WorldWideScience

Sample records for cement factor

  1. Electrical tortuosity, Kozeny’s factor and cementation factor modelled for chalk

    DEFF Research Database (Denmark)

    Katika, Konstantina; Fabricius, Ida Lykke

    2015-01-01

    saturated core plugs to determine the cementation factor, m. This value differs from the one Archie used to describe his equation and best describes the formation factor based on experimental data. Based on this m, we determine the formation factor, F, and the tortuosity, τ. We use this value of τ...

  2. Factors affecting bond cement across casing leak zones in oil and gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, Mohamed; Edbeib, Said [Al-Fateh University, Tripoli (Libyan Arab Jamahiriya). Dept. of Petroleum Engineering

    2004-07-01

    Casing leaks have been a major concern to the oil industry because of their effect on lowering the production rate in many oil and gas wells. The leaks are the result of deterioration of the casing in the well, which is caused by severe corrosion due to the contact of the casing with high salinity foreign fluid. The objective of this study is to determine the factors influencing the mechanical properties of the hardened cement opposite the casing leak zones. This study is conducted by laboratory measurements of the compressive strength of the hardened cement when the cement slurry was mixed with different percentages of formation water and different concentrations of different cement additives. The results of this study indicate that the compressive strength readings obtained from the cement bond log and the cement evaluation tool against the casing leak zones are lower than those readings recorded in adjacent formations. The low cement compressive strength values observed across casing leak zones are due to the contamination of the cement with saline water present in these formations which, in turn, effects the hardening properties of the cement. The experimental results indicated that the salinity of the formation water when mixed with the cement slurry in the presence of cement additives, decreased the compressive strength of the bond cement and also decreased the thickening time of the cement slurry. It is concluded that casing leaks found in many wells observed in oil fields in Libya were due to the mixing of the cement with high salinity formation water present in the lost circulation zones. The high water salinity in these zones effects the setting time of the cement slurry which, therefore, decreased the hardening properties of the bond cement and caused cracks and channels in the hardened cement across lost circulation zones. (author)

  3. A rapid cyclic voltammetric method for studying cement factors affecting the corrosion of reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    Foulkes, F.R.; McGrath, P. (Univ. of Toronto, Ontario (Canada))

    1999-06-01

    A rapid cyclic voltammetric method for studying the influence of cement factors on the corrosion of embedded iron and steel in hardened cement paste is described. The technique employs a cement electrode'' consisting of an iron or steel wire embedded in a miniature cylinder of hardened cement paste. The rapid cyclic voltammetric method is fast, reproducible, and provides information on the corrosiveness of the pore solution environment surrounding the embedded metal. The usefulness of the method is demonstrated by showing how it can be used to evaluate the threshold chloride content of hardened ordinary portland cement paste at which corrosion begins and by using it to evaluate the relative efficacy of several admixed corrosion inhibitors.

  4. In-vitro study of resin-modified glass ionomer cements for cementation of orthodontic bands. Isolation, surplus removal and humidity as factors influencing the bond strength between enamel, cement and metal.

    Science.gov (United States)

    Liebmann, S M; Jost-Brinkmann, P G

    1999-01-01

    The aim of this in vitro study was to investigate different light-cured and chemically cured resin-modified glass ionomer cements used for the cementation of orthodontic bands and to analyze various factors influencing the adhesive strength between enamel, cement and stainless steel. Four resin-modified glass ionomers (Fuji Ortho LC/GC, Fuji Duet/GC, Unitek Multi-Cure Glass Ionomer Orthodontic Band Cement/3M Unitek, Vitremer/3M) and 1 compomer (Band-Lok/Reliance) were examined. Flattened and polished bovine teeth embedded in polyurethane resin were used as enamel specimens. Before cementation, 50% of the specimens were moistened with the aerosol of an inhalation device, while the rest were dried with compressed air. Stainless steel cylinders (CrNi 18 10) were perpendicularly bonded onto the polished enamel using a custom-made cementation device and immediately topped with a pressure of 0.25 MPa. The cement was isolated with either Ketac Glaze/ESPE, Fuji Coat/GC, Cacao Butter/GC, Dryfoil/Jalenko or Final Varnish/VOCO, or was left uncoated. Eight minutes after the beginning of mixing, either the surplus cement was removed with a scalpel or surplus removal was simulated with ultrasound. After 24 hours storage in a water bath at 37 degrees C and 1,000 thermocycles the shear bond strength was determined. Significant differences with respect to the shear bond strength were found among the following cements, ranking from highest to lowest: Fuji Duet, Unitek cement > Fuji Ortho LC > Vitremer > Band-Lok. The application of a barrier coating significantly increased the shear bond strength of all cements except Fuji Ortho LC. The light-cured resin Ketac Glaze proved to be the most effective barrier coating. A dry enamel surface increased the bond strength of all investigated cements except Unitek cement. The use of ultrasound led to no significant reduction in shear bond strength in comparison with surplus removal with a scalpel. PMID:10546417

  5. Influence of Environmental Factors on the Volume Change of Blended Cement Containing Steel Slag

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the condition of 20 ℃, 5% sulfate liquor curing, standard tap water curing and 50% RH curing-three different curing environments, the volume change of steel slag blended cement influenced by environmental factors was studied. With steel slag addition 10%, 30%, 50%, from 90 days to 356 days, the relationship of shrinkage and three different curing environments is: dry curing environment>tap water curing environment>sulfate curing environment. But, the sample shrinkage in 28 days has much difference with the curing environment, which has no obvious orderliness. The different effects on blended cement containing steel slag in different environmental factors were analyzed using SEM.

  6. Factors affecting the leachability of caesium and strontium from cemented simulant evaporator wastes

    International Nuclear Information System (INIS)

    Leach rates of stable cesium and strontium from a range of simulated evaporator waste/cement formulations have been determined. Important factors in plant operation are assessed for their effect on leach rates. Increasing the curing time and lowering the water/cement ratio has been shown to reduce leach rates by up to a factor of four. Incorporation of additives such as clays and supplementary cementatious materials can reduce leach rates by up to three orders magnitude, and coating the surface of the waste form with a neat cement grout can reduce the cesium leach rate by up to four orders of magnitude. The effects of permeability of the matrix and its cesium absorption capacity on the leach rates have been analysed qualitatively. (U.K.)

  7. Factors influencing success of cement versus screw-retained implant restorations: a clinical review

    Directory of Open Access Journals (Sweden)

    Ahmad Manawar

    2012-10-01

    Full Text Available Aim: As more and more dental practitioners are focusing on implant-supported fixed restorations, some clinicians favor the use of cement retained restorations while others consider screw retained prosthesis to be the best choice. Discussion: In screw-retained restorations, the fastening screw provides a solid joint between the restoration and the implant abutment, while in cement-retained prostheses the restorative screw is eliminated to enhance esthetics, occlusal stability, and passive fit of the restorations. The factors that influence the type of fixation of the prostheses to the implants like passivity of the framework, ease of fabrication, occlusion, esthetics, accessibility, retention and retrievability are discussed in this article with scientific studies demonstrating superior outcomes of one technique over another. Screwretained implant restorations have an advantage of predictable retention, retrievability and lack of potentially retained subgingival cement. However, a few disadvantages exist such as precise placement of the implant for optimal and esthetic location of the screw access hole and obtaining passive fit. On the other hand, cement retained restorations eliminate unesthetic screw access holes, have passive fit of castings, reduced complexity of clinical and lab procedures, enhanced esthetics, reduced cost factors and non disrupted morphology of the occlusal table. Conclusion: This article compares the advantages, potential disadvantages and limitations of screw and cement retained restorations and their specific implications in the most common clinical situation.

  8. Factor ten emission reductions : the key to sustainable development and economic prosperity for the cement and concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Horton, R. [Alchemix Corp., Pittsburgh, PA (United States)

    2001-07-01

    This paper proposes that the negative environmental effects of current cement/concrete production can be reduced by a factor of 10 by using cement blends with minimum portland cement and maximum pozzolanic loading. In addition to extending the longevity of concrete, such cement blends also avoid the huge cost of repairs and replacement cycles. Market forces will drive this transition toward sustainable development in the concrete and cement industry. The economic advantages of improving the quality of the concrete are great. Even if improving the concrete doubles the price of the highest quality cement, this would only add 2 per cent to the cost of the overall construction project, but the service life of the structure would give a many-fold return on this added investment. Also, regulations on carbon dioxide emissions in the near future will assume economic importance in the manufacturing of cement and concrete. While portland cements have dominated the construction industry for more than 150 years, new blended cements priced on a performance basis will become the standard in the twenty first century. Currently, the typical cement formulation in the United States, if it contains fly ash, contains 15 to 20 per cent fly ash by weight of the total cementitious material. This paper states that soon the number will be 50 to 60 per cent ash. Fly ash will be widely acknowledged for improving critical performance characteristics of concrete such as workability, impermeability and durability. Carbon dioxide credits will also be a major economic factor that will drive the cement industry toward a factor ten environmental improvement. The Kyoto Protocol calls for the trading of greenhouse gas credits which includes carbon dioxide credits. Under the new system, cement producers will be taxed on excess emissions, while those using pozzolans in their cements will earn credits to offset these penalties. 10 refs.

  9. The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures

    International Nuclear Information System (INIS)

    This paper mainly compares total factor productivity and eco-efficiency in China's cement manufactures from 2005 to 2010. First, we evaluate total factor productivity and eco-efficiency of China's cement manufactures through distance function and directional slack-based measure (DSBM) respectively. Furthermore, we also explore the difference of total factor productivity and eco-efficiency. Last, we investigate the determinants of Malmquist, Mamlquist–Luenberger of China's cement manufactures through random-effect Tobit and bootstrap truncated econometric methods. We find that there are some gaps between Malmquist and Mamlquist–Luenberger of China's cement manufactures. Per labor cement industry value has U-shape relationship with both Malmquist and Malmquist–Luenberger. It is necessary to adopt advanced technology to reduce pollutant emissions. -- Highlights: •Eco-efficiency of cement manufactures is evaluated through slack-based measure. •Eco-efficiency of China's cement manufactures has biases with total factor productivity. •Environmental Kuznets curve is existed for China's cement manufactures

  10. THE INTERNAL FACTORS AFFECTING LUNG CAPACITY OF PEOPLE LIVING IN AREAS AROUND THE CEMENT INDUSTRY, INDONESIA

    Directory of Open Access Journals (Sweden)

    Erwin Azizi Jayadipraja

    2016-05-01

    Full Text Available Background: Some internal factors have both positive and negative effects to people’s health, especially those who live in a polluted area. The area around the cement industry is an example of polluted area in which the lung capacity will be harmed. Aim: This research aimed at finding out internal factors affecting lung capacity of people living in the area around the cement industry. Methods: This research used a cross sectional study plan by measuring lung capacity (FEV1 and FVC of people living in four different locations. The locations were based on wind directions and within 3 km from the cement industry. The study plan was also done by connecting the measurement with other factors, such as age, physical activities, nutrition status and passive smoking or environmental tobacco smoke (ETS. Results: Based on the calculation of lung capacity 241 respondents obtained 123 respondents (51% had a normal lung capacity, 105 respondents (43.6% had a restricted lung capacity, 4 respondents (1.7% had an obstructed lung capacity and 9 respondents (3.7% had a combination of a restricted and obstructed lung capacity. The age (p=0.977 and physical activities (p=0.087 of respondents had no effect on the lung capacity. However, nutrition status (p=0.011 and passive smoking or ETS (p=0.003 do. Conclusion: The nutrition status and the presence of a passive smoker were the internal factors affecting people’s lung capacity, especially for those who live around the cement industry. Thus, in order to avoid the impairment of lung capacity, people need to improve their nutrition and to avoid people smoking around them.

  11. 影响水泥聚苯板性能的因素%Factors in affecting cement polystyrene board property

    Institute of Scientific and Technical Information of China (English)

    吕辉; 邵新苗; 林敏夏

    2001-01-01

    通过对比试验,研究水泥用量、水泥强度、水灰比、引气剂、减水剂、粉煤灰掺量及SP泡沫颗粒大小等因素对水泥聚苯板性能的影响。结果表明:适量引气剂的加入不仅可有效提高水泥聚苯板强度,还可降低密度;采用粉煤灰代替部分水泥可以在基本保证水泥聚苯板性能的前提下,节省水泥用量,降低生产成本。此外,水泥用量及SP泡沫颗粒大小等也是影响水泥聚苯板性能的重要因素。%The influence of all kinds of factor, such as cement consumption, cement strength, water/cement ratio, air- entraining agent, water reducer, additive of fly ash, and SP foam grain size, on cement polystyrene board is studied through comparison test. The results show that a proper air - entraining agent to be added not only can increase strength of cement polystyrene board effectively, but also decrease its density. The fly ash to be used instead of part of cement can save cement consumption and lower production cost under the prerequisite to ensure the property of cement polystyrene board. In addition, the cement consumption and SP foam grain size also are important factors to affect the property of this board.

  12. Factors affecting on bond strength of glass fiber post cemented with different resin cements to root canal

    Science.gov (United States)

    Clavijo, V. R. G.; Bandéca, M. C.; Calixto, L. R.; Nadalin, M. R.; Saade, E. G.; Oliveira-Junior, O. B.; Andrade, M. F.

    2009-09-01

    Luting materials provides the retention of endodontic post. However, the failures of endodontic posts predominantly occurred are the losses of retention. Thus, the alternating use to remove the smear layer, open the dentine tubules, and/or etch the inter-tubular dentine can be provided by EDTA. This study was performed to evaluate effect of EDTA on bond strength of glass fiber post cemented with different resin cements to root canal. Fifty bovine incisors were selected and the crowns were removed to obtain a remaining 14-mm-height root. The roots were randomly distributed into five groups: GI: RelyX™ ARC/LED; GII: RelyX™ U100/LED; GIII EDTA/RelyX™ U100/LED; GIV: Multilink™; and GV: EDTA/Multlink™. After endodontic treatment, the post space was prepared with the drills designated for the quartz-coated-carbon-fiber post Aestheti-Post®. Before application of resin cements, root canals were irrigated with 17% EDTA (GIII and GV) during 1 min, rinsed with distilled water and dried using paper points. The light-cured materials were light-activated with UltraLume LED 5 (Ultradent, South Jordan, Utah) with power density of 1315 mW/cm2. Specimens were perpendicularly sectioned into approximately 1 mm thick sections and the stubs were performed on Universal Testing Machine. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical different between RelyX™ ARC (GI) and RelyX™ U100 independent of the pre-treatment (GII to GIII) ( P 0.05) to all resin cements between the Cervical to Apical regions (GI to GV). The use of 17% EDTA showed no difference significant between the resin cements evaluated (GII to GIII; GIV to GV). Within the limitations of the current study, it can be concluded that the use of EDTA did not provide efficiency on bond strength. The RelyX™ ARC showed higher bond strength values than RelyX™ U100.

  13. Experimental Study of Influencing Factors of Cement Curing Time%水泥候凝时间及其影响因素的试验研究

    Institute of Scientific and Technical Information of China (English)

    朱水英; 李维彦; 章成广; 周继宏

    2001-01-01

    针对温度、水灰比、缓凝剂这些影响水泥候凝时间的主要因素展开了试验研究。试验结果分析得出:①对同一温度同一缓凝剂,水灰比每减少约10%,最佳时间相应减少1~3 h;②对同一水灰比同一缓凝剂,温度每升高10℃,最佳测井时间缩短约2 h;③对同一温度同一水灰比,缓凝剂增加0.2%,最佳测量时间延迟2~3 h;④温度、水灰比、缓凝剂都是单独起作用,相互不受影响。%The key factors such as curing temperature, water-cement ratio and cement retarder, which influence the cement curing time, are studied experimentally. The experimental results demonstrate that:①optimal logging time reduces 1~3 hours when the density of cement slurry increases 0. 1g/cm3 under the conditions of the same temperature and same cement retarder;②optimal logging time reduces about 2 hours when the temperature increases 10C under the conditions of the same water-cement ratio and same cement retarder;③optimal logging time delay 2~3 hours when cement retarder increases 0. 2 % under the same temperature and same water-cement ratio; ④temperature, water-cement ratio and cement retarder act independently.

  14. Cement Conundrum

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China aims to streamline the crowded cement industry Policymakers are looking to build a concrete wall around the cement-making industry as they seek to solidify the fluid cement market and cut excessive production.

  15. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste.

    Science.gov (United States)

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui

    2016-09-01

    Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources. PMID:27187059

  16. Variations and factors that influence the formation of polychlorinated naphthalenes in cement kilns co-processing solid waste.

