WorldWideScience

Sample records for cement mortars

  1. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  2. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  3. Chloride ingress in cement paste and mortar

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, O.M.; Hansen, P.F.; Coats, A.M.; Glasser, F.P.

    1999-09-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature). The measurements are modelled on Fick's law modified by a term for chloride binding. Inclusion of chloride binding significantly improves the profile shape of the modelled ingress profiles. The presence of fine aggregate and formation of interfacial transition zones at paste-aggregate boundaries does not significantly affect diffusion rates.

  4. Effect of hydrogen sulfide emissions on cement mortar specimens

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, A. F. [Alberta Environment, Science and Technology Branch, Edmonton, AB (Canada); Negi, S. C.; Jofriet, J. C.; Haywoard, G. L. [Guelph Univ., Guelph, ON (Canada)

    2001-07-01

    Six different cement mortar specimens used in animal buildings, where they were exposed to hydrogen sulfide generated from anaerobic fermentation of manure during a period of one year, were investigated. Primary interest was on comparing the corrosion resistance of different cement mortar specimens under long term exposure to hydrogen sulfide. The impressed voltage technique was used to test the specimens in the laboratory. Results revealed that test specimens made with eight per cent silica fume cement replacement performed best and similar Portland cement mortar specimens with a water-cement ratio of 0.55 (PC55) the poorest. All other treatments, (Portland cement with a water to cement ratio of 045, Portland cement Type 50, Portland cement with fibre mesh and Portland cement Type 10 coated with linseed oil) all with water-cement ratios of 0.45, were less effective in preventing corrosion than silica fume replacement.

  5. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  6. Early age monitoring of cement mortar using embedded piezoelectric sensors

    Science.gov (United States)

    Narayanan, Arun; Subramaniam, Kolluru V. L.

    2016-04-01

    A piezoceramic based sensor consisting of embedded Lead Zirconate Titanate (PZT) patch is developed for assessing the progression of hydration and evolution of properties of cement mortar. A method for continuous assessment of cement mortar with different water to cement ratios after casting is presented. The method relies on monitoring changes in the electromechanical (EM) conductance of a PZT patch embedded in mortar. Changes in conductance are shown to sensitively reflect the changes in the mechanical impedance of the cementitious material as it transforms from fluid to solid state.

  7. Modification of Portland cement mortars with cactus gum

    OpenAIRE

    Hernandez-Zaragoza, Juan-Bosco; Caballero-Badillo, Carlos-Eduardo; Rosas-Juarez, Arnulfo; Lopez-Lara, Teresa; Hinojosa-Torres, Jaime; Castano, Victor-Manuel

    2007-01-01

    ????????, ?? ?????????? ??????? ?? ?????? ????????-???????, ??? ???????????????? ? ????????? ???????????, ???????????? ?????????? ?????????? ??????, ????????? ? ????????? ?????????????? ???????. ???????? ?????????? ???????? ??? ????????? ???????? ??? ????????? ?? 65 %, ????????? ?? ???????????? ?????????. Portland cement-based mortars of the standard type used for modern constructions, were modified by adding liophilized cactus gum, extracted froman indigenous Mexican cactus. The results show...

  8. Compressive Strength Development and Microstrueture of Cement.asphalt Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; YAN Peiyu; KONG Xiangming; YANG Jinbo

    2011-01-01

    The compressive strength developing process and the microstructure of cement-asphalt mortar (CA mortar) were investigated.The fluidity of CA mortar has a great influence on its strength.The optimum value of spread diameter of slump flow test is in the range of 300 to 400 mm.The compressive strength of CA mortar keeps a relatively high growth rate in 56 days and grows slowly afterwards.The residual water of hydration in CA mortar freezes under minus environmental temperature which can lead to a significant reduction of the strength of CA mortar.Increasing A/C retards asphalt emulsion splitting and thus prolongs the setting process of CA mortar.The hydration products of cement form the major structural framework of hardened CA mortar and asphalt is a weak phase in the framework but improves the viscoelastic behavior of CA mortar.Therefore,asphalt emulsion should be used as much as possible on the condition that essential performance criterions of CA mortar are satisfied.

  9. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  10. New System of Shrinkage Measurement through Cement Mortars Drying

    Science.gov (United States)

    Morón, Carlos; Saiz, Pablo; Ferrández, Daniel; García-Fuentevilla, Luisa

    2017-01-01

    Cement mortar is used as a conglomerate in the majority of construction work. There are multiple variants of cement according to the type of aggregate used in its fabrication. One of the major problems that occurs while working with this type of material is the excessive loss of moisture during cement hydration (setting and hardening), known as shrinkage, which provokes a great number of construction pathologies that are difficult to repair. In this way, the design of a new sensor able to measure the moisture loss of mortars at different age levels is useful to establish long-term predictions concerning mortar mass volume loss. The purpose of this research is the design and fabrication of a new capacitive sensor able to measure the moisture of mortars and to relate it with the shrinkage. PMID:28272297

  11. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Umoh A.A.

    2015-01-01

    Full Text Available The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive strength generally increased with curing age, and that the mix containing 15% Bamboo Leaf Ash (BLA by mass competes favorably with that of the reference mix at 28days and above. The water absorption and apparent porosity were observed to increase with increase in BLA content, while the bulk density decreases as the percentage of BLA increases from 5% to 25% by mass. The study concluded that 15% BLA replacing cement is adequate for the production of masonry mortar.

  12. Detrimental effects of cement mortar and fly ash mortar on asthma progression.

    Science.gov (United States)

    Cho, Ara; Jang, Hong-Seok; Roh, Yoon Seok; Park, Hee Jin; Talha, A F S M; So, Seung-Young; Lim, Chae Woong; Kim, Bumseok

    2013-11-01

    Currently, concrete additive materials are used worldwide to improve properties of concrete production and to reduce the total cost of the materials used in the concrete. However, the effects of exposure to various gases emitted from mortar mixed with additive materials are poorly understood. To evaluate the pattern of gas emission from cement mortar and additives, the emission levels of gas including ammonia (NH3) and volatile organic compounds (VOCs) were measured from two different mortar types, Ordinary Portland Cement (OPC), and OPC with fly ash on various time points after manufacture. On days 1, 3, 10 and 30 after manufacture, moderate concentrations of NH3 (4, 9, 12 and 5 ppm) were measured in OPC mortar (24h, 150 mm × 150 mm × 50 mm), whereas higher concentrations of NH3 (73, 55, 20 and 5 ppm) were measured in OPC mortar with fly ash (24h, 150 mm × 150 mm × 50 mm). Furthermore, the concentration of VOCs was more than 10 ppm on 1, 3, and 10 days of age in OPC and OPC with fly ash mortars. To examine the mortars' allergic effects on the respiratory system, mice were sensitized with ovalbumin (OVA) and divided into four groups: normal, asthma control, OPC mortar and OPC mortar with fly ash. The mice were housed in corresponding group cage for 10 days with OVA challenges to induce asthma. Histopathologically, increased infiltration of lymphocytes was observed in the lung perivascular area of mice housed in OPC mortar and OPC mortar with fly ash cages compared to lungs of asthma control mice. Moreover, severe bronchial lumen obstruction and increased hypertrophy of bronchial epithelial cells (pmortar with fly ash group compared to OPC mortar or asthma control groups. Lungs of the two mortar groups generally expressed higher levels of genes related with asthma, including IL-4, eotaxin and epidermal growth factor (EGF) compared to lungs of asthma control mice. Additionally, the OPC mortar with fly ash group showed higher expression of IL-5, 13 and monocyte

  13. Carbonatation Influence on Fly Ash and Portland Cement Mortars

    Directory of Open Access Journals (Sweden)

    P.L. Valdez–Tamez

    2009-01-01

    Full Text Available The influence of carbonation on mortars containing 25% of fly ash instead of the cementitious materials was studied. Mortar cylinder specimens were fabricated for 4 different W/C ratios: 0.35, 0.45, 0.55 and 0.65. Mortars with and without fly ash were subjected to an accelerated carbonation process. Volumetric weight, water absorption, compressive strength, water permeability, pH and mercury intrusion porosimetry of the mortar specimens were determined. Due to the fly ash pozzolanic potential, for all W/C ratios, results of the compressive strength tests at 28 days of the mortars with and without fly ash were similar. Mortars with fly ash presented similar water permeability as mortars without fly ash. PH results showed that alkalinity reduction is lower in mortars with fly ash compared to those containing cement only. In all the mortars, the porosimetric analysis indicated that porosity is reduced due to carbonation. Further more, it is showed the predominance of the macro and mesopores.

  14. POLYMER AND CEMENT MORTARS FOR THE CONSTRUCTION AND REPAIR OF BUILDINGS AND STRUCTURE

    Directory of Open Access Journals (Sweden)

    O. M. Pshinko

    2009-02-01

    Full Text Available In the article the analysis of polymer-cement mortars for their application in construction and repair of buildings and structures is presented. The main properties of known polymer-cement mortars used for this purpose are described. The advantages of application of polymer-cement mortars as repair materials are shown.

  15. Properties of Cement Mortar with Phosphogpysum under Steam Curing Condition

    Directory of Open Access Journals (Sweden)

    Kyoungju Mun

    2008-01-01

    Full Text Available The purpose of this study is to utilize waste PG as an admixture for concrete products cured by steam. For the study, waste PG was classified into 4 forms (dehydrate, β-hemihydrate, III-anhydrite, and II-anhydrite, which were calcined at various temperatures. Also, various admixtures were prepared with PG, fly-ash (FA, and granulated blast-furnace slag (BFS. The basic properties of cement mortars containing these admixtures were analyzed and examined through X-ray diffraction, scanning electron microscopy, compressive strength, and acid corrosion resistance. According to the results, cement mortars made with III-anhydrite of waste PG and BFS exhibited strength similar to that of cement mortars made with II-anhydrite. Therefore, III-anhydrite PG calcined at lower temperature can be used as a steam curing admixture for concrete second production.

  16. Effects of moisture on ultrasound propagation in cement mortar

    Science.gov (United States)

    Ju, Taeho; Li, Shuaili; Achenbach, Jan; Qu, Jianmin

    2015-03-01

    In concrete structures, moisture is often a major cause of chemically related degradations such as alkaline-silica reaction. To develop ultrasonic nondestructive evaluation techniques for monitoring such chemical degradations, it is necessary to understand how moisture affects the propagation of ultrasound in concrete. To this end, the objective of this paper is to experimentally determine the correlation between the moisture content in cement mortar and ultrasonic wave propagation. Specifically, effects of moisture on the ultrasonic phase velocity and attenuation are examined. It is found that, for the cement mortar samples considered in this study, moisture has negligible effect on the ultrasonic phase velocity. However, moisture can significantly increase the attenuation of ultrasound in cement mortar even in the sub-MHz frequency range.

  17. Performance analysis of magnesium phosphate cement mortar containing grinding dust

    Directory of Open Access Journals (Sweden)

    Daniel Véras Ribeiro

    2009-03-01

    Full Text Available Magnesium phosphate cement materials are formed by reacting magnesium oxide with water-soluble phosphates such as monoammonium dihydrogen phosphate (ADP, which solidifies at ambient temperature through the formation of hydrated phases in the material. Cylindrical specimens of magnesium phosphate cement were molded and varying amounts (0 to 30% weight of grinding dust were added to the ceramic matrices. The influence of the addition of grinding dust on the characteristics of the mortars in terms of microstructure (SEM, mechanical strength and capillary water absorption was verified. The results obtained proved very satisfactory for the use of this waste as an additive in magnesium phosphate mortars.

  18. Performance analysis of magnesium phosphate cement mortar containing grinding dust

    OpenAIRE

    2009-01-01

    Magnesium phosphate cement materials are formed by reacting magnesium oxide with water-soluble phosphates such as monoammonium dihydrogen phosphate (ADP), which solidifies at ambient temperature through the formation of hydrated phases in the material. Cylindrical specimens of magnesium phosphate cement were molded and varying amounts (0 to 30% weight) of grinding dust were added to the ceramic matrices. The influence of the addition of grinding dust on the characteristics of the mortars in t...

  19. Adsorption of cesium on cement mortar from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Volchek, Konstantin, E-mail: konstantin.volchek@ec.gc.ca [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Miah, Muhammed Yusuf [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Department of Applied Chemistry and Chemical Technology, Noakhali Science and Technology University (Bangladesh); Kuang, Wenxing; DeMaleki, Zack [Emergencies Science and Technology Section, Environment Canada, 335 River Road, Ottawa, Ontario, Canada K1A 0H3 (Canada); Tezel, F. Handan [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis-Pasteur, Ottawa, Ontario, Canada K1N 6N5 (Canada)

    2011-10-30

    Highlights: {yields} The adsorption of cesium on cement mortar was investigated in a range of temperatures and cesium concentrations. {yields} The pseudo-second order kinetic model produced a good fit with the experimental kinetic data. {yields} Equilibrium test results correlated well with the Freundlich isotherm adsorption model. {yields} The interaction between cesium ions and cement mortar was dominated by chemical adsorption. - Abstract: The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L{sup -1} and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive {sup 137}Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L{sup -1} while the respective surface concentration on coupons varied from 0.0395 to 22.34 {mu}g cm{sup -2}. Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol{sup -1} suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  20. MODIFICATION OF FOAMED CEMENT-CLAY MORTARS BY STABILIZERS

    Directory of Open Access Journals (Sweden)

    Panfilova Marina Ivanovna

    2012-10-01

    by-product generated in the course of combustion of crossties, and reduction of the cement consumption rate. The authors have identified that ash added into the injection does not cause any deterioration of the mortar strength; rather, it assures its structural stability and prevents any leaching of heavy metals that it contains. The authors have identified that adding 20 to 26 % of flue ash into the injection reduces the mortar hardening time by 30 %, while the strength of the mortar that has 20 % of ash is almost equal to the one of the benchmark sample. However, any higher ash content causes deterioration of the hardening strength of the mortar. Therefore, the authors have discovered that 20 % of the cement may be replaced by the ash generated in the course of combustion of waste crossties. This replacement is to be performed in the course of preparation of mortars, and it is aimed at the strengthening of the soil. This operation is to be performed in the incinerator to preserve the solution properties. This technology reduces the amount of hazardous by-products through their recycling.

  1. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    Science.gov (United States)

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-01-01

    Abstract Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl2 accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores. PMID:22783062

  2. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics.

    Science.gov (United States)

    Yen, Chi-Liang; Tseng, Dyi-Hwa; Wu, Yue-Ze

    2012-07-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the control cement mortar, respectively. GBS had the highest strength activity index value and could produce large amounts of CaO to enhance the pozzolanic activity of SSA/FA and form calcium silicate hydrate gels to fill the capillary pores of the cement mortar. Consequently, the Sc development of cement mortar with GBS replacement was better than that without GBS, and the total pore volume of blended cement mortars with GBS/SSA replacement was less than that with FA/SSA replacement. In the cement mortar with modified SSA and GBS at 70% of total cement replacement, the Sc at 56 days was 92.4% of the control mortar. Modifying the content of calcium in SSA also increased its pozzolanic reaction. CaCl(2) accelerated the pozzolanic activity of SSA better than lime did. Moreover, blending cement mortars with GBS/SSA replacement could generate more monosulfoaluminate to fill capillary pores.

  3. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  4. Considerations about the use of lime-cement mortars for render conservation purposes

    OpenAIRE

    Torgal, Fernando Pacheco; Faria, Joana; Shasavandi, Arman; Jalali, Said

    2011-01-01

    Some investigations about conservation renders points out that Portland cement based mortars should be avoided and should be replaced by lime-pozzolan mortars. However, this type of mortar is still under investigation and the majority of Portuguese construction enterprises operating in the field of building conservation do not possess enough know-how about them. Besides the absolute rejection of the use of Portland cement based mortars even with just a minimum amount appears to be a dogmat...

  5. Mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions

    Institute of Scientific and Technical Information of China (English)

    熊良宵; 虞利军

    2015-01-01

    To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation, and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the 420th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.

  6. Adsorption of cesium on cement mortar from aqueous solutions.

    Science.gov (United States)

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  7. Properties of Cement Mortar Containing Rubber Ash as Sand Replacement

    Science.gov (United States)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Izzati Raihan Ramzi Hannan, Nurul

    2016-11-01

    Discarded scrap tyres have become one of the major environmental problems nowadays. There has been increasing public worry about the mining of natural resources in recent years. In order to minimize the consumption of natural resources, rubber ash has been postulated as a potential material for partial replacement of sand in concrete materials especially for applications which are subjected to impact and vibration such as road and bridge construction. Thus, it contributes to the development of the construction industry in a sustainable way. This paper mainly emphasizes on the use of rubber ash from waste tyres in cement mortar. 100mm cubic specimens were produced by adding rubber ash volume ratios of 0%, 3%, 5% and 7% as sand replacement in M30 quality cement mortar. A compressive stress test and a density test were conducted at the end of 7, 14, and 28 days. The result shows that 5% is the optimum value for sand replacement in the cement mortar. Therefore, rubber ash is acceptable to be used as sand replacement.

  8. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    Science.gov (United States)

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar.

  9. Characterization and restoration of historic Rosendale cement mortars for the purpose of restoration

    Science.gov (United States)

    Hart, Stephanie Anne

    Mortar was a very common building material in today's historic sites. Before Portland cement was manufactured at a global level, Rosendale cement was commonly used in these mortars. Over time, these mortars in historic sites have begun to break down and wear away. With Rosendale cement in production again, measures can be taken to restore and repair the historic mortars. However, little testing has been done to establish durability of modern Rosendale cement mortars. This presentation highlights the common mix techniques used at the time, and undergoes experiments to establish general properties and predict future durability. Six different mortar mixes were tested with varying cement content and using various lime additions. Properties observed include compressive strength, absorption, porosity, permeability, and bond strength. Ion chromatography was used on seawater-soaked samples to determine how the Rosendale cement mortar would react with the seawater. Relationships between these properties were also addressed. It was found that cement content played a large role in compressive strength, while lime content had an effect on bond strength. Ion chromatography was used on seawater-soaked samples to determine how the Rosendale cement mortar would react with the seawater. Magnesium sulfates, and chloride were taken up into the mortars, indicating that Rosendale would be venerable to salt attack.

  10. Influence of Portland Cement Class on the Corrosion Rate of Steel Reinforcement in Cement Mortar Caused by Penetrating Chloride and Sulfate from the Environment

    OpenAIRE

    Bikić, F.; Cacan, M.; Rizvanović, M.

    2013-01-01

    The influence of portland cement class on the corrosion rate of steel reinforcement in cement mortar caused by penetrating chloride or sulfate from the environment in already hardened cement mortar is investigated in this paper. Three classes of portland cement have been used for the tests, PC 35, PC 45 and PC 55. Cylindrical samples of cement mortar with steel reinfor- cement in the middle were treated 6 months at room temperature in the follow...

  11. Evaluation of electric properties of cement mortars containing pozzolans

    Directory of Open Access Journals (Sweden)

    Cruz, J. M.

    2011-03-01

    Full Text Available In this paper the evolution of the microstructure of Portland cement mortar is analyzed, by using electrical impedance measurements. Cement mortars are compared without and with two pozzolanic substitutions: spent fluid catalytic cracking catalyst (FCC and metakaolin (MK. The measurement method is described and the model for analyzing the electrical impedance spectra is developed. Three electrical parameters are defined: electrical resistivity, capacitance exponent, and capacitive factor. The results show a significant increase in resistivity of the mortars with pozzolans after 7 days of curing, especially in mortars with MK. This increase is correlated with lime-fixing by the pozzolans. The capacitive properties evolve differently at early age, but reach the same values after 148 days. The electrical and mineralogical data show that the evolution of the microstructure in the mortar with MK starts before it does in the mortars with FCC and that the final microstructure becomes different.

    En este trabajo se analiza la microestructura de morteros de cemento Portland, mediante medidas de impedancia eléctrica. Se comparan morteros de cemento sin y con dos sustituciones puzolánicas: residuo de catalizador de craqueo catalítico (FCC y metacaolín (MK. Se describe el método de medida y se desarrolla el modelo de análisis de los espectros de impedancia eléctrica. Se definen tres parámetros eléctricos: resistividad eléctrica, exponente capacitivo, y factor capacitivo. Se observa un aumento importante de la resistividad de los morteros con puzolana a partir de los 7 días de curado, sobre todo en morteros con MK. Este aumento está correlacionado con la fijación de cal de las puzolanas. Las propiedades capacitivas son diferentes a edad temprana, pero se igualan a los 148 días. Los resultados eléctricos y mineralógicos muestran que la evolución microestructural comienza antes en los morteros con MK que con FCC y que la microestructura

  12. Effect of surfactants on pressure-sensitivity of CNT filled cement mortar composites

    Science.gov (United States)

    Han, Baoguo; Yu, Xun

    2014-11-01

    Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (NaDDBS) were used as surfactants to disperse multi-walled carbon nanotubes (MWNT) in cement mortar and fabricate pressure-sensitive carbon nanotubes filled cement mortar composites. The pressure-sensitivity of cement mortar composites with different concentrations of MWNT and different surfactants was explored under repeated loading and impulsive loading, respectively. Experimental results indicate that the response of the electrical resistance of composites with NaDDBS to external force is more stable and sensitive than that of composites with SDS. Therefore, NaDDBS has higher efficiency than SDS for the dispersion of MWNT in cement mortar, and it is an effective surfactant for fabricating MWNT filled cement mortar composites with superior pressure-sensitivity.

  13. Dynamic Properties of Fiber Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    唐志平; 徐松林; 胡晓军; 廖香丽; 蔡建

    2004-01-01

    Based on the shear wave tracing(SWT) technique proposed by Tang Z P, particle velocity gauge and the dual internal measurement for pressure and shear waves (IMPS) system are applied to investigate the responses of fiber reinforced cement subjected to impact loading. Series of experiments are conducted. The results show that there exist four critical points, A, B, C, D, in p-V Hugoniot curves. They correspond to the Hugoniot elastic limit (HEL) of the material, the critical point for shear strength limit and transition from damage state to failure state, void collapse, and solid compression, respectively. The critical point B is difficult to be aware of and never reported. However, it can be clearly disclosed with SWT method. Based on the analyses of shear strength, it can be concluded that the transversal wave, especially the unloading transversal wave, is especially important for the dynamic damage investigation of brittle materials.

  14. Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars.

    Science.gov (United States)

    Monzó, J; Payá, J; Borrachero, M V; Girbés, I

    2003-01-01

    The influence of sewage sludge ash (SSA) on workability of cement mortars has been studied. The irregular morphology of SSA particles produced a decrease of mortar workability. A nonlinear reduction of workability in mortars containing SSA was observed, but when SSA content in mortars was increased the workability reduction was less significant. A superplasticizer is used in order to compensate the decrease of workability produced by SSA. When SSA sized fractions were used, only significant differences in workability for mortars prepared with high water volumes or with the presence of superplasticizer were observed.

  15. Effect of graphene on mechanical properties of cement mortars

    Institute of Scientific and Technical Information of China (English)

    曹明莉; 张会霞; 张聪

    2016-01-01

    Functionalized graphene nano-sheets (FGN) of 0.01%−0.05% (mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.

  16. Properties of Cement Mortar Produced from Mixed Waste Materials with Pozzolanic Characteristics

    OpenAIRE

    2012-01-01

    Waste materials with pozzolanic characteristics, such as sewage sludge ash (SSA), coal combustion fly ash (FA), and granulated blast furnace slag (GBS), were reused as partial cement replacements for making cement mortar in this study. Experimental results revealed that with dual replacement of cement by SSA and GBS and triple replacement by SSA, FA, and GBS at 50% of total cement replacement, the compressive strength (Sc) of the blended cement mortars at 56 days was 93.7% and 92.9% of the co...

  17. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  18. Corrosion Sensor for Monitoring the Service Condition of Chloride-Contaminated Cement Mortar

    Directory of Open Access Journals (Sweden)

    Heng-Jing Ba

    2010-04-01

    Full Text Available A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs. The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  19. Corrosion sensor for monitoring the service condition of chloride-contaminated cement mortar.

    Science.gov (United States)

    Lu, Shuang; Ba, Heng-Jing

    2010-01-01

    A corrosion sensor for monitoring the corrosion state of cover mortar was developed. The sensor was tested in cement mortar, with and without the addition of chloride to simulate the adverse effects of chloride-contaminated environmental conditions on concrete structures. In brief, a linear polarization resistance method combined with an embeddable reference electrode was utilized to measure the polarization resistance (Rp) using built-in sensor electrodes. Subsequently, electrochemical impedance spectroscopy in the frequency range of 1 kHz to 50 kHz was used to obtain the cement mortar resistance (Rs). The results show that the polarization resistance is related to the chloride content and Rs; ln (Rp) is linearly related to the Rs values in mortar without added chloride. The relationships observed between the Rp of the steel anodes and the resistance of the surrounding cement mortar measured by the corrosion sensor confirms that Rs can indicate the corrosion state of concrete structures.

  20. Thermal and electrical behavior of nano-modified cement mortar

    Science.gov (United States)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Alafogianni, P.; Barkoula, N.-M.; Paipetis, A. S.; Dassios, K. G.; Matikas, T. E.

    2014-04-01

    This research aims in characterizing modified cement mortar with carbon nanotubes (CNTs) that act as nanoreinforcements leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The effective thermal properties of the modified nano-composites were evaluated using IR Thermography. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. To eliminate any polarization effects the specimens were dried in an oven before testing. In this work, the thermal and electrical properties of the nano-modified materials were studied by nondestructively monitoring their structural integrity in real time using the intrinsic multi-functional properties of the material as damage sensors.

  1. Properties of Cement Mortar by Use of Hot-Melt Polyamides as Substitute for Fine Aggregate

    Directory of Open Access Journals (Sweden)

    Xiongzhou Yuan

    2015-06-01

    Full Text Available This paper presents an experimental study on use of hot-melt polyamide (HMP to prepare mortar specimens with improved crack healing and engineering properties. The role of HMP in the crack repairing of cement mortar subjected to several rounds of heat treatment was investigated. Compatibility between HMP and hydraulic cement was investigated through X-ray diffraction (XRD and Fourier transform infrared spectra (FTIR technology. Mortar specimens were prepared using standard cement mortar mixes with HMP at 1%, 3% and 5% (by volume for fine aggregate substitute. After curing for 28 days, HMP specimens were subjected to heating at temperature of 160 °C for one, two, and three days and then natural cooling down to ambient temperature. Mechanical and durability properties of the heated HMP mortars were evaluated and compared with those of the corresponding mortars without heating. The microscopic observation of the interfacial transition zone (ITZ of HMP mortar was conducted through environmental scanning electron microscopy (ESEM. Results reveal that incorporation of HMP improves the workability of the HMP/cement binder while leading to decrease in compressive strength and durability. The heated HMP mortars after exposure to heating for one, two, and three days exhibit no obvious change in compressive strength while presenting notable increase in flexural strength and durability compared with the corresponding mortars without heating. The XRD, FTIR and ESEM analyses indicate that no obvious chemical reaction occurs between HMP and hydraulic cement, and thus the self-repairing for interfacial micro-crack in HMP/cement composite system is ascribed to the physical adhesion of HMP to cement matrix rather than the chemical bonding between them.

  2. Influence of Superplasticizers on Strength and Shrinkage Cracking of Cement Mortar under Drying Conditions

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; WANG Xin'gang; LI Xiangguo; YANG Lei

    2007-01-01

    The effects of polynaphthalene series superplasticizers(PNS) with a low content of sodium sulfate (H-UNF),with a high content of sodium sulfate(C-UNF) and polycarboxylate type superplasticizer (PC) on strength and shrinkage cracking of cement mortar under drying conditions were investigated by means of multi-channel ellipse ring shrinkage cracking test, free shrinkage and strength test. The general effect of PNS and PC is to increase the initial cracking time of mortars, and decrease the cracking sensitivity of mortars. As for decreasing the cracking sensitivity of mortars, PC>H-UNF>C-UNF. To incorporate superplasticizers is apparently to increase the free shrinkage of mortars when keeping the constant w/b ratio and the content of cement pastes. As for the effect of controlling the volume stability of mortars, PC>C-UNF>H-UNF. Maximum crack width of mortars containing PC is lower, but the development rate of maximum crack width of mortars containing H-UNF is faster in comparison with control mortars. The flexural and compressive strengths of mortars at 28-day increase with increasing superplasticizer dosages under drying conditions. PC was superior to PNS in the aspect of increasing strength.

  3. Studies on the reuse of waste printed circuit board as an additive for cement mortar.

    Science.gov (United States)

    Ban, Bong-Chan; Song, Jong-Yoon; Lim, Joong-Yeon; Wang, Soo-Kyoon; An, Kwang-Guk; Kim, Dong-Su

    2005-01-01

    The recent development in electronic industries has generated a drastic increase in production of printed circuit boards (PCB). Accordingly, the amount of waste PCB from electronic productions and waste electronics and its environmental impact such as soil and groundwater contamination have become a great concern. This study aims to propose a method for reuse of waste PCB as an additive for cement mortar. Although the expansibility of waste PCB powder finer than 0.08 mm in water was observed to be greater than 2.0%, the maximum expansion rates in water for 0.08 to approximately 0.15 and 0.15 to approximately 0.30 mm sized PCB powders were less than 2.0%, which satisfied the necessary condition as an alternative additive for cement mortar in place of sand. The difference in the compressive strength of standard mortar and waste PCB added mortar was observed to be less than 10% and their difference was expected to be smaller after prolonged aging. The durability of waste PCB added cement mortar was also examined through dry/wet conditioning cyclic tests and acidic/alkaline conditioning tests. From the tests, both weight and compressive strength of cement mortar were observed to be recovered with aging. The leaching test for heavy metals from waste PCB added mortar showed that no heavy metal ions such as copper, lead, or cadmium were detected in the leachate, which resulted from fixation effect of the cement hydrates.

  4. Comparing the Environmental Impacts of Alkali Activated Mortar and Traditional Portland Cement Mortar using Life Cycle Assessment

    Science.gov (United States)

    Matheu, P. S.; Ellis, K.; Varela, B.

    2015-11-01

    Since the year 1908 there has been research into the use alkali activated materials (AAM) in order to develop cementitious materials with similar properties to Ordinary Portland Cement. AAMs are considered green materials since their production and synthesis is not energy intensive. Even though AAMs have a high compressive strength, the average cost of production among other issues limits its feasibility. Previous research by the authors yielded a low cost AAM that uses mine tailings, wollastonite and ground granulated blast furnace slag (GGBFS). This mortar has an average compressive strength of 50MPa after 28 days of curing. In this paper the software SimaPro was used to create a product base cradle to gate Life Cycle Assessment (LCA). This compared the environmental impact of the AAM mortar to an Ordinary Portland Cement mortar (PCHM) with similar compressive strength. The main motivation for this research is the environmental impact of producing Ordinary Portland Cement as compared to alkali activated slag materials. The results of this LCA show that the Alkali Activated Material has a lower environmental impact than traditional Portland cement hydraulic mortar, in 10 out of 12 categories including Global Warming Potential, Ecotoxicity, and Smog. Areas of improvement and possible future work were also discovered with this analysis.

  5. Use of waste brick as a partial replacement of cement in mortar.

    Science.gov (United States)

    Naceri, Abdelghani; Hamina, Makhloufi Chikouche

    2009-08-01

    The aim of this study is to investigate the use of waste brick as a partial replacement for cement in the production of cement mortar. Clinker was replaced by waste brick in different proportions (0%, 5%, 10%, 15% and 20%) by weight for cement. The physico-chemical properties of cement at anhydrous state and the hydrated state, thus the mechanical strengths (flexural and compressive strengths after 7, 28 and 90 days) for the mortar were studied. The microstructure of the mortar was investigated using scanning electron microscopy (SEM), the mineralogical composition (mineral phases) of the artificial pozzolan was investigated by the X-ray diffraction (XRD) and the particle size distributions was obtained from laser granulometry (LG) of cements powders used in this study. The results obtained show that the addition of artificial pozzolan improves the grinding time and setting times of the cement, thus the mechanical characteristics of mortar. A substitution of cement by 10% of waste brick increased mechanical strengths of mortar. The results of the investigation confirmed the potential use of this waste material to produce pozzolanic cement.

  6. PREPARATION OF CEMENT MORTAR REINFORCED BY MODIFIED MICROFIBER IN A TURBULENT MIXER

    Directory of Open Access Journals (Sweden)

    Belova Tat’yana Konstantinovna

    2016-03-01

    Full Text Available The improvement of the structure of cement mortars on micro- and nanolevels by means of disperse reinforcement by modified microfibers promotes the considerable improvement of operational characteristics of the designs made on their basis. However, the absence of the developed technology of preparing the cement mortars reinforced by the modified microfiber providing the uniform distribution of the microfibres in volume of a composite constrains the widespread introduction of such solutions in the construction practice. The results of the researches of the technological parameters of preparing the microfiber reinforced cement mortars in the turbulent mixer are presented in article. The results of the production experiment on determining the bending durability are reflected as well as the variation coefficient of the durability of the reinforced samples prepared by means of the turbulent mixer. The results of the influence of the water-cement relation of the mortar mix and influence of the time of mixing the components in the turbulent mixer on change of mobility of the mix and strength characteristics of the hardened solution are presented. The results of the tests indicated the efficiency of preparing cement mortar reinforced by modified microfiber in the turbulent mixer. The reinforced samples are characterized by the increased bending durability and high uniformity of the strength characteristics. In case of turbulent mixing of the components of mortar mix its mobility increases from 5 to 25% in comparison with the mix prepared manually. The time of mixing the components in the turbulent mixer has an impact on the strength characteristics of the fiber reinforced solution. The optimum time of mixing the components contributes to a certain water-cement relation of the mortar mix. Therefore, the preparation of the cement mortar reinforced by the modified microfiber in the turbulent mixer is characterized by high efficiency and productivity, the

  7. Effect of various superplasticizers on rheological properties of cement paste and mortars

    Energy Technology Data Exchange (ETDEWEB)

    Masood, I.; Agarwal, S.K. (Central Building Research Institute, Roorkee (India))

    1994-01-01

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cement paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.

  8. Reuse of de-inking sludge from wastepaper recycling in cement mortar products.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi; Shapiro, Gretta

    2011-08-01

    This paper presents results of an investigation into the use of de-inking sludge from a paper recycling mill as feedstock material in the manufacture of cement mortar products, including masonry blocks and mortar renders. Both physical and mechanical properties of mortar specimens containing various amounts of de-inking sludge were investigated. It was observed that the addition of de-inking sludge to cement mortar at a fixed water-to-cement ratio significantly reduced flow properties and increased setting time. Water absorption and volume of permeable voids of cement mortar increased with increased dosage of de-inking sludge, with a corresponding reduction of bulk density. The 91-day compressive strength of mortar samples with 2.5 wt% and 20 wt% de-inking sludge loadings retained 83% and 62% respectively of the reference mortar strength. The corresponding drying shrinkage increased by up to 160% compared to reference samples. However, a de-inking sludge loading of up to 2.5 wt% did not significantly alter measured physical and mechanical properties. The results demonstrate that despite the high moisture absorbance of de-inking sludge due to its organic matter and residual cellulose fibre content, it serves as a potential supplementary additive and its cellulosic content proving to be an active set retardant to cementitious masonry products.

  9. Mechanism and Durability of Repair Systems in Polymer-Modified Cement Mortars

    Directory of Open Access Journals (Sweden)

    Ru Wang

    2015-01-01

    Full Text Available This paper investigated the mechanism and durability of repair systems made of ordinary cement-based repair mortar and three kinds of polymer-modified repair mortars with old concrete, SBR dispersion, SAE dispersion, and SAE powder. By comparing the bonding properties of mortars before and after erosion, it was found that polymers could effectively improve the durability of the repair system and SAE powder had the best improvement. Micromorphology study of the repair mortar and the interface of repair mortar with old concrete through SEM showed that the polymer film formed from SAE powder whatever in the mortar or at the interface was dense and tough, the film formed from SAE dispersion was loose and weak, while the film formed from SBR dispersion was in between them, which explained the difference in the tensile bond strength and the durability of the repair systems.

  10. The effect of modified hydrotalcites on mechanical properties and chloride penetration resistance in cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2015-01-01

    In this paper, two types of modified hydrotalcites (MHT) were incorporated into cement mortars with two dosage levels (replacing 5% and 10% cement by mass). Designated testing programme including strength test, porosity test, and rapid chloride migration and diffusion test were employed to investiga

  11. Effects of Carbon Nanotubes on Mechanical and 2D-3D Microstructure Properties of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    LIU Qiaoling; SUN Wei; JIANG Hao; WANG Caihui

    2014-01-01

    To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19%, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs.

  12. Cement content influence in rebar corrosion in carbonated mortars

    Directory of Open Access Journals (Sweden)

    Américo, P. O.

    2003-12-01

    Full Text Available The cement hydration products protect the concrete rebars of the reinforced concrete due to the production of Ca(OH2, NaOH, and KOH that, upon dissolving in the concrete s aqueous phase, generate a pH above 12.5. However, reinforced concrete structures are exposed to pollutant gases, such as, CO2 which upon penetrating the concrete, reacts with the alkaline components, consequently reducing the pH of the aqueous phase causing the loss of passivity by the rebar and as a consequence its corrosion when there is the presence of humidity and oxygen. The objective of the current paper is the analysis of the alkaline reserve influence, measured by the cement content, in the corrosion of rebars employing the polarization resistance technique for determining the corrosion intensity. Results for corrosion intensity of rebars embedded in prismatic mortar test specimens are produced with three cement content levels, with equal water/cement ratio. Cylindrical test specimens were also used for verification of the capillary absorption and the porosity by means of mercury porosymetry The results show that the initiation period is shorter and the corrosion intensity of the rebars is higher when the cement content is lower However, there is also an alteration in the microstructure upon altering the cement content, and far this reason one cannot conclude that the alkaline reserve alone is responsible for these results.

    Los productos de hidratación del cemento protegen las armaduras embebidas en el hormigón debido a la gran cantidad de Ca(OH2, NaOH y KOH disueltos en la fase acuosa del hormigón que proporcionan un pH mayor que 12,5. Sin embargo, las estructuras de hormigón armado están expuestas a los gases contaminantes como el CO2, que al penetrar en el hormigón reacciona con los compuestos alcalinos, se reduce el pH de la fase acuosa y provocan la despasivación de la armadura. Posteriormente, si hay

  13. Quantitative sensing of corroded steel rebar embedded in cement mortar specimens using ultrasonic testing

    Science.gov (United States)

    Owusu Twumasi, Jones; Le, Viet; Tang, Qixiang; Yu, Tzuyang

    2016-04-01

    Corrosion of steel reinforcing bars (rebars) is the primary cause for the deterioration of reinforced concrete structures. Traditional corrosion monitoring methods such as half-cell potential and linear polarization resistance can only detect the presence of corrosion but cannot quantify it. This study presents an experimental investigation of quantifying degree of corrosion of steel rebar inside cement mortar specimens using ultrasonic testing (UT). A UT device with two 54 kHz transducers was used to measure ultrasonic pulse velocity (UPV) of cement mortar, uncorroded and corroded reinforced cement mortar specimens, utilizing the direct transmission method. The results obtained from the study show that UPV decreases linearly with increase in degree of corrosion and corrosion-induced cracks (surface cracks). With respect to quantifying the degree of corrosion, a model was developed by simultaneously fitting UPV and surface crack width measurements to a two-parameter linear model. The proposed model can be used for predicting the degree of corrosion of steel rebar embedded in cement mortar under similar conditions used in this study up to 3.03%. Furthermore, the modeling approach can be applied to corroded reinforced concrete specimens with additional modification. The findings from this study show that UT has the potential of quantifying the degree of corrosion inside reinforced cement mortar specimens.

  14. Axial compression behavior of concrete masonry wallettes strengthened with cement mortar overlays

    Directory of Open Access Journals (Sweden)

    F. L. De Oliveira

    Full Text Available This paper presents the results of a series of axial compression tests on concrete block wallettes coated with cement mortar overlays. Different types of mortars and combinations with steel welded meshes and fibers were tested. The experimental results were discussed based on different theoretical approaches: analytical and Finite Element Method models. The main conclusions are: a the application of mortar overlays increases the wall strength, but not in a uniform manner; b the strengthening efficiency of wallettes loaded in axial compression is not proportional to the overlay mortar strength because it can be affected by the failure mechanisms of the wall; c steel mesh reinforced overlays in combination with high strength mortar show better efficiency, because the steel mesh mitigates the damage effects in the block wall and in the overlays themselves; d simplified theoretical methods of analysis as described in this paper can give satisfactory predictions of masonry wall behavior up to a certain level.

  15. Utilization of recycled glass derived from cathode ray tube glass as fine aggregate in cement mortar.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun

    2011-08-30

    Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.

  16. Influence of Temperature on Sulfate Attack of Limestone Filler Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mortar prisms were made with three different cementitious materials (with or without mineral admixture) plus 30% mass of limestone filler. After 28 days of curing in water at room temperature, the mortars were submerged in 2% magnesium sulfate solution at different temperatures (5 ℃, 20 ℃ and alternate temperature between 5 ℃ and 20 ℃) for a year. The appearance and strength development were measured on these immersed prisms at intervals, and samples selected from the surface of prisms were examined by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results show that the influence of temperature on the resistance to sulfate attack of mortar is related to the binder compositions. A higher temperature leads to a quicker strength loss and appearance deterioration of the mortar without mineral admixture. For blended cements, a higher temperature is favorable for the pozzolanic reaction of mineral admixture and the overall deterioration of mortar is reduced with the increasing temperature. When the mineral admixture has a lower reactivity, such influence of temperature on the resistance to sulfate attack of mortar containing admixtures becomes greater. At the three different solution temperatures, two blended cements show significantly improved resistances to sulfate attack. After 1 year of exposure to magnesium sulfate solutions, the formation of thaumasite was checked in the OPC mortars at both 5 ℃ and 20 ℃. It is concluded that the thaumasite formation is not limited to structures at low temperature (less than 15 ℃).

  17. Fundamental Properties of Magnesium Phosphate Cement Mortar for Rapid Repair of Concrete

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2016-01-01

    Full Text Available Fundamental properties of magnesium phosphate cement (MPC were investigated in this paper. The setting time and compressive and bond (i.e., flexural and tensile bond strengths were measured to assess the applicability, and hydration product was detected by the X-ray diffraction. The specimens were manufactured with magnesia and potassium dihydrogen phosphate (K2HPO4 was added to activate hydration process. The Borax (Na2B4O7·10H2O was used as a retarder to mitigate overwhelming rapid hardening. Mercury intrusion porosimetry was used to examine the pore structure of MPC mortar, and simultaneously rapid chloride penetration test was performed. As a result, the compressive strength of MPC mortar was mostly achieved within 12 hours; in particular, the MPC mortar at 4.0 of M/P ranked the highest value accounting for 30.0 MPa. When it comes to tensile and flexural bond to old substrate in mortar patching, the MPS had the higher tensile and flexural strengths, accounting for 1.9 and 1.7 MPa, respectively, compared to OPC mortar patching. Unlike Portland cement mortar, the MPC mortar contained mainly air void rather than capillary pores in the pore distribution. Presumably due to reduced capillary pore in the MPC, the MPC indicated lower penetrability in the chloride penetration test.

  18. Cement Pastes and Mortars Containing Nitrogen-Doped and Oxygen-Functionalized Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mauricio Martínez-Alanis

    2016-01-01

    Full Text Available Cement pastes and mortars based on ordinary Portland cement containing nitrogen-doped multiwalled carbon nanotubes (MWCNT-Nx or oxygen-functionalized multiwalled carbon nanotubes (MWCNT-Ox are investigated. To incorporate MWCNTs into the cementitious matrix, the as-produced carpets are dispersed over periods of 1 and 2 hours in distilled water at pH levels of 1 and 7. The cement pastes are prepared by adding 0.1 wt% of MWCNTs to cement powder, followed by characterization with SEM and X-ray diffraction (XRD at an early age (first hours of hydration. The mortars are mechanically characterized during the hydration process for a period of 28 days. SEM characterization of cement pastes revealed that the carbon nanotubes are well incorporated in the cementitious matrix, with the hydrated cement grains interconnected by long carbon nanotubes. XRD characterizations demonstrated that, during the hydration of cement pastes, different peaks emerged that were associated with ettringite, hydrated calcium silicate, and calcium hydroxide, among other structures. Results of the compressive strength measurements for mortars simultaneously mixed with MWCNT-Nx and MWCNT-Ox reached an increment of approximately 30% in compressive strength. In addition, density functional theory calculations were performed in nitrogen-doped and oxygen-functionalized carbon nanotubes interacting with a cement grain.

  19. Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars

    Directory of Open Access Journals (Sweden)

    Vanissorn Vimonsatit

    2015-12-01

    Full Text Available In this paper, the influence of fly ash fineness on water requirement and shrinkage of blended cement mortar was studied. The results indicate that the water requirement and shrinkage characteristic of the blended cement mortar are dependent on fly ash fineness and replacement level. The use of coarse fly ash slightly reduces the water requirement but greatly reduced the drying and the autogenous shrinkage of the blended cement mortars and the reduction is more with an increase in the fly ash replacement level. The finer fly ashes further reduce the water requirement, but increase the drying and the autogenous shrinkages as compared with coarser fly ash. The incorporation of superplasticizer drastically reduces the water requirement, but the effect on the drying and autogenous shrinkages of the normal Portland cement mortar is small. However, for the fly ash mortar, the use of superplasticizer results in a decrease in drying shrinkage and in a substantial increase in the autogenous shrinkage particularly for the fine fly ash at a high replacement level.

  20. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics.

    Science.gov (United States)

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi

    2008-03-01

    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.

  1. Evaluation of sulfate resistance of cement mortars containing black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2009-03-01

    In this paper, black rice husk ashes (BRHAs), which are agrowastes from an electricity generating power plant and a rice mill, were ground and used as a partial cement replacement. The durability of mortars under sulfate attack including expansion and compressive strength loss were investigated. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 30%, and 50% by weight of binder. The water-to-binder ratios were 0.55 and 0.65. For the durability of mortar exposed to sulfate attack, 5% sodium sulfate (Na2SO4) and magnesium sulfate (MgSO4) solutions were used. As a result, when increasing the percentage replacement of BRHA, the expansion and compressive strength loss of mortar decreased. At the replacement levels of 30% and 50% of BRHA, the expansion of the mortars was less than those mixed with sulfate-resistant cement. However, the expansion of the mortars exposed to Na2SO4 was more than those exposed to MgSO4. Increasing the replacement level of BRHA tends to reduce the compressive strength loss of mortars exposed to Na2SO4 attack. In contrary, under MgSO4 attack, when increasing the replacement level of BRHA, the compressive strength loss increases from 0% to 50% in comparison to Portland cement mortar. Results show that ground BRHA can be applied as a pozzolanic material to concrete and also improve resistance to sodium sulfate attack, but it can impair resistance to magnesium sulfate attack.

  2. Characterization of Mechanical and Bactericidal Properties of Cement Mortars Containing Waste Glass Aggregate and Nanomaterials

    Directory of Open Access Journals (Sweden)

    Pawel Sikora

    2016-08-01

    Full Text Available The recycling of waste glass is a major problem for municipalities worldwide. The problem concerns especially colored waste glass which, due to its low recycling rate as result of high level of impurity, has mostly been dumped into landfills. In recent years, a new use was found for it: instead of creating waste, it can be recycled as an additive in building materials. The aim of the study was to evaluate the possibility of manufacturing sustainable and self-cleaning cement mortars with use of commercially available nanomaterials and brown soda-lime waste glass. Mechanical and bactericidal properties of cement mortars containing brown soda-lime waste glass and commercially available nanomaterials (amorphous nanosilica and cement containing nanocrystalline titanium dioxide were analyzed in terms of waste glass content and the effectiveness of nanomaterials. Quartz sand is replaced with brown waste glass at ratios of 25%, 50%, 75% and 100% by weight. Study has shown that waste glass can act as a successful replacement for sand (up to 100% to produce cement mortars while nanosilica is incorporated. Additionally, a positive effect of waste glass aggregate for bactericidal properties of cement mortars was observed.

  3. Experimental study of the mechanical stabilization of electric arc furnace dust using fluid cement mortars.

    Science.gov (United States)

    Ledesma, E F; Jiménez, J R; Ayuso, J; Fernández, J M; Brito, J de

    2017-03-15

    This article shows the results of an experimental study carried out in order to determine the maximum amount of electric arc furnace dust (EAFD) that can be incorporated into fluid cement-based mortars to produce mechanically stable monolithic blocks. The leaching performance of all mixes was studied in order to classify them according to the EU Council Decision 2003/33/EC. Two mortars were used as reference and three levels of EAFD incorporation were tested in each of the reference mortars. As the incorporation ratio of EAFD/cement increases, the mechanical strength decreases. This is due to the greater EAFD/cement and water/cement ratios, besides the presence of a double-hydrated hydroxide of Ca and Zn (CaZn2(OH)6·2H2O) instead of the portlandite phase (Ca(OH)2) in the mixes made with EAFD, as well as non-hydrated tricalcium silicate. A mass ratio of 2:1 (EAFD: cement-based mortar) can be added maintaining a stable mechanical strength. The mechanical stabilization process also reduced the leaching of metals, although it was not able to reduce the Pb concentration below the limit for hazardous waste. The high amount of EAFD mechanically stabilized in this experimental study can be useful to reduce the storage volume required in hazardous waste landfills.

  4. Effects of Specimen Height on the Acoustic Emission Rate Value ‘a’ for Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    WANG Yan; HU Hongxiang; LU Guijuan; CHEN Shijie; LIU Shaojun; WANG Yao

    2016-01-01

    In order to study the size effect on the AE rate ‘a’ value, three kinds of mix ratios were set up by different particle sizes and water cement ratios, 45 cement mortar specimens with ifve different heights were tested under axial compression. And the whole damage processes were monitored by full-digital acoustic emission acquisition system, followed by an analysis of mechanical behavior and AE activity. The experimental results show that the height of the cement specimen has signiifcant effects on the compressive strength and the acoustic emission rate ‘a’ value, but a slight effect on the accumulated AE hits number, which is analyzed from aspects of failure process of cement mortar specimens.

  5. Inlfuence of Specimen Size on Compression Behavior of Cement Paste and Mortar under High Strain Rates

    Institute of Scientific and Technical Information of China (English)

    CHEN Xudong; CHEN Chen; QIAN Pingping; XU Lingyu

    2016-01-01

    Static and dynamic compression tests were carried out on mortar and paste specimens of three sizes (f68 mm×32 mm,f59 mm×29.5 mm andf32 mm×16 mm) to study the inlfuence of specimen size on the compression behavior of cement-based materials under high strain rates. The static tests were applied using a universal servo-hydraulic system, and the dynamic tests were applied by a spilt Hopkinson pressure bar (SHPB) system. The experimental results show that for mortar and paste specimens, the dynamic compressive strength is greater than the quasi-static one, and the dynamic compressive strength for specimens of large size is lower than those of small size. However, the dynamic increase factors (DIF) has an opposite trend. Obviously, both strain rate and size effect exist in mortar and paste. The test results were then analyzed using Weibull, Carpinteri and Bažant’s size effect laws. A good agreement between these three laws and the test results was reached on the compressive strength. However, for the experimental results of paste and cement mortar, the size effect is not evident for the peak strain and elastic modulus of paste and cement mortar.

  6. PERFORMANCE OF CEMENT MORTARS REPLACED BY GROUND WASTE BRICK IN DIFFERENT AGGRESSIVE CONDITIONS

    Directory of Open Access Journals (Sweden)

    ILHAMI DEMIR

    2011-09-01

    Full Text Available This article investigates the sulphate resistance of cement mortars when subjected to different exposure conditions. Cement mortars were prepared using ground waste brick (GWB as a pozzolanic partial replacement for cement at replacement levels of 0%, 2.5%, 5%, 7.5, 10%, 12.5 and 15%. Mortar specimens were stored under three different conditions: continuous curing in lime-saturated tab water (TW, continuous exposure to 5% sodium sulphate solution (SS, and continuous exposure to 5% ammonium nitrate solution (AN, at a temperature of 20 ± 3 ºC, for 7, 28, 90, and 180 days. Prisms with dimensions of 25×25×285 mm, to determine the expansions of the mortar samples; and another set of prisms with dimensions of 40×40×160 mm, were prepared to calculate the compressive strength of the samples. It was determined that the GWB replacement ratios between 2.5% and 10% decreased the 180 days expansion values. The highest compressive strength values were found for the samples with 10% replacement ratio in the TW, SS, and AN conditions for 180 days. The microstructure of the mortars were investigated using scanning electron microscopy (SEM and the Energy dispersive X-ray (EDX.

  7. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    Directory of Open Access Journals (Sweden)

    F. Puertas

    2015-09-01

    Full Text Available The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS and fly ash (AAFA mortars and the effect of partial replacement of the slag and ash themselves with ground fractions of the waste. The pozzolanic behaviour of clay-based waste was confirmed. Replacing up to 20 % of siliceous aggregate with waste aggregate in OPC mortars induced a decline in 7 day strength (around 23 wt. %. The behaviour of waste aggregate in AAMs mortars, in turn, was observed to depend on the nature of the aluminosilicate and the replacement ratio used. When 20 % of siliceous aggregate was replaced by waste aggregate in AAS mortars, the 7 day strength values remained the same (40 MPa. In AAFA mortars, waste was found to effectively replace both the fly ash and the aggregate. The highest strength for AAFA mortars was observed when they were prepared with both a 50 % replacement ratio for the ash and a 20 % ratio for the aggregate.

  8. Effect of Functional Chemical Admixtures on the Performance of Cement Asphalt Mortar Used in Ballastless Track

    Institute of Scientific and Technical Information of China (English)

    JIANG Jinyang; SHE Wei; LI Wei; PAN Li

    2015-01-01

    Chemical admixtures are of paramount importance to the performance of modern cement based composites. In this paper, we performed a series of tests to investigate the effects of chemical admixtures on the cement asphalt mortar (CA mortar), i e, compressive strength, frost resistance, permeability, fatigue resistance, pore structure and microstructure. In particular, two types of chemical admixtures were tested,i e, defoamer (tributyl phosphate (TBP)) and polycarboxylate superplasticizer (PS). The results indicate that the addition of TBP and PS eliminates big bubbles and promotes small non-connected pores forming in matrix. Besides, an optimum dosage of TBP and PS may be determined with respect to the frost resistance, permeability and fatigue resistance of CA mortar. Further elaborative discussions are presented as well as experimental evidences from mercury intrusion porosimetry, scanning electron microscopy and energy dispersive spectroscopy.

  9. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  10. Application of antifungal CFB to increase the durability of cement mortar.

    Science.gov (United States)

    Park, Jong-Myong; Park, Sung-Jin; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-07-01

    Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calciteforming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed CaCO3 precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at 18 degrees C for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the CaCO3 precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.

  11. Standard Test Method for Autogenous Strain of Cement Paste and Mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Lura, Pietro; Goodwin, Fred;

    This test method measures the bulk strain of a sealed cement paste or mortar specimen, including those containing admixtures, various supplementary cementitious materials (SCM), and other fine materials, at constant temperature and not subjected to external forces, from the time of final setting ...

  12. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette; Krøyer, Hanne;

    2008-01-01

    Pozzolanic submicron-sized silica fume and the non-pozzolanic micron- and nano-sized layer silicates (clay minerals) kaolinite, smectite and palygorskite have been used as additives in Portland cement pastes and mortars. These layer silicates have different particle shape (needles and plates), su...

  13. The application of modified hydrotalcites as chloride scavengers and inhibitor release agents in cement mortars

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.B.

    2014-01-01

    Owing to the unique molecular structure and high ion exchange capacity, hydrotalcites are believed to have a potential to be modified and tailor-made as an active component of concrete. In this paper, two types of modified hydrotalcites (MHT-pAB and MHT-NO2) were incorporated into cement mortars wit

  14. Properties and Acceleration Mechanism of Cement Mortar Added with Low Alkaline Liquid State Setting Accelerator

    Institute of Scientific and Technical Information of China (English)

    PAN Zhihua; WANG Xuebing; LIU Weiqing

    2014-01-01

    Low alkaline liquid state setting accelerator(LSA) for Portland cement was prepared in laboratory from aqueous solution of several inorganic sulfate salts and some organic chemical substances. Properties of cement with addition of LSA relating to its setting time and strength development as well as its resistance to sulfate attack for short and long term exposure were experimentally examined. The experimental results showed that 5%-7%addition of LSA significantly accelerated the initial and final setting of Portland cement in the presence or absence of the blending of mineral admixtures, the initial and final setting time being less than 3 min and 6 min respectively. Meanwhile, the early 1 day curing age compressive strength increased remarkably by 20%, while the late 28th day curing age compressive strength remained almost unchanged as compared with that of the reference accelerator free cement mortar specimen. Furthermore, mortar specimens of cement added with LSA and exposed to 5%Na2SO4 solution showed their excellent resistance to sulfate attack, with their short and long term curing age resistance coefficient to sulfate attack being around 1.04 to 1.17, all larger than 1.0. XRD analysis on hardened cement paste specimens at very early curing ages of several minutes disclosed the existence of more ettringite in specimens added with LSA than that of the reference specimens, meanwhile SEM observation also revealed the existence of well crystallized ettringite at very early hydration stage, suggesting that the accelerated setting of Portland cement can be attributed to the early and rapid formation of ettringite over the whole cement paste matrix due to the introduction of LSA. MIP measurement revealed that hardened cement paste specimens with the addition of LSA presented less medium diameter pores, more proportion of small pores and less proportion of large capillary pores, which is in a very good coincidence with the improvement of strength development of

  15. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  16. Effects of blended-cement paste chemical composition changes on some strength gains of blended-mortars.

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  17. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Directory of Open Access Journals (Sweden)

    Mehmet Serkan Kirgiz

    2014-01-01

    Full Text Available Effects of chemical compositions changes of blended-cement pastes (BCPCCC on some strength gains of blended cement mortars (BCMSG were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP or 6%, 20%, 21%, and 35% brick powder (BP for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min. Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS and flexural strengths (FS of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2, sodium oxide (Na2O, and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2 at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM in comparison with reference mortars (RM at whole cure days as MP up to 6% or BP up to 35% was blended for cement.

  18. Effects of Blended-Cement Paste Chemical Composition Changes on Some Strength Gains of Blended-Mortars

    Science.gov (United States)

    Kirgiz, Mehmet Serkan

    2014-01-01

    Effects of chemical compositions changes of blended-cement pastes (BCPCCC) on some strength gains of blended cement mortars (BCMSG) were monitored in order to gain a better understanding for developments of hydration and strength of blended cements. Blended cements (BC) were prepared by blending of 5% gypsum and 6%, 20%, 21%, and 35% marble powder (MP) or 6%, 20%, 21%, and 35% brick powder (BP) for CEMI42.5N cement clinker and grinding these portions in ball mill at 30 (min). Pastes and mortars, containing the MP-BC and the BP-BC and the reference cement (RC) and tap water and standard mortar sand, were also mixed and they were cured within water until testing. Experiments included chemical compositions of pastes and compressive strengths (CS) and flexural strengths (FS) of mortars were determined at 7th-day, 28th-day, and 90th-day according to TS EN 196-2 and TS EN 196-1 present standards. Experimental results indicated that ups and downs of silica oxide (SiO2), sodium oxide (Na2O), and alkali at MP-BCPCC and continuously rising movement of silica oxide (SiO2) at BP-BCPCC positively influenced CS and FS of blended cement mortars (BCM) in comparison with reference mortars (RM) at whole cure days as MP up to 6% or BP up to 35% was blended for cement. PMID:24587737

  19. Effect of copolymer latexes on physicomechanical properties of mortar containing high volume fly ash as a replacement material of cement.

    Science.gov (United States)

    Negim, El-Sayed; Kozhamzharova, Latipa; Gulzhakhan, Yeligbayeva; Khatib, Jamal; Bekbayeva, Lyazzat; Williams, Craig

    2014-01-01

    This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA) as partial replacement of cement in presence of copolymer latexes. Portland cement (PC) was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA) and 2-hydroxymethylacrylate (2-HEMA). Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM). The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final) were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  20. Effect of Copolymer Latexes on Physicomechanical Properties of Mortar Containing High Volume Fly Ash as a Replacement Material of Cement

    Directory of Open Access Journals (Sweden)

    El-Sayed Negim

    2014-01-01

    Full Text Available This paper investigates the physicomechanical properties of mortar containing high volume of fly ash (FA as partial replacement of cement in presence of copolymer latexes. Portland cement (PC was partially replaced with 0, 10, 20, 30 50, and 60% FA. Copolymer latexes were used based on 2-hydroxyethyl acrylate (2-HEA and 2-hydroxymethylacrylate (2-HEMA. Testing included workability, setting time, absorption, chemically combined water content, compressive strength, and scanning electron microscopy (SEM. The addition of FA to mortar as replacement of PC affected the physicomechanical properties of mortar. As the content of FA in the concrete increased, the setting times (initial and final were elongated. The results obtained at 28 days of curing indicate that the maximum properties of mortar occur at around 30% FA. Beyond 30% FA the properties of mortar reduce and at 60% FA the properties of mortar are lower than those of the reference mortar without FA. However, the addition of polymer latexes into mortar containing FA improved most of the physicomechanical properties of mortar at all curing times. Compressive strength, combined water, and workability of mortar containing FA premixed with latexes are higher than those of mortar containing FA without latexes.

