorption process, called surface hydrolysis model, which explains these and other features of uranyl sorption on hydrous oxides has been proposed. The model visualizes the sorption process as linking of uranyl ions with two adjacent free surface hydroxyl groups without deprotonation (provided the surface pH is high for the hydrolysis of uranyl ions) and formation of dimer-like structures on the surface. The new model has been successfully applied to the present and other available data on uranyl ion sorption on hydrous oxides. (author)

  13. Effect of the cationic composition of sorption solution on the quantification of sorption-desorption parameters of heavy metals in soils

    International Nuclear Information System (INIS)

    Sastre, J.; Rauret, G.; Vidal, M.

    2006-01-01

    We obtained the sorption isotherms of Cd, Cu, Pb and Zn in clay, clay saline and organic soils. The distribution coefficients (K d ) were determined in 0.02 eq l -1 CaCl 2 and in a solution that simulated the soil solution cationic composition. The K d values greatly varied with the composition of the sorption solution and the initial metal concentration. The sorption experiments were complemented with the quantification of the extractable metal, to estimate the reversibility of metal sorption. The extraction yields depended on the metal-soil combination, and the initial metal concentration, showing no correlation with previous K d values. The effect of the solution composition in mobility predictions was estimated through a Retention Factor, defined as the ratio of the K d versus the extraction yield. Results showed that risk was over- or underestimated using the CaCl 2 medium in soils with a markedly different soil solution composition. - Sorption solution composition modifies metal sorption-desorption pattern in soils

  14. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  15. APPLICATION OF MEMBRANE SORPTION REACTOR TECHNOLOGY FOR LRW MANAGEMENT

    International Nuclear Information System (INIS)

    Glagolenko, Yuri; Dzekun, Evgeny; Myasoedovg, Boris; Gelis, Vladimir; Kozlitin, Evgeny; Milyutin, Vitaly; Trusov, Lev; Rengel, Mike; Mackay, Stewart M.; Johnson, Michael E.

    2003-01-01

    A new membrane-sorption technology has been recently developed and industrially implemented in Russia for the treatment of the Liquid (Low-Level) Radioactive Waste (LRW). The first step of the technology is a precipitation of the radionuclides and/or their adsorption onto sorbents of small particle size. The second step is filtration of the precipitate/sorbent through the metal-ceramic membrane, Trumem.. The unique feature of the technology is a Membrane-Sorption Reactor (MSR), in which the precipitation / sorption and the filtration of the radionuclides occur simultaneously, in one stage. This results in high efficiency, high productivity and compactness of the equipment, which are the obvious advantages of the developed technology. Two types of MSR based on Flat Membranes device and Centrifugal Membrane device were developed. The advantages and disadvantages of application of each type of the reactors are discussed. The MSR technology has been extensively tested and efficiently implemented at ''Mayak '' nuclear facility near Chelyabinsk, Russia as well as at other Russian sites. The results of this and other applications of the MSR technology at the different Russian nuclear facilities are discussed. The results of the first industrial applications of the MSR technology for radioactive waste treatment in Russia and analysis of the available information about LRW accumulated in other countries imply that this technology can be successfully used for the Low Level Radioactive Waste treatment in the USA and in other nuclear countries

  16. Sorption of humic acid to functionalized multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, Fei; Yao, Jun; Chen, Huilun; Yi, Zhengji; Xing, Baoshan

    2013-01-01

    The environmental behavior of carbon nanotubes (CNTs) and humic acid (HA) is a prominent concern, but effect of functionalities on their sorption is not clear yet. Functionalized multi-walled CNTs (MCNT15) and HA were used to study their sorption behavior. Sorption rate of HA to MCNTs was dominantly controlled by its diffusion from liquid-MCNT boundary to MCNT surfaces. The sorption is in the sequence of MCNT15 > MCNT15-NH 2 > MCNT15-OH > MCNT15-COOH > MCNT15-Ni, which was dependent on their surface area and meso- and macro-pore volume. The functionalities of MCNTs regulated the sorption by affecting their interaction mechanisms (i.e., H-bonding, π–π, and hydrophobic interaction). Additionally, the amount of these functionalities on the MCNT surface reduced indirectly the sorption sites due to the steric hindrance. Electrostatic repulsion deceased the sorption of HA by MCNTs with increasing pH. This study demonstrated the importance of functionalities on the MCNTs for the sorption of HA. -- Highlights: •HA sorption kinetics was well fitted using Lagergren pseudo second-order model. •Sorption rate of HA was controlled by diffusion from liquid-MCNT boundary to MCNT surfaces. •Sorption was dependent on their surface area and meso- and macro-pore volume. •Functionalities of MCNTs regulated the sorption by affecting interaction mechanisms. -- The functionalities of MCNTs regulated the sorption behavior between MCNTs and HA

  17. Modelling Ni diffusion in bentonite using different sorption models

    International Nuclear Information System (INIS)

    Pfingsten, W.; Baeyens, B.; Bradbury, M.