    Science.gov (United States)

    Jin, Rong; Zhan, Jiayu; Liu, Guorui; Zhao, Yuyang; Zheng, Minghui

    2016-09-01

    Pilot studies of unintentionally produced pollutants should be performed before waste being co-processed in cement kilns. Polychlorinated naphthalene (PCN) formation and emission from cement kilns co-processing sorted municipal solid waste, sewage sludge, and waste acid, however, have not previously been studied. Here, PCNs were analyzed in stack gas samples and solid samples from different stages of three cement production runs. PCN destruction efficiencies were higher when waste was co-processed (93.1% and 88.7% in two tests) than when waste was not co-processed (39.1%), so co-processing waste would not increase PCN outputs. The PCN concentrations were higher in particle samples from the C1 preheater and stages at back end of kiln than in particle samples from other stages, suggesting that cyclone preheater and back end of kiln should be focused for controlling PCN emissions. Besides that, based on the variation of PCN concentrations and corresponding operating conditions in different stages, the temperature, feeding materials, and chlorine content were suggested as the main factors influencing PCN formation. The PCN homologue and congener profiles suggested chlorination and dechlorination were the main PCN formation and decomposition pathways, and congeners CN-23, CN-46, and CN-59 appear to be appropriate indicators of PCNs emitted from coal-burning sources.

  17. 浅谈水泥土强度的影响因素%Study on the factors affecting the strength of cement-soil

    Institute of Scientific and Technical Information of China (English)

    林云腾

    2011-01-01

    针对水泥土在土体加固中的广泛应用,在综合各种文献的基础上,本文重点探讨了水泥土强度的若干影响因素。主要因素有土的天然含水率、土的物理性质、有机质含量、pH值、水泥掺入比、水灰比、水泥土含水率、龄期、养护条件,明确这些因素,有利于指导水泥土设计和施工从而达到预期目的。%Because of widely using of cement-soil in the soil reinforcement,this paper focuses on a number of factors affecting cement-soil strength in the basis of summarization of the literature.The main factors are the natural soil moisture,soil physical properties,organic matter content,pH value,SO2-4,cement ratio,water-cement ratio,moisture content of soil-cement,age,curing conditions.Definition of these factors is conducive for changing various factors in the design and construction of cement-soil to achieve the intended purpose.

  18. Analysis of Factors Affecting the Soundness Detection of Cement%影响水泥安定性判定的因素分析

    Institute of Scientific and Technical Information of China (English)

    陈晓燕; 陈亮

    2012-01-01

    The soundness of the cement is an important indicator of the cement testing project, according to the GB/T1346-2001 Test Method for Water Requirement of Normal Consistency, Setting Time and Soundness of Cement, this paper analyzed the main factors affecting the soundness detection of the cement and control measures, for reference.%水泥的安定性是水泥检测项目中的重要指标之一,文章依据GB/T1346-2001《水泥标准稠度用水量、凝结时间、安定性检验方法》认真分析了影响水泥安定性检测的主要因素及控制措施,谨供借鉴.

  19. Investigating different factors influencing job satisfaction: A case study of cement industry

    Directory of Open Access Journals (Sweden)

    Mina Shirvani

    2013-10-01

    Full Text Available Job satisfaction plays an important role on increasing business productivity and efficiency. This paper presents an empirical investigation to study the relationship between job satisfaction and employees’ personal characteristics including gender, marital status, etc. The proposed study designs a questionnaire and distributes it among 244 out of 800 employees who worked for cement industry in Iran. The data are analyzed using different statistical tests such as t-student and analysis of variance. The results indicate that while there was not any meaningful relationship between gender and job satisfaction there was some meaningful relationship between marital status and job satisfaction.

  20. Application of Factor Analysis on the Financial Ratios of Indian Cement Industry and Validation of the Results by Cluster Analysis

    Science.gov (United States)

    De, Anupam; Bandyopadhyay, Gautam; Chakraborty, B. N.

    2010-10-01

    Financial ratio analysis is an important and commonly used tool in analyzing financial health of a firm. Quite a large number of financial ratios, which can be categorized in different groups, are used for this analysis. However, to reduce number of ratios to be used for financial analysis and regrouping them into different groups on basis of empirical evidence, Factor Analysis technique is being used successfully by different researches during the last three decades. In this study Factor Analysis has been applied over audited financial data of Indian cement companies for a period of 10 years. The sample companies are listed on the Stock Exchange India (BSE and NSE). Factor Analysis, conducted over 44 variables (financial ratios) grouped in 7 categories, resulted in 11 underlying categories (factors). Each factor is named in an appropriate manner considering the factor loads and constituent variables (ratios). Representative ratios are identified for each such factor. To validate the results of Factor Analysis and to reach final conclusion regarding the representative ratios, Cluster Analysis had been performed.

  1. 水泥检测中的影响因素及质量检测探究%Explore Influence Factors and Quality Inspection of Cement Testing

    Institute of Scientific and Technical Information of China (English)

    姜云

    2013-01-01

    在建筑规模不断扩大的背景下,建筑项目的安全质量问题备受关注。而水泥作为最主要的建筑材料之一,就成为了保障工程质量的决定性因素,也是确保水泥质量的最有效措施。本文从水泥检测的重要性和必要性入手,分析水泥检测过程中的影响因素。对于完善水泥质量检测的过程,提出了切实有效的改进措施。%Under the background of the construction scale ex-pands unceasingly, safety and quality of building projects got to be concerned. While the cement as one of the main building materials, has became the decisive factor to guarantee engine-ering quality, and also to be the most effective measures to en-sure the quality of cement. This paper from the necessity and the importance of cement detection, analyzes influencing fact-ors of cement in the process of detection. To improve the proc-ess of the cement quality detection, it puts forward the meas-ures to improve the effective.

  2. Cementing porcelain-fused-to-metal crowns.

    Science.gov (United States)

    Vadachkoria, D

    2009-12-01

    The clinical success of fixed prosthodontic restorations can be complex and involve multifaceted procedures. Preparation design, oral hygiene/micro flora, mechanical forces, and restorative materials are only a few of the factors which contribute to overall success. One key factor to success is choosing the proper cement. Popular use of cements for PFM crowns has shifted from zinc phosphate and glass ionomer cements to resin-reinforced glass ionomer, or RRGI, cements. This change has been rapid and profound. Dental cements have always been less than ideal materials, but this is shift to the relatively new RRGI category justified. Resin-reinforced glass ionomer (RRGI) cements appear to be better than zinc phosphate and glass ionomer cements when placing porcelain-to-metal crowns. RRGI cements, such as RelyX Luting, Fuji Plus and Vitremer Luting Cement, satisfy more of the ideal characteristics of PFM cementation than any other previous cement. Expansion of all three cements has not caused any apparent problems with the cements when used with PFM or metal crowns, but these cements, however, should be avoided when cementing all-ceramic crowns. PMID:20090144

  3. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    OpenAIRE

    Nediljka Gaurina-Međimurec; Davorin Matanović; Gracijan Krklec

    1994-01-01

    During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures) and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production...

  4. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Science.gov (United States)

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  5. Cement Formation

    DEFF Research Database (Denmark)

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten;

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledge about the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including......−liquid reactions are discussed, as are the influences of particles sizes on clinker phase formation. Furthermore, a mechanism for clinker phase formation in an industrial rotary kiln reactor is outlined....

  6. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells.

    Science.gov (United States)

    Chung, Chooryung J; Kim, Euiseong; Song, Minju; Park, Jeong-Won; Shin, Su-Jung

    2016-05-01

    Mineral trioxide aggregate (MTA) is considered a pulp-capping agent of choice, but has the drawback of a long setting time. This study aimed to assess two different types of calcium-silicate cements as pulp-capping agents, by investigating their in vitro cytotoxicity and angiogenic effects in human pulp cells. ProRoot MTA, Endocem Zr, and Retro MTA were prepared as set or freshly mixed pellets. Human pulp-derived cells were grown in direct contact with these three cements, Dycal, or no cement, for 7 days. Initial cell attachment, viability, calcium release, and the levels of vascular endothelial growth factor (VEGF), angiogenin, and basic fibroblast growth factor (FGF-2) were evaluated statistically using a linear mixed model (P calcium concentration compared with the control group (P  0.05). We demonstrate that Retro MTA, which has a short setting time, has similar biocompatibility and angiogenic effects on human pulp cells, and can therefore potentially be as effective in pulp capping as ProRoot MTA. Endocem Zr showed intermittent cytotoxicity and elicited lower levels of VEGF and angiogenin expression. PMID:25596932

  7. Main factors of cement water demand and the control method%影响水泥需水量的主要因素和控制方法

    Institute of Scientific and Technical Information of China (English)

    夏晖; 雷娜; 俞岳灿; 贺烽

    2013-01-01

      水泥需水量是影响混凝土性能的重要因素之一,降低水泥需水量对降低混凝土用水量,提高强度,降低水泥用量,节约生产成本,推动产业的节能降耗和技术进步都具有十分重要的意义。详细对影响水泥需水量的主要因素逐一进行探讨,由此提出设计和工厂生产中降低水泥需水量的技术措施。%Cement water demand is one of the important influencing factors on the performance of concrete. Reducing water demand has fundamental significance for decreasing concrete water consumption, improving strength, lowering cement content, saving produc-tion cost and promoting industry's energy saving and consumption reducing. The factors was discussed one by one in detail, and techni-cal measures to decrease cement water demand in design and plant production were put forward.

  8. Analysis of Factors Affecting the Compressive Strength of Cemented Backfill%胶结充填体抗压强度的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    杨安国; 周宗红; 张秋华

    2014-01-01

    This paper introduces some factors influencing the compressive strength of cemented filling body, in order to demonstrate that the compressive strength of cemented filling body is affected by cementitious materials, inert material, slurry concentration, material ratio and curing conditions. In addition, this paper also points out some problems in mine cemented filling process and the improvement direction.%本文通过介绍影响胶结充填体抗压强度的若干因素,目的是为了说明胶结充填体抗压强度受到胶凝材料、惰性材料、料浆浓度以及物料配比和养护条件等因素的影响。此外,本文还指出了目前矿山胶结在充填过程中存在的一些问题以及改进的方向。

  9. Sustainable Development of the Cement Industry and Blended Cements to Meet Ecological Challenges

    OpenAIRE

    Konstantin Sobolev

    2003-01-01

    The world production of cement has greatly increased in the past 10 years. This trend is the most significant factor affecting technological development and the updating of manufacturing facilities in the cement industry. Existing technology for the production of cement clinker is ecologically damaging; it consumes much energy and natural resources and also emits pollutants. A new approach to the production of blended or high-volume mineral additive (HVMA) cement helps to improve its ecologi...

  10. Effects of Riyadh cement industry pollutions on some physiological and morphological factors of Datura innoxia Mill. plant.

    Science.gov (United States)

    Salama, Hediat M H; Al-Rumaih, M M; Al-Dosary, M A

    2011-07-01

    Cement factory emissions into air cause serious air pollution and affect the plant and animal life in the environment. Herein, we report the effects of cement industry emissions (O3, SO2 and NO2) in air, as pollutants, at Riyadh City on Datura innoxia Mill. plant. Morphological characters including plant height, leaves area and number, fresh and dry weight of shoot and root systems of D. innoxia showed a significant reduction from their normal control plants as a response to exposure to pollutant emissions. Chlorophyll and carotenoid contents recorded reductions in values compared to control plant, and the lowest values of chlorophyll A, B, total chlorophyll, carotenoids and total pigments were 0.431, 0.169, 0.60, 0.343 and 0.943 mg/g respectively at a distance of 1-5 m from the cement factory in fruiting stage. These changes in values may be attributed to a probable deceleration of the biosynthetic process rather than degradation of pigments. Further D. innoxia showed a significant (P plant. The root system recorded the lowest values of reducing sugars (0.350 mg/g f. wt.), non-reducing sugars (0.116 mg/g f. wt.), total sugars (0.466 mg/g f. wt.), protein content (0.931 mg/g f. wt.) and total lipids content (0.669 mg/g f. wt.) in fruiting stage at a distance of 1-5 m from the cement factory. The peroxidase activity of shoot and root systems of the studied plant was also significantly higher than those of control plant. Thus a highest value of (29.616 units/g f. wt.) peroxidase activity was recorded in vegetative stage of shoot system at a distance 1-5 m from the cement factory. Results of the study indicated that cement industry emission strongly influence the physiology and morphology of date palm D. innoxia which contribute date fruits, a staple food in the Arab world.

  11. 中国水泥生产碳排放系数测算典型研究%Carbon Emission Factors for Cement Plants in China

    Institute of Scientific and Technical Information of China (English)

    赵建安; 魏丹青

    2013-01-01

    The carbon emission coefficient system of cement production is the most important basic parameter when calculating cement carbon emissions. This paper briefly introduces the accuracy and applicability of these methods, most of which contain four aspects: operational boundaries, raw material calcination emission, fuel combustion emissions and indirect emission. We selected two typical NSP clinker production lines form western China and found that the CO2 emissions factor can be reduced by using acetylene sludge, steel slag and pyrite cinder as alternative raw material, because these materials provide CaO, the basic ingredients necessary for production, and no CO2 emissions. As a result, the usual calculation method for raw material calcination emissions will not be applicable. The correct approach is to convert the type and weight ratio of all alternative raw material with CaO and MgO into a corrected parameter. There is a significant difference in classification standards, low calorific value and CO2 emission factors of coal between the IPCC default-value and China's actual use of coal in cement production. Almost all the China' s cement plants using bituminous coal as their production fuel, therefor the fuel combustion CO2 emission factor should be in the range of 250~350 kgCO2 per tonne clinker, which is 27% lower than IPCC default-value. The CO2 emission factor of unit cement is overvalued by 10%, because international researchers believe that the clinker/cement ratio of China' s cement manufacturing plants ranges from 80%~85%, while the practical value is approximately 65%. On this basis of the above, we hold opinion that CO2 emissions of China's cement production will be seriously overvalued using IPCC or WBCSD default calculation factors. Last, four techniques to reduce CO2 emissions from the cement manufacturing industries are reviewed: using alternative raw material, using alternative fuels instead of fossil fuels, reducing electricity consumption, and

  12. Analysis of the Influencing Factors and the Quality Inspection of Cement Testing%水泥检测中的影响因素分析及质量检测

    Institute of Scientific and Technical Information of China (English)

    林文明

    2015-01-01

    在水泥工程施工过程中,为了确保建筑项目施工质量及其安全、可靠性,应当加强水泥检测.水泥检测是一项非常复杂且技术含量较高的工作,加之检测过程中的外界影响因素较多,因此水泥质检难度较大,对其加以研究意义重大.%In the process of cement engineering construction, in order to ensure the construction quality and safety, reliability, should strengthen the cement testing. Cement detection is a very complex and high technical work, in addition to the detection process of the outside influence factors, so the difficulty of cement quality control is difficult, it is important to study the significance of the study.

  13. US cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Nisbet, M.A.

    1997-12-31

    This paper describes the cement and concrete industry, and provides data on energy use and carbon dioxide emissions. The potential impact of an energy tax on the industry is briefly assessed. Opportunities identified for reducing carbon dioxide emissions include improved energy efficiency, alternative fuels, and alternative materials. The key factor in determining CO{sub 2} emissions is the level of domestic production. The projected improvement in energy efficiency and the relatively slow growth in domestic shipments indicate that CO{sub 2} emissions in 2000 should be about 5% above the 1990 target. However, due to the cyclical nature of cement demand, emissions will probably be above target levels during peak demand and below target levels during demand troughs. 7 figs., 2 tabs.

  14. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    The use of cement and concrete to immobilise radioactive waste is complicated by the wide- ranging nature of inorganic cementing agents available as well as the range of service environments in which cement is used and the different functions expected of cement. For example, Portland cement based concretes are widely used as structural materials for construction of vaults and tunnels. These constructions may experience a long pre-closure performance lifetime during which they are required to protect against collapse and ingress of water: strength and impermeability are key desirable characteristics. On the other hand, cement and concrete may be used to form backfills, ranging in permeability. Permeable formulations allow gas readily to escape, while impermeable barriers retard radionuclide transport and reduce access of ground water to the waste. A key feature of cements is that, while fresh, they pass through a fluid phase and can be formed into any shape desired or used to infiltrate other materials thereby enclosing them into a sealed matrix. Thereafter, setting and hardening is automatic and irreversible. Where concrete is used to form structural elements, it is also natural to use cement in other applications as it minimises potential for materials incompatibility. Thus cement- mainly Portland cement- has been widely used as an encapsulant for storage, transport and as a radiation shield for active wastes. Also, to form and stabilise structures such as vaults and silos. Relative to other potential matrices, cement also has a chemical immobilisation potential, reacting with and binding with many radionuclides. The chemical potential of cements is essentially sacrificial, thus limiting their performance lifetime. However performance may also be required in the civil engineering sense, where strength is important, so many factors, including a geochemical description of service conditions, may require to be assessed in order to predict performance lifetime. The

  15. 石油固井质量的影响因素及应对措施研究%Study on the factors and countermeasures affecting oil well cementing quality

    Institute of Scientific and Technical Information of China (English)

    宋伟东

    2015-01-01

    本文简要介绍了石油固井质量的影响因素,并且给出了相应的解决对策,为我国石油固井质量的提高提供了一定的借鉴作用。%This paper briefly introduces the factors affecting the cementing quality,and gives the corresponding countermeasures,to provide a reference for our country to improve the quality of well cementing.