  1. Effect of Cement Asphalt Mortar Debonding on Dynamic Properties of CRTS II Slab Ballastless Track

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2014-01-01

    Full Text Available The debonding of cement emulsified asphalt mortar (CA mortar is one of the main damage types in China railway track system II slab ballastless track. In order to analyze the influence of mortar debonding on the dynamic properties of CRTS II slab ballastless track, a vertical coupling vibration model for a vehicle-track-subgrade system was established on the base of wheel/rail coupling dynamics theory. The effects of different debonding lengths on dynamic response of vehicle and track system were analyzed by using the finite element software. The results show that the debonding of CA mortar layer will increase the dynamic response of track. If the length of debonding exceeds 1.95 m, the inflection point will appear on the vertical displacement curve of track. The vertical vibration acceleration of slab increases 4.95 times and the vertical dynamic compressive stress of CA mortar near the debonding region increases 15 times when the debonding length reaches 3.9 m. Considering the durability of ballastless track, once the length of debonding reaches 1.95 m, the mortar debonding should be repaired.

  2. Influence of various acids on the physico–mechanical properties of pozzolanic cement mortars

    Indian Academy of Sciences (India)

    S Türkel; B Felekoǧlu; S Dulluç

    2007-12-01

    Acidic attack represents a topic of increasing significance, owing to the spread of damages of concrete structures in both urban and industrial areas. Cement type is an important factor affecting performance of cement based materials in an aggressive environment. The goal of this study was to compare the acid resistance of a pozzolanic cement (CEM IV-A/32·5) with Portland cement (CEM I 32·5) that was made from the same clinker. For this purpose, 50 mm mortar cubes were prepared with two different kinds of cement according to TS EN 196-1. After 28 days of hardening, the samples were immersed into four different concentrations of hydrochloric, nitric and sulfuric acid solutions for a period of 120 days. The changes in weight loss and compressive strength values for each acid solution within the test period were recorded. The acid resistance of mortars made from Portland cement was better than the pozzolanic cement incorporated samples after 120 days of acid attack.

  3. ALKALI-ACTIVATED CEMENT MORTARS CONTAINING RECYCLED CLAY-BASED CONSTRUCTION AND DEMOLITION WASTE

    OpenAIRE

    Puertas, F.; Santos, R.; Alonso M. M.; Del Rio M.

    2015-01-01

    The use of clay-based waste as an aggregate for concrete production is an amply studied procedure. Nonetheless, research on the use of this recycled aggregate to prepare alkaline cement mortars and concretes has yet to be forthcoming. The present study aimed to determine: the behaviour of this waste as a pozzolan in OPC systems, the mechanical strength in OPC, alkali-activated slag (AAS) and fly ash (AAFA) mortars and the effect of partial replacement of the slag and ash themselves with groun...

  4. Germinant-enhanced decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructures.

    Science.gov (United States)

    Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John

    2012-04-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.

  5. Effect of Water to Cement Ratio and Age on Portland Composite Cement Mortar Porosity, Strength and Evaporation Rate

    Directory of Open Access Journals (Sweden)

    Enamur R. Latifee

    2016-08-01

    Full Text Available Durability and the compressive strength of concrete are directly related to the porosity. Water to cement ratio is the main parameter behind the nature and amount of pores within the matrix. Porosity is also influenced by the degree of cement hydration and the length of moist-curing. Even after the standard moist curing period, i.e. 28 days the concrete can gain strength and porosity can be reduced under ambient relative humidity and temperature. However, this fact, that is the age effect on porosity reduction of the cement mortar or concrete, kept in air with ambient relative humidity and temperature for long duration could not be found in the literature. Therefore, in this research, different w/c were used with constant amount Portland Composite Cement to find out whether the mortar porosity decreases significantly over time, after 28 days of water curing, while kept in air and if there is any interaction effect between the age of the mortar and different w/c; regarding porosity. It was also intended to find out if water-loss rate variation with different w/c has similar trend as porosity variation with different w/c. It was found that, there is significant decrease in porosity with time for the first six weeks in air and after that it dwindles down gradually, and there is no interaction between age and w/c. Also, after 100 days in air, samples were submerged under water for 24 hours and then kept in air for the evaporation in subsequent days. It has been found that the water evaporation vs. w/c curve, using 11-day evaporation of water from different w/c specimens in ambient condition is almost parallel to porosity vs. w/c curve. Therefore, 11-day evaporation of aged saturated mortar or concrete sample, such as core can also be used as a durability index, which can be used for old structure evaluation.

  6. Some considerations about the use of lime-cement mortars for building conservation purposes in Portugal : a reprehensible option or a lesser evil?

    OpenAIRE

    Torgal, Fernando Pacheco; Faria, Joana; Jalali, Said

    2012-01-01

    Some investigations about conservation actions in historical buildings points out that lime–cement mortars should be avoided and lime–pozzolan mortars should be use instead. Nevertheless this type of mortar is still under investigation and the absolute rejection of the use of Portland cement even with just a minimum amount appears to be a dogmatic position that is not fully grounded in scientific terms. Besides the use of lime–pozzolan mortars requires skilled craftsmanship and at least...

  7. Effect of strain rate and water-to-cement ratio on compressive mechanical behavior of cement mortar

    Institute of Scientific and Technical Information of China (English)

    周继凯; 葛利梅

    2015-01-01

    Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar (SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings. Strain rate sensitivity of the materials is measured in terms of failure modes, stress−strain curves, compressive strength, dynamic increase factor (DIF) and critical strain at peak stress. A significant change in the stress−strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress−strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor (DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.

  8. TRANSVERSAL INERTIAL EFFECT ON RELAXATION/RETARDATION TIME OF CEMENT MORTAR UNDER HARMONIC WAVE

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Yonghui Cao; Jiankang Chen

    2008-01-01

    Under dynamic loading, the constitutive relation of the cement mortar will be signif-icantly affected by the transversal inertial effect of specimens with large diameters. In this paper,one-dimensional theoretical analysis is carried out to determine the transversal inertial effect on the relaxation/retardation time of the cement mortar under the harmonic wave. Relaxation time or retardation time is obtained by means of the wave velocity, attenuation coefficient and the frequency of the harmonic wave. Thus, the transversal inertial effect on the relaxation time from Maxwell model, as well as on retardation time from Voigt model is analyzed. The results show that the transversal inertial effect may lead to the increase of the relaxation time, but induce the decrease of the retardation time. Those should be taken into account when eliminating the transversal inertial effect in applications.

  9. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2014-01-01

    Full Text Available A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  10. Effect of Chlorides on Conductivity and Dielectric Constant in Hardened Cement Mortar: NDT for Durability Evaluation

    Directory of Open Access Journals (Sweden)

    Sunkook Kim

    2016-01-01

    Full Text Available Dielectric constant and conductivity, the so-called EM properties (electromagnetic, are widely adopted for NDT (Nondestructive Technique in order to detect damage or evaluate performance of concrete without damage to existing RC (reinforced concrete. Among deteriorating agents, chloride ion is considered as one of the most critical threats due to rapid penetration and direct effect on steel corrosion. In the work, cement mortar samples with 3 w/c (water-to-cement ratios and 4 levels of chloride addition are considered. Conductivity and dielectric constant are measured in the normal frequency range. They increase with strength of mortar and more chloride ions due to denser pore formation. Furthermore, the behaviors of measured EM property are investigated with carbonation velocity and strength, which shows an attempt of application to durability evaluation through EM measurement.

  11. Immobilization in cement mortar of chromium removed from water using titania nanoparticles.

    Science.gov (United States)

    Husnain, Ahmed; Qazi, Ishtiaq Ahmed; Khaliq, Wasim; Arshad, Muhammad

    2016-05-01

    Because of the high toxicity of chromium, particularly as Cr (VI), it is removed from industrial effluents before their discharge into water bodies by a variety of techniques, including adsorption. Ultimate disposal of the sludge or the adsorbate, however, is a serious problem. While titania, in nanoparticle form, serves as a very good adsorbent for chromium, as an additive, it also helps to increase the compressive strength of mortar and concrete. Combining these two properties of the material, titania nanoparticles were used to adsorb chromium and then added to mortar up to a concentration of 20% by weight. The compressive strength of the resulting mortar specimens that replaced 15% of cement with chromium laden titania showed an improved strength than that without titania, thus confirming that this material had positive effect on the mortar strength. Leachate tests using the Toxicity Characteristics Leaching Procedure (TCLP) confirmed that the mortar sample chromium leachate was well within the permissible limits. The proposed technique thus offers a safe and viable method for the ultimate disposal of toxic metal wastes, in general, and those laden waste chromium, in particular.

  12. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    Science.gov (United States)

    Arnold, J.; Kosson, D. S.; Brown, K. G.; Garrabrants, A. C.; Meeussen, J. C. L.; van der Sloot, H. A.

    2013-07-01

    Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC) have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313) indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems.

  13. Characterization and modeling of major constituent equilibrium chemistry of a blended cement mortar

    Directory of Open Access Journals (Sweden)

    Meeussen J.C.L.

    2013-07-01

    Full Text Available Cementitious materials containing ground granulated iron blast furnace slag and coal combustion fly ash as admixtures are being used extensively for nuclear waste containment applications. Whereas the solid phases of ordinary Portland cement (OPC have been studied in great detail, the chemistry of cement, fly ash and slag blends has received relatively less study. Given that OPC is generally more reactive than slag and fly ash, the mineralogy of OPC provides a logical starting point for describing the major constituent chemistry of blended cement mortars. To this end, a blended cement mortar containing Portland cement, granulated blast furnace slag, fly ash and quartz sand was modeled using a set of solid phases known to form in hydrated OPC with the geochemical speciation solver LeachXS/ORCHESTRA. Comparison of modeling results to the experimentally determined pH-dependent batch leaching concentrations (USEPA Method 1313 indicates that major constituent concentrations are described reasonably well with the Portland cement mineral set; however, modeled and measured aluminum concentrations differ greatly. Scanning electron microscopic analysis of the mortar reveals the presence of Al-rich phyllosilicate minerals heretofore unreported in similar cementitious blends: kaolinite and potassic phyllosilicates similar in composition to illite and muscovite. Whereas the potassic phyllosilicates are present in the quartz sand aggregate, the formation of kaolinite appears to be authigenic. The inclusion of kaolinite in speciation modeling provides a substantially improved description of the release of Al and therefore, suggests that the behavior of phyllosilicate phases may be important for predicting long-term physico-chemical behavior of such systems.

  14. Evaluation of nitric and acetic acid resistance of cement mortars containing high-volume black rice husk ash.

    Science.gov (United States)

    Chatveera, B; Lertwattanaruk, P

    2014-01-15

    This paper presents the performance of cement mortar containing black rice husk ash (BRHA) under nitric and acetic acid attacks. The BRHA, collected from an electrical generating power plant that uses rice husk as fuel, was ground using a grinding machine. The compressive strength loss, weight loss, and expansion of mortars under nitric and acetic acid attack were investigated. The test results of BRHA properties in accordance with the ASTM C 618 standard found that the optimal grinding time was 4 h as this achieved a Blaine fineness of 5370 cm(2)/g. For parametric study, BRHA were used as a Portland cement Type 1 replacement at the levels of 0%, 10%, 20%, 30%, 40%, and 50% by weight of binder. The water-to-binder ratios were 0.55, 0.60, and 0.65. From test results, when the percentage replacements of BRHA in cement increased, it was observed that the strength loss and weight loss of mortars containing BRHA under acetic acid attack were higher than those of the mortars against nitric acid attack. It was found that, of the various BHRA mortars, the strength loss and weight loss due to nitric and acetic acid attacks were the lowest in the mortar with 10% BRHA replacement. For 10%, 20% and 30% BRHA replacements, the rate of expansion of the BRHA mortar decreased when compared with the control mortar. For the mortars with other percentage replacements of BRHA, the rate of expansion increased. Furthermore, the effective water-to-binder ratios of control and BRHA mortars were the primary factor for determining the durability of mortar mixed with BRHA.

  15. Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement

    Indian Academy of Sciences (India)

    I Janotka; L’ Krajèi

    2000-12-01

    Resistance to freezing and thawing of mortar specimens made from sulphoaluminate–belite cement (M–SAB) is compared with that of mortars made from portland cement (M–PC). The results suggest that larger median radius of the pores and total porosity of M–SAB compared to those of M–PC are primarily caused by the rapid setting of the SAB cement. The `coarsening’ of pore structure of mortar specimens under action of freezing and thawing is proved by the increase in the macropores portion, median pore radius, and total porosity values. This process is more intense in M–SAB. The effect of the frost attack is confirmed by lower compressive strength and dynamic modulus of elasticity on the one hand and higher absorption capacity, expansion, and crack propagation of M–SAB compared with those of M–PC on the other hand. Besides the decreased frost resistance of M–SAB as compared with that of M–PC, unsatisfactory passivation of steel in M–SAB was found. The reason of this fact is the pH value decrease to less than 11.5 of the M–SAB extract.

  16. Chloride Transport of High Alumina Cement Mortar Exposed to a Saline Solution

    Directory of Open Access Journals (Sweden)

    Hee Jun Yang

    2016-01-01

    Full Text Available Chloride transport in different types of high alumina cement (HAC mortar was investigated in this study. Three HAC cement types were used, ranging from 52.0 to 81.1% of aluminum oxides in clinker. For the development of the strength, the setting time of fresh mortar was measured immediately after mixing and the mortar compressive strength was cured in a wet chamber at 25 ± 2°C and then measured at 1–91 days. Simultaneously, to assess the rate of chloride transport in terms of diffusivity, the chloride profile was performed by an exposure test in this study, which was supported by further experimentation including an examination of the pore structure, chloride binding, and chemical composition (X-ray diffraction analysis. As a result, it was found that an increase in the Al2O3 content in the HAC clinker resulted in an increase in the diffusion coefficient and concentration of surface chloride due to increased binding of chloride. However, types of HAC did not affect the pore distribution in the cement matrix, except for macro pores.

  17. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Science.gov (United States)

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  18. Application of alkaliphilic biofilm-forming bacteria to improve compressive strength of cement-sand mortar.

    Science.gov (United States)

    Park, Sung-Jin; Chun, Woo-Young; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-03-01

    The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

  19. Hydration of portland cement, natural zeolite mortar in water and sulphate solution

    Directory of Open Access Journals (Sweden)

    Janotka, I.

    2003-03-01

    Full Text Available The objective of this paper is to characterise sulphate resistance of mortars made from ordinary Portland cement ( PC and Portland-pozzolan cement with 35 wt.% of zeolite addition (zeolite-blended cement-ZBC . Mortars with two different cement types were tested in water and 5% sodium sulphate solution for 720 days. A favourable effect of zeolite on increased sulphate resistance of the cement is caused by decrease in free Ca(OH2 content of the mortar There is not sufficient of Ca(OH2 available for reacting with the sulphate solution to form voluminous reaction products. A decreased C3A, content due to 35 wt.% replacement of PC by zeolite is the next pronounced factor improving resistance of the mortar with such blended cement.

    El objetivo de este trabajo ha sido estudiar la resistencia a los sulfatos de morteros preparados con cemento portland ordinario (PC y cemento portland puzolánico, con un 35% en peso de zeolita (zeolite-blended cement (ZBC. Ambos tipos de morteros fueron conservados en agua y en una disolución de sulfato sódico al 5% durante 720 días. Se observó una mayor resistencia a los sulfatos en el mortero preparado con el cemento que contenía zeolita debido a su menor contenido en Ca(OH2. No hay cantidad suficiente de Ca(OH2 para que se produzca la reacción de los constituyentes de la pasta con la disolución de sulfato sódico y formar así productos de naturaleza expansiva. La disminución en el contenido de C,3A, debida a la sustitución de un 35% en peso de PC por zeolita, es el factor más determinante en el aumento de la resistencia del mortero en los cementos con adición.

  20. Study of the Behavior of Grouting Cement Mortar%注浆用水泥浆体性能研究

    Institute of Scientific and Technical Information of China (English)

    梁乃兴; 陈忠明

    2000-01-01

    对注浆加固公路路基用的水泥浆体从稳定性、流动度、粘滞度、凝结时间、析水率等方面进行了研究.掺加适量的粉煤灰可增加浆体的稳定性,外加剂水玻璃可增加浆体的稳定性及结石率,同时对浆体的流动性有降低作用,而外加剂氯化钙则对浆体的流动性有增强作用.%In this paper, the behavior of grouting cement mortar to reinforce highway subgrade is analyzed from the aspects of stability, fluidity, viscosity, bleeding ratio and setting time of cement mortar. Mixing a certain content of fly ash to cement mortar can improve stability of mortar. Mixing water glass can improve stability and increase forming stone percent of mortar and can reduce the fluidity of mortar. While mixing CaCl2 can increase fluidity of mortar also

  1. 水泥粉煤灰砂浆应用研究%Application of fly ash cement mixed mortar

    Institute of Scientific and Technical Information of China (English)

    陶建红; 李权

    2015-01-01

    As a new type of cement and fly ash mortar is an alternative product in modern ordinary buildings . Orthogonal experiment results show that by using fly ash cement to replace part of the cement in mortar and fly ash mortar , the workability of the mortar is improved , which meets mortar construction and regulatory require-ments.Fly ash cement mixed mortar has good performance , its strength is relatively stable ,helping to ensure the quality of construction projects , while saving costs and protecting the environment .Fly ash cement mixed mortar, as green building materials , is the inevitable trend of future mortar development .%水泥粉煤灰砂浆作为一种新型建筑砂浆,是现代普通建筑砂浆的一种替代产品。通过正交试验结果表明:水泥粉煤灰砂浆通过利用粉煤灰替代部分水泥,提高了砂浆的和易性,满足砌筑砂浆的施工和规范要求。水泥粉煤灰砂浆性能良好,强度比较稳定,有利于保证工程的施工质量,同时节约成本,保护环境。水泥粉煤灰砂浆作为绿色建材是建筑砂浆未来发展的方向之一。

  2. The effect of different surfactants/plastisizers on the electrical behavior of CNT nano-modified cement mortars

    Science.gov (United States)

    Dalla, P. T.; Alafogianni, P.; Tragazikis, I. K.; Exarchos, D. A.; Dassios, K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    Cement-based materials have in general low electrical conductivity. Electrical conductivity is the measure of the ability of the material to resist the passage of electrical current. The addition of a conductive admixture such as Multi-Walled Carbon Nanotubes (MWCNTs) in a cement-based material increases the conductivity of the structure. This research aims to characterize nano-modified cement mortars with MWCNT reinforcements. Such nano-composites would possess smartness and multi-functionality. Multifunctional properties include electrical, thermal and piezo-electric characteristics. One of these properties, the electrical conductivity, was measured using a custom made apparatus that allows application of known D.C. voltage on the nano-composite. In this study, the influence of different surfactants/plasticizers on CNT nano-modified cement mortar specimens with various concentrations of CNTs (0.2% wt. cement CNTs - 0.8% wt. cement CNTs) on the electrical conductivity is assessed.

  3. Cement-base bearing pads mortar for connections in the precast concrete: study of surface roughness

    Directory of Open Access Journals (Sweden)

    M. K. El Debs

    Full Text Available Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB, lightweight aggregate (expanded vermiculite-term and short fibers (polypropylene, glass and PVA, in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

  4. Sand/cement ratio evaluation on mortar using neural networks and ultrasonic transmission inspection.

    Science.gov (United States)

    Molero, M; Segura, I; Izquierdo, M A G; Fuente, J V; Anaya, J J

    2009-02-01

    The quality and degradation state of building materials can be determined by nondestructive testing (NDT). These materials are composed of a cementitious matrix and particles or fragments of aggregates. Sand/cement ratio (s/c) provides the final material quality; however, the sand content can mask the matrix properties in a nondestructive measurement. Therefore, s/c ratio estimation is needed in nondestructive characterization of cementitious materials. In this study, a methodology to classify the sand content in mortar is presented. The methodology is based on ultrasonic transmission inspection, data reduction, and features extraction by principal components analysis (PCA), and neural network classification. This evaluation is carried out with several mortar samples, which were made while taking into account different cement types and s/c ratios. The estimated s/c ratio is determined by ultrasonic spectral attenuation with three different broadband transducers (0.5, 1, and 2 MHz). Statistical PCA to reduce the dimension of the captured traces has been applied. Feed-forward neural networks (NNs) are trained using principal components (PCs) and their outputs are used to display the estimated s/c ratios in false color images, showing the s/c ratio distribution of the mortar samples.

  5. Permeability and mechanical properties of cement mortars colored by nano-mineral additives

    Directory of Open Access Journals (Sweden)

    Kamali Bernard S.

    2012-09-01

    Full Text Available This work concerns a preliminary study on issues that relate primarily to the permeability of cementitious materials under the influence of some specific inexpensive additions that can play an important role in preserving the environment. We studied the addition of dyes in the presence of TiO2 on the Portland cement mortar. The used dyes are a yellow powder containing iron oxyhydroxide (FeO (OH, a blue-based powder tellurate manganese (MnTe2O5 and red powder containing iron oxide (Fe2O3. We measure the setting time, permeability and mechanical properties of Portland cement mortars colored with nano-mineral oxides mentioned previously. Test results indicate that the addition of nano-particles has a little influence on the setting time, improves penetration resistance that is due the affinity of the pore structure of mortar and slightly improves the resistance to compression for low levels of nanoparticles of TiO2.

  6. THE INFLUENCE OF JOINT GRINDING OF CEMENT AND COOPER SLAG ON MORTAR PROPERTIES

    Directory of Open Access Journals (Sweden)

    Kravtsov Aleksey Vladimirovich

    2016-08-01

    Full Text Available The problem of applying copper manufacturing waste locating in the Chelyabinsk region as a component of mixed is considered in this article. Application of mixed binder with superplasticizers, based on esters with carboxyl groups, have not sufficiently been studied by the present time due to the diversity of species and complexity of the chemical structure. This trend is current for today’s science because of the growing rates and scales of building production, in particular, of concrete works. Copper slag dumps located in the Ural Federal district haven’t been widely used in building production or in other industrial production by the present time. Efficient utilization of copper production waste materials will help to solve ecological problems in many regions of Russia. Structure formation period of cement stone based on mixed binder made of Portland cement and granulated cooper slag with application of superplasticizer is studied in the article. The authors present a thermal variation diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag in the process of 21 hours of hardening under normal conditions and the results of ultrasound investigation of concrete structure formation period during 5 hours of hardening. The strength development process diagram of mortar based on mixed binder made of Portland cement and granulated cooper slag for 28 days of hardening under normal conditions and the research results of the compressive strength of concrete samples are shown in this article. The obtained characteristics don’t confirm the prospects of applying joint grinding for mortar with the observed kind of non-ferrous metallurgy waste. Also, the obtained results allow us to make a conclusion about little advantages of using this method of binder production. Copper slag can be more effectively used as a component of complex organic and mineral admixture for building production with different purposes and fields

  7. Effects of nano-SiO(2) and different ash particle sizes on sludge ash-cement mortar.

    Science.gov (United States)

    Lin, K L; Chang, W C; Lin, D F; Luo, H L; Tsai, M C

    2008-09-01

    The effects of nano-SiO(2) on three ash particle sizes in mortar were studied by replacing a portion of the cement with incinerated sewage sludge ash. Results indicate that the amount of water needed at standard consistency increased as more nano-SiO(2) was added. Moreover, a reduction in setting time became noticeable for smaller ash particle sizes. The compressive strength of the ash-cement mortar increased as more nano-SiO(2) was added. Additionally, with 2% nano-SiO(2) added and a cure length of 7 days, the compressive strength of the ash-cement mortar with 1 microm ash particle size was about 1.5 times better that of 75microm particle size. Further, nano-SiO(2) functioned to fill pores for ash-cement mortar with different ash particle sizes. However, the effects of this pore-filling varied with ash particle size. Higher amounts of nano-SiO(2) better influenced the ash-cement mortar with larger ash particle sizes.

  8. Effect of metakaolinite on strength and chemical resistance of cement mortars

    Energy Technology Data Exchange (ETDEWEB)

    Malolepszy, J.; Pytel, Z. [Mining and Metallurgy Univ., Faculty of Materials Science and Ceramics, Cracow (Poland)

    2000-07-01

    The effect of the percentage of metakaolinite admixture and calcium aluminate content in portland cement, used as the main cementitious components, on the chemical resistance of a series of prepared standard mortars was investigated. Chemical resistance was evaluated by measuring strength, shrinkage and expansion on the samples stored in water and chemical solutions. Results showed minimal change in the standard properties of mortars by the metakaolinite. However, there was marked improvement in chemical resistance. Interest in the study of this material is related to the urgency of finding a useful application for it, in view of the fact that it is produced in large quantities as a waste-product of power generation. It is widely believed that there is a potential application for this product in improving the durability of concrete. 20 refs., 10 tabs., 9 figs.

  9. The Properties of Cement Mortars Modified by Emulsified Epoxy and Micro-fine Slag

    Institute of Scientific and Technical Information of China (English)

    CHEN You-zhi; WANG Hong-xi; MA Zhi-yong; LI Qing-hua

    2003-01-01

    The epoxy resin polymer cement mortars with excellent performances were made up through modifying ordinary Portland cement with emulsified epoxy and micro-fine slag.The microstructure of the epoxy resin polymer cement materials was studied and their hydration and hardening characteristics were discussed by means of modern analysis measures such as SEM,XRD and Hg-intrusion micromeritics.The experimental results indicate that the series effects of water-reducing,density,pozzolanicity,filling and solidification crosslinking through the action together with epoxy organism and micro-fine slag endowed cement-based materials with perfect performances.The main hydration products in the system are C-S-H gel and hydrated calcium aluminate.At later age,AFt can be in existence,and no Ca(OH)2 is found.When epoxy resin is solidified,the organism is in a network structure.In the micro-pore structure of hydrated cement with modified epoxy and fine slag,big harmful pores were fewer,more harmless abundant micro pores were and the possible pore radius was smaller than that of ordinary Portland cement.

  10. Effect of W/C Ratio on Durability and Porosity in Cement Mortar with Constant Cement Amount

    Directory of Open Access Journals (Sweden)

    Yun-Yong Kim

    2014-01-01

    Full Text Available Water is often added to concrete placing for easy workability and finishability in construction site. The additional mixing water can help easy mixing and workability but causes increased porosity, which yields degradation of durability and structural performances. In this paper, cement mortar samples with 0.45 of W/C (water to cement ratio are prepared for control case and durability performances are evaluated with additional water from 0.45 to 0.60 of W/C. Several durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed, and they are analyzed with changed porosity. The changing ratios and patterns of durability performance are evaluated considering pore size distribution, total porosity, and additional water content.

  11. Improved cement mortars by addition of carbonated fly ash from solid waste incinerators

    Directory of Open Access Journals (Sweden)

    López-Zaldívar, O.

    2015-09-01

    Full Text Available This article presents the results of a research developing high performance cement mortars with the addition of municipal solid waste incineration fly ash (MSWIFA stabilized as insoluble carbonates. The encapsulation of hazardous wastes in mortar matrixes has also been achieved. The ashes present high concentrations of chlorides, Zn and Pb. A stabilization process with NaHCO3 has been developed reducing 99% the content of chlorides. Developed mortars replace 10% per weight of the aggregates by treated MSWIFA. Physical/mechanical properties of these mortars have been studied. Presence of Zn, Pb, Cu and Cd has been also analyzed confirming that leaching of these heavy metal ions is mitigated. Conclusions prove better behavior of CAC and CSA mortars than those of CEM-I and CEM-II cement. Results are remarkable for the CAC mortars, improving reference strengths in more than 25%, which make them a fast-curing product suitable for the repair of structures or industrial pavements.Este artículo presenta los resultados del desarrollo de morteros mejorados con la incorporación de cenizas volantes de residuos sólidos urbanos inertizadas en forma de carbonatos. Además se consigue la encapsulación de un residuo peligroso. Las cenizas presentan una alta concentración de cloruros, Zn y Pb. Se ha desarrollado un proceso de estabilización con NaHCO3 reduciendo en un 99% el contenido de cloruros. Los morteros reemplazan un 10% en peso del árido por cenizas tratadas. Se han analizado sus propiedades físico/mecánicas y la presencia de Zn, Pb, Cu y Cd. Se demuestra un mejor comportamiento de los morteros de CAC y CSA que los de CEM-I y CEM-II y se mitiga el lixiviado de metales pesados. Los resultados son significativos en los morteros CAC al mejorar las resistencias de los de referencia en un 25%. Los morteros desarrollados son de curado rápido adecuados para la reparación de estructuras o soleras industriales.

  12. Properties and durability of metakaolin blended cements: mortar and concrete

    Directory of Open Access Journals (Sweden)

    Abbas, Rafik

    2010-12-01

    Full Text Available This article explores the effect of metakaolin, a pozzolan, on concrete performance. Compressive and splitting tensile strength were found for specimens cured for up to 360 and 90 days, respectively. Changes were recorded in the compressive strength of specimens exposed to salt (chloride and sulfatechloride solutions, and chloride penetration and binding capacity were measured. The findings were compared to the results for concrete prepared with ordinary Portland (OPC and moderate heat of hydration (Type II cement. MK was found to have a very positive effect on 28-day concrete strength, due to microstructure improvement of the hydrated cement. Replacing cement with metakaolin effectively raised concrete resistance to chloride attack. Concrete containing metakaolin proved to be substantially more durable in sulfate-chloride environment.

    En este trabajo se estudia el efecto del metacaolín sobre las prestaciones del hormigón. Las probetas curadas a 360 y 90 días se sometieron a ensayos de resistencia a compresión y de tracción indirecta respectivamente. Se hizo un seguimiento de la resistencia a la compresión de los materiales ante el ataque de sales (soluciones de cloruro y de sulfato-cloruro y, se midió la penetración de cloruros y la capacidad de los hormigones de inmovilizar estos iones. Los resultados se compararon con los obtenidos con hormigones elaborados con cemento pórtland ordinario (OPC y, con cemento de calor de hidratación moderado (tipo II. El MK resultó influir muy positivamente en la resistencia del hormigón a 28 días debido a la mejora de la microestructura del cemento hidratado. La sustitución de cemento por metacaolín aumentó la resistencia del hormigón al ataque de cloruros. El hormigón con metacaolín demostró ser más duradero en entornos de sulfato-cloruro que los hormigones elaborados con OPC o con cemento de tipo II. Los perfiles de concentración de cloruros a distintas profundidades y la

  13. Application of Bacillus subtilis 168 as a multifunctional agent for improvement of the durability of cement mortar.

    Science.gov (United States)

    Park, Sung-Jin; Park, Jong-Myong; Kim, Wha-Jung; Ghim, Sa-Youl

    2012-11-01

    Microbiological calcium carbonate precipitation (MCCP) has been investigated for its ability to improve the durability of cement mortar. However, very few strains have been applied to crack remediation and strengthening of cementitious materials. In this study, we report the biodeposition of Bacillus subtilis 168 and its ability to enhance the durability of cement material. B. subtilis 168 was applied to the surface of cement specimens. The results showed a new layer of deposited organic-inorganic composites on the surface of the cement paste. In addition, the water permeability of the cement paste treated with B. subtilis 168 was lower than that of non-treated specimens. Furthermore, artificial cracks in the cement paste were completely remediated by the biodeposition of B. subtilis 168. The compressive strength of cement mortar treated with B. subtilis 168 increased by about 19.5% when compared with samples completed with only B4 medium. Taken together, these findings suggest that the biodeposition of B. subtilis 168 could be used as a sealing and coating agent to improve the strength and water resistance of concrete. This is the first paper to report the application of Bacillus subtilis 168 for its ability to improve the durability of cement mortar through calcium carbonate precipitation.

  14. Shrinkage and Cracking Sensitivity of Cement Mortar Containing Fly Ash, Granulated Blast-furnace Slag and Silica Fume

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory study was undertaken to investigate drying shrinkage and cracking sensitivity subjected to restrained shrinkage of mortar containing fly ash (FA), granulated blast-furnace slag (GBFS) and silica fume (SF). Six mortar mixtures including control Portland cement (PC) and FA,GBFS and SF mortar mixtures were prepared. FA replaced the cement on mass basis at the replacement ratios of 20% and 35%, GBFS replaced the cement at the replacement ratios of 40%, SF replaced the cement at the replacement ratios of 8% and the blended mixtures with 20% FA, 20% GBFS and 8% SF. Water-cementitious materials ratio and sand-cementitious materials ratio were 0.4 and 2.0 for all mixtures, respectively. The mixtures were cured at 65% relative humidity and 20℃. The drying shrinkage value, initial cracking time and cracking width of the mortar samples were measured. The results show that all the mortar mixture containing FA exhibited the decrease of drying shrinkage.Moreover, initial cracking time was markedly delayed, and the crack width of the initial crack was reduced. However, the incorporations of various ratios of GBFS and SF led to an increase of drying shrinkage, initial cracking time and cracking width as compared to control mixture.

  15. Interaction of Shock Waves in Cement Mortar Plate Investigated by the Digital Speckle Correlation Method

    Institute of Scientific and Technical Information of China (English)

    LI Xu-Dong; LIU Kai-Xin; ZHANG Guang-Sheng; WEN Shang-Gang; TAN Fu-Li

    2008-01-01

    @@ Interaction of shock waves in cement mortar plate is studied by digital speckle correlation method and digital high-speed photography technique. When the plates were destroyed by two detonators exploding at the same time, variation of shock wave field is obtained. Experimental results show that the interaction of shock waves will result in a nonlinear huge increase of local normal strain, leading to large deformation and serious destruction. However, the occurrence of this strongly nonlinear phenomenon sensitively depends on the interval between detonators, and it will only appear when the interval is smaller than the diameter of the region where shock waves exist.

  16. Evaluation of compressive strength in cement mortars, according to the dosage established by the colombian seismic resistance code. Case study

    Directory of Open Access Journals (Sweden)

    Sergio Giovanny Valbuena Porras

    2016-06-01

    Full Text Available Context: In a masonry wall the mortar it is between 10 and 20% of the total volume of the system, despite its effect on the behavior of it is significantly higher than this percentage indicates.Objective: The purpose of this research was to evaluate the resistance to compression of two types of mortar paste (A and B, prepared with natural sand from the town of Usme in Bogotá, in accordance with the proportions set by the Standard Colombian earthquake Resistant regulation (NSR-10.Method: Two types of mortar paste were prepared, according to the proportions of cement and sand established in NSR-10 section D.3.4-1 of (Table 1; these proportions were calculated using a 0.0028 m3 container for measuring unit weight. For type A mortar rock sand was used and river sand for type B mortar.Results: The resistance to compression for mortars type A at the end of the study was on average 84% of the expected resistance, whereas for type B mortars it averaged 64% above the expected resistance.Conclusion: Mortar mixes made with crushed or rock (type A arena do not reach the compressive strength required demanded by regulatory standards, despite complying with the dosage established in NSR 10 and with NTC quality criteria; while the natural sand origin or natural river sand meet these standards.

  17. Enhancement of thermal neutron shielding of cement mortar by using borosilicate glass powder.

    Science.gov (United States)

    Jang, Bo-Kil; Lee, Jun-Cheol; Kim, Ji-Hyun; Chung, Chul-Woo

    2017-05-01

    Concrete has been used as a traditional biological shielding material. High hydrogen content in concrete also effectively attenuates high-energy fast neutrons. However, concrete does not have strong protection against thermal neutrons because of the lack of boron compound. In this research, boron was added in the form of borosilicate glass powder to increase the neutron shielding property of cement mortar. Borosilicate glass powder was chosen in order to have beneficial pozzolanic activity and to avoid deleterious expansion caused by an alkali-silica reaction. According to the experimental results, borosilicate glass powder with an average particle size of 13µm showed pozzolanic activity. The replacement of borosilicate glass powder with cement caused a slight increase in the 28-day compressive strength. However, the incorporation of borosilicate glass powder resulted in higher thermal neutron shielding capability. Thus, borosilicate glass powder can be used as a good mineral additive for various radiation shielding purposes.

  18. Recycling municipal incinerator fly- and scrubber-ash into fused slag for the substantial replacement of cement in cement-mortars.

    Science.gov (United States)

    Lee, Tzen-Chin; Rao, Ming-Kang

    2009-06-01

    Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38microm for use as a cement substitute (20-40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3-11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.

  19. Chemo-physical modeling of cement mortar hydration: Role of aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jena, E-mail: jeong@profs.estp.fr [Université Paris-Est, Institut de Recherche en Constructibilité, ESTP, 28 Avenue Président Wilson, 94234 Cachan (France); Ramézani, Hamidréza, E-mail: hamidreza.ramezani@univ-orleans.fr [CRMD, CNRS FRE 3520-Research Center on Divided Materials, École Polytechnique de l’Université d’Orléans, 8 rue Léonrad de Vinci, 45072 Orléans Cedex 2 (France); Leklou, Nordine, E-mail: nordine.leklou@univ-nantes.fr [LUNAM Université, Université de Nantes-IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, 58 rue Michel Ange BP 420 44606 Saint Nazaire Cedex (France); Mounanga, Pierre, E-mail: pierre.mounanga@univ-nantes.fr [LUNAM Université, Université de Nantes-IUT Saint-Nazaire, GeM, CNRS UMR 6183, Research Institute in Civil Engineering and Mechanics, 58 rue Michel Ange BP 420 44606 Saint Nazaire Cedex (France)

    2013-07-20

    Graphical abstract: - Abstract: After mixing of the cement with water, most of the anhydride products sustain the hydration process and this leads to the hydrate products, e.g. CSH, Ca(OH){sub 2}, Afm and Aft. The mentioned hydration process is a highly complex phenomenon involving the chemically based thermo-activation inside the cement mortars during the early age hydration process. The chemo-thermal hydration reactions drasticaly increase at the early age of hydration after the mixing action and then it becomes less important and turns to be nearly asymptotic. The progress of the hydration phenomenon drives the material properties change during the very early age of cement hydration. Regarding the mortar and concrete, such hydration process would not be homogeneous through the cement matrix due to the aggregates presence. These inclusions will affect the temperature distribution as well as degree of hydration. In the current contribution, the chemical and thermal hydration have been firstly investigated by means of SEM observations using replica method and secondly by the 3D-FEM numerical experiments including two different case studies using glass beads as aggregates. The numerical experiments match fairly good the experimental measurements obtained using a pseudo-adiabatic testing setup for the case studies herein. The scanning electron microscopy (SEM) images observation demonstrates the gap spaces around the glass beads next to the external surfaces. These gaps can be essentially seen for the multi-glass beads case study. The role of the temperature and degree of hydration gradients are clearly obtained using the numerical samples. Some fresh routes and outlooks have been afterwards discussed.

  20. Lime mud from cellulose industry as raw material in cement mortars

    Directory of Open Access Journals (Sweden)

    Modolo, R. C.E.

    2014-12-01

    Full Text Available This study reports the use of lime mud (LM in cement-based-mortars. Lime mud is a waste generated in the production of cellulose by the kraft mill process. It is mainly composed of CaCO3, a small amount of magnesium carbonate and other trace minerals. Mortars were prepared by adding different amounts of LM (10, 20 and 30% by weight of cement in dry weight. The mortar compositions were evaluated through rheology and flow table measurements, assuring that all the samples exhibited adequate conditions for testing in both equipments. The hardened state properties were also evaluated through mechanical strengths at 7, 28 and 90 days of curing. Following a waste management solution perspective, this work intend to provide a general evaluation of LM application in cement based mortars, looking at both fresh and hardened properties in order to guarantee that the final application requirements are not hindered.Este estudio revela el uso de lodo de carbonato (LM en morteros de cemento. El LM es un residuo compuesto principalmente por CaCO3 generado en la producción de pasta de papel por el método Kraft. Los morteros se prepararon a partir de la adición de diferentes niveles de LM (10, 20 y 30% en peso de cemento en peso seco. Las composiciones de los morteros fueron caracterizadas através de mediciones de reología de mesa y de flujo, asegurando que las muestras exhibían condiciones adecuadas para su caracterización en ambos equipamientos. Las propiedades en estado endurecido también se evaluaron através de resistencias mecánicas a los 7, 28 y 90 días de cura. Con objeto de gestión de residuos, este trabajo tiene la intención de proporcionar una visión general de la aplicación de LM en los morteros, haciendo hincapié en las propiedades con el fin de garantizar que los requisitos para su aplicación final no se vean obstaculizados.

  1. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  2. Experimental Study of Cement Mortar-Steel Fiber Reinforced Rammed Earth Wall

    Directory of Open Access Journals (Sweden)

    Shuai Yang

    2012-10-01

    Full Text Available Rammed earth construction is an ancient technique which has recently attracted renewed interest throughout the world. Although rammed earth is currently regarded as a promising material in the construction industry in the context of sustainable development, it is difficult to quantify its bearing capacity, mechanical performance, as well as retrofitting approach, which discourages people from large-scale application in architectural engineering. This paper is devoted to the study of these problems based on rammed earth wall model experimentation. Three different models are studied considering different material components as well as structural configurations. By measuring the strain and deformation of the rammed earth wall models subjected to uniformly-distributed vertical loading, their ultimate bearing capacities are tested based on experimental investigation. Then the method of cement mortar-steel fiber reinforcement (CMSF is carried out to study the ultimate bearing capacity enhancement of the wall models. Results show that the method of cement mortar-steel fiber reinforcement can increase the ultimate bearing capacity of the rammed earth wall models significantly, which is of relevant engineering significance in practical application.

  3. Research on compressive strength of recycled cement mortar after high temperature

    Science.gov (United States)

    Zhang, Xianggang; Yang, Jianhui; Deng, Dapeng

    2017-01-01

    In order to study cube compressive strength of recycled fine aggregate cement mortar after different temperatures, with the affect parameters between replacement rate of recycled fine aggregate and temperature, 45 standard cube test blocks were designed and produced to carry out compressive strength test. The failure process and failure mode of test blocks were observed. Ultimate compressive strength of cube blocks were measured, the relations between cube compressive strength and the replacement rates of recycled fine aggregate under different temperatures as well as the relations between cube compressive strength and temperatures under different replacement rates were all analyzed, the influence change parameters made on cube compressive strength was discussed. The results showed: the failure process and the failure mode of recycled fine aggregate cement mortar and the failure process and the failure mode of nature is similar; when the temperature reached 400°C, the block has no burst phenomenon, but the colour of block into a dark pink; with the increase of recycled fine aggregate, the mass lose rate of block is increase; effect different temperature make on cube compressive strength of test block is not obvious when temperature keeps same for 3h.

  4. Study on cement mortar and concrete made with sewage sludge ash.

    Science.gov (United States)

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  5. Microstructure and its relationship to fracture in portland cement mortar and concrete

    Science.gov (United States)

    Abell, Anne Bernadine

    This research explores the relationship between the geometry of crack propagation and mechanical properties of mortar and concrete. The crack deflection and branching are measured using several microscopy techniques along with image analysis of crack profiles intruded by a low melting-point alloy. The toughness measured by mechanical testing, the fracture surface geometry, phases and elastic properties identified by image analysis and microscopy, along with the crack branching relationships are used to predict the increase in the toughness of these materials with respect to the flat-crack toughness using a micromechanical model. The effect of the model parameters, microscopy techniques, material elastic properties, void modeling and branching ratio were investigated. The parametric analysis and modeling conditions determine a nearly uniform flat-crack toughness for the cement matrix of the mortar samples and a higher flat-wrack toughness for the cement matrix of the concrete samples. The trend toward a single toughness value may be an indication that there is a single material parameter to describe the fracture energy of these materials.

  6. Physical and mechanical characterization of Portland cement mortars made with expanded polystyrene particles addition (EPS

    Directory of Open Access Journals (Sweden)

    Ferrándiz-Mas, V.

    2012-12-01

    Full Text Available On this work the influence of the addition of different types (commercial and recycled and contents of expanded polystyrene on the physical and mechanical properties of Portland cement mortars has been studied. Variables studied are: workability, air content, bulk density, mechanical strength, porosity, water absorption and sound absorption. Mixtures have been also characterized by scanning electron microscopy. Air-entraining agents, water retainer and superplasticizer additives have been used in order to improve the workability of mortars. The results show that the workability and mechanical strength decreases with increasing content of expanded polystyrene. Additives improve the workability and porosity, allowing manufacture mortars with high levels of recycled material that show mechanical properties suitable for use as masonry mortars, stucco and plaster.

    El objetivo de este estudio es evaluar la influencia de la adición de distintos tipos y dosificaciones de poliestireno expandido, tanto comerciales como procedentes de reciclado, sobre las características físicas y mecánicas de morteros de cemento portland. Las variables estudiadas fueron: consistencia, aire ocluido, densidad aparente, resistencias mecánicas, porosidad, absorción de agua y absorción acústica. Los morteros también se han caracterizado por microscopia electrónica de barrido. Con objeto de mejorar la trabajabilidad de los morteros se ha empleado aditivos aireante, retenedor de agua y fluidificante. Los resultados muestran que al aumentar la cantidad de poliestireno expandido la trabajabilidad y las resistencias mecánicas disminuyen. El empleo de aditivos mejora la trabajabilidad y la porosidad, permitiendo fabricar morteros con altos contenidos de residuo, con propiedades mecánicas adecuadas para su empleo como morteros de albañilería, revoco y enlucido.

  7. Potential Use Of Carbide Lime Waste As An Alternative Material To Conventional Hydrated Lime Of Cement-Lime Mortars

    OpenAIRE

    Al Khaja, Waheeb A.

    1992-01-01

    The present study aimed at the possibility of using the carbide lime waste as an alternative material to the conventional lime used for cement-lime mortar. The waste is a by-product obtained in the generation of acetylene from calcium carbide. Physical and chemical properties of the wastes were studied. Two cement-lime-sand mix proportions containing carbide lime waste were compared with the same mix proportions containing conventional lime along with a control mix without lime. Specimens wer...

  8. Reuse of By-Products from Ready-Mixed Concrete Plants for the Production of Cement Mortars

    Directory of Open Access Journals (Sweden)

    Monika Zervaki

    2013-06-01

    Full Text Available This study was motivated by the necessity to recycle sludge water resulting from washing out concrete mixing trucks - a problem of both environmental and economic importance for the ready-mixed concrete industry. Sludge water from ready-mixed concrete plants as well as dry sludge, which is derived from the settling of the water, are hazardous for disposal due to their high pH value (pH>11.5. In this work, cement mortars were composed using either sludge water after various treatment, or dry sludge in several ratios. The cement mortars were tested for their workability and strength development. The purpose of this experimental design was to prove that sludge water, as well as sludge in a wet or dry form, can be used in the production of mortars without degrading any of their properties.

  9. New methodology for assessing the environmental burden of cement mortars with partial replacement of coal bottom ash and fly ash.

    Science.gov (United States)

    Menéndez, E; Álvaro, A M; Hernández, M T; Parra, J L

    2014-01-15

    This paper assess the mechanical an environmental behaviour of cement mortars manufactured with addition of fly ash (FA) and bottom ash (BA), as partial cement replacement (10%, 25% and 35%). The environmental behaviour was studied by leaching tests, which were performed under several temperature (23 °C and 60 °C) and pH (5 and 10) conditions, and ages (1, 2, 4 and 7 days). Then, the accumulated amount of the different constituents leached was analysed. In order to obtain an environmental burden (EB) value of each cement mixture, a new methodology was developed. The EB value obtained is related to the amount leached and the hazardous level of each constituent. Finally, the integral study of compressive strength and EB values of cement mixtures allowed their classification. The results showed that mortars manufactured with ordinary Portland cement (OPC) and with coal BA had similar or even better environmental and mechanical behaviour than mortars with FA. Therefore, the partial replacement of cement by BA might be as suitable or even better as the replacement by FA.

  10. Dry and wet "deposition" studies of the degradation of cement mortars

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1998-06-01

    Full Text Available The reaction of portland cement mortars with SO2 gaseous pollutant and artificial 'acid rain' solution has been examined using laboratory exposure chambers, with realistic presentation rates of pollutants. The mortar were previously carbonated to produce superficial carbonation. Two mortars with different w/c ratio and hence specific surface were prepared and exposed into the chambers. For dry deposition of SO2 pollutant gas, the important roles of water and water plus oxidant in increasing chemical reaction are readily revealed. Further, accessible porosity also increases reaction through increased times of reaction of pollutant with the mortars. Interestingly, in the absence of deliberate surface wetting, the presence of oxidant, ozone, leads to a reduction in the already limited extent of reaction. Wet deposition studies using artificial 'acid rain' solution result in gypsum formation, which is more extensive for mortars of increased w/c ratios.

    Se han realizado ensayos de laboratorio de simulación de los procesos ambientales de "deposición" seca y húmeda sobre morteros de cemento portland, estudiándose las reacciones que se producen con el contaminante SO2 ("deposición" seca y la disolución de 'lluvia acida' ("deposición" húmeda. Los morteros de cemento se carbonataron para favorecer la carbonatación superficial de los mismos. Se prepararon morteros con dos relaciones a/c con el fin de estudiar la influencia que la variable superficie específica tenía en el proceso de deterioro de dichos materiales. En los estudios de deposición seca con SO2 como gas agresivo se ha visto la importancia que el agua y el agua junto a un oxidante tienen en la reacción del contaminante con los componentes del mortero. La superficie específica Juega un papel importante, ya que al aumentar, aumenta la reacción con el contaminante. La reacción en presencia de oxidante, (SO2+O3

  11. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.

    Science.gov (United States)

    Saikia, Nabajyoti; Cornelis, Geert; Mertens, Gilles; Elsen, Jan; Van Balen, Koenraad; Van Gerven, Tom; Vandecasteele, Carlo

    2008-06-15

    Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.

  12. SEM Analysis of the Interfacial Transition Zone between Cement-Glass Powder Paste and Aggregate of Mortar under Microwave Curing

    Directory of Open Access Journals (Sweden)

    Yaning Kong

    2016-08-01

    Full Text Available In order to investigate the effects of microwave curing on the microstructure of the interfacial transition zone of mortar prepared with a composite binder containing glass powder and to explain the mechanism of microwave curing on the improvement of compressive strength, in this study, the compressive strength of mortar under microwave curing was compared against mortar cured using (a normal curing at 20 ± 1 °C with relative humidity (RH > 90%; (b steam curing at 40 °C for 10 h; and (c steam curing at 80 °C for 4 h. The microstructure of the interfacial transition zone of mortar under the four curing regimes was analyzed by Scanning electron microscopy (SEM. The results showed that the improvement of the compressive strength of mortar under microwave curing can be attributed to the amelioration of the microstructure of the interfacial transition zone. The hydration degree of cement is accelerated by the thermal effect of microwave curing and Na+ partially dissolved from the fine glass powder to form more reticular calcium silicate hydrate, which connects the aggregate, calcium hydroxide, and non-hydrated cement and glass powder into a denser integral structure. In addition, a more stable triangular structure of calcium hydroxide contributes to the improvement of compressive strength.

  13. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  14. Pozzolanic Activity of Burned Coal Gangue and Its Effects on Structure of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    ZHANG Changsen

    2006-01-01

    The pozzolanic activity of coal gangue burned at different burning temperatures was investigated. The burned coal gangue was mixed with portland cement in different proportions ( 20%-60% ). The pozzolanic activity of coal gangue burned and the hydration products were examined, the compressive strengths of the pastes of the mixtures were tested, and the mechanism of the reaction was discussed. The experimental results show that the coal gangue burned at 750 ℃ has the optimum pozzolanic activity, and the burned coal gangue with SiO2 and Al2O3 is in an active form. When the coal gangue burned at 750 ℃ is mixed into portland cement, the content of calcium hydroxide in paste is significantly reduced, while the contents of hydrated calcium silicate and hydrated calcium aluminate are increased accordingly, hence resulting in the improvement of the microstructure of mortar. The compressive strength of cement paste decreases with increasing the content of burned coal gangue. The decease in strength is small in the range of 20%- 30% coal gangue substitution and significant in 30%- 60% substitution.

  15. [Dynamic leaching behavior of heavy metals in eco-cement mortar block].

    Science.gov (United States)

    Li, Cheng; Liu, Jian-Guo; Zhang, Jun-Li; Yue, Dong-Bei; Nie, Yong-Feng; Wang, Chang-Hai

    2008-03-01

    A dynamic leaching test with the renewal of acidic leaching medium was designed to study the leaching behavior of the seven heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn) in three solidified eco-cement mortar samples with different particle size (fine granule, coarse granule, block) under a long-term leaching condition. It was demonstrated that all the heavy metals were detected in the leachate except Cd. The leaching ratio of Cr was the highest when compared with other metals in the same sample, and the leaching ratio of every metal showed an identical tendency: fine granule> coarse granule > block. The on-going leaching part of the relationship curve of accumulative leaching point (Pt) and t1/2 of each metal presented a fairly good linearity, which indicated that the leaching process was under the control of diffusion mechanism by the Fick Law. To each metal, the effective diffusion coefficient (Deff) showed a tendency of fine granule mortar with a bigger size would have a lower leaching ratio and a shorter period to finish the leaching test. To all the metals, the Deff was very low, with the magnitude around 10(-10) cm2/s, which meant the leaching process would take a relatively long time.

  16. Wood ash used as partly sand and/or cement replacement in mortar

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Hansen, Esben Østergaard; Jensen, Pernille Erland;

    2016-01-01

    Wood ash (WA) is the residue generated during incineration of wood and wood products. The WAs in focus of this work are from incineration of virgin wood. Physical and chemical properties of WA vary significantly depending on many factors related to the wood species and the incineration process...... from the differences in ash characteristics to the properties of the mortar samples. The characteristics of the ashes did vary considerably. For example, one ash had very high loss on ignition (LoI) of 14% compared to 3% for the other ashes. Ash solubility in water ranged from 18% to 28%. Two...... of the ashes were dry and sampled just after the incineration, whereas one ash had a water content of 15%, because the ash was sprayed with water to avoid dust during ash handling at the incineration plant. Regardless of replacing cement or sand with WAs, the compressive strength decreased compared...

  17. Effects of Two Redispersible Polymer Powders on Efflorescence of Portland Cement-based Decorative Mortar

    Directory of Open Access Journals (Sweden)

    Huimei ZHU

    2014-09-01

    Full Text Available The effects of redispersible polymer powders of ethylene/Vinyl acetate copolymer (EVA and ethylene/vinyl laurate/vinyl chloride terpolymer (E/VL/VC on the efflorescence of Portland cement-based decorative mortar (PCBDM were studied. The results showed that EVA slightly prolongs the efflorescence duration of fresh PCBDM; and exacerbates efflorescence of hardened PCBDM, because it increases the content of soluble salts such as Ca2+, K+, Na+ ions in hardened PCBDM and promotes their migration. E/VL/VC exacerbates efflorescence of fresh PCBDM due to it easily dissolves in the surface water; but reduces efflorescence of hardened PCBDM, which is attributed to that it decreases the soluble salts content in hardened PCBDM and prohibits salts migration. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4053

  18. Altered cement hydration and subsequently modified porosity, permeability and compressive strength of mortar specimens due to the influence of electrical current

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2014-01-01

    This paper reports on the influence of stray current flow on microstructural prop-erties, i.e. pore connectivity and permeability of mortar specimens, and link these to the observed alterations in mechanical properties and cement hydration. Mortar specimens were partly submerged in water and calcium

  19. Simple method of dynamic Young’s modulus determination in lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Rosell, J. R.

    2011-03-01

    Full Text Available The present work explains a simple method to determine the dynamic Young module (MOE by inducing a set of small mechanical perturbation to samples of lime and cement mortars and correlating the results obtained with results determined using other techniques and methods. The procedure described herein follows the instructions stated in the UNE-EN ISO 12680-1 standard for refractory products although in this study the instructions are applied to standardized RILEM 4x4x16 cm test samples made of lime and cement mortars. In addition, MOE determinations are obtained by using ultrasonic impulse velocity while static Young's modulus determinations are obtained by performing conventional bending tests. The ability of this procedure to correlate with results from other techniques, along with its simplicity, suggests that it can be widely adapted to determine the deformability of mortars under load using standardized samples.

    El presente trabajo muestra un método simple para determinar el módulo de Young dinámico (MOE a partir de pequeñas perturbaciones mecánicas producidas a probetas de mortero de cal y de cemento, correlacionando los resultados obtenidos con las correspondientes mediciones realizadas con otras técnicas. El procedimiento sigue básicamente las instrucciones fijadas en la norma UNE-EN ISO 12680-1 de productos refractarios, pero aplicándolo a probetas normalizadas RILEM 4x4x16 de morteros confeccionados con cal y cemento. Paralelamente se realizan determinaciones del MOE a partir de la velocidad de paso de impulsos ultrasónicos y determinaciones del módulo de Young estático a partir de ensayos de flexión convencionales. La simplicidad del método aplicado y la correlación de los resultados obtenidos con las variables medidas permiten concluir que esta metodología es de aplicación directa para determinar la deformabilidad bajo carga de los morteros a partir de probetas normalizadas.

  20. Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 2. Mechanical strength of mortars and environmental impact.

    Science.gov (United States)

    Aubert, J E; Husson, B; Sarramone, N

    2007-07-19

    This second of two articles dealing with the utilization of MSWI fly ash in blended cement studies the effects of two variants of the stabilization process on the behavior of the treated fly ash (TFA) introduced into cement-based mortars. From a technological point of view, the modifications of the process are very efficient and eliminate the swelling produced by the introduction of MSWI fly ash in cement-based mortars. TFA has a significant activity in cement-based mortars and can also advantageously replace a part of the cement in cement-based material. From an environmental point of view, the results of traditional leaching tests on monolithic and crushed mortars highlight a poor stabilization of some harmful elements such as antimony and chromium. The use of a cement rich in ground granulated blast furnace slag (GGBFS) with a view to stabilizing the chromium is not efficient. Since neither adequate tests nor quality criteria exist to evaluate the pollutant potential of a waste with a view to reusing it, it is difficult to conclude on the environmental soundness of such a practice. Further experiments are necessary to investigate the environmental impact of TFA introduced in cement-based mortars depending on the reuse scenario.

  1. 53rd Cement Technical Conference. The property of cement and mortar 2; Dai 53 kai semento gijutsu taikai. Semento, morutaru noseishitsu 2

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Naohiro [Nagoya Institute of Technology, Nagoya (Japan)

    1999-08-10

    Shin et al examined the neutralization phenomena in the placing joint part of mortar in the relation the placing joint time and the pore structure. Especially, it was concluded that pores more than 0.1{mu}m increased in the placing joint part by the influence of the freezing water and neutralization was promoted with an increasing of the placing joint time. Kawabe et al measured the radio wave absorption characteristics by mixing the conductive carbon fiber into mortar to be used as an electromagnetic wave absorption wall. Tokawa et al evaluated the flowability of concrete by separation of mortar from high flow concrete. Kojima et al. examined the reuse to lightweight mortar to be an aggregate of the discarded epoxy resin chip. Kawano et al. adjusted the clinker containing several percent crystals as the super fast-strong cement. The hydration reaction of alite from the initial age was promoted in addition of sodium sulfate anhydride, and high compress strength more than that in the fast-strong cement hardening body was obtained regardless of age. (NEDO)

  2. The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, J.M. [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Fita, I.C., E-mail: infifer@fis.upv.es [Departamento de Física Aplicada, Universitat Politècnica de València, Camino de Vera, 46022, Valencia (Spain); Soriano, L.; Payá, J.; Borrachero, M.V. [ICITECH, Instituto de Ciencia y Tecnología del Hormigón, Universitat Politècnica de València (Spain)

    2013-08-15

    In this paper, mortars and pastes containing large replacement of pozzolan were studied by mechanical strength, thermogravimetric analysis (TGA), scanning electronic microscopy (SEM), mercury intrusion porosimetry (MIP) and electrical impedance spectroscopy (EIS). The effect of metakaolin (35%) and fly ash (60%) was evaluated and compared with an inert mineral addition (andalusite). The portlandite content was measured, finding that the pozzolanic reaction produced cementing systems with all portlandite fixed. The EIS measurements were analyzed by the equivalent electrical circuit (EEC) method. An EEC with three branches in parallel was applied. The dc resistance was related to the degree of hydration and allowed us to characterize plain and blended mortars. A constant phase element (CPE) quantified the electrical properties of the hydration products located in the solid–solution interface and was useful to distinguish the role of inert and pozzolanic admixtures present in the cement matrix.

  3. Influence of fly ash and its mean particle size on certain engineering properties of cement composite mortars

    Energy Technology Data Exchange (ETDEWEB)

    Gengying Li; Xiaozhong Wu [Shantou University, Shantou (China). Department of Civil Engineering

    2005-06-01

    An experimental investigation on the effects of incorporating large volumes of fly ash on the early engineering properties and long-term strength of masonry mortars is reported. The effect of fly ash and its mean particle size (PD) on the variation of workability and strength has been studied. It was found that fly ash and its mean particle size play a very significant role on the strength of masonry mortars. It has been observed that the early-term strength, except the mortars incorporating coarse fly ash (CFA), was slightly influenced by the replacement with fly ash. The long-term strength (both the bond strength and the compressive strength) will significantly increase, especially for the bond strength of mortars incorporating coarse fly ash. It was also found that the bond strength significantly increased as the mean particle size of fly ash decreases after 28 days curing. However, the 7-day strength was little influenced by fly ash particle size. The fluidity of composite mortar enhanced due to replace cement and lime with fly ash, and the mean PD of fly ash significantly influenced the workability.