    2010-01-01

    (II) retardation on the Fe(II) concentration level in the bentonite pore water and the related Fe(II) sorption on exchange and surface complexation sites. The Ni(II) retardation is lower for higher Fe(II) concentrations. Generally, assuming that the Fe(II) background concentration in the bentonite is determined by saturation with siderite, Fe(II) competition reduces the Ni retardation by an order of magnitude compared to the case without competition. Since the Fe(II) concentration in the near-field of a high-level radioactive waste repository may change with time due to canister corrosion processes and mineral precipitation/dissolution reactions, the diffusion of Ni(II), and more generally also metals which are chemically similar (valence state, hydrolysis behaviour) e.g. Co, Zn, Mn.. should be modelled using mechanistic sorption models taking into account competitive sorption processes, i.e. using a more detailed reactive transport approach to describe radionuclide transport within the bentonite correctly. (authors)

  18. Light distribution analysis of optical fibre probe-based near-field optical tweezers using FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B H; Yang, L J; Wang, Y [School of Mechanical and Electrical Engineering, Harbin Institute of Technology, Heilongjiang, Harbin, 150001 (China)], E-mail: richelaw@163.com

    2009-09-01

    Optical fibre probe-based near-field optical tweezers overcomes the diffraction limit of conventional optical tweezers, utilizing strong mechanical forces and torque associated with highly enhanced electric fields to trap and manipulate nano-scale particles. Near-field evanescent wave generated at optical fibre probe decays rapidly with the distance that results a significant reduced trapping volume, thus it is necessary to analyze the near-field distribution of optical fibre probe. The finite difference time domain (FDTD) method is applied to characterize the near-field distribution of optical fibre probe. In terms of the distribution patterns, depolarization and polarization, the near-field distributions in longitudinal sections and cross-sections of tapered metal-coated optical fibre probe are calculated. The calculation results reveal that the incident polarized wave becomes depolarized after exiting from the nano-scale aperture of probe. The near-field distribution of the probe is unsymmetrical, and the near-field distribution in the cross-section vertical to the incident polarized wave is different from that in the cross-section parallel to the incident polarized wave. Moreover, the polarization of incident wave has a great impact on the light intensity distribution.

  19. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  20. Sorption of organophosphate esters by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Yan, Li [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Duan, Jinming [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Jing, Chuanyong, E-mail: cyjing@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-05-01

    Graphical abstract: The interfacial interactions between the OPE molecules and CNTs. - Highlights: • Oxygen-containing groups on CNTs change the sorption property for OPEs. • Molecular configuration of OPEs has insignificant impact on their sorption. • Hydrophobic, π–π EDA and Brønsted acid–base interaction occurred between the CNTs and OPEs. - Abstract: Insights from the molecular-level mechanism of sorption of organophosphate esters (OPEs) on carbon nanotubes (CNTs) can further our understanding of the fate and transport of OPEs in the environment. The motivation for our study was to explore the sorption process of OPEs on multi-walled CNTs (MWCNTs), single-walled CNTs (SWCNTs) and their oxidized counterparts (O-MWCNTs and O-SWCNTs), and its molecular mechanism over a wide concentration range. The sorption isotherm results revealed that the hydrophobicity of OPEs dominated their affinities on a given CNT and the π–π electron donor–acceptor (EDA) interaction also played an important role in the sorption of aromatic OPEs. This π–π EDA interaction, verified with Raman and FT-IR spectroscopy, could restrict the radial vibration of SWCNTs and affect the deformation vibration γ(CH) bands of OPE molecules. The OPE surface coverage on CNTs, estimated using the nonlinear Dubinin–Ashtakhov model, indicated that the oxygen-containing functional groups on CNTs could interact with water molecules by H-bonding, resulting in a decrease in effective sorption sites. In addition, FTIR analysis also confirmed the occurrence of Brønsted acid–base interactions between OPEs and surface OH groups of SWCNTs. Our results should provide mechanistic insights into the sorption mechanism of OPE contaminants on CNTs.