  16. 影响水泥混凝土路面平整度的因素分析与对策%Analysis on the Factors Influencing Cement Concrete Pavement Flatness and Countermeasures

    Institute of Scientific and Technical Information of China (English)

    王晓玲

    2011-01-01

    本文对高速公路水泥混凝土路面平整度的影响因素进行了分析,详细地阐述了提高混凝土路面平整度的施工控制措施,以保证水泥混凝土路面平整、行车舒适、经久耐用,对水泥混凝土路面发展具有重要意义.%The paper analyzes the factors affecting highway cement concrete pavement flatness and describes control measures in detail to improve the construction of concrete pavement smoothness so that to ensurethe cement concrete road surface flatness, driving comfort and durability, which is of great significance to the development of cement concrete pavement.

  17. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ching-Chuan [Antai Medical Care Cooperation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan (China); Kao, Chia-Tze; Hung, Chi-Jr [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Chen, Yi-Jyun [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Dental Department, Taichung Hospital, Ministry of Health and Welfare, Taichung City, Taiwan (China); Huang, Tsui-Hsien, E-mail: thh@csmu.edu.tw [School of Dentistry, Chung Shan Medical University, Taichung, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [Institute of Oral Science, Chung Shan Medical University, Taichung, Taiwan (China)

    2014-04-01

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  18. Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of β-tricalcium phosphate for bone cement by calcium silicate

    International Nuclear Information System (INIS)

    β-Tricalcium phosphate (β-TCP) is an osteoconductive material. For this research we have combined it with a low degradation calcium silicate (CS) to enhance its bioactive and osteostimulative properties. To check its effectiveness, a series of β-TCP/CS composites with different ratios were prepared to make new bioactive and biodegradable biocomposites for bone repair. Formation of bone-like apatite, the diametral tensile strength, and weight loss of composites were considered before and after immersion in simulated body fluid (SBF). In addition, we also examined the effects of fibroblast growth factor-2 (FGF-2) released from β-TCP/CS composites and in vitro human dental pulp cell (hDPC) and studied its behavior. The results showed that the apatite deposition ability of the β-TCP/CS composites was enhanced as the CS content was increased. For composites with more than 50% CS contents, the samples were completely covered by a dense bone-like apatite layer. At the end of the immersion point, weight losses of 19%, 24%, 33%, 42%, and 51% were observed for the composites containing 0%, 30%, 50%, 70% and 100% β-TCP cements, respectively. In vitro cell experiments show that the CS-rich composites promote human dental pulp cell (hDPC) proliferation and differentiation. However, when the CS quantity in the composite is less than 70%, the amount of cells and osteogenesis protein of hDPCs was stimulated by FGF-2 released from β-TCP/CS composites. The combination of FGF-2 in degradation of β-TCP and osteogenesis of CS gives a strong reason to believe that these calcium-based composite cements may prove to be promising bone repair materials. - Highlights: • CS improved physicochemical properties and osteogenic activity of β-TCP. • The higher the CS in the cement, the shorter the setting time and the higher the DTS. • The cell behavior was stimulated by FGF-2 released from composite containing 50% CS. • β-TCP/CS composite with FGF-2 has optimal properties for

  19. Progress in the related factors of vertebral refracture after bone cement augmentation%骨水泥强化术后椎体再骨折的相关因素研究进展

    Institute of Scientific and Technical Information of China (English)

    贾璞; 唐海

    2013-01-01

    With the advances in medical technology, the use of bone cement augmentation in the treatment of osteoporotic vertebral compression fractures has been widely used to get a satisfactory effect. However, refractures after bone cement augmentation have also obtained more and more attention. Nowadays, there are a lot of studies on the risk factors of vertebral refractures, including biomechanics, bone cement leakage, osteoporosis and other factors. In this paper, the related factors of vertebral refracture after bone cement augmentation were reviewed.%骨水泥强化术已被广泛用于骨质疏松性椎体压缩骨折的治疗.骨水泥强化术后椎体再骨折也受到越来越多的关注.国内外研究认为椎体再骨折的危险因素包括生物力学、骨水泥渗漏、骨质疏松等.本文就骨水泥强化术后椎体再骨折的相关因素进行综述

  20. 某高速公路水泥搅拌桩成桩质量影响因素分析%Analysis of Influence Factors of Cement Mixing Pile Quality

    Institute of Scientific and Technical Information of China (English)

    万晓峰; 刘军; 毛益佳

    2012-01-01

    水泥搅拌桩成桩质量影响因素众多,控制不力往往达不到预期效果。在正式施工前应根据成桩质量的影响因素,对水泥搅拌桩的地区适用性展开研究。文章结合贵州某高速公路试验段水泥搅拌桩成桩质量缺陷的研究工作实例,从水泥搅拌桩成桩质量的影响因素出发,制定室内试验和现场试桩方案,结果表明土的含水量、塑性指数和有机质含量等是影响该地区水泥搅拌桩成桩质量的主要因素。%The quality of the cement mixing pile is affected by many factors.Lack of control will lead to the failure of expected result.Before formal construction,region suitability according to the influence factors of the quality of cement mixing pile should be researched.Combined with the example of a highway testing cement mixing pile quality defect research in Guizhou,indoor test and field test pile program were made,considering influence factors of the cement mixing pile quality.The results show that soil moisture content,plasticity index and organic matter content were main influence factors of the cement mixing pile quality in the region.

  1. 水泥稳定钢渣碎石抗裂性能影响因素研究%Research on the Influencing Factors of the Anti-cracking Ability of Cement Stabilized Steel Slag Gravel

    Institute of Scientific and Technical Information of China (English)

    冯群英

    2015-01-01

    This paper analyzes the drying shrinkage test of the cement stabilized steel slag gravel with different cement dosage, moisture content, grading types and gravel content. The key factors affecting the anti-cracking ability of cement stabilized steel slag gravel and the reasonable range of the gravel blending are obtained, and the factors affecting the shrinkage crack of cement stabilized steel slag gravel are found out.%本文对水泥稳定钢渣碎石不同水泥剂量、含水量、级配类型、碎石掺量的干缩试验结果进行研究分析,得出影响水泥稳定钢渣碎石抗裂性能的关键因素以及碎石掺配的合理范围,找出减少水泥稳定钢渣碎石基层产生干缩裂缝影响因素。

  2. The importance of a thick cement mantle depends on stem geometry and stem-cement interfacial bonding.

    Science.gov (United States)

    Caruana, J; Janssen, D; Verdonschot, N; Blunn, G W

    2009-04-01

    The thickness of the cement mantle around the femoral component of total hip replacements is a contributing factor to aseptic loosening and revision. Nevertheless, various designs of stems and surgical tooling lead to cement mantles of different thicknesses. Opinion is divided on whether a thick mantle enhances implant longevity. This study investigates the effect of cement mantle thickness on accumulated damage in the cement, and how this is influenced by the presence or absence of a proximal collar and on whether the stem-cement interface remains bonded. Three-dimensional finite element simulations incorporating creep and non-linear damage accumulation were performed to investigate cracking in the cement mantles around Stanmore Hips under physiologically informed stair-climbing and gait loads. Cement mantle thickness, stem-cement interfacial bonding, and collar design were varied to assess the interactive effects of these parameters. In all cases, damage levels were three to six times higher when the stem-cement interface remained bonded. Cement mantle thickness had little effect on cement damage accumulation around debonded collared stems but was critical in both bonded and collarless cases, where a thicker mantle reduced cement cracking. Damage around a smooth debonded stem with a collar is thus much less sensitive to cement thickness than around bonded or collarless stems. PMID:19405437

  3. Asphalt cement poisoning

    Science.gov (United States)

    ... petroleum material that hardens when it cools. Asphalt cement poisoning occurs when someone swallows asphalt. If hot ... found in: Road paving materials Roofing materials Tile cements Asphalt may also be used for other purposes.

  4. CO2 Capture by Cement Raw Meal

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll;

    2013-01-01

    The cement industry is one of the major sources of CO2 emissions and is likely to contribute to further increases in the near future. The carbonate looping process has the potential to capture CO2 emissions from the cement industry, in which raw meal for cement production could be used...... as the sorbent. Cyclic experiments were carried out in a TGA apparatus using industrial cement raw meal and synthetic raw meal as sorbents, with limestone as the reference. The results show that the CO2 capture capacities of the cement raw meal and the synthetic raw meal are comparable to those of pure limestone....... The CO2 capture capacity of limestone in the raw meal is lower than for pure limestone. The difference in the CO2 capture capacity decreases with an increase in cycle number. The calcination conditions and composition are major factors that influence the CO2 capture capacity of limestone. At 850 °C in N2...

  5. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job

  6. INFLUENCE OF GLASS CULLET IN CEMENT PASTES

    Institute of Scientific and Technical Information of China (English)

    A.Karamberi; E.Chaniotakis; D.Papageorgiou; A.Moutsatsou

    2006-01-01

    The present study investigates glass and cement compatibility with a view to use glass as a cement replacement. Amber, flint and green glasses were chosen due to their prevalence in the Greek market as packaging materials. The factors under investigation were the pozzolanicity of the glass cullet, the hydration rate and the mechanical strength development of the cement pastes, as well as the expansion of the specimens due to alkali-silica reaction.Moreover, the potential enhancement of glass pozzolanic activity was examined. The results of the study were encouraging to show the potentiality of utilising glass cullet in cementitious products.

  7. Factors Influencing Marginal Fit of Crowns after Cementation: A multiple Linear Regression Analysis.%全冠边缘间隙影响因素的多元线性回归分析

    Institute of Scientific and Technical Information of China (English)

    章少萍; 马守治; 陈熙; 童新文; 李秀容; 张维文

    2011-01-01

    目的:评价多种因素对粘固后全冠边缘间隙(marginal discrepancies of crowns after cementation,MDAC)的影响,这些因素包括预备体完成线形态(finish line of preparation,FLP)、预备体轴壁倾斜角(taper angle of axialwall of preparation,TAAWP)、预备体高度(height from occlusal surface to ends of preparation,HP)、粘固前的全冠边缘间隙(marginal discrepancies of crowns before cementation,MDBC)以及粘固剂的粉液比例(powder/liquid ra-tios of cement,PLRC).方法:制作24种不同设计形式的预备体不锈钢代型,每种形式制作10个,总共制作240个金属代型.在每个代型上制作一个金属冠.在同一种代型上制作的10个金属冠中的5个采用粉液比2 g:1 g调和的玻璃离子粘固,另5个用3 g:1 g比例调和的玻璃离子进行粘固.测量粘固前后的全冠边缘间隙.采用多元线性回归方法分析前面提到的多个变量是否会对粘固后的全冠边缘间隙产生影响.结果:粘固后全冠边缘间隙显著提高.多元线性回归分析表明FLP、TAAWP、HP、MDBC以及PLRC共同影响粘固后的全冠边缘间隙.结论:同FLP和MDBC相比,TAAWP、HP和PLRC对粘固后的全冠边缘间隙的影响则更加显著.%Objective: To evaluate the influence of various factors, including finish lines of preparations (FLP), taper angles of axial walls of preparations (TAAWP), height from occlusal surfaces to ends of preparations (HP),marginal discrepancies of crowns before cementation (MDBC), and powder/liquid ratios of cement (PLRC) on the MDAC. Methods: Twenty-four preparation designs of steel dies were machined, and ten dies were fabricated for every design. A total of 240 metal crowns were fabricated on the metal dies. Five of the ten crowns fabricated on the same design of die was cemented on its die with glass ionomer cement at a powder/liquid ratio of 2g/lg, while the others were cemented on its die at a powder/liquid ratio of 3g/lg. Marginal discrepancies were

  8. ULTRA-LIGHTWEIGHT CEMENT

    International Nuclear Information System (INIS)

    The objective of this project is to develop an improved ultra-lightweigh cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems, Task 2: Review Russian Ultra-Lightweight Cement Literature, and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary surface pipe and intermediate casing cementing conditions historically encountered in the US and establishment of average design conditions for ULHS cements. Russian literature concerning development and use of ultra-lightweight cements employing either nitrogen or ULHS was reviewed, and a summary is presented. Quality control testing of materials used to formulate ULHS cements in the laboratory was conducted to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS. This protocol is presented and discussed. finally, results of initial testing of ULHS cements is presented along with analysis to establish cement performance design criteria to be used during the remainder of the project

  9. The influence of cement mantle thickness and stem geometry on fatigue damage in two different cemented hip femoral prostheses.

    Science.gov (United States)

    Ramos, A; Simões, J A

    2009-11-13

    thickness is an important factor for the success of THR and this study evidenced that cement thickness higher than 2 mm apparently does not affect the mechanical behavior of the cement mantel and induce more crack formation on the cement-bone interface. PMID:19660758

  10. Low physical activity work-related and other risk factors increased the risk of poor physical fitness in cement workers

    Directory of Open Access Journals (Sweden)

    Ditha Diana

    2009-09-01

    Full Text Available Aim Low physical activity causes poor physical fitness, which leads to low productivity. The objective of this study was to determine the effects of low work-related physical activity and other risk factors on physical fitness.Methods This study was done in February 2008. Subjects were workers from 15 departments in PT Semen Padang, West Sumatera (Indonesia. Data on physical activities were collected using the questionnaire from the Student Field Work I Guidebook and Hypertension – Geriatric Integrated Program of the Faculty of Medicine, Universitas Indonesia2003. Physical fitness was measured using the Harvard Step Test.Results A number of 937 male workers aged 18 – 56 years participated in this study. Poor physical fitness was found in 15.9% of the subjects. Low work-related physical activity, smoking, lack of exercise, hypertension, diabetes mellitus, and asthma were dominant risk factors related to poor physical fi tness. Subjects with low compared to high work-related activity had a ten-fold risk of poor physical fitness [adjusted odds ratio (ORa = 10.71; 95% confidence interval (CI = 4.71–24.33]. In term of physical exercise, subjects who had no compared to those who had physical exercise had a six-fold risk of poor physical fitness (ORa = 6.30; 95%CI = 3.69-10.75.Conclusion Low work-related physical activities, smoking, lack of exercise, hypertension, diabetes mellitus, and sthma were correlated to poor physical fi tness. It is, among others, therefore necessary to implement exercises for workers with poor physical fitness. (Med J Indones. 2009;18:201-5Key words: exercise test, occupational healths, physical fitness

  11. Disintegration of Bone Cement by Continuous and Pulsating Water Jet

    OpenAIRE

    S. Hloch; Foldyna, J.; Sitek, L. (Libor); M. Zeleňák; Hlaváček, P.; Hvizdoš, P.; Kloc, J.; Monka, P.; Monková, K.; Kozak, D.; Magurová, D.

    2013-01-01

    The paper deals with the study of using continuous water jet and ultrasonic pulsating water jet for bone cement disintegration. Bone-cement Pallacos R+G (manually mixed) was disintegrated ex-vivo. Mechanical properties of the bone cement were determined by nano-indentation. Factors employed in evaluation were pressure (40, 80, 120) MPa and traverse speed for continuous water jet, pressure (8, 10, 12, 14, 16, 20) MPa and orifice type (flat, circular) for ultrasonic pulsating water jet. Depth p...

  12. 影响长垣油田固井质量的地质因素分析%All Affect the Cementing Quality of Oil Field Geological Factors Analysis

    Institute of Scientific and Technical Information of China (English)

    张阳阳; 王连生; 汪佳

    2012-01-01

    为分析影响长垣油田固井质量的地质因素,根据长垣油田储层特征,选取第六、第一、第三厂具代表性的岩心样品106块,通过室内试验,测定样品的孔隙度、渗透率及岩石密度.通过各项物性参数与固井综合优质率及非优井段分别进行回归拟合分析,得出其最大相关系数,以此区分影响固井质量的主要因素和次要因素.研究结果表明:对固井质量影响较大的地质因素是孔隙压力和气油比.气油比与非优井段比例相关系数达到0.76;压力系数与综合优质率呈反相关,相关系数0.665.通过开展油田高含水后期油层物性变化对固井质量影响关系及配套技术的研究,定量分析油田高含水后期储层物性变化对固井质量影响,为研究适应油田开发需要的调整井固井工艺技术提供依据,对保证油田高含水后期开发效果具有重要意义.%For all oil field analysis on the cementing quality of geological factors, according to the changyuan oilfield reservoir characteristics, the selection sixth, first, third factory representative the core sample 106 piecev through the laboratory test, measure samples of porosity, permeability and rock density. Through the various physi cal parameters and cementing comprehensive ratio and the optimal interval regression analysis respectively, and the biggest correlation coefficient is obtained, to distinguish between the cementing quality of the main influence factors and secondary factors. The results show that the cementing quality of geological factors influencing is pore pressure and oil than. Oil and gas than the optimal interval ratio are relations to 0.76, the pressure coefficient and the com prehensive in inverse relationship finally, correlation coefficient of 0. 665. Through the development of oilfield of high water cut period petrophysical property change on cementing quality influence and supporting technology re search , quantitative analysis of

  13. Tympanoplasty with ionomeric cement

    DEFF Research Database (Denmark)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy...