  4. Influence of SO{sub 2} deposition on cement mortar hydration

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Ramirez, S. [UMIST, Manchester (United Kingdom). Corrosion and Protection Centre

    1999-01-01

    The chemical reactions that occur during the hydration of Portland cement can be modified in the additional presence of certain compounds, such as SO{sub 2}, which may be present in areas of high pollutant gas concentration. This paper considers mortars that have been cured for 1 and 7 days and exposed to SO{sub 2} gas under dry and wet conditions. The role of ozone as gaseous catalyst in the reactions is studied. Fourier transform infrared spectrum analysis of the surface of the samples revealed carbonation had occurred; however, X-ray diffraction of the bulk material from the samples revealed Ca(OH){sub 2} only when the samples were exposed to dry conditions. In wet conditions, in the presence of water, the dissolution of CO{sub 2} gas is enhanced, the carbonation of the Ca(OH){sub 2} is promoted at higher levels, and thus no Ca(OH){sub 2} is detected. Under wet conditions, the degree of salt formation was greater than in dry conditions. In the presence of water, and due to Ca(OH){sub 2} carbonation, the pH of the pore solution is lower than 12; thus SO{sub 3}{sup 2{minus}} formation is favored. For the mortars exposed to dry conditions, kinetic salts such as K{sub 2}SO{sub 4} are formed. However, in the additional presence of water, thermodynamically stable products as K{sub 2}Ca(SO{sub 4}){sub 2}{center_dot}2H{sub 2}O and CaSO{sub 4}{center_dot}2H{sub 2}O are detected. The results of scanning electron microscopy indicated that the morphological composition of C-S-H gel resembles needle-like structures radiating from a grain. This morphology has been described by Taylor as type I.

  5. Properties and structure of cement mortar modified with epoxy emulsion%环氧树脂乳液改性水泥砂浆性能与结构

    Institute of Scientific and Technical Information of China (English)

    章凯

    2012-01-01

    The mechanical and adhesive properties, shrinkage and durability of cement mortar modified with water borne epoxy emulsion were experimentally studied, and the microstructures of the mortars were analyzed by SEM and MIP. The results showed that, adding 6%~10% (solid content) epoxy emulsion based on the mass of the cement in mortar will remarkably improve the mechanical properties of the mortar, and the adhesive strength of the mortar with aged cement mortar. The drying shrinkage of the modified mortar decreased, and the chloride permeability,carbonation and frost resistance increased with the increase of the polymer amount added. Compared with ordinary cement mortar, the polymer modified cement mortar is more compacted in structure,lower in porosity and small in mean pore size.%研究了水性环氧树脂乳液改性水泥砂浆的力学性能、粘结性能、收缩性能和耐久性能,用SEM和MIP分析了砂浆的结构.结果表明,掺加6%~10%水性环氧树脂乳液可有效提高水泥基修补砂浆的力学性能和与老砂浆的粘结强度,降低水泥砂浆的收缩值;水泥砂浆的抗渗性、抗碳化性以及抗冻性能均随水性环氧树脂掺量的增加而显著提高;较之未经改性的普通砂浆,水性环氧树脂乳液改性水泥砂浆的结构更为致密,连通孔的孔隙率和平均孔径小.

  6. Composite cement mortars based on marine sediments and oyster shell powder

    Directory of Open Access Journals (Sweden)

    Ez-zaki, H.

    2016-03-01

    Full Text Available Additions of dredged marine sediments and oyster shell powder (OS as cement substitute materials in mortars are examined by several techniques. The sediments have high water and chloride contents and calcite, quartz, illite and kaolinite as principal minerals. The OS powders are entirely composed of calcium carbonate and traces of other impurities. Four mixtures of treated sediments and OS powders at 650 °C and 850 °C are added to Portland cement at 8%, 16% and 33% by weight. The hydration of composite pastes is followed by calorimetric tests, the porosity accessible to water, the bulk density, the permeability to gas, the compressive strength and the accelerated carbonation resistance are measured. In general, the increase of addition amounts reduced the performance of mortars. However, a reduction of gas permeability was observed when the addition was up to 33%. Around 16% of addition, the compressive strength and carbonation resistance were improved.En este trabajo se ha valorado la sustitución de cemento en morteros por sedimentos marinos dragados y polvo de concha de ostra (OS. Los sedimentos tienen altos contenidos de agua, cloruros, calcita, cuarzo, illita y caolinita como minerales principales. Los polvos OS están compuestos de carbonato cálcico y trazas de otras impurezas. Se añadieron a un cemento Portland, cuatro mezclas de los sedimentos y polvos de OS tratados a 650 °C y 850 °C en proporciones del 8%, 16% y 33% en peso. La hidratación de pastas se estudió a través de calorimetría. Se estudió además la porosidad accesible al agua, densidad aparente, permeabilidad al gas, resistencia a compresión y carbonatación acelerada. En general, un aumento en la adición produjo una reducción del rendimiento de los morteros. Se observó, sin embargo, una reducción de la permeabilidad a los gases con porcentajes de adición de hasta el 33%. Con valores del 16% de sustitución, mejoraron las resistencias mecánicas y la

  7. The refilling of pores in cement mortars treated by chemicals and desiccation at different temperatures

    Directory of Open Access Journals (Sweden)

    Menéndez Pazos, Ignacio

    1992-09-01

    Full Text Available Bases under the law of solubility product, the pores of the cement mortar are refilled by impregnation with two salts that form another insoluble salt. The number of treatments to be underdone and the drying temperatures more suitable in each case. The calcium salts like impregnants and urea sodium oxalate and sugar like precipitates are employed, obtained in each case the corresponding pores are occupied, which depends generally on the number of treatments and in particular the drier temperature.

    Basados en los principios del producto de solubilidad, se rellenan los poros de las probetas de mortero de cemento por impregnación con dos sales que forman otra insoluble. Se determina el número de tratamientos a realizar y las temperaturas de secado más idóneas en cada caso. Se emplean sales cálcicas como impregnantes, y urea, oxalato sódico y azúcar como precipitantes, obteniéndose en cada caso las correspondientes ocupaciones de poros que dependen, por lo general, del número de tratamientos y, en particular, de la temperatura de secado.

  8. Changes in Properties of Cement and Lime Mortars When Incorporating Fibers from End-of-Life Tires

    Directory of Open Access Journals (Sweden)

    Lluís Gil

    2016-02-01

    Full Text Available This paper studies the addition of fibers from end-of-life tires to commercial mortar mixtures. Two different types of mortar, one lime-plastic and other cement-fluid, are mixed with different percentage of fibers ranging from 0% to 1%. The changes in bulk density, consistency, compressive and flexural strength, dynamic Young modulus and water absorption are studied. According to the results, consistency is the property that shows more relevant changes for an addition of 0.25% fibers. Consistency is related to workability and affects the water absorption and the Young modulus values. On the contrary, bulk density and mechanical properties did not change with the addition of fibers. The results prove that this fiber, considered a waste from recycling of end-of-life tires, can be used in commercial mixtures without losing strength. On the other hand, mortar workability limits the amount of fibers that can be included in the mixture and this parameter determines the performance of the mortar.

  9. Influence of free water content on the compressive mechanical behaviour of cement mortar under high strain rate

    Indian Academy of Sciences (India)

    Jikai Zhou; Xudong Chen; Longqiang Wu; Xiaowei Kan

    2011-06-01

    The effect of free water content upon the compressive mechanical behaviour of cement mortar under high loading rate was studied. The uniaxial rapid compressive loading testing of a total of 30 specimens, nominally 37 mm in diameter and 18.5 mm in height, with five different saturations (0%, 25%, 50%, 75% and 100%, respectively) were executed in this paper. The technique ‘Split Hopkinson pressure bar’ (SHPB) was used. The impact velocity was 10 m/s with the corresponding strain rate as 102/s. Water-cement ratio of 0.5 was used. The compressive behaviour of the materials was measured in terms of the maximum stress, Young’s modulus, critical strain at maximum stress and ultimate strain at failure. The data obtained from test indicates that the similarity exists in the shape of strain–stress curves of cement mortars with different water content, the upward section of the stress–strain curve shows bilinear characteristics, while the descending stage (softening state) is almost linear. The dynamic compressive strength of cement mortar increased with the decreasing of water content, the dynamic compressive strength of the saturated specimens was 23% lower than that of the totally dry specimens. With an increase in water content, the Young’s modulus first increases and then decreases, the Young’s modulus of the saturated specimens was 23% lower than that of the totally dry specimens. No significant changes occurred in the critical and ultimate strain value as the water content is changed.

  10. Influence of clinker grinding-aids on the intrinsic characteristics of cements and on the behaviour of mortars

    Directory of Open Access Journals (Sweden)

    Fernández Luco, L.

    2003-12-01

    Full Text Available In the production of portland cement, grinding aids are used to improve the grinding stage and reduce the energy required to achieve the required fineness. These additives remain in the final product and they might influence the characteristics and properties of the cement, and thus, mortar and concrete. This paper presents an evaluation of two grinding-aid additives used in the production of portland cement ground in a ball mill at a laboratory stage, with suitable proportions of portland cement clinker and gypsum. A control cement mix was also produced without using any admixture and the results are shown on a comparative basis. Conclusions indicate that grinding-aids additives have some influence on the characteristics of portland cement produced, increasing their specific surface and modifying microstructure and its packing ability. Mortars and concretes made with cements ground with the addition of gringing-aids exhibit higher strength at any age and a reduced water demand. Special attention should be taken to consider any interaction with water-reducing admixture in concretes and mortars.

    En la fabricación de cemento portland es una práctica creciente la utilización de aditivos para optimizar el proceso de molienda; éstos quedan incorporados en el producto final y pueden influir sobre las características y propiedades del cemento, morteros y hormigones. En este trabajo se presenta la evaluación de dos aditivos comerciales en la molienda conjunta de clínker de cemento portland y yeso comercial, tratados en un molino a bolas a escala de laboratorio, en forma comparativa con un cemento sin aditivo producido en forma equivalente. Las conclusiones indican que los aditivos de molienda tienen influencia en las características del cemento resultante, incrementando su superficie y modificando su microestructura y estado de agregación; los morteros mejoran sus prestaciones mecánicas a todas las edades y se reduce la demanda de agua

  11. Natural radioactivity levels and danger ratio in cements, concretes and mortars used in construction; Determinacion de niveles radiactivos naturales e indices de peligrosidad en cementos, hormigones y morteros utilizados en construccion

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, J.; Pacheco, C.; Avila, J. M.; Miro, C.

    2010-07-01

    We have determined the natural radiation level in three types of adhesive cements, five types of concrete and two types of mortars of different strength normally used in the construction field. Of these materials, both concrete and mortars were prepared in our laboratories, cements the contrary were of a commercial nature.

  12. Effect of high doses of chemical admixtures on the strength development and freeze-thaw durability of portland cement mortar

    Science.gov (United States)

    Korhonen, Charles J.

    This thesis examines the low-temperature strength development of portland cement concrete made with high doses of chemical admixtures dissolved in the mixing water and the possible beneficial effect of these admixtures on that concrete's long-term freeze-thaw durability. The literature shows that high doses of chemical admixtures can protect fresh concrete against freezing and that, under certain conditions, these admixtures can enhance the freeze-thaw durability of concrete. The challenge is that there are no acceptance standards in the U.S. that allow chemicals to be used to protect concrete against freezing. Also, the perception is that chemicals might somehow harm the concrete. This perception seems to be based on the fact that deicing salts, when applied to concrete pavement, cause roadways to scale away. This study investigated the effect of high doses of commercially available admixtures on fresh concrete while it gained strength at low temperature and on hardened concrete exposed to repeated cycles of freezing and thawing in a moist environment. The reason for studying off-the-shelf admixtures was that these materials are approved for use in concrete; they were already governed by their own set of standards. Four mortars were examined, each with a different cement and water content, when dosed with five commercial admixtures. This allowed the fresh mortar to gain appreciable strength when it was kept at nearly -10C. The admixtures also enhanced the freeze-thaw durability of the mortar, even when it was not air-entrained. Clearly, as the dosage of admixture increased beyond approximately 22% by weight of water, the mortar appeared to be unaffected by up to 700 cycles of freezing and thawing.

  13. Influence of supplementary cementitious materials on water transport kinetics and mechanical properties of hydrated lime and cement mortars

    Directory of Open Access Journals (Sweden)

    Ince, C.

    2015-06-01

    Full Text Available The purpose of this paper is an investigation of the possible role of supplementary cementitious materials (SCMs on water transport kinetics and mechanical properties of hydrated lime (CL90 and Portland cement (PC mortars. The properties of hydrated lime are significantly different from those of cement and therefore modifying fresh and hardened properties of these mortars are vital for mortar/substrate optimisation in masonry construction. The parameters investigated in this paper often are the main barriers to the use of hydrated lime in construction practice. The results show that transfer sorptivity and time to dewater freshly-mixed hydrated lime mortars can be modified when binder is partially replaced with SCMs. Compressive strength of CL90 mortars is increased systematically with the increased replacement levels of SCMs and the results are supported with the microstructural images. The ability to modify the water transport kinetics and mechanical properties allows compatibility between the mortar and the substrate unit in masonry construction.El objetivo de este artículo es investigar el papel de los materiales cementantes suplementarios (SCMs en la cinética de transporte del agua y en las propiedades mecánicas de los morteros de cal hidratada (CL90 y cemento Portland. Las propiedades de la cal hidratada son significativamente diferentes a las del cemento y por lo tanto el control de las propiedades de los morteros frescos y endurecidos es fundamental en la optimización mortero/substrato en albañilería. Los parámetros estudiados en este trabajo son a menudo las principales barreras para el uso de la cal hidratada en la práctica de la construcción. Los resultados indican que la absortividad y el tiempo necesario para deshidratar morteros de cal hidratada recién mezclados pueden ser controlados cuando el conglomerante es parcialmente remplazado por SCMs. La resistencia a compresión de los morteros CL90 aumenta sistem

  14. Studies on potential of Portland cement mortar for binding of waterworks sludge to reduce heavy metal leaching

    Indian Academy of Sciences (India)

    PARAMALINGGAM THANALECHUMI; ABDULL RAHIM MOHD YUSOFF; MOHANADOSS PONRAJ; HANIM AWAB

    2016-03-01

    The investigation of heavy metal leaching and physicochemical properties of cement-solidified waterworks sludge (CMWWS) formed by incorporating waterworks sludge (WWS) into cement mortar was carried out. The chemical composition, compressive strength and other physicochemical properties of the CMWWS cube specimens were determined using field emission scanning electron microscopy (FESEM), X-ray diffractometry (XRD) and Fourier transform-infrared spectroscopy (FTIR). The major type of chemical components present in CMWWS was found to be Al and Fe. The increasing amount of WWS added to cement mortar resulted in the increasing of organic matter, urchin-like morphology and clear peak intensity. At the end of 28 days of curing, the soaking solution became strongly basic and CMWWS cube specimens leached out higher amount of heavy metals. The compressive strength of CMWWS increased up to a WWS percentage of 10%, and basic (pH [ 7) curing solution was found to be better than water for curing purposes. It is concluded that solidification–stabilisation (S/S) technique is able to effectively reduce the leaching of heavy metals from the WWS and CMWWS containing up to 10% WWS can be used as construction material.

  15. Engineering properties of cement mortar with pond ash in South Korea as construction materials: from waste to concrete

    Science.gov (United States)

    Jung, Sang; Kwon, Seung-Jun

    2013-09-01

    Among the wastes from coal combustion product, only fly ash is widely used for mineral mixture in concrete for its various advantages. However the other wastes including bottom ash, so called PA (pond ash) are limitedly reused for reclamation. In this paper, the engineering properties of domestic pond ash which has been used for reclamation are experimentally studied. For this, two reclamation sites (DH and TA) in South Korea are selected, and two domestic PAs are obtained. Cement mortar with two different w/c (water to cement) ratios and 3 different replacement ratios (0%, 30%, and 60%) of sand are prepared for the tests. For workability and physical properties of PA cement mortar, several tests like flow, setting time, and compressive strength are evaluated. Several durability tests including porosity measuring, freezing and thawing, chloride migration, and accelerated carbonation are also performed. Through the tests, PA (especially from DH area) in surface saturated condition is evaluated to have internal curing action which leads to reasonable strength development and durability performances. The results show a potential applicability of PA to concrete aggregate, which can reduce consuming natural resources and lead to active reutilization of coal product waste.

  16. Decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructure in a model system using disinfectants.

    Science.gov (United States)

    Szabo, Jeffrey G; Meiners, Greg; Heckman, Lee; Rice, Eugene W; Hall, John

    2017-02-01

    Decontamination of Bacillus spores adhered to common drinking water infrastructure surfaces was evaluated using a variety of disinfectants. Corroded iron and cement-mortar lined iron represented the infrastructure surfaces, and were conditioned in a 23 m long, 15 cm diameter (75 ft long, 6 in diameter) pilot-scale drinking water distribution pipe system. Decontamination was evaluated using increased water velocity (flushing) alone at 0.5 m s(-1) (1.7 ft s(-1)), as well as free chlorine (5 and 25 mg L(-1)), monochloramine (25 mg L(-1)), chlorine dioxide (5 and 25 mg L(-1)), ozone (2.0 mg L(-1)), peracetic acid 25 mg L(-1)) and acidified nitrite (0.1 mol L(-1) at pH 2 and 3), all followed by flushing at 0.3 m s(-1) (1 ft s(-1)). Flushing alone reduced the adhered spores by 0.5 and 2.0 log10 from iron and cement-mortar, respectively. Log10 reduction on corroded iron pipe wall coupons ranged from 1.0 to 2.9 at respective chlorine dioxide concentrations of 5 and 25 mg L(-1), although spores were undetectable on the iron surface during disinfection at 25 mg L(-1). Acidified nitrite (pH 2, 0.1 mol L(-1)) yielded no detectable spores on the iron surface during the flushing phase after disinfection. Chlorine dioxide was the best performing disinfectant with >3.0 log10 removal from cement-mortar at 5 and 25 mg L(-1). The data show that free chlorine, monochloramine, ozone and chlorine dioxide followed by flushing can reduce adhered spores by > 3.0 log10 on cement-mortar.

  17. Quantitative characterisation of steel/cement paste interface microstructure and corrosion phenomena in mortars suffering from chloride attack

    Energy Technology Data Exchange (ETDEWEB)

    Koleva, D.A. [Faculty of Civil Engineering and Geoscience, Department of Material Science, Delft University of Technology, Stevinweg 1, 2628 CN Delft, (Netherlands)]. E-mail: D.A.Koleva@TUDelft.nl; Hu, J. [Faculty of Civil Engineering and Geoscience, Department of Material Science, Delft University of Technology, Stevinweg 1, 2628 CN Delft, (Netherlands); Fraaij, A.L.A. [Faculty of Civil Engineering and Geoscience, Department of Material Science, Delft University of Technology, Stevinweg 1, 2628 CN Delft, (Netherlands); Stroeven, P. [Faculty of Civil Engineering and Geoscience, Department of Material Science, Delft University of Technology, Stevinweg 1, 2628 CN Delft, (Netherlands); Boshkov, N. [Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev, bl. 11, Sofia 1000 (Bulgaria); Wit, J.H.W. de [Faculty of Materials Science and Engineering, Corrosion Technology and Electrochemistry Department, Delft University of Technology, Mekelweg 2, 2628 CD Delft, (Netherlands)

    2006-12-15

    Chloride ions constitute one of the deleterious agents that may cause or promote corrosion of steel reinforcement in concrete. The influence of chloride ingress on mortar microstructure (including microstructural alterations of hydration products and of pore structure) has been studied by the authors on the basis of cross-section image analysis of reinforced mortar specimens [D.A. Koleva, J. Hu, A.L.A. Fraaij, N. Boshkov, Influences of chloride ions on plain and reinforced mortars, investigated by combined microstructure and electrochemical approaches, Paper 315, Eurocorr 2005, September 4-8 '05, Lisbon, Portugal]. This paper specifically pursues exploring the morphological aspects and chemical compositions of the corrosion products deposited on steel surface. For this purpose, scanning electron images (SEM) were taken on the cylindrical surface of steel reinforcement and also on the corresponding positions on cement paste surface for visualisation and microstructural investigations of corrosion products. In addition, energy dispersive X-ray analysis (EDXA) and X-ray diffraction (XRD) are employed for quantitative characterisation of the corrosion products at the steel-paste interface. Electrochemical impedance spectroscopy (EIS) is used to estimate the corrosion current and corrosion rate for the reinforced mortars. The EIS measurements are in good agreement with the microstructural observations and quantitative analysis of various corrosion products. The combination of electrochemical measurements with quantitative microstructure analysis of the steel-paste interface constitutes a reliable and useful tool for quantitative characterisation of the interface microstructure and thereby provides better insight into the electrochemical processes during corrosion of the steel reinforcement in concrete.

  18. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 9. Communication: experimental examination of cement mortar for the lining with tiles (author's transl)].

    Science.gov (United States)

    Schoenen, D; Thofern, E

    1981-12-01

    The observation of a microbial growth in form of macrocolonies upon the joints of a tiled drinking water reservoir caused the microbiological testing of different pure mineral and some plastic containing cement mortar. Besides the conditions allowing the growth of macrocolonies on tiled plates with a construction like in a reservoir were examined.

  19. Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R cement mortars

    Directory of Open Access Journals (Sweden)

    Payá, J.

    2008-12-01

    Full Text Available This paper reports on a study of the corrosion levels in steel bars embedded in mortars made with a blend of Portland cement and (0-20% spent fluid catalytic cracking catalyst residue (FC3R, with a variable (0.3-0.7 water/binder (w/b ratio. The specimens were stored in the following conditions: relative humidity of 40, 80 or 100% and CO2 concentrations of 5 and 100%. The steel corrosion rate was measured with polarization resistance techniques. In the absence of aggressive agents, the steel was found to remain duly passivated in mortars with an FC3R content of up to 15% under all the conditions of relative humidity tested. The reinforcement corrosion level in mortars with a w/b ratio of 0.3 and 15% FC3R subjected to accelerated carbonation was similar to the level observed in the unblended Portland cement control mortar.En este trabajo se ha estudiado el nivel de corrosión de barras de acero embebidas en morteros de cemento Portland con relación agua/material cementante (a/mc variable (0,3-0,7, en los que parte del cemento (0-20% se sustituyó por catalizador de craqueo usado (FC3R. Las condiciones de conservación de las probetas elaboradas fueron las siguientes: distintas humedades relativas (40, 80 y 100% y dos concentraciones de CO2 (5 y 100%. La velocidad de corrosión de los aceros se midió mediante la técnica de resistencia de polarización. Se ha podido determinar que, bajo las distintas condiciones de humedad relativa y ausencia de agresivo, los aceros se mantuvieron correctamente pasivados en los morteros con contenidos de FC3R de hasta el 15%. El nivel de corrosión que presenta el refuerzo embebidos en morteros con sustitución de un 15% de cemento por FC3R y relación a/mc 0,3, al ser sometidos a un proceso de carbonatación acelerada, era muy similar al mostrado por el mortero patrón, sin FC3R.

  20. Effect of sewage sludge ash (SSA on the mechanical performance and corrosion levels of reinforced Portland cement mortars

    Directory of Open Access Journals (Sweden)

    Andión, L. G.ª

    2006-06-01

    Full Text Available The article describes a study conducted to determinecorrosion in reinforcement embedded in Portland cement(PC mortars with different percentages of sewage sludgeash (SSA admixtures. The polarization resistancetechnique was used to determine the steel corrosion rate(Icorr in the test specimens. The samples were subjectedto different environmental conditions and aggressiveagents: 100% relative humidity (RH, accelerated carbonationat 70% RH and seawater immersion. Portlandcement was partially substituted for SSA in the mixes atrates of 0, 10, 20, 30 and 60% (by mass to make thedifferent mortars. The results show that where cementwas replaced by SSA at rates of up to 10% by mass,mortar corrosion performance was comparable to thebehaviour observed in SSA-free mortars (control mortar:0% SSA. Data for higher rates are also shown. From themechanical standpoint, SSA exhibited moderate pozzolanicactivity and the best performance when SSA wasadded at a rate of 10% to mixes with a water/(binder:PC + SSA (w/b ratio of 0.5.Se ha estudiado el nivel de corrosion que presentan lasarmaduras embebidas en morteros fabricados con cementoPortland (CP con diferentes porcentajes de sustitucion deceniza de lodo de depuradora (CLD. Se ha utilizado la tecnicade la Resistencia a la Polarizacion para determinar lavelocidad de corrosion del acero embebido en las muestrasestudiadas. Las muestras se han sometido a diferentes condicionesambientales y agentes agresivos: 100% de humedadrelativa (HR, carbonatacion acelerada al 70% HR einmersion en agua de mar. Para la fabricacion de los distintosmorteros, el cemento Portland ha sido parcialmente sustituidopor CLD en los siguientes porcentajes en masa: 0,10, 20, 30 y 60%. Los resultados muestran que sustitucionesde cemento por CLD de hasta el 10% en masa no alteranel comportamiento frente a la corrosion de los morterosal compararlos con los morteros libres de CLD (morteroscontrol: 0% de sustitucion de cemento por CLD. Se

  1. Manufacturing of mortars and concretes non-traditionals, by Portland cement, metakaoline and gypsum (15.05%

    Directory of Open Access Journals (Sweden)

    Talero, R.

    1999-12-01

    Full Text Available In a thorough previous research (1, it appeared that creation, evolution and development of the values of compressive mechanical strength (CS and flexural strength (FS, measured in specimens 1x1x6cm of mortar type ASTM C 452-68 (2, manufactured by ordinary Portland cement P-1 (14.11% C3A or PY-6 (0.00% C3A, metakaolin and gypsum (CaSO4∙2H2O -or ternary cements, CT-, were similar to the ones commonly developed in mortars and concretes of OPC. This paper sets up the experimental results obtained from non-traditional mortars and concretes prepared with such ternary cements -TC-, being the portland cement/metakaolin mass ratio, as follows: 80/20, 70/30 and 60/40. Finally, the behaviour of these cements against gypsum attack, has been also determined, using the following parameters: increase in length (ΔL%, compressive, CS, and flexural, FS, strengths, and ultrasound energy, UE. Experimental results obtained from these non-traditional mortars and concretes, show an increase in length (ΔL, in CS and FS, and in UE values, when there is addition of metakaolin.

    En una exhaustiva investigación anterior (1, se pudo comprobar que la creación, evolución y desarrollo de los valores de resistencias mecánicas a compresión, RMC, y flexotracción, RMF, proporcionados por probetas de 1x1x6 cm, de mortero 1:2,75, selenitoso tipo ASTM C 452-68 (2 -que habían sido preparadas con arena de Ottawa, cemento portland, P-1 (14,11% C3A o PY- 6 (0,00% C3A, metacaolín y yeso (CaSO4∙2H2O-, fue semejante a la que, comúnmente, desarrollan los morteros y hormigones tradicionales de cemento portland. En el presente trabajo se exponen los resultados experimentales obtenidos de morteros y hormigones no tradicionales, preparados con dichos cementos ternarios, CT, siendo las proporciones porcentuales en masa ensayadas, cemento portland/metacaolín, las siguientes: 80/20, 70

  2. Mechanism and Preventive Technology of the Thaumasite Form of Sulfate Attack on Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The deterioration mechanism of thaumasite towards cement or concrete structure and the deterioration pattern of in-situ construction caused by the formation of thaumasite were studied in this paper. To improve the TSA (the thaumasite form of sulfate attack) resistance, the cement type, water to cement ratios, the mineral admixture and the circumstance factors should be taken into consideration.

  3. Effect of mineral additives (natural pozzolana and sand of dunes) by substitution of cement on the performance and durability of mortars

    Science.gov (United States)

    Saidi, M.; Safi, B.

    2016-04-01

    The objective of our work consists of the study of the substitution effects of clinker by mineral additions such as: natural pozzolana (PZ) and the sand of dunes (SD) finely crushed on the mechanical properties and the durability of the mortars worked out according to various combinations containing these additions. The results from this research confirm that the substitution of 20% to 30% of cement APC (Artificial Portland Cement) by additions in binary cement (APC + PZ) or ternary (APC + PZ + SD) contributes positively to the mechanical strength of mortars and resistance to the chemical attacks in various corrosive conditions such as: hydrochloric acid, sulfuric acid and nitric acid. The mechanical strength of the different variants is comparable to those of the APC. The test results of the weight loss and phenolphthalein shows that the chemical resistance of variants (PZ20) and (PZ20 with SD5) are larger compared to the reference mortar APC and other variants. This study shows that adding value by substituting a part of clinker. This substitution can save 20% to 30% of clinker used for the manufacture of cement; this will have a beneficial effect for cement and economically (less energy spent for the clinker burning). This study contributes to the protection of the environment as to produce one ton of clinker generates about one ton of CO2 is harmful to the atmosphere. Based on our results we will reduce from 20% to 30% CO2 gas responsible for the greenhouse effect.

  4. Submicroscopic Deformation in Cement Paste and Mortar at High Load Rates

    Science.gov (United States)

    1988-08-15

    Composites: Strain Rate Effects on Fracture, S. Mindess and S. P. Shah, Eds., Materials Research Society Symposia Proceedings, Vol. 64, 1986, pp. 167-180. 3...Strength, and the Compressive Strength of Mortar," Bonding in Cementitious Composites, S. Mindess and S. P. Shah, Eds., Materials Research Society

  5. Mechanism and Test of Mineral Admixture Filling in Cement Mortar%矿物掺合料在水泥砂浆中的填充机理及试验研究

    Institute of Scientific and Technical Information of China (English)

    李滢

    2013-01-01

    主要讨论了矿物掺合料在水泥砂浆中的填充机理,并且以粉煤灰、矿渣粉及硅灰单一组分、复合组分考察其对水泥胶砂强度及微观结构的影响.研究表明,不同细度的矿物掺合料掺入到水泥浆体中后,可以优化粉体的次级颗粒级配,提高密实度.从而表现出水泥砂浆的强度得到提高,微观结构趋于密实.%Filling mechanism of mineral admixture in cement mortar was discussed,with fly ash,superfine slag powder,silica fume and their compounds filling into cement mortar to study their influence on the strength and microstructure of cement mortar.It is demonstrated that the different mineral admixtures can improve the secondary particles size distribution of cementations materials,and then improve the density of cement mortar.So the strength of cement mortar increased and the microstructure of cement mortar get denser.

  6. The Effect Of Pozzolan Surface Properties On Physical And Mechanical Properties Of Cement Mortars

    OpenAIRE

    KOÇAK, YILMAZ; DORUM, Atila; Bülent YILMAZ; UCAR, Ali

    2010-01-01

    This study aims to determine mutual influence on blast furnace slag, fly ash and cement with added trass with Portland cement. For this purpose, physical, chemical, XRD, FT-IR, zeta (electrokinetic) potential and standard cement tests were applied to materials. In this study, it is shown that physical characteristics of pozzolan mostly depend on their molecular structures. Properties of molecular structure, in addition to its chrystal and amorphous character, change based on the existence of ...

  7. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Latex Admixtures for Portland Cement Concrete and Mortar.

    Science.gov (United States)

    1986-07-01

    Examples of polymers used as latex admixtures for concrete and mor- tar in the United States are PVA, styrene-butadiene, polyacrylates (acrylics), and...the substrate by removing all loose and disintegrating material. Oil, grease, or other chemicals should be re- moved with a detergent , and the... detergent should be removed by several wash- ings with water. Because of the surface film characteristics of a latex mixture, the mortar should be placed as

  8. Evaluation of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; de Tello, Cledola Cassia Oliveira, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The Project RBMN was launched in November 2008 and aims to establish, manage and execute all tasks for implementing the Brazilian Repository, from its conception to its construction. The concept to be adopted will be a near-surface repository. The inventory includes wastes from the operation of nuclear power plants, fuel cycle facilities and from the use of radionuclides in medicine, industry and activities research and development. The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. In Brazil, for the immobilization and solidification of radioactive waste of low and intermediate level of radiation from NPPs are used cement, in Angra 1, and bitumen, in Angra 2. Studies indicate serious concerns about the risks associated with bituminization radioactive waste, much related to the process as the product. There are two major problems due to the presence of products bituminization in repositories, swelling of the waste products and their degradation in the long term. To accommodate the swelling, filling the drums must be limited to 70 - 90% of its volume, which reduces the structural stability of the repository and the optimization of deposition. This study aims to evaluate of the properties of bitumen and cement pastes and mortars used in the immobilization of waste radioactive. (author)

  9. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 5. Communication: Macrocolonies on the cement mortar lining in a water main (author's transl)].

    Science.gov (United States)

    Schoenen, D

    1980-09-01

    It is reported a microbial growth in form of macrocolonies on a cement mortar line in a potable water main. Simultaneously an increase of bacterial content in the water could be observed. The bacterial content could be reduced by chlorination, but the microbial growth on the surface of the lining was not suppressed. Macrocolonies could be observed the same as before at the last inspection 6 1/2 years after opening of the main.

  10. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface

    OpenAIRE

    Hu, J; Koleva, D. A.; Breugel, K. van

    2012-01-01

    This study reports on the effect of admixed polyethylene oxide-b-polystyrene (PEO113-b-PS70)micelles on corrosion behavior of reinforced mortar. The electrochemical measurement shows that the corrosion performance of the reinforcing steel was not significantly improved. However, surface analysis and microstructural investigation at the steel/cement paste interface reveal that the admixed micelles lead to a steel surface layer with enhanced barrier properties in terms of morphology and composi...

  11. The effect of pozzolan additions on the shrinkage of cement pastes and mortars during their first hours of age

    Directory of Open Access Journals (Sweden)

    Ossa, M. Mauricio

    1992-03-01

    Full Text Available The traditional favour enjoyed by cement including additions and by their diverse uses in Chile calls for an extense investigation of their behaviour in order that the results may justify their utilization in specific projects. This works studies volume changes occurring in cement pastes and mortars containing pozzolan additions during their first hours of age. This investigation used cements made in the laboratory from raw materials supplied by chilean manufacturers. Two types of clinkers were used, namely; a gypsum type and a natural pozzolan type, added in proportions ranging from 0 to 30%.Tests were conducted to ascertain the shrinkage of cement pastes and mortars since the first moments following their mixing operation, employing there for moulds fitted with a special device designed and implemented at the laboratory of the IDIEM Department of Agglomerants. The results thus gathered corroborated the fact that independently of cement characteristics, in general the deformation of pastes and mortars exhibits successive periods of first shrinkage swelling, and second shrinkage. The first shrinkage is affected by the ambient conditions of humidity, temperature, and wind (evaporation, but also in a preponderant way by cement specific surface, which allows higher velocity in the chemical reactions occurring during that period. Moreover the compactation degree is also affecting shrinkage, here. On the other hand, it was confirmed that with cements of like fineness, those having higher C3A contents exhibit an overall shrinkage larger than that of cements having low contents. At last it was possible to ascertain that an increase in pozzolan contents does not affect shrinkage directly, but that its presence may eventually modify the gypsum/clinker ratio and thus give rise to changes, specially in the two States of swelling and second shrinkage.

    La tradicional aceptación en Chile de los cementos con adición y su diversidad

  12. Microstructure engineering of Portland cement pastes and mortars through addition of ultrafine layer silicates

    DEFF Research Database (Denmark)

    Lindgreen, Holger; Geiker, Mette Rica; Krøyer, Hanne;

    2008-01-01

    , and the nano-structure of the C-S-H depends on type of layer silicate. The effect of layer silicate addition is most pronounced for palygorskite and smectite having the largest surface area and negative charges on the particle surfaces. The cement pastes containing palygorskite and bentonite have......, in comparison to the pure cement pasta and the paste containing kaolinite, a more open pore structure consisting of fine pores. Silica fume paste contains a significant amount of closed pores. As a secondary result, it is demonstrated that both the degree and duration of sample drying strongly modifies...

  13. 橡胶改性水泥砂浆的吸声性能研究%Study on Acoustic Absorption of Rubber Modification Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    胡秀霞; 谢闰根

    2011-01-01

    The paper researches on acoustic absorption of rubber modification cement mortar.The results show:the rubber particle size and content,mortar to cement ratio,sample conservation and other factors have an impact on theacoustic absorption performance.Mediated acoustic coefficient of cement mortar reduces after adding rubber,in which the modification of mixed rubber powder has the best effect.Compared with other three types of rubber mortar,the mediated acoustic coefficient of the mixed rubber is the lowest,with the enhancement of rubber,the acoustic absorption increases and acoustic absorption coefficient becomes lower and lower.When the doped value reaches 40%,thermal conductivity coefficient is the lowest.Different mortar cement ratio has different insulation effect,acoustic absorption coefficient is thelowest when water cement ratio is 0.5.%文章对橡胶水泥砂浆的吸声性能进行了研究。结果表明:橡胶的粒度和掺量、砂浆的水灰比、试样的养护方式等因素都对其吸声性能产生了影响。加入橡胶后水泥砂浆的导声系数会减少,其中以混合胶粉的改性效果最好,其导声系数较其他三种粒度的胶粉砂浆为最低,随着橡胶掺量的增加,其吸声效果也在增强,吸声系数越来越低,但当掺量值达到40%时,导热系数值为最少,砂浆的水灰比不同其隔热效果也有很大区别,水灰比为0.5时吸声系数最低。

  14. 流变学的水泥砂浆螺旋输送机理%RESEARCH ON SCREW CONVEYING MECHANISM FOR CEMENT MORTAR BASED ON RHEOLOGY

    Institute of Scientific and Technical Information of China (English)

    张永顺; 丁凡

    2001-01-01

    简要介绍了油田水泥砂浆衬里注水管道补口作业机器人的系统结构及工作原理,以水泥砂浆流变学为基础,建立了螺旋输送物理模型,对机器人螺旋送料作业装置的输送机理进行了研究,通过引入螺旋输送效率的概念,解决了水泥砂浆螺旋输送的定量计算问题,进而实现了机器人自主喷涂补口作业的水泥砂浆输送量的准确控制,保证了补口作业质量。实验证明理论分析的正确性,目前该机器人已交付大庆油田在工程中推广应用。%The systematical structure and operation principle of a welding seam anti-corrosion applicator in-pipe robot for water injection pi peline with cement mortar liner in oilfield is introduced briefly,the physical m odel of cement mortar by screw conveying is set up on the basis of its rheology ,then screw conveying mechanism of cement mortar when being conveyed by operatio n unite of the in-pipe robot is analyzed,by introducing the concept of screw co nveying efficiency,the quantitative calculation of cement mortar being conveyed by screw conveyor is solved,as a result,that makes the accurate quantitative co ntrol for cement mortar through screw conveying feasible when robot mending the welding seem by harmonious operation,the quality of the mending operation is gua ranteed,the experiments show the rightness of the theoretical analysis,this robo t has already been found its application in Daqing Oil Field.

  15. 酸雨侵蚀对水泥砂浆力学性能的影响%Effect of acid rain attack on mechanical properties of cement mortar

    Institute of Scientific and Technical Information of China (English)

    李军

    2015-01-01

    研究了不同水胶比、不同胶凝材料的水泥砂浆受酸雨侵蚀后的力学性能变化。结果表明:在酸雨侵蚀条件下,砂浆抗压强度和抗折强度呈现先快速增长,而后迅速降低的趋势,且水灰比越小,强度增长和下降速度越快;粉煤灰掺量越高,56 d以前强度增长越快,56 d以后强度下降速度越缓慢;28 d前掺矿粉砂浆在酸雨中的抗压强度增长幅度高于未掺加矿粉的基准砂浆,且矿渣掺量越高砂浆抗压强度越高,矿粉对砂浆抗折强度的作用相对较小。%The mechanical properties of cement material of various water cement ratio and cement mortar under acid rain stress were studied. The results show that the compressive strength and bending strength of mortar show a rapid increase under acid rain stress,and then decrease,the strength increases and the decrease rate is faster when the water cement ratio is small. The strength of cement with the increase of fly ash show a rapid growth before 56d and a slow down after 56 d.The compressive strength of mortar with mineral powder increased more than that of control sample under acid rain stress before 28 d,The strength of mortar would be increased with the propor-tions of slag increased ,and mineral powder has little effect on the flexural strength of mortar.

  16. Experimental study on the basic properties of cement admixture containing waste mortar powder%废砂浆粉作为水泥混合材的基本性能试验研究

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The article studies the basic properties of the waste mortar powder and the influence of it as a cement ad⁃mixture on the main properties of cement mortar, including grinding performance, water amount of normal consisten⁃cy, mobility and strength. Results show that waste mortar powder of fluidity of cement mortar is decreased and water amount of normal consistency is increased. And the fineness and content of waste mortar powder will affect the strength of cement mortar, bend-press ratio is increased, the material ductility is better.%研究了废砂浆粉基本性能及作为水泥混合材对水泥胶砂主要性能的影响,包括粉磨性能、标准稠度需水量、流动性和强度。结果表明,掺入废砂浆粉的混合水泥胶砂流动度有所下降,标准稠度需水量增加。而且废砂浆粉的细度和掺量都会影响强度,混合水泥折压比有所增长,材料延性较好。

  17. Influence of Fly Ash and Slag Powder on Autogenous Shrinkage of Cement Mortars%粉煤灰和矿粉对水泥胶砂自收缩的影响

    Institute of Scientific and Technical Information of China (English)

    肖佳; 陈雷; 邢昊

    2011-01-01

    试验研究了粉煤灰和矿粉对水泥胶砂自收缩的影响.结果表明:当胶砂比(质量比)为1∶0.5,水胶比(质量比)为0.3时,随水化龄期延长,水泥胶砂自收缩增大,早期自收缩发展急剧.粉煤灰降低了水泥胶砂的自收缩,随着粉煤灰掺量(质量分数)增大,水泥胶砂自收缩减小;掺10%和20%粉煤灰水泥胶砂的21d自收缩较纯水泥胶砂分别下降了21.1%和29.5%.水化早期(5d前),矿粉掺量(质量分数)在10%~20%时,随着矿粉掺量增大,水泥胶砂自收缩降低;掺10%和20%矿粉水泥胶砂的21 d自收缩较纯水泥胶砂分别增加了11.1%和6.6%.%The influence of fly ash and slag powder on the autogenous shrinkage of cement mortars was studied. The experiment test results indicate that the autogenous shrinkage of cement mortar made with 1:0. 5 binder to sand ratio(by mass) and 0. 3 water to binder ratio(by mass) increases with development of hydration. At early age, rate of autogenous shrinkage develops sharply. Addition of fly ash reduces the autogenous shrinkage of cement mortar, and the autogenous shrinkage of cement mortar decreases with increase of fly ash content(by mass). Compared to pure cement mortar, after hydrated for 21 d , the 10% and 20% of fly ash addition reduce autogenous shrinkage of cement mortar by 21. 1% and 29. 5% respectively. Originally within 5 d, the 10%- 20% (by mass) of slag powder addition decreases autogenous shrinkage of cement mortar. Compared to pure cement mortar, after hydrated for 21 d, the 10% and 20% of slag powder addition increase autogenous shrinkage of cement mortar by 11. 1% and 6. 6% respectively.

  18. 聚合物改性沥青水泥砂浆的试验研究%Experimental research on the polymer modified asphalt and cement mortar

    Institute of Scientific and Technical Information of China (English)

    曾三海; 王鹏; 王光辉; 比干旭光

    2012-01-01

    This paper mainly researched mechanical properties of polymer modified emulsified asphalt and cement mortar and analyzed the experiment results. The study results showed that neoprene latex can, to a certain extent, improve the workability of polymer modified emulsified asphalt and cement mortar, reduce pressure off ratio, improve failure modes of the mortar, and fundamentally improve the capability of resistance to brittle fracture at low-temperature and resistance to deformation at high temperature.%研究了聚合物改性乳化沥青水泥砂浆的力学性能,并对其试验结果进行了分析.研究表明,氯丁橡胶乳液可以在一定程度上改善乳化沥青水泥砂浆的工作性,降低压折比,改善砂浆的破坏形态,可从根本上改善水泥乳化沥青砂浆的低温抗脆裂和高温抗变形能力.

  19. Study of Effect of Fly Ash on Fluidity and Strength of Cement Mortar%粉煤灰对水泥砂浆流动度和强度的影响研究

    Institute of Scientific and Technical Information of China (English)

    姚立阳; 姚丽红; 汪潇; 杨留栓

    2013-01-01

    Detailed study of fluidity and strength of cement mortar mixed with I Grade fly ash at different content showed that fly ash could improve the performance of cement mortar effectively. With water to binder ratios increasing, the fluidity of cement mortar with fly ash increased, higher fly ash content, the larger the fluidity. The early strength of cement mortar reduced slightly because fly ash admixed, but later strength increased, especially at 30%amount, 28d strength of cement mortar reached to peak.%通过对不同掺量时的Ⅰ级粉煤灰水泥砂浆的流动度和强度的研究,结果表明,粉煤灰的掺入可以有效改善水泥砂浆的性能。随水胶比增大,可使粉煤灰水泥砂浆的流动度得到提高,而且流动度随粉煤灰掺量的增加而增加;粉煤灰的掺入早期强度有所降低,但后期强度得到了提高,尤其是当粉煤灰掺量为30%时,28 d 龄期时强度达到最高。

  20. Fundamental Properties of Magnesium Phosphate Cement Mortar for Rapid Repair of Concrete

    OpenAIRE

    2016-01-01

    Fundamental properties of magnesium phosphate cement (MPC) were investigated in this paper. The setting time and compressive and bond (i.e., flexural and tensile bond) strengths were measured to assess the applicability, and hydration product was detected by the X-ray diffraction. The specimens were manufactured with magnesia and potassium dihydrogen phosphate (K2HPO4) was added to activate hydration process. The Borax (Na2B4O7·10H2O) was used as a retarder to mitigate overwhelming rapid hard...

  1. An innovative approach to achieve re-centering and ductility of cement mortar beams through randomly distributed pseudo-elastic shape memory alloy fibers

    Science.gov (United States)

    Shajil, N.; Srinivasan, S. M.; Santhanam, M.

    2012-04-01

    Fibers can play a major role in post cracking behavior of concrete members, because of their ability to bridge cracks and distribute the stress across the crack. Addition of steel fibers in mortar and concrete can improve toughness of the structural member and impart significant energy dissipation through slow pull out. However, steel fibers undergo plastic deformation at low strain levels, and cannot regain their shape upon unloading. This is a major disadvantage in strong cyclic loading conditions, such as those caused by earthquakes, where self-centering ability of the fibers is a desired characteristic in addition to ductility of the reinforced cement concrete. Fibers made from an alternative material such as shape memory alloy (SMA) could offer a scope for re-centering, thus improving performance especially after a severe loading has occurred. In this study, the load-deformation characteristics of SMA fiber reinforced cement mortar beams under cyclic loading conditions were investigated to assess the re-centering performance. This study involved experiments on prismatic members, and related analysis for the assessment and prediction of re-centering. The performances of NiTi fiber reinforced mortars are compared with mortars with same volume fraction of steel fibers. Since re-entrant corners and beam columns joints are prone to failure during a strong ground motion, a study was conducted to determine the behavior of these reinforced with NiTi fiber. Comparison is made with the results of steel fiber reinforced cases. NiTi fibers showed significantly improved re-centering and energy dissipation characteristics compared to the steel fibers.

  2. 水泥轻舟轻质高强砂浆的设计%Design of Light-weight and High-strength Mortar for Cement Canoe

    Institute of Scientific and Technical Information of China (English)

    鲁志强; 董浩浩; 李超; 范方禄

    2013-01-01

    In order to reduce the weight and at the same time guarantee the enough strength of the concrete ca-noe to the usmost ,the optimum proportion of cement mortar can be determined through the control of various adding materials,whose main technical indexes are the flexural strength and denisity after mortar moudling . The experiment shows that in a certain strength ,the expanded perlite can reduce the density of the mortar to achieve light-weight effect;the slag can be of use for the waste comprehensive utilization ,and the flexural strength of mortar can be improved .The glass fiber can increase the strength of concrete .The designed mortar can meet the requirements of lightweight and high strength .%为了在最大程度上降低轻舟重量的同时保证水泥轻舟有足够的强度,通过控制各种材料的掺入量来确定水泥砂浆的最佳配比组成,其主要技术指标是砂浆成型后的抗折强度和密度。实验证明,膨胀珍珠岩可以在保证一定强度的情况下降低砂浆的密度,达到轻质效果;矿渣有利于废物综合利用,并且能够提高砂浆的抗折强度;玻璃纤维能够提高砂浆强度。研究设计出的水泥砂浆达到了轻质高强的要求。

  3. Influence of the activators’ type and content on the properties of no cement mortars%激发剂种类及掺量对无水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    张海龙; 裴长春

    2015-01-01

    为了优化工业垃圾粉煤灰、高炉矿渣及生石灰作为胶凝材料的无水泥砂浆配合比设计,提高无水泥砂浆的基础性能,试验通过改变碱性激发剂的种类及掺量,研究了无水泥砂浆的表观密度及力学性能,得出了一些有价值的结论。%In order to optimize the mix design of no cement mortars with fly ash, blast furnace slag and lime as cementitious materials and to im-prove the performance of no cement mortars, the test studied the apparent density and mechanical properties of no cement mortars by changing the type and dosage of alkaline activator, some valuable conclusions are obtained.

  4. 水泥砂浆增强剂丙烯酸酯乳液的研制%Study on acrylic emulsion for enhancing cement mortar

    Institute of Scientific and Technical Information of China (English)

    曹灿; 韩艳茹

    2012-01-01

    混凝土材料的多孔性和易产生裂纹等问题影响了混凝土材料和结构的耐久性,导致了混凝土结构出现过早劣化,极大地影响了混凝土设施的正常使用.用水泥砂浆增强剂配制的新型混凝土材料——聚合物改性水泥砂浆具有很好的防渗性、防裂性、耐磨性、粘附性以及压缩和拉伸强度高等优点,已广泛用于建造高结构强度、高抗震、高质量和长久寿命的建筑.%Cement mortar systems are inherently porous and prone to cracking upon drying and curing.These defects cause significant reduction of strength and longevity,which lead to premature failures of the structures,Synthetic emulsion polymers,or polymer latexes,have been extensively used to help solving this problem.These new types of polymer modified cement mortar systems are more resistant to cracking and fluid permeation,have higher adhesive,compressive and tensile strengths,which allow high quality structures to be built with higher stability,earthquake resistance and durability.This paper described the design and synthesis of functional acrylic latexes.The mechanical test results showed that using these specialty emulsion polymer improved the processing and mechanical performance of the cement mortar systems.

  5. Efeito do tempo de cura na rigidez de argamassas produzidas com cimento Portland Effect of the curing time on the stiffness of mortars produced with Portland cement

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2011-03-01

    Full Text Available O concreto de cimento Portland é um dos materiais mais usados no mundo inteiro, entretanto, devido a sua estrutura ser muito complexa, torna-se imprescindível estudar suas propriedades com bastante profundidade. O concreto é produzido a partir de uma argamassa, de areia e cimento, com adição de agregados graúdos, sendo que suas propriedades estão basicamente suportadas nessa argamassa de constituição. O objetivo deste trabalho foi estudar a variação da rigidez de duas argamassas de composições com razão cimento:areia de 1:2 e 1:3 em função do tempo de cura, tendo como parâmetro a variação do módulo de Young. Os resultados mostraram que o módulo de Young cresce até atingir o valor máximo no oitavo dia, sendo que nos três primeiros dias esse crescimento é mais acentuado. A análise dos resultados indica que grande parte do processo de hidratação do cimento, com formação das ligações químicas responsáveis pela rigidez da argamassa, acontece nos primeiros dias de cura.Concrete produced with Portland cement is one of building materials most widely used worldwide. However, due to its highly complex structure, its properties require in-depth studies. Concrete is a mortar consisting of a mixture of cement, sand and coarse aggregates, and its properties are represented basically by the mortar base. The aim of this work was to study the change in stiffness of two mortar compositions cured at 25 ºC with a cement-to-sand ratio of 1:2 and 1:3, as a function of curing time using the variation of Young modulus as the measuring parameter. The results showed that Young modulus increases up to a maximum value on the 8th day, and that this increase is more pronounced during the first three days. An analysis of the results indicates that a large part of the cement hydration process, involving the formation of chemical bonds that are responsible for the mortar stiffness, takes place in the early days of curing.

  6. Dosification of a cement-talc-chamotte refractory mortar subjected to thermal shock

    Directory of Open Access Journals (Sweden)

    Kittl, P.

    1992-03-01

    Full Text Available A cement-talc-chamotte refractory mixture was dosified by subjecting the same to thermal shock. To this end, specimens compacted to 350 Kg/cm2 through compression as well as specimens compacted manually were prepared. All the specimens were submitted to an initial working temperature of 1000ºC and then left to cool down to room temperature. The thermal shock was originated by heating the specimens in an oven till reaching a certain temperature T¡ and then quenching the same through immersion in water at 20ºC; temperature T¡ was varied between 170ºC and 970ºC by means of 100ºC increments. The optimum dosification amounting to 90 % cement-talc and 10 % chamotte was obtained by studying mean stress at compression fracture of five cement-talc-chamote mixtures as a function of thermal shock. In addition, thermal fatigue exhibited by the optimum dosification was studied through the determination of mean loss in compressive strength, which amounted to 52% after 7 cycles with ΔT = 500ºC.

    Se dosificó una mezcla refractaria cemento-talco-chamota sometiéndola a un choque térmico. Con este objeto se fabricaron probetas compactadas a 350 kg/cm2 mediante compresión y probetas compactadas manualmente. Se aplicó a todas ellas una temperatura inicial de trabajo a 1.000 ºC, luego se las dejó enfriar hasta que alcanzaran la temperatura de sala del laboratorio. El choque térmico se originó calentando las probetas en un horno hasta una temperatura T¡ y luego se las enfrió súbitamente sumergiéndolas en agua a 20 ºC; la temperatura T¡ varió entre 170 ºC y 970 ºC con incrementos de 100 ºC. La dosificación óptima, 90% cemento-talco y 10% chamota, se obtuvo estudiando la tensión media de fractura a la compresión de cinco mezclas de cemento-talco-chamota en función del choque térmico. Se estudió además la fatiga térmica de la dosificación óptima determinando la

  7. Influence of chloride in mortar made of Portland cement types II, III, and V on the near-field microwave reflection properties

    Science.gov (United States)

    Hu, Cairong; Benally, Aaron D.; Case, Tobias; Zoughi, Reza; Kurtis, Kimberly

    2000-07-01

    Corrosion of steel rebar in reinforced concrete structures, can be induced by the presence of chloride in the structure. Corrosion of steel rebar is a problematic issue in the construction industry as it compromises the strength and integrity of the structure. Although techniques exist for chloride detection and its migration into a structure, they are destructive, time consuming and cannot be used for the interrogation of large surfaces. In this investigation three different portland cement types; namely, ASTM types II, III and V were used, and six cubic (8' X 8' X 8') mortar specimens were produced all with water-to-cement (w/c) ratio of 0.6 and sand-to-cement (s/c) ratio of 1.5. Tap water was used when producing three of these specimens (one of each cement type). For the other three specimens calcium chloride was added to the mixing tap water resulting in a salinity of 2.5%. These specimens were placed in a hydration room for one day and thereafter left it the room temperature with low humidity. The reflection properties of these specimens, using an open-ended rectangular waveguide probe, were monitored daily at 3 GHz (S-band) and 10 GHz (X-band). The results show the influence of cement type on the reflection coefficient as well as the influence of chloride on the curing process and setting time.

  8. Effect of cement sand ratio on industrial waste residue dry-mixed mortar properties%灰砂比对工业废渣干混砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    刘秀伟; 杨林; 秦贤顺

    2015-01-01

    研究了高掺量磷渣粉、粉煤灰干混砂浆的灰砂比对砂浆性能的影响及激发剂对砂浆的作用机理。结果表明,在砂浆稠度基本不变的前提下,随着灰砂比减小,砂浆和易性变差,凝结时间延长,抗压强度降低,拉伸黏结强度逐渐减小,28 d干缩逐渐增大,但在灰砂比为1:1~1:6的范围内其性能均能满足GB/T 25181—2010《预拌砂浆》中对应等级标准要求,调整灰砂比可以配制出M5.0~M30不同强度等级的普通干混砂浆。%Study on the mechanism of effect of high content of phosphorus slag powder,fly ash dry mixed mortar cement sand ratio on the properties of mortar and activator on the mortar. The results show that,on the premise of mortar consistency basically unchanged, with the cement sand ratio decreases,mortar workability variation,extended the setting time,compressive strength decreases,the tensile bond strength decreases,28 d shrinking gradually increased,but in the cement sand ratio is in the range of 1:1~1:6 and its performance can meet the GB/T 25181—2010 ready mixed mortar in the corresponding grade standards,adjust the cement sand ratio can be prepared M5.0~M30 of different strength grade of ordinary dry mixed mortar.

  9. Experiment and Study for Corrosion of Fly Ash Cement Mortar by Sulfuric Acid%掺粉煤灰水泥砂浆抗稀硫酸侵蚀的试验研究

    Institute of Scientific and Technical Information of China (English)

    李燕涛; 宋志刚; 闵红光

    2012-01-01

    为研究稀硫酸侵蚀掺粉煤灰水泥砂浆的规律,对砂浆试块进行长期浸泡试验,用滴酸法间接测得腐蚀速率并结合偏相关理论分析了影响砂浆试块腐蚀速率各个因素.分析表明:pH值相同时,粉煤灰掺量0%~3 0%的砂浆试块的腐蚀过程符合浓度边界层溶解反应模型;试块的流动度与抗腐蚀能力呈负相关;掺粉煤灰并不能明显改善水泥砂浆的抗稀硫酸侵蚀的性能.%A long time immersion test of fly ash cement mortar in dilute sulfuric acid was carried out to study the mechanisms of corrosion-resistant. The rate of mortar corrosion was indirectly recorded and combining with the theory of partial correlation, the parameters that can affect the rate were obtained. It was showed that in soak solution with the same pH value, corrosion process of cement mortar with 0%~30% fly ash can reflect the dissolving reaction model of consistency boundary, with the fluidity of cement mortar inversely related to corrosion -resistant capability of cement mortar. The corrosion-resistant capability of cement mortar can not be improved remarkably by fly ash.

  10. Cola à base de PVA e argamassa de solo-cimento como alternativas para o assentamento de alvenaria de tijolos maciços de solo-cimento PVA glue and cement soil mortars as alternatives for laying cement soil blocks masonry

    Directory of Open Access Journals (Sweden)

    Gisleiva C. dos S. Ferreira

    2011-04-01

    Full Text Available Neste trabalho, foi analisada a viabilidade de emprego de cola à base de PVA e argamassa de solo-cimento no assentamento de paredes de alvenaria de tijolos maciços de solo-cimento, em substituição à argamassa usual (cimento, cal e areia. Pequenos prismas, executados com quatro tijolos maciços de solo-cimento e assentados com as argamassas e a cola de PVA, foram ensaiados à compressão e à flexão. Os resultados dos ensaios dos prismas executados com a argamassa de assentamento usual foram tomados como padrão esperado de comportamento para os outros prismas executados com argamassa de solo-cimento e com cola de PVA. Os resultados obtidos nos ensaios dos prismas indicaram que tanto cola à base de PVA quanto argamassa de solo-cimento podem ser empregadas, satisfatoriamente, no assentamento de painéis de alvenaria de tijolos maciços de solo-cimento.This study presents the results of an experimental investigation in characterizing the properties of cement soil block masonry using cement-soil mortars and PVA glue. The study deals with the scantily explored area of tensile bond strength of soil-cement block masonry using cement-soil mortars and PVA glue. Flexural bond strength of masonry has been determined by testing stack-bonded prisms using a bond wrench test set-up. The study clearly demonstrates the superiority of cement-soil mortar over other conventional mortar such as cement mortar. The results of this study can be conveniently used to select a proportion for cement-soil mortar or PVA glue proportion for cement soil block masonry structures.

  11. Pengaruh Perendaman Air Laut Terhadap Kualitas Mortar Semen

    OpenAIRE

    Damayanti, Mentari C.; Rauf, Nurlaela; Juarlin, Eko

    2015-01-01

    This research of fabrication cement with adding sugarcane bagasse ash (SBA) as pozzolan. Then chemical composition of cement sample is measured by XRF, setting time of cement and mortar compressive strength is examined with and without immersion. The result showed sea water gives influence for mortar compressive strength. Mortar compressive strength without immersion increases with 6% persentage composition of SBA. While mortar compressive strength with immersion of sea water decreases along ...

  12. Behaviour of corroded steel in a Ca(OH2-saturated solution and in cement mortar. Possibility of rehabilitation

    Directory of Open Access Journals (Sweden)

    Hernández, L. S.