  14. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  15. Chemical and Physical Reactions of Wellbore Cement under CO2 Storage Conditions: Effects of Cement Additives

    Science.gov (United States)

    Kutchko, B. G.; Strazisar, B. R.; Huerta, N.; Lowry, G. V.; Dzombak, D. A.; Thaulow, N.

    2008-12-01

    Sequestration of CO2 into geologic formations requires long-term storage and low leakage rates to be effective. Active and abandoned wells in candidate storage formations must be evaluated as potential leakage points. Wellbore integrity is an important part of an overall integrated assessment program being developed at NETL to assess potential risks at CO2 storage sites. Such a program is needed for ongoing policy and regulatory decisions for geologic carbon sequestration. The permeability and integrity of the cement in the well is a primary factor affecting its ability to prevent leakage. Cement must be able to maintain low permeability over lengthy exposure to reservoir conditions in a CO2 injection and storage scenario. Although it is known that cement may be altered by exposure to CO2, the results of ongoing research indicate that cement curing conditions, fluid properties, and cement additives play a significant role in the rate of alteration and reaction. The objective of this study is to improve understanding of the factors affecting wellbore cement integrity for large-scale geologic carbon sequestration projects. Due to the high frequency use of additives (pozzolan) in wellbore cement, it is also essential to understand the reaction of these cement-pozzolan systems upon exposure to CO2 under sequestration conditions (15.5 MPa and 50°C). Laboratory experiments were performed to determine the physical and chemical changes, as well as the rate of alteration of commonly used pozzolan-cement systems under simulated sequestration reservoir conditions, including both supercritical CO2 and CO2-saturated brine. The rate of alteration of the cement-pozzolan systems is considerably faster than with neat cement. However, the alteration of physical properties is much less significant with the pozzolanic blends. Permeability of a carbonated pozzolanic cement paste remains sufficiently small to block significant vertical migration of CO2 in a wellbore. All of the

  16. Test on Sensor Effect of Cement Matrix Piezoelectric Composite

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaoming; LI Zhongxian; DING Yang; LI Zongjin

    2005-01-01

    A novel cement matrix smart piezoelectric composite and its application as sensing element are presented.A cement matrix smart piezoelectric composite piece encapsulated in a cement mortar formed a practical sensor, and it was tested on material test system with cyclic loading.According to the theoretical analysis, the function of the cement matrix piezoelectric sensor output voltage was expressed in terms of the magnitude of the input cyclic loading amplitude and frequency.The curve fitting of gain function that is defined as sensor′s gain factor under different frequencies of input loading was carried out. From the results of curve fitting, it is found that the cement matrix smart piezoelectric composite has a simple relationship between input loading and output voltage.Therefore the cement matrix piezoelectric composite sensor is suitable to be applied in structural health monitoring.

  17. Cementing and formation damage; Cimentacao e dano a formacao

    Energy Technology Data Exchange (ETDEWEB)

    Souza, David Soares de [PETROBRAS, BA (Brazil). Distrito de Perfuracao da Bahia. Div. de Tecnicas e Operacoes

    1994-07-01

    This work presents a general perspective on cementing and formation damage. Few relative experiments to the damage to the formation, that they involve the casing activity and cementing, consider all the factors that affect these operations. So that she can analyze the contribution of a primary cementing has in the formation damage , it should be considered, also, the contribution of the drilling fluid and of the operation of the perforation. With base in experimental data of several accomplished studies, it can be concluded that a primary cementing has small, or any, contribution in the decrease of the productivity of an oil well.

  18. Low-cycle fatigue of surgical cements

    Directory of Open Access Journals (Sweden)

    A. Balin

    2007-01-01

    Full Text Available Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanicalinterraction in the cement seems to be a significant importance. The paper suggests to adapt the research methodof low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements havealso been modified in order to improve their functional properties.Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamedcement without an addition and on samples modified with glassy carbon and titanium. The tests were conductedon a servohydraulic fatigue testing machine, MTS-810, with displacement control.Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, thephenomenon of stress cyclic relaxation was observed.Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the lowcycle fatigue method takes into account all high value stresses, while cement is being used for endoprosthesesfor many years in the conditions of random stress and deformation courses. Therefore the obtained stress anddeformation values are bigger than those which would have been obtained in real conditions in the same time.Practical implications: The low cycle fatigue tests carried out showed how important is the factor of timefor the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assessits usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is acharacteristic feature for material viscoelasticity enables its regeneration conditioning expected durability ofendoprosthesis of joints.Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hipjoint enables to carry out the tests in a shorter period of time.

  19. 海拉尔固井质量的影响因素及应对措施%Influential factors and solutions to cementing quality of Haila’er oilfield

    Institute of Scientific and Technical Information of China (English)

    张元坤

    2015-01-01

    The factors that influence the cementing quality in Haila’er Oilfield are analyzed from different aspects,and relative solutions are provided for the designers and operators.%本文从不同的角度对海拉尔油田固井质量的影响因素进行了全面、系统的分析,提出了相应的应对措施以供设计及固井施工人员进行参考。

  20. Coupled effect of cement hydration and temperature on hydraulic behavior of cemented tailings backfill

    Institute of Scientific and Technical Information of China (English)

    WU Di; CAI Si-jing

    2015-01-01

    Cemented tailings backfill (CTB) is made by mixing cement, tailings and water together, thus cement hydration and water seepage flow are the two crucial factors affecting the quality of CTB. Cement hydration process can release significant amount of heat to raise the temperature of CTB and in turn increase the rate of cement hydration. Meanwhile, the progress of cement hydration consumes water and produces hydration products to change the pore structures within CTB, which further influences the hydraulic behavior of CTB. In order to understand the hydraulic behavior of CTB, a numerical model was developed by coupling the hydraulic, thermal and hydration equations. This model was then implemented into COMSOL Multiphysics to simulate the evolutions of temperature and water seepage flow within CTB versus curing time. The predicted outcomes were compared with correspondent experimental results, proving the validity and availability of this model. By taking advantage of the validated model, effects of various initial CTB and curing temperatures, cement content, and CTB's geometric shapes on the hydraulic behavior of CTB were demonstrated numerically. The presented conclusions can contribute to preparing more environmentally friendly CTB structures.

  1. 基于累积损伤因子的水泥混凝土路面设计%Cement concrete pavement design based on cumulative damage factor

    Institute of Scientific and Technical Information of China (English)

    蔡良才; 朱占卿; 吴爱红; 潘正华; 王维国

    2012-01-01

    Based on the compositive fatigue equation of load fatigue stress and temperature fatigue stress, the coverage-to-pass ratios of single-axle-single-wheel load and single-axle-double-wheel load were calculated by adopting cumulative damage factor. A direct calculating method of total cumulative fatigue damage of pavement structure produced by multi-axle load and a new design method of cement concrete pavement were put forward by replacing design axle load with cumulative damage factor. The accuracy and application feasibility of calculating fatigue damage produced by multi-axle load were done through a design example with two types of traffic volumes. Analysis result indicates that the acting times of multi-axle load at all points on the cross section of highway are different, and the peak value of cumulative damage of each axle load may be not at the same location. The thicknesses of worst pavement places under the traffic volumes calculated by the design method based on cumulative damage factor are all 22 cm, which meets the design requirement, and the thicknesses of other places can reduce according to the cumulative damage curve. Thereby, it can avoid the differences and localizations of present specification design method of concrete pavement based on standard axle load and equivalent fatigue consumption principle. 1 tab, 8 figs, 12 refs.%考虑荷载疲劳应力和温度疲劳应力的综合疲劳方程,计算了单轴单轮及单轴双轮轴载的覆盖通行率,利用累积损伤因子替代标准轴载在交通量换算中的作用,提出了直接计算各级轴载对路面结构总的累积疲劳损伤方法和新的水泥混凝土路面设计方法,并采用两组交通量对轴载累积损伤量的计算方法的准确性与可行性进行了验证。分析结果表明:公路横断面上各点处轴载的作用次数是不同的,各级轴载的累积疲劳损伤峰值不一定在同一位置,利用基于累积损伤因子的水泥混凝土路面设计

  2. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  3. POZZOLAN AND CEMENTS WITH POZZOLAN

    OpenAIRE

    Kaplan, Hasan; Hanifi BİNİCİ

    1995-01-01

    Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, ce...

  4. Mechanism and Preventive Technology of the Thaumasite Form of Sulfate Attack on Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The deterioration mechanism of thaumasite towards cement or concrete structure and the deterioration pattern of in-situ construction caused by the formation of thaumasite were studied in this paper. To improve the TSA (the thaumasite form of sulfate attack) resistance, the cement type, water to cement ratios, the mineral admixture and the circumstance factors should be taken into consideration.

  5. Chloride binding of cement-based materials subjected to external chloride environment - A review

    OpenAIRE

    Yuan, Q.; Shi, C; Schutter, G. de; Audenaert, K.; Deng, D.

    2009-01-01

    This paper reviews the chloride binding of cement-based materials subjected to external chloride environments. Chloride ion exist either in the pore solution, chemically bound to the hydration products, or physically held to the surface of the hydration products. Chloride binding of cement-based material is very complicated and influenced by many factors, such as chloride concentration, cement composition, hydroxyl concentration, cation of chloride salt, temperature, supplementary cementing m...

  6. Influence of Temporary Cements on the Bond Strength of Self-Adhesive Cement to the Metal Coronal Substrate.

    Science.gov (United States)

    Peixoto, Raniel Fernandes; De Aguiar, Caio Rocha; Jacob, Eduardo Santana; Macedo, Ana Paula; De Mattos, Maria da Gloria Chiarello; Antunes, Rossana Pereira de Almeida

    2015-01-01

    This research evaluated the influence of temporary cements (eugenol-containing [EC] or eugenol-free [EF]) on the tensile strength of Ni-Cr copings fixed with self-adhesive resin cement to the metal coronal substrate. Thirty-six temporary crowns were divided into 4 groups (n=9) according to the temporary cements: Provy, Dentsply (eugenol-containing), Temp Cem, Vigodent (eugenol-containing), RelyX Temp NE, 3M ESPE (eugenol-free) and Temp Bond NE, Kerr Corp (eugenol-free). After 24 h of temporary cementation, tensile strength tests were performed in a universal testing machine at a crosshead speed of 0.5 mm/min and 1 kN (100 kgf) load cell. Afterwards, the cast metal cores were cleaned by scraping with curettes and air jet. Thirty-six Ni-Cr copings were cemented to the cast metal cores with self-adhesive resin cement (RelyX U200, 3M ESPE). Tensile strength tests were performed again. In the temporary cementation, Temp Bond NE (12.91 ± 2.54) and Temp Cem (12.22 ± 2.96) presented the highest values of tensile strength and were statistically similar to each other (p>0.05). Statistically significant difference (pcementation of Ni-Cr copings with self-adhesive resin cement. In addition, Temp Cem (120.68 ± 48.27) and RelyX Temp NE (103.04 ± 26.09) showed intermediate tensile strength values. In conclusion, the Provy eugenol-containing temporary cement was associated with the highest bond strength among the resin cements when Ni-Cr copings were cemented to cast metal cores. However, the eugenol cannot be considered a determining factor in increased bond strength, since the other tested cements (1 eugenol-containing and 2 eugenol-free) were similar. PMID:26963209

  7. Research on Factors Affecting the Thermal Insulation Production of Vermiculite Bond by Cement%水泥膨胀蛭石保温隔热制品性能影响因素研究

    Institute of Scientific and Technical Information of China (English)

    王坚

    2012-01-01

    研究了影响水泥膨胀蛭石保温隔热热制品性能的关键因素.研究结果表明,膨胀蛭石的颗粒级配控制在1.18~4.75mm,其中1.18~ 2.36mm颗粒约占60%左右;水泥与膨胀蛭石的体积比为1∶6;水灰比为2.2;在压缩率为30%~35%的条件下成型;通过温度25±5℃,湿度60%~ 70%自然养护28d的制品具有良好的技术性能.%Key factors affecting the thermal insulation production of vermiculite bound by cement are studied in this paper. From the research results it is indicated that when grain composition is controlled between 1. 18 mm and 4. 75 mm of which the granules with size from 1. 18ram to 2. 36mm account for about 60% , the volume ratio of cement to vermiculite is one to six, the ratio of water to cement is 2. 2, the production is formed by the compression ratio of 30 - 35 per cent and by natural curing with the temperature of 25 ±5℃ and the humidity of 60 ~ 70 per cent for 28 days, the production has a good technical performance.

  8. Corrosion-resistant Foamed Cements for Carbon Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Gill, S.; Pyatina, T., Muraca, A.; Keese, R.; Khan, A.; Bour, D.

    2012-12-01

    The cementitious material consisting of Secar #80, Class F fly ash, and sodium silicate designed as an alternative thermal-shock resistant cement for the Enhanced Geothermal System (EGS) wells was treated with cocamidopropyl dimethylamine oxide-based compound as foaming agent (FA) to prepare numerous air bubble-dispersed low density cement slurries of and #61603;1.3 g/cm3. Then, the foamed slurry was modified with acrylic emulsion (AE) as corrosion inhibitor. We detailed the positive effects of the acrylic polymer (AP) in this emulsion on the five different properties of the foamed cement: 1) The hydrothermal stability of the AP in 200 and #61616;C-autoclaved cements; 2) the hydrolysis-hydration reactions of the slurry at 85 and #61616;C; 3) the composition of crystalline phases assembled and the microstructure developed in autoclaved cements; 4) the mechanical behaviors of the autoclaved cements; and, 5) the corrosion mitigation of carbon steel (CS) by the polymer. For the first property, the hydrothermal-catalyzed acid-base interactions between the AP and cement resulted in Ca-or Na-complexed carboxylate derivatives, which led to the improvement of thermal stability of the AP. This interaction also stimulated the cement hydration reactions, enhancing the total heat evolved during cement’s curing. Addition of AP did not alter any of the crystalline phase compositions responsible for the strength of the cement. Furthermore, the AP-modified cement developed the porous microstructure with numerous defect-free cavities of disconnected voids. These effects together contributed to the improvement of compressive-strength and –toughness of the cured cement. AP modification of the cement also offered an improved protection of CS against brine-caused corrosion. There were three major factors governing the corrosion protection: 1) Reducing the extents of infiltration and transportation of corrosive electrolytes through the cement layer deposited on the underlying CS

  9. ULTRA-LIGHTWEIGHT CEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  10. ENVIRONMENTAL IMPACT ASSESSMENT OF CEMENT-CONCRETE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,a life-cycle assessment methodology is used to evaluate the environmental effects of cement-concrete system.The production factors notably affecting environment are obtained and the way improving environmental effects is indicated.

  11. PART II. HYDRATED CEMENTS

    Directory of Open Access Journals (Sweden)

    Milan Drabik

    2014-09-01

    Full Text Available Essential focus of the study has been to acquire thermoanalytical events, incl. enthalpies of decompositions - ΔH, of technological materials based on two types of Portland cements. The values of thermoanalytical events and also ΔH of probes of technological compositions, if related with the data of a choice of minerals of calcium-silicate-sulfate-aluminate hydrates, served as a valued input for the assessment of phases present and phase changes due to the topical hydraulic processes. The results indicate mainly the effects of "standard humidity" or "wet storage" of the entire hydration/hydraulic treatment, but also the presence of cement residues alongside calcium-silicate-sulfate-aluminate hydrates (during the tested period of treatment. "A diluting" effect of unhydrated cement residues upon the values of decomposition enthalpies in the studied multiphase system is postulated and discussed

  12. Reducing cement's CO2 footprint

    Science.gov (United States)

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  13. Cement Mason's Curriculum. Instructional Units.

    Science.gov (United States)

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  14. Cement og politik

    DEFF Research Database (Denmark)

    Lund, Joachim

    2012-01-01

    as well as in the public sphere. Most of the extensive job creating measures he carried out as a minister for public works necessarily involved the use of great amounts of cement – the primary produce of F.L. Smidth & Co. Gunnar Larsen thus became an easy target for Communist propaganda, picturing him...... of the Soviet Union (including an F.L. Smidth & Co. cement plant in former Estonia). He spent the last 15 months of the occupation in Sweden and was arrested after having returned to Copenhagen in May, 1945. Although a Copenhagen city court prison sentence for economic collaboration was reversed, he had...

  15. Technology Roadmaps: Cement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    To support its roadmap work focusing on key technologies for emissions reductions, the International Energy Agency (IEA) also investigated one particular industry: cement. Cement production includes technologies that are both specific to this industry and those that are shared with other industries (e.g., grinding, fuel preparation, combustion, crushing, transport). An industry specific roadmap provides an effective mechanism to bring together several technology options. It outlines the potential for technological advancement for emissions reductions in one industry, as well as potential cross-industry collaboration.

  16. Cementing a wellbore using cementing material encapsulated in a shell

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  17. The mechanical effect of the existing cement mantle on the in-cement femoral revision.

    LENUS (Irish Health Repository)

    Keeling, Parnell

    2012-08-01

    Cement-in-cement revision hip arthroplasty is an increasingly popular technique to replace a loose femoral stem which retains much of the original cement mantle. However, some concern exists regarding the retention of the existing fatigued and aged cement in such cement-in-cement revisions. This study investigates whether leaving an existing fatigued and aged cement mantle degrades the mechanical performance of a cement-in-cement revision construct.

  18. Conventional and Contemporary Luting Cements: An Overview

    OpenAIRE

    Ladha, Komal; Verma, Mahesh

    2010-01-01

    Long-term clinical success of fixed prosthodontic restorations is influenced by many factors, one important factor being the selection of an appropriate luting agent. No single luting agent is capable of meeting all the stringent requirements, which is one reason why there is such a wide choice of luting agents currently available from conventional water-based to contemporary adhesive resin cements. Introduction of adhesive resin systems has completely changed the face of fixed prosthodontic ...

  19. Kinetics of strength gain of biocidal cements

    Directory of Open Access Journals (Sweden)

    Rodin Aleksandr Ivanovich

    Full Text Available Biocorrosion becomes the determinative durability factor of buildings and constructions. Damages of construction materials caused by bacteria, filamentous fungi, actinomycetes constitute a serious danger to the constructions of a building or a structure and to the health of people. Biodeteriorations are typical both in old and new constructions. A great quantity of destruction factors of industrial and residential buildings under the influence of microorganisms was established in practice. Providing products and constructions based on concretes fungicidal and bactericidal properties is an important direction of modern construction material science. The most efficient way to solve this task is creation of biocidal cements. The article presents the results of experimental studies of kinetic dependences of strength gain by biocidal cements by physico-mechanical and physico-chemical analysis methods. The identical velocity character of initial hydration of the developed compositions of biocidal cements is set, as well as a more calm behavior of hardening processes at later terms. It has been established that the compositions of biocidal cements modified by sodium sulfate and sodium fluoride possess the greatest strength.

  20. Produktie van cement

    NARCIS (Netherlands)

    Smit JRK; Coenen PWHG; Matthijsen AJCM; LAE; TAUW

    1995-01-01

    This document on cement production has been published within the SPIN project. In this project information has been collected on industrial plants or industrial processes to afford support to governmental policy on emission reduction. This document contains information on the processes, emission sou

  1. Osteotransductive bone cements.

    Science.gov (United States)

    Driessens, F C; Planell, J A; Boltong, M G; Khairoun, I; Ginebra, M P

    1998-01-01

    Calcium phosphate bone cements (CPBCs) are osteotransductive, i.e. after implantation in bone they are transformed into new bone tissue. Furthermore, due to the fact that they are mouldable, their osteointegration is immediate. Their chemistry has been established previously. Some CPBCs contain amorphous calcium phosphate (ACP) and set by a sol-gel transition. The others are crystalline and can give as the reaction product dicalcium phosphate dihydrate (DCPD), calcium-deficient hydroxyapatite (CDHA), carbonated apatite (CA) or hydroxyapatite (HA). Mixed-type gypsum-DCPD cements are also described. In vivo rates of osteotransduction vary as follows: gypsum-DCPD > DCPD > CDHA approximately CA > HA. The osteotransduction of CDHA-type cements may be increased by adding dicalcium phosphate anhydrous (DCP) and/or CaCO3 to the cement powder. CPBCs can be used for healing of bone defects, bone augmentation and bone reconstruction. Incorporation of drugs like antibiotics and bone morphogenetic protein is envisaged. Load-bearing applications are allowed for CHDA-type, CA-type and HA-type CPBCs as they have a higher compressive strength than human trabecular bone (10 MPa).

  2. Strategic Management of Human Capital Development on Employees Performance in Nigeria Cements Sector

    OpenAIRE

    Ehis Omoluabi; Olufemi Akintunde

    2013-01-01

    The synopsis of strategic management of human capital development on employees performance in Nigeria cement sector, emphasize the relative roles of strategic management of human capital development in the Nigerian cement sector. The paper discuss number of factors that contributes to the success of Nigerian cement sector; these factors are skills, experiences, qualification of individual employees, ideas etc. The paper further examine that strategic management has helped the development of e...

  3. The effect of cement creep and cement fatigue damage on the micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The cement-bone interface provides fixation for the cement mantle within the bone. The cement-bone interface is affected by fatigue loading in terms of fatigue damage or microcracks and creep, both mostly in the cement. This study investigates how fatigue damage and cement creep separately affect th

  4. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    Science.gov (United States)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  5. Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: A comparative study between cannulated screws with cement injection and solid screws with cement pre-filling

    Directory of Open Access Journals (Sweden)

    Lee Yen-Chen

    2011-02-01

    Full Text Available Abstract Background Pedicle screws with PMMA cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques, namely solid screws with retrograde cement pre-filling versus cannulated screws with cement injection through perforation, remains unknown. This study aimed to determine the difference in pullout strength between conical and cylindrical screws based on the aforementioned cement augmentation techniques. The potential loss of fixation upon partial screw removal after screw insertion was also examined. Method The Taguchi method with an L8 array was employed to determine the significance of design factors. Conical and cylindrical pedicle screws with solid or cannulated designs were installed using two different screw augmentation techniques: solid screws with retrograde cement pre-filling and cannulated screws with cement injection through perforation. Uniform synthetic bones (test block simulating severe osteoporosis were used to provide a platform for each screw design and cement augmentation technique. Pedicle screws at full insertion and after a 360-degree back-out from full insertion were then tested for axial pullout failure using a mechanical testing machine. Results The results revealed the following 1 Regardless of the screw outer geometry (conical or cylindrical, solid screws with retrograde cement pre-filling exhibited significantly higher pullout strength than did cannulated screws with cement injection through perforation (p = 0.0129 for conical screws; p = 0.005 for cylindrical screws. 2 For a given cement augmentation technique (screws without cement augmentation, cannulated screws with cement injection or solid screws with cement pre-filling, no significant difference in pullout strength was found between conical and cylindrical screws (p >0.05. 3 Cement infiltration into the open cell of

  6. POZZOLAN AND CEMENTS WITH POZZOLAN

    Directory of Open Access Journals (Sweden)

    Hasan KAPLAN

    1995-02-01

    Full Text Available Cement, one of the basic material of construction engineering, has an important place in view of strength and cost of structures. Cement consumption is increasing parallel to development of building construction sector. For cement producers, minimal cost is desired by using new and economical material sources. On the other hand, the controllers and contractors need cheaper, safer and higher strength materials. From this respect cement industry tends to use cement with pozzolan. In Türkiye, cement with pozzolan is produced by adding the pozzolan, which has a large reservoir in the country, in cement in sertain amount. However this type of cement is consumed in the construction sector, sortage of scientific investigation and speculative news on the subject.are worried the users and producers. In this paper, prior to an experimental study on the cements having pozzolan additive, historical development of pozzolan, reservoir of Turkiye, and comparison with portland cement is carried out. Advantages and disadvantages of pozzolan are also discussed in some points.

  7. Cement clinker structure during plasma-chemical synthesis and its influence on cement properties

    Science.gov (United States)

    Sazonova, N.; Skripnikova, N.; Lucenko, A.; Novikova, L.

    2015-01-01

    The aim of this study was to determine the degree of influence of cement clinker cooling modes, synthesized in a low-temperature plasma, its structure and physico-mechanical properties. The raw mixture consisting of marble, sand, ash from thermal power plants and py- rite cinders were used, which are characterized by saturation factor (1,045); silicate (2,35) and alumina (1,22) modules. It was found that the use of different cooling rates of fused cement clinker entails changes associated with the mineralogical composition (increase of alite of 8.719,2 %), morphology (variation of the mineral alite aspect ratio of 6,7-17,5), density of the structure (change in distance between the minerals from 1 to 7,5 microns), grindability, specific surface area (2600-3650 cm2/g) and, in consequence, the activity of cement (56,973,2 MPa). Disorientation of alite mineral blocks against each other, a significant amount of microcracks, affect the increase in cement specific surface area of 14,3-21,6 %, which leads to activity growth of the system. Along with this, with the rapid cooling of the samples, alite 54CaO- 16SiO2-Al2O3 MgO is formed, with single units of the structure, more deformed relatively to C3S, which has a positive effect on the hydraulic cement activity.

  8. Mineral resource of the month: hydraulic cement

    Science.gov (United States)

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  9. CEMENT BONDED COMPOSITES – A MECHANICAL REVIEW

    Directory of Open Access Journals (Sweden)

    Stephan Frybort

    2008-05-01

    Full Text Available Over the last years promising cement bonded wood composites for structural purposes have evolved. Durability, toughness, high dimen-sional stability, resistance against environmental influences such as biodegradation or weathering but also availability of the raw material as well as economic factors are features which can make cement-bonded composites superior to conventionally bonded composites. This paper reviews the relationship of diverse parameters, including density and particle size on mechanical and physical properties of cement bonded composites, based on published sources from the last 60 years. For general and recent information about bonding mechanisms, compatibility and setting problems, determination and improvement of compatibility, the used raw materials as well as accelerators are discussed. The main part deals with failure mechanisms in connection with several production parameters. Furthermore, the influence of particle size and geometry, orientation of the particles, cement-wood ratio and the effect of accelerators and treatment of the particles on modulus of elasticity, modulus of rupture as well as thickness swelling are discussed.

  10. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    The modelling of cement behaviour at longer ages is reported. Factors studied include composition, pH and Esub(h). The stresses arising from irradiation are evaluated. The behaviour of two elements in cement - U and I has been studied; new experimental data are reported including solubility measurements. Some additional data are given on Sr. Results of desk studies relevant to lifetime predictions are presented. (author)

  11. Impact of pressure on Sintering of Cemented Carbides

    OpenAIRE

    Owais, Tariq Muhammad

    2013-01-01

    In this Master Thesis work, the effect of pressure on sintering of cemented carbides is investigated. Special focus hasbeen given to the residual porosity after sintering. It is well known that sintering shrinkage depends on binder phasecontent, grain size, temperature and pressure. Thus 4 different cemented carbides grades were selected. The gradeswere pressed into standard products and TRS (Tensile Rupture Strength) rods with two different shrinkage factors.These were then sintered at diffe...

  12. PURIFIED WASTE FCC CATALYST AS A CEMENT REPLACEMENT MATERIAL

    Directory of Open Access Journals (Sweden)

    Danute Vaiciukyniene

    2015-06-01

    Full Text Available Zeolites are commonly used in the fluid catalytic cracking process. Zeolite polluted with oil products and became waste after some time used. The quantity of this waste inevitably rises by expanding rapidly oil industry. The composition of these catalysts depends on the manufacturer and on the process that is going to be used. The main factors retarding hydration process of cement systems and modifying them strength are organic compounds impurities in the waste FCC catalyst. The present paper shows the results of using purified waste FCC catalyst (pFCC from Lithuania oil refinery, as Portland cement replacement material. For this purpose, the purification of waste FCC catalyst (FCC samples was treated with hydrogen peroxide. Hydrogen peroxide (H2O2 is one of the most powerful oxidizers known. By acting of waste with H2O2 it can eliminate the aforementioned waste deficiency, and the obtained product becomes one of the most promising ingredients, in new advanced building materials. Hardened cement paste samples with FCC or pFCC were formed. It was observed that the pFCC blended cements developed higher strength, after 28 days, compared to the samples with FCC or reference samples. Typical content of Portland cement substituting does not exceed 30 % of mass of Portland cement in samples. Reducing the consumption of Portland cement with utilizing waste materials is preferred for reasons of environmental protection.

  13. Performance of Cement Containing Laterite as Supplementary Cementing Material

    Directory of Open Access Journals (Sweden)

    Abbas Bukhari, Z. S.

    2013-03-01

    Full Text Available The utilization of different industrial waste, by-products or other materials such as ground granulated blast furnace slag, silica fume, fly ash, limestone, and kiln dust, etc. as supplemen- tary cementing materials has received considerable attention in recent years. A study has been conducted to look into the performance of laterite as Supplementary Cementing Materials (SCM. The study focuses on compressive strength performance of blended cement containing different percentage of laterite. The cement is replaced accordingly with percentage of 2 %, 5 %, 7 % and 10 % by weight. In addition, the effect of use of three chemically different laterites have been studied on physical performance of cement as in setting time, Le-Chatlier expansion, loss on ignition, insoluble residue, free lime and specifically compressive strength of cement cubes tested at the age of 3, 7, and 28 days. The results show that the strength of cement blended with laterite as SCM is enhanced. Key words: Portland cement, supplementary cementing materials (SCM, laterite, compressive strength KUI – 6/2013 Received January 4, 2012 Accepted February 11, 2013

  14. Tympanoplasty with ionomeric cement.

    Science.gov (United States)

    Kjeldsen, A D; Grøntved, A M

    2000-01-01

    Patients with isolated erosion of the long incus process suffer from severe hearing loss caused by lack of continuity of the ossicular chain. This study is a retrospective evaluation of the hearing results using two different surgical procedures. Since January 1993, 12 consecutive patients with isolated erosion of the long incus process have been treated with a new surgical technique in which the ossicular chain was rebuilt with ionomeric cement. The results in hearing performance (mean pure-tone average (PTA) 0.5, 1 and 2 kHz) were evaluated pre- and post-surgery, and compared to those in a group of 20 historical controls who underwent surgery in 1991 and 1992 using incus autograft interposition. Among the 12 index patients, 7 (58%) achieved improvement in PTA of > 10 dB, in 3 there was no difference and in 2 a slight decline. Among the 20 controls, 14 (70%) achieved improvement in PTA of > 10 dB, in 4 there was a slight improvement and in 2 a decline. The difference was not statistically significant. Hearing improvement using ionomeric cement in type II tympanoplasty was satisfactory. Reconstruction of the ossicular chain with ionomeric cement is recommended, as the procedure is easy to perform, presents less risk of damage to the stapes and cochlea, requires less extensive surgery and does not exclude other surgical methods in cases of reoperation. PMID:10909000

  15. [Haemotoxicity of dental luting cements].

    Science.gov (United States)

    Anders, A; Welker, D

    1989-06-01

    A glass ionomer luting cement (AquaCem) shows a relatively low haemolytic activity in comparison with two zinc phosphate cements. Especially the initial irritation by this cement is smaller. Although it is possible that AquaCem particularly, in unfavourable cases, may damage the pulpa dentin system; this is due to the slowly decrease of the haemolytic activity with increasing of the probes. We found that Adhesor showed in dependence of the batches a varying quality. PMID:2626769

  16. Cement penetration after patella venting.

    Science.gov (United States)

    Jones, Christopher W; Lam, Li-On; Butler, Adam; Wood, David J; Walsh, William R

    2009-01-01

    There is a high rate of patellofemoral complications following total knee arthroplasty. Optimization of the cement-bone interface by venting and suction of the tibial plateau has been shown to improve cement penetration. Our study was designed to investigate if venting the patella prior to cementing improved cement penetration. Ten paired cadaver patellae were allocated prior to resurfacing to be vented or non-vented. Bone mineral density (BMD) was measured by DEXA scanning. In vented specimens, a 1.6 mm Kirschner wire was used to breach the anterior cortex at the center. Specimens were resurfaced with standard Profix instrumentation and Versabond bone cement (Smith and Nephew PLC, UK). Cement penetration was assessed from Faxitron and sectioned images by a digital image software package (ImageJ V1.38, NIH, USA). Wilcoxon rank sum test was used to assess the difference in cement penetration between groups. The relationship between BMD and cement penetration was analyzed by Pearson correlation coefficient. There was a strong negative correlation between peak BMD and cement penetration when analyzed independent of experimental grouping (r(2)=-0.812, p=0.004). Wilcoxon rank sum testing demonstrated no significant difference (rank sum statistic W=27, p=0.579) in cement penetration between vented (10.53%+/-4.66; mean+/-std dev) and non-vented patellae (11.51%+/-6.23; mean+/-std dev). Venting the patella using a Kirschner wire does not have a significant effect on the amount of cement penetration achieved in vitro using Profix instrumentation and Versabond cement. PMID:19010682

  17. Assessment of cement durability in repository environment

    International Nuclear Information System (INIS)

    The present research aimed at investigating the durability of cement paste under nuclear waste repository conditions using accelerated tests. Cement paste samples are examined after being exposed to the environmental conditions that are expected to prevail in the repository environment and the results are compared with those obtained with unexposed specimens or specimens exposed to reference conditions. The following exposure conditions were selected: a) Immersion in salt solution, distilled water, or kept in dry storage; b) Room temperature (20 C. degrees) or high temperature (60 C. degrees); c) Immersion time of 30 days or 60 days (not for dry storage); d) Irradiation to a dose of (400 kGy) or background radiation (0 kGy). After exposure to the stressing conditions, the effects of each factor on the cement paste samples were observed by changes in their characteristics. Compressive strength tests were performed on all samples and some of them were investigated in terms of changes in mineralogy by X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). With the results obtained so far it was possible to point out the following conclusions. First, after a period of immersion in water, cement paste samples further hydrated and presented higher mechanical resistance, as expected. Secondly, dry storage did not allow a complete hydration as a consequence of pore water evaporation. High temperatures intensified this process and led to the ettringite decomposition to meta-ettringite. Thirdly, higher temperature accelerated hydration kinetics and promoted higher mechanical resistance in samples kept under immersion. Fourthly, the irradiation dose applied was unable to change the mineralogy of cement paste samples and fifthly, no statistically significant differences were observed between 30 or 60 days exposure time, for the test conditions

  18. Properties of low-ph cement grout as a sealing material for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    The current solution to the problem of using cementitious material for sealing purposes in a final radioactive waste repository is to develop a low-pH cement grout. In this study, the material properties of a low-pH cement grout based on a recipe used at ONKALO are investigated by considering such factors as pH variation, compressive strength, dynamic modulus, and hydraulic conductivity by using silica fume and micro-cement. From the pH measurements of the hardened cement grout, the required pH (< pH 11) is obtained after 130 days of curing. Although the engineering properties of the low-pH cement grout used in this study are inferior to those of conventional high-pH cement grout, the utilization of silica fume and micro-cement effectively meets the long-term environmental and durability requirements for cement grout in a radioactive waste repository

  19. 水泥回转窑热工测量准确性的影响因素分析%Factors affecting thermal measurement accuracy of cement rotary kiln

    Institute of Scientific and Technical Information of China (English)

    袁秀霞

    2014-01-01

    Thermal measurement of cement rotary kiln is a complex process, there are many factors affecting the accuracy of measure-ment results. Based on many years of rotary kiln thermal measuring experience, for four aspects of test condition selection, scheme;in-strument management and data processing, main factors affecting thermal measurement accuracy were summarized as well as the meth-od of reducing testing data deviation.%水泥回转窑的热工测量是个复杂的过程,测量结果准确性的影响因素较多。根据多年水泥回转窑热工测量经验,从测试条件的选取、测试方案的制定、测试仪器设备的管理和测试数据的处理四个方面,分别总结了影响热工测量数据准确性的主要因素以及减少测试数据出现偏差的方法。

  20. Respiratory Health among Cement Workers in Ethiopia

    OpenAIRE

    Zeleke, Zeyede K.