    2007-03-01

    Full Text Available The present study compared the response of rust-free and corroded steel electrodes in Ca(OH2-saturated solutions and in cement mortar, essentially defined in terms of polarization resistance as measured with gravimetric, metallographic and electrochemical methods. Answers were sought for the following questions, which persist despite the use of reinforced concrete (RC in building for over a century: At what corrosion rate is RC durability seriously compromised? Does restoration of the initial conditions in properly manufactured concrete guarantee repassivation of corroded steel? Does the use of inhibitors enhance repassivation? Does the nature of the corrosion products have any significant effect on the response of corroded steel reinforcement? The results obtained in indicated that the effectiveness of preventive methods is much more closely related to the degree of existing corrosion than to the nature of the corrosion products.En el presente trabajo se analizan las respuestas de electrodos de acero, limpios y precorroídos, en soluciones saturadas de Ca(OH2 y en mortero de cemento, recurriendo para ello a técnicas gravimétricas, metalográficas y electroquímicas, esencialmente a medidas de resistencia de polarización. Se intenta encontrar respuesta a las siguientes dudas persistentes después de más de un siglo de utilización de las estructuras de hormigón armado (EHA: ¿qué velocidades de corrosión comprometen seriamente la durabilidad de las EHA? ¿La restauración de las condiciones iniciales de un hormigón correctamente fabricado garantiza la recuperación del estado pasivo en los refuerzos ya corroídos? ¿La utilización de inhibidores facilita la repasivación de los refuerzos? ¿Cambia la naturaleza de los productos de corrosión sustancialmente la respuesta de las armaduras ya corroídas? Los resultados obtenidos indican que la eficacia de las medidas preventivas resulta mucho más condicionada por el grado de

  13. Biofouling e biodeterioração química de argamassa de cimento portland em reservatório de usina hidroelétrica Biofouling and chemical biodeterioration in hydroeletric power plant portland cement mortar

    Directory of Open Access Journals (Sweden)

    Kleber Franke Portella

    2009-01-01

    Full Text Available Last decade Brazilian rivers experimented progressive biofouling of Limnoperna fortunei communities and Cordylophora caspia hydroids. The microhabitat is so favorable that in around 1.5 years L. fortunei increased from 0.39 to nearby 149,000 units/m². Ten Portland cement mortar samples were produced with 1: 3.5: 0.4 dosages and installed for 1 year at Salto Caxias Brazilian Power Plant reservoir in 0.5 m and 1.0 m deep to investigate the biofouling influence on hydraulic civil structures. SEM, EDS, visual investigation and XRF results indicate none direct chemical interrelationships between L. fortunei and the mortar samples. However C. caspia diminished the mortar surface resistance and caused cement paste leaching.

  14. Effect of super absorbent polymer on the properties of cement mortar with high water-cement ratio%高吸水树脂对高水灰比水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    马先伟; 张艳会; 武双磊

    2015-01-01

    Super absorbent polymer( SAP)is considered as an effective curing agent of high performance concrete,but the researches on the effect of SAP in mortar with high water-cement ratio is less. The effects of SAP on the fluidity,strength,water loss rate,shrinkage rate of cement mortar were analyzed. The results show that increasing the amount of SAP decreases the fluidity and strength,but raise the dry water loss rate and shrinkage. The proper dosage,however,can improve the strength and reduce dry shrinkage.%高吸水树脂被认为高性能混凝土的一种有效的内养护剂,但是在高水灰比的砂浆体系SAP的作用效果如何研究较少。因而,对两种高吸水树脂对水泥砂浆流动度、强度、失水率、收缩率的影响进行了研究,发现随着SAP掺量增加,砂浆的流动度、强度降低,但是干燥失水率和收缩增加。不过,适当的SAP掺量可以提高砂浆强度,降低干燥收缩。

  15. Fine natural aggregate replacement for sandy residue from itabirite exploitation in Portland cement mortar; Substituicao dos agregados miudos naturais por residuo arenoso gerado no beneficiamento do itabirito em argamassas de cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Melo, V.A.R. [Rede Tematica em Engenharia de Materiais (REDEMAT), MG (Brazil); Freire, C.B.; Pereira Junior, S.S.; Lameiras, F.S.; Tello, C.C.O., E-mail: cbf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The fine natural aggregates are a material largely used by the civil construction for mortar and concrete production. Due to tightening legal restrictions imposed on their extraction, alternative materials are being considered. The use of sandy residue from BIF (banded iron formations) exploitation was investigated. It requires their grinding and flotation to concentrate iron oxides. Large amounts of sandy residue composed of quartz and iron oxides are generated in this process. The sandy residue was characterized relative to mineralogical composition, particle size distribution, presence of organic impurities, and particle shape. Mortar formulations were prepared by varying the type of cement, the cement to aggregate proportion and the water/cement ratio (a/c). The results of viscosity and density of fresh mortar, setting time, and compressive strength are presented. Compressive strength up to 19.5 MPa at 28 days were achieved with the use of cement CPV, a/c ratio of 0.80 and cement:aggregate proportion of 1:2. The results demonstrate the technical feasibility of using sandy residue as fine aggregate. (author)

  16. Study on chloride diffusion in PVA fiber cement mortar%PVA纤维水泥砂浆氯离子扩散性研究

    Institute of Scientific and Technical Information of China (English)

    邵俊丰; 张世义; 范颖芳

    2016-01-01

    为研究PVA(聚乙烯醇)纤维掺量对不同龄期水泥砂浆氯离子扩散性能的影响规律,采用了快速氯离子迁移系数法(RCM),研究了PVA纤维水泥砂浆(7种配合比)抗氯离子渗透性能。分析了PVA纤维掺量与水泥砂浆孔隙率、电阻率的指标的关系,基于热传递方程建立氯离子扩散过程理论模型。结果表明,PVA纤维对水泥砂浆氯离子扩散系数有显著影响,改变了水泥砂浆的孔隙结构。28 d龄期,2%纤维掺量试件氯离子扩散系数和毛细孔率比不掺纤维试件分别降低24.1%和50.2%;PVA纤维水泥砂浆氯离子扩散系数与电阻率二者具有良好的线性负相关关系;PVA纤维掺量与水泥砂浆毛细孔率、气孔含量、电阻率之间有很好的相关性;桥面板中氯离子浓度与扩散系数成指数关系。%The influence of PVA ( Polyvinyl alcohol) fiber content on chloride diffusion in cement mortar at various curing ages is systematically discussed. The chloride resistance of seven types of specimens has been investigated using the Rapid Chloride Migration ( RCM) method. The relation-ship between the PVA fiber content and the porosity and electrical resistivity of the mortar was ana-lyzed. Theoretical model of the chloride diffusion process based on the heat transfer equation is es-tablished. The results show that PVA fiber has a significant effect on the chloride diffusion coeffi-cient of cement mortar, and the pore structure of cement mortar was changed. After 28-day curing, when compared to the untreated samples, the chloride diffusion coefficient and the capillary porosity of the mortar with a fiber content of 2% were decreased by 24. 1% and 50. 2%, respectively; The chloride diffusion coefficient and resistivity have good linear negative correlation; There are good correlations between fiber content and capillary porosity, and void content and resistivity;There is a significant exponential relationship between chloride

  17. Laboratory investigation of the influence of two types of modified hydrotalcites on chloride ingress into cement mortar

    NARCIS (Netherlands)

    Yang, Z.; Fischer, H.; Polder, R.

    2015-01-01

    Owing to the unique molecular structure and high ion exchange capacity, hydrotalcites are believed to have a potential to be modified and tailor-made as an active component of mortar and/or concrete. In this paper, two types of modified hydrotalcites (MHT-pAB and MHT-NO2) were incorporated into ceme

  18. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength.

    Science.gov (United States)

    Maschio, Stefano; Tonello, Gabriele; Piani, Luciano; Furlani, Erika

    2011-10-01

    In the present research mortar pastes obtained by replacing a commercial cement with the equivalent mass of 5, 10, 20 and 30 wt.% of fly ash or bottom ash from fir chips combustion, were prepared and rheologically characterized. It was observed that the presence of ash modifies their rheological behaviour with respect to the reference blend due to the presence, in the ashes, of KCl and K2SO4 which cause precipitation of gypsum and portlandite during the first hydration stages of the pastes. Hydrated materials containing 5 wt.% of ash display compression strength and absorption at 28 d of same magnitude as the reference composition; conversely, progressive increase of ash cause a continuous decline of materials performances. Conversely, samples tested after 180 d display a marked decline of compression strength, as a consequence of potassium elution and consequent alkali-silica reaction against materials under curing.

  19. 减缩剂与内养护复合对水泥砂浆性能的影响%Influence of Combination of Shrinkage Reducing Admixture with Internal Curing on Properties of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    党玉栋; 钱觉时; 郭清春; 王智; 贾兴文

    2013-01-01

    Influence of shrinkage reducing admixture(SRA),internal curing(IC) by using saturated lightweight aggregate,and SRA combined with IC on shrinkage,cement hydration and compressive strength of cement mortar cured under sealed and drying conditions were investigated.For sealed curing,compared with SRA or IC mixtures,when the IC and SRA were used together,the autogenous shrinkage of cement mortar was significantly reduced,which was resulted from the reduction of internal relative humidity drop,a microdilatancy in length was observed in 7 d age,moreover,the ultimate autogenous shrinkage of the mortar was below 100× 10-6 at 28 d age.On the other hand,for drying condition,compared with only using IC,the SRA can significantly enhance the drying shrinkage reduction of internally cured mortar.However,since the moisture loss of internally cured mortar was larger than that of using SRA only,the drying shrinkage of mortar with adding IC and SRA together was greater than that of adding SRA only.Nevertheless,the combination was contributed to the cement hydration and strength development of mortar compared with that of using SRA only.%研究了密封和干燥条件下,使用减缩剂、饱和轻骨料内养护以及两者复合使用对砂浆收缩、水化以及抗压强度的影响.结果表明:密封条件下,较减缩剂和内养护单独使用,两者复合使用能进一步抑制砂浆内部相对湿度的下降,进而使体系自收缩发展速率和水平显著降低,砂浆7d内保持微膨胀状态,28d自收缩率低于100×10-6;干燥条件下,相比仅使用内养护,复合减缩剂后砂浆干燥收缩明显降低,但由于内养护使砂浆失水量增大,复合减缩剂后减缩效果不及仅使用减缩剂的砂浆;两者复合使用后能够显著降低减缩剂单独使用时对水泥水化和砂浆强度的不利影响.

  20. Farklı Puzolanik Katkıların Çimento Harçlarının Mekanik Özelikleri Üzerine Etkisi = The Effect of Different Puzzolanic Additives on Mechanical Properties of Cement Mortars

    Directory of Open Access Journals (Sweden)

    H. Aygül YEPREM

    2004-06-01

    Full Text Available In this study, cement mortar samples containing fly ash obtained from Soma Power Plant, two different types of natural pozzolan supplied from Yenişehir and Bilecik and silica fume from Antalya Ferrocrom Industry partial replacement of cement clinker. The strength of the mortars prepared by these mixtures were investigated. The mixtures were prepared by using 10% fly ash and 5% silica fume and the trass contents varied as 30%, 35%, and 40%. Chemical analyses of these mixtures were carried out and Blaine specific surface area values were measured. In performed tests, the highest strength values were noticed in mortars containing natural puzzolan from Bilecik which has high fineness.

  1. Effects of Water Reducer on the Properties of High-volume Fly Ash Cement Mortar%减水剂对高掺量粉煤灰砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    郑大锋; 邱学青; 欧阳新平; 杨东杰; 楼宏铭

    2006-01-01

    Effects of FDN and Calcium lignosulfonate (LS) on the properties of high-volume fly ash cement mortar were studied. It was found that compared with FDN, the water-reducing ratio of LS was lower and the ability of retaining the fluidity of the cement mortar was better; for the stability of the cement mortar, the effect of LS was almost the same as that of FDN at the dosage of 0.4 %. The adsorption on the cementitious surface, the effect on the zeta potential of cement particle surface and the foaming capacity of FDN and LS were measured. The results showed that, for the reasons of stronger air-entraining capacity of LS and the incomplete adsorption of FDN on the surface of cementitious particles, the water-reducing ratio of LS was close to FDN when the dosage was lower than 0.4 %. The better fluidity retention capacity of LS was attributed to the more stable zeta potential of the cement surface and the retarding effect of mortar setting. The experimental results suggested that for the purpose of utilizing LS better in the high-volume fly ash cement mortar in the grouting, some modification should be conducted to increase its water-reducing ratio.%研究了萘系高效减水剂(FDN)和木质素磺酸钙(LS)对高掺量粉煤灰砂浆性能的影响,测定了减水剂在胶凝颗粒表面的吸附、对水泥颗粒表面zeta电位等方面的影响.结果表明,和FDN相比,LS对砂浆的减水率较低,而对砂浆流动度保持能力较优;当掺量为0.4 wt%时,两者对砂浆稳定性的影响几乎一样.当掺量低于0.4 %时,LS的减水率和FDN接近是因为其具有较强的引气作用和FDN在胶凝颗粒表面吸附不完全;LS保持砂浆流动性能力较好是由于它的缓凝作用以及吸附LS的水泥颗粒表面zeta电位较稳定导致的.为了更好地将LS应用在高掺量粉煤灰砂浆中,可以从提高其减水率方面对其进行改性.

  2. 5种常用减水剂对水泥砂浆耐久性的影响%Effects of Five Kinds of Water-Reducers on Durability of Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    潘莉莎; 田政; 杜治光; 邱学青; 庞煜霞; 郑大锋

    2012-01-01

    Effects of five kinds of water-reducing agents, calcium lignosulfonate(CLS), modified calcium lignosulfonate(GCLl-6A) , amino-sulfonic based superplasticizer(ASP), sulfonated naphthalene formaldehyde(FDN) and sulfonated melamine urea formaldehyde resin(SMUF), on the durability of cement mortars were studied including impermeability, carbonization depth and shrinkage. The research results indicate that durability of cement mortar mixed with SMUF is the most excellent; durability of cement mortar mixed with GCL1-6A and FDN is next; that mixed with CLS is the weakest.%研究了木素磺酸钙(CLS)、改性木素磺酸钙(GCL1-6A)、氨基磺酸甲醛缩合物(ASP)、萘磺酸甲醛缩合物(FDN)和磺化三聚氰胺脲醛树脂(SMUF)这5种常用减水剂对水泥砂浆抗渗性、抗碳化性和收缩性等耐久性指标的影响.结果表明:掺SMUF的水泥砂浆其长期性和耐久性最优,其次是掺GCL1-6A,FDN的水泥砂浆,而掺CLS的水泥砂浆最差.

  3. Evaluation of red mud as pozzolanic material in replacement of cement for production of mortars; Avaliacao da lama vermelha como material pozolanico em substituicao ao cimento para producao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Manfroi, E.P.; Cheriaf, M.; Rocha, J.C., E-mail: elizmanfroi@yahoo.com.b, E-mail: malik@valores.ufsc.b [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil

    2010-07-01

    Red mud is a by-product of the alkaline extraction of aluminum from the bauxite and represents a renewed environmental problem due the significant annual throughput by the plants. In the present work, the pozzolanic properties of Brazilian red mud fired at 600, 700, 800 and 900 deg C were investigated by monitoring lime consumption using DTA analysis and Brazilian standard methodology NBR 5772 (1992). Products and kinetics of hydration were determined in cement pastes produced with 5 and 15% red mud using x-ray diffraction and DTA analysis. Compressive strength and capillary absorption tests were realized on mortars constituted by 5, 10 and 15% red mud in replacement of cement. When calcined at 600 deg C, the red mud develops good pozzolanic properties, and the compressive strength of mortars produced with this waste meet values in accordance with regulatory standard. These results shown than red mud can be used, in partial replacement of cement, as new construction material to produce sustainable mortars with low environmental impact. (author)

  4. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    Science.gov (United States)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  5. CRTSⅡ型水泥乳化沥青砂浆施工质量控制%Impacts Analysis of Gap and Construction Quality Control on CRTSⅡ Type Cement Asphalt Mortar

    Institute of Scientific and Technical Information of China (English)

    钟杰

    2014-01-01

    Based on the practical experience from the construction of Beijing-shanghai high-speed railway and beijing-tianjin intercity passenger dedicated line , the control points of construction quality of cement asphalt mortar are expounded. The common diseases in the construction are described and the causes of diseases are analyzed. Effects of gap between slab and cement asphalt mortar layer on the deformation and stress of track structure are studied on the base of elastic foundation beam theory and finite element method. The results show that the gap between slab and cement asphalt mortar layer has significance effect on the deformation of track structure. In order to guarantee the train running quality and durability of track, the construction quality of cement asphalt mortar must be control strictly, the gap between slab and cement asphalt mortar layer must be prevented and adjusting the construction technology and maintenance timely.%本文以京沪高速铁路和京津城际客运专线工程施工实践为基础,阐述了水泥乳化沥青砂浆层施工质量控制要点,对施工中常见病害进行了描述与原因分析,最后基于弹性地基梁理论与有限元方法,研究了砂浆层离缝对轨道结构受力和变形的影响。结果表明轨道板与水泥乳化沥青砂浆层之间的离缝将加剧轨道结构的变形,为了保证高速列车行车品质与轨道结构的耐久性,必须严格控制水泥乳化沥青砂浆的施工质量,防止灌浆时砂浆离缝的出现,并及时进行施工工艺调整与养护维修。

  6. Resistance to acid attack of portland cement mortars produced with red mud as a pozzolanic additive; Resistencia ao ataque acido de argamassas de cimento Portland produzido com residuo de bauxita como aditivo pozolanico

    Energy Technology Data Exchange (ETDEWEB)

    Balbino, Thiago Gabriel Ferreira; Fortes, Gustavo Mattos; Lourenco, Rafaela Roberta; Rodrigues, Jose de Anchieta [Universidade Federal de Sao Carlos (DEMa/PPGCEM/UFSCar), SP (Brazil). Programa de Pos-Graducao em Ciencia e Engenharia de Materiais. Departamento de Engenharia de Materiais; Montini, Marcelo [Alcoa Aluminio S.A., Pocos de Caldas, MG (Brazil)

    2011-07-01

    Portland cement structures are usually exposed to aggressive environments, which requires the knowledge of the performance of these materials under deleterious conditions. In this study, it was evaluated the resistance to acid attack of mortars that contain ordinary (CPI) and compost (CPII-Z) Portland cements, adding to the first red mud (RB) as a pozzolanic additive in different conditions: without calcination, calcined at 400 ° C and at 600 ° C. The specimens were subjected to HCl and H{sub 2}SO{sub 4} solutions, both with concentration of 1.0 Mol L{sup -1} for 28 days, monitoring the weight loss and leached material nature by atomic emission inductively coupled plasma (ICP). The hydration products were studied by thermogravimetric analysis (TGA) and X-ray diffraction (XRD) of the hydrated cement pastes. It was observed a reduction of portlandite amount in the RB containing cement pastes, indicating a possible pozzolanic activity of the red mud. The mortars prepared with RB were more resistant to HCl, while that ones with calcined RB present a better performance in H{sub 2}SO{sub 4} attack. (author)

  7. 纤维水泥砂浆与混凝土界面黏结性能钻芯拉拔试验研究%Core drilling and pull-off tests of interfacial bond behaviors between fiber cement mortar and concrete

    Institute of Scientific and Technical Information of China (English)

    卜良桃; 周云鹏

    2016-01-01

    To investigate the interfacial bond behaviors between fiber cement mortar and concrete with core drilling and pull⁃off tests, medium⁃sized columnar concrete samples enclosed with different strengths of polyvinyl alcohol fiber cement mortar, polypropylene fiber cement mortar, and steel fiber cement mortar were prepared. Core drilling and pull⁃off tests were conducted on the samples to obtain the pulling force with failure occurring at the interface, and the results of different kinds of samples from pull⁃off tests were compared with the axial tensile strength of concrete and compressive strength of fiber cement mortar. The results show that the interfacial bond strength between synthetic fiber cement mortar and concrete is higher than that between steel fiber cement mortar and concrete, and that the interfacial bond strength is positively correlated with the axial tensile strength of concrete and compressive strength of fiber cement mortar. There is also a linear correlation between the interfacial bond strength and compressive strength of fiber cement mortar.%为研究纤维水泥砂浆与混凝土界面黏结性能,采用钻芯拉拔法试验制作模拟中型柱混凝土构件,并分别外包不同强度的聚乙烯醇纤维水泥砂浆、聚丙烯纤维水泥砂浆、钢纤维水泥砂浆。对制作的试验构件进行钻芯拉拔试验,得出界面破坏时的拉拔力,将得到的不同类型的纤维水泥砂浆构件拉拔力数据与构件混凝土轴心抗拉强度、纤维水泥砂浆抗压强度进行比较分析。结果表明,在该试验中合成纤维水泥砂浆的界面黏结强度比钢纤维水泥砂浆的界面黏结强度高;界面黏结强度与构件混凝土轴心抗拉强度呈正相关关系,与纤维水泥砂浆抗压强度呈正相关关系,界面黏结力与砂浆抗压强度呈线性相关关系。

  8. 硬化砂浆中水泥含量试验制样方法探讨%Discussion about sample processing methods of cement content in hardened mortars

    Institute of Scientific and Technical Information of China (English)

    张亚涛; 刘磊; 张成银; 秦岭; 姬钰

    2016-01-01

    In order to get the result that is close to the real value of cement content in hardened mortars , different samples with varied content of fly ash were prepared .After the mortar samples were cured for a certain age in a standard environment , based on the loss of bound water in hardened cementitious materials,the effect of different sample processing methods on cement content in hardened mortars was investigated via CaO measurements .The authors found an ideal processing method , that is after stopping hydration by anhydrous ethanol , sample was blast dried at 60 ℃, then temperature was increased from room temperature to (520 ±10) ℃ in the rate of 10 ℃/min,and then maintaining for 1h.The bound water content is one of the key factors to the measurement results of cement content in hardened mortars . By using this processing method , the relative deviation of cement content of hardened mortars with different ages and fly ash content is set within ±5%.%为探索处理硬化砂浆试样的方法,使水泥含量测定结果更接近真实值,首先成型不同粉煤灰掺量的砂浆试样,在砂浆试样标准养护到一定龄期后,基于硬化胶凝材料中结合水的损失过程,利用CaO测定法研究不同的试样处理方法对硬化砂浆中水泥含量测定结果的影响,得到处理硬化砂浆试样的方法:即无水乙醇终止水化后,60℃鼓风烘干,然后以10℃/min的速度由室温升到(520±10)℃,保持1 h,并且通过实验证明结合水含量是影响硬化砂浆中水泥含量测定结果的关键因素之一。采用该方法处理后,不同龄期相同胶凝材料含量和同一龄期不同粉煤灰掺量硬化砂浆中水泥含量测定结果的相对误差都在±5%以内。

  9. 多孔集料砂浆的吸波特性%Absorbing Properties of Cement Mortar Filled with Porous Aggregates

    Institute of Scientific and Technical Information of China (English)

    李宝毅; 段玉平; 刘顺华

    2011-01-01

    对发泡聚苯乙烯、膨胀珍珠岩、页岩陶粒等3种多孔集料填充水泥基复合材料的电磁波吸收性能进行了研究。结果表明:多孔集料提高了复合材料与自由空间的波阻抗匹配程度,还可引起电磁波多次反射和散射,从而使电磁波迅速衰减;多孔集料填充率、集料种类、集料粒径等对电磁波吸收性能有显著影响;选用的多种集料中发泡聚苯乙烯对复合材料吸波性能的改善最为明显,当发泡聚苯乙烯粒径为2mm、与水泥体积比为1:l时,试样在4.5GHz处有最小反射率-18dB,且小于-10dB的吸收带宽达8.1GHz。%The absorbing properties of cement mortar filled with porous aggregates, such as expanded polystyrene, expanded perlite and shale, were investigated. The results show that porous aggregates can improve the impedance matching characteristic of the composites, and attenuate the electromagnetic wave by mulitple scattering and reflection. The filling ratio, the type and the size of porous aggregates all had effects on the absorbing properties. Among the aggregates used, the expanded polystyrene (EPS) had a superior ability to improve the absorbing properties of cement composite. When the filling ratio of EPS with the size of 2 mm to cement was 1:1 in volume, the lowest reflectivity of-18 dB was obtained at 4.5 GHz and the bandwidth less than -10 dB was 8.1 GHz.

  10. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation.

    Science.gov (United States)

    Garrabrants, A C; Sanchez, F; Kosson, D S

    2004-01-01

    Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.

  11. 一种外掺新型引气剂的水泥胶砂抗折强度试验研究%A Study on the Bending Strength Test of Cement Mortar Added in a New Type of Air Entraining Agent

    Institute of Scientific and Technical Information of China (English)

    李铁军; 郭红兵

    2014-01-01

    In order to improve the mechanical property of cement mortar, admixtures are pro-posed to be put into cement mortar by adding air-entraining agent separately or mixing air en-training agent and water-reducing agent. The bending strength test of cement mortar has been done. The best model and the optimal dosage of air entraining agent in cement mortar have been determined for its optimal mechanical property. The result shows that the bending strength of cement mortar is significantly greater when air entraining agent and water-reducing agent are mixed. 2 # air-entraining agent has better effect in meeting the requirements of the bending strength of cement mortar.%为了提高水泥胶砂的力学性能,提出在水泥胶砂中掺加外加剂的方法,通过在水泥胶砂中单掺引气剂、复掺引气剂与减水剂两种途径,进行水泥胶砂抗折强度检测试验,对比确定水泥胶砂力学性能最优的引气剂型号及其最佳掺量。结果表明:引气剂与减水剂复掺时水泥胶砂的抗折强度明显大于引气剂单掺时水泥胶砂的抗折强度,2#引气剂最能满足水泥胶砂抗折强度要求。

  12. 表层处理砂浆中预埋钢筋的腐蚀行为%CORROSION BEHAVIOR OF STEEL REINFORCEMENT EMBEDDED IN CEMENT MORTAR WITH SURFACE TREATMENT

    Institute of Scientific and Technical Information of China (English)

    宋学锋; 魏俊发; 何廷树; 李国新

    2009-01-01

    The surface of cement mortar was treated with an impregnating agent named alkyl-alkoxyl silane (AAS) and a su-per-absorbent resin (SAR) synthesized in situ, respectively. The corrosion risk and the current density of steel reinforcement in the treated cement mortar immersed at sodium chloride solution of 3.5% were evaluated by corrosion potential monitoring and linear polarization resistance (LPR) techniques. The results show that the water-repellent layer of the AAS and the swelling hydrogel of the SAR as a protective layer can improve the resistance to the chloride permeability of the cement mortar; the corrosion potential of the treated specimens is higher and the corrosion current density is lower, compared to that of the untreated specimens. The AAS and the SAR synthesized in situ as surface treatment materials can retard the corrosion behavior of reinforcing steel in cement mortar.%利用有机硅浸渍剂(alkyl-alkoxyl silane,AAS)和原位合成高吸水性树脂(supcr-absorbent resin,SAR)分别对含有预埋钢筋的砂浆试样进行表层处理,并将处理前后的砂浆试样浸没于3.5%NaCl溶液中进行了加速腐蚀试验.测试了不同腐蚀龄期内的自然腐蚀电位和极化电流密度.结果表明:存在于砂浆表层的AAS斥水膜层和SAR吸水膨胀凝胶能够显著降低Cl-在砂浆基材中的渗透性;处理砂浆试样中预埋钢筋在相同腐蚀时间内的自然腐蚀电位较未处理试样显著增高,而相应的腐蚀电流密度显著降低;SAR和AAS作为表层处理材料均能延缓砂浆中预埋钢筋的腐蚀过程,且SAR的延缓效果更佳.

  13. Effect of Fly Ash and Silica Fume on Hydration Rate of Cement Pastes and Strength of Mortars

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; ZHANG Yun; LIU Runqing; ZHANG Bing

    2014-01-01

    The effect of fly ash and silica fume on hydration rate and strength of cement in the early stage was studied. Contrast test was applied to the complex cementitious system to investigate the hydration rate. Combined with mechanical strength, the influence of fly ash and silica fume during the hydration process of complex binder was researched. The peak of the rate of hydration heat evolution and the mechanical strength decreased as the ratio of fly ash increased, however, as the ratio of silica fume increased, the peak of the rate of hydration heat evolution and the mechanical strength increased obviously. When the ratios of fly ash and silica fume are 10%and 5%, the peak of the rate of hydration heat evolution is the highest. At the same time 7 days of flexural and compressive strength are the highest as 8.89 MPa and 46.52 MPa, respectively. Fly ash and silica fume are the main factors affecting the hydration rate and the mechanical property.

  14. Test on CRTSⅡ type slab ballastless track cement-emulsified asphalt mortar%CRTSⅡ型无砟轨道水泥乳化沥青砂浆试验研究

    Institute of Scientific and Technical Information of China (English)

    张惠元

    2012-01-01

    Taking the practice of CRTSⅡ type slab ballastless track construction of Beijing-Shanghai high-speed railway three section for basis,combining with its pre-production test analysis and its specific practical application,focusing on carried out comparative test and analysis on the raw material types and dosage of cement-emulsified asphalt mortar and construction technology and other key influence factors,so as to lay foundation for the science preparation and construction of cement-emulsified asphalt mortar.%以京沪高速铁路三标CRTSⅡ型无砟轨道施工的实践为基础,结合其生产前的试验分析及其具体的实践应用,重点对水泥乳化沥青砂浆的原材料种类及其用量和施工工艺等关键影响因素开展试验对比分析,从而为水泥乳化沥青砂浆的科学制备和施工奠定了基础。

  15. Effect of additives on the performance of recycled fine aggregate cement mortar%外加剂对再生细骨料水泥砂浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    王复星; 李国忠; 陈娟

    2014-01-01

    The effect of additives on the mechanical properties and water resistance of recycled fine aggregate cement mortar is studied. The result shows that the 28d flexural strength, compressive strength and osmotic pressure of cement mortar samples compared with the blank sample are increased by15.6%, 35.5%, 41.1%when silicone waterproofing agent is 0.2wt%, naphdalin series water reducer is wt1.0%,polycarboxylate super plasticizer is 0.8wt%.%研究了外加剂对再生细骨料水泥砂浆力学性能、防水性能的影响。结果表明:当有机硅防水剂掺量0.2 wt%、萘系减水剂1.0 wt%、聚羧酸减水剂0.8 wt%时,水泥砂浆试样与空白试样相比,其28 d抗折强度、抗压强度、渗透压力分别提高15.6%、35.5%、41.1%。实验中利用SEM对砂浆试样断面微观形貌进行了观察分析,同时利用XRD对水化产物进行了物相鉴定。

  16. The performance of mortar containing added metakaolin regarding sulfate action

    Directory of Open Access Journals (Sweden)

    Janneth Torres Agredo

    2010-04-01

    Full Text Available This paper evaluates the performance of adding Colombian metakaolin (MK to mortar when these are submitted to sulphate action. Four proportions of MK were used as cement replacement in this study: 10%, 20%, 35% and 50% by weight of cement; cement having 11% tricalcium aluminate was used. Mortar specimens were immersed in 5% sodium sulphate solution for a total period of 280 days after the specified initial moist curing period, The degree of sulphate attack was evaluated by measuring the mortar’s cylindrical expansion, mortar cubes’ compressive strength reduction and visual inspection of mortar specimens. An additional study using X-ray diffraction was conducted to determine the products formed in the cement pastes due to the sulphate attack. The results showed that MK mortar sulphate resistance increased when increasing MK replacement level. An MK proportion greater than 20% is re-commended for obtaining better performance against sulphate attack.

  17. Quantitative microstructure analysis of polymer-modified mortars.

    Science.gov (United States)

    Jenni, A; Herwegh, M; Zurbriggen, R; Aberle, T; Holzer, L

    2003-11-01

    Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.

  18. Potencialidades de um caulim calcinado como material de substituição parcial do cimento portland em argamassas Potentialities of a calcined kaolin as material of partial replacement of portland cement in mortars

    Directory of Open Access Journals (Sweden)

    Marilia P. de Oliveira

    2006-06-01

    Full Text Available A utilização de argilas calcinadas na forma de metacaulinita, como material pozolânico para argamassas e concretos, tem recebido atenção considerável nos últimos anos. Este trabalho objetivou avaliar o desempenho mecânico de argamassas, nas quais foi utilizado um caulim calcinado proveniente do Estado da Paraíba, como material de substituição parcial do cimento Portland. Utilizaram-se duas finuras do caulim: passando nas peneiras ABNT 200 (0,074 mm e 325 (0,044 mm e calcinados nas temperaturas de 700, 800 e 900 ºC pelo tempo de 2 h. As amostras foram caracterizadas através de análise química, análise térmica diferencial, difração de raios-X e área específica. Obteve-se o índice de atividade pozolânica com a cal e o cimento Portland. O percentual de substituição adotado foi de 0, 10, 20, 30 e 40%. A relação aglomerante: areia foi de 1:1,5 e a relação água/aglomerante fixada igual 0,4. O efeito da substituição parcial do cimento na argamassa foi avaliado através da resistência à compressão simples, nas idades de 7, 28 e 90 dias. As argamassas estudadas apresentaram resistência superior em relação à da referência, até o nível de 30% de substituição.The use of burnt clays, in the metakaolin form, as pozzolanic material for mortars and concretes has received a remarkable attention in the last years. This paper aimed to evaluate the mechanical property of mortars, in which a calcined kaolin originating from the State of Paraiba, was used as partial cement replacement material. Two finess of the kaolin were used: ABNT 200 (0.074 mm and 325 (0.044 mm and burnt at temperatures of 700, 800 and 900 ºC for a period of 2 h. Both materials were characterized by chemical analysis, differential thermal analysis, X-ray diffraction, specific area tests. The pozolanic activity index was obtanied using lime and cement Portland. The amounts of replacement were 10, 20, 30 and 40%, besides the reference mortar. The binder

  19. Study on properties of cement mortar mixed with powdered slag & flyash%掺矿渣微粉和粉煤灰的水泥胶砂性能试验研究

    Institute of Scientific and Technical Information of China (English)

    杨华全; 覃理利; 董维佳; 王仲华

    2001-01-01

    Based on orthogonal design method,the orthogonal list L24(61×41×23) was selected for arranging test,the influences of the quantity of pozzolanic admixture,the ratio of powdered slag and flyash,the fineness of powdered slag,and the quality of flyash on the flowabilities,the compressive and flexural strengths of cement mortar at ages of 7,28,90 and 180 days,respectively,were explored.On the basis of experimental tests,the optimum combination of cement,powdered slag and flyash was determined. The test results showed that the cement mortar containg powdered slag and flyash is better than that only mixing with either powdered slag or flyash.%根据正交设计法,利用L24(61×41×23)正交表安排试验,探讨了混合材掺量、矿渣微粉与粉煤灰的比例、矿渣微粉细度、粉煤灰品种对水泥胶砂流动度、7,28,90 d龄期的抗压强度的影响,初步确定水泥熟料、矿渣微粉、粉煤灰三元体系的较优组合。结果表明,粉煤灰与矿渣微粉双掺比单掺矿渣微粉或单掺粉煤灰的水泥胶砂,具有一定的优势。

  20. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  1. 羟乙基甲基纤维素对水泥砂浆性能的影响%Effect of Hydroxyethyl Methylcellulose on Properties of Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    王培铭; 许绮; 李纹纹

    2000-01-01

    This paper deals with modifying effects of hydroxyethyl methylcellulose on both fresh andhardened mortar. The results have shown that the addition of hydroxyethyl methylcellulose signifi-cantly enhances water retention of fresh mortar, reduces bulk density of fresh and hardened mortars,water adsorption of hardened mortar, compressive strength, flexural strength and elastic modulus tosome extent and hardly influences toughness of hardened mortar%研究了羟乙基甲基纤维素对新拌砂浆和硬化砂浆的改性效果.结果表明,羟乙基甲基纤维素明显提高了新拌砂浆的保水性,降低了新拌砂浆和硬化砂浆的体积密度,硬化砂浆的吸水率、抗压强度、抗折强度和弹性模量,对砂浆韧性改善不明显.

  2. The shrinkage in lime mortars

    Directory of Open Access Journals (Sweden)

    Sánchez, J. A.

    1997-03-01

    Full Text Available Nowadays, the methodology existing to measure the shrinkage in air, developed for paste and cement mortars, has serious problems to be applied to lime mortars, due to its different mechanism of hardening several modifications in Norms UNE 80-113-86 y 80-112-89 make possible the determination of the shrinkage in these traditional mortars.

    La metodología existente en la actualidad para la medida de la retracción de secado, desarrollada para las pastas y los morteros de cemento, presenta serios problemas a la hora de su aplicación a los morteros de cal debido a su distinto mecanismo de endurecimiento. Algunas modificaciones de las normas UNE 80-113-86 y 80-112-89 hacen posible la determinación de la retracción en estos morteros tradicionales.

  3. 砂浆板冲击破坏试验研究%Damage tests for a cement mortar plate under shock load

    Institute of Scientific and Technical Information of China (English)

    顾培英; 邓昌; 章道生; 汤雷; 王建

    2015-01-01

    通过锤击、均匀冲击荷载试验,采用逐级递增循环冲击加载方式,研究冲击荷载下砂浆板的破坏特征及冲击力、冲击能与最大加速度响应间关系。试验表明,二种冲击作用均使砂浆板跨中区域出现贯穿裂缝,呈脆性劈裂破坏形态,均匀冲击作用下破坏位置与跨中有一定偏移;锤击力时程经历主冲击、次冲击、卸载三阶段,加速度响应随锤击力增加而增加,裂缝贯穿后冲击力、加速度响应大幅减小;均匀冲击下加速度有二组响应区,响应随冲击能增加而增加,当冲击能达一定程度时响应大幅减小;继续增加冲击能,响应又会增加,并较快发生劈裂破坏,响应大幅减小;支座螺栓松动能缓冲部分冲击作用。%Hammering and uniform shock tests of a cement mortar plate were conducled.The opposite sides of the plate were elastic supports.Through cyclic shocks with amplitude increasing,the failure features,the relationship between shock force and acceleration response,and the relationship between impact energy and acceleration response of the plate were studied.The results showed that a transverse crack nearby the midspan of the plate appears,its failure state is brittle splitting;the location of failure offsets the midspan under uniform shock;time history curves of the hammering force include three stages of major shock,secondary shock and unloading;the acceleration response of the plate increases with increase in the hammering force,however,the hammering force and acceleration response decrease obviously after the transverse crack appears;there are two groups of acceleration response regions under uniform shock;the acceleration response increases with increase in impact energy;once impact energy reaches a certain level,the acceleration response decreases obviously;if impact energy continuously increases,the acceleration response increases again,brittle splitting failure occurs

  4. Swine deep bedding ashes as a mineral additive for cement based mortar Cinzas de cama sobreposta de suínos como adição mineral em argamassas de cimento

    Directory of Open Access Journals (Sweden)

    Melissa Selaysim Di Campos

    2008-04-01

    Full Text Available The sustainability of intensive swine production demands alternative destinations for the generated residues. Ashes from swine rice husk-based deep bedding were tested as a mineral addition for cement mortars. The ashes were obtained at 400 to 600ºC, ground and sieved through a 325 mesh sieve (# 0.045 mm. The characterization of the ashes included the determination of the index of pozzolanic activity with lime. The ashes were also tested as partial substitutes of Portland cement. The mortars were prepared using a cement:sand proportion of 1:1.5, and with water/cement ratio of 0.4. Three percentages of mass substitution of the cement were tested: 10, 20 and 30%. Mortar performances were assessed at 7 and 28 days determining their compressive strength. The chosen condition for calcinations at the laboratory scale was related to the maximum temperature of 600ºC since the resulting ashes contained vitreous materials and presented satisfactory values for the pozzolanic index under analysis. The pozzolanic activity indicated promising results for ashes produced at 600ºC as a replacement of up to 30% in cement masses.A sustentabilidade das regiões de produção intensiva de suínos requer destinos alternativos para os resíduos gerados. Cinzas de cama sobreposta de suínos à base casca de arroz, foram testadas como adição mineral em substituição ao cimento. As cinzas foram obtidas nas temperaturas de 400 a 600ºC, moídas e passadas por peneira ABNT 325 (# 0,045 mm. A caracterização de cinzas incluiu a determinação do índice de atividade pozolânica com a cal. As cinzas também foram testadas como substitutos parciais de cimento Portland. As argamassas foram preparadas na proporção cimento:areia de 1:1,5 e com fator água-cimento de 0,4. Três porcentagens de substituição do cimento comercial foram usadas: 10, 20 e 30% em massa. O desempenho das argamassas foi avaliado aos 7 e aos 28 dias com a determinação da resistência

  5. Corrosion performance of reinforced mortar in the presence of polymeric nano-aggregates: electrochemical behavior, surface analysis, and properties of the steel/cement paste interface

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This study reports on the effect of admixed polyethylene oxide-b-polystyrene (PEO113-b-PS70)micelles on corrosion behavior of reinforced mortar. The electrochemical measurement shows that the corrosion performance of the reinforcing steel was not significantly improved. However, surface analysis and

  6. Water extraction out of mortar during brick laying. An NMR study

    NARCIS (Netherlands)

    Brocken, H.J.P.

    1996-01-01

    The water extraction out of mortar during brick laying was studied by nuclear magnetic resonance. The water extraction is an important parameter that determines, e.g., the stiffness of the mortar due to compaction of the cement particles and the bond strength of the cured-mortar interfaces but allo

  7. Self healing phenomena in concretes and masonry mortars: A microscopic study

    NARCIS (Netherlands)

    Nijland, T.G.; Larbi, J.A.; Hees, R.P.J. van; Lubelli, B.A.; Rooij, M.R. de

    2007-01-01

    A microscopic survey of over 1000 of samples of concrete and masonry mortars from structures in the Netherlands shows that, in practice, self healing occurs in historic lime and lime – puzzolana mortars, in contrast to modern cement bound concretes and mortars. Self healing may be effected by the fo

  8. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an adhesive mortar.

  9. Salt resistant mortars: present knowledge and future perspectives

    NARCIS (Netherlands)

    Lubelli, B.A.

    2013-01-01

    Salt crystallization damage is one of the most common causes of decay for bedding, pointing and plastering mortar. Attempts to tackle the problem have been mainly focused on increasing the mechanical strength of the mortar, by the replacement of lime with (PTL) cement, or on reducing the moisture tr

  10. Salt resistant mortars: present knowledge and future perspectives

    NARCIS (Netherlands)

    Lubelli, B.A.

    2013-01-01

    Salt crystallization damage is one of the most common causes of decay for bedding, pointing and plastering mortar. Attempts to tackle the problem have been mainly focused on increasing the mechanical strength of the mortar by the replacement of lime with (PTL) cement, or on reducing the moisture tra

  11. Efeito da aplicação do poliestireno sulfonado (PSSNa como aditivo em argamassas e concretos de cimento Portland CPV32 Effect of PSSNa as admixture in mortars and concrete of cement portand CPV32

    Directory of Open Access Journals (Sweden)

    Betina Royer

    2005-03-01

    Full Text Available Neste trabalho foi investigado o uso do Poliestireno sulfonado (PSSNa, produzido a partir de copos plásticos descartáveis de Poliestireno (PS, como aditivo em argamassas e concretos de cimento Portland CPV32. A avaliação do PSSNa como aditivo foi baseada em ensaios de fluidez e resistência mecânica à compressão de corpos de prova. Foi observado, em argamassas com relação água/cimento (a/c de 0,48, um aumento na fluidez com o aumento das porcentagens de PSSNa (0,25 a 1,00%. A adsorção do PSSNa sobre as partículas de cimento melhora a dispersão dos componentes da argamassa, aumentando a resistência mecânica à compressão dos corpos de prova após a cura. A aplicação do PSSNa em concreto apresentou o mesmo efeito. O abatimento do concreto sem PSSNa foi de 50 mm, atingindo cerca de 200 mm com o uso do polieletrólito. Devido à elevada plasticização observada é possível empregar o PSSNa como aditivo redutor de água. Foi produzido um concreto com o mesmo abatimento da referência sem aditivo reduzindo-se a quantidade de água em 20,8%. O ganho de resistência mecânica à compressão obtido foi de 21,5 e 26,3 %, respectivamente aos 7 e 28 dias de cura. Estes resultados mostraram que soluções de PSSNa podem atuar eficientemente como aditivo superplastificante ou redutor de água em argamassas e concretos.In this work an investigation was made of the effects from adding PSSNa, obtained from disposable polystyrene (PS cups, as admixture agent in mortars and concrete with varying ratios from 0.25 to 1.00%. The evaluation of PSSNa as additive was based on results of fluidity and mechanical strength to compression. In mortars with water/cement ratio of 0.48, an increase in flow was observed when the dosage of PSSNa varied from 0.25 to 1.00%. The dispersion of mortar components was improved due to the adsorption of PSSNa on cement particles, which increased the mechanical strength of mortars. Similar results were obtained with the

  12. INFLUENCE OF GROUND MINERAL ADMIXTURES ON PORE STRUCTURE OF HARDENED CEMENT PASTE AND STRENGTH OF CEMENT MORTAR%磨细矿物掺合料对水泥硬化浆体孔结构及砂浆强度的影响

    Institute of Scientific and Technical Information of China (English)

    李永鑫; 陈益民

    2006-01-01

    采用压汞法研究了钢渣、矿渣、粉煤灰单掺或复掺对水泥硬化浆体孔结构的影响.同时还研究了掺合料单掺或复掺对水泥砂浆抗压强度的影响.结果表明:掺合料单掺或复掺对早期水泥硬化浆体的孔结构有一定的劣化作用;水化后期,矿渣与钢渣均明显降低了水泥硬化浆体的孔隙率,矿渣与粉煤灰均明显降低了水泥硬化浆体的中值孔径并改善了水泥石的孔径分布,掺合料复掺对改善水泥硬化浆体的孔结构有积极作用,尤其是掺合料三元复合可取得最佳的效果.3种掺合料降低水泥硬化浆体孔隙率能力的大小顺序为:矿渣>钢渣>粉煤灰.3种掺合料降低水泥硬化浆体孔径并改善孔径分布能力的大小顺序为:矿渣>粉煤灰>钢渣.掺合料降低了水泥砂浆早期的抗压强度,却增加了水泥砂浆90 d的抗压强度.掺合料的活性大小顺序为:矿渣>钢渣>粉煤灰.%The influence of singly and compositely adding steel slag, blast furnace slag and fly ash on the pore structure of handened cement paste was studied using mercury intrusion porosimetry (MIP). Furthermore, their influence on the compressive strength of cement mortar was also investigated. The results show that the pore structure of cement paste become worse at early ages by singly or compositely adding any of the mineral admixtures. At later ages, adding either blast furnace slag or steel slag remarkably reduces the porosity of cement paste, while either blast furnace slag or fly ash remarkably reduces median pore diameter and improves pore size distribution. The most reduction in the porosity of cement paste is observed for the cement with blast furnace slag, while the cement with steel slag less, and the cement with fly ash the least. The biggest improvement on pore structure is observed for the cement with blast furnace slag, while the cement with fly ash smaller, and the cement with steel slag the smallest. Pore structure

  13. Steel corrosion resistance in model solutions and reinforced mortar containing wastes

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste util

  14. Sulfate and acid resistant concrete and mortar

    Science.gov (United States)

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction and other applications, which hardenable mixtures demonstrate significant levels of acid and sulfate resistance while maintaining acceptable compressive strength properties. The acid and sulfate hardenable mixtures of the invention containing fly ash comprise cementitious materials and a fine aggregate. The cementitous materials may comprise fly ash as well as cement. The fine aggregate may comprise fly ash as well as sand. The total amount of fly ash in the hardenable mixture ranges from about 60% to about 120% of the total amount of cement, by weight, whether the fly ash is included as a cementious material, fine aggregate, or an additive, or any combination of the foregoing. In specific examples, mortar containing 50% fly ash and 50% cement in cementitious materials demonstrated superior properties of corrosion resistance.

  15. The Effective Superiority of I Grade Fly Ash and Effects on the Strength of Cement Sand Mortar in Sanxia Engineering%三峡工程用Ⅰ级粉煤灰效应优势及其对水泥砂浆强度贡献

    Institute of Scientific and Technical Information of China (English)

    朱蓓蓉; 张树青; 吴学礼; 黄士元

    2001-01-01

    研究了三峡工程用Ⅰ级粉煤灰效应优势及其对水泥砂浆强度的贡献。结果表明:相比于Ⅱ级粉煤灰,Ⅰ级粉煤灰的火山灰活性未必更高,但Ⅰ级粉煤灰颗粒形态效应上的优势导致了其对水泥砂浆强度产生更明显的影响。%This paper studies the effective superiority of Ⅰ grade fly ash and effects on the strength of cement sand mortar in Sanxia engineering.The results show that compared with Ⅱ grade fly ash,Ⅰ grade fly ash is not certainly good in chemical reactivity,but its  advantage in shape effect is obvious to the strength of cement sand mortar.

  16. 硅烷乳液、TEOS和硅溶胶对水泥砂浆防水性能的影响%Effect of silane emulsions,TEOS and silica sol on the water absorption of cement mortar

    Institute of Scientific and Technical Information of China (English)

    张翠; 李绍纯; 赵铁军; 金祖权

    2016-01-01

    Treat the cement mortar with tetraethyl orthosilicate(TEOS),octyl-triethoxy silane emulsions,isobutyl triethoxy silane emulsions and silica sol.The properties of mortar water absorption with different waterproof material was studied.Analyzed the changes of surface contact angle of water in the slurry.The effect of different waterproof net of micro-morphology on cement slurry.The waterproof mechanism of different waterproof materials were studied.Mortar water absorption test results show that TEOS and emulsion mixing effect is best,contrast with untreated mortar,36 h water quantity dealing with 1/9,latex coating times alone,is dealing with 1/7 the size of a sin-gle coating is worst effect of tetraethyl silicate,silica sol,is only 1/2,the processing of but still have certain waterproof function.The con-tact Angle test results show that the net pulp after processing the water contact Angle of not less than 90°.Have good hydrophobicity,TEOS and emulsion after mixing the water contact angle of up to 104°.XRD,SEM results show that the different waterproof material on the net after the net pulp slurry surface,net paste microstructure improved.%选用正硅酸四乙酯(TEOS)、辛基三乙氧基硅烷乳液、异丁基三乙氧基硅烷乳液以及硅溶胶对水泥砂浆进行处理,研究了不同防水材料对砂浆吸水性能的影响,并分析了水在水泥浆将表面接触角的变化,研究了不同防水材料对水泥净浆试块微观形貌的影响,研究了不同防水材料的防水机理。砂浆吸水试验结果表明TEOS和乳液混合使用效果最好,36 h吸水量为未处理砂浆的1/9,单涂乳液次之,是未处理时的1/7,单涂正硅酸四乙酯、硅溶胶效果最差,仅为未处理时的1/2,但仍具有一定防水作用。接触角试验结果表明:净浆经处理后水的接触角均大于90°,具有良好疏水性,TEOS与乳液混合使用后水的接触角可达104°。XRD、SEM结果表明:不同防

  17. 掺活化煤矸石粉、粉煤灰水泥砂浆抗压强度预测%Prediction of compressive strength of cement mortars with fly ash and activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    周双喜; 陈益民; 张文生

    2006-01-01

    The pozzolanic activity of coal gangue, which is calcining at 500 to 1 000 ℃, differs distinctly. The simplex-centroid design with upper and lower bounds of component proportion is adopted to study the compressive strength of mortars made with ternary blends of cement, activated coal gangue and fly ash. Based on the results of a minimum of seven design points, three special cubic polynomial models are used to establish the strength predicating equations at different ages for mortars. Five experimental checkpoints were also designed to verify the precision of the equations. The most frequent errors of the predicted values are within 3%. A simple and practical way is provided for determining the optimal proportion of two admixtures when they are used in concrete.%煤矸石经不同的温度(500~1000 ℃)热活化后,其辅助胶凝性能相差很大.为了研究双掺活化煤矸石与粉煤灰对水泥强度性能的影响,运用单纯形-中心设计方法,并确立各组分的上下限,通过7组砂浆实验,得出活化煤矸石粉、粉煤灰多元复合水泥不同龄期强度数学模型,并利用5组砂浆实验,对强度预测方程的精确性进行了研究.实验结果表明方程的计算值与实验测量值相差很小,误差范围在3%以下.为配制多种混合材的复合水泥最优配比提供了一个简单实用的方法.

  18. High performance superplasticized silica fume mortars for ferrocement works

    Directory of Open Access Journals (Sweden)

    Rathish Kumar P.

    2010-01-01

    Full Text Available Ferrocement works demand cement mortars of good workability and high strength. Reduction in water-cement ratio combined with a refined pore structure increases the compressive strength in addition to the enhancement of durability characteristics, but the workability decreases. Workability becomes important, as the mortar has to easily penetrate between the layers of the mesh wires. A reasonably workable high strength cement mortar can be obtained by using a high cement content coupled with the use of superplasticizers. These were also found to retain the cohesiveness and check undesirable bleeding and segregation. An experimental program was conducted to study the functional efficacy of an SNF condensate used as a water reducing superplasticizer. The compressive strength and flow characteristics of the mortars were determined to decide their suitability for ferrocement works. The parameters included the mix proportions, the grade of cement, age of curing and the dosage of superplasticizer. It was concluded from the study that the addition of an optimum dosage of superplasticizer improved the workability and strength characteristics of silica fume mortars. There was a late gain in the compressive strength of silica fume mortars.

  19. Development of low weight self-levelling mortars

    Science.gov (United States)

    Padilla, A.; Panama, I.; Toledo, A.; Flores, A.

    2015-01-01

    This work shows the development of self levelling mortars, using micro bubbles based on aluminium silicate with a density of 0.25 g/cm3. Mortars formulations are composed by 8 different components in order to achieve properties balance between fresh and solid state. The mean objective is development light weight mortars with high fluidity and compression strength using micro bubbles and some additives. Formulations were designed employing Taguchi DOE of 8 variables and 3 states. Result analysis according to Taguchi method lets indentify the preponderant effect of each variable on the cited properties. Several formulations reached fluidity higher than 250%, with compression strength around 100 kg/cm2 and a low volumetric weigh. Obtained volumetric weights are 20% less than commercial self levelling mortars weight. Finally some relations are presented such: as relation water/cement with fluidity, and micro bubble content versus mortars volumetric weight, and finally compression strength versus the volumetric weight of mortars.

  20. Properties of Rice Husk Ash (RHA and MIRHA Mortars

    Directory of Open Access Journals (Sweden)

    Narayanan Sambu Potty

    2014-05-01

    Full Text Available Rice husk Ash (produced by traditional burning called RHA and by using microwave incinerator called MIRHA has shown promise as a cement replacement material. This study investigated the properties of RHA and MIRHA mortar used for brick manufacture at binder sand proportions of 1:3 and 1:4. RHA and MIRHA were intermediate in particle size to cement and sand particles. Percentages of replacement were 5, 10, 15, 20, 25 and 30%, respectively. Strength at w/c ratios (0.5, 0.55, 0.6 and 0.65, respectively was investigated to identify optimum w/c ratios as well as optimum percent replacement of RHA and MIRHA. Variations of IRS, density and water absorption were investigated. Generally 1:3 RHA and 1:3 MIRHA mortars strength showed decreasing trend with increasing percentage replacement with RHA and MIRHA. Whereas 1:4 RHA and 1:4 MIRHA mortars showed increase in strength at 5% replacement and decrease thereafter. IRS values for RHA mortars are generally within limits (0.25-1.5 kg/m2.min recommended. Water absorption values of RHA mortars are generally higher than control mortar. IRS values for MIRHA mortars with w/c 0.5 and 0.55 ranged between 1.4-2.0 kg/m2 .min; indicating the need for wetting the bricks before use. IRS values for 1:3 MIRHA mortars with w/c 0.6 and 0.65 were below 1.0 kg/m2.min indicating low suction values. For 1:4 MIRHA mortars, IRS values were very low in all cases. Water absorption values of MIRHA mortars are generally higher than the control mortar. MIRHA mortars with w/c 0.6 and 0.65 showed low percentages of water absorption.

  1. Effect of Binder’s Type on Physico-Mechanical and Thermal Properties of Mortars with a Basis of Coir

    Directory of Open Access Journals (Sweden)

    Athanas Konin

    2012-05-01

    Full Text Available This study aims to study the effect of type of binder on properties of mortars with coir. Two types of binders were used for the manufacturing of mortars containing coir: lime is used as binder for mortar nº1 (Mortar 1 and cement is used for mortar nº2 (Mortar 2. The measurements of the physical, mechanical and thermal properties of the specimens show that Mortar 1 has higher water absorption values than those of Mortar 2 and consequently has the lowest values of thermal conductivity. The results also indicate that dry density of the specimens has more important role than the type of binder on mechanical properties. Relationships were established between mechanical properties and dry density of these mortars. These relationships are independent to the type of binder. The mortars also satisfied most recommended thermal insulation standards.

  2. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2009-12-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  3. MORTAR WITH UNSERVICEABLE TIRE RESIDUES

    Directory of Open Access Journals (Sweden)

    J. A. Canova

    2009-01-01

    Full Text Available This study analyzes the effects of unserviceable tire residues on rendering mortar using lime and washed sand at a volumetric proportion of 1:6. The ripened composite was dried in an oven and combined with both cement at a volumetric proportion of 1:1.5:9 and rubber powder in proportional aggregate volumes of 6, 8, 10, and 12%. Water exudation was evaluated in the plastic state. Water absorption by capillarity, fresh shrinkage and mass loss, restrained shrinkage and mass loss, void content, flexural strength, and deformation energy under compression were evaluated in the hardened state. There was an improvement in the water exudation and water absorption by capillarity and drying shrinkage, as well as a reduction of the void content and flexural strength. The product studied significantly aided the water exudation from mortar and, capillary elevation in rendering.

  4. ESTIMATION OF CREEPING RESISTANCE OF AN ADHESIVE LAYER BASED ON DRY MORTAR

    Directory of Open Access Journals (Sweden)

    Loganina Valentina Ivanovna

    2016-04-01

    Full Text Available The development of construction materials with increased operational properties is a priority direction of Russian modern structural material science. Dry mortars are among such materials. Various modifiers are added to the formulae of such mixes in order to control their structure formation and increase the operational properties. Previous investigations proved the efficiency of adding synthetic zeolites to the composition of dry mortars. The authors of the article have developed a formula of a dry mortar to be used as a tile adhesive for facades’ and inner walls’ facing. The authors evaluated the operational properties of tile adhesive layer based on dry cement mortar. The authors calculated the value of adhesive layer creep based on the developed dry cement mortar formula, which was spread over a vertical surface. The experimental data is presented in the article. The calculations and the experimental data proved that the adhesive layer based on dry cement mortar possesses a high creeping resistance.

  5. Mortar and concrete based on calcium sulphate binders

    NARCIS (Netherlands)

    Bakker, J.J.F.; Brouwers, H.J.H.

    2006-01-01

    In this study both hemi-hydrate and anhydrite are tested as calcium sulphate binders for structural mortar and concrete. The advantage of using calcium sulphates instead of cement as a binder is the fact that the production of calcium sulphate is more environmental friendly than that of cement. For

  6. Characterization and Degradation of Masonry Mortar in Historic Brick Structures

    Directory of Open Access Journals (Sweden)

    Denis A. Brosnan

    2014-01-01

    Full Text Available This study characterized mortars from a masonry fortification in Charleston, South Carolina (USA, harbor where construction was during the period 1839–1860. This location for analysis was interesting because of the sea water impingement on the structure. The study was included as part of an overall structural assessment with restoration as an objective. The mortars were found to be cement, lime, and sand mixtures in proportions similar to ones expected from the historic literature, that is, one part binder to two parts of sand. The binder was found to be American natural cement, a substance analogous to the European Roman cement. The results suggest that the thermal history of the cement during manufacturing affected setting rate explaining why the cements were considered as variable during the mid-to-late 1800s. Fine pores were found in mortars exposed to sea water resulting from corrosion. Contemporary natural cement was shown to release calcium in aqueous solution. While this release of calcium is necessary for setting in natural and Portland cements, excessive calcium solution, as exacerbated by sea water contact and repointing with Portland cement mortars, was shown to result in brick scaling or decay through cryptoflorescence.

  7. Optimization of Mix Proportion of High Performance Mortar for Structural Applications

    Directory of Open Access Journals (Sweden)

    Cheah C. Ban

    2010-01-01

    Full Text Available Problem statement: Mortar mix is a major construction material in fabrication of ferrocement structural elements. However, there have been scarce amount of technical data available on suitable mix proportion to achieve structural grade mortar with specific strength requirement and adequate level of workability for proper placement into construction formwork. Moreover, current practice in ferrocement construction work which uses mortar mix with cement: sand ratio ranging between 1:1.5 to 1:2 incurs high requirement of cement yet producing mix with suboptimum level of compressive strength. Approach: An experimental investigation was carried out to evaluate workability and compressive strength properties of structural grade mortar mixes with various cement: sand ratios ranging from 1:2.0-1:2.75 and varying water/binder ratio between 0.35 and 0.50. Throughout the laboratory investigation, a total of 28 batches of mortar mixes with various mix proportion were designed, cast and tested in accordance to relevant standards of practice prescribed by British Standard Institute (BSI and American Society of Testing Material (ASTM. Results: At the end of the laboratory investigation program, high performance mortar mix with compressive strength exceeding 55 MPa and slump level within 50-90 mm which is suitable for heavy duty ferrocement construction work was successfully developed. Moreover, data on mix proportion for several other grades of mortar mixes ranging from grade 35 to grade 55 were also derived. Conclusion: It was found that optimum cement: Sand ratio of structural mortar is 1:2.25. With the use of this cement: Sand ratio in the production of structural grade mortar mix in fabrication of ferrocement structural elements, consumption of cement binder will be economized hence resulting in potential savings in term of material and production cost of mortar mix in the construction industry. Besides, it was also observed that strengths

  8. Preliminary investigation of the effect of air-pollution-control residue from waste incineration on the properties of cement paste and mortar

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Kjeldsen, Ane Mette; Galluci, Emmanuel

    2006-01-01

    For preliminary assessment of the engineering properties of concrete with air-pollution-control residue from waste incineration (APC) the possible reactivity of APC and the effect of APC on cement hydration were investigated by isothermal calorimetry, chemical shrinkage (pychnometry), thermal...