    2011-01-01

    Background: Little is known on dust exposure and respiratory health among cement cleaners. There are only a few follow-up studies on respiratory health among cement factory workers and also studies on acute effects of cement dust exposure are limited in numbers. Objective: This study aimed at assessing cement dust exposure and adverse respiratory health effects among Ethiopian cement production workers, with particular focus on cement cleaners. Method: The first paper was...

  1. Thermal Shock-resistant Cement

    Energy Technology Data Exchange (ETDEWEB)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  2. Rheological Behaviors of Fresh Cement Pastes with Polycarboxylate Superplasticizer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yanrong; KONG Xiangming; GAO Liang; WANG Jiaxin

    2016-01-01

    The rheological behaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated. Inlfuential factors including superplasticizer to cement ratio (Sp/C), water to cement ratio (w/c), temperature, and time were discussed. Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0, 20 and 40 °C, respectively. Flowability and rheological tests on cement pastes were conducted to characterize the development of the rheological behavior of fresh cement pastes over time. The exprimental results indicate that the initial lfowability and lfowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer. Higher temperature usually leads to a sharper drop in initial lfowability and lfowability retention. However, for the cement paste with high Sp/C orw/c, the lfowability is slightly affected by temperature. Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned inlfuential factors at low Sp/C. In the case of high Sp/C, yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature. Moreover, two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c, temperature and time are developed on the basis of the existing models, in which experimental constants can be extracted from a database created by the rheological test results.

  3. 分层土中水泥土围护结构抗倾覆验算方法的改进%Improved method for calculating anti-overturning safety factor of cement-soil retaining wall in layered soil

    Institute of Scientific and Technical Information of China (English)

    李卫超; 熊巨华; 杨敏

    2011-01-01

    An improved anti-overturning safety factor calculation method of the cement-soil retaining wall in layered soil is presented Based on the improved method, the influence of different soil structures on the anti-overturning safety factor is analyzed. When the soft soil is over the hard soil the anti-overturning safety factor increases with increasing of the width and the embedded depth of the wall respectively. Similarly the anti-overturning safety factor also increases with increasing of the width of the wall but has less change with increasing of the embedded depth of the wall when the hard soil is over the soft soil. The reason for that is the anti-overturning safety of the cement-soil retaining wall relies mainly on the passive earth pressure; that is to say, the anti-overturning safety factor is influenced by the lower soil's strength mainly. If treating the layered soil parameters according to the thickness weighted as the homogeneous soil, the anti-overturning safety factor is smaller which inclines to conservative when the soft soil is over the hard soil. Unlike that the anti-overturning safety factor is bigger which has the security risk when the hard soil is over the soft soil. Compared with the conventional calculation method, the improved method presents a more reasonable and safe result%推导了分层土中水泥土围护结构抗倾覆稳定系数计算公式,提出了改进的计算方法,研究了土层分层结构对水泥土围护结构抗倾覆稳定系数的影响.土层上软下硬时,水泥土围护结构抗倾覆稳定系数分别随着墙体宽度与入土深度的增加而增加.土层上硬下软时,增加墙体宽度对于提高抗倾覆稳定系数具有较好的效果,而增加墙体入土深度对于提高抗倾覆稳定系数作用不大,因为分层土中,水泥土围护结构抗倾覆稳定性主要依靠下部土体的被动土压力来维持,即抗倾覆稳定性主要受下层土体强度的影响.如将分层土参数按厚度

  4. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  5. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    A K Misra; Renu Mathur

    2007-06-01

    The scope of magnesium oxychloride (MOC) cement in concrete works has been evaluated. MOC cement concrete compositions of varying strengths having good placing and finishing characteristics were prepared and investigated for their compressive and flexural strengths, -values, abrasion resistance etc. The durability of MOC concrete compositions against extreme environmental conditions viz. heating–cooling, freezing–thawing, wetting–drying and penetration and deposition of salts etc were investigated. The results reveal that MOC concrete has high compressive strength associated with high flexural strength and the ratio of compressive to flexural strength varies between 6 and 8. The elastic moduli of the compositions studied are found to be 23–85 GPa and the abrasion losses between 0.11 and 0.20%. While alternate heating–cooling cycles have no adverse effect on MOC concrete, it can be made durable against freezing–thawing and the excessive exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution of the same concentration.

  6. Palacos compared to Palamed bone cement in total hip replacement: a randomized controlled trial.

    Science.gov (United States)

    Meinardi, Joris E; Valstar, Edward R; Van Der Voort, Paul; Kaptein, Bart L; Fiocco, Marta; Nelissen, Rob G H H

    2016-10-01

    Background and purpose - Stability and survival of cemented total hip prostheses is dependent on a multitude of factors, including the type of cement that is used. Bone cements vary in viscosity, from low to medium and high. There have been few clinical RSA studies comparing the performance of low- and high-viscosity bone cements. We compared the migration behavior of the Stanmore hip stem cemented using novel low-viscosity Palamed bone cement with that of the same stem cemented with conventional high-viscosity Palacos bone cement. Patients and methods - We performed a randomized controlled study involving 39 patients (40 hips) undergoing primary total hip replacement for primary or secondary osteoarthritis. 22 patients (22 hips) were randomized to Palacos and 17 patients (18 hips) were randomized to Palamed. Migration was determined by RSA. Results - None of these 40 hips had been revised at the 10-year follow-up mark. To our knowledge, the patients who died before they reached the 10-year endpoint still had the implant in situ. No statistically significant or clinically significant differences were found between the 2 groups for mean translations, rotations, and maximum total-point motion (MTPM). Interpretation - We found similar migration of the Stanmore stem in the high-viscosity Palacos cement group and the low-viscosity Palamed cement group. We therefore expect that the risk of aseptic loosening with the new Palamed cement would be comparable to that with the conventional Palacos cement. The choice of which type of bone cement to use is therefore up to the surgeon's preference. PMID:27329869

  7. Monitoring of sulphate attack on hardened cement paste studied by synchrotron XRD

    Science.gov (United States)

    Stroh, J.; Meng, B.; Emmerling, F.

    2015-10-01

    The complex matter of external sulphate attack on cement-based construction materials is still not completely understood. The concentration of sulphate is a crucial factor for the formation of secondary phases and phase transitions of cement hydrates due to sulphate ingress into the microstructure. The sulphate attack on building materials for high and low sulphate concentrations was monitored by laboratory experiments. Hardened cement paste consisting of ordinary Portland cement (CEM I) were exposed to aqueous solutions of sodium sulphate for 18 months. Three sample compositions were used for this research, including different supplementary cementitious materials (SCM). The phase composition was determined for different time spans by high resolution synchrotron X-ray diffraction. Cross sections of exposed cement prisms were investigated as a representation of the microstructural profile. Based on the data, a temporal and spatial determination of the stages of the sulphate attack and the deterioration course was possible. Cement matrices blended with slag showed the highest resistance against sulphate attack.

  8. Relationship between chloride diffusivity and pore structure of hardened cement paste

    Institute of Scientific and Technical Information of China (English)

    Guo-wen SUN; Wei SUN; Yun-sheng ZHANG; Zhi-yong LIU

    2011-01-01

    Based on effective media theory, a predictive model, relating chloride diffusivity to the capillary pores, gel pores,tortuosity factor, and pore size distribution of hardened cement, is proposed. To verify the proposed model, the diffusion coefficient of chloride ions, the degree of hydration, and peak radius of capillary pores of cement paste specimens were measured. The predicted results for chloride diffusivity were compared with published data. The results showed that the predicted chloride diffusivity of hardened cement paste was in good agreement with the experimental results. The effect of the evolution of pore structures in cement paste on chloride diffusivity could be deduced simultaneously using the proposed model.

  9. [Release amount of heavy metals in cement product from co-processing waste in cement kiln].

    Science.gov (United States)

    Yang, Yu-Fei; Huang, Qi-Fei; Zhang, Xia; Yang, Yu; Wang, Qi

    2009-05-15

    Clinker was produced by Simulating cement calcination test, and concrete samples were also prepared according to national standard GB/T 17671-1999. Long-term cumulative release amount of heavy metals in cement product from co-processing waste in cement kiln was researched through leaching test which refers to EA NEN 7371 and EA NEN 7375, and one-dimensional diffusion model which is on the base of Fick diffusion law. The results show that availabilities of heavy metals are lower than the total amounts in concrete. The diffusion coefficients of heavy metals are different (Cr > As > Ni > Cd). During 30 years service, the cumulative release amounts of Cr, As, Ni and Cd are 4.43 mg/kg, 0.46 mg/kg, 1.50 mg/kg and 0.02 mg/kg, respectively, and the ratios of release which is the division of cumulative release amount and availability are 27.0%, 18.0%, 3.0% and 0.2%, respectively. The most important influence factor of cumulative release amount of heavy metal is the diffusion coefficient, and it is correlative to cumulative release amount. The diffusion coefficient of Cr and As should be controlled exactly in the processing of input the cement-kiln. PMID:19558131

  10. A Model of Thermal Conductivity for Planetary Soils. 2; Theory for Cemented Soils

    Science.gov (United States)

    Piqueux, S.; Christensen, P. R.

    2009-01-01

    A numerical model of heat conduction through particulate media made of spherical grains cemented by various bonding agents is presented. The pore-filling gas conductivity, volume fraction, and thermal conductivity of the cementing phase are tunable parameters. Cement fractions factor 3-8) is observed for bond fractions of 0.01 to 1% in volume. In the 1 to 15% bond fraction domain, the conductivity increases continuously but less intensely (25-100% conductivity increase compared to a 1% bond system). Beyond 15% of cements, the conductivity increases vigorously and the bulk conductivity rapidly approaches that of bedrock. The composition of the cements (i.e. conductivity) has little influence on the bulk thermal inertia of the soil, especially if the volume of bond cemented soils and quantify the amount of cementing phase, but the mineralogical nature of the bonds and the typical grain size are unlikely to be determined from orbit. On Mars, a widespread surface unit characterized by a medium albedo (0.19-0.26) and medium/high thermal inertia (200-600 J s(0.5)/sq m/K) has long been hypothesized to be associated with a duricrust. The fraction of cement required to fit the thermal data is less than approx.1-5% by volume. This small amount of material is consistent with orbital observations, confirming that soil cementation is an important factor controlling the thermal inertia of the Martian surface

  11. PHYSICO-CHEMICAL MODIFICATION OF MONOLITHIC CONCRETE CEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2015-10-01

    Full Text Available Purpose. The paper is aimed to the development of scientific bases of the technology of modified concrete of new generation for special facilities by managing the processes of structure formation of modified cement system in conditions of hardening. Methodology. For the achievement the goal: 1 the research of rheological characteristics of modified concrete mixes for special facilities purpose and processes of structure formation of modified cement system of natural curing concrete was conducted; 2 there were defined methods of reliable evaluation of concrete strength at the removal time of formwork and transmission of loads to the constructions where the concrete has not reached the designed strength. Findings. The author found that the structure formation process develops in the hydrating modified cement system as a result of interaction of various macroions. In this process its active parts prevail, which considerably exceed its dissipative part compared to normal conditions of hardening. Originality. There were established the regularities of structure formation of modified cement system, reinforced with synthesized, well crystallized helical filamentary crystals, mechanical grip of which is considered as a principal source of strength in combination with an additional coupling achieved due to cross-germination of crystals. Practical value. In the study the increased binding capacity of cement in high strength concretes and the use of modified cement systems in the special conditions of concreting were considered. The organo-mineral modifying complex that provides the dispersed reinforcement of concrete cement matrix which allows modifying the process of cement matrix structure formation by changing the nature of the surface of binder and modifier was developed. The temperature factor has no negative influence on the hardening concrete and complex modifier provides the improved physico-mechanical characteristics of cement matrix and concrete

  12. 21 CFR 888.4200 - Cement dispenser.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement dispenser. 888.4200 Section 888.4200 Food... DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4200 Cement dispenser. (a) Identification. A cement dispenser is a nonpowered syringe-like device intended for use in placing bone cement (§ 888.3027)...

  13. Reuse of cement-solidified municipal incinerator fly ash in cement mortars: physico-mechanical and leaching characteristics.

    Science.gov (United States)

    Cinquepalmi, Maria Anna; Mangialardi, Teresa; Panei, Liliana; Paolini, Antonio Evangelista; Piga, Luigi

    2008-03-01

    The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.

  14. Ferroan dolomite cement in Cambrian sandstones: burial history and hydrocarbon generation of the Baltic sedimentary basin

    DEFF Research Database (Denmark)

    Sliaupa, S.; Cyziene, J.; Molenaar, Nicolaas;

    2008-01-01

    . The burial history modelling points to development of most of the dolomite cement during rapid Silurian-Devonian subsidence and Carboniferous-early Permian uplift. A wide range of precipitation temperatures indicate that temperature was not a major factor in triggering the carbonate cementation. Dolomite...

  15. Cement/slag chemistry studies

    International Nuclear Information System (INIS)

    The performance of cement-based matrices intended for radwaste immobilization is assessed. The long-term performance of the matrix is characterized by thermodynamic evaluation of experimental data. The results are presented in a general form, amenable to a range of specific formulations. The interaction of specific radwaste components with cements has been studied, using Iodine as an example. It occurs as both I- and IO3- species, but these differ sharply in sorption characteristics. The effect of ionizing radiation of the pH and Eh of cement matrices is reported. (author)

  16. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    OpenAIRE

    Adriana Eštoková; Lenka Palaščáková

    2013-01-01

    The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in t...

  17. Assessment of the compatibility of wood and plastic with cement for their recycling in cement composites

    OpenAIRE

    Andrade, André De; Caldeira, Fernando

    2010-01-01

    The compatibility between maritime pine wood and cement, and between plastic (LDPE) and cement, was assessed for the recycling of wood and plastic in cement composites. Temperature vs. time profiles of cement setting were registered and compatibility indices were calculated. Results indicate that recycling of plastics in plastic-cement composites does not pose any questions regarding chemical compatibility. However, maritime pine hinders cement setting in some extent. So, in or...

  18. Water-resisting ability of cemented broken rocks

    Institute of Scientific and Technical Information of China (English)

    Yu Bangyong; Chen Zhanqing; Yu Linli

    2016-01-01

    Using the self-designed testing system, the seepage tests for cemented broken rocks were conducted, and the impact of different factors on water-resisting ability was analyzed. The results show that (1) seepage process of the cemented broken rocks can be divided into two categories:in one category, seepage insta-bility occurs after a period of time, in the other, the permeability decreases slowly and tends to be stable, and seepage instability does not occur;(2) cementing performance of cementing agent and grain size dis-tribution are the decisive factors for water-resisting ability, with the increase of cementing performance and the mass percentage of large grains, the water-resisting ability of the specimen strengthens; (3) aggregate type has little effect on seepage stability, for the specimens with different aggregate types, the permeability and the duration of seepage instability have small difference; (4) initial porosity has a certain effect on the water-resisting ability of the specimen, but has no decisive role. With the increase of the initial porosity, the duration of seepage instability decreases.