  9. 短切芳纶纤维增强水泥砂浆准静态下力学性能研究%Research on Quasi-static Mechanical Properties of Short Cut Aramid Fiber-Reinforced Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    胡海涛; 李妮; 熊杰

    2011-01-01

    Cement mortar reinforced with different volume fraction of aramid fiber is prepared by two-step dispersions of aramid fibers, the mechanical properties of composites materials are researched when adds cement additives sodium carboxymethylcellulose(CMC) and silicon powder. Result shows that sodium carboxymethylcellulose can improve fibers dispersion effectively. Silicon powder can improve samples' compression strength. The samples' bending strength is increased from 2. 6 MPa to 8. 3 MPa, and the compression strength increased from 29. 5 MPa to 54. 3 MPa, when the volume fraction of aramid fiber is 5vol%.%采用二步法制备不同纤维掺量的短切芳纶纤维增强水泥砂浆试样,研究添加剂羧甲基纤维素钠(CMC)和硅微粉对复合材料力学性能的影响.结果表明:羧甲基纤维素钠能够有效地促进纤维在水中的分散,进而促进其在水泥砂浆中的分散;掺加一定量的硅微粉能够进一步提高试样的压缩强度.当纤维体积分数为5%时,试样的力学性能最好,弯曲强度从2.6 MPa提高到了8.3 MPa,压缩强度也从29.5 MPa提高到了54.3 MPa.

  10. STUDY OF EXPANSIVE REACTIONS IN MORTAR MADE OF PORTLAND CEMENT WITH RICE HUSK ASH (RHA = ESTUDO DE REAÇÕES EXPANSIVAS EM ARGAMASSAS DE CIMENTO PORTLAND COM CINZA DE CASCA DE ARROZ (CCA

    Directory of Open Access Journals (Sweden)

    Jorge Luis Akasaki

    2007-01-01

    Full Text Available Rice husk is an agroindustrial residue which, when adequately burned and ground, may become an important pozzolan to be added in mortars. One factor contributing to the feasibility of its use is that of the 10 million tons of rice produced annually in this country, two million tons of husk remain, which can produce about 400 thousand tons of ash - enough to supply the market for mortars, concrete andothers. This large amount of material has become an environmental problem because it is being discarded inappropriately. Seeking a viable use of rice husk ash in the civil construction, the present research studies the variation in mortar behavior with different levels of RHA (Rice Husk Ash. Prismatic specimens were used, measuring 25x25x285mm, moulded with 0% (reference, 5%, 10% and 25% RHA. The influence of the RHA’s was verified through the following tests: efficiency of pozzolanic materials in avoiding expansion and alkali-aggregate reaction. The result obtained in the expansion reduction test (NBR 12651 showed that RHA reduces considerably the expansion of mortars due to reaction with the alkalis in the cement(94.29%, with the minimum reduction required by the norm for a pozolan being 75%. Although the expansion values in the alkali-aggregate reaction test (ASTM C-1260 remained above the limit allowed to consider the material innocuous, RHA levels of 5% as well as 10% obtained better results (expanded less then the referenceline. = A casca de arroz é um resíduo agroindustrial que adequadamente queimada e moída, pode se tornar uma importante pozolana a ser adicionada em argamassas. Um fator que viabiliza o seu emprego, é que dos 10 milhões de toneladas de arroz que o país produz por ano, sobram dois milhões de toneladas de casca – que podem rendercerca de 400 mil toneladas de cinza, o suficiente para suprir o mercado de argamassas, concreto e outros. Esta grande quantidade de material produzido passa a se tornar um problema, porque

  11. 水对水泥乳化沥青砂浆动态力学性能的影响%Effect of Water on Dynamic Mechanical Properties of Cement Emulsified Asphalt Mortar

    Institute of Scientific and Technical Information of China (English)

    田冬梅; 邓德华; 田青; 潘云瑞; 唐斯

    2013-01-01

    采用沥青与水泥的质量比为0.3的阴离子乳化沥青砂浆圆柱体试件,将其真空吸水饱和后经恒湿干燥法获得不同饱水度,再利用MTS 810疲劳试验机对基准试件和不同饱水度试件进行不同应力水平的疲劳试验,研究了水对水泥乳化沥青砂浆动态力学性能的影响。结果表明:与基准试件相比,吸水试件的极限疲劳强度显著降低,且饱水度越大,极限疲劳强度降低幅度越大;由于水泥乳化沥青砂浆中沥青相的动态黏弹性行为,使基准试件与吸水试件在不同应力水平下的应变均随着循环次数的增加而逐渐增大;基准试件的疲劳破坏形式为劈裂破坏,大多数为竖向裂缝,而在高频动荷载作用下吸水试件孔隙水形成超孔隙水压,对孔隙周围结构产生剪切作用,使其发生剪切破坏,裂缝呈倾斜状。%The mortar specimens with a mass ratio of asphalt/cement as 0.3 were prepared with anion emulsified asphalt. After being saturated by water in the vacuum chamber, these mortar specimens in a constant humidity dryer were dried to certain mois-ture contents, respectively. The fatigue test was carried on the reference specimen and specimens with different saturation values by MTS 810 fatigue machine. Effect of water on the dynamic mechanical properties of cement emulsified asphalt mortar was in-vestigated. The results show that the ultimate fatigue strength of the suction specimens decreases, compared to the reference specimen. The strain under a certain stress range increases with the increase of cycle number due to the dynamic viscoelastic be-havior of asphalt in the specimens for both reference and suction specimens. The vertical fatigue cracks appear in the reference specimen, meaning the splitting failure, but the sloping cracks appear in most various saturation specimens, reflecting the shear failure due to the shear effect of excess pore pressure on the surrounding

  12. Recycled sand in lime-based mortars.

    Science.gov (United States)

    Stefanidou, M; Anastasiou, E; Georgiadis Filikas, K

    2014-12-01

    The increasing awareness of the society about safe guarding heritage buildings and at the same time protecting the environment promotes strategies of combining principles of restoration with environmentally friendly materials and techniques. Along these lines, an experimental program was carried out in order to investigate the possibility of producing repair, lime-based mortars used in historic buildings incorporating secondary materials. The alternative material tested was recycled fine aggregates originating from mixed construction and demolition waste. Extensive tests on the raw materials have been performed and mortar mixtures were produced using different binding systems with natural, standard and recycled sand in order to compare their mechanical, physical and microstructure properties. The study reveals the improved behavior of lime mortars, even at early ages, due to the reaction of lime with the Al and Si constituents of the fine recycled sand. The role of the recycled sand was more beneficial in lime mortars rather than the lime-pozzolan or lime-pozzolan-cement mortars as a decrease in their performance was recorded in the latter cases due to the mortars' structure.

  13. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  14. Characterization of the leaching behaviour of concrete mortars and of cement-stabilized wastes with different waste loading for long term environmental assessment.

    Science.gov (United States)

    van der Sloot, H A

    2002-01-01

    The leaching behaviour of cement-based products-both construction products and cement-stabilized wastes--have been shown to be similar after assessing the leaching characteristics by means of a pH dependence leaching test. This procedure is particularly suited to identifying the chemical speciation of materials. Geochemical modelling has shown a number of solubility controlling phases in this largely inorganic matrix, that can very well explain the observed leaching patterns as a function of pH. Understanding these relationships allows the prediction of leaching behaviour under other exposure conditions and to improve the ultimate quality of products, if so desired. The role of ettringite-type phases for the binding of oxyanions in the pH range above pH 12 has been identified before and confirmed in this work. The order of incorporation follows from the ratio between the maximum leachability at mildly alkaline pH and at high pH. Increased levels of sulfate negatively influence the binding of oxyanions in cement-stabilized waste through site competition.

  15. Influence Of Volcanic Scoria On Mechanical Strength, Chemical Resistance And Drying Shrinkage Of Mortars

    Directory of Open Access Journals (Sweden)

    Al-Swaidani A.

    2014-09-01

    Full Text Available In the study, three types of cement have been prepared; one CEM I type (the control sample and two blended cements: CEM II/A-P and CEM II/B-P (EN 197-1, each of them with three replacement levels of volcanic scoria: (10 %, 15 %, 20 % wt. and (25 %, 30 %, 35 % wt., respectively. Strength development of mortars has been investigated at 2, 7, 28 and 90 days curing. Evaluation of chemical resistance of mortars containing scoria-based cements has been investigated through exposure to 5 % sulphate and 5 % sulphuric acid solutions in accordance with ASTM C1012 & ASTM 267, respectively. Drying shrinkage has been evaluated in accordance with ASTM C596. Test results showed that at early ages, the mortars containing CEM II/B-P binders had strengths much lower than that of the control mortar. However, at 90 days curing, the strengths were comparable to the control mortar. In addition, the increase of scoria significantly improved the sulphate resistance of mortars. Further, an increase in scoria addition improved the sulphuric acid resistance of mortar, especially at the early days of exposure. The results of drying shrinkage revealed that the CEM II/B-P mortar bars exhibited a greater contraction when compared to the control mortar, especially at early ages. However, drying shrinkage of mortars was not influenced much at longer times.

  16. The Influence of Mineral Admixtures on Bending Strength of Mortar on the Premise of Equal Compressive Strength

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; YAN Peiyu; FENG Jianwen

    2012-01-01

    The influence of mineral admixtures on bending strength of mortar on the premise of equal compressive strength was investigated.Three mineral admixtures (fly ash,ground granulated blast-furnace slag and steel slag) were used.The adding amount of mineral admixture in this study ranges from 22.5% to 60%,and the water-to-binder ratio ranges from 0.34 to 0.50.With equal compressive strength,different mortars can be arranged in such a descending order with their bending strength:cement-fly ash mortar,cement mortar,cement-GGBS mortar,and cement-steel slag mortar.With the same compressive strength,the higher the steel slag content and water-to-binder ratio,the lower the bending strength of mortars.However,the effect of mineral mixture content and water-to-binder ratio on the bending strength of cement-fly ash mortar and cement-GGBS mortar is far inconspicuous.

  17. Evaluation of structural behaviour and corrosion resistant of austenitic AISI 304 and duplex AISI 2304 stainless steel reinforcements embedded in ordinary Portland cement mortars; Evaluacion del comportamiento estructural y de resistencia a la corrosion de armaduras de acero inoxidable austenitico AISI 304 y duplex AISI 2304 embebidas en morteros de cemento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.; Cobo, A.; Bastidas, D. M.

    2012-07-01

    The mechanical and structural behaviour of two stainless steels reinforcements, with grades austenitic EN 1.4301 (AISI 304) and duplex EN 1.4362 (AISI 2304) have been studied, and compared with the conventional carbon steel B500SD rebar. The study was conducted at three levels: at rebar level, at section level and at structural element level. The different mechanical properties of stainless steel directly influence the behaviour at section level and structural element level. The study of the corrosion behaviour of the two stainless steels has been performed by electrochemical measurements, monitoring the corrosion potential and the lineal polarization resistance (LPR), of reinforcements embedded in ordinary Portland cement (OPC) mortar specimens contaminated with different amount of chloride over one year time exposure. Both stainless steels specimens embedded in OPC mortar remain in the passive state for all the chloride concentration range studied after one year exposure. (Author) 26 refs.

  18. Optimization of Blended Mortars Using Steel Slag Sand

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new kind of mortar made of ground granulated blast-furnace slag (GGBFS), gypsum,clinker and steel slag sand (<4.75 mm) was developed. The ratio of steel slag sand to GGBFS was 1:1 and the amount of gypsum was 4% by weight while the dosage of clinker ranged from 0% to 24%. The optimization formulation of such mortar was studied. The content of steel slag sand should be less than 50% according to the volume stability of blended mortar, and the dosage of clinker is about 10% based on the strength development.Besides strength, the hydration heat, pore structure and micro pattern of blended mortar were also determined.The experimental results show the application of steel slag sand may reduce the dosage of cement clinker and increase the content of industrial waste product such as GGBFS, and the clinker is also a better admixture for blended mortar using steel slag sand.

  19. Porosity estimation of aged mortar using a micromechanical model.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Sanchez, T; Segura, I

    2006-12-22

    Degradation of concrete structures located in high humidity atmospheres or under flowing water is a very important problem. In this study, a method for ultrasonic non-destructive characterization in aged mortar is presented. The proposed method makes a prediction of the behaviour of aged mortar accomplished with a three phase micromechanical model using ultrasonic measurements. Aging mortar was accelerated by immersing the probes in ammonium nitrate solution. Both destructive and non-destructive characterization of mortar was performed. Destructive tests of porosity were performed using a vacuum saturation method and non-destructive characterization was carried out using ultrasonic velocities. Aging experiments show that mortar degradation not only involves a porosity increase, but also microstructural changes in the cement matrix. Experimental results show that the estimated porosity using the proposed non-destructive methodology had a comparable performance to classical destructive techniques.

  20. Comparative investigation of mortars from Roman Colosseum and cistern

    Energy Technology Data Exchange (ETDEWEB)

    Silva, D.A. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)]. E-mail: denise@ecv.ufsc.br; Wenk, H.R. [Department of Earth and Planetary Science, 497 McCone 94720-4767, University of California at Berkeley, Berkeley, CA (United States); Monteiro, P.J.M. [Department of Civil and Environmental Engineering, 725 Davis Hall 94720-1710, University of California at Berkeley, Berkeley, CA (United States)

    2005-11-01

    Mortar from the Roman Colosseum and a Roman cistern from Albano Laziale were characterized with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and thermal analysis (differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA)). The different techniques provided consistent results that the mortar of the Colosseum is mainly calcareous lime, while the mortar of the cistern is pozzolanic siliceous material. The study highlights the capabilities of the different methods for the analysis of cement. For routine analysis XRD is adequate but for characterization of poorly crystalline phases FT-IR and TGA have definite advantages.

  1. Low Carbon Footprint Mortar from Pozzolanic Waste Material

    Directory of Open Access Journals (Sweden)

    Taha Mehmannavaz

    2014-04-01

    Full Text Available Nowadays, Portland cement clinker leads to emission of CO2 into the atmosphere and therefore causes greenhouse effect. Incorporating of Palm Oil Fuel Ash (POFA and Pulverized Fuel Ash (PFA as partial cement replacement materials into mix of low carbon mortar decreases the amount of cement use and reduces high dependence on cements compared to ordinary mortar. The result of this research supported use of the new concept in preparing low carbon mortar for industrial constructions. Strength of low carbon mortar with POFA and PFA replacement in cement was affected and changed by replacing percent finesse, physical and chemical properties and pozzolanic activity of these wastes. Waste material replacement instead of Ordinary Portland Cement (OPC was used in this study. This in turn was useful for promoting better quality of construction and innovative systems in construction industry, especially in Malaysia. This study was surely a step forward to achieving quality products which were affordable, durable and environmentally friendly. Disposing ash contributes to shortage of landfill space in Malaysia. Besides, hazard of ash might be another serious issue for human health. The ash disposal area also might create a new problem, which is the area's sedimentation and erosion.

  2. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  3. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    Tuan; Anh; Nguyen; Recep; AVCI

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCl and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mortar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hydrates at the steel-mortar interfacial region, but partially displaced chloride ions. Chloride and the admixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the polarization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  4. Valorization of Drinking Water Treatment Sludges as Raw Materials to Produce Concrete and Mortar

    Directory of Open Access Journals (Sweden)

    R. M.R. Zamora

    2008-01-01

    Full Text Available The purpose of this work was to assess the technical feasibility to valorize sludges, generated and stored at the Los Berros drinking water facility (PPLB, as raw material to produce building products (mortar and concrete for the construction industry. The experimental study was divided into three stages: 1 sampling and characterization of PPLB sludges to determine their potential as raw material (sand substitute and supplementary cementing materials to produce mortar and concrete; 2 production and characterization of specimens, using sludge in different weight ratios of mixtures with cement, lime, commercial mortar and plaster to prepare mortars and concretes and 3 comparison of compressive strength and drying contraction values between each specimen and the Mexican criteria to build mortars and concretes. The characterization results of the PPLB sludges showed that these residues could be used as a sand substitute in mortar and concrete formulations, since they were mainly comprised of this material (46.83%. The specimens prepared with a the binary formulations, sludge-cement and sludge-mortar (90-10% and b the ternary formulation, sludge-lime-cement (90-5-5%, gave the best results (ranging from 130 to 150 kg cm-2 of the compressive strength test. The compressive strength values of these formulations were higher than those of equivalent mortar (types I, II and III and cement mixtures (125 kg cm-2 prepared according to the Mexican complementary technical criteria to design and build masonry. These cementing properties exhibited by the PPLB sludges might be associated to their high content of aluminum and silicon oxides, 31.98 and 33.23%, respectively. Thus, calcium silicate (the main carrier strength in hardened cement can be produced from lime hydration of cement with the active silica present in the sludge. Considering all these results, the PPLB sludges present a high feasibility for being valorized as raw materials (supplementary cementing

  5. Multivariate optimization and simultaneous determination of hydride and non-hydride-forming elements in samples of a wide pH range using dual-mode sample introduction with plasma techniques: application on leachates from cement mortar material.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Asfaw, Alemayehu

    2009-02-01

    Analytical methods have been developed for the simultaneous determination of hydride-forming (As, Sb) and non-hydride-forming (Cr, Mo, V) elements in aqueous samples of a wide pH range (pH 3-13). The methods used dual-mode (DM) sample introduction with ICP-AES and ICP-MS instruments. The effect of selected experimental variables, i.e., sample pH and concentrations of HNO(3), thiourea, and NaBH(4), were studied in a multivariate way using face-centered central composite design (FC-CCD). Compromised optimum values of the experimental parameters were identified using a response optimizer. The statistically found optimum values were verified experimentally. The methods provided improved sensitivities for the hydride-forming elements compared with the respective conventional nebulization (Neb) systems by factors of 67 (As) and 64 (Sb) for ICP-AES and 36 (As) and 54 (Sb) for ICP-MS. Slight sensitivity improvements were also observed for the non-hydride-forming elements. The limits of detection (LOD) of As and Sb were lowered, respectively, to 0.8 and 0.9 microg L(-1) with the DM-ICP-AES system and to 0.01 and 0.02 microg L(-1) with the DM-ICP-MS system. The short-term stabilities of both methods were between 2.1 and 5.4%. The methods were applied for the analysis of leachates of a cement mortar material prepared in the pH range 3-13. The elemental concentration of the leachates determined by the two DM methods were statistically compared with the values obtained from Neb-ICP-MS analysis; the values showed good agreement at the 95% confidence level. Quantitative spike recoveries were obtained for the analytes from most of the leachates using both DM methods.

  6. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    Directory of Open Access Journals (Sweden)

    Xiao Zhao

    2015-01-01

    Full Text Available Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM and slag-foamed mortar (SFM, 50% cement was replaced by slag weight. Four different curing conditions were adopted for both types of foamed mortar to assess their compressive strength, ultrasonic pulse velocity (UPV and thermal insulation performance. The test results indicated that utilizing 50% of slag as cement replacement in the production of foamed mortar improved the compressive strength, UPV and thermal insulation properties. Additionally, the initial water curing of seven days gained higher compressive strength and increased UPV values as compared to the air cured and natural weather curing samples. However, this positive effect was more pronounced in the case of compressive strength than in the UPV and thermal conductivity of foamed mortar.

  7. Reuse of ground waste glass as aggregate for mortars.

    Science.gov (United States)

    Corinaldesi, V; Gnappi, G; Moriconi, G; Montenero, A

    2005-01-01

    This work was aimed at studying the possibility of reusing waste glass from crushed containers and building demolition as aggregate for preparing mortars and concrete. At present, this kind of reuse is still not common due to the risk of alkali-silica reaction between the alkalis of cement and silica of the waste glass. This expansive reaction can cause great problems of cracking and, consequently, it can be extremely deleterious for the durability of mortar and concrete. However, data reported in the literature show that if the waste glass is finely ground, under 75mum, this effect does not occur and mortar durability is guaranteed. Therefore, in this work the possible reactivity of waste glass with the cement paste in mortars was verified, by varying the particle size of the finely ground waste glass. No reaction has been detected with particle size up to 100mum thus indicating the feasibility of the waste glass reuse as fine aggregate in mortars and concrete. In addition, waste glass seems to positively contribute to the mortar micro-structural properties resulting in an evident improvement of its mechanical performance.

  8. A study of the application of residue from burned biomass in mortars

    Directory of Open Access Journals (Sweden)

    Enori Gemelli

    2004-12-01

    Full Text Available The goal of this work was to study the viability of burnt biomass residue from a pulp and paper plant applied as a raw material for mortar used in the construction industry. The waste - bottom ash - was incorporated into the mortar as a mineral addition to the Portland cement. The effect of the waste's grain size on the properties of mortars containing 10% in volume of waste was investigated, as well as the effect of the concentration of waste with grain size under 0.15 mm. The samples were evaluated after 28 days of aging by uniaxial compression, leaching test and scanning electron microscopy. These characterization techniques indicated that the properties of the mortars depend on the concentration, granulation and size distribution of the waste in the mortar's structure. Furthermore, some chemical elements may be present in stabilized and/or encapsulated form in the cement matrix.

  9. Influence and Mechanism of Lightweight Aggregates Pre-Saturated with Shrinkage Reducing Admixtures on Autogenous Shrinkage of Cement Mortar%减缩剂预饱和轻骨料对水泥砂浆自收缩的影响及机理

    Institute of Scientific and Technical Information of China (English)

    党玉栋; 钱觉时; 乔墩; 张琳; 贾兴文; 陆福高

    2011-01-01

    Internal curing (IC) and utilizing the shrinkage reducing admixture (SRA) are two effective methods of autogenous shrinkage mitigation. However, IC and SRA have some marked deficiencies when they are used individually. This paper investigated the influences of light weight aggregates pre-saturated with shrinkage reducing admixtures (SRA-LWA) on the autogenous shrinkage and strength of cement mortar; meanwhile, the effects of SRA-LWA on hydration degree and microstructre of interfacial transition zone (ITZ) were also examined. The results indicate that the SRA could reduce the release rate of solution by decreasing the solution's surface tension and increasing the viscosity. With the same amount of SRA, the ability of autogenous shrinkage reduction of SRA-LWA was similar to that of the SRA mixed with cement mortar (SRA-Mixed). However, the SRA-LWA could diminish the adverse impacts of SRA on cement hydration and strength of cement mortar significantly. Further, comparing to light weight aggregates pre-saturated with water (Water-LWA), the SRA-LWA had a more remarkable contribution to shrinkage reduction, and showed the evidence of lower porosity and denser microstructure of ITZ nearby the LWA.%使用内养护(IC)和减缩剂(SRA)是两种可有效降低水泥基材料自收缩的方法,但两者单独采用时存在明显不足.试验研究了减缩剂预饱和的轻骨料对水泥砂浆自收缩、强度、水化程度以及骨料一水泥石基体界面过渡区域的影响.结果表明:由于减缩剂降低溶液表面张力并增加溶液黏度,减缩剂溶液相比水从轻骨料中释放速率明显降低;与直接内掺减缩剂相比,当减缩剂引入量相等时,减缩剂预饱和轻骨料对砂浆自收缩降低程度相近,但其对砂浆强度不利影响则大大降低;与饱水轻骨料内养护措施相比,减缩剂预饱和轻骨料能够显著降低砂浆的自收缩,明显改善骨料与浆体界面区域的孔隙率和微观结构.

  10. Effect of Modified Polymer on Crack Resistance of Mortar

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    At present, the basic technical principle in China is to adopt polymers to modifying the properties of mortar so as to improve the crack-resistance of construction structures and to strengthen their water-resisting and climate-resisting properties as well. However, how polymer acts on anti-crack mortar is short of systematic research. Theoretical exposition of polymer mortar is basically explained by Ohama Model, which is cement slaking and polymer coating are carried on together and mutually-cross web structure interweaved with liquid and polymer coating. But anti-crack mortar has its own special characteristics because of fewer polymers mixed in it and its high viscosity. So this paper is to showing how different polymers affect its crack-resistance cannot be reflected from this theory. Vinyl-acetate ethylene (VAC/E) has been selected as representation of polymerization, whose property is modified by compounding it from some inorganic components, such as talc, CaCO3 and so on. And then the mechanics property and shrinkage of anti-crack polymer mortar is tested when different amount of polymers is added as admixture of mortar. The result indicates that, the working performance and mechanics property of the polymer mortar are worse mixed VAC/E only. It basically meets the demands for mechanics strength and working performance when mixed both VAC/E and CaCO3. While it achieves much better mechanical property and working performance than the two former when mixed VAC/E,talc and CaCO3; the result of corresponding scanning electron microscopy (SEM) of sample indicates that the internal result of the polymer mortar, compared with classical Ohama Model, has a particularity that its structure is formed by polymer coating instead of filling up the intervals among cement grains.

  11. Use of Artificial Neural Network for the Simulation of Radon Emission Concentration of Granulated Blast Furnace Slag Mortar.

    Science.gov (United States)

    Jang, Hong-Seok; Xing, Shuli; Lee, Malrey; Lee, Young-Keun; So, Seung-Young

    2016-05-01

    In this study, an artificial neural networks study was carried out to predict the quantity of radon of Granulated Blast Furnace Slag (GBFS) cement mortar. A data set of a laboratory work, in which a total of 3 mortars were produced, was utilized in the Artificial Neural Networks (ANNs) study. The mortar mixture parameters were three different GBFS ratios (0%, 20%, 40%). Measurement radon of moist cured specimens was measured at 3, 10, 30, 100, 365 days by sensing technology for continuous monitoring of indoor air quality (IAQ). ANN model is constructed, trained and tested using these data. The data used in the ANN model are arranged in a format of two input parameters that cover the cement, GBFS and age of samples and, an output parameter which is concentrations of radon emission of mortar. The results showed that ANN can be an alternative approach for the predicting the radon concentration of GBFS mortar using mortar ingredients as input parameters.

  12. An electrochemical and microstructural characterization of steel-mortar admixed with corrosion inhibitors

    Institute of Scientific and Technical Information of China (English)

    SHI XianMing; YANG ZhengXian; Tuan Anh Nguyen; SUO ZhiYong; Recep AVCI; SONG ShiZhe

    2009-01-01

    The present research brings new insights on the role of admixed corrosion inhibitors in the processes of cement hydration and rebar corrosion. The admixing of NaCI and the corrosion inhibitors in fresh mortar was found to alter the morphology and microstructure of the hardened mortar at the steel-mor-tar interfacial region. The admixing of the inhibitors increased the risk of carbonation of cement hy-drates at the steel-mortar interracial region, but partially displaced chloride ions. Chloride and the ad-mixed inhibitors facilitated the formation of different cement hydrates and affected chloride binding at the steel-mortar interfacial region. The admixing of all three inhibitors was found to increase the po-larization resistance of steel, indicating reduced corrosion rate of the steel over 48-day exposures to salt ponding.

  13. The effects of nano-materials on the behaviors of sludge mortar specimens.

    Science.gov (United States)

    Luo, H L; Lin, D F; Kuo, W T

    2004-01-01

    In this research, nano-composites are added to sewage sludge ash to create a mixture, which then replaces part of cement. Nano-composites are manufactured from pure quartzose sand. The influences of different amounts of nano-composites and sludge ash on mortar are evaluated. Cement, sludge ash (0%, 10%, and 20%), and nano-composites (0%, 0.5%, 1%, 2%, and 3%), which defined as the percent weight of cement and sludge ash, are mixed together in batches to make mortar specimens. Results show that the flowability of sludge ash mortar reduces with increasing amount of cement replaced and of nano-composites added. The compressive strength of mortar lowers when more amounts of cement are replaced by sludge ash, but increases with more quantity of nano-composites added. Moreover, the study shows that nano-composites can fortify the compressive strength of mortar. With the help of efficiency of compressive strength, nano-composites benefit most to the mortar with replacement of 10% sludge ash, followed by the substitution of 20% and 0%.

  14. Concretes and mortars with waste paper industry: Biomass ash and dregs.

    Science.gov (United States)

    Martínez-Lage, Isabel; Velay-Lizancos, Miriam; Vázquez-Burgo, Pablo; Rivas-Fernández, Marcos; Vázquez-Herrero, Cristina; Ramírez-Rodríguez, Antonio; Martín-Cano, Miguel

    2016-10-01

    This article describes a study on the viability of using waste from the paper industry: biomass boiler ash and green liquor dregs to fabricate mortars and concretes. Both types of ash were characterized by obtaining their chemical and mineralogical composition, their organic matter content, granulometry, adsorption and other common tests for construction materials. Seven different mortars were fabricated, one for reference made up of cement, sand, and water, three in which 10, 20, or 30% of the cement was replaced by biomass ash, and three others in which 10, 20, or 30% of the cement was replaced with dregs. Test specimens were fabricated with these mortars to conduct flexural and compression tests. Flexural strength is reduced for all the mortars studied. Compressive strength increases for the mortars fabricated with biomass ash and decreases for the mortar with dregs. Finally, 5 concretes were made, one of them as a reference (neither biomass ash nor dregs added), two of them with replacements of 10 and 20% of biomass ash instead of cement and another two with replacements of 10 and 20% of dregs instead of cement. The compressive and tensile splitting strength increase when a 10% of ash is replaced and decrease in all the other cases. The modulus of elasticity always decreases.

  15. Plastic shrinkage of mortars with shrinkage reducing admixture and lightweight aggregates studied by neutron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Wyrzykowski, Mateusz, E-mail: mateusz.wyrzykowski@empa.ch [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Lodz University of Technology, Department of Building Physics and Building Materials, Lodz (Poland); Trtik, Pavel [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Münch, Beat [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); Weiss, Jason [Purdue University, School of Civil Engineering, West Lafayette (United States); Vontobel, Peter [Paul Scherrer Institute, Laboratory for Neutron Scattering and Imaging, Villigen (Switzerland); Lura, Pietro [Empa, Swiss Federal Laboratories for Materials Science and Technology, Concrete and Construction Chemistry Laboratory, Dübendorf (Switzerland); ETH Zurich, Institute for Building Materials (IfB), Zurich (Switzerland)

    2015-07-15

    Water transport in fresh, highly permeable concrete and rapid water evaporation from the concrete surface during the first few hours after placement are the key parameters influencing plastic shrinkage cracking. In this work, neutron tomography was used to determine both the water loss from the concrete surface due to evaporation and the redistribution of fluid that occurs in fresh mortars exposed to external drying. In addition to the reference mortar with a water to cement ratio (w/c) of 0.30, a mortar with the addition of pre-wetted lightweight aggregates (LWA) and a mortar with a shrinkage reducing admixture (SRA) were tested. The addition of SRA reduced the evaporation rate from the mortar at the initial stages of drying and reduced the total water loss. The pre-wetted LWA released a large part of the absorbed water as a consequence of capillary pressure developing in the fresh mortar due to evaporation.

  16. Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials

    Science.gov (United States)

    Rukzon, Sumrerng; Chindaprasirt, Prinya

    2013-08-01

    This article presents a study on the resistance to chloride penetration, corrosion, porosity, and strength of mortar containing fine fly ash (FA), ground rice husk-bark ash (RB), and ground bagasse ash (BA). Ordinary Portland cement (CT) was blended with a single pozzolan and two pozzolans. Strength, porosity, rapid chloride penetration, immersion, and corrosion tests were performed to characterize the mortar. Test results showed that the use of ternary blends of CT, FA, and RB or BA decreased the porosity of the mortar, as compared with binary blended mortar containing CT and RB or BA. The resistance to chloride penetration of the mortar improved substantially with partial replacement of CT with FA, RB, and BA. The use of ternary blends of CT, FA and RB or BA produced the mortar with good strength and resistance to chloride penetration. The resistance to chloride penetration was higher with an increase in the replacement level due to the reduced calcium hydroxide.

  17. Filler effect of fine particle sand on the compressive strength of mortar

    Science.gov (United States)

    Jaturapitakkul, Chai; Tangpagasit, Jatuphon; Songmue, Sawang; Kiattikomol, Kraiwood

    2011-04-01

    The river sand, which is a non-pozzolanic material, was ground into 3 different particle sizes. Portland cement type I was replaced by the ground river sands at 10wt%-40wt% of binder to cast mortar. Compressive strengths of mortar were investigated and the filler effect of different fine particles of sand on the compressive strength of mortar was evaluated. The results show that the compressive strength of mortar contributed from the filler effect of smaller particles is higher than that of the coarser ones. The difference in compressive strength of mortar tends to be greater as the difference in ground river sand fineness increases. The results also suggest that ASTM C618 specification is not practically suitable for specifying pozzolan in concrete since the strength activity index of mortar containing ground river sand (high crystalline phase) with 33.8wt% of particles retained on a 45-μm sieve can pass the strength requirement.

  18. Relation between Modulus of Elasticity and Compressive Strength of Ultrahigh-Strength Mortar with Mixed Silicon Carbide as Fine Aggregate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ultrahigh-strength mortar mixed surface-oxidized silicon carbide as a fine aggregate was prepared by means of press-casting followed by curing in an autoclave. The relation between modulus of elasticity up to 111 GPa and compressive strength up to 360 MPa of mortar mixed silicon carbide was discussed and it was revealed that the contributions of the aggregate hardness and of the interfacial strength between the aggregate and the cement paste on the elasticity of mortar were imporant.

  19. Mortar constituent of concrete under cyclic compression

    Science.gov (United States)

    Maher, A.; Darwin, D.

    1980-10-01

    The behavior of the mortar constituent of concrete under cyclic compression was studied and a simple analytic model was developed to represent its cyclic behavior. Experimental work consisted of monotonic and cyclic compressive loading of mortar. Two mixes were used, with proportions corresponding to concretes having water cement ratios of 0.5 and 0.6. Forty-four groups of specimens were tested at ages ranging from 5 to 70 days. complete monotonic and cyclic stress strain envelopes were obtained. A number of loading regimes were investigated, including cycles to a constant maximum strain. Major emphasis was placed on tests using relatively high stress cycles. Degradation was shown to be a continuous process and a function of both total strain and load history. No stability or fatigue limit was apparent.

  20. Properties of microcement mortar with nano particles

    Science.gov (United States)

    Alimeneti, Narasimha Reddy

    Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0

  1. Steelmaking slag as aggregate for mortars: effects of particle dimension on compression strength.

    Science.gov (United States)

    Faraone, Nicola; Tonello, Gabriele; Furlani, Erika; Maschio, Stefano

    2009-11-01

    The present paper reports on the results of some experiments obtained from the production, hydration and subsequent measurement of the mechanical properties of several mortars prepared using a commercial CII/B-LL Portland cement, steelmaking slag, superplasticizer and water. Relevant parameters for the mortar preparation are the weight ratios of cement/water, the weight ratio superplasticizer/cement and between fine and granulated coarse particles. It has been demonstrated that optimisation of such parameters leads to the production of materials with mechanical properties suitable for civil engineering applications. Moreover, materials with improved compressive strength can be prepared by the use of slag containing extensive amounts of large particles.

  2. Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.

    Science.gov (United States)

    Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir

    2008-04-01

    This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.

  3. Oyster shell as substitute for aggregate in mortar.

    Science.gov (United States)

    Yoon, Hyunsuk; Park, Sangkyu; Lee, Kiho; Park, Junboum

    2004-06-01

    Enormous amounts of oyster shell waste have been illegally disposed of at oyster farm sites along the southern coast of Korea. In this study to evaluate the possibility of recycling this waste for use as a construction material, the mechanical characteristics of pulverized oyster shell were investigated in terms of its potential utilization as a substitute for the aggregates used in mortar. The unconfined compressive strengths of various soil mortar specimens, with varying blending ratios of cement, water and oyster shell, were evaluated by performing unconfined compression tests, and the results were compared with the strengths of normal cement mortar made with sand. In addition, the effect of organic chemicals on the hardening of concrete was evaluated by preparing ethyl-benzene-mixed mortar specimens. The long-term strength improvement resulting from the addition of fly ash was also examined by performing unconfined compression tests on specimens with fly-ash content. There was no significant reduction in the compressive strength of the mortars containing small oyster shell particles instead of sand. From these test data, the possible application of oyster shells in construction materials could be verified, and the change in the strength parameters according to the presence of organic compounds was also evaluated.

  4. The Aesthetical quality of SSA-containing mortar and concrete

    DEFF Research Database (Denmark)

    Kappel, Annemette; Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.;

    2014-01-01

    SSA (sewage sludge ash) is resulting ash from the combustion of sewage sludge, and is a method employed at some water treatment plants in order to decrease volume and hygenize the sludge. Today, SSA is with a few exceptions landfilled. As cement production is responsible for app. 5 % of the total...... global CO2 emission, the advantage of replacing cement with a secondary resource as SSA is obvious. The focus of previous conducted research has mainly been on the chemical, mechanical properties and environmental consequences attached to the use of SSA in construction materials.(Cyr et al., 2007) Thus...... that gives a characteristic red colour. The process of grinding SSA has shown to improve the compressive strength of SSA- containing mortar (Donatello et al. 2010). Thus, in this study SSA was grinded in 6 different intervals ranging from 0 – 10 min, and then added to the mortar mix replacing 20% of cement...

  5. The effects of different types of nano-silicon dioxide additives on the properties of sludge ash mortar.

    Science.gov (United States)

    Luo, Huan-Lin; Chang, Wei-Che; Lin, Deng-Fong

    2009-04-01

    To improve the drawbacks caused by the sludge ash replacement in mortar, the previous studies have shown that the early strength and durability of sludge ash/cement mortar are improved by adding nano-silicon dioxide (nano-SiO2) to mortar. In this article, three types of nano-SiO2--SS, HS, and SP (manufacturer code names)--were applied to sludge ash/cement mixture to make paste or mortar specimens. The object is to further extend the recycle of the sludge ash by determining the better type of nano-SiO2 additive to improve properties of sludge ash/ cement paste or mortar. The cement was replaced by 0, 10, 20, and 30% of sludge ash, and 0 and 2% of nano-SiO2 additives were added to the sludge ash paste or mortar specimens. Tests such as setting time, compressive strength, scanning electron microscopy, X-ray diffraction, nuclear magnetic resonance, and thermogravimetric analysis/differential thermal analysis were performed in this study. Test results show that nano-SiO2 additives can not only effectively increase the hydration product (calcium silicate hydrate [C-S-H] gel), but also make the crystal structure denser. Among the three types of nano-SiO2 additive, the SS type can best improve the properties of sludge ash/cement paste or mortar, followed by the SP and HS types.

  6. Use of olive biomass fly ash in the preparation of environmentally friendly mortars.

    Science.gov (United States)

    Cruz-Yusta, Manuel; Mármol, Isabel; Morales, Julián; Sánchez, Luis

    2011-08-15

    The incorporation of fly ash from olive biomass (FAOB) combustion in cogeneration plants into cement based mortars was explored by analyzing the chemical composition, mineralogical phases, particle size, morphology, and IR spectra of the resulting material. Pozzolanic activity was detected and found to be related with the presence of calcium aluminum silicates phases. The preparation of new olive biomass fly ash content mortars is effective by replacing either CaCO(3) filler or cement with FAOB. In fact, up to 10% of cement can be replaced without detracting from the mechanical properties of a mortar. This can provide an alternative way to manage the olive biomass fly ash as waste produced in thermal plants and reduce cement consumption in the building industry, and hence an economically and environmentally attractive choice.

  7. 碳纤维增强磷酸镁水泥砂浆的力学性能研究∗%Mechanical Properties of Carbon Fiber Reinforced Magnesium Phosphate Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    贾兴文; 司端科; 张新; 吴洲

    2016-01-01

    Toughening magnesium phosphate cement mortar (MPCM)will boost the application of MPCM in concrete structure reinforcement and repair.Aiming to toughen MPCM,the effect of untreated and pretreated carbon fibers on the mechanical properties of MPCM was studied,and the toughening mechanism of carbon fibers was ana-lyzed.The results show that the flexural strength of MPCM increased by 44.5% with the addition of 0.4% carbon fi-bers.Carbon fibers with a length of 3-6 mm was conducive to improving the compressive strength of MPCM,and carbon fibers with a length of 6-10 mm could contributed to the flexural strength of MPCM.The properties of MPCM toughened by untreated carbon fibers had no obvious improvement,because of the physical bonding between untreated carbon fibers and hydration products of MPC.Pretreated carbon fibers which were immersed in 68% nitrite acid solution at 40-60 ℃ for 60 min,were beneficial to promoting the interface bonding between carbon fibers and hydration products of MPC.Based on chimerical reaction between hydration products and pretreated carbon fibers,the mechanical properties and toughness of MPCM were significantly improved.%改善磷酸镁水泥砂浆(MPCM)的韧性有利于促进其在混凝土结构加固和修复领域的应用。为了增强MPCM的韧性,对比研究了未处理和硝酸预处理碳纤维对 MPCM力学性能的影响,分析了碳纤维增韧 MPCM的机制。结果表明,当碳纤维质量掺量为0.4%时,MPCM 7 d抗折强度增大44.5%;3~6 mm碳纤维有利于提高MPCM的抗压强度,而6~10 mm碳纤维更有利于提高 MPCM的抗折强度;未处理碳纤维与磷酸镁水泥(MPC)水化产物之间为物理作用,碳纤维未能充分发挥增韧效果;在40~60℃、浓度68%的硝酸中浸泡30~60 min有利于改善碳纤维与MPC水化产物的界面粘结,使预处理后的碳纤维和MPC水化产物产生嵌合作用,显著增强了MPCM的力学性能和韧性。

  8. Properties of wastepaper sludge in geopolymer mortars for masonry applications.

    Science.gov (United States)

    Yan, Shiqin; Sagoe-Crentsil, Kwesi

    2012-12-15

    This paper presents the results of an investigation into the use of wastepaper sludge in geopolymer mortar systems for manufacturing construction products. The investigation was driven by the increasing demand for reuse options in paper-recycling industry. Both fresh and hardened geopolymer mortar properties are evaluated for samples incorporating dry wastepaper sludge, and the results indicate potential end-use benefits in building product manufacture. Addition of wastepaper sludge to geopolymer mortar reduces flow properties, primarily due to dry sludge absorbing water from the binder mix. The average 91-day compressive strength of mortar samples incorporating 2.5 wt% and 10 wt% wastepaper sludge respectively retained 92% and 52% of the reference mortar strength. However, contrary to the normal trend of increasing drying shrinkage with increasing paper sludge addition to Portland cement matrices, the corresponding geopolymer drying shrinkage decreased by 34% and 64%. Equally important, the water absorption of hardened geopolymer mortar decreased with increasing paper sludge content at ambient temperatures, providing good prospects of overall potential for wastepaper sludge incorporation in the production of building and masonry elements. The results indicate that, despite its high moisture absorbance due to the organic matter and residual cellulose fibre content, wastepaper sludge appears compatible with geopolymer chemistry, and hence serves as a potential supplementary additive to geopolymer cementitious masonry products.

  9. 石灰-水泥系外墙防水装饰砂浆与外墙外保温系统适应性研究%The adaptive research of lime-cement waterproof decorative mortar for exterior wall and exterior insulation system

    Institute of Scientific and Technical Information of China (English)

    韩方晖; 王栋民; 许晨阳; 刘晓斌; 刘天德

    2012-01-01

    To make lime-cement waterproof decorative mortar for exterior wall which successes through chemical modification technology to be widely applied in exterior insulation system, it must have good adaptability with exterior insulation system. This paper through establishing force diagram of facing external wall thermal insulation and adopting ESP external wall thermal insulation to be used in high-rise building)analyzing and calculating the earthquake effect by level, wind load and both combination effect and vertical stress gravity and bond force: meanwhile,on the basis of the calculation method to calculate the force of the 100 m-high high-rise building top exterior insulation system in the Beijing center: furthermore, calculating the force of facing external wall thermal insulation when the exterior wall facing is ceramic tile, coating and carrying on the comparison. Results indicate: it is safe when the exterior wall facing is lime-cement waterproof decorative mortar for exterior wall in high-rise exterior insulation system; by the size of the load is for ceramic tile > lime-cement waterproof decorative mortar for exterior wall > coating, in comprehensive comparison, lime-cement waterproof decorative mortar for exterior wall has superiority.%要使通过化学改性技术研制成功的石灰-水泥系外墙防水装饰砂浆在外墙外保温系统中得到广泛应用,其必须与外墙外保温系统有很好的适应性.通过建立饰面外墙外保温系统受力图,对采用膨胀聚苯板作为高层建筑外墙外保温时,所受水平地震作用、风荷载和两者组合效应及竖直方向受力重力和压剪粘结力分析计算;同时,依据这些计算方法计算了北京市中心高为100m的高层建筑顶部外墙外保温系统受力情况;计算了外墙饰面为瓷砖、涂料时外墙外保温系统的受力情况,并对其进行比较.结果表明:外墙饰面为石灰-水泥系外墙防水装饰砂浆时应用于高层外

  10. Caracterização física e mecânica de argamassas à base de cimento Portland e cinza de casca de arroz residual Physical and mechanical characterization on Portland cement mortar with rice husk ash addition

    Directory of Open Access Journals (Sweden)

    Michelle S Rodrigues

    2010-04-01

    Full Text Available A casca de arroz, utilizada como fonte de energia em indústrias de beneficiamento de arroz, converte-se, depois da queima, em uma cinza residual. Esse resíduo, ainda sem um destino adequado, é muitas vezes depositado em grandes áreas abertas e provoca elevado impacto ambiental. Este trabalho teve como objetivo avaliar a viabilidade de utilização da cinza de casca de arroz (CCA residual na produção de argamassas, como substituta parcial do cimento. A caracterização da CCA foi realizada por meio da análise de fluorescência de raios-X (composição química, análise do teor de carbono e difração de raios-X; também foi realizada análise granulométrica a laser. Os corpos de prova foram submetidos a dois tipos de exposição: ambientes externo e interno, com duração máxima de cinco meses. Foram realizados os ensaios de resistência à compressão simples e não destrutivo (velocidade do pulso ultrassônico - VPU. Embora as argamassas tenham apresentado bom desempenho mecânico, os ensaios de pozolanicidade indicaram que a cinza de casca de arroz residual utilizada não é uma pozolana, mas pode ser utilizada em matrizes cimentícias como material inerte (filler.Rice husk, employed as an energy source at milling industries in Brazil generates, after burning, a dark ash. This residue is not yet conveniently disposed, being currently dumped on large areas, causing environmental problems. This research intended to evaluate the applications of residual rice husk ashes (RHA as a partial replacement of cement for mortar production. Rice husk ash was chemically characterized through X-ray fluorescence, determination of carbon content, X-ray diffraction, and laser granulometric analysis. Mortar specimens were submitted to two different exposure conditions: internal and external environments at a maximum period of five months. Physical-mechanical testing were compressive strength and ultrasonic pulse velocity (UPV. Although presenting good

  11. Deterioration of limestone aggregate mortars by liquid sodium in fast breeder reactor environment

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed Haneefa, K., E-mail: mhkolakkadan@gmail.com [Department of Civil Engineering, IIT Madras, Chennai (India); Santhanam, Manu [Department of Civil Engineering, IIT Madras, Chennai (India); Parida, F.C. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2014-08-15

    Highlights: • Limestone mortars were exposed to liquid sodium exposure at 550 °C. • Micro-analytical techniques were used to characterize the exposed specimens. • The performance of limestone mortar was greatly influenced by w/c. • The fundamental degradation mechanisms of limestone mortars were identified. - Abstract: Hot liquid sodium at 550 °C can interact with concrete in the scenario of an accidental spillage of sodium in liquid metal cooled fast breeder reactors. To protect the structural concrete from thermo-chemical degradation, a sacrificial layer of limestone aggregate concrete is provided over it. This study investigates the fundamental mechanisms of thermo-chemical interaction between the hot liquid sodium and limestone mortars at 550 °C for a duration of 30 min in open air. The investigation involves four different types of cement with variation of water-to-cement ratios (w/c) from 0.4 to 0.6. Comprehensive analysis of experimental results reveals that the degree of damage experienced by limestone mortars displayed an upward trend with increase in w/c ratios for a given type of cement. Performance of fly ash based Portland pozzolana cement was superior to other types of cements for a w/c of 0.55. The fundamental degradation mechanisms of limestone mortars during hot liquid sodium interactions include alterations in cement paste phase, formation of sodium compounds from the interaction between solid phases of cement paste and aggregate, modifications of interfacial transition zone (ITZ), decomposition of CaCO{sub 3}, widening and etching of rhombohedral cleavages, and subsequent breaking through the weakest rhombohedral cleavage planes of calcite, staining, ferric oxidation in grain boundaries and disintegration of impurity minerals in limestone.

  12. The physical, chemical, and microscopic properties of masonry mortars from Alhambra Palace (Spain in reference to their earthquake resistance

    Directory of Open Access Journals (Sweden)

    Hanifi Binici

    2016-03-01

    Full Text Available Al-Andalus mortar is an ancient binding material (lime mortar that was used for centuries in numerous historical buildings in Al-Andalus, Granada (Spain. The physico-chemical and microscopic properties of Al-Andalus mortars in Granada were studied as part of an investigation into the mineral raw materials present in the territory of Spain. Scanning electron microscope and X-ray diffraction analyses of eight main types of mortars were performed to show the presence of calcite, gypsum, quartz, and muscovite minerals with organic fibers. Chemical analyses of the specimens showed that high SiO2+Al2O3+Fe2O3 contents yielded high values of hydraulicity and cementation indices. A significant result of this study was that mortars with high hydraulicity and cementation indices have high mechanical strengths. This characteristic may be the main reason for the earthquake resistance of the historical Alhambra Palace.

  13. Microstructure and mechanical performance of modified mortar using hemp fibres and carbon nanotubes

    KAUST Repository

    Hamzaoui, Rabah

    2014-04-01

    Mechanical performance of modified mortar using hemp fibres is studied following various processing conditions. Hemp fibres combined with carbon nanotubes (CNT) are introduced in mortar and their effect is studied as function of curing time. The cement phase is replaced by different percentages of dry or wet hemp fibres ranging from 1.1. wt% up to 3.1. wt% whereas carbon nanotubes are dispersed in the aqueous solution. Our experimental results show that compressive and flexural strengths of wet fibres modified mortar are higher than those for dry hemp-mortar material. The achieved optimal percentage of wet hemp fibres is 2.1. wt% allowing a flexural strength higher than that of reference mortar. The addition of an optimal CNT concentration (0.01. wt%) combined with wet hemp has a reinforcing effect which turns to be related to an improvement of compressive and flexural strengths by 10% and 24%, respectively, in comparison with reference condition. © 2013 Elsevier Ltd.

  14. Concentration Boundary Layer Model of Mortar Corrosion by Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    SONG Zhigang; ZHANG Xuesong; MIN Hongguang

    2011-01-01

    A long time immersion experiment of mortar specimens is carried out to investigate their degradation mechanism by sulfuric acid. Water-cement ratios of mortar are ranging from 0.5 to 0.7 and the pH value of sulfuric acid is 3.5 and 4.0 respectively. The pH meter is used to monitor the soak solution and the titration sulfuric acid with given concentration is added to maintain original pH value, through which the acid consumption of mortar is recorded. A theoretical reaction rate model is also proposed based on concentration boundary layer model. The results show that theoretical model fits the experimental results well and the corrosion mechanism can be modeled by a diffusion process accompanied with an irreversible chemical reaction when pH value of soak solution is no less than 3.5.

  15. Application of micromechanics to the characterization of mortar by ultrasound.

    Science.gov (United States)

    Hernández, M G; Anaya, J J; Izquierdo, M A G; Ullate, L G

    2002-05-01

    Mechanical properties of concrete and mortar structures can be estimated by ultrasonic non-destructive testing. When the ultrasonic velocity is known, there are standardized methods based on considering the concrete a homogeneous material. Cement composites, however, are heterogeneous and porous, and have a negative effect on the mechanical properties of structures. This work studies the impact of porosity on mechanical properties by considering concrete a multiphase material. A micromechanical model is applied in which the material is considered to consist of two phases: a solid matrix and pores. From this method, a set of expressions is obtained that relates the acoustic velocity and Young's modulus of mortar. Experimental work is based on non-destructive and destructive procedures over mortar samples whose porosity is varied. A comparison is drawn between micromechanical and standard methods, showing positive results for the method here proposed.

  16. A Study on the Properties of Carbon Black Mortar Using Granulated Blast Furnace Slag and Polymer.

    Science.gov (United States)

    Jang, Hong-Seok; Jeon, Ui-Hyeon; So, Seung-Young

    2015-11-01

    White Portland Cement (WPC) and inorganic pigment have been used in colored concrete, but there are some physical problems such as increases in efflorescence, and poor workability and low economics. The aim of this study was to investigate the effects of GBFS and polymer (methyl cellulose) on the physical properties of carbon black mortar. For this purpose, a flow test, compressive strength test and color evaluation and was carried out on cement mortar mixed with polymer by changing the proportion of cement and ratio of GBFS. The results show that the addition of polymer influences significantly the color value efficiency in colored mortar. This is due to the reduction of overall amount of micro pore. This polymer films prevent the transport of soluble calcium towards the surface, and decreases efflorescence. And the flow of colored mortar was increased in proportion to the addition rate of the GBFS. In addition the strength of colored mortars with GBFS at the long-term aged (after 28 days) was higher than that of the general WPC mortar, although its strength was developed slowly at the early ages.

  17. Research on the Correlation between Pore Structures and the Strength of Cement Mortar with Pozzolanic%火山灰水泥砂浆孔结构与其强度相关性的研究

    Institute of Scientific and Technical Information of China (English)

    张凌; 孙海燕; 龚爱民; 张国林

    2013-01-01

    In this paper, the strength of mortars with the 15%, 30% and 45% dosages pozzolanic and the 7 d, 28 d and 60 d curing ages is studied. Meanwhile, based on the absorption-hydrodynamic method, pore structure of mortars with the different dosages pozzolanic is tested by the parameters of pore homogeneity and average pore diameter when at different curing ages. When a certain a-mount pozzolanic is mixed, pore structure of mortars can be optimized and denser. That is, the optimum parameters value of pore structure can be achieved when pozzolanic dosage increases to 30%, but after increasing continuously to exceed 45%, pore structure of mortars begin to be deteriorated. There is a better correlation between the parameters of pore structured and λ-) and the strength of mortars with different pozzolanic dosages at different curing ages.%研究了15%、30%和45%3种火山灰掺量和7d、28 d和60d3个养护龄期对水泥砂浆强度的影响,并基于吸水动力学法以孔径均匀性和平均孔径两个参数,研究了不同水化龄期下,3种掺量火山灰对水泥砂浆孔结构的影响规律.结果表明:不同掺量的火山灰水泥砂浆试件,随火山灰掺量在增加,其最佳活性效应位置点和孔结构均出现在30%时,向水泥砂浆中掺入一定量的火山灰可以细化水化浆体的孔结构,当火山灰的掺量不超过30%时,水泥石的平均孔径参数均随火山灰的掺量增加而减小,且孔径均匀性提高,对水泥砂浆的孔结构改善效果比较好,当其掺量增加到45%后,水泥砂浆的孔结构反而又开始呈现出劣化趋势.不同水化龄期时各掺量粉煤灰砂浆孔结构参数(α和λ)与其强度试验结果间相关性较好.

  18. Preparation and Properties of a New Composite of Epoxy Emulsion(EEM)Modified Cement

    Institute of Scientific and Technical Information of China (English)

    XIAO Liguang; JIN Yujie; GU Lixia

    2009-01-01

    High performance cement based composite materials was prepared by adding epoxy emulsion.The epoxy emulsion was synthesized with epoxy phosphoric acid ester and poly-glycol in laboratory.This epoxy emulsion has advantages over other emulsion,such as dehydrated slightly,and well film formation abilities.The mechanical properties, corruptness resistance and structure of ep-oxy emulsion modified cement mortars were studied.Experimental results show that the mechanical properties of modified cement mortars are slightly increased with increasing epoxy emulsion content, especially the flexure strength.The corruptness resistance of all modified mortars is better than the unmodified mortar.The polymer film forms the bridge phases between the matrix and the aggregate regions,and forms a three-dimension structure in the cement hydration system,which improves the mechanical properties of modified mortars.

  19. DURABILITY OF NATURAL POZZOLAN-BASED MORTAR EXPOSED TO SULFATE ATTACK

    Directory of Open Access Journals (Sweden)

    L. Laoufi

    2016-05-01

    Full Text Available Cement is a strategic commodity in the civil engineering for the construction of reinforced concrete structures. But its production generates around 5% of toxic gases such as CO2 responsible for environmental degradation. Furthermore, cement industry is a consumer sector of non-renewable energy. The use in the cement of natural additions is a solution to reduce the CO2 gas and the cost of production. The purpose of this work is the study of a sustainable building material: natural pozzolan Beni-saf (PNB incorporated to mortars exposed to sulfate attack (5% Na2SO4. The loss of mass, monitoring the pH reading of each attack solution as well as specimens dimensions are different tests to study the durability of mortars made with 10, 20 and 30% of natural pozzolan. The result derived from this research is that pozzolan improves mortars resistance to sodium sulfate environment.

  20. Chloride ion transport performance in slag mortar under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    WANG CaiHui; SUN Wei; JIANG JinYang; HAN JianDe; YE BangTu

    2012-01-01

    The transport performance of chloride ion in slag cement mortar was investigated experimentally.In the self-designed experiment,fatigue loading was coupled simultaneously with ion transportation process,the diffusion law of chloride ion was obtained by titration and the AE (acoustic emission) technique was employed to detect the real-time damage distribution in the mortar specimen.The results for fatigue stress levels of 0.3,0.4 and 0.5 and slag contents of 0,10%,30% and 50% showed that fatigue loading accelerated the diffusion of chloride ion in mortar and the acceleration effect increased with the increase in stress levels.Slag addition was found to improve anti-chloride ion erosion performance effectively with the best substitution level at 30%,because the inhibition effect of slag on chloride ion diffusion diminished when the slag content exceeded 30%.The comparative experiments indicated that dynamic load has a significant effect on the transport performance of chloride ion in slag cement mortar.

  1. NMR relaxometry study of plaster mortar with polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Jumate, E.; Manea, D. [Technical University of Cluj-Napoca, Faculty of Civil Engineering. 15 C Daicoviciu Str., 400020, Cluj-Napoca (Romania); Moldovan, D.; Fechete, R. [Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca (Romania)

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  2. Use of rubble from building demolition in mortars.

    Science.gov (United States)

    Corinaldesi, V; Giuggiolini, M; Moriconi, G

    2002-01-01

    Because of increasing waste production and public concerns about the environment, it is desirable to recycle materials from building demolition. If suitably selected, ground, cleaned and sieved in appropriate industrial crushing plants, these materials can be profitably used in concrete. Nevertheless, the presence of masonry instead of concrete rubble is particularly detrimental to the mechanical performance and durability of recycled-aggregate concrete and the same negative effect is detectable when natural sand is replaced by fine recycled aggregate fraction. An alternative use of both masonry rubble and fine recycled material fraction could be in mortars. These could contain either recycled instead of natural sand or powder obtained by bricks crushing as partial cement substitution. In particular, attention is focused on the modification that takes place when either polypropylene or stainless steel fibers are added to these mortars. Polypropylene fibers are added in order to reduce shrinkage of mortars, stainless steel fibers for improving their flexural strength. The combined use of polypropylene fibers and fine recycled material from building demolition could allow the preparation of mortars showing good performance, in particular when coupled with bricks. Furthermore, the combined use of stainless steel fibers and mortars containing brick powder seems to be an effective way to guarantee a high flexural strength.

  3. Material Performance and Animal Clinical Studies on Performance-Optimized Hwangtoh Mixed Mortar and Concrete to Evaluate Their Mechanical Properties and Health Benefits

    Directory of Open Access Journals (Sweden)

    Bon-Min Koo

    2015-09-01

    Full Text Available In this study, the amount of cement used in a concrete mix is minimized to reduce the toxic effects on users by adjusting the concrete mixture contents. The reduction of cement is achieved by using various admixtures (ground granulated blast-furnace slag, flyash, ordinary Portland cement, and activated Hwangtoh powder. To apply the mix to construction, material property tests such as compressive strength, slump, and pH are performed. Preliminary experimental results showed that the Hwangtoh concrete could be used as a healthy construction material. Also, the health issues and effects of Hwangtoh mortar are quantitatively evaluated through an animal clinical test. Mice are placed in Hwangtoh mortar and cement mortar cages to record their activity. For the test, five cages are made with Hwangtoh and ordinary Portland cement mortar floors, using Hwangtoh powder replacement ratios of 20%, 40%, 60%, and 80% of the normal cement mortar mixing ratio, and two cages are made with Hwangtoh mortar living quarters. The activity parameter measurements included weight, food intake, water intake, residential space selection, breeding activity, and aggression. The study results can be used to evaluate the benefits of using Hwangtoh as a cement replacing admixture for lifestyle, health and sustainability.

  4. Use of a multi-species reactive transport model to simulate chloride ingress in mortar exposed to NaCl solution or sea-water

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; De Weerdt, K.; Johannesson, Björn;

    2015-01-01

    Simulations of ion ingress in Portland cement mortar using a multi-species reactive mass transport model are compared with experimental test results. The model is an extended version of the Poisson–Nernst–Planck equations, accounting for chemical equilibrium. Saturated mortar samples were exposed...

  5. Application of encapsulated lightweight aggregate impregnated with sodium monofluorophosphate as a self-healing agent in blast furnace slag mortar

    NARCIS (Netherlands)

    Sisomphon, K.; Copuroglu, O.; Fraaij, A.

    2011-01-01

    This paper studies the potential of using expanded clay lightweight aggregate impregnated with sodium monofluorophosphate (Na2FPO3) solution which is eventually encapsulated by a cement paste layer to produce a self-healing system in blast furnace slag cement mortars. It was found that the technique

  6. Evaluation of cementitious repair mortars modified with polymers

    OpenAIRE

    Tsai-Lung Weng

    2017-01-01

    The aim of this study was to evaluate the effects of added polymers on the properties of repair mortars. Two types of polymers, ethylene vinyl acetate and polyvinyl acetate–vinyl carboxylate, were used as a replacement for 3%, 5%, and 8% of the cement (by weight). All tests were conducted using two water–cement ratios of 0.5 and 0.6. The effectiveness of the repair materials was evaluated according to setting time, drying shrinkage, thermal expansion, compressive strength, and bond strength. ...

  7. Freezing resistance of high iron phoasphoaluminate cement

    Science.gov (United States)

    Zhang, S. X.; Lu, L. C.; Wang, S. D.; Zhao, P. Q.; Gong, C. C.

    2017-03-01

    The influence of freeze-thaw cycle on the mechanical properties of high iron phoasphoaluminate cement was investigated in the present study. The visual examination was conducted to evaluate the surface damage. The deterioration considering the weight loss, modulus loss of relative dynamic elastic and strength loss of mortar were also investigated. The morphology of hydration products were analysed by SEM. Compared with ordinary Portland cement and sulphoaluminate cement, the frost resistance of high iron phosphoraluminate cement is better. Hydration products of high iron phoasphoaluminate cement contain sheet crystals, and a lot of gel form a dense three-dimensional network structure, which results in a lower porosity. Different from ordinary Portland cement, the hydration product of high iron phoasphoaluminate cement does not contain Ca(OH)2, and low alkalinity reduces its osmotic pressure. The lower porosity and osmotic pressure are the two main reasons which causes in the higher frost resistance of high iron phoasphoaluminate cement.

  8. SCIENTIFIC AND TECHNICAL PRECONDITIONS FOR EXTRUDED LIGHTWEIGHT CEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Oreshkin Dmitriy Vladimirovich

    2012-10-01

    The paper also presents the results of the research of the microstructure of spilt Portland cement and hollow glass spheres, their mineral and chemical analyses, as well as the properties of masonry mortars. The paper presents a conclusion that their high process-dependent parameters and superior operating performance are attainable through the introduction of effective hollow glass spheres into masonry mortars and the application of the extrusion method. The aforementioned novelties may reduce the water consumption rate, improve the strength, freeze resistance and durability of cement mortars. The preparation of this paper involved the study of nine reference books. This paper is the first one of a series of papers covering the method of extrusion of lightweight cement mortars.

  9. Modeling of properties of fiber reinforced cement composites

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica

    2008-01-01

    Full Text Available This paper presents the results of authors' laboratory testing of the influence of steel fibers as fiber reinforcement on the change of properties of cement composite mortar and concrete type materials. Mixtures adopted - compositions of mortars had identical amounts of components: cement, sand and silica fume. The second type of mortar contained 60 kg/m3 of fiber reinforcement, as well as the addition of the latest generation of superplasticizer. Physical and mechanical properties of fiber reinforced mortars and etalon mixtures (density, flexural strength, compressive strength were compared. Tests on concrete type cement composites included: density, mechanical strengths and the deformation properties. The tests showed an improvement in the properties of fiber reinforced composites.

  10. 2nd Historic Mortars Conference

    CERN Document Server

    Hughes, John; Groot, Caspar; Historic Mortars : Characterisation, Assessment and Repair

    2012-01-01

    This volume focuses on research and practical issues connected with mortars on historic structures. The book is divided into four sections: Characterisation of Historic Mortars, Repair Mortars and Design Issues, Experimental Research into Properties of Repair Mortars, and Assessment and Testing. The papers present the latest work of researchers in their field. The individual contributions were selected from the contributions to the 2nd Historic Mortars Conference, which took place in Prague, September, 22-24, 2010. All papers were reviewed and improved as necessary before publication. This peer review process by the editors resulted in the 34 individual contributions included in here. One extra paper reviewing and summarising State-of-the-Art knowledge covered by this publication was added as a starting and navigational point for the reader. The editors believe that having these papers in print is important and they hope that it will stimulate further research into historic mortars and related subjects. 

  11. Compressive strength and heavy metal leaching behaviour of mortars containing spent catalyst.

    Science.gov (United States)

    Rattanasak, U; Jaturapitakkul, C; Sudaprasert, T

    2001-10-01

    This investigation was set and aimed to study the possibility of using spent catalyst as a concrete constituent which the spent catalyst was used as sand. Besides the spent catalyst was used as sand, it was also ground to very small particle size as small as that of cement and used as 20% replacement of cement by weight. Compressive strengths and leaching characteristics of lead, chromium, cadmium, and nickel in mortars containing spent catalyst and ground spent catalyst were tested. The results presented revealed that the compressive strength of mortar containing spent catalyst increased with ages. The results also indicated that the compressive strength of mortar containing spent catalyst at the proportion of 1.25 times of cement by weight was strong enough to make a concrete brick. In case of the ground spent catalyst being used to replace cement, it made the compressive strength lower than that of the standard mortar approximately 20%. The leachate results of lead and chromium from spent catalyst were lower than the allowance, but cadmium and nickel exceeded the limits. After the spent catalyst was fixed with cement, the leaching of the heavy metals did not exceed the industrial effluent standard. Therefore, the heavy metals mentioned earlier were not a problem in using spent catalyst as a concrete constituent.

  12. 苯并三唑对水泥砂浆中钢筋的阻锈作用%Effect of Benzotriazole as Corrosion Inhibitor for Reinforcing Steel in Cement Mortar

    Institute of Scientific and Technical Information of China (English)

    施锦杰; 孙伟

    2011-01-01

    应用腐蚀电位(Ecorr)、极化电阻(Rp)和砂浆保护层电阻率(ρc)研究了苯并三唑(BTA)对钢筋电极腐蚀电化学行为的影响.通过电化学阻抗谱(EIS)、循环极化(CP)和循环伏安(CV)结果对比了BTA与NaNO2(SN)对钢筋电极在未处理、预锈蚀和内掺氯盐3种状态下3.5%(w)氯盐浸泡360 d后的阻锈效率.利用环境扫描电镜(ESEM)与能谱分析(EDS)解释了BTA对水泥基材料中钢筋的阻锈机理.结果表明:3种状态下BTA均能明显降低砂浆中钢筋的均匀腐蚀速率,且其阻锈效率高于SN.在未处理与预锈状态下,BTA抑制点蚀的能力稍弱于SN;但在内掺氯盐的状态下,BTA表现出了较大的点蚀阻力.BTA除了能在钢筋表面形成复杂的保护膜,从而有效抑制氯盐的破钝化作用.ESEM/EDS结果表明BTA还能与砂浆基体形成较多富钙C-S-H凝胶,可能优化了钢筋,砂浆界面区的孔结构,形成更致密的微观结构,显著延缓了氯盐向钢筋表面的传输进程,较好地保护了钢筋.适量的BTA对砂浆360 d的基本力学性能无明显影响.%The effects of benzotriazole (BTA) on the corrosion behavior of reinforcing steel in mortar specimens were studied by corrosion potential (Ecorr), polarization resistance (Rp), and resistivity of mortar cover (ρc).Additionally, the corrosion inhibiting efficiencies of BTA and NaNO2 (SN) were compared after exposure to 3.5% (w) NaCl solution for 360 d.Three samples with different surface conditions (as-received reinforcing steel, pre-rusted reinforcing steel, and chloride-admixed in mortar) were studied using electrochemical impendence spectroscopy (EIS), cyclic polarization (CP) and cyclic voltammetry (CV).Environmental scanning electron microscopy (ESEM) and energy dispersive spectroscopy (EDS) were employed to obtain the mechanism of the inhibiting efficiency of BTA in cementitious materials.The results show that under all three conditions, BTA strongly reduces the uniform corrosion

  13. Greenlandic Waste Incineration Fly And Bottom Ash As Secondary Resource In Mortar

    DEFF Research Database (Denmark)

    Kirkelund, Gunvor Marie; Ottosen, Lisbeth M.; Jensen, Pernille Erland

    2016-01-01

    Today, 900 tons incineration fly ash is shipped abroad annually from Greenland for deposits, whereas the 6,000 tons incineration bottom ash is deposited locally. These incineration ashes could be valuable in concrete production, where the cement has to be shipped to Greenland. For this purpose...... and cement with fly ash. Based on the compressive strength tests, it is found that using Greenlandic incineration ashes in mortar as 5% cement replacement could consume all ash instead of disposals, and could thus turn the ashes into a local resource and simultaneously reduce the import of cement....

  14. The adherence in the union stone-mortar

    Directory of Open Access Journals (Sweden)

    Rodríguez García, María Reyes

    1994-06-01

    Full Text Available Stones placates present a wide of problems that result in the fall of plates. One of the causes is the lack of adherence stone-mortar. We considered a study to determine the adherence between several cement mortars (1:3, 1:5, 1:7, 1:9 and a especial mortar prepared with latex and stones (white granite, pink granites, black granites, white marble and cream limestones. The results obtained suggest that only adequate adherence rates (higher than 3 kgf/cm2 achieved with cement mortar 1:3 and especial mortar. Besides it is observed that in the stones studied there is no relation between adherence and the absorption values.

    Los aplacados de piedra presentan una extensa patología que se traduce en la caída de las placas colocadas. Una de las causas es la falta de adherencia mortero-piedra. El estudio se realiza para determinar la tensión de adherencia entre diversos morteros de cemento (1:3, 1:5, 1:7, 1:9 y otro compuesto por mortero y látex y piedras (granito blanco, granitos rosa, granitos negros, mármol blanco y calizas crema. De los resultados obtenidos se deduce que los únicos morteros que permiten valores de adherencia aceptables (superiores a 3 kp/cm2 son el mortero de cemento 1:3 y el especial. Igualmente se comprueba que, en las piedras estudiadas, no existe relación alguna entre la adherencia y la absorción de agua.

  15. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  16. WATER QUALITY AND TREATMENT CONSIDERATIONS FOR CEMENT-LINED AND A-C PIPE

    Science.gov (United States)

    Both cement mortar lined (CML) and asbestos-cement pipes (A-C) are widely used in many water systems. Cement linings are also commonly applied in-situ after pipe cleaning, usually to prevent the recurrence of red water or tuberculation problems. Unfortunately, little consideratio...

  17. The Polymer Modified Mortar Used for Exterior Insulation%外墙外保温专用聚合物改性砂浆的研究

    Institute of Scientific and Technical Information of China (English)

    王治; 胡浩然

    2013-01-01

    研究了水泥、可再分散乳胶粉、纤维素醚等因素对抹面砂浆抗裂性能和粘结砂浆粘结性能的影响,并进行了分析,得出了抹面砂浆和粘结砂浆的最优配比。%The influences of cement,redispersable powder and cellulose ether on anti-cracking performance of anti-crack mortar and adhesive property of adhesive mortar were researched. Then the optimum proportion of anti-crack mortar and adhesive mortar was obtained.

  18. Análise fluido-dinâmica do escoamento em ensaio de permeabilidade ao ar de argamassas preparadas com cimento Portland de alto-forno Fluid-dynamic analysis of the flow in air permeability measurement of mortars prepared with blast-slag furnace Portland cement

    Directory of Open Access Journals (Sweden)

    V. M. Pereira

    2008-06-01

    . These studies not only have evaluated the permeability of porous media, but also to analyze the behavior of the fluid during the flow. Being about to the cement based materials, the measuring of the permeability becomes basic so that the durability of these can be estimate, therefore is the permeability that controls the rate of ingression and movement of deleterious agents inside these materials. Thus, diverse methodologies and mathematical equations have been used to foresee the permeability of cementitious materials, however, some discrepancies and nonsense in the results have been found. Amongst the used methodologies to measure the permeability of porous media, one meets developed it by Thenoz, which it has demonstrated good results in cement based materials. Thus, this work aims at, by means of assay of permeability to air, carried through in accordance with the methodology of Thenoz, to evaluate the fluid-dynamic behavior of air during the assay of permeability in mortars. For this, mortars prepared with two types of Portland cement of blast furnace (CP IIE-32 and CP III - 32, two relations water/cement (0.5 and 0.6 and ages of 14 and 28 days were used. By means of the gotten results it was possible to observe that during the draining the compressibility of air can be ignored, the regimen of draining can be considered as to plate, demonstrating that the methodology proposal for Thenoz and used mathematical equations can result in coefficients of trustworthy air permeability, therefore phenomena and considerations that could influence in this type of flow can be neglected, in accordance with what it is considered by literature.

  19. Correlation Between Initial Calcium Oxide Content of Slag Blended Cement and Mortar Leaching Mass Loss%矿渣混合水泥中初始氧化钙含量与砂浆溶蚀质量损失的关系

    Institute of Scientific and Technical Information of China (English)

    王培铭; 庞敏; 刘贤萍

    2016-01-01

    In the accelerated corrosion 142 d, the leaching mass loss behavior of Portland cement and slag blended cement of three different slag contents (50%, 70% and 90%, in mass fraction) mortar with two different pre-cured ages (28 and 180 d) was investigated. The initial CaO content, calcium hydroxide (CH) content and total hydration degree were analyzed. Based on the relation between CH content and initial CaO content in cement as well as mass loss, the correlation between the initial CaO content and mass loss, and the effect of total hydration degree on mass loss were studied. The results show that the mass loss of all the specimens of two different pre-cured age increase with the increase of leaching time (after 84 d increased slowly), decrease with the increase of addition of slag in blended cement. That is slag can improve the corrosion resistance performance, the fundamental cause of above improvement lies in slag reduced the CH content and hydration degree of blended cement paste. The mass loss with leaching time of 84 d and CH content (0 except) in cement paste, as well as the hydration degree (only slag blended cement) has the following linear relationship respectively. The former is y=0.207 5x–0.015 7, the latter is y=0.029 6x–0.125 4. The mass loss with leaching time of 84 d and initial CaO content in cement has a logarithmic relationship. Pre-cured 28 d, the regression equation is y=6.059ln(x)–22.164. Pre-cured 180 d, the regression equation is y=7.612 3ln(x)–27.656. Based on the logarithmic relationship, cement mortar corrosion resistance can be preliminary judged.%研究了2个预养护龄期(28和180 d)的硅酸盐水泥和3个矿渣粉掺量(50%、70%和90%)的混合水泥砂浆在加速溶蚀142 d 内的溶蚀质量损失规律,分析了硅酸盐水泥和混合水泥初始 CaO 含量、浆体中氢氧化钙(CH)含量和水化程度,基于浆体中 CH 含量与水泥初始 CaO 含量,以及溶蚀质量损失之间的

  20. Interfacial (Fiber-matrix) Properties of High-strength Mortar (150 MPa) from Fiber Pullout

    DEFF Research Database (Denmark)

    Shannag, M.J.; Brincker, Rune; Hansen, Will

    1996-01-01

     The steel fiber-matrix properties of high-strength mortar (150 MPa), such as DSP (densified small particle), are obtained and compared to an ordinary strength mortar (40 MPa) using a specially designed fiber pullout apparatus. A new method for estimating the debonding energy of the interfacial...... DSP mortar has significantly improved interfacial properties compared to ordinary strength mortar. These results are important in the understanding of the role of steel fibers in improving the tensile properties of high-strength, brittle, cement-matrix composites....... zone from the experimental pullout curve is presented. The method is used to separate the areas under the pullout curve corresponding to debonding and friction. The predictions are compared to other methods in the literature. The proposed method seems to provide less variations in the results. The high-strength...

  1. 《水泥砂浆和混凝土用天然火山灰质材料》JG/T315—2011解读%Interpretation of Natural Pozzolanic Materials Used for Cement Mortar and Concrete JG/T315—2011

    Institute of Scientific and Technical Information of China (English)

    周永祥; 王永海; 何更新; 王晶

    2012-01-01

    Compilation background and significance of Natural pozzolanic materials used for cement mortar and concrete JG/T315?011 are introduced. The main technique clauses of this code are explained. The scope,terms,definition, material composition and main technical indexes of natural pozzolanic materials are described in detail. Authors hope that the code issue can improve the development of natural pozzolanic materials.%介绍了《水泥砂浆和混凝土用天然火山灰质材料》JG/T315—2011的编制背景和意义.对标准的主要技术条款进行了解释和说明,详细阐述了天然火山灰质材料包括的范围、术语、定义,原材料组成,主要技术指标要求等.希望本标准的制定能为天然火山灰的开发利用起到积极促进作用.

  2. Mechanism of Expansion of Mortars with Limestone Filler due to External Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mechanism of expansion of mortars and pastes with limestone filler due to external sulfate attack was studied.Mortars and pastes made at water to solid ratios of 0.45, 0.5, 0.6 from Portland Cement (OPC) with 0%, 20% or 30% (w/w) limestone filler (LF) were cured in a 95±1% RH moist room at 20±1 ℃ for 14 or 28 days. They subsequently were immersed in 5% Na2SO4(0.35 M) solution at ambient temperature (1~35 ℃). The expansion of the specimens was measured every month, and selected samples were examined by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results indicate that mortars with 20% LF show larger expansion than that of OPC mortars at up to 9 months of exposure,and the amount of gypsum in both mortars and pastes with LF is much more than that in mortars and pastes without LF. Therefore, it is reasonable to conclude that the formation of massive gypsum leads to the lager expansion of the mortars and pastes containing 20% LF. These behaviors may be explained by the changes in hydration products due to the addition of LF.

  3. Compression Sensibility of Magnetic-concentrated Fly Ash Mortar under Uniaxial Loading

    Institute of Scientific and Technical Information of China (English)

    JIA Xingwen; ZHANG Yajie; QIAN Jueshi

    2012-01-01

    The electrical conductivity,compression sensibility,workability and cost are factors that affect the application of conductive smart materials in civil structures.Consequently,the resistance and compression sensibility of magnetic-concentrated fly ash (MCFA) mortar were investigated using two electrode method,and the difference of compression sensibility between MCFA mortar and carbon fiber reinforced cement (CFRC)under uniaxial loading was studied.Factors affecting the compression sensibility of MCFA mortar,such as MCFA content,loading rate and stress cycles,were analyzed.Results show that fly ash with high content of Fe3O4 can be used to prepare conductive mortar since Fe3O4 is a kind of nonstoichiometric oxide and usually acts as semiconductor.MCFA mortar exhibits the same electrical conductivity to that of CFRC when the content of MCFA is more than 40% by weight of sample.The compression sensibility of mortar is improved with the increase of MCFA content and loading rate.The compression sensibility of MCFA mortar is reversible with the circling of loading.Results show that the application of MCFA in concrete not only provides excellent performances of electrical-functionality and workability,but also reduces the cost of conductive concrete.

  4. Improvements of nano-SiO2 on sludge/fly ash mortar.

    Science.gov (United States)

    Lin, D F; Lin, K L; Chang, W C; Luo, H L; Cai, M Q

    2008-01-01

    Sewage sludge ash has been widely applied to cementitious materials. In this study, in order to determine effects of nano-SiO(2) additives on properties of sludge/fly ash mortar, different amounts of nano-SiO(2) were added to sludge/fly ash mortar specimens to investigate their physical properties and micro-structures. A water-binding ratio of 0.7 was assigned to the mix. Substitution amounts of 0%, 10%, 20%, and 30% of sludge/fly ash (1:1 ratio) were proposed. Moreover, 0%, 1%, 2%, and 3% of nano-SiO(2) was added to the mix. Tests, including SEM and compressive strength, were carried out on mortar specimens cured at 3, 7, and 28 days. Results showed that sludge/fly ash can make the crystals of cement hydration product finer. Moreover, crystals increased after nano-SiO(2) was added. Hence, nano-SiO(2) can improve the effects of sludge/fly ash on the hydration of mortar. Further, due to the low pozzolanic reaction active index of sludge ash, early compressive strengths of sludge/fly ash mortar were decreased. Yet, nano-SiO(2) could help produce hydration crystals, which implies that the addition of nano-SiO(2) to mortar can improve the influence of sludge/fly ash on the development of the early strength of the mortar.

  5. Combined Effects of Non-Conforming Fly Ash and Recycled Masonry Aggregates on Mortar Properties

    Directory of Open Access Journals (Sweden)

    Ana Isabel Torres-Gómez

    2016-08-01

    Full Text Available This work evaluates the effects of using non-conforming fly ash (Nc-FA generated in a thermoelectric power plant as filler material for mortars made with natural sand (NA and recycled sand from masonry waste (FRMA. The incorporation of powdered recycled masonry filler (R-MF is also tested as an alternative to siliceous filler (Si-F. Three families of mortars were designed to study: the effect of replacing Si-F with Nc-FA on mortars made with NA; the effect of replacing Si-F with Nc-FA on mortars made with 50% of NA and 50% of FRMA; and the effect of replacing Si-F with R-MF on mortars made with NA and FRMA. Replacing Si-F with Nc-FA is a viable alternative that increases the mechanical strength, the workability and durability properties and decreases the shrinkage. The use of FRMA and Nc-FA improved the mechanical strength of mortars, and it slightly increased the shrinkage. The replacement of Si-F with R-MF on mortars made with FRMA is not a good alternative, because it has a negative impact on all of the properties tested. This work can help both to reduce cement and natural resources’ consumption and to increase the recycling rate of Nc-FA and FRMA.

  6. Effect of Mineral Admixtures on Resistance to Sulfuric Acid Solution of Mortars with Quaternary Binders

    Science.gov (United States)

    Makhloufi, Zoubir; Bederina, Madani; Bouhicha, Mohamed; Kadri, El-Hadj

    This research consists to study the synergistic action of three mineral additions simultaneously added to the cement. This synergistic effect has a positive effect on the sustainability of limestone mortars. Tests were performed on mortars based on crushed limestone sand and manufactured by five quaternary binders (ordinary Portland cement and CPO mixed simultaneously with filler limestone, blast-furnace and natural pozzolan). The purpose of this research was to identify the resistance of five different mortars to the solution of sulfuric acid. Changes in weight loss and compressive strength measured at 30, 60, 90, 120 and 180 days for each acid solution were studied. We followed up on the change in pH of the sulfuric acid solution at the end of each month up to 180 days.

  7. FORMULATION OF EXPANSIVE MORTAR TO TILL THE STONES USING NON-METALLIC MINERALS OF NORTHEAST OF COUNTRY

    Directory of Open Access Journals (Sweden)

    Danielly Vieira de Lucena

    2015-03-01

    Full Text Available One of the most significant methods of advanced technology for mining, the rock massif is employing expansive mortar for cutting of Rock. Furthermore, the entire expansive mortar commercialized in the Brazilian domestic market are imported, as well as those in industrialized country. Both have components from the external market. The aim of this work is to develop expansive mortar with raw materials that have regional and pressure sufficient to remove the rocks of granite and marble type expansion. For this, expansive grout formulations using calcium oxide, calcium carbonate, carboxymethylcellulose are used - CMC (Portland cement, and from the chemical analysis by means of thermal analysis, X-ray diffraction and laser granulometry compared the results with a commercial mortar. The results indicated that the formulations showed characteristics similar to the commercial mortar.

  8. Microstructure development of a drying tile mortar containing methylhydroxy-ethylcellulose (MHEC)

    NARCIS (Netherlands)

    Faiyas, A.P.A.; Erich, S.J.F.; Nijland, T.G.; Hunnink, H.P.; Adan, O.C.G.

    2015-01-01

    Cement based mortars are widely used as adhesive for tiles in building and construction. They have a limited timespan during which a tile can be placed effectively in order to develop sufficient bond strength. This timespan, usually called ’open time’, is controlled, amongst others, by adding water

  9. Electrochemical Behavior, Microstructural Analysis, and Morphological Observations in Reinforced Mortar Subjected to Chloride Ingress

    NARCIS (Netherlands)

    Koleva, D.A.; Van breugel, K.; De Wit, J.H.W.; Van Westing, E.; Boshkov, N.; Fraaij, A.L.A.

    2007-01-01

    The behavior of steel reinforcement was studied using electrochemical impedance spectroscopy (EIS) and polarization resistance (PR) techniques in conditions of chloride-induced corrosion in ordinary Portland cement-mortar specimens immersed in 7% NaCl for a test period of 120 days and compared to sp

  10. [Based on Curing Age of Calcined Coal Gangue Fine Aggregate Mortar of X-Ray Diffraction and Scanning Electron Microscopy Analysis].

    Science.gov (United States)

    Dong, Zuo-chao; Xia, Jun-wu; Duan, Xiao-mu; Cao, Ji-chang

    2016-03-01

    By using X-ray diffraction (XRD) and environmental scanning electron microscope (SEM) analysis method, we stud- ied the activity of coal gangue fine aggregate under different calcination temperature. In view of the activity of the highest-700 degrees C high temperature calcined coal gangue fine aggregate mortar of hydration products, microstructure and strength were discussed in this paper, and the change laws of mortar strength with curing age (3, 7, 14, 28, 60 and 90 d) growth were analyzed. Test results showed that coal gangue fine aggregate with the increase of calcination temperature, the active gradually increases. When the calcination temperature reaches 700 degrees C, the activity of coal gangue fine aggregate is the highest. When calcining temperature continues to rise, activity falls. After 700 degrees C high temperature calcined coal gangue fine aggregate has obvious ash activity, the active components of SiO2 and Al2 O3 can be with cement hydration products in a certain degree of secondary hydration reaction. Through on the top of the activity of different curing age 700 degrees C high temperature calcined coal gangue fine aggregate mortar, XRD and SEM analysis showed that with the increase of curing age, secondary hydration reaction will be more fully, and the amount of hydration products also gradually increases. Compared with the early ages of the cement mortar, the products are more stable hydration products filling in mortar microscopic pore, which can further improve the microstructure of mortar, strengthen the interface performance of the mortar. The mortar internal structure is more uniform, calcined coal gangue fine aggregate and cement mortar are more of a strong continuous whole, which increase the later strength of hardened cement mortar, 700 degrees C high temperature calcined coal gangue fine aggregate pozzolanic effect is obvious.

  11. Utilization of washed MSWI fly ash as partial cement substitute with the addition of dithiocarbamic chelate.

    Science.gov (United States)

    Gao, Xingbao; Wang, Wei; Ye, Tunmin; Wang, Feng; Lan, Yuxin

    2008-07-01

    The management of the big amount of fly ash as hazardous waste from the municipal solid waste incinerator (MSWI) has encountered many problems in China. In this study, a feasibility research on MSWI fly ash utilization as partial cement substitute in cement mortars was therefore carried out. MSWI fly ash was subjected to washing process to reduce its chlorine content (from 10.16% to 1.28%). Consequently, it was used in cement mortars. Ten percent and 20% replacement of cement by washed ash showed acceptable strength properties. In TCLP and 180-day monolithic tests, the mortars with washed ash presented a little stronger heavy metal leachability, but this fell to the blank level (mortar without washed ash) with the addition of 0.25% chelate. Therefore, this method is proposed as an environment-friendly technology to achieve a satisfactory solution for MSWI fly ash management.

  12. Reuse of ash coal in the formulation of mortars; Reaproveitamento de cinzas de carvao mineral na formulacao de argamassas

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, J.S.; Souza, C.A.G.; Souza, J.A.S., E-mail: jacilene_s@yahoo.com.br, E-mail: celioag@ufpa.br, E-mail: jass@ufpa.br [Programa de Pos Graduacao em Engenharia Quimica, Universidade Federal do Para, UFPA/PPEQ, Belem, PA (Brazil)

    2012-04-15

    This paper aims to study the ash incorporation from the combustion of coal in fluidized bed boilers, in production of mortar, replacing part of cement. Specimens were prepared using Portland cement to the specifications CPII-E-32 of normal characteristics and classification of sand below 100 mesh. Blends in the 4:1 ratio, that is, 4 parts of aggregate to 1 part of cement, with insertion of ashes in the proportions 0, 10, 20, 30, 40 and 50%. The mortar was developed in mixing and casting was made in a mold of 5 cm x 10 cm. The behavior of compressive strength was evaluated after 28 days; the strength decreases with increasing percentage of ash. Additional analysis was carried out by X-ray diffraction, and it was found that the substitution of this waste can be successfully used in mortars with blends of up to 30%. (author)

  13. Mathematical model relating uniaxial compressive behavior of manufactured sand mortar to MIP-derived pore structure parameters.

    Science.gov (United States)

    Tian, Zhenghong; Bu, Jingwu

    2014-01-01

    The uniaxial compression response of manufactured sand mortars proportioned using different water-cement ratio and sand-cement ratio is examined. Pore structure parameters such as porosity, threshold diameter, mean diameter, and total amounts of macropores, as well as shape and size of micropores are quantified by using mercury intrusion porosimetry (MIP) technique. Test results indicate that strains at peak stress and compressive strength decreased with the increasing sand-cement ratio due to insufficient binders to wrap up entire sand. A compression stress-strain model of normal concrete extending to predict the stress-strain relationships of manufactured sand mortar is verified and agreed well with experimental data. Furthermore, the stress-strain model constant is found to be influenced by threshold diameter, mean diameter, shape, and size of micropores. A mathematical model relating stress-strain model constants to the relevant pore structure parameters of manufactured sand mortar is developed.

  14. Effects of slag fineness on durability of mortars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In recent years, the usages of by-products and wastes in industry have become more important. The importance of the sustainable development is also of increasing. The utilizations of wastes, as mineral admixture or fine aggregate, reduce the consumption of the natural resources and improve the durability of concrete. In this study, the effect of the fineness on the high temperature and sulphate resistances of concrete mortar specimens, produced with ground granulated blast-furnace slag (GBFS)replacing cement, is investigated. The compressive and flexural strength test results for all series related to durability effects,exposing temperature and solutions, exposure times for these durability effects, slag content and fineness are discussed. Consequently, the optimum slag contents are determined for producing the sulphate and high temperature resistant mortars.

  15. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  16. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    Directory of Open Access Journals (Sweden)

    Mark Bediako

    2015-01-01

    Full Text Available The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC and Portland limestone cement (PLC, CSIR-BRRI Pozzomix, Dangote OPC, and Diamond PLC. The chemical compositions were analyzed with X-Ray Fluorescence (XRF spectrometer. Student’s t-test was used to test the significance of the variation in chemical composition between standard literature values and each of the commercial cement brands. Analysis of variance (ANOVA was also used to establish the extent of variations between chemical compositions and brand name of the all commercial Portland cement brands. Student’s t-test results showed that there were no significant differences between standard chemical composition values and that of commercial Portland cement. The ANOVA results also indicated that each brand of commercial Portland cement varies in terms of chemical composition; however, the specific brands of cement had no significant differences. The study recommended that using any brand of cement in Ghana was good for any construction works be it concrete or mortar formation.

  17. DRYING SHRINKAGE AND MECHANICAL PROPERTY OF ALITE-BARIUM CALCIUM SULPHOALUMINATE CEMENT MORTAR%阿利特-硫铝酸钡钙水泥砂浆的力学性能和干缩性能

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 周宗辉; 程新; 单立福; 张云飞

    2008-01-01

    通过与硅酸盐水泥(portland cement,PC)对比,研究了阿利特-硫铝酸钡钙水泥(alite-barium calcium sulphoaluminate cement,SABC)砂浆的力学性能和干缩性能.采用X射线衍射和扫描电镜对养护28 d SABC砂浆水化产物的物相组成、形貌以及硬化砂浆的微观结构进行了分析和观察,用压汞法对硬化砂浆的孔结构进行了分析.结果表明:SABC砂浆具有较高的早期强度,添加适量掺合料的可以提高砂浆的强度.且添加矿渣的效果更显著.由于SABC的微膨胀性能,使其砂浆的干缩性能优于pC砂浆.用≤20%(质量分数,下同)矿渣和粉煤灰取代SABC后,可以减小砂浆的干缩率,当取代量超过20%后干缩率随之增大;与掺加矿渣的SABC砂浆的干缩率相比,加入粉煤灰的SABC砂浆干缩率较小.

  18. Coupled Effect of Elevated Temperature and Cooling Conditions on the Properties of Ground Clay Brick Mortars

    Science.gov (United States)

    Ali Abd El Aziz, Magdy; Abdelaleem, Salh; Heikal, Mohamed

    2013-12-01

    When a concrete structure is exposed to fire and cooling, some deterioration in its chemical resistivity and mechanical properties takes place. This deterioration can reach a level at which the structure may have to be thoroughly renovated or completely replaced. In this investigation, four types of cement mortars, ground clay bricks (GCB)/sand namely 0/3, 1/2, 2/1 and 3/0, were used. Three different cement contents were used: 350, 400 and 450 kg/m3. All the mortars were prepared and cured in tap water for 3 months and then kept in laboratory atmospheric conditions up to 6 months. The specimens were subjected to elevated temperatures up to 700°C for 3h and then cooled by three different conditions: water, furnace, and air cooling. The results show that all the mortars subjected to fire, irrespective of cooling mode, suffered a significant reduction in compressive strength. However, the mortars cooled in air exhibited a relativity higher reduction in compressive strength rather than those water or furnace cooled. The mortars containing GCB/sand (3/0) and GCB/sand (1/2) exhibited a relatively higher thermal stability than the others.

  19. Chemical functionalization of ceramic tile surfaces by silane coupling agents: polymer modified mortar adhesion mechanism implications

    Directory of Open Access Journals (Sweden)

    Alexandra Ancelmo Piscitelli Mansur

    2008-09-01

    Full Text Available Adhesion between tiles and mortars are crucial to the stability of ceramic tile systems. From the chemical point of view, weak forces such as van der Waals forces and hydrophilic interactions are expected to be developed preferably at the tiles and polymer modified Portland cement mortar interface. The main goal of this paper was to use organosilanes as primers to modify ceramic tile hydrophilic properties to improve adhesion between ceramic tiles and polymer modified mortars. Glass tile surfaces were treated with several silane derivatives bearing specific functionalities. Contact angle measurements and Fourier Transform Infrared Spectroscopy (FTIR were used for evaluating the chemical changes on the tile surface. In addition, pull-off tests were conducted to assess the effect on adhesion properties between tile and poly(ethylene-co-vinyl acetate, EVA, modified mortar. The bond strength results have clearly shown the improvement of adherence at the tile-polymer modified mortar interface, reflecting the overall balance of silane, cement and polymer interactions.

  20. 不同底模对砂浆强度的影响%Effect of Different Bottom Formwork on Strength of Mortar

    Institute of Scientific and Technical Information of China (English)

    孙永民; 胡长明; 宋方方

    2012-01-01

    The strength of cement mortar and mixed mortar with different bottom formwork were studied by tests. Results show that under the same consistency, the change of bottom mould has bigger influence on the strength of cement mortar than mixed mortar. Specifically, the discreteness of mortar strength with steel formwork is smaller than that with brick formwork. With the change of consistency, the cement mortar strength shows higher variation with steel formwork than with brick formwork. However for mixed mortar strength, the influence of consistency with steel formwork is smaller than that with brick formwork.%通过对不同底模的水泥砂浆试块和混合砂浆试块的强度试验研究,在相同稠度情况下,采用不同底模时,水泥砂浆强度比混合砂浆强度影响大.研究结果表明:钢底模比砖底模的离散性小;随着稠度变化,水泥砂浆采用钢底模比采用砖底模影响因素大,但混合砂浆采用钢底模比砖底模影响因素小.

  1. Influence of Expanded Graphite Surface Ozonation on the Adhesion between Carbon Additive and Cement Matrix

    OpenAIRE

    2015-01-01

    Cement mortars modified with expanded graphite (EG) subjected to surface treatments in gaseous ozone were investigated. It was shown that the bonding between carbon additive and cement paste strongly depends on the surface modification of EG and the chemical composition of EG surface plays the important role in shaping the mechanical properties of cement composites. The expanded graphite subjected to ozone treatment showed the substantial increase of flexural toughness of cement composite. Th...

  2. Investigation on Carbonation Induced Meso-Defects Changes of Cement Mortar Using 3D X-Ray Computed Tomography%基于三维XCT对碳化引起水泥砂浆内部缺陷改变的测试和分析

    Institute of Scientific and Technical Information of China (English)

    韩建德; 潘钢华; 孙伟

    2011-01-01

    In order to investigate the defect changes of cement mortar due to carbonation, X-ray computed tomography (XCT) was employed to quantitatively analyze three dimensional (3D) meso-defect volume distribution changes of cement mortar before and after carbonation. The high-resolution 3D images of microstructures and filtered defects were reconstructed by XCT VG Studio MAX 2.0 software. The meso-defect volume fractions and size distribution were analyzed based on 3D images via add-on modules of 3D defect analysis. The results indicate that 3D meso-defect volume distributions are from 0.03 to 5.5 mm3, and the meso-defect volume fractions before and after carbonation are 2.79% and 1.86%, respectively. After carbonation, the smaller defects decreased significantly, compared to the bigger defects, in particular between 0.03-0.1 mm3. The main reason was calcium carbonate and water, which were generated by carbonation. The molar volume of calcium carbonate was larger than that of calcium hydroxide and CSH gel.Therefore, the new generated calcium carbonate and water could fill and refine some defects.%为了揭示碳化反应对水泥砂浆内部缺陷分布的影响规律,采用三维XCT(X-ray computed tomography)对碳化前后的水泥砂浆的三维内部缺陷体积分数和缺陷尺度分布进行了定量分析.通过XCT的配套软件VG Studio MAX 2.0对水泥砂浆内部缺陷的投影进行三维重构.并通过配套的三维缺陷分析模块软件从三维图像中提取出水泥砂浆内部缺陷的体积分数和尺度分布.结果表明:三维缺陷尺寸范围为0.03~5.5 mm3,碳化前后的水泥砂浆内部缺陷体积分数分别为2.79%和1.86%.体积小的缺陷减小的比例更大,特别在0.03~0.1mm3的缺陷体积减小的比例最大.主要原因是水泥砂浆中的氢氧化钙和CSH凝胶碳化反应后生成碳酸钙和水,相同摩尔质量的碳酸钙的体积比氢氧化钙和CSH凝胶都要大,碳酸钙和水填堵并细化了原来的

  3. Pozzolanic Activity Assessment of LUSI (LUmpur SIdoarjo Mud in Semi High Volume Pozzolanic Mortar

    Directory of Open Access Journals (Sweden)

    Danny Christianto

    2012-09-01

    Full Text Available LUSI mud obtained from the mud volcano in Sidoarjo, Indonesia, is a viable aluminosilicate material to be utilized as pozzolanic material. LUSI is an abbreviation of the local name of the mud, i.e., Lumpur Sidoarjo, meaning Sidoarjo mud. This paper reports the results of an investigation to assess the pozzolanic activity of LUSI mud, especially in semi high volume pozzolanic mortar. In this case, the amount of mud incorporated is between 30% to 40% of total cementitious material, by mass. The content of SiO2 in the mud is about 30%, whilst the total content of SiO2, Fe2O3 and Al2O3 is more than 70%. Particle size and degree of partial cement replacement by treated LUSI mud affect the compressive strength, the strength activity index (SAI, the rate of pozzolanic activity development, and the workability of mortar incorporating LUSI mud. Manufacturing semi high volume LUSI mud mortar, up to at least 40% cement replacement, is a possibility, especially with a smaller particle size of LUSI mud, less than 63 μm. The use of a larger percentage of cement replacement by LUSI mud does not show any adverse effect on the water demand, as the flow of the fresh mortar increased with the increase of percentage of LUSI mud usage.

  4. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    Science.gov (United States)

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  5. Energy absorption at high strain rate of glass fiber reinforced mortars

    Directory of Open Access Journals (Sweden)

    Fenu Luigi

    2015-01-01

    Full Text Available In this paper, the dynamic behaviour of cement mortars reinforced with glass fibers was studied. The influence of the addition of glass fibers on energy absorption and tensile strength at high strain-rate was investigated. Static tests in compression, in tension and in bending were first performed. Dynamic tests by means of a Modified Hopkinson Bar were then carried out in order to investigate how glass fibers affected energy absorption and tensile strength at high strain-rate of the fiber reinforced mortar. The Dynamic Increase Factor (DIF was finally evaluated.

  6. PROPERTIES OF LIGHTWEIGHT MASONRY MORTARS WITH HOLLOW GLASS MICROSPHERES FOR WINTER CONDITIONS

    Directory of Open Access Journals (Sweden)

    Semenov Vyacheslav Sergeevich

    2012-10-01

    reduction fillers (such as inflated pearlite, vermiculite etc. demonstrate low strength properties, as such fillers have a high water content. Hollow glass (or ceramic microspheres are known as efficient fillers for lightweight mortars. Multiple research undertakings contain information on the masonry mortar that has the following properties: average density of dry mortar - 450 kg/m3, thermal conductivity factor - 0.17 W/(m·°C, compressive strength at the age of 28 days - 3.2 MPa, water retention rate - over 90 %. The climatic conditions of Russia determine the need to perform masonry works at negative temperatures. Adding antifreeze admixtures is an easy and cheap method that guarantees hydration of the Portland-cement at negative temperatures. The subject of this research covers masonry mortars that have a 15 % hollow glass microsphere content and antifreeze admixtures. Contemporary antifreeze admixtures are multifunctional. Therefore, traditional antifreeze admixtures such as sodium chloride, calcium chloride, sodium nitrite, sodium nitrate, sodium formate, potash were used in the research. The per-cent content of antifreeze admixtures was calculated. The following properties of masonry mortars with a 15 % content of hollow glass microspheres and antifreeze admixtures were identified: average mortar and mortar mixture density, setting time, water retention, compressive and bending strength, and water absorption. Standard research methods were employed. Every mortar has an 8 cm mobility. The benchmark mixture has an average density of 1.085 kg/ m3, average cement stone density of 980 kg/m3, compressive strength at the age of 28 days - 19.8 MPa, water retention rate - 97 %, setting time - 4.5 hours. The attention was driven to the strength analysis of mortars with hollow glass microspheres and antifreeze admixtures at positive and negative temperatures. The authors proved that antifreeze admixtures demonstrated a negative influence on the strength and setting

  7. Effect of Slag Content on the Strength of Mortar and Concrete%矿渣掺量对胶砂和混凝土强度的影响

    Institute of Scientific and Technical Information of China (English)

    周万良; 方坤河

    2012-01-01

    In this paper,the effects of the content of slag on the strength of mortar and concrete and the bond strength between concrete and steel bar were studied. With the increase of substituted amount of cement by slag in cement mortar or in fly ash-cement mortar, 3 d strength of the mortar continuously decreased. If substituted amount of cement by slag was less than 55% in cement mortar or in fly ash-cement mortar,the 28 d strength of the mortar would increase;if substituted amount of cement was more than 60% , the strength of the mortar would decrease. Whether in cement concrete or in fly ash-cement concrete, the compressive strength and bond strength would increase if the substituted amount of cement by slag was less than 50% ;they would decrease if the substituted amount of cement was higher than 60%.%本文研究了矿渣掺量对胶砂强度、混凝土强度和混凝土与钢筋的粘结强度的影响.在水泥胶砂或粉煤灰-水泥胶砂中,用矿渣取代部分水泥后,胶砂3d强度会降低,且随取代量增加,胶砂3d强度逐渐降低.在水泥胶砂或粉煤灰-水泥胶砂中,当矿渣取代水泥量≤55%时胶砂28 d强度会增加,但矿渣取代水泥量至60%时胶砂28 d强度会下降.在水泥混凝土或粉煤灰-水泥混凝土中,当矿渣取代水泥量≦50%时混凝土28 d强度及其与钢筋的粘结强度会提高,但矿渣取代水泥量≥60%时混凝士强度和粘结强度会降低.

  8. Evaluation of cementitious repair mortars modified with polymers

    Directory of Open Access Journals (Sweden)

    Tsai-Lung Weng

    2017-01-01

    Full Text Available The aim of this study was to evaluate the effects of added polymers on the properties of repair mortars. Two types of polymers, ethylene vinyl acetate and polyvinyl acetate–vinyl carboxylate, were used as a replacement for 3%, 5%, and 8% of the cement (by weight. All tests were conducted using two water–cement ratios of 0.5 and 0.6. The effectiveness of the repair materials was evaluated according to setting time, drying shrinkage, thermal expansion, compressive strength, and bond strength. Specimens containing polyvinyl acetate–vinyl carboxylate at a water–cement ratio of 0.5 presented the highest compressive and bond strength. Specimens containing ethylene vinyl acetate presented strength characteristics exceeding those of the control at 28 days. The drying shrinkage of polyvinyl acetate–vinyl carboxylate specimens was similar to that of the control. At a water–cement ratio of 0.5, the thermal expansion of polyvinyl acetate–vinyl carboxylate specimens was lower than that of ethylene vinyl acetate specimens; however, at a water–cement ratio of 0.6, the thermal expansion was independent of the type of polymer.

  9. On the Utilization of Pozzolanic Wastes as an Alternative Resource of Cement

    Directory of Open Access Journals (Sweden)

    Md. Rezaul Karim

    2014-12-01

    Full Text Available Recently, as a supplement of cement, the utilization of pozzolanic materials in cement and concrete manufacturing has increased significantly. This study investigates the scope to use pozzolanic wastes (slag, palm oil fuel ash and rice husk ash as an alkali activated binder (AAB that can be used as an alternative to cement. To activate these materials, sodium hydroxide solution was used at 1.0, 2.5 and 5.0 molar concentration added into the mortar, separately. The required solution was used to maintain the flow of mortar at 110% ± 5%. The consistency and setting time of the AAB-paste were determined. Mortar was tested for its flow, compressive strength, porosity, water absorption and thermal resistance (heating at 700 °C and investigated by scanning electron microscopy. The experimental results reveal that AAB-mortar exhibits less flow than that of ordinary Portland cement (OPC. Surprisingly, AAB-mortars (with 2.5 molar solution achieved a compressive strength of 34.3 MPa at 28 days, while OPC shows that of 43.9 MPa under the same conditions. Although water absorption and porosity of the AAB-mortar are slightly high, it shows excellent thermal resistance compared to OPC. Therefore, based on the test results, it can be concluded that in the presence of a chemical activator, the aforementioned pozzolans can be used as an alternative material for cement.

  10. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  11. Experimental Study of the Possibility to Make a Mortar with Ternary Sand (Natural and Artificial Fine Aggregates)

    Science.gov (United States)

    Baali, L.; Naceri, A.; Rahmouni, Z.; Mehidi, M. W. Noui

    This experimental study investigates the possibility to make a mortar with a ternary sand (natural and artificial fine aggregates). This method is utilized to correct the particle size distribution of various sands used in mortar. For this investigation, three sands have been used: a dune sand (DS), a slag sand (SS), and brick sand (BS) at different proportions in mortar. After crushing, the artificial fine aggregate (blast furnace slag and waste brick fine aggregate) was sifted in order to use it as fine aggregate. The effect of the quality and grain size distribution of natural fine aggregate (i.e., DS) and artificial fine aggregates (i.e., SS and BS) on the physical properties of ternary sand confected (density, porosity, fineness modulus, equivalent sand, particle size distribution, water absorption) and properties of fresh and hardened mortar were analysed. In the same way for this study, the physical properties and chemical compositions of DS, SS, BS and cement were investigated. The results obtained show that the mechanical strength on mortar depends of the nature and particle size distribution of sand studied. The reuse of this recycled material (slag blast furnace and waste brick) in the industry would contribute to the protection of the environment. This study shows the potential of this method to make mortar with ternary sand (natural and artificial fine aggreagates) in order to improve the physical properties of sand. Utilising natural and artificial fine aggregates to produce quality mortar should yield significant environmental benefits.

  12. Incorporation of titanium dioxide nanoparticles in mortars - Influence of microstructure in the hardened state properties and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, S.S., E-mail: sandra.lucas@ua.pt [University of Aveiro/CICECO, Department of Civil Engineering, 3810-193 Aveiro (Portugal); Ferreira, V.M., E-mail: victorf@ua.pt [University of Aveiro/CICECO, Department of Civil Engineering, 3810-193 Aveiro (Portugal); Barroso de Aguiar, J.L., E-mail: aguiar@civil.uminho.pt [University of Minho, Department of Civil Engineering, Campus de Azurem, 4800-058 Guimaraes (Portugal)

    2013-01-15

    The environmental pollution in urban areas is one of the causes for poor indoor air quality in buildings, particularly in suburban areas. The development of photocatalytic construction materials can contribute to clean the air and improve sustainability levels. Previous studies have focused mainly in cement and concrete materials, disregarding the potential application in historic buildings. In this work, a photocatalytic additive (titanium dioxide) was added to mortars prepared with aerial lime, cement and gypsum binders. The main goal was to study the way that microstructural changes affect the photocatalytic efficiency. The photocatalytic activity was determined using a reactor developed to assess the degradation rate with a common urban pollutant, NO{sub x}. The laboratory results show that all the compositions tested exhibited high photocatalytic efficiency. It was demonstrated that photocatalytic mortars can be applied in new and old buildings, because the nanoadditives do not compromise the mortar hardened state properties.

  13. Tracing formation and durability of calcite in a Punic-Roman cistern mortar (Pantelleria Island, Italy).

    Science.gov (United States)

    Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht

    2016-01-01

    Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the

  14. Dry ripened mortar with quarry waste and rubber powder from unserviceable tires

    Directory of Open Access Journals (Sweden)

    José Aparecido Canova

    2015-01-01

    Full Text Available Stone-quarry fines have been evaluated in mortar and concrete, but have presented drying shrinkage and consequently higher incidence of cracks than those with natural sand. This study compared the dry ripened mortar in two types of aggregates added of 8% rubber powder. It was used quicklime, artificial and natural sand in volumetric proportions of 1:6. Mixtures were oven-dried, received the cement, establishing the volumetric proportion of 1: 1.5:9. Inplastic state, we evaluated aspects such as consistence, air content, water retention and bleeding; whereas compressive strength, static deformation modulus and water absorption by capillarity was determined in hardened state. Cracking aspects were evaluated in substrate. As a result, the mortar with artificial sand showed higher increases in compressive strength, capillarity rate and cracking, and greater reductions in air content and bleeding. As for the rubber powder, exhibited a greater reduction in the cracking rate and capillarity was found.

  15. Preparation and Characterization of New Geopolymer-Epoxy Resin Hybrid Mortars

    Directory of Open Access Journals (Sweden)

    Raffaele Cioffi

    2013-07-01

    Full Text Available The preparation and characterization of metakaolin-based geopolymer mortars containing an organic epoxy resin are presented here for the first time. The specimens have been prepared by means of an innovative in situ co-reticulation process, in mild conditions, of commercial epoxy based organic resins and geopolymeric slurry. In this way, geopolymer based hybrid mortars characterized by a different content of normalized sand (up to 66% in weight and by a homogeneous dispersion of the organic resin have been obtained. Once hardened, these new materials show improved compressive strength and toughness in respect to both the neat geopolymer and the hybrid pastes since the organic polymer provides a more cohesive microstructure, with a reduced amount of microcracks. The microstructural characterization allows to point out the presence of an Interfacial Transition Zone similar to that observed in cement based mortars and concretes. A correlation between microstructural features and mechanical properties has been studied too.

  16. Influence of particle packing density on the rheology of low cement content concrete

    NARCIS (Netherlands)

    Fennis-Huijben, S.A.A.M.; Grunewald, S.; Walraven, J.C.; Den Uijl, J.A.

    2012-01-01

    Optimizing concrete mixtures with regard to cement content is one of the most important solutions in sustainable concrete design. Workability o f these low cement content or ecological mixtures is very important. Eleven mortar mixtures are presented, which show how a higher packing density can be us

  17. Influence of Bed Ash and Fly Ash Replacement in Mortars

    Directory of Open Access Journals (Sweden)

    S. L. Summoogum-Utchanah

    2015-03-01

    Full Text Available The study evaluates the influence of fly ash and bottom ash as partial cement substitutes in mortars by studying the particle size distribution, consistency, flow, fresh density, air content, compressive strength and flexural strength characteristics. The results revealed that fly ash and cement had relatively the same particle size distribution unlike bottom ash. In the fresh state, as the amount of pozzolans increased in the mixtures, the mortars showed an enhancement in workability, were susceptible to water loss by bleeding, and exhibited a decline in fresh density. The early strength gains of the fly ash samples were low but reached higher than the control after 28 days of curing. The flexural strength increased as the fly ash content rose to reach a maximum at 20 % replacement. However, the 2-day compressive strength of bottom ash samples was higher than the control but decreased after 28 days of curing while the flexural strength declined with addition of bottom ash except at 5 % substitution.

  18. Effect of kaolin treatment temperature on mortar chloride permeability

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    2007-03-01

    Full Text Available The present paper discusses the results of chloride resistance tests conducted on ordinary Portland cement (OPC mortars containing a Colombian kaolin pre-treated at temperatures of from 600 to 800 ºC. The resulting metakaolin (MK was added to OPC mortar mixes in proportions of 10 and 20% by cement weight. The mortars were compared for physical and chemical properties, including capillary absorption, chloride permeability and pore microstructure as assessed by mercury porosimetry. The best performance was recorded for the samples containing 20% of the material treated at 800 ºC.En el presente trabajo se incluyen los resultados de la resistencia a la penetración de cloruros de morteros de Cemento Portland Ordinario (OPC adicionados con un caolín colombiano sometido a tratamiento térmico en un rango de temperaturas entre 600 y 800 °C. Los productos del tratamiento térmico, metacaolín (MK, son incorporados en mezclas de morteros de OPC en proporciones del 10 y 20% en relación al peso del cemento. Se comparan sus características físico-químicas, entre las cuales se incluye la microestructura de poros evaluada por la técnica de porosimetría de mercurio, con la absorción capilar y la permeabilidad a cloruros. Se concluye que las muestras adicionadas con un 20% del material tratado térmicamente a 800 °C presentan el mejor desempeño en sus propiedades finales.

  19. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar

    Science.gov (United States)

    Landis, Eric N.; Brune, Philip F.; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J. M.; Ingraffea, Anthony R.

    2014-01-01

    The pyroclastic aggregate concrete of Trajan’s Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime–volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium–aluminum-silicate–hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8–0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45–0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale. PMID:25512521

  20. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar.

    Science.gov (United States)

    Jackson, Marie D; Landis, Eric N; Brune, Philip F; Vitti, Massimo; Chen, Heng; Li, Qinfei; Kunz, Martin; Wenk, Hans-Rudolf; Monteiro, Paulo J M; Ingraffea, Anthony R

    2014-12-30

    The pyroclastic aggregate concrete of Trajan's Markets (110 CE), now Museo Fori Imperiali in Rome, has absorbed energy from seismic ground shaking and long-term foundation settlement for nearly two millenia while remaining largely intact at the structural scale. The scientific basis of this exceptional service record is explored through computed tomography of fracture surfaces and synchroton X-ray microdiffraction analyses of a reproduction of the standardized hydrated lime-volcanic ash mortar that binds decimeter-sized tuff and brick aggregate in the conglomeratic concrete. The mortar reproduction gains fracture toughness over 180 d through progressive coalescence of calcium-aluminum-silicate-hydrate (C-A-S-H) cementing binder with Ca/(Si+Al) ≈ 0.8-0.9 and crystallization of strätlingite and siliceous hydrogarnet (katoite) at ≥ 90 d, after pozzolanic consumption of hydrated lime was complete. Platey strätlingite crystals toughen interfacial zones along scoria perimeters and impede macroscale propagation of crack segments. In the 1,900-y-old mortar, C-A-S-H has low Ca/(Si+Al) ≈ 0.45-0.75. Dense clusters of 2- to 30-µm strätlingite plates further reinforce interfacial zones, the weakest link of modern cement-based concrete, and the cementitious matrix. These crystals formed during long-term autogeneous reaction of dissolved calcite from lime and the alkali-rich scoriae groundmass, clay mineral (halloysite), and zeolite (phillipsite and chabazite) surface textures from the Pozzolane Rosse pyroclastic flow, erupted from the nearby Alban Hills volcano. The clast-supported conglomeratic fabric of the concrete presents further resistance to fracture propagation at the structural scale.

  1. The effect of temperature rise on microstructural properties of cement-based materials: correlation of experimental data and a simulation approach

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting. I

  2. Cross-contamination in Porcelain Mortars.

    Science.gov (United States)

    Bauer-Brandl, A; Falck, A; Ingebrigtsen, L; Nilson, C

    2001-01-01

    Porcelain mortars and pestles are frequently used to comminute drug substances on a small scale and (in some cases) in the production of liquid and semisolid suspensions. Although it is generally accepted that removal of a drug substance from a rough surface by rinsing may be difficult and may lead to cross-contamination, no hard data support that theory. In this study, the amount of salicylic acid remaining on a porcelain mortar after different washing procedures was quantified and compared with the amount remaining on a plastic mortar. Drug residues in the "mg" range on the porcelain mortars made common rinsing procedures appear inappropriate, but no traces of drug were detected on plastic mortars. In addition, the quality of suspension ointments with respect to particle size and homogeneity produced by the two types of mortars was compared. Porcelain and plastic mortars appeared equally suitable for use in the production of semisolid suspensions.

  3. Evaluation of pulp and mortar to pack bitumen radioactive waste; Avaliacao de pastas e argamassas para o embalado de rejeitos radioativos betuminizados

    Energy Technology Data Exchange (ETDEWEB)

    Gregorio, Marina da S.; Vieira, Vanessa M.; Tello, Cledola C.O., E-mail: msg@cdtn.br, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    According to international experience, for the deposition of cement in surface repository, is necessary the use of cement mortar pastes to immobilize the product. Determining the most efficient folder or for the packed mortar, as well as its ideal formulation, is the goal of this study. To do various experiments with samples of cement paste and mortar, with presence of fluxing and / or clay were performed. Viscosity, density, setting time and compressive strength were evaluated. This study will be presented only the results found in testing of compressive strength to be an essential parameter in the transport, storage and disposal of the product. From the results found will be selected the best formulations for use in packed bitumen tailings from the National Radioactive Waste Repository.

  4. Effects of GH Admixture on the Early Strength of Fly Ash Concrete and Mortar

    Institute of Scientific and Technical Information of China (English)

    KANG Jingfu; WANG Xiufen

    2008-01-01

    The enhancement effects of GH admixture on the early strengths of fly ash concrete and mortar were studied, and the mechanism was analyzed by X-ray diffraction (XRD) and scanning electro microscope (SEM). Experimental results show that, by the incorporation of GH admixture, both of cement hydration and pozzolanic reaction of fly ash are accelerated, the strengths of fly ash concrete and mortar are enhanced noticeably, especially the early strength. With a mixture design of 200 kg/m3 OPC (Ordinary Portland Cement), 200 kg/m3 fly ash and 50 kg/m3 GH admixture, the strength of concrete at 1 d, 3 d and 28 d reaches 25 Mpa, 50 Mpa and 70 Mpa respectively.

  5. Application of Image Analysis Based on SEM and Chemical Mapping on PC Mortars under Sulfate Attack

    Institute of Scientific and Technical Information of China (English)

    YU Cheng; SUN Wei; Scrivener Karen

    2014-01-01

    The degradation mechanisms of cementitious materials exposed to sulfate solutions have been controversial, despite considerable research. In this paper, two methodologies of image analysis based on scanning electron microscope and chemical mapping are used to analyse Portland cement mortars exposed to sodium sulfate solution. The effects of sulfate concentration in solution and water to cement ratio of mortar, which are considered as the most sensitive factors to sulfate attack, are investigated respectively by comparing the macro expansion with microstructure analysis. It is found that the sulfate concentration in pore solution, expressed as sulfate content in C-S-H, plays a critical role on the supersaturation with respect to ettringite and so on the expansion force generated.

  6. The effect of chemical admixtures and mineral additives on the properties of self-compacting mortars

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Sahmaran; Heru Ari Christianto; Ismail Ozgur Yaman [Middle East Technical University, Ankara (Turkey). Department of Civil Engineering

    2006-05-15

    Mortar serves as the basis for the workability properties of self-compacting concrete (SCC) and these properties could be assessed by self-compacting mortars (SCM). In fact, assessing the properties of SCM is an integral part of SCC design. The objective of this study was to evaluate the effectiveness of various mineral additives and chemical admixtures in producing SCMs. For this purpose, four mineral additives (fly ash, brick powder, limestone powder, and kaolinite), three superplasticizers (SP), and two viscosity modifying admixtures (VMA) were used. Within the scope of the experimental program, 43 mixtures of SCM were prepared keeping the amount of mixing water and total powder content (Portland cement and mineral additives) constant. Workability of the fresh mortar was determined using mini V-funnel and mini slump flow tests. The setting time of the mortars, were also determined. The hardened properties that were determined included ultrasonic pulse velocity and strength determined at 28 and 56 days. It was concluded that among the mineral additives used, fly ash and limestone powder significantly increased the workability of SCMs. On the other hand, especially fly ash significantly increased the setting time of the mortars, which can, however, be eliminated through the use of ternary mixtures, such as mixing fly ash with limestone powder. The two polycarboxyl based SPs yield approximately the same workability and the melamine formaldehyde based SP was not as effective as the other two.