  19. 磷酸镁水泥耐水性的影响因素与改进措施%Influencing Factors on Water Resistance of Magnesium Phosphate Cement and Its Improving Measures

    Institute of Scientific and Technical Information of China (English)

    毛敏; 王智; 王庆珍; 胡倩文; 尤超

    2011-01-01

    Magnesium phosphate cement ( MPC) is a new rapid hardening cementitious material with high early strength, which can be used as patching material in concrete repair works. Based on the hydration mechanism of MPC,we discnssem the properties, formation and influencing factors of main which is the maih hydration product of MPC, struvite ( MgNH4PO4o6H2O) , and the relationship between the struvite and water resistance of MPC was analyzed as well. For improving the water resistance of MPC, several methods, such as selecting proper raw materials with suitable activity and granularity and lower CaO content, optimizing the proportion, controlling the pH of mixture, and incorporating fly ash, have been proposed theretically.%镁水泥(MPC)是一种新型的早强快硬胶凝材料,可作为修补材料应用于工程修补.从磷酸镁水泥的水化机理出发,讨论磷酸镁水泥主要水化产物鸟粪石( MgNH4PO4·6H2O)的性质、形成及影响因素,及其与磷酸镁水泥耐水性的关系.从理论上提出了通过选择合适活性、粒度和低CaO含量的原材料、优化配合比、控制体系pH值和掺加粉煤灰等措施改善磷酸镁水泥的耐水性.

  20. Brief Analysis on the Key Factors of Raw Materials Influencing the Mix Strength of Cement Concrete Pavement%浅析原材料影响水泥混凝土路面配合比强度的关键因素

    Institute of Scientific and Technical Information of China (English)

    林泽彬

    2011-01-01

    水泥混凝土路面配合比设计阶段是保证路面实体强度的首要阶段,也是十分重要的阶段。笔者依据多年的经验并结合多条高速公路的施工监理实践,在广梧高速公路河口至平台B段的施工监理过程中,针对水泥混凝土路面配合比设计阶段,从原材料各个主要因素入手对配合比进行单因素优化设计,找出原材料影响水泥混凝土强度(主要是抗折强度)的关键因素,为现场配合比设计的质量控制提供一定的借鉴经验。%Mix Design of cement concrete pavement is not only the first stage to guarantee the strength of pavement,but also the most important stage.Based on years of experience and supervision practice for several expressway construction projects,particularly the construction supervision of B segment between Hekou and Pingtai of Guangzhou-Wuzhou Expressway,in the light of the mix design of cement concrete pavement stage,optimized mix design base on each major factor of raw materials has been carried out to find out the key factors of raw materials which will influence cement concrete strength(mainly flexural strength),which can provide references for the future on-site quality control of cement concrete mix design.

  1. Effect of strain rate and water-to-cement ratio on compressive mechanical behavior of cement mortar

    Institute of Scientific and Technical Information of China (English)

    周继凯; 葛利梅

    2015-01-01

    Effects of strain rate and water-to-cement ratio on the dynamic compressive mechanical behavior of cement mortar are investigated by split Hopkinson pressure bar (SHPB) tests. 124 specimens are subjected to dynamic uniaxial compressive loadings. Strain rate sensitivity of the materials is measured in terms of failure modes, stress−strain curves, compressive strength, dynamic increase factor (DIF) and critical strain at peak stress. A significant change in the stress−strain response of the materials with each order of magnitude increase in strain rate is clearly seen from test results. The slope of the stress−strain curve after peak value for low water-to-cement ratio is steeper than that of high water-to-cement ratio mortar. The compressive strength increases with increasing strain rate. With increase in strain rate, the dynamic increase factor (DIF) increases. However, this increase in DIF with increase in strain rate does not appear to be a function of the water-to-cement ratio. The critical compressive strain increases with the strain rate.

  2. Manufacture and properties of fluoride cement

    Science.gov (United States)

    Malata-Chirwa, Charles David

    This research work aimed at characterising composition, hydration and physical properties of fluoride cement, by studying samples of the cement obtained from Malawi, and comparing them to ordinary Portland cement. By confirming the suitable characteristics of fluoride cement through this work, the results of the research work provide a good basis for the wider adoption of fluoride cement as an alternative to ordinary Portland cement, especially in developing economies. Numerous accounts have been cited regarding the production and use of fluoride cement. Since there have not been conclusive agreement as to its properties, this study was limited to the theories of successful incorporation of fluoride compounds in the manufacture of fluoride cement. Hence, the properties and characteristics reported in this study relate to the cement currently manufactured in Malawi, and, on a comparative basis only, to that manufactured in other parts of the world. Samples of the fluoride cement used in the study were obtained by synthetic manufacture of the cement using common raw materials for the manufacture of fluoride cement that is limestone, silica sand, and fluorspar. These samples were subjected to several comparative tests used to characterise cements including examination under x-ray diffractometer, scanning electron microscopy and tests for setting time and compressive strength. Under similar laboratory conditions, it was possible to prove that fluoride cement hardens more rapidly than ordinary Portland cement. Also observed during the experimental work is that fluoride cement develops higher compressive strengths than ordinary Portland cement. The hardening and setting times are significantly different between the two cements. Also the nature of the hydration products, that is the microstructural development is significantly different in the two cements. The differences brought about between the two cements are because of the presence of fluorine during the clinkering

  3. Low pH Cements

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David; Benbow, Steven [Quintessa Ltd., Henley-on-Thames (United Kingdom)

    2007-05-15

    The development of low-pH cements for use in geological repositories for radioactive waste stems from concerns over the potential for deleterious effects upon the host rock and other EBS materials (notably bentonite) under the hyperalkaline conditions (pH > 12) of cement pore fluids. Low pH cement (also known as low heat cement) was developed by the cement industry for use where large masses of cement (e.g. dams) could cause problems regarding heat generated during curing. In low pH cements, the amount of cement is reduced by substitution of materials such as fly ash, blast furnace slag, silica fume, and/or non-pozzolanic silica flour. SKB and Posiva have ruled out the use of blast furnace slag and fly-ash and are focusing on silica fume as a blending agent. Currently, no preferred composition has been identified by these agencies. SKB and Posiva have defined a pH limit {<=} 11 for cement grout leachates. To attain this pH, blending agents must comprise at least 50 wt % of dry materials. Because low pH cement has little, or no free portlandite, the cement consists predominantly of calcium silicate hydrate (CSH) gel with a Ca/Si ratio {<=} 0.8. Although there are potential implications for the performance of the spent fuel and cladding due to the presence of hyperalkaline fluids from cement, the principal focus for safety assessment lies with the behaviour of bentonite. There are a number of potential constraints on the interaction of hyperalkaline cement pore fluids with bentonite, including mass balance, thermodynamic issues, mass transport, and kinetics, but none of these is likely to be limiting if conventional OPC cements are employed in repository construction. Nevertheless: Low-pH cements may supply approximately 50 % less hydroxyl ions than conventional OPC for a given volume of cement, but mass balance constraints are complicated by the uncertainty concerning the type of secondary minerals produced during cement-bentonite interaction. The change of aqueous

  4. High temperature cement raw meal flowability

    DEFF Research Database (Denmark)

    Maarup, Claus; Hjuler, Klaus; Dam-Johansen, Kim

    2014-01-01

    The flowability of cement raw meal is investigated at temperatures up to 850°C in a specially designed monoaxial shear tester. Consolidation stresses of 0.94, 1.87 and 2.79kPa are applied. The results show that the flowability is reduced as temperature is increased above 550°C, indicated by incre...... by increasing unconfined yield strength and reduced flowability factors. Deviation and reproducibility are acceptable for all temperatures except for 850°C where belite formation and possibly calcination sinter the raw meal....

  5. Cementation of biodegraded radioactive oils and organic waste

    International Nuclear Information System (INIS)

    The possibility of the microbiological pre-treatment of the oil-containing organic liquid radioactive waste (LRW) before solidification in the cement matrix has been studied. It is experimentally proved that the oil containing cement compounds during long-term storage are subject to microbiological degradation due to the reaction of biogenic organic acids with the minerals of the cement matrix. We recommend to biodegrade the LRW components before their solidification, which reduces the volume of LRW and prevent the destruction of the inorganic cement matrix during the long term storage. The biodegradation of the oil containing LRW is possible by using the radioresistant microflora which oxidize the organic components of the oil to carbon dioxide and water. Simultaneously there is the bio-sorption of the radionuclides by bacteria and emulsification of oil in cement slurry due to biogenic surface-active substances of glycolipid nature. It was experimentally established that after 7 days of biodegradation of oil-containing liquid radioactive waste the volume of LRW is reduced by the factor from 2 to 10 due to the biodegradation of the organic phase to the non-radioactive gases (CH4, H2O, CO2, N2), which are excluded from the volume of the liquid radioactive waste. At the same time, the microorganisms are able to extract from the LRW up to 80-90% of alpha-radionuclides, up to 50% of 90Sr, up to 20% of 137Cs due to sorption processes at the cellular structures. The radioactive biomass is subject to dehydration and solidification in the matrix. The report presents the following experimental data: type of bacterial flora, the parameters of biodegradation, the cementing parameters, the properties of the final cement compound with oil-containing liquid radioactive waste

  6. Hydration of calcium sulfoaluminate cements - Experimental findings and thermodynamic modelling

    International Nuclear Information System (INIS)

    Calcium sulfoaluminate cements (CSA) are a promising low-CO2 alternative to ordinary Portland cements and are as well of interest concerning their use as binder for waste encapsulation. In this study, the hydration of two CSA cements has been investigated experimentally and by thermodynamic modelling between 1 h and 28 days at w/c ratios of 0.72 and 0.80, respectively. The main hydration product of CSA is ettringite, which precipitates together with amorphous Al(OH)3 until the calcium sulfate is consumed after around 1-2 days of hydration. Afterwards, monosulfate is formed. In the presence of belite, straetlingite occurs as an additional hydration product. The pore solution analysis reveals that straetlingite can bind a part of the potassium ions, which are released by the clinker minerals. The microstructure of both cements is quite dense even after 16 h of hydration, with not much pore space available at a sample age of 28 days. The pore solution of both cements is dominated during the first hours of hydration by potassium, sodium, calcium, aluminium and sulfate; the pH is around 10-11. When the calcium sulfate is depleted, the sulfate concentration drops by a factor of 10. This increases pH to around 12.5-12.8. Based on the experimental data, a thermodynamic hydration model for CSA cements based on cement composition, hydration kinetics of clinker phases and calculations of thermodynamic equilibria by geochemical speciation has been established. The modelled phase development with ongoing hydration agrees well with the experimental findings.

  7. 水泥粉煤灰搅拌饱和黄土强度影响因素试验研究%Experimental Research on the Factors Affecting the Strength of Saturated Loess Mixed with Cement and Fly Ash

    Institute of Scientific and Technical Information of China (English)

    安芃芃; 刘文晓; 杨有海

    2014-01-01

    Most of sections along Lanzhou to Zhongchuan Airport Railway Engineering fall into the saturated foundation with low bearing capacity, high compressibility and are reinforced by composite cement-soil mixed pile foundations. The strength performances of cement-fly-ash mixed saturated loess are tested and studied. Under such conditions with different cement and fly ash ( hereinafter referred to as the"two ash") admixture ratio, different cement strength grade, different age, the variation of unconfined compressive strength of cement soil is analyzed. The test results show that the unconfined compressive strength increases with the increasing of two ash admixture, age, the unconfined compressive strength of two ash admixture for cement soil 20% is 1. 42 times of two ash admixture 15%, and is 1. 9 times of the two ash admixture 12%;when the total admixture of two ash is unchanged, with fly ash in total of two ash ratio of 1/5 ,1/4 , 1/3 , cement soil strength decreases slightly; the unconfined compressive strength of cement soil increases obviously with the increasing of strength grade of cement, and the strength of cement soil increases dramatically with the increasing of the amount of cement and fly ash.%兰州至中川机场铁路工程沿线大多地段属于饱和黄土地基,承载力低,压缩性大,采取水泥土搅拌桩复合地基进行加固。对水泥粉煤灰搅拌饱和黄土强度特性进行试验研究。在不同的水泥和粉煤灰(以下简称“二灰”)掺和比、不同的龄期、不同的水泥强度等级下,分析水泥土无侧限抗压强度的变化规律。试验结果表明:水泥土无侧限抗压强度随二灰掺量、龄期的增加而增大,二灰掺量为20%的水泥土无侧限抗压强度是二灰掺量为15%的1.42倍,是二灰掺量12%的1.9倍;当二灰总掺入量不变,粉煤灰掺入量占二灰比例为1/5、1/4、1/3时,水泥土强度略有降低;水泥土无侧限抗压强度随水泥强度

  8. Cementation of Loose Sand Particles based on Bio-cement

    Institute of Scientific and Technical Information of China (English)

    RONG Hui; QIAN Chunxiang

    2014-01-01

    Loose sand particles could be cemented to sandstone by bio-cement (microbial induced magnesium carbonate). The bio-sandstone was firstly prepared, and then the compressive strength and the porosity of the sandstone cemented by microbial induced magnesium carbonate were tested to characterize the cementation effectiveness. In addition, the formed mineral composition and the microstructure of bio-sandstone were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The experimental results show that the feasibility of binding loose sand particles using microbial induced magnesium carbonate precipitation is available and the acquired compressive strength of bio-sandstone can be excellent at certain ages. Moreover, the compressive strength and the porosity could be improved with the increase of microbial induced magnesium carbonate content. XRD results indicate that the morphology of magnesium carbonate induced by microbe appears as needles and SEM results show that the cementation of loose sand particles to sandstone mainly relies on the microbial induced formation of magnesium carbonate precipitation around individual particles and at particle-particle contacts.

  9. 21 CFR 888.3027 - Polymethylmethacrylate (PMMA) bone cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Polymethylmethacrylate (PMMA) bone cement. 888... Polymethylmethacrylate (PMMA) bone cement. (a) Identification. Polymethylmethacrylate (PMMA) bone cement is a device...: Polymethylmethacrylate (PMMA) Bone Cement.”...

  10. Durability of Cement Composites Reinforced with Sisal Fiber

    Science.gov (United States)

    Wei, Jianqiang

    This dissertation focuses mainly on investigating the aging mechanisms and degradation kinetics of sisal fiber, as well as the approaches to mitigate its degradation in the matrix of cement composites. In contrast to previous works reported in the literature, a novel approach is proposed in this study to directly determine the fiber's degradation rate by separately studying the composition changes, mechanical and physical properties of the embedded sisal fibers. Cement hydration is presented to be a crucial factor in understanding fiber degradation behavior. The degradation mechanisms of natural fiber consist of mineralization of cell walls, alkali hydrolysis of lignin and hemicellulose, as well as the cellulose decomposition which includes stripping of cellulose microfibrils and alkaline hydrolysis of amorphous regions in cellulose chains. Two mineralization mechanisms, CH-mineralization and self-mineralization, are proposed. The degradation kinetics of sisal fiber in the cement matrix are also analyzed and a model to predict the degradation rate of cellulose for natural fiber embedded in cement is outlined. The results indicate that the time needed to completely degrade the cellulose in the matrix with cement replacement by 30wt.% metakaolin is 13 times longer than that in pure cement. A novel and scientific method is presented to determine accelerated aging conditions, and to evaluating sisal fiber's degradation rate and durability of natural fiber-reinforced cement composites. Among the static aggressive environments, the most effective approach for accelerating the degradation of natural fiber in cement composites is to soak the samples or change the humidity at 70 °C and higher temperature. However, the dynamic wetting and drying cycling treatment has a more accelerating effect on the alkali hydrolysis of fiber's amorphous components evidenced by the highest crystallinity indices, minimum content of holocellulose, and lowest tensile strength. Based on the

  11. Environmental Efficiency Analysis of Listed Cement Enterprises in China

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2016-05-01

    Full Text Available China’s cement production has been the highest worldwide for decades and contributes significant environmental pollution. Using a non-radical DEA model with slacks-based measure (SBM, this paper analyzes the environmental efficiency of China’s listed cement companies. The results suggest that the average mean of the environmental efficiency for the listed cement enterprises shows a decreasing trend in 2012 and 2013. There is a significant imbalance in environmental efficiency in these firms ranging from very low to very high. Further investigation finds that enterprise size and property structure are key factors. Increasing production concentration and decreasing the share of government investment could improve the environmental efficiency. The findings also suggest that effectively monitoring pollution products can improve environmental efficiency quickly, whereas pursuit for excessive profitability without keeping the same pace in energy saving would cause a sharp drop in environmental efficiency. Based on these findings, we proposed that companies in the Chinese cement sector might consider restructuring to improve environmental efficiency. They also need to make a trade-off between profitability and environmental protection. Finally, the Chinese government should reduce ownership control and management interventions in cement companies.