  7. Mechanical Properties and Solidiifed Mechanism of Tailings Mortar with Waste Glass

    Institute of Scientific and Technical Information of China (English)

    NING Baokuan; XU Jingwen; CHEN Sili

    2015-01-01

    In order to improve the comprehensive utilization of solid waste such as iron tailings and waste glass and so on, mechanical property test of cement tailings mortar mixed waste glass and curing mechanism research were conducted in the key materials mechanics lab of Liaoning province. The experimental results show that adding waste glass particles can improve the grain size distribution of tailings. The effect is proportional to the content. The compressive strength of tailings mortar has increased signiifcantly. The ifneness modulus of tailings mortar mixture adding waste glass powder was gradually reducing with the increase of the dosage of waste glass powder, but the compressive strength of the mixture has gradually enhanced with the increase of the dosage. Microscopic analysis shows that the waste glass particles in the mortar mainly play a role of coarse aggregate and glass powder after grinding fine below a certain size shows strong volcanic activity, which can act hydration with tailings, at the same time glass powder also, plays a role in ifne aggregate iflling. Therefore, all of glass particles and glass powder can be used as the additive material for improving and optimizing the mechanical property of tailings mortar.

  8. Acoustic Behavior of Subfloor Lightweight Mortars Containing Micronized Poly (Ethylene Vinyl Acetate (EVA

    Directory of Open Access Journals (Sweden)

    Luiza R. Brancher

    2016-01-01

    Full Text Available This paper aims to contribute to acoustical comfort in buildings by presenting a study about the polymer waste micronized poly (ethylene vinyl acetate (EVA to be used in mortars for impact sound insulation in subfloor systems. The evaluation method included physical, mechanical and morphological properties of the mortar developed with three distinct thicknesses designs (3, 5, and 7 cm with replacement percentage of the natural aggregate by 10%, 25%, and 50% EVA. Microscopy analysis showed the surface deposition of cement on EVA, with preservation of polymer porosity. The compressive creep test estimated long-term deformation, where the 10% EVA sample with a 7 cm thick mortar showed the lowest percentage deformation of its height. The impact noise test was performed with 50% EVA samples, reaching an impact sound insulation of 23 dB when the uncovered slab was compared with the 7 cm thick subfloor mortar. Polymer waste addition decreased the mortar compressive strength, and EVA displayed characteristics of an influential material to intensify other features of the composite.

  9. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder.

    Science.gov (United States)

    Zhong, Shiyun; Ni, Kun; Li, Jinmei

    2012-07-01

    A series of novel mortars were developed from composite binder of uncalcined FGD gypsum, fly ash (FA) and ground granulated blast furnace slag (GGBFS) for the good utilization of flue gas desulphurization (FGD) gypsum. At a fixed ratio (20%) of GGBFS to the composite binder, keeping consistency of the mortar between 9.5 and 10.0 cm, the properties of the composite mortar were studied. The results show that higher water/binder (W/B) is required to keep the consistency when increasing the percentage of FGD gypsum. No obvious influences of the W/B and content of FGD gypsum on the bleeding of paste were observed which keeps lower than 2% under all experimental conditions tried. The highest compressive and flexural strengths (ratio is 20% FGD gypsum, 20% GGBFS and 60% FA) are 22.6 and 4.3 MPa at 28 days, respectively. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that massive ettringite crystals and C-S-H gels exist in the hydration products. At 90 days the mortars with FGD gypsum is dramatically smaller drying shrinkage (563-938 micro strain) than that without FGD gypsum (about 2250 micro strain). The release of the SO(4)(2-) from the mortar was analyzed, indicating that the dissolution of sulfate increases with FGD gypsum. The concentration of SO(4)(2-) releasing from the mortar with 10% FGD gypsum is almost equal to that obtained from the mortar without FGD gypsum. The release of SO(4)(2-) from the mortar with 20% FGD gypsum is 9200 mg·m(-2), which is lower than that from the mortar with 95% cement clinker and 5% FGD gypsum.

  10. Leaching of metals from cement under simulated environmental conditions.

    Science.gov (United States)

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  11. Improvement of Cracking-resistance and Flexural Behavior of Cement-based Materials by Addition of Rubber,Particles

    Institute of Scientific and Technical Information of China (English)

    KANG Jingfu; JIANG Yongqi

    2008-01-01

    By ring test and bend test,the improvement of waste tire rubber particles on the crack-resistance and flexural behaviors of cement-based materials were investigated.Test results show that the cracking time of the ring specimens can be retarded by the incorporation of rubber particles in the cement paste and mortar.The improvement in the crack-resistance depended on the rubber fraction.When the rubber fraction was 20%in volume,the cracking time was retarded about 15 h for the paste and 24 d for the mortar respectively.Flexural properties were evaluated based on the bend test results for both mortar and concrete containing different amount of rubber particles.Test results show that rubberized mortar and concrete specimens exhibit ductile failure and significant deformation before fracture.The ultimate deformations of both mortar and concrete specimen increase more than 2-4 times than control specimens.

  12. Experimental Investigation on Strength and Water Permeability of Mortar Incorporate with Rice Straw Ash

    OpenAIRE

    Surajit Munshi; Richi Prasad Sharma

    2016-01-01

    The utilization of various agricultural residue ash as a pozzolanic material has the potential to reduce both the environmental impact and cost associated with building materials. In this paper, the authors studied the strength and permeability of mortar using different percentages of rice straw ash (RSA) as cement replacement and the possibilities of using RSA as a pozzolanic material. Locally available rice straws were burnt at a temperature of 600°C and ground to make RSA. The chemical and...

  13. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness

    Directory of Open Access Journals (Sweden)

    Aref M. al-Swaidani

    2016-06-01

    Full Text Available The benefits of using natural pozzolan as cement replacement are often associated with shortcomings such as the need to moist-curing for longer time and a reduction of strength at early ages. The objective of the study is to investigate the influence of binder fineness on the mechanical strength development of scoria-based binder mortars. In the study, mortar specimens have been produced with four types of binder: one plain Portland cement (control and three scoria-based binders with three replacement levels: 25%, 30% and 35%, respectively. All scoria-based binders have been inter-ground into four different Blaine fineness: 2400, 3200, 4200 and 5100 cm2/g. The development of the compressive and flexural tensile strength of all mortar specimens with curing time has been investigated. The effects of the Blaine fineness of the scoria-based blended cement on the compressive and flexural strengths of mortar have been evaluated at curing ages of 2, 7, 28 and 90 days, respectively. Particle size distribution measured by a laser diffractometer has been considered in the study. Test results revealed that there is a decrease in strength with increasing amounts of scoria. In addition, there was found an increase in strength with increasing the Blaine fineness values. No direct relationship between Blaine and particle size distribution was observed. Effects of Blaine fineness on some physical properties of blended cements such as water demand, setting times and soundness have also been investigated. Further, an estimation equation for strength development incorporating the effects of fineness measured either by Blaine or by particle size distribution has been derived by the authors.

  14. Comportamento à compressão de argamassas reforçadas com fibras vegetais da Amazônia Behavior of cement mortar reinforced with Amazonian fibers subjected to compression

    Directory of Open Access Journals (Sweden)

    Marcelo de Souza Picanço

    2008-03-01

    matriz.In recent years, there has been intense research worldwide for alternative materials to substitute asbestos fiber, a component of asbestos cement, which has been found to be hazardous to human and animal health and has been banned in many countries. Since 1979 the Non-conventional Materials Research Group of PUC-Rio has carried out research on the application of vegetable fibers, available in abundance in Brazil, for the fabrication of construction components, aiming mainly at the fabrication of popular housing. The Curaúa fiber has been studied, as it is already of popular use in the manufacture of ropes, baskets and carpets in the region, known as Baixo Amazonas, in the state of Para, Brazil, where the first plantations have been organized on a commercial scale. In this work, mechanical properties of the Curauá fiber, as well as their application as a cementicious matrix reinforcement, have been studied. The performance of Curauá fiber and its composites was compared with other vegetable fibers, such as sisal and jute, as a substitute for asbestos fiber and its composites. The data on sisal fibres from previous works by the same research group at PUC-Rio was considered for comparison. The behavior of jute fiber, as well as cementicious composites, reinforced with jute and sisal fibers, has also been studied in this work. The results have shown that the Curauá fiber has appropriate physical and mechanical characteristics that make it suitable to be used as reinforcement of cementicious matrixes, with a high ductility and post-cracking resistance capacity.

  15. Sodium Sulphate Effect on Cement Produced with Building Stone Waste

    Directory of Open Access Journals (Sweden)

    Emre Sancak

    2015-01-01

    Full Text Available In this study, the blended cements produced by using the building stone waste were exposed to sulphate solution and the cement properties were examined. Prepared mortar specimens were cured under water for 28 days and then they were exposed to three different proportions of sodium sulphate solution for 125 days. Performances of cements were determined by means of compressive strength and tensile strength tests. The broken parts of some mortar bars were examined with scanning electron microscope (SEM. Besides, they were left under moist atmosphere and their length change was measured and continuously monitored for period of 125 days. In blended cements, solely cements obtained by replacing 10–20% of diatomites gave similar strength values with ordinary Portland cement (CEM I 42.5R at the ages of 7, 28, and 56 days. In all mortar specimens that included either waste andesite (AP or marble powder (MP showed best performance against very severe effective sodium sulphate solutions (13500 mg/L.

  16. 3D Simulation of micromechanical behavior of cement paste

    NARCIS (Netherlands)

    Qian, Z.; Ye, G.; Schlangen, H.E.J.G.; Van Breugel, K.

    2010-01-01

    Numerical modeling of fracture processes of brittle materials, such as cement paste, mortar, concrete and rocks, started in the late 1960s when the discrete and smeared cracking models were introduced. In the 1990s, Schlangen and van Mier proposed another numerical model to compensate the drawbacks

  17. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  18. Leaching of 90-year old concrete mortar in contact with stagnant water

    Energy Technology Data Exchange (ETDEWEB)

    Traegaardh, J.; Lagerblad, B. [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1998-07-01

    Concrete and other cementitious materials will be used for different purposes in the underground repositories for radioactive waste in the form of spent fuel according to the Swedish concept. Cementitious materials are fundamentally unstable in water and will change properties with time. Thus it is important to know the long-term interaction between the cement-based materials, groundwater and the other materials in the repository that are important for the safety. This report concerns a study of diffusion controlled dissolution of mortar in a case study. In 1906 a water tank was installed in one of the towers in the castle of Uppsala, Sweden. A 20 mm thick layer of concrete mortar was placed on the inner walls of a steel canister which comprised the water tank. It was demolished in 1991 and pieces of the mortar were taken for analysis. The water tank has been refilled periodically with fresh water, which means that the mortar has been leached by drinking water for nearly 85 years. As the steel hinders the penetration of water, diffusion processes must have controlled the leaching. The concrete has been investigated by several methods including thin sections in a polarising microscope, SEM, SEM-EDS, image analysis and chemical analysis. The result shows that the mortar is covered by a thin shell of carbonates presumably reaction products between the cement paste and bicarbonates from the water. Behind the carbonated surface to a depth of around 5-8 mm the mortar shows a distinct porous zone decreasing calcium contents. At the same time there is a relative increase in the sulphate, aluminium and iron concentrations. This indicates that the leaching is fairly complicated and linked to a recrystallisation and redistribution of element. Behind this depth the paste is dense and has a fairly normal composition except for a slight calcium depletion. The SEM analysis shows that there is no distinct portlandite (calcium hydroxide crystals) depletion front. Portlandite is

  19. Natural cement in the nineteenth century city of Madrid. Identification of their application, conservation status and their compatibility with moderns cements.

    Science.gov (United States)

    Corrochano, Cristina Mayo; Lasheras Merino, Felix; Sanz-Arauz, David

    2016-04-01

    Roman cement was patented in 1796 and it arrived to Spain in 1835. Although the natural cement used in Madrid came mainly from Guipúzcoa's factories, there were a few small factories producing natural cement in the area. In the south east of Madrid, in "Morata de Tajuña", are the marl quarries of the Madrid Community. Natural cement was extensively used to decorate buildings in Madrid during the 19th century and the beginning of the 20th. It was highly demanded in various sectors of civil engineering: sewerage, water supply, canals, ports and tunnels. In the building sector, at first the use of cements was limited to building foundations and masonry mortars, but never as render mortar because it was considered an unsightly and vulgar material. For renders still traditional lime mortar was used. And is not till the end of the 19th century when it was used in facade decorations for the first time. We have analysed 25 buildings in Madrid built in that period of time. It was used microscopy techniques for the identification of these cements, checking how many of them used natural cement, how they used it, what is its conservation status and their compatibility with modern cements.

  20. Induction Coilgun for EM Mortar

    Science.gov (United States)

    2007-06-01

    Agency is investigating electromagnetic (EM) guns for the next generation combat vehicle providing improved performance and survivability without the...use of propellant. The two-year program was initiated in 2005 to design a coilgun and a railgun to launch an existing mortar round with an EM...through a structural frame. Capacitor bank modules currently in fabrication and test utilize 1980’s technology capacitors , but new ideas in

  1. Test on Sensor Effect of Cement Matrix Piezoelectric Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoming; LI Zhongxian; DING Yang; LI Zongjin

    2005-01-01

    A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.

  2. Formulating a low-alkalinity cement for radioactive waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Coumes, C. Cau Dit; Courtois, S.; Leclercq, S.; Bourbon, X

    2004-07-01

    A multi-annual research program has been launched in January 2003 by CEA, EDF and ANDRA in order to formulate and characterize low-alkalinity and low-heat cements which would be compatible with an underground waste repository environment. Four types of bindings have been investigated: binary blends of Portland cement and silica fume or metakaolin, as well as ternary blends of Portland cement, fly ash and silica fume or metakaolin. Promising results have been obtained with a mixture comprising 37.5% Portland cement, 32.5% silica fume, and 30% fly ash: pH of water in equilibrium with fully hydrated cement is below 11. Moreover, silica fume compensates for the low reactivity of fly ash, while fly ash allows to reduce water demand, heat release, and dimensional variations of cement pastes and mortars. (authors)

  3. Effects of the restoration mortar on chalk stone buildings

    Science.gov (United States)

    Ion, R. M.; Teodorescu, S.; Ştirbescu, R. M.; Dulamă, I. D.; Şuică-Bunghez, I. R.; Bucurică, I. A.; Fierăscu, R. C.; Fierscu, I.; Ion, M. L.

    2016-06-01

    The monument buildings as components of cultural heritage are exposed to degradation of surfaces and chemical and mechanical degradation, often associated to soiling and irreversible deterioration of the building. In many conservative and restorative works, a cement-based mortar was used without knowing all the adverse effects of this material on the building. This paper deals with the study of the effects of natural cement used in restorative works in the particular case of the Basarabi-Murfatlar Churches Ensemble. Cement-based materials exposed to sulfate present in the chalk stone - gypsum (CaSO4.2H2O), can induce signs of deterioration, due to ettringite ([Ca3Al (OH)612H2O]2(SO4)32H2O) or thaumasite (Ca3[Si(OH)612H2O](CO3)SO4) formation. These phases contribute to strain within the material, inducing expansion, strength loss, spalling and severe degradation. Several combined techniques (XRD, EDXRF, ICP-AES, SEM, EDS, sulphates content, FT-IR and Raman analysis were carried out to put into evidence the effects of them on the building walls.

  4. The Effect of VAc-VeoVa10 Latex Powder on Mechanical Properties of Modified Mortar%VAc-VeoVa10乳胶粉对改性水泥砂浆力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    程祥龙; 班倩; 滕朝辉; 夏大寒; 申迎华

    2012-01-01

    According to the bad caking property and flexibility of cement mortar used in external thermal insulation system, Vac-VeoVa10 latex powder was used to modify the cement mortar. The effect of dosage of Vac-VeoVa10 latex powder on mechanical properties of modified mortar was studied. The results show that with the increase of dosage of latex powder, both the bond strength between modified mortar and expanded polystyrene boards (EPS), and the strength between modified mortar and cement mortar block increased; the flexural strength and flexibility were improved, but the compressive strength decreased. At the same time, the influence of cement/sand ratio, dosage of Vac-VeoVa10 and dosage of water retaining agent on mortar performance was analyzed by orthogonal test, including the bond strength between modified mortar and expanded polystyrene boards (EPS), the strength between modified mortar and cement mortar block by compressive strength,flexural strength,and ratio of compressive strength to flexural strength. By comprehensive consideration, at the cement/sand ratio 1:1, the mass fraction of polymer powder 4% ,and the mass fraction of water retaining agent 0. 2%, the properties of modified mortar was the best.%针对目前膨胀聚苯板(EPS)外墙外保温系统用水泥砂浆粘结性差、柔韧性差等问题,用醋酸乙烯酯(VAc)与叔碳酸乙烯酯(VeoVa10)共聚乳胶粉对其进行改性.研究了乳胶粉用量对改性水泥砂浆力学性能的影响.结果表明,随着乳胶粉用量的增加,砂浆的粘结强度增加、抗折强度提高、抗压强度降低、柔韧性提高.通过正交试验研究了灰砂质量比、乳胶粉用量、保水剂用量等因素对改性水泥砂浆与EPS以及与基础砂浆粘结强度、抗折强度、抗压强度以及压折比的影响,得出改性水泥砂浆的最优配比为:水泥与石英砂的质量比1∶1,乳胶粉质量分数4%,保水剂质量分数0.2%.

  5. Rendering mortars in Medina Azahara, Part I: Material characterization and alteration process

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    1997-03-01

    Full Text Available Rendering mortars, which are still exposed to the open air on some of the walls of Medina Azahara, are studied and characterized in this work. Some repairing mortars used in different previous restorations are also characterized. Those rendering mortars are of different make considering the composition of their binder: lime, gypsum and mixed lime/ gypsum. Repairing mortars used in previous interventions are made of lime, excepting for a portland cement used by Félix Hernández in the restoration of one of the rooms back in the 50's. Biological colonization is the main cause of decay in lime mortars, while in mortars made of gypsum, decay is a result of the solubilizating action of rain water.

    En este trabajo se analizan y caracterizan los revocos que, todavía hoy, permanecen sobre algunos paramentos de los muros de la ciudad de Medina Azahara, expuestos a la intemperie. También se caracterizan algunos de los molleros de reparación aplicados en las distintas restauraciones de los revocos. Los revocos están formados por tres clase de morteros, atendiendo a la composición de su ligante: de cal, de yeso y bastardos de cal y yeso. Los morteros de reparación que se han utilizado son de cal, a excepción del utilizado en la restauración de Félix Hernández (década de 1950, en una de las salas, que es de cemento portland. La colonización biológica es la principal causa de deterioro de los morteros de cal, en tanto que la solubilización por las aguas de lluvia lo es en los morteros que contienen yeso.

  6. Studies on termite hill and lime as partial replacement for cement in plastering

    Energy Technology Data Exchange (ETDEWEB)

    Olusola, K.O.; Olanipekun, E.A.; Ata, O.; Olateju, O.T. [Obafemi Awolowo University, Ile-Ife, Osun State (Nigeria). Department of Building

    2006-03-15

    This study investigated the compressive strength and water absorption capacity of 50x50x50mm mortar cubes made from mixes containing lime, termite hill and cement and sand. Two mix ratios (1:4 and 1:6) and varying binder replacements of cement with lime or termite hill amounting to 0%, 10%, 20%, 30%, 40% and 50% were used. Test results showed that the compressive strength of the mortar cubes increases with age and decreases with increasing percentage replacement of cement with lime and termite hill. However, for mix ratio 1:6, up to 20% replacement of cement with either lime or termite hill, all the mortar cubes had the same strength; subsequently, the termite hill exhibited a higher compressive strength. For mix ratio 1:4, mortar cubes made from lime/cement and termite hill/cement mixtures had the same strength at 50% replacement. Generally, water absorption is higher in mixtures containing lime (18.10% and 14.20% for mix ratios 1:6 and 1:4, respectively, both at 50% replacement level) than those containing termite hill (16.10% and 13.02% for mix ratios 1:6 and 1:4, respectively, both at 50% replacement level). Termite hills seem to be promising as a suitable, locally available housing material for plastering. (author)

  7. Cement mortar resistance to corrosion caused by magnesium salt solutions

    Directory of Open Access Journals (Sweden)

    García de Paredes y Gaibrois, Pablo

    1974-12-01

    Full Text Available Not availableEntre los agentes químicos que destruyen a los morteros y hormigones elaborados con conglomerantes hidráulicos, silícicos o aluminosos, inspira mucho temor el catión magnesio, principalmente si en las disoluciones acuosas le acompañan los aniones sulfato y/o cloruro. Por esta razón el trabajo del Sr. Riedel adquiere especial interés, tanto más cuánto no es numerosa ni resolutiva la experiencia expuesta en la literatura.

  8. Steel passive state stability in activated fly ash mortars

    Directory of Open Access Journals (Sweden)

    Fernández-Jiménez, A.

    2010-12-01

    Full Text Available The present study explores the behaviour of structural steel embedded in Portland cement (OPC mortars and NaOH- and NaOH-waterglass-activated fly ash, in the presence and absence of 2 % Cl- (CaCl2. Variations were determined in the corrosion potential (Ecorr, linear polarization resistance (Rp and corrosion current density (icorr under different environmental conditions (90 days at 95 % relative humidity (RH, 30 days at ≈ 30 % RH, 760 days at ≈ 95 % RH. In the absence of Cl-, fly ash mortars were able to passivate steel reinforcement, although the stability of the passive state in changing environmental conditions was found to depend heavily on the activating solution used. Steel corrosion in the presence of 2 % Cl- was observed to be similar to the corrosion reported for the material in OPC mortars.

    En el presente trabajo se estudia el comportamiento del acero estructural embebido en morteros de cemento Pórtland (OPC y de cenizas volantes activadas con NaOH y una mezcla de NaOH y waterglass, en ausencia y en presencia de un 2% de Cl- (CaCl2. Se determino la evolución del potencial de corrosión (Ecorr, la resistencia de polarización lineal (Rp y la intensidad de corrosión (icorr, variando las condiciones ambientales (90 días al 95% de humedad relativa (HR-30 días a ≈ 30% HR- 760 días a ≈ 95% HR. En ausencia de Cl- los morteros de cenizas volantes activadas pueden pasivar los refuerzos de acero, si bien la estabilidad del estado pasivo ante cambios en las condiciones ambientales parece mostrar una fuerte dependencia de la solución activadora empleada. En presencia de un 2% de Cl- los aceros se corroen mostrando en comportamiento similar al observado en morteros en base OPC.

  9. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including...... an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in cement production, is provided. Clinker formations by solid state reactions, solid−liquid and liquid...

  10. Properties of Cement-based Composite Materials under Different Storing Environment Temperature

    Science.gov (United States)

    Weng, T. L.; Weng, S. H.; Cho, S. W.

    2017-02-01

    This study reports on the properties of cement-based composite materials (mortars) under different storing environment temperature, as determined using the accelerated chloride migration test (ACMT). Mortars with a water/cement ratio of 0.45 and five fine aggregate volume fractions (0%, 15%, 30%, 50% and 60%) under various environment temperatures (25, 40, 60 and 80°C) were evaluated according to the passage of chloride ions through the specimens using ACMT. Calculate chloride migration coefficients on the steady-state. Cement-based composite materials with 60 % fine aggregate presented a migration coefficient higher than that of other specimens, whereas mortar with 30 % fine aggregate was lower, due to the effects of dilution and tortuosity.

  11. Testing Machine for Expansive Mortar

    CERN Document Server

    Silva, Romulo Augusto Ventura

    2011-01-01

    The correct evaluation of a material property is fundamental to, on their application; they met all expectations that were designed for. In development of an expansive cement for ornamental rocks purpose, was denoted the absence of methodologies and equipments to evaluate the expansive pressure and temperature of expansive cement during their expansive process, having that data collected in a static state of the specimen. In that paper, is described equipment designed for evaluation of pressure and temperature of expansive cements applied to ornamental rocks.

  12. Damage diagnosis and compatible repair mortars

    NARCIS (Netherlands)

    Hees, R.P.J. van

    1999-01-01

    Mortars for repair and maintenance of historic masonry have to meet specific requirements. Several authors have made contributions, however many cases of failure show that there still is quite a lack of knowledge on the compatibility of repair mortars for historic masonry. The diagnosis of the cause

  13. Simple Analysis of Historical Lime Mortars

    Science.gov (United States)

    Pires, Joa~o

    2015-01-01

    A laboratory experiment is described in which a simple characterization of a historical lime mortar is made by the determination of its approximate composition by a gravimetric method. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) are also used for the qualitative characterization of the lime mortar components. These…

  14. SODIUM CITRATE INFLUENCE ON FORMATION OF CEMENT STONE IN THE ALUMINOUS BINDER

    Directory of Open Access Journals (Sweden)

    S. N. Leonovich

    2016-01-01

    Full Text Available The paper deals with the effect of sodium citrate on the formation of a cement stone in the aluminous binder. Formation of cement stone framework in cement hydraulic binder is accompanied with complicated physical and chemical processes of interphase interactions and dispersion, these processes are predicated on qualitative and quantitative composition of the cement mortar, continuous changes in its properties from preparation stage till curing. Addition of sodium citrate to tempering water enhances hydration of both Portland cement and calcium aluminate cement. Process pertaining to an increase of cement hydration rate is considered as a consequence of destruction in surface formations and exclusion of damping effect in respect of hydration rate and hydrolysis of products resulted from interaction of clinker material with tempering. It has been established that sodium citrate makes it possible to control processes of hydration, hydrolysis, binding and curing for cement mass. High degree of hydration of aluminous cement in the presence of sodium citrate provides fast binding and curing of binder, low porosity and rather high compression breaking strength of cement stone for all curing stages. An increase in concentration of sodium citrate in cement mixture up to 10 % of the cement mass exerts an influence not only on the process of cement mortar liquefaction, reduction of time for cement mass setting and hardening but also increases compression strength of cement stone. An analysis of the structure for cleavage surface of cement stone gives ground to declare that the addition of sodium citrate provides cement stone sealing and reduces its water absorption.

  15. Uso do residuo de beneficiamento de rochas ornamentais na producao de argamassa de multiplo uso; Use of the ornamental rock waste in mortar multiple-use

    Energy Technology Data Exchange (ETDEWEB)

    Faial, Alline Silveira Ribeiro; Xavier, Gustavo de Castro; Alexandre, Jonas; Maia, Paulo Cesar de Almeida; Albuquerque Junior, Fernando Saboya, E-mail: gxavier@uenf.br [Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF/LECIV), Campos dos Goytacazes, RJ (Brazil). Lab. de Engenharia Civil

    2012-07-01

    The municipal district of Itapemirim-ES is the largest producer of ornamental stones in Brazil. The processing of these rocks for the manufacture of floor and produces a large amount of waste approximately 15,000 tons/month, which still are responsible for damage to the environment. Aiming at the use of this waste, this paper studies experimentally the production of mortars of multiple use, making the replacement of the use of hydrated lime, widely used in the manufacture of mortars in construction, by the waste of the processing of a marble industry Itapemirim -ES. The mortar waste was characterized and evaluated by comparing performance with mortar with the addition of hydrated lime. We used a slurry with lime as a reference, ie the mixture was made of 1:1:8 (cement: waste / lime sand), where the workability and the properties of the hardened condition were evaluated and compared with the mortars made with the waste of marble. The compressive strength results showed that the waste with lime mortars were 1.6 ± 0.5 MPa and 1.4 MPa respectively ± 0.6 after 28 days of curing, two were classified as P1 (ABNT 13279, 2005), can replace the waste lime, thereby reducing the cost of manufacture of the mortar. (author)

  16. Hellenic Natural Zeolite as a Replacement of Sand in Mortar: Mineralogy Monitoring and Evaluation of Its Influence on Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Costas Sikalidis

    2012-11-01

    Full Text Available HEU-type zeolite-rich volcaniclastic tuff (Hellenic natural zeolite is used as a raw material for the production of lighter mortars. The addition of natural zeolite in mortar mixtures of sand and Portland cement leads to a decrease of up to 18.35% unit weight. The increase of the natural zeolite proportions increases the porosity and water absorption of the mortar and, at the same time, decreases the uniaxial compressive strength. These variations in the mortar’s mechanical properties are due to the addition of natural zeolite, which causes incomplete hydration of C2S (2CaO.SiO2 and retardation of the mortar’s hardening.

  17. Effects of Elazig region waste brick and limestone powder on engineering properties of self-compacting mortar

    Directory of Open Access Journals (Sweden)

    Merve Açıkgenç

    2013-06-01

    Full Text Available The aim of this study is to investigate the effects of using mineral additives on Self compacting Mortar's (SCM strength and viscosity properties. As Self-compacting concrete (SCC contains less coarse aggregate than conventional concrete, mortar forms the basis of the design of SCC. Therefore, this study was found to be appropriate to use mortar. In addition, the properties of SCC such as required strength, durability and workability makes a good production of concrete inevitable. While Providing this properties, it has been presented in many studies that mineral additive (silica fume, fly ash, limestone powder, blast furnace slag etc. and certain amount of powder material requirement is essential especially in terms of workability and consistency of SCC. Furthermore, it was aimed to prevent environmental health threats by wastes released disorderly and to add new powder material to be used in SCC and finally to reduce the cost of both transport and cement by using limestone and waste brick powder. For this purpose, 23 types of mortars, in which cement was partially replaced of limestone and waste brick powder, were produced. The mini slump flow and V-funnel tests were used to assess the workability and the self compactivity properties of the fresh mortars, and the viscosity of mortars were also measured. The hardened properties of SCM specimens including the compressive strength and tensile strength in bending were investigated and all tests were performed for 3, 7, 28 and 91 days. Moreover, capillary water absorption test were performed and, total water absorption and porosity rates of all specimens were measured.

  18. Research on Super Fine Sand Mortar Oerformance and Mixture Ratio of Masonry Mortar%特细砂砂浆性能及砌筑砂浆配合比研究

    Institute of Scientific and Technical Information of China (English)

    宓永宁; 王振国; 孙荣华; 赵津霆; 邵欣

    2014-01-01

    采用特细砂作为细骨料配制水泥砌筑砂浆,探求其质量是否能满足工程建设要求。通过试验研究了灰砂比、水泥用量、用水量、砂子用量等因素对特细砂砂浆性能的影响,并对砌筑砂浆配合比进行了设计。结果表明:用特细砂配制的砂浆7、28 d 抗压强度比用中砂配制的砂浆的强度小。灰砂比为1:2.8和1:3.2时,P. S42.5水泥配制的砂浆的抗压强度大于P. S32.5水泥配制的砂浆。砂浆强度与灰砂比密切相关,灰砂比是衡量砂浆强度的一个计算变量。粉煤灰掺量在30%以内,砂浆的抗压强度都比不掺粉煤灰时有所增大,掺量为10%的砂浆抗压强度增长的速率最快,其抗压强度也最大。%It mixed cement masonry mortar by using super fine sand as fine aggregate and explored whether the quality could meet the requirement in project construction. It researched the influence of the cement-sand ratio,dosage of cement,water and sand to the performances of fine sand mortar through experiment and designed the masonry mortar mixture. The results show that 7 days and 28 days compressive strength of mortar pre-pared with special fine sand are smaller than prepared with medium sand. Cement-sand ratio of 1: 1. 28 and 1: 1. 32,compressive strength of mortar prepared with P. S42. 5 cement is greater than prepared with P. S32. 5 cement. Mortar strength is closely related to the cement-sand ratio,and the cement-sand ratio is one of its calculation variables. When the dosage of fly ash is within 30% ,the compressive strength of mortar is greater than that of without mixing fly ash. For The dosage of 10% mortar,its compressive strength growth rate is the biggest and it has the biggest compressive strength.

  19. Structure and Property Characterization of Oyster Shell Cementing Material

    Institute of Scientific and Technical Information of China (English)

    钟彬杨; 周强; 单昌锋; 于岩

    2012-01-01

    Oyster shell powder was used as the admixture of ordinary portland cement.The effects of different addition amounts and grinding ways on the strength and stability of cement mortar were discussed and proper addition amount of oyster shell powder was determined.The structure and property changes of cementing samples with different oyster shell powder contents were tested by XRD and SEM means.The results revealed that compressive and rupture strengths of the sample with 10% oyster shell powder was close to those of the original one without addition.Stability experiment showed that the sample prepared by pat method had smooth surface without crack and significant expansion or shrinkage after pre-curing and boiling,which indicated that cementing material dosed with oyster shell powder had fine stability.XRD and SEM observation showed that oyster shell independently exists in the cementing material.

  20. Experimental Investigation on Strength and Water Permeability of Mortar Incorporate with Rice Straw Ash

    Directory of Open Access Journals (Sweden)

    Surajit Munshi

    2016-01-01

    Full Text Available The utilization of various agricultural residue ash as a pozzolanic material has the potential to reduce both the environmental impact and cost associated with building materials. In this paper, the authors studied the strength and permeability of mortar using different percentages of rice straw ash (RSA as cement replacement and the possibilities of using RSA as a pozzolanic material. Locally available rice straws were burnt at a temperature of 600°C and ground to make RSA. The chemical and physical properties of RSA were studied and the outcome shows that the ash contains about 76% of silica in it. This investigation further focused the strength and water permeability of mortar using RSA, which demonstrates that up to 10% replacement both the strength and permeability have a better result than that of control specimen.

  1. Reliability estimates for flawed mortar projectile bodies

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, J.A. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)], E-mail: jennifer.cordes@us.army.mil; Thomas, J.; Wong, R.S.; Carlucci, D. [US Army ARDEC, AMSRD-AAR-MEF-E, Analysis and Evaluation Division, Fuze and Precision Armaments Technology Directorate, US Army Armament Research Development and Engineering Center, Picatinny Arsenal, NJ 07806-5000 (United States)

    2009-12-15

    The Army routinely screens mortar projectiles for defects in safety-critical parts. In 2003, several lots of mortar projectiles had a relatively high defect rate, 0.24%. Before releasing the projectiles, the Army reevaluated the chance of a safety-critical failure. Limit state functions and Monte Carlo simulations were used to estimate reliability. Measured distributions of wall thickness, defect rate, material strength, and applied loads were used with calculated stresses to estimate the probability of failure. The results predicted less than one failure in one million firings. As of 2008, the mortar projectiles have been used without any safety-critical incident.

  2. Leaky Rayleigh wave investigation on mortar samples.

    Science.gov (United States)

    Neuenschwander, J; Schmidt, Th; Lüthi, Th; Romer, M

    2006-12-01

    Aggressive mineralized ground water may harm the concrete cover of tunnels and other underground constructions. Within a current research project mortar samples are used to study the effects of sulfate interaction in accelerated laboratory experiments. A nondestructive test method based on ultrasonic surface waves was developed to investigate the topmost layer of mortar samples. A pitch and catch arrangement is introduced for the generation and reception of leaky Rayleigh waves in an immersion technique allowing the measurement of their propagation velocity. The technique has been successfully verified for the reference materials aluminium, copper, and stainless steel. First measurements performed on mortar specimens demonstrate the applicability of this new diagnostic tool.

  3. Carbon fibre-reinforced, alkali-activated slag mortars

    Directory of Open Access Journals (Sweden)

    Garcés, P.

    2007-12-01

    Full Text Available The paper describes the effect of carbon fibre on alkaliactivated slag mortar (AAS mechanical strength, volume stability and reinforcing steel corrosion, compared to its effect on the same properties in Portland cement (PC properties. Mechanical strength and volume stability tests were performed as set out in the respective Spanish UNE standards. The corrosion rate of steel embedded in the specimens studied was determined from polarization resistance analysis. One of the findings of the study performed was that carbon fibre failed to improve AAS or CP mortar strength. As far as volume stability is concerned, the inclusion of carbon fibres in AAS with a liquid/solid ratio of 0.5 reduced drying shrinkage by about 50%. The effect of carbon fibre on PC mortars differed from its effect on AAS mortars. Studies showed that in the presence of carbonation, steel corrosion reached higher levels in carbon-fibre reinforced AAS mortars; the inclusion of 1% carbon fibre improved corrosion resistance perceptibly in these same mortars, however, when exposed to chloride attack.Se ha estudiado el efecto de la incorporación de fibras de carbón en el comportamiento mecánico, estabilidad de volumen y nivel de corrosión de la armadura en morteros de escorias activadas alcalinamente (AAS. Se evalúa la influencia de las fibras de carbón en el comportamiento de morteros alcalinos en comparación con el efecto que producen en morteros de Portland (CP. Los ensayos mecánicos y de estabilidad de volumen se han realizado según lo establecido en la norma UNE que los regula. Se ha utilizado la técnica de la Resistencia a la Polarización para determinar la velocidad de corrosión del acero embebido en las muestras estudiadas. Como consecuencia del estudio realizado, se ha podido concluir que la adición de fibras de carbón a morteros de AAS y CP no mejora las características resistentes de los mismos. En relación con la estabilidad de volumen, la incorporación de

  4. Effect of Ground Waste Concrete Powder on Cement Properties

    Directory of Open Access Journals (Sweden)

    Xianwei Ma

    2013-01-01

    Full Text Available The paste/mortar attached to the recycled aggregate decreases the quality of the aggregate and needs to be stripped. The stripped paste/mortar is roughly 20% to 50% in waste concrete, but relevant research is very limited. In this paper, the effects of ground waste concrete (GWC powder, coming from the attached paste/mortar, on water demand for normal consistency, setting time, fluidity, and compressive strength of cement were analyzed. The results show that the 20% of GWC powder (by the mass of binder has little effect on the above properties and can prepare C20 concrete; when the sand made by waste red clay brick (WRB replaces 20% of river sand, the strength of the concrete is increased by 17% compared with that without WRB sand.

  5. Influence of CG With High Content of Metallic Particles as a Cement Admixture on Cement Strength

    Institute of Scientific and Technical Information of China (English)

    WAN Hui-wen; LIN Zong-shou; ZHAO Qian; HUANG Yun

    2003-01-01

    Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH)3·nH2O slowly formed from Fe2O3 in the presence of Ca(OH)2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH)2 and Mg(OH)2 respectively,so the hardened cement paste became more compact.

  6. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    Directory of Open Access Journals (Sweden)

    Yong Yu

    2016-06-01

    Full Text Available Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs. Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs.

  7. Thaumasite formation in hydraulic mortars by atmospheric SO2 deposition

    Directory of Open Access Journals (Sweden)

    Blanco-Varela, M. T.

    2001-12-01

    Full Text Available Sulphation of mortars and concretes is a function of diverse environmental factors (SO2 aerosol, temperature, etc as well as some material characteristics. One of the phases that could be formed as consequence of the sulphation of the hydraulic binder is thaumasite. In this paper different hydraulic mortars have been exposed to laboratory exposure chambers in order to reproduce thaumasite formation due to atmospheric SO2. Under the laboratory exposure conditions, thaumasite was formed in hydraulic lime mortars, and mortars elaborated with ordinary Portland cement as well as mineralized white portland cement. However, thaumasite was not formed in mortars made of lime and pozzolan. The first product formed as a result of the SO2-mortar interaction was gypsum. Gypsum reacted with calcite and C-S-H gel, present in the samples, giving place to thaumasite. Low temperature promotes thaumasite formation.

    La sulfatación de morteros y hormigones depende de las condiciones ambientales (SO2 aerosol, temperatura, etc., así como de las características del material. Una de las fases que se puede formar como consecuencia de la sulfatación de los ligantes hidráulicos es la taumasita. En este trabajo se han expuesto diferentes morteros hidráulicos en cámaras de laboratorio con el fin de reproducir la formación de taumasita por efecto del SO2 atmosférico. Bajo las condiciones de laboratorio se formó taumasita en los morteros de cal hidráulica y en los morteros fabricados con cemento portland y cemento blanco mineralizado. Sin embargo, cuando el ligante utilizado en los morteros fue cal y puzolana, no se formó taumasita. El yeso fue el primer producto formado en la interacción entre los morteros y el SO2. A continuación, este yeso reaccionó con la calcita y el gel C-S-H dando lugar a la formación de taumasita. Las bajas temperaturas favorecieron la formación de taumasita.

  8. Effect of boron waste on the properties of mortar and concrete.

    Science.gov (United States)

    Topçu, Iker Bekir; Boga, Ahmet Raif

    2010-07-01

    Utilization of by-products or waste materials in concrete production are important subjects for sustainable development and industrial ecology concepts. The usages as mineral admixtures or fine aggregates improve the durability properties of concrete and thus increase the economic and environmental advantages for the concrete industry. The effect of clay waste (CW) containing boron on the mechanical properties of concrete was investigated. CW was added in different proportions as cement additive in concrete. The effect of CW on workability and strength of concrete were analysed by fresh and hardened concrete tests. The results obtained were compared with control concrete properties and Turkish standard values. The results showed that the addition of CW had a small effect upon the workability of the concrete but an important effect on the reduction of its strength. It was observed that strength values were quite near to that of control concrete when not more than 10% CW was used in place of cement. In addition to concrete specimens, replacing cement with CW produced mortar specimens, which were investigated for their strength and durability properties. The tests of SO( 4) (2-) and Cl(-) effect as well as freeze-thaw behaviour related to the durability of mortar were performed. Consequently, it can be said that some improvements were obtained in durability properties even if mechanical properties had decreased with increasing CW content.

  9. Monitoring the self-healing process of biomimetic mortar using coda wave interferometry method

    Science.gov (United States)

    Liu, Shukui; Basaran, Zeynep; Zhu, Jinying; Ferron, Raissa

    2014-02-01

    Internal stresses might induce microscopic cracks in concrete, which can provide pathways for ingress of harmful chemicals and can lead to loss of strength. Recent research in concrete materials suggests that it might be possible to develop a smart cement-based material that is capable of self-healing by leveraging the metabolic activity of microorganisms to provide biomineralization. Limited research on biomineralization in cement-based systems has shown promising results that healing of cracks can occur on the surface of concrete and reduce permeability. This paper presents the results from an investigation regarding the potential for a cement-based material to repair itself internally through biomineralization. Compressive strength test and coda wave interferometry (CWI) analyses were conducted on mortar samples that were loaded to 70% of their compressive strength and cured in different conditions. Experimental results indicate that the damaged mortar samples with microorganisms showed significantly higher strength development and higher increase of ultrasonic wave velocity compared to samples without microorganisms at 7 and 28 days.

  10. Synergic Effect of Wheat Straw Ash and Rice-Husk Ash on Strength Properties of Mortar

    Science.gov (United States)

    Goyal, Ajay; Kunio, Hattori; Ogata, Hidehiko; Garg, Monika; Anwar, A. M.; Ashraf, M.; Mandula

    Pozzolan materials obtained from various sources; when used as partial replacement for Portland cement in cement based applications play an important role not only towards sustainable development but in reducing the construction costs as well. Present study was conducted to investigate the synergic effect of Rice-Husk Ash (RHA) and Wheat Straw Ash (WSA) on the strength properties of ash substituted mortar. Ash materials were obtained after burning the wastes at 600°C for 5 h at a control rate of 2°C min. Two binary blends of mortar substituting 15% cement with WSA and RHA and three combinations of ternary blend with (10+5)%, (5+10)% and (7.5+7.5)% mix ratios of WSA and RHA, together with a control specimen were subjected to destructive (compressive and flexural strength) as well as non-destructive (ultrasonic pulse velocity) tests till 180 days of curing. Ternary blend with (7.5 + 7.5)% combination of WSA and RHA showed better strength results than control and other blends and proved to be the optimum combination for achieving maximum synergic effect.

  11. Performance Test for Open Grade Bitumen and Cement Mixture OGBC-20

    Science.gov (United States)

    Li, Y. Y.; Wu, Z. L.; Li, C. M.; Gan, X. Z.; Xiong, X. J.

    For effective prevention of urban road intersection special sections for nit diseases and improving the pavement durability, an open grade bitumen and cement (OGBC-20) mixture is proposed. In organic hydraulic cement mixture design, mix proportion designs of cement mortar and matrix open-graded bitumen were done. The matrix mixture gradation was adjusted .It has greater void of air volume than that of ATPB-25. A variety of tests in laboratory for OGBC-20 were performed. The experimental results show that: The void of air volume of adjusted gradation matrix asphalt mixture is up to 23%. and binder drainage loss is ≤ 0.3%. Cement mortar filling is fuller and better water stability and low temperature crack resistance compared to ordinary bitumen mixture. It has the absolute advantage on high temperature stability and shows the superiority of the new pavement materials.

  12. Effect of the Content of Fly ash and Slag on the Strength of Mortar%粉煤灰、矿渣掺量对胶砂强度的影响

    Institute of Scientific and Technical Information of China (English)

    周万良

    2011-01-01

    the strength of mortar with different content of fly ash and slag was studied. The reswlts indicate; With the increase of substituted amount of cement by fly ash in cement mortar, 3d and 28d compressive and flexural strength of mortar gradually decreases. With the increase of substituted amount of cement by slag in cement mortar, 3d compressive and flexural strength of mortar continuously decreases; if substituted amount is less than 55% , the 28d compressive and flexural strength of the mortar is higher than that of the mortar without slag, if substituted amount is greater than 60% , that will become lower.%对不同粉煤灰、矿渣掺量的胶砂抗压、抗折强度进行了研究.结果表明,水泥胶砂中随粉煤灰取代水泥量增加,胶砂3d、28d抗压和抗折强度不断减小.水泥胶砂中随矿渣取代水泥量增加,胶砂3d抗压和抗折强度不断减小;当矿渣取代量小于55%时,胶砂28d的抗压和抗折强度均稍有提高,当矿渣取代量大于60%时,胶砂28d的抗压和抗折强度均会下降.

  13. Effect of Coal Gangue with Different Kaolin Contents on Compressive Strength and Pore Size of Blended Cement Paste

    Institute of Scientific and Technical Information of China (English)

    CHEN Yimin; ZHOU Shuangxi; ZHANG Wensheng

    2008-01-01

    The effects of activated coal gangue on compressive strength,porosity and pore size distribution of hardened cement pastes were investigated.Activated coal gangue with two different kaolin contents,one higher and one lower,were used to partially replace Portland cement at 0%,10%,and 30% by weight.The water to binder ratio(w/b)of 0.5 was used for all the blended cement paste mixes.Experimental results indicate that the blended cement of activated coal gangue mortar with higher kaolin mineral content has a higher compressive strength than that with lower kaolin mineral content.The porosity and pore size of blended cement mortar were significantly affected by the replacement of activated coal gangue.

  14. ASR potential of quartz based on expansion values and microscopic characteristics of mortar bars

    Science.gov (United States)

    Stastna, Aneta; Sachlova, Sarka; Kuchynova, Marketa; Pertold, Zdenek; Prikryl, Richard

    2016-04-01

    The alkali-silica reaction (ASR) is one of the most damaging factors for concrete structures. Different analytical techniques are used to quantify ASR potential of aggregates. The accelerated mortar bar test (ASTM C1260) in combination with the petrographic examination of aggregates by microscopic techniques belongs to the frequently employed methods. Such a methodical approach enables quantification of the ASR potential, based on the expansion values of accelerated mortar bars; and also to identify deleterious components in aggregates. In this study, the accelerated mortar bar test (ASTM C1260) was modified and combined with the scanning electron microscopy of polished sections prepared from mortar bars. The standard 14-day test period of mortar bars was prolonged to 1-year. ASR potential of aggregates was assessed based on expansion values (both 14-day and 1-year) of mortar bars and microscopic analysis of ASR products (alkali silica gels, microcracks, dissolution gaps) detected in the sections. Different varieties of quartz-rich rocks including chert, quartz meta-greywacke, three types of quartzite and pegmatite were used as aggregate. Only quartz from pegmatite was assessed to be non reactive (14-day expansion of 0.08%, 1-year expansion of 1.25%). Aggregate sections exhibited minor ASR products even after 1-year of mortar bar immersion in 1 M NaOH. Expansion values of the rest of samples exceeded the limit of 0.10% after 14-day test period indicating aggregates as reactive. The highest ASR potential was detected in mortar bars containing chert (14-day expansion of 0.55%, 1-year expansion of 2.70%) and quartz meta-greywacke (14-day expansion of 0.46%, 1-year expansion of 2.41%). The high ASR potential was explained by presence of cryptocrystalline matrix in significant volumes (24 - 65 vol%). Influence of the lengths of the immersion in the alkaline solution was observed mainly in the microstructure of the cement paste and on the extension of ASR products. The

  15. Rilem TC 203-RHM: Repair mortars for historic masonry. Requirements for repointing mortars for historic masonry

    NARCIS (Netherlands)

    Hees, R.P.J. van; Groot, C.; Hughes, J.J.; Balen, K. van; Bicer-Simsir, B.; Binda, L.; Elsen, J.; Konow, T. von; Lindqvist, J.E.; Papayanni, I.; Subercaseaux, M.; Tedeschi, C.; Toumbakari, E.E.; Thompson, B.

    2012-01-01

    This paper gives a summary of functional and performance requirements for repointing mortars for historic masonry (design, execution and maintenance). Successful performance of repair and conservation of mortar in historic masonry requires more care with design and execution than with modern masonry

  16. Solidification/stabilization of toxic metals in calcium aluminate cement matrices.

    Science.gov (United States)

    Navarro-Blasco, I; Duran, A; Sirera, R; Fernández, J M; Alvarez, J I

    2013-09-15

    The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests.

  17. Use of Different Barium Salts to Inhibit the Thaumasite Form of Sulfate Attack in Cement-based Materials

    Institute of Scientific and Technical Information of China (English)

    SU Ying; WEI Xiaochao; HUANG Jian; WANG Yingbin; HE Xingyang; WANG Xiongjue; MA Baoguo

    2016-01-01

    We investigated the effects of different barium compounds on the thaumasite form of sulphate attack (TSA) resistance of cement-based materials when they were used as admixtures in mortars. Moreover, we analyzed the inhibition mechanisms within different types of barium salts, namely BaCO3 and Ba(OH)2, on the thaumasite formation. The control cement mortar and mortars with barium salts to cement and limestone weight ratios of 0.5%, 1.0%, and 1.5% were immersed in 5% (by weight) MgSO4 solution at 5℃ to mimic TSA. Appearance, mass, and compressive strength of the mortar samples were monitored and measured to assess the general degradation extent of these samples. The products of sulphate attack were further analyzed by XRD, FTIR, and SEM, respectively. Experimental results show that different degradation extent is evident in all mortars cured in MgSO4 solution. However, barium salts can greatly inhibit such degradation. Barium in hydroxide form has better effectiveness in protection against TSA than carbonate form, which may be due to their solubility difference in alkaline cement pore solution, and the presence of these barium compounds can reduce the degree of TSA by comparison with the almost completely decomposed control samples.

  18. Effect of Anti-freezing Admixtures on Alkali-silica Reaction in Mortars

    Institute of Scientific and Technical Information of China (English)

    LIU Junzhe; LI Yushun; LV Lihua

    2005-01-01

    The influence of anti-freezing admixture on the alkali aggregate reaction in mortar was analyzed with accelerated methods. It is confirmed that the addition of sodium salt ingredients of anti-freezing admixture accelerates the alkali silica reaction to some extent, whereas calcium salt ingredient of anti-freezing admixture reduces the expansion of alkali silica reaction caused by high alkali cement. It is found that the addition of the fly ash considerably suppresses the expansion of alkali silica reaction induced by the anti-freezing admixtures.

  19. Drying shrinkage of mortars with limestone filler and blast-furnace slag

    Directory of Open Access Journals (Sweden)

    Carrasco, M. F.

    2003-12-01

    Full Text Available During the 1990's the use of cements made with port land clinker and two mineral admixtures, called ternary or blended cements, has grown considerably. Nowadays, cements containing several combinations of fly ash and silica fume, blast-furnace slag and silica fume or blast-furnace slag and limestone filler are commonly used. There are numerous works on the influence of blended cements on the fresh state and mechanical properties of mortar and concrete, but the their deformations due to drying shrinkage are not so well described. Analysis of drying shrinkage is relevant because this property influences the possibility of cracking occurrence and, hence, the deterioration of mechanical and durable properties of concrete structures. This paper evaluates the influence on the drying shrinkage of mortars of variable contents of limestone filler and/or blast-furnace slag in Portland cement. Additionally, flexion strength and non evaporable water content were evaluated. Test results show that the inclusion of these mineral admixtures, Joint or separately, increments drying shrinkage of mortars at early ages. Despite this fact, mortars made with limestone filler cement are less susceptible to cracking than mortars made with cements incorporating blast-furnace slag or both admixtures.

    Durante los años 90 el uso de cementos fabricados con clínker Portland y dos adiciones suplementarias (cementos ternarios o compuestos se ha incrementado en forma considerable. En la práctica, es cada vez más común el empleo de estos cementos conteniendo combinaciones de ceniza volante y humo de sílice, escoria y humo de sílice o escoria y filler calcáreo. En la actualidad existen numerosos estudios sobre la influencia de los cementos compuestos en las características en estado fresco y las propiedades mecánicas de morteros y hormigones, pero las deformaciones que estos materiales sufren debido a la retracción por secado no son tan conocidas. El análisis de

  20. AIR POLLUTION CONTROL THROUGH KILN RECYCLING BY-PASS DUST IN A CEMENT FACTORY

    Directory of Open Access Journals (Sweden)

    F. Mohsenzadeh, J. Nouri, A. Ranjbar, M. Mohammadian Fazli, A. A. Babaie

    2006-01-01

    Full Text Available Air pollution is a major problem in the industrial areas. Cement dust is one of the important environmental pollutants. In this study the possibility of dust recycling especially kiln dust which has significant importance regarding air pollution in the cement plant, was examined. Tehran cement factory is one of the most important Iranian factories which is located in Tehran. This factory produces high volume of pollutants that are released to in environment. The possibility of reusing of kiln by pass returned dust has been examined in this factory. Different percentages of kiln by-pass dust of this factory were added to products and outcomes of its presence in parameters such as chemical compound, granulation, primary and final catch time, volume expansion, consumed water and resistance of mortar were surveyed. The result indicated that by adding the amounts of 3-8 dust the mortar resistance increase, but adding more than 15%, the mortar resistance has been decreased. Survey in consumed water proved that adding dust to cement, the trend for consuming water is decreased. After dust addition dust, primary and final catch time were compared in different samples and data which showed decrease in dust added samples. Cements with dust added showed increase in auto clave expansion. Overally, results proved that, the best percentage rate of dust addition to the cement was 15%.

  1. The central tower of the cathedral of Schleswig - New investigations to understand the alcali-silica reaction of historical mortars

    Science.gov (United States)

    Wedekind, Wanja; Protz, Andreas

    2016-04-01

    The damaging alcali-silica reaction leads to crack-formation and structural destruction at noumerous, constructed with cement mortar, buildings worldwide. The ASR-reaction causes the expansion of altered aggregates by the formation of a swelling gel. This gel consists of calcium silicate hydrate (C-S-H) that increases in volume with water, which exerts an expansive pressure inside the material. The cathedral of Schleswig is one of the oldest in northern Germany. The first church was built in 985-965. The Romanesque building part was erected around 1180 and the Gothic nave at the end of the 13th century. The central tower was constructed between 1888 and 1894 with brick and cement mortar. With 112 meters, the tower is the second-largest church spire of the country of Schleswig-Holstein in northern Germany. Due to the formation of cracks and damages from 1953 to 1956 first restoration works took place. Further developments of cracks are making restoration necessary again today. For developing a suitable conservation strategy, different investigations were done. The investigation included the determination of the pore space properties, the hygric and thermal dilatation and mercury porosimetry measurements. Furthermore, the application of cathodoluminescence microscopy may give information about the alteration process and microstructures present and reveal the differences between unaltered and altered mortars. An obvious relation between the porosity and the swelling intensity could be detected. Furthermore it becomes apparent, that a clear zonation of the mortar took place. The mortar near the surface is denser with a lower porosity and has a significantly lower swelling or dilatation.

  2. Spent FCC catalyst for improving early strength Portland cement

    OpenAIRE

    Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Paya Bernabeu, Jorge Juan; Vunda, Christian; VELÁZQUEZ RODRÍGUEZ, SERGIO; Soriano Martinez, Lourdes

    2014-01-01

    Spent fluid catalytic cracking (FCC) catalyst from the petrol industry has proven to be a very active pozzolanic material. This behavior leads to an additional increase in the strength of the mortar that contains this catalyst. Pozzolanic effects tend to be considered for periods above three days, whereas in shorter times, the influence of pozzolan is usually negligible. The reactivity of FCC is so high, however, that both pozzolanic effects and acceleration of cement hydration are evident in...

  3. Properties of Chemically Combusted Calcium Carbide Residue and Its Influence on Cement Properties

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-02-01

    Full Text Available Calcium carbide residue (CCR is a waste by-product from acetylene gas production. The main component of CCR is Ca(OH2, which can react with siliceous materials through pozzolanic reactions, resulting in a product similar to those obtained from the cement hydration process. Thus, it is possible to use CCR as a substitute for Portland cement in concrete. In this research, we synthesized CCR and silica fume through a chemical combustion technique to produce a new reactive cementitious powder (RCP. The properties of paste and mortar in fresh and hardened states (setting time, shrinkage, and compressive strength with 5% cement replacement by RCP were evaluated. The hydration of RCP and OPC (Ordinary Portland Cement pastes was also examined through SEM (scanning electron microscope. Test results showed that in comparison to control OPC mix, the hydration products for the RCP mix took longer to formulate. The initial and final setting times were prolonged, while the drying shrinkage was significantly reduced. The compressive strength at the age of 45 days for RCP mortar mix was found to be higher than that of OPC mortar and OPC mortar with silica fume mix by 10% and 8%, respectively. Therefore, the synthesized RCP was proved to be a sustainable active cementitious powder for the strength enhanced of building materials, which will result in the diversion of significant quantities of this by-product from landfills.

  4. Characterization of historical mortars in Jordan

    Science.gov (United States)

    Gomez-Heras, M.; Arce, I.; Lopez-Arce, P.; Alvarez de Buergo, M.; Fort, R.

    2012-04-01

    This paper presents the petrographic and mineralogical characterization of mortars from different archaeological sites in Jordan which encompass Nabatean, Late-Antique and Early Islamic (Umayyad) sites, in some cases offering a sequence of different period mortars from the same building. These sites include the Nabataean city of Petra, the Late Antique town of Umm al Jimal and the castle of Qasr Al Hallabat. These mortars were produced with different raw materials and manufacturing technologies, which are reflected on distinctive variations of mineralogy, texture and crystal size and aggregates composition (including volcanic ashes, ceramic fragments, burnt organic material) size and their puzzolanic properties. As a consequence these mortars present different physical properties and reveal nowadays very different states of conservation. There is a dramatic change in mortar properties between those manufactured in pre-Islamic period and those from early Islamic - Ummayad times with a general trend in which these last ones present coarser crystal and aggregate sizes with less puzzolanic aggregates that result in less durable mortars. All of this reflects changes in the different stages of production of the mortar, from the use of either hydraulic, lime putty or slaked lime and the selection of aggregates to the application techniques (polishing). This reflects the evolution of building technology that took place in this area during early Islamic period and how petrological information can shed light on historical interpretation of building technologies. Research funded by AECID (PCI A/032184/10), GEOMATERIALES (S2009/MAT-16) and MCU (Analisis y Documentación de tipología arquitectónica y técnicas constructivas en el periodo de transición Bizantino-Omeya en Jordania)

  5. Rapid chloride permeability test for durability study of carbon nanoreinforced mortar

    Science.gov (United States)

    Alafogianni, P.; Dalla, P. T.; Tragazikis, I. K.; Barkoula, N.-M.; Matikas, T. E.

    2015-03-01

    The addition of a conductive admixture in a cement-based material could lead to innovative products with multifunctional features. These materials are designed to possess enhanced properties, such as improved mechanical properties, electrical and thermal conductivity, and piezo-electric characteristics. Carbon nanotubes (CNTs) can be used as nano-reinforcement in cement-based materials because of their huge aspect ratio as well as their extremely large specific surface area. For cement-based composites, one of the major types of environmental attack is the chloride ingress, which leads to corrosion of the material and, subsequently, to the reduction of strength and serviceability of the structure. A common method of preventing such deterioration is to avert chlorides from penetrating the structure. The penetration of the concrete by chloride ions is a slow process. It cannot be determined directly in a time frame that would be useful as a quality control measure. Therefore, in order to assess chloride penetration, a test method that accelerates the process is needed, to allow the determination of diffusion values in a reasonable time. In the present research, nanomodified mortars with various concentrations of multi-wall carbon nanotubes (0.2% wt. cement CNTs - 0.6% wt. cement CNTs) were used. The chloride penetration in these materials was monitored according to ASTM C1202 standard. This is known as the Coulomb test or Rapid Chloride Permeability Test (RCPT).

  6. A STUDY OF THE EFFECTS OF POST-COMBUSTION AMMONIA INJECTION ON FLY ASH QUALITY: CHARACTERIZATION OF AMMONIA RELEASE FROM CONCRETE AND MORTARS CONTAINING FLY ASH AS A POZZOLANIC ADMIXTURE

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Rathbone; Thomas L. Robl

    2001-10-11

    Work completed in this reporting period focused on the measurement of the rate of ammonia loss from mortar and concrete, and the measurement of ammonia gas in the air above the materials immediately after placement. The majority of mortar experiments have been completed, and testing has begun on concrete. The mortar experiments indicate that the rate of ammonia loss is greater in mortars prepared using a higher water content and water:cement (W:C) ratio, although the higher rate is primarily observed within the first 2 days, after which the loss rates are nearly the same. The source of low-calcium (Class F) fly ash exerted a negligible influence on the loss rate. However, mortar prepared using a higher-calcium fly ash evolved ammonia at a slightly slower rate than the Class F ash mortars. The data also indicate that an increase in ventilation increases the ammonia loss rate from mortar, and suggest that a well-ventilated space could substantially increase the loss of ammonia from mortar and, by inference, a concrete slab. Analysis of ammonia concentrations in the air above freshly-placed mortars in an enclosed space indicate that the fly ash ammonia concentration should not exceed 100 mg N/kg ash in confined space applications. For most other applications with some ventilation the maximum acceptable concentration would be approximately 200 mg/kg. Early results from experiments on concrete suggest that, under similar conditions, ammonia diffusion from concrete occurs at a higher rate than in mortar. In addition, increasing the slump of concrete through the use of chemical admixtures has only a minor effect on the ammonia loss rate.

  7. Experimental Study on the Acid Resistance of the Material Composition of Mortar%材料组成对砂浆耐酸性能的试验研究

    Institute of Scientific and Technical Information of China (English)

    董亚丽

    2014-01-01

    采用酸性环境下加速试验的方法,研究了材料组成对砂浆耐酸性能的影响。对不同水泥品种、灰砂比和外加剂在各个腐蚀阶段砂浆的质量变化和抗压强度变化进行比较分析。结果表明:在pH=2的酸性环境下,普通硅酸盐水泥砂浆和高抗硫酸硅酸盐水泥砂浆的耐腐蚀能力比快硬硫铝酸盐水泥砂浆强;灰砂比大时,砂浆的耐酸性有所改善;在1年的侵蚀龄期内,掺憎水剂的砂浆相比掺阻锈剂与密实剂的砂浆强度下降率小。%This paper studies on the effect of material in the acid resistance of the mortar by the experiment in acidic environment. The experiment uses different varieties of cement, cement-sand ratio and additives to compare the quality and compressive strength in various stages of various stages of corrosion. The results showed that: In the acidic environment of pH = 2, ordinary cement mortar cement mortar and anti-acid corrosion resistance faster than a hard and strong sulfur aluminate cement mortar; it would improve acid resistance when the cement-sand ratio is larger;in the one year period, the decreased rate of mortar strength mixed with water repellent is lower than mixed with rust resistance and compacting agent.

  8. Sustainability, Eco-Point and Engineering Performance of Different Workability OPC Fly-Ash Mortar Mixes

    Directory of Open Access Journals (Sweden)

    Putri Zulaiha Razi

    2016-05-01

    Full Text Available This study investigates the engineering performance and CO2 footprint of mortar mixers by replacing Portland cement with 10%, 20%, 40% and 60% fly ash, a common industrial waste material. Samples of self-compacting mortar (SCM were prepared with four different water/binder ratios and varying dosages of superplasticizer to give three ranges of workability, i.e., normal, high and self-compacting mortar mix. The engineering performance was assessed in term of compressive strength after designated curing periods for all mixes. CO2 footprint was the environmental impact indicator of each production stage. The optimum mix obtained was at 10% replacement rate for all mixes. Total production emission reduced by 56% when the fly ash replacement rate increased from 0% to 60% (maximum. This is translated to a reduction of 80% in eco-points (assuming that the energy consumption rate of production with 0% fly ash is at 100%. Such re-utilization is encouraged since it is able to reduce possible soil toxicity due to sulfur leaching by 5% to 27% and landfill area by 15% to 91% on average.

  9. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.

    Science.gov (United States)

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.

  10. MORTAR FINITE VOLUME METHOD WITH ADINI ELEMENT FOR BIHARMONIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Chun-jia Bi; Li-kang Li

    2004-01-01

    In this paper, we construct and analyse a mortar finite volume method for the dis-cretization for the biharmonic problem in R2. This method is based on the mortar-type Adini nonconforming finite element spaces. The optimal order H2-seminorm error estimate between the exact solution and the mortar Adini finite volume solution of the biharmonic equation is established.

  11. Self-cleaning and mechanical properties of modified white cement with nanostructured TiO2.

    Science.gov (United States)

    Khataee, R; Heydari, V; Moradkhannejhad, L; Safarpour, M; Joo, S W

    2013-07-01

    In the present study, self-cleaning and mechanical properties of white Portland cement by addition of commercial available TiO2 nanoparticles with the average particle size of 80 nm were investigated. X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET were used to characterize TiO2 nanoparticles. For determination of self-cleaning properties of TiO2-modified white cement, colorimetric tests in decolorization of C.I. Basic Red 46 (BR46) in comparison to unmodified cement samples was applied. The results indicated that with increasing the amount of TiO2 nanoparticles in modified cement, self-cleaning property of the samples increased. The mechanical properties of TiO2-modified and unmodified cement samples, such as time of setting of hydraulic cement, compressive strength of hydraulic cement mortar and flexural strength of hydraulic cement mortar were examined. The results indicated that addition of TiO2 nanoparticles up to maximum replacement level of 1.0% improved compressive and flexural strength and decreased its setting time.

  12. Use of ancient copper slags in Portland cement and alkali activated cement matrices.

    Science.gov (United States)

    Nazer, Amin; Payá, Jordi; Borrachero, María Victoria; Monzó, José

    2016-02-01

    Some Chilean copper slag dumps from the nineteenth century still remain, without a proposed use that encourages recycling and reduces environmental impact. In this paper, the copper slag abandoned in landfills is proposed as a new building material. The slags studied were taken from Playa Negra and Púquios dumps, both located in the region of Atacama in northern Chile. Pozzolanic activity in lime and Portland cement systems, as well as the alkali activation in pastes with copper slag cured at different temperatures, was studied. The reactivity of the slag was measured using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), electrical conductivity and pH in aqueous suspension and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, copper slag-Portland cement mortars with the substitution of 25% (by weight) of cement by copper slag and alkali-activated slag mortars cured at 20 and 65 °C were made, to determine the compressive strength. The results indicate that the ancient copper slags studied have interesting binding properties for the construction sector.

  13. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  14. Multi-scale Modeling of the Effective Chloride lon Diffusion Coefficient in Cement-based Composite Materials

    Institute of Scientific and Technical Information of China (English)

    SUN Guowen; SUN Wei; ZHANG Yunsheng; LIU Zhiyong

    2012-01-01

    N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was estabhshed to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity (n) and eonstrictivity factors (Ds/D0) of pore in the hardened pastes are n≈3.2,Ds/D0=1.0× 10-4 respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.

  15. Gas evolution behavior of aluminum in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, Shuji; Matsumoto, Junko; Banba, Tsunetaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-10-01

    As a part of study of leaching behavior for solidified dry low level radioactive waste, gas evolution behavior of aluminum in mortar was investigated, and a plan of our research was proposed. The effect of pH on corrosion rate of aluminum, corrosion product, time dependency of corrosion rate of aluminum in mortar, change of corrosion mechanism, the effects of Na, Ca and Cl ions on corrosion rate of aluminum in mortar and corrosion behavior of aluminum when aluminum was used as sacrificed anode in reinforced concrete were previously clarified. Study of the effects of environmental factors such as pH, kind of ions and temperature on gas evolution behavior of aluminum and the effect of aluminum/carbon steel surface ratio no gas evolution behavior of aluminum were planed. (author). 75 refs.

  16. Evaluation of Lime for Use in Mortar

    Directory of Open Access Journals (Sweden)

    Naktode P.L.

    2014-02-01

    Full Text Available Lime has been used in India as material of construction from very ancient days. The manner in which lime structures about 2000 years old have withstood the ravages of time bear irrefutable evidence to the durability of lime mortars. Lime mortars were the mortars of very recent years – used until the twentieth century. Although they are almost forgotten today, they still remain a viable and important construction method [1]. There is something about this material that remains just as valuable today as it was 150 years ago [2]. The lime belt of Vidarbha area is not of industrial grade. To use for construction purpose it needs some improvement and alteration in the ingredients. This calls the development of an alternative approach to make it suitable for construction in large extent. Keywords:

  17. [Comparison of fixation effects of heavy metals between cement rotary kiln co-processing and cement solidification/stabilization].

    Science.gov (United States)

    Zhang, Jun-li; Liu, Jian-guo; Li, Cheng; Jin, Yi-ying; Nie, Yong-feng

    2008-04-01

    Both cement rotary kiln co-processing hazardous wastes and cement solidification/stabilization could dispose heavy metals by fixation. Different fixation mechanisms lead to different fixation effects. The same amount of heavy metal compounds containing As, Cd, Cr, Cu, Pb, Zn were treated by the two kinds of fixation technologies. GB leaching test, TCLP tests and sequential extraction procedures were employed to compare the fixation effects of two fixation technologies. The leached concentration and chemical species distribution of heavy metals in two grounded mortar samples were analyzed and the fixation effects of two kinds of technologies to different heavy metals were compared. The results show the fixation effect of cement rotary kiln co-processing technology is better than cement solidification/stabilization technology to As, Pb, Zn. Calcinations in cement rotary kiln and then hydration help As, Pb, Zn contained in hazardous wastes transform to more steady chemical species and effectively dispose these heavy metals compounds. Cr3+ is liable to be converted to much more toxic and more mobile Cr6+ state in cement rotary kiln. And so Cr wastes are more fit for treatment by cement solidification/stabilization technology. The work could provide a basis when choosing disposal technologies for different heavy metals and be helpful to improve the application and development of cement rotary kiln co-processing hazardous wastes.

  18. Drying Shrinkage of Mortar with Manufactured Sand%机制砂砂浆干缩性能的研究

    Institute of Scientific and Technical Information of China (English)

    王雨利; 刘素霞; 王卫东; 赵豫洁

    2011-01-01

    Influence of sand-cement ratio on drying shrinkage of mortar with limestone manufactured sand was researched. And the effects of lithologic characters of manufactured sand and the limestone powder content on drying shrinkage of mortars were also studied. The experimental results show that the drying shrinkage of mortar increases with the decrease of sand-cement ratio. The drying shrinkage of mortar increases tiny before the void of sand is mixed fully, and then its drying shrinkage will increase quickly. Drying shrinkage of mortar with limestone manufactured sand is bigger than mortars with granitic and quartzite manufactured sands at early stage(≤7d), and they are reverse after 7d. And drying shrinkage of mortar with manufactured sands is all bigger than that of mortar with river sand. With the increase of limestone powder content, drying shrinkage of mortar with limestone manufactured sand increases firstly, and then decreases. When the curing age is less than 3 days, the drying shrinkage of mortar with 10% lime-stone powder is the least And the curing age is longer than 7 days, the drying shrinkage of mortar with 15% lime-stone powder is the least.%研究了砂灰比对石灰岩机制砂砂浆干缩率、不同类型砂对砂浆干缩率、不同石粉含量对砂浆干缩率的影响.结果表明,随着砂灰比的减小,即水泥浆量的增加,干缩率呈增大的趋势;但在水泥浆未填充满砂子空隙之前,随着水泥浆的增加,干缩率的增幅很小,当填充满之后继续增加,增幅明显变大.在早期(≤7d),石灰岩机制砂砂浆的干缩率大于花岗岩和石英岩机制砂,在后期(>7d),花岗岩和石英岩机制砂砂浆的干缩率大于石灰岩机制砂;在各个龄期,3种机制砂砂浆的干缩率均大于河砂的.随着石粉含量的增大,机制砂砂浆的收缩率先减小后增大.在早期(1d、3d),石粉含量为10%时砂浆干缩率最小;在后期(≥7d),石粉含量为15%时砂浆干缩率最小.

  19. Effect of exposure conditions on the long-term dielectric properties of mortar samples containing ASR gel

    Science.gov (United States)

    Hashemi, A.; Donnell, K. M.; Zoughi, R.; Rashidi, M.; Kurtis, K. E.

    2017-02-01

    Alkali-silica reaction (ASR) is a chemical reaction between alkalis present in portland cement and amorphous or otherwise disordered siliceous minerals in particular aggregates. Through this reaction, reactive silica binds with hydroxyl and alkali ions and forms a gel, known as ASR gel. Recently, microwave materials characterization techniques have shown great potential for detecting ASR in mortar. However, the comprehensive understanding of variables that affect the extent of ASR in mortar and their interaction with microwave signals, in particular the effect of environmental exposure conditions requires more investigations. Therefore, parameters related to these conditions must be considered when using microwave techniques for ASR detection and evaluation. In this paper, the effect of exposure conditions on ASR gel formation and microwave dielectric properties of mortar samples is investigated. To this end, extended measurements of the complex dielectric constants of three different sets of mortar samples are presented at S-band (2.6 - 3.95 GHz). The samples were cast with potentially reactive ASR-aggregates and subjected to different environmental conditions. The results show slightly different permittivities for the differently stored samples, potentially indicating different amount of ASR gel. This observation was corroborated through UV fluorescence microscopy, where different amounts of ASR gel were observed in the samples. Moreover, the results indicate that ASR gel evolution may be better tracked through loss factor measurements, while pre-existing-gel may be better detected through permittivity measurements.

  20. Drug contamination of mortars and pestles.

    Science.gov (United States)

    Swinyard, E A; Woodhead, J H

    1978-12-01

    Evidence is presented suggesting that potent water-insoluble antipentylenetetrazol agents triturated in porcelain mortars and pestles are not removed from this mixing device by the usual laboratory washing procedure. Moreover, amounts sufficient to contaminate the next substance triturated in this vessel can be demonstrated by the subcutaneous pentylenetetrazol seizure threshold test. The data show that a rigorous washing routine must be followed to achieve a "clean" mortar and pestle. Attention is also directed to the importance of using disposable hypodermic syringes, test tubes, etc., whenever possible and of designing an internal control test to determine when implements that must be reused are "clean."

  1. Expansive mortar-induced ocular injury.

    Science.gov (United States)

    Balasubramanya, Ramamurthy; Rani, Alka; Sangwan, Virender S

    2006-12-01

    We describe here a case of bilateral chemical injury (with an expansive mortar which is being used in recent times to cut the rocks). On examination limbal ischemia was more in the left eye (9 clock hours) than the right eye (2 clock hours). The case was managed by bilateral removal of foreign bodies, along with conjunctival resection and amniotic membrane transplantation in the left eye. At six-month follow-up, patient had best corrected visual acuity of 20/30 and 20/60 in the right and left eyes respectively. Since this being an occupational hazard, proper eye protection gear should be used by persons using this expansive mortar.

  2. Compressive strength of brick masonry made with weak mortars

    DEFF Research Database (Denmark)

    Pedersen, Erik Steen; Hansen, Klavs Feilberg

    2013-01-01

    The use of weak mortar has a number of advantages (e.g. prevention of expansion joints, environmental issues). However, according to EC6, the strength of masonry vanishes when the compressive strength of the mortar approaches zero. In reality the presence of even unhardened mortar kept in place...... (fm≈6 N/mm2) compression tests of masonry with perforated bricks show that the EC6 expression is not always safe for Danish masonry. This is probably because the tensile strength of the bricks also has an effect on the compressive strength of masonry when the mortar is stronger than weak lime mortar...

  3. Comparative experimental study of dynamic compressive strength of mortar with glass and basalt fibres

    Directory of Open Access Journals (Sweden)

    Kruszka Leopold

    2015-01-01

    Full Text Available Specimen reinforced with glass and basalt fibers were prepared using Standard Portland cement (CEM I, 52.5 R as prescribed by EN 197-1 and standard sand, in accordance with EN 196-1. From this cementitious mixture, a reference cement mortar without fibers was first prepared. Compressive strength, modulus of elasticity, and mod of fracture were determined for all specimens. Static and dynamic properties were investigated using Instron testing machine and split Hopkinson pressure bar, respectively. Content of the glass fibers in the mortar does not influence the fracture stress at static loading conditions in a clearly observed way. Moreover at dynamic range 5% content of the fiber results in a significant drop of fracture stress. Analysis of the basalt fibers influence on the fracture stress shows that optimal content of this reinforcement is equal to 3% for both static and dynamic loading conditions. Further increase of the fiber share gives the opposite effect, i.e. drop of the fracture stress.

  4. Nondestructive evaluation of notched cracks in mortars by nonlinear ultrasonic technique

    Science.gov (United States)

    Chen, Jun; Ren, Jun; Yin, Tingyuan

    2016-04-01

    In this paper, a nonlinear ultrasonic technique is used to nondestructively characterise concentrated defects in cement-based materials. Cracks are artificially notched in mortar samples and five different crack widths are used to simulate increased damage of samples. The relative ratio of second harmonic amplitude to the square of fundamental ultrasonic signal amplitude is defined as the damage indicator of the nonlinear ultrasonic technique, which is measured for mortar samples in conjunction with a typical linear nondestructive evaluation parameter - ultrasonic pulse velocity. It is found that both linear and nonlinear damage parameters have a good correlation with the change of crack width, while the nonlinearity parameter shows a better sensitivity to the width increase. In addition, the nonlinearity parameter presents an exponential increase with the crack growth, indicating an accelerating nonlinear ultrasonic response of materials to increased internal damage in the late phase. The results demonstrate that the nonlinear ultrasonic technique based on the second harmonic principle keeps the high sensitivity to the isolated cracks in cement-based materials, similarly to the case of distributed cracks in previous studies. The developed technique could thus be a useful experimental tool for the assessment of concentrated damage of concrete structures.

  5. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  6. A brief on high-volume Class F fly ash as cement replacement – A guide for Civil Engineer

    Directory of Open Access Journals (Sweden)

    Alaa M. Rashad

    2015-12-01

    Full Text Available Disposal of fly ash (FA resulting from the combustion of coal-fired electric power stations is one of the major environmental challenges. This challenge continues to increase with increasing the amount of FA and decreasing the capacity of landfill space. Therefore, studies have been carried out to re-use high-volumes of fly ash (HVFA as cement replacement in building materials. This paper presents an overview of the previous studies carried out on the use of high volume Class F FA as a partial replacement of cement in traditional paste/mortar/concrete mixtures based on Portland cement (PC. Fresh properties, mechanical properties, abrasion resistance, thermal properties, drying shrinkage, porosity, water absorption, sorptivity, chemical resistance, carbonation resistance and electrical resistivity of paste/mortar/concrete mixtures containing HVFA (⩾45% as cement replacement have been reviewed. Furthermore, additives used to improve some properties of HVFA system have been reviewed.

  7. Mechanism of Calcined Phosphogypsum for the Volume Change of Blended Cement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The paper describes an investigation into the volume change of cement mortar specimen at the three kinds of different curing schedules including 20℃ and 5% Na2SO4 solution curing, tap water standard curing, 50% RH curing for 90 days. The testing results of hydration heat, chemical shrinking and XRD prove that calcined phosphogypsum has evident excitation effect on the activity of high calcium ash and steel slag. Simultaneously, calcined phosphogypsum has the function of decreasing volume shrinkage to blended cement possessing steel slag and high calcium ash. In sulfate curing, calcined phosphogypsum can avoid the phenomenon of protrude apex of the blended cement.

  8. On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires

    Directory of Open Access Journals (Sweden)

    Alessandra Fiore

    2014-01-01

    Full Text Available This study investigates the ameliorative effects on some properties of cement-based materials which can be obtained by incorporating rubber particles as part of the fine aggregates. The aim is to find out optimal cement composite/mortar mixtures, containing recycled-tyre rubber particles, suitable for specific engineering applications. Different percentages of rubber particles, from 0% to 75%, were used and, for each percentage, the suitable amount of sand was investigated in order to achieve the best fresh/hardened performances. In particular the following characteristics were examined: density, compressive strength, modulus of elasticity, shrinkage, weight loss, flexural behaviour, thermal conductivity, rapid freezing and thawing durability, and chloride permeability. The experimental results were compared with the ones of cement composite specimens without rubber aggregates. Test results show that the proposed rubberized mortar mixes are particularly suitable for some industrial and architectural applications, such as under-rail bearings, road constructions, paving slabs, false facades, and stone backing.

  9. [The Analysis of Traditional Lime Mortars from Zhejiang Province, China].

    Science.gov (United States)

    Liu, Xiao-bin; Cui, Biao; Zhang, Bing-jian

    2016-01-01

    The components of ancient mortars have always been an important research field in historic building conservation. It has been well known that using traditional mortars in conservation projects have many advantages, such as compatibility and stability. So, developing new binding materials based on traditional mortar has become an international study hotspot. With China's economic development, the protection of ancient buildings also began to put on the agenda, but the understanding on Chinese traditional mortar is limited, and rare literatures are reported. In the present work, the authors investigate seven ancient city wall sites in Zhejiang Province in situ, and subsequently laboratory analysis were carried out on collected mortar samples. The characterizations of mortar samples were made by multi-density gauge, XRD, FTIR, TG-DSC and wet chemical analysis. The experimental results showed that: the main component of masonry mortars is calcium carbonate, the content between 75% - 90%, and they should be made from relatively pure lime mortar. The raw materials of mortar samples were mainly calcareous quick lime, and sample from Taizhou city also contained magnesium quick lime. There are four city walls were built by sticky-rice mortars. It suggests that the technology of adding the sticky rice soup into mortar was universal in the Ming Dynasties. These mortars have lower density between 1.2 and 1.9 g x cm(-3); this outcome should be the result of long-term natural erosion. We have also analyzed other chemical and physical characteristics of these masonry mortars. The results can afford the basic data for the future repairmen programs, development of new protective materials, and comparative study of mortars.

  10. Mortar cohesión. The effect of additives

    Directory of Open Access Journals (Sweden)

    Castro, J. H.

    1975-12-01

    Full Text Available This study was concerned with the hydration of clinker compounds in the presence of different additives; it appeared that accelerating additives, such as calcium chloride and silicic acid, produce longer fibers of tobermorite, whereas inhibitors, such as sugar, produce shorter fibers of tobermorite. This same effect was observed in the hydration of anhydrite, in which large crystals of gypsum were produced in the presence of sodium sulphate. So the cohesion in mortars of cement and anhydrite is explained in terms of the role of fibers.Se estudia la hidratación del clínker en presencia de diferentes aditivos encontrándose que los aceleradores, como el cloruro cálcico y el ácido salicílico, producen tobermorita de fibra larga y los inhibidores, como el azúcar, tobermorita de fibra corta. Este mismo efecto se encuentra en la anhidrita, produciéndose cristales de yeso largo, en presencia del sulfato de sodio, y cristales cortos en ausencia del catalizador. La cohesión de un mortero depende luego del largo de sus fibras. Así la cohesión de los morteros de cemento y anhidrita se explican en función del rol de la fibra.

  11. Effects on cement after partial replacement with burned joss paper ash.

    Science.gov (United States)

    Lin, D F; Huang, L S; Luo, H L; Weng, R S

    2012-12-01

    In the last ten years, as international environmental protection consciousness has increased, the study and applications of green building, green construction materials and energy savings as well as reduction of carbon dioxide have become urgent issues for governments. In Taiwan, joss papers are burned in more than 11,731 registered shrines or temples in traditional Chinese deity or ancestor worship ceremonies during special holidays or occasions. Instead of placing this large amount of burned joss paper ash (BJPA) in landfills, this study proposes recycling BJPA by replacing some cement with calcined BJPA (CBJPA) in mortar specimens. After BJPA samples were calcined at a high kiln temperature, mortar samples were created using CBJPA to replace cement at seven different levels: 0%, 5%, 10%, 15%, 20%, 25% and 30%. Tests like setting time and compressive strength were performed for macro-analyses; scanning electron microscopy-energy dispersive spectroscopy, X-ray diffraction and thermal gravimetric analysis/differential thermal analysis were carried out for the microstructure and chemical composition analyses. The test results showed that the compressive strengths of specimens with different levels of CBJPA replacement were apparently less than those of the control group (0% CBJPA) at all curing times. The compressive strength and setting time both decreased as the fraction of CBJPA in the mortar increased. Furthermore, because the hydration product did not cement and the mortar specimen structure was loose, the expected strength improvement from the pozzolanic reaction provided by the CBJPA was not clearly observed.

  12. Use of Fiber-Reinforced Cements in Masonry Construction and Structural Rehabilitation

    Directory of Open Access Journals (Sweden)

    Ece Erdogmus

    2015-02-01

    Full Text Available The use of fiber reinforcement in traditional concrete mixes has been extensively studied and has been slowly finding its regular use in practice. In contrast, opportunities for the use of fibers in masonry applications and structural rehabilitation projects (masonry and concrete structures have not been as deeply investigated, where the base matrix may be a weaker cementitious mixture. This paper will summarize the findings of the author’s research over the past 10 years in these particular applications of fiber reinforced cements (FRC. For masonry, considering both mortar and mortar-unit bond characteristics, a 0.5% volume fraction of micro fibers in type N Portland cement lime mortar appear to be a viable recipe for most masonry joint applications both for clay and concrete units. In general, clay units perform better with high water content fiber reinforced mortar (FRM while concrete masonry units (CMUs perform better with drier mixtures, so 130% and 110% flow rates should be targeted, respectively. For earth block masonry applications, fibers’ benefits are observed in improving local damage and water pressure resistance. The FRC retrofit technique proposed for the rehabilitation of reinforced concrete two-way slabs has exceeded expectations in terms of capacity increase for a relatively low cost in comparison to the common but expensive fiber reinforced polymer applications. For all of these applications of fiber-reinforced cements, further research with larger data pools would lead to further optimization of fiber type, size, and amount.

  13. 预拌橡胶集料保温砂浆的性能研究%Properties of premixed rubberized insulation mortar

    Institute of Scientific and Technical Information of China (English)

    李悦; 闫茜茜; Yunping Xi; Pania Meshgin

    2011-01-01

    在水泥砂浆中掺入废旧橡胶集料作为轻质保温材科,结合可再分散胶粉(RPP)、木质纤维、甲基纤维索醚和碳酸钙制备预拌橡胶集料保温砂浆(PRIM).研究了橡胶粒径、掺量及可再分散胶粉对PRIM强度、柔韧性、导热系数的影响,结果表明,PRIM与普通预拌砂浆以及相变保温砂浆相比,具有良好的工作性能、柔韧性、粘结强度和较低的导热系数.%Premixed ruhberized inBulation mortar(PRIM) was prepared by adding waste rubber aggregate in the cement mortar as light-weight aggregate,with the compound of redispersible polymer powders (RPP),lignocelluloses.methylcellulose and carbonate.This paper studies on the influence of size and dosage of rubber on the strength,flexibility and thermal conductivity of PRIM and of RPP on the properties of PRIM. The results show that the premixed rubherized insulation mortar has many advantagen over the normal prermxed mortar and the phase change thermal insulation mortar,such as good working performance,flexibility,bond strength, and lower thermal conductivity.

  14. Evaluation of the aggressive potential of marine chloride and sulfate salts on mortars applied as renders in the Metropolitan Region of Salvador--Bahia, Brazil.

    Science.gov (United States)

    Costa, Eduardo A L; Campos, Vânia P; da Silva Filho, Luiz C P; Greven, Hélio A

    2009-02-01

    In recent years, growing interest has focused on determining the performance of materials and evaluating the service life of structures exposed to various environmental forces. In this context, the determination of the aggressive potential of marine salts on mortars used as external renders is critical. The present study aimed to evaluate the spatial distribution of marine salts relative to distance from the sea. This was done by monitoring the deposition rate of chlorides and sulfates in wet candle sensors, located at nine stations scattered around the Metropolitan Region of Salvador, state of Bahia, Brazil. The study also determined the effectiveness of water-soluble salts at penetrating three different types of mortars of varying cement content via deposition and diffusion. The methodology employed enabled an evaluation of the efficiency of the monitoring sensors' measurement of the aggressiveness potential of local marine aerosol, and determination of the comparative performance of the three mortars tested, from the standpoint of resistance to salt penetration. The type and amount of salts captured both in solution and in powder samples extracted from the mortars were determined by ion chromatography. The analysis of the various types of mortars tested indicated which types are more resistant to the aggressive potential of the region's marine aerosol and the distance from the shore where local buildings are liable to be most strongly affected.

  15. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  16. Drying Shrinkage of Cement-Based Materials Under Conditions of Constant Temperature and Varying Humidity

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; WEN Xiao-dong; WANG Ming-yuan; YAN Jia-jia; Gao Xiao-jian

    2007-01-01

    Currently,deformations along the central axis of specimens were usually measured under fixed environmental conditions. Seldom were the effects of environmental factors on the drying-shrinkage deformation of cement-based material considered. For this paper, the drying-shrinkage deformation at different w/b ratios and different additions to mortars was investigated under different environments at a temperature of 20 ℃ and humidity ranging from 100% to 50%. The specimens were cured in water for 28 days before measurement. The results illustrate that mortar shows much less shrinkage under various drying conditions when a lower w/b ratio is adopted. With a decrease in relative humidity the speed of drying-shrinkage becomes gradually lower. The addition of silica fume reduces the drying-shrinkage of mortar under higher relative humidity, because the pore structure of mortar with silica fume becomes more refined. The addition of fly ash increases the total porosity and the volume of coarse pores in the mortar. The drying-shrinkage of mortar under different conditions increases with the addition of more of fly ash.

  17. Solidification/stabilization of toxic metals in calcium aluminate cement matrices

    Energy Technology Data Exchange (ETDEWEB)

    Navarro-Blasco, I.; Duran, A.; Sirera, R.; Fernández, J.M.; Alvarez, J.I., E-mail: jalvarez@unav.es

    2013-09-15

    Highlights: • Reliable encapsulation and effective sorption of Pb, Zn and Cu on CAC was proved. • Cu and Pb were fully retained in the CAC mortar, while Zn was retained in 99.99%. •A maximum sorption capacity ca. 60 mg/g CAC was attained for Cu. • Three different PSD patterns were established as a function of XRD phase assemblage. • Some metal-loaded mortars achieved suitable mechanical strengths for landfilling. -- Abstract: The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests.

  18. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  19. 掺合料和水胶比对水泥基材料水化产物和力学性能的影响%Influence of admixture and water-cement ratio on hydration products and mechanical properties of cement-based materials

    Institute of Scientific and Technical Information of China (English)

    吴福飞; 侍克斌; 董双快; 陈亮亮; 慈军; 王欣; 张凯

    2016-01-01

    Admixture and water-cement ratio are important factors affecting the development of properties of cement mortar or concrete. In order to study the influence of admixtures and water-cement ratio on the hydration products and the mechanical properties of cement-based materials, the study combined hydration reaction mechanism of pure cement and silicate admixture, derived the formulae of hydration products, theoretical maximum mixing amount and total porosity of composite cement-based materials, and investigated the effects of mixing amount of cement mortar with fly ash, steel slag and lithium slag on total porosity, mechanical properties and hydration products. This paper designed 3 gradients of water-cement ratio (0.50, 0.42 and 0.34), 3 kinds of admixtures (lithium slag, fly ash and steel slag) and 2 contents (20% and 60%); the ratio of cementitious material to sand was 1:2.5, and then, molding specimen accorded with the mix of mortar in the triple mold and the mechanical properties of mortar were tested when specimen was cured to 1, 3, 7, 28 and 90 d. The results showed that, after the same content of fly ash, steel slag and lithium slag incorporation, the contents of hydration products of composite cementitious materials, i.e. calcium hydroxide (CH) and calcium silicate hydrate (CSH), and the total porosity were smaller than those of pure cement; when the water-cement ratio decreased from 0.50 to 0.34, the total porosity of cement mortar decreased from 16.0% to 9.3%, and the contents of CH and CSH increased for the compound cement-based materials with mixing amount of 5%, but the increments were not big; the porosity of fly ash, steel slag and lithium slag cement-based composite materials reduced from 16.6%, 17.2% and 16.0% to 9.9%, 10.9% and 9.3%, respectively. When the admixture amount increased to 10%, the variation of porosity and hydration products of the 3 kinds of mortar was different. The content of hydration products (CH and CSH) of composite

  20. Chromium behavior during cement-production processes: a clinkerization, hydration, and leaching study.

    Science.gov (United States)

    Sinyoung, Suthatip; Songsiriritthigul, Prayoon; Asavapisit, Suwimol; Kajitvichyanukul, Puangrat

    2011-07-15

    The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca(6)Al(4)Cr(2)O(15), Ca(5)Cr(3)O(12), Ca(5)Cr(2)SiO(12), and CaCr(2)O(7), with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca(5)(CrO(4))(3)OH, CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr(3+) from Ca(6)Al(4)Cr(2)O(15) and Cr(6+) from CaCr(2)O(7), CaCrO(4)·2H(2)O, and Al(2)(OH)(4)CrO(4), were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.

  1. SAND IRON MORTAR WITH ADDITION OF LEAD OXIDE Pb3O4 VARIATION AS RADIATION SHIELDING OF X AND GAMMA RAYS

    OpenAIRE

    Sari, Yasinta Yerry Permana

    2015-01-01

    To find out the ideal radiation shielding material from civil engineering and radiation aspect especially in the medical sector, in this research made sand iron mortar was made with mix proportion of 1:4 with addition variation of lead oxide Pb3O4 that are 0% (M1), 20% (M2), 30% (M3), and 40% (M4) of loose volume of sand iron and also Viscocrete-10 addition 0.6% of cement weight. Water cement ratio used for M1, M2, M3, and M4 are 0.4, 0.41, 0.44, and 0.48 respectively. Sand iron and lead oxid...

  2. Lunar cement

    Science.gov (United States)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  3. Colloids in the mortar backfill of a cementitious repository for radioactive waste.

    Science.gov (United States)

    Wieland, E; Spieler, P

    2001-01-01

    Colloids are present in groundwater aquifers and water-permeable engineered barrier systems and may facilitate the migration of radionuclides. A highly permeable mortar is foreseen to be used as backfill for the engineered barrier of the Swiss repository for low- and intermediate-level waste. The backfill is considered to be a chemical environment with some potential for colloid generation and, due to its high porosity, for colloid mobility. Colloid concentration measurements were carried out using an in-situ liquid particle counting system. The in-house developed counting system with three commercially available sensors allowed the detection of single particles and colloids at low concentrations in the size range 50-5000 nm. The counting system was tested using suspensions prepared from certified size standards. The concentrations of colloids with size range 50-1000 nm were measured in cement pore water, which was collected from a column filled with a highly permeable backfill mortar. The chemical composition of the pore water corresponded to a Ca(OH)2-controlled cement system. Colloid concentrations in the backfill pore water were found to be typically lower than approximately 0.1 ppm. The specific (geometric) surface areas of the colloid populations were in the range 240 m2 g(-1) to 770 m2 g(-1). The low colloid inventories observed in this study can be explained by the high ionic strength and Ca concentrations of the cement pore water. These conditions are favourable for colloid-colloid and colloid-backfill interactions and unfavourable for colloid-enhanced nuclide transport.

  4. Effect of curing conditions on the mechanical properties of mortars with superabsorbent polymers

    Directory of Open Access Journals (Sweden)

    Esteves, L. P.

    2010-06-01

    Full Text Available This paper describes the effect of curing conditions on the mechanical properties of mortars containing superabsorbent polymers (SAP. Curing temperature and relative humidity were varied from 20 to 40 ºC and 30 to 95%, respectively, in mixes with different water/cement and cement/aggregate ratios. Tensile and compressive strength tests were performed at several ages. Weight loss over time was measured and related to curing conditions and strength. The addition of SAPs was found to effectively maintain cement-based mortar strength under extreme curing conditions.

    Este artículo presenta el efecto de las condiciones de curado sobre las propiedades mecánicas de los morteros a los que se han añadido polímeros superabsorbentes como agentes de curado interno. Los morteros se curaron a dos temperaturas, 20 y 40 °C, y a varios valores de la humedad relativa entre el 30 y el 95%. Se estudió asimismo dicho efecto en función de la relación agua/cemento. Se realizaron pruebas de resistencia a la compresión y a la tracción a distintas edades. Los resultados incluyen la evolución de la pérdida de masa y su relación tanto con las condiciones ambientales como con el comportamiento resistente de los morteros. El curado interno de éstos con polímeros superabsorbentes permitió el mantenimiento de sus propiedades mecánicas en condiciones de curado extremas.

  5. Characterization and influence of fine recycled aggregates on masonry mortars properties

    Directory of Open Access Journals (Sweden)

    Saiz-Martínez, P.

    2015-09-01

    Full Text Available This research aims to study mechanical behaviour and relevant properties of masonry mortars fabricated using fine recycled aggregate in different mixture proportions. Fine recycled aggregates samples originated from the ceramic and concrete recycling process and coming from two recycling plants of Madrid region have been used. Tests were performed using 1:3:0.5 volumetric cement-to-aggregate-to-water ratio. Standardized sand with fine recycled aggregate replacement percentages were: 10%, 15%, 25%, 35% and 45%. A continuous size distribution curve can be observed and the main crystalline phases determined have been quartz, calcite and gypsum. Compressive strength, shrinkage and bond strength tests revealed poorer performance of recycled mortars compared to the conventional mortars; however, specific values are within the limits established by the manufacturers and standards. This study shows that cement-based mortars prepared with volumetric ratio 1:3:0.5 may contain up to 45% of fine recycled aggregates, without their properties being affected and without presenting significant losses.Esta investigación estudia el comportamiento mecánico y las propiedades más relevantes de los morteros de albañilería fabricados usando arenas recicladas en diferentes proporciones. Muestras pertenecientes a la línea de reciclaje cerámica y de hormigón proceden de dos centrales de reciclaje de la Comunidad de Madrid. Los ensayos se realizaron con una dosificación 1:3:0,5. Los porcentajes de arena reciclada fueron: 10%, 15%, 25%, 35% y 45%. Se observa una línea granulométrica continua y las principales fases cristalinas encontradas son cuarzo, calcita y yeso. Los ensayos de resistencia a compresión, retracción y adherencia muestran un peor comportamiento en los morteros reciclados frente a los morteros elaborados con arena normalizada, aunque dentro de los límites establecidos por normativas y fabricantes. Se deduce que, los morteros de alba

  6. Effect of metakaolin on strength and efflorescence quantity of cement-based composites.

    Science.gov (United States)

    Weng, Tsai-Lung; Lin, Wei-Ting; Cheng, An

    2013-01-01

    This study investigated the basic mechanical and microscopic properties of cement produced with metakaolin and quantified the production of residual white efflorescence. Cement mortar was produced at various replacement ratios of metakaolin (0, 5, 10, 15, 20, and 25% by weight of cement) and exposed to various environments. Compressive strength and efflorescence quantify (using Matrix Laboratory image analysis and the curettage method), scanning electron microscopy, and X-ray diffraction analysis were reported in this study. Specimens with metakaolin as a replacement for Portland cement present higher compressive strength and greater resistance to efflorescence; however, the addition of more than 20% metakaolin has a detrimental effect on strength and efflorescence. This may be explained by the microstructure and hydration products. The quantity of efflorescence determined using MATLAB image analysis is close to the result obtained using the curettage method. The results demonstrate the best effectiveness of replacing Portland cement with metakaolin at a 15% replacement ratio by weight.

  7. Compatibility of repair mortar with migrating corrosion inhibiting admixtures

    Energy Technology Data Exchange (ETDEWEB)

    Bjegovic, D.; Ukrainczyk, V. [Univ. of Zagreb (Croatia). Faculty of Civil Engineering; Ukrainczyk, B. [LGM, Zagreb (Croatia); Miksic, B. [CORTEC Corp., St. Paul, MN (United States)

    1997-08-01

    One of the methods for corrosion protection of reinforced concrete is the use of migrating corrosion inhibitor as an admixture in repair mortars. The admixture must be effective for corrosion protection and compatible with polymers added to repair mortar to improve properties of fresh and hardened mortar. This paper presents experimental results on compatibility of a migrating corrosion inhibitor added to two repair mortars based on an inorganic binder modified with polymers. The influence of a migrating inhibitor on the properties of fresh and hardened mortars was tested. The effectiveness on reinforcement corrosion protection has been tested according to ASTM G 109. Test results prove that the investigated migrating inhibitor is compatible with repair mortars and that it delays corrosion of the reinforcement.

  8. Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials

    Directory of Open Access Journals (Sweden)

    Cunha, S.

    2015-12-01

    Full Text Available Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM. The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.Actualmente, existen varios productos de construcción, siendo importante una adecuada selección, con base en sus principales propiedades y funciones. En esta investigación se aplicó un procedimiento de clasificación desarrollado por Czarnecki y Lukowski, en morteros con incorporación de materiales de cambio de fase (PCM. Este procedimiento transforma los resultados experimentales de las propiedades en un único valor numérico. Los productos se clasifican de acuerdo con sus propiedades individuales o en una combinación optimizada de diferentes propiedades. El principal objetivo de este estudio fue la clasificación de morteros basado en los diferentes aglutinantes con incorporación de diferentes cantidades de PCM. Los aglutinantes utilizados fueran la cal aérea, cal hidráulica, yeso y cemento. Para cada aglutinante se han desarrollado tres morteros, siendo morteros de referencia, con incorporación de 40% de PCM y con incorporaci

  9. 双掺环氧树脂和粉煤灰改性砂浆性能的试验研究%Experimental research on performance of mortar modified by epoxy resin and fly ash admixture

    Institute of Scientific and Technical Information of China (English)

    胡新萍; 张莹莹; 王芳

    2014-01-01

    The paper studies the impact of double blending epoxy resin and the modified fly ash mortar in the acid corrosion resistance and mechanical properties of modified mortar,the effect of different polymer cement ratio and fly ash with different dosage on the perfor-mance of mortar.First,by orthogonal experiment that mix modified mortar.To test the new mortar,several experiments proved that the me-chanical properties and corrosion resistance of modified mortar is improved,so as to achieve the goal to more practical.%主要研究双掺水性环氧树脂和粉煤灰对改性砂浆在抗酸腐蚀性能和力学性能方面的影响,即改性砂浆的不同聚灰比以及粉煤灰的不同掺量对砂浆性能的影响。首先用正交试验得出改性砂浆的配合比。对新拌砂浆进行试验,多组试验对比证明改性砂浆的力学性能和耐酸腐蚀性能得到提高,从而达到较为实用的改性目标。

  10. Comparative evaluation of aerial lime mortars for architectural conservation

    OpenAIRE

    Faria, Paulina; Henriques, Fernando M.A.; Rato, Vasco

    2008-01-01

    Journal of Cultural Heritage 9 (2008) 338-346 International bibliography on conservation usually refers that mortars made with lime putty with long extinction periods behave better than others made with the current dry hydrated limes. In order to evaluate this assess, an experimental study of lime mortars was carried out, using dry hydrated lime and two lime putties. It becomes clear that the use of lime putties with long extinction periods in mortars allow better performances, pa...

  11. Performance of the Cement Matrix Composite Material With Rubber Powder

    Institute of Scientific and Technical Information of China (English)

    SONG Shao-min; LIU Juan-hong; ZHANG Xi-qing

    2004-01-01

    The effect of the deferent rubber content substituted for fine aggregate on the mortar performancewas studied. The effects of the rubber coated with the coating materials on the mortar compressive strength, bendingstrength and impact work were discussed. The optimum rubber powder content and the suitable coating materialwere found. Through the electrical probe test- BEI, SEI and calcium ion distribution, and the slight crack and theinterface between the rubber and cement matrix are analyzed. The results show that the rubber powder coated withthe surface treatment materials A, B and C bas the capability of absorbing a large amount of energy under thecompressive and flexural load and the slight cracks of R- C were controlled and restrained.

  12. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  13. [Utilizing the wastewater treatment plant sludge for the production of eco-cement].

    Science.gov (United States)

    Lin, Yi-Ming; Zhou, Shao-Qi; Zhou, De-Jun; Wu, Yan-Yu

    2011-02-01

    The aim of this paper was to study the effect on cement property by using of municipal sewage as additive in the process of clinker burning. Based on the standard sample P. 042. 5 from cement plant, the properties of eco-cement samples adding municipal sewage to unit raw material by 0%, 0.50%, 1.00%, 1.50%, 2.00%, 2.50% respectively and the standard sample from the cement plant were compared. According to the analysis of X-ray diffraction, microstructure, the particles size determination material change, the setting time, specific surface area, leaching toxicity and strength of cement mortar of the cement, respectively, it showed that the strength of the productions were similar to the P. 042.5 standard sample. The metal ion concentrations of Al, Fe, Ba, Mn and Ti in clinkers and raw material decreased, the initial and setting time increased, as well as the strength of the paste within the curing time of 3 days decreased with the increase of municipal sewage ratio. However, after the curing of 7 days, the strength was similar to non-sludge-mortar or even higher.

  14. Effects of coal fly ash on the rheological characteristics of concrete paste and mortar; Zum Einfluss von Steinkohlenflugaschen auf das rheologische Verhalten von Zementleimen und -moerteln

    Energy Technology Data Exchange (ETDEWEB)

    Freimann, T.

    2002-07-01

    For the placement of concrete at a building site the workability of the fresh concrete is one of the most important influence parameters. The workability is depending on the internal forces within the suspension and interactions between the solid particles. Particularly the paste and mortar phase and thus the sort and composition of fine constituents influence decisively the flowability of the fresh concrete. In addition to cement often fly ashes (FA) are used as fine components in concrete. Not only the properties of the hardened concrete are changed by the addition of FA but also the rheological properties of the fresh mortar and paste. In this study the most important parameters of the basic ingredients regarding the flowability were determined on the basis of experiments with cement/FA-pastes and mortars with a maximum particle size of 2 mm. General statements about the effect, respectively the application of FA were formulated. At the main part experiments were performed using the rotational viscometer (Viskomat) in order to determine the yield value and plastic viscosity according to the Bingham model. For cement/FA-suspensions the influence of the FA on the internal forces is presented and compared between pastes and mortars. The addition of FA influences the yield value as well as the plastic viscosity of the suspension. With the aid of multiple linear regression analysis the material parameters were determined which are most important for the rheological properties. Several numerical equations were derived permitting an estimation of yield value and viscosity of various cement/FA-suspensions. For practical use a nomogram was developed which allows a rapid estimation of the rheological behaviour for different fly ashes. The results of the investigation showed that an appropriate parameter to describe FA-influence on the flowability is the water demand determined by EN 196 with the same procedure as for cement (required amount of water in Vol.-% for normal

  15. Sulfate resistance of ordinary Portland cement with fly ash

    Directory of Open Access Journals (Sweden)

    Irassar, Edgardo F.

    1989-03-01

    Full Text Available Low calcium fly ash has demonstrated to be an effective pozzolan to improve sulfate resistance of ordinary portland cement (type I. In this paper physico-chemical effects that produce this pozzolan in the mortar exposed to sulfate attack are studied. Dilution and dispersion affects are analyzed using mixes of cement with an inert mineral admixture. Mineralogical changes of mortar are studied using X-ray diffraction and the help of scanning electron microscope. The results show that fly ash delays mortar cracking phenomenon due to less content of unstable compounds in sulfate environment, greater available space to be occupied by expansive compounds and less CH present in the mortars.

    La ceniza volante de bajo contenido de óxido de calcio ha demostrado ser una efectiva puzolana para mejorar la resistencia a los sulfatos del cemento portland normal (CRN. En el presente trabajo se estudian los efectos físico-químicos que produce esta puzolana en el mortero expuesto al ataque de sulfatos. Se analizan los efectos de dilución y dispersión utilizando mezclas de cemento con una adición mineral inactiva. Los cambios mineralógicos del mortero se estudian con difracción de rayos X (DRX y la ayuda del microscopio electrónico. Los resultados indican que la ceniza volante retarda el fenómeno de fisuración del mortero debido a la menor cantidad de compuestos inestables en ambiente con sulfatos, el mayor espacio disponible para albergar a los compuestos expansivos y la disminución del CH presente en la mezcla.

  16. The participation ratios of cement matrix and latex network in latex cement co-matrix strength

    Directory of Open Access Journals (Sweden)

    Ahmed M. Diab

    2014-06-01

    Full Text Available This investigation aims to determine the participation ratio of cement matrix and latex network in latex cement co-matrix strength. The first stage of this study was carried out to investigate the effect of styrene butadiene rubber (SBR on cement matrix participation ratio by measuring degree of hydration and compressive strength. The second stage in this study shows an attempt to evaluate the latex participation ratio in mortar and concrete strength with different latex chemical bases. Effect of latex particle size on latex network strength was studied. The test results indicated that the latex participation ratio in co-matrix strength is influenced by type of cement matrix, type of curing, latex type, latex solid/water ratio, strength type and age. For modified concrete, when the SBR solid/water ratio increases the latex participation ratio in flexural and pull out bond strength increases. The latex participation ratio in co-matrix strength decreases as latex particle size increases.

  17. 丙烯酸酯共聚乳砂浆在修补水电站混凝土压力管道中的应用%Application of Acrylate Copolymer Emulsion Mortar in Repairing Concrete Pressure Pipeline in Hydropower Station

    Institute of Scientific and Technical Information of China (English)

    王巧玲

    2014-01-01

    丙烯酸酯共聚乳砂浆是一种优良的水泥砂浆及混凝土改性剂,它具有环氧砂浆所无法比拟的低成本及耐老化、抗裂、抗收缩等性能。本文结合丙烯酸酯共聚乳砂浆在新总干二级水电站的使用情况,与常规采用的水泥砂浆和环氧砂浆进行了对比分析。%Acrylate copolymer emulsion mortar belongs to excellent cement mortar and concrete modifier. It is characterized by low cost,anti-aging,cracking resistance,anti-shrinkage and other properties which is more excellent compared with epoxy mortar.Acrylic copolymer emulsion mortar is used in secondary hydropower station of new trunk,the usage condition of which is analyzed and compared with that of conventional cement mortar and epoxy mortar in the paper.

  18. PP纤维水泥界面粘接与抗干缩开裂性能研究%Study on Interface Bonding of PP Fiber-cement and Antishrinkage Performance

    Institute of Scientific and Technical Information of China (English)

    张礼和; 谈慕华; 马一平; 吴科如

    2001-01-01

    用酸或碱水溶液处理聚丙烯(PP)纤维表面,可改善纤维-水泥界面的粘结性能,并提高PP纤维水泥砂浆的抗干缩开裂性能.%Surface treating methods were conducted on PP fiber to improve the PP fiber-cement interface bonding strength. Acid, alkaline surface treating were employed. Effects of surface treatment were investigated. The experiment result shows that the acid, alkaline treatment will increase the surface coarseness of PP fiber, and the PP fiber-cement bonding strength will improve. Also, notable reductions of plastic shrinkage cracking in PP fiber-cement mortar were observed. It was concluded that surface treatment of PP fiber with acid, alkaline improved the PP fiber-cement bonding strength and reduced plastic shrinkage cracking in PP fiber-cement mortar.

  19. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  20. Influence of Molarity and Chemical Composition on the Development of Compressive Strength in POFA Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    S. M. Alamgir Kabir

    2015-01-01

    Full Text Available The investigation concerns the use of the optimum mix proportion of two locally available pozzolanic waste materials, namely, ground granulated blast furnace slag (GGBS and palm oil fuel ash (POFA, together with metakaolin (MK as binders. In addition, another local waste material, manufactured sand (M-sand, was used as a replacement for conventional sand in the development of green geopolymer mortar. Twenty-four mortar mixtures were designed with varying binder contents and alkaline activators. The oven dry curing was also kept consistent for all the mix proportions at a temperature of 65°C for 24 hours. The highest 28-day compressive strength of about 48 MPa was obtained for the mortar containing 20% of MK, 35% of GGBS, and 45% of POFA. The increment of MK beyond 20% leads to reduction of the compressive strength. The GGBS replacement beyond 35% also reduced the compressive strength. The entire specimen achieved average 80% of the 28-day strength at the age of 3 days. The density decreased with the increase of POFA percentage. The finding of this research by using the combination of MK, GGBS, and POFA as binders to wholly replace conventional ordinary Portland cement would lead to alternate eco-friendly geopolymer matrix.

  1. Effect of Concentration of Sodium Hydroxide and Degree of Heat Curing on Fly Ash-Based Geopolymer Mortar

    Directory of Open Access Journals (Sweden)

    Subhash V. Patankar

    2014-01-01

    Full Text Available Geopolymer concrete/mortar is the new development in the field of building constructions in which cement is totally replaced by pozzolanic material like fly ash and activated by alkaline solution. This paper presented the effect of concentration of sodium hydroxide, temperature, and duration of oven heating on compressive strength of fly ash-based geopolymer mortar. Sodium silicate solution containing Na2O of 16.45%, SiO2 of 34.35%, and H2O of 49.20% and sodium hydroxide solution of 2.91, 5.60, 8.10, 11.01, 13.11, and 15.08. Moles concentrations were used as alkaline activators. Geopolymer mortar mixes were prepared by considering solution-to-fly ash ratio of 0.35, 0.40, and 0.45. The temperature of oven curing was maintained at 40, 60, 90, and 120°C each for a heating period of 24 hours and tested for compressive strength at the age of 3 days as test period after specified degree of heating. Test results show that the workability and compressive strength both increase with increase in concentration of sodium hydroxide solution for all solution-to-fly ash ratios. Degree of heating also plays vital role in accelerating the strength; however there is no large change in compressive strength beyond test period of three days after specified period of oven heating.

  2. Chromium behavior during cement-production processes: A clinkerization, hydration, and leaching study

    Energy Technology Data Exchange (ETDEWEB)

    Sinyoung, Suthatip [Department of Environmental Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Songsiriritthigul, Prayoon [Synchrotron Light Research Institute, PO Box 93 Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, Nakhon Ratchasima, 30000 (Thailand); Asavapisit, Suwimol, E-mail: suwimol_s@hotmail.com [Environmental Technology, School of Energy and Materials, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); National Center of Excellence for Environmental and Hazardous Waste Management, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Kajitvichyanukul, Puangrat, E-mail: puangratk@nu.ac.th [National Center of Excellence for Environmental and Hazardous Waste Management, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangkok, 10140 (Thailand); Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000 (Thailand)

    2011-07-15

    Highlights: {yields} Behavior of chromium during cement-production processes. {yields} Formation of new chromium compounds in clinker with chromium oxidation states of +3, +4.6, +5, and +6. {yields} Addition of chromium altered the composition of the clinker phases, setting time, and compressive strength of hydrated mixes. {yields} Cr{sup 3+} and Cr{sup 6} were leached during leaching tests, whereas other species remained in the mortar. - Abstract: The behavior of chromium during the production of cement clinker, during the hydration of cement and during the leaching of cement mortars was investigated. The microstructures of clinker and mortar properties were investigated using free lime, XRD, SEM/EDS, and TG/DTA techniques. Chromium was found to be incorporated in the clinker phase. The formation of new chromium compounds such as Ca{sub 6}Al{sub 4}Cr{sub 2}O{sub 15}, Ca{sub 5}Cr{sub 3}O{sub 12}, Ca{sub 5}Cr{sub 2}SiO{sub 12}, and CaCr{sub 2}O{sub 7}, with chromium oxidation states of +3, +4.6, +5, and +6, respectively, was detected. After the hydration process, additional chromium compounds were identified in the mortar matrix, including Ca{sub 5}(CrO{sub 4}){sub 3}OH, CaCrO{sub 4}.2H{sub 2}O, and Al{sub 2}(OH){sub 4}CrO{sub 4}, with chromium oxidation states of +4.6, +6, and +6, respectively. Additionally, some species of chromium, such as Cr{sup 3+} from Ca{sub 6}Al{sub 4}Cr{sub 2}O{sub 15} and Cr{sup 6+} from CaCr{sub 2}O{sub 7}, CaCrO{sub 4}.2H{sub 2}O, and Al{sub 2}(OH){sub 4}CrO{sub 4}, were leached during leaching tests, whereas other species remained in the mortar. The concentrations of chromium that leached from the mortar following U.S. EPA Method 1311 and EA NEN 7375:2004 leaching tests were higher than limits set by the U.S. EPA and the Environment Agency of England and Wales related to hazardous waste disposal in landfills. Thus, waste containing chromium should not be allowed to mix with raw materials in the cement manufacturing process.

  3. Production of cements from Illinois coal ash. Final technical report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.C.; Bhatty, J.L.; Mishulovich, A.

    1997-05-01

    The objective of this program is to convert Illinois coal combustion residues, such as fly ash, bottom ash, and boiler slag, into novel cementitious materials for use in the construction industry. These residues are composed largely of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, and CaO, which are also the major components of cement. Since the residues are used as an integral component of the cement and not just as additives to concrete, larger amounts of the residues can be utilized. The process uses submerged combustion to melt blends of coal combustion residues with lime, clay, and/or sand. The submerged combustion melter utilizes natural gas-oxidant firing directly into a molten bath to provide efficient melting of mineral-like materials. Use of this melter for cement production has many advantages over rotary kilns including very little, if any, grinding of the feed material, very low emissions, and compact size. During the first year of the program, samples of coal combustion residues were blended and mixed, as needed; with lime, clay, and/or sand to adjust the composition. Six mixtures, three with fly ash and three with bottom ash, were melted in a laboratory-scale furnace. The resultant products were used in mortar cubes and bars which were subjected to ASTM standard tests of cementitious properties. In the hydraulic activity test, mortar cubes were found to have a strength comparable to standard mortar cements. In the compressive strength test, mortar cubes were found to have strengths that exceeded ASTM blended cement performance specifications. In the ASR expansion test, mortar bars were subjected to alkali-silica reaction-induced expansion, which is a problem for siliceous aggregate-based concretes that are exposed to moisture. The mortar bars made with the products inhibited 85 to 97% of this expansion. These results show that residue-based products have an excellent potential as ASR-preventing additions in concretes.

  4. Effects of water on mortar-brick bond

    NARCIS (Netherlands)

    Groot, C.J.W.P.

    1995-01-01

    The quality of bond in masonry is, to a large extent, a function of the (i) the hydration conditions and (ii) the mortar composition of the mortar-brick interface. For insight into the effects of these parameters on bond performance it is essential to dispose of quantitative information about water

  5. Thaumasite swelling in historic mortars: field observations and laboratory research

    NARCIS (Netherlands)

    Hees, R.P.J. van; Wijffels, T.J.; Klugt, L.J.A.R. van der

    2003-01-01

    The formation of thaumasite in historic mortars was found to be a recurrent problem in cases of conservation of historic masonry in the Netherlands. Several case studies in which mortar swelling occurred were performed. In this paper two case studies concerning thaumasite formation are briefly descr

  6. Use or rice husk ash an addition in mortar

    Directory of Open Access Journals (Sweden)

    Sánchez de Rojas, M. Isabel

    1986-09-01

    Full Text Available With the aid of a 400-litre capacity pilot furnace, in which 40 Kg of rice husk is submitted to controlled combustion, an ash (RHA is obtained for use as an addition, the physicochemical properties of which form the focal point of this work. Results will also be presented for the combustion power of the husk ≃ 4000 kcal/kg, being greater than half the value for normal bituminous coals. Conglomerates have been obtained by mixing RHA with different proportions of lime and portland cement, and their properties are studied with regard to both mortars and concretes. The ultimate aim of the work is to demonstrate how rice husk (world production of which is estimated at 500.106 m3 per annum may be feasibly applied as an addition, without forgetting its excellent properties as a fuel, which makes it particularly suitable for developing countries with a shortage of cement and energy resources.

    Mediante la utilización de un horno-piloto de unos 400 litros de capacidad, en el que se realiza la combustión controlada de unos 40 kg de cáscara de arroz, se consigue una ceniza (RHA, sobre cuyas propiedades físico-químicas se centra el trabajo, para su empleo como adición. Se presentan igualmente resultados sobre el poder de combustión de la cascara ≃ 4.000 kcal/kg, superior a la mitad del valor de los carbones bituminosos normales. Mediante mezclas de RHA con distintas proporciones de cal o de cemento portland, se han conseguido conglomerantes cuyas propiedades se estudian, tanto sobre morteros, como sobre hormigones. El objetivo último del trabajo es mostrar la factible aplicabilidad de la cascara de arroz (cuya "producción" mundial se estima en 500.106 m3 anuales como adición, sin olvidar sus excelentes cualidades como combustible lo que hace especialmente idónea en países en vías de desarrollo, deficitarios en cemento y recursos energéticos.

  7. The effect of CNTs reinforcement on thermal and electrical properties of cement-based materials

    Science.gov (United States)

    Exarchos, D. A.; Dalla, P. T.; Tragazikis, I. K.; Matikas, T. E.

    2015-03-01

    This research aims to investigate the influence of the nano-reinforcement on the thermal properties of cement mortar. Nano-modified cement mortar with carbon nanotubes (CNTs) leading to the development of innovative materials possessing multi-functionality and smartness. Such multifunctional properties include enhanced mechanical behavior, electrical and thermal conductivity, and piezo-electric characteristics. The assessment of the thermal behavior was evaluated using IR Thermography. Two different thermographic techniques are used to monitor the influence of the nano-reinforcement. To eliminate any extrinsic effects (e.g. humidity) the specimens were dried in an oven before testing. The electrical resistivity was measured with a contact test method using a custom made apparatus and applying a known D.C. voltage. This study indicate that the CNTs nano-reinforcement enhance the thermal and electrical properties and demonstrate them useful as sensors in a wide variety of applications.