  12. Composite Control of Precalciner Exit Temperature in Cement Rotary Kiln

    Institute of Scientific and Technical Information of China (English)

    赵晨; 诸静

    2003-01-01

    A composite control strategy for the precalciner exit temperature in cement kiln is introduced based on a mathematical model. In this model, the raw meal flow, coal powder flow and wind flow are taken as three input variables, the clinker fow and exit teperature of cement kiln are output variables, and other influencing factors are considered as disturbance. A composite control system is synthesied by integrating self-learning PID, fuzzy and feedforward function into a combined controller, and the arithmetics for the self-learning PID controller, fuzzy controller and feedforward controller are elaborated respectively. The control strategy has been realized by software in real practice at cement factory. Application results show that the composite control technology is superior to the general PID control in control effect, and is suitable to the industrial process control with slow parameter variation, nonlinearity and uncertainty.

  13. An on-belt elemental analyser for the cement industry.

    Science.gov (United States)

    Lim, C S; Tickner, J R; Sowerby, B D; Abernethy, D A; McEwan, A J; Rainey, S; Stevens, R; Manias, C; Retallack, D

    2001-01-01

    On-line control of raw mill feed composition is a key factor in the improved control of cement plants. A new and improved on-conveyor belt elemental analyser for cement raw mill feed based on neutron inelastic scatter and capture techniques has been developed and tested successfully in Adelaide Brighton's Birkenhead cement plant on highly segregated material with a depth range of 100 to 180 mm. Dynamic tests in the plant have shown analyser RMS total errors of 0.49, 0.52, 0.38 and 0.23 wt% (on a loss free basis) for CaO, SiO2, Al2O3 and Fe2O3 respectively, when 10-minute counting periods are used. PMID:11144240

  14. Effect of Marginal Sealant on Shear Bond Strength of Glass Ionomer Cement: Used as A Luting Agent

    OpenAIRE

    Nazirkar, Girish; Singh, Shailendra; Badgujar, Mayura; Gaikwad, Bhushan; Bhanushali, Shilpa; Nalawade, Sumit

    2014-01-01

    Background: Moisture sensitivity and dissolution has been a known drawback of glass ionomer cement (GIC). When used as a luting agent for cementation of casted indirect restoration, the exposed cement at the margins is often a primary factor for marginal leakage and consequent failure of the restoration. The following in vitro study was planned to evaluate the effect of a marginal sealant on GIC used as luting agent. Materials and Methods: Sixty healthy extracted pr...

  15. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  16. Cement radwaste solidification studies third annual report

    International Nuclear Information System (INIS)

    This report summarises cement radwaste studies carried out at AEE Winfrith during 1981 on the encapsulation of medium and low active waste in cement. During the year more emphasis has been placed on the work which is directly related to the solidification of SGHWR active sludge. Information has been obtained on the properties of 220 dm3 drums of cemented waste. The use of cement grouts for the encapsulation of solid items has also been investigated during 1981. (U.K.)

  17. Neutron Scattering Studies of Cement

    Science.gov (United States)

    Allen, Andrew

    2010-03-01

    Despite more than a century of research, basic questions remain regarding both the internal structure and the role of water in Ordinary Portland cement (OPC) concrete, the world's most widely used manufactured material. Most such questions concern the primary hydration product and strength-building phase of OPC paste, the calcium silicate hydrate (C-S-H) gel. When cement and water are mixed, this phase precipitates as clusters of nanoscale (nearly amorphous) colloidal particles with an associated water-filled inter-particle pore system. Most attempts to characterize the C-S-H gel and the behavior of the associated water involve drying or other processes that, themselves, change the bound water content within and around the gel. Neutron scattering methods do not suffer from this disadvantage. Furthermore, the neutron isotope effect and the neutron's sensitivity to molecular motion have enabled considerable progress to be made in recent years by: (i) determining the C-S-H composition, density and gel structure in small-angle neutron scattering (SANS) H/D contrast variation studies; (ii) elucidating the changing state of water within cement as hydration progresses using quasielastic neutron scattering (QENS); and (iii) measuring the production and consumption of nanoscale calcium hydroxide (CH), a by-product of cement hydration that co-exists with the C-S-H gel, using inelastic neutron scattering (INS). These experiments have provided new insights into the physics and chemistry of cement hydration, and have implications for the design of new concretes with pozzolanic cement additions that are intended to address environmental concerns and sustainability issues.

  18. Acoustic probing of elastic behavior and damage in weakly cemented granular media.

    Science.gov (United States)

    Langlois, V; Jia, X

    2014-02-01

    We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction ϕ = 0.1%-4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We interpret the data in terms of effective medium models in which the contact stiffnesses are derived by either a bonded contact model [P. J. Digby, J. Appl. Mech. 48, 803 (1981)] or a cemented contact model [J. Dvorkin, A. Nur, and H. Yin, Mech. Mater. 18, 351 (1994)]. The former fails to quantitatively account for the results with a soft cement relative to the grain, whereas the latter considering the mechanical properties of the cement does apply. Moreover, we monitor the irreversible behavior of the cemented granular packs under moderate uniaxial loading (1.3 MPa) with the correlation method of ultrasound scattering. The damage of the cemented materials is accompanied by a compressional wave velocity decrease up to 60%, likely due to the fractures induced at the grain-cement interfaces. PMID:25353594

  19. PERFORMANCE OF PULVERIZED SLAG-SUBSTITUTED CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The Portland cement is equivalently substituted by slag micropowders with various specific areas. The workability,activity and acid-corrosion resistance of the slag-substituted cements are investigated,the activation of gypsum is discussed,also the porosity and pore distribution of mortars of the slag micropowders cement are determined by mercury intrusion porosimetry.

  20. 21 CFR 872.3275 - Dental cement.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Dental cement. 872.3275 Section 872.3275 Food and... DENTAL DEVICES Prosthetic Devices § 872.3275 Dental cement. (a) Zinc oxide-eugenol—(1) Identification... filling or as a base cement to affix a temporary tooth filling, to affix dental devices such as crowns...

  1. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well

  2. Impact of stem-broach sizing on the cement mantle of Lubinus SP II stems. A CT scan analysis.

    Science.gov (United States)

    Scheerlinck, Thierry; de Mey, Johan; Deklerck, Rudi

    2009-06-01

    Lubinus SP II stems are cemented either line-to-line with the largest broach or one-size undersized. The purpose of this study was to compare both implantation techniques. We used 18 polymeric stem replicas cemented line-to-line and undersized in paired cadaveric femora and analyzed them with CT scan images. Cementing Lubinus stems line-to-line resulted in higher medullary canal-filling indices (28.26 +/- 4.10%), thinner cement mantles (3.29 +/- 0.40 mm), more cement defects (5.12 +/- 1.69%) and more areas of thin cement (23.81 +/- 7.13%) than undersizing (respectively: 23.61 +/- 4.24%, 3.62 +/- 0.43 mm, 1.48 +/- 2.04%, 15.11 +/- 5.93%). In both settings, over 80% of areas of thin or deficient cement were supported by cortex. Using a line-to-line technique, adequate stem alignment was achieved without distal centralizer. Undersizing the stem and using a distal centralizer reduced the incidence of distal cement defects by a factor 10. While stems cemented line-to-line might have mechanical advantages, undersizing and using distal centralizers reduced potential pathways for debris migration to the bone-cement interface. PMID:19681321

  3. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Science.gov (United States)

    DE SOUZA, Grace; BRAGA, Roberto Ruggiero; CESAR, Paulo Francisco; LOPES, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used. PMID:26398507

  4. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    Directory of Open Access Journals (Sweden)

    Grace DE SOUZA

    2015-08-01

    Full Text Available AbstractResin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  5. Microscale Investigation of Arsenic Distribution and Species in Cement Product from Cement Kiln Coprocessing Wastes

    OpenAIRE

    Yufei Yang; Jingchuan Xue; Qifei Huang

    2013-01-01

    To improve the understanding of the immobilization mechanism and the leaching risk of Arsenic (As) in the cement product from coprocessing wastes using cement kiln, distribution and species of As in cement product were determined by microscale investigation methods, including electron probe microanalysis (EPMA) and X-ray absorption spectroscopy. In this study, sodium arsenate crystals (Na3AsO412H2O) were mixed with cement production raw materials and calcined to produce cement clinker. Then, ...

  6. The comparison between sulfate salt weathering of portland cement paste and calcium sulfoaluminate cement paste

    OpenAIRE

    Liu, Zanqun; Deng, Dehua; De Schutter, Geert

    2015-01-01

    In this paper, the damage performances of sulfate salt weathering of Portland cement paste and calcium sulfoaluminate (CSA) cement paste were compared according to authors' previous studies. It was found that the evaporation zone of speciments partially immersed in 10% Na2SO4 solution were both severely deteriorated for Portland cement and CSA cement. However, the differences were more significant: (1) the CSA cement paste were damaged just after 7 days exposure compared to the 5 months expos...

  7. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement

  8. Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin

    DEFF Research Database (Denmark)

    Molenaar, Nicolaas; Cyziene, Jolanta; Sliaupa, Saulius;

    2008-01-01

    Currently, the question of whether or not the presence of oil in sandstone inhibits quartz cementation and preserves porosity is still debated. Data from a number of Cambrian sandstone oil fields and dry fields have been studied to determine the effects of oil emplacement on quartz cementation...... cementation is derived from internal sources. Rather, in spite of large variation in porosity and quartz cement content, a regular pattern of porosity decrease is related to increasing temperature or depth. The observed heterogeneity is due to local factors that influence the precipitation of quartz cement......, including sandstone architecture, i.e., distribution of shales within the sandstone bodies, and sandstone thickness. Heterogeneity is inherent to sandstone architecture and to the fact that silica for quartz cementation is derived from heterogeneously distributed local pressure solution. Models predicting...

  9. Full factorial design analysis of carbon nanotube polymer-cement composites

    Directory of Open Access Journals (Sweden)

    Fábio de Paiva Cota

    2012-08-01

    Full Text Available The work described in this paper is related to the effect of adding carbon nanotubes (CNT on the mechanical properties of polymer-cement composites. A full factorial design has been performed on 160 samples to identify the contribution provided by the following factors: polymeric phase addition, CNT weight addition and water/cement ratio. The response parameters of the full factorial design were the bulk density, apparent porosity, compressive strength and elastic modulus of the polymer-cement-based nanocomposites. All the factors considered in this analysis affected significantly the bulk density and apparent porosity of the composites. The compressive strength and elastic modulus were affected primarily by the cross-interactions between polymeric phase and CNT additions, and the water/cement ratio with polymeric phase factors.

  10. Thoughts on the Current Cement Industry Development

    Institute of Scientific and Technical Information of China (English)

    Gan Zhihe

    2003-01-01

    According to the analysis of cement capacity andits relations with macro economy running index, the mainreasons for the present rapid development of cement capacityare the rapid development of economy and the shot up ofwhole society fixed asset investment. According to the presentspeed of economy development, cement still enjoys a po-tential increase, So here has not been an overall excessivepopularity of cement industry. The best way to prevent lowlevel repeated construction is to promote the development ofnew dry- process cement as well as try to get rid of blindness.

  11. Effect of temporary cements on the shear bond strength of luting cements

    Directory of Open Access Journals (Sweden)

    Marco Fiori-Júnior

    2010-02-01

    Full Text Available OBJECTIVE: The purpose of this study was to evaluate, by shear bond strength (SBS testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10: I and V (no temporary cementation; II and VI: Ca(OH2-based cement; III and VII: zinc oxide (ZO-based cement; IV and VIII: ZO-eugenol (ZOE-based cement. Final cementation was done with RelyX ARC cement (groups I to IV and RelyX Unicem cement (groups V to VIII. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. RESULTS: Means were (MPa: I - 3.80 (±1.481; II - 5.24 (±2.297; III - 6.98 (±1.885; IV - 6.54 (±1.459; V - 5.22 (±2.465; VI - 4.48 (±1.705; VII - 6.29 (±2.280; VIII - 2.47 (±2.076. Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII showed statistically significant difference (p0.05 for the different luting cements (RelyX TM ARC and RelyX TM Unicem. The groups that had no temporary cementation (Groups I and V did not differ significantly from each other either (p>0.05. CONCLUSION: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation.

  12. High piezoelectric properties of cement piezoelectric composites containing kaolin

    Science.gov (United States)

    Pan, Huang Hsing; Yang, Ruei-Hao; Cheng, Yu-Chieh

    2015-04-01

    To obtain high piezoelectric properties, PZT/cement composites with kaolin were fabricated and polarized by 1.5kV/mm electric field for 40 min, where lead zirconate titanate (PZT) inclusion with 50% by volume was used. After the polarization, piezoelectric properties of the composite were measured daily till 100 days. Results indicated that relative dielectric constant (ɛr) and piezoelectric strain constant (d33) increase with aging day, and approach to asymptotic values after 70 days. Temperature treatment to the composite is a dominate factor to enhance piezoelectric properties. The d33 and ɛr values of PZT/cement composites treated at the ambient temperature (23℃) were 57pC/N and 275 at the 70th aging day respectively, and then reached 106pC/N and 455 in turn with 150℃ treatment. The composite contains 4% kaolin having the highest value of d33=111pC/N and ɛr=500 at 90 days because the porosity is the less than the others. Cement piezoelectric composites containing kaolin own the higher d33 and ɛr value, compared with the other reported composites with 50% PZT. The porosity, the electromechanical coupling factor and impedance-frequency spectra of the cement piezoelectric composites were also discussed.

  13. False set in aireated cements

    Directory of Open Access Journals (Sweden)

    Vázquez, T.

    1986-06-01

    Full Text Available The influence of aireation on the appearance or elimination of the false setting in industrial portland cements is studied by means of infrared spectroscopy.

    Se estudia por medio de la espectroscopia infrarroja la influencia de la aireación sobre la aparición o eliminación del fraguado, en cemento portland industriales.

  14. Pressurization of bioactive bone cement in vitro.

    Science.gov (United States)

    Fujita, H; Iida, H; Kawanabe, K; Okada, Y; Oka, M; Masuda, T; Kitamura, Y; Nakamura, T

    1999-01-01

    We have developed a bioactive bone cement consisting of MgO-CaO-SiO2-P2O5-CaF2 glass-ceramic powder (AW glass-ceramic powder), silica glass powder as an inorganic filler, and bisphenol-a-glycidyl methacrylate (bis-GMA) based resin as an organic matrix. The efficacy of this bioactive bone cement was investigated by evaluating its pressurization in a 5-mm hole and small pores using a simulated acetabular cavity. Two types of acetabular components were used (flanged and unflanged sockets) and a commercially available polymethylmethacrylate (PMMA) bone cement (CMW 1 Radiopaque Bone Cement) was selected as a comparative control. Bioactive bone cement exerted greater intrusion volume in 5-mm holes than PMMA bone cement in both the flanged and unflanged sockets 10 minutes after pressurization (p anchor holes than PMMA bone cement.

  15. Leaching of tritium from a cement composite

    International Nuclear Information System (INIS)

    Leaching of tritium from cement composites into an aqueous phase has been studied to evaluate the safety of incorporation of the tritiated liquid waste into cement. Leaching tests were performed by the method recommended by the International Atomic Energy Agency. The Leaching fraction was measured as functions of waste-cement ratio (Wa/C), temperature of leachant and curing time. The tritium leachability of cement in the long term test follows the order: alumina cement portland cement slag cement. The fraction of tritium leached increases with increasing Wa/C and temperature and decreasing curing period. A deionized water as a leachant gives a slightly higher leachability than synthetic sea water. The amount leached of tritium from a 200 l drum size specimen was estimated on the basis of the above results. (author)

  16. Understanding cement mechanical behavior in SAGD wells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Zahacy, T. A. [C-FER Technologies (Canada)

    2011-07-01

    In the heavy oil industry, the steam assisted gravity drainage process is often used to enhance oil recovery but it can cause cracks in the cement sheath. These cracks are the result of high steam temperatures and thermal expansion. In order to mitigate this risk, improved well designs are required. The aim of this paper is to present the mechanical behavior of the cement sheath during the heating phase. An analysis of the impact of design and operating parameters was conducted through thermal hydraulic and thermal mechanical analyses to assess cement integrity. These analyses were then performed on an example of an SAGD project in the southern part of the Athabasca oilsands region to assess the performance of the cement sheath. Results showed that potential damage to the cement can be reduced by slow heating and a lower Young's modulus cement blend. This paper makes recommendations for optimizing cement design in thermal recovery wells.

  17. Strategic Management of Human Capital Development on Employees Performance in Nigeria Cements Sector

    Directory of Open Access Journals (Sweden)

    Ehis Omoluabi

    2013-12-01

    Full Text Available The synopsis of strategic management of human capital development on employees performance in Nigeria cement sector, emphasize the relative roles of strategic management of human capital development in the Nigerian cement sector. The paper discuss number of factors that contributes to the success of Nigerian cement sector; these factors are skills, experiences, qualification of individual employees, ideas etc. The paper further examine that strategic management has helped the development of employees performance in the Nigerian cement sector. The researcher divided the cement sector into zones e.g. Lagos, Ibadan, and Ekiti. This resulted to total population of 750 employees in the cement industry as at the time the research was conducted. The Taro Yamae statistical formula was used to determine the sample size of 511. The researcher made use of primary and secondary source of data collection for the findings. The paper find out that constant training and development of employees has helped the cement sector to do well in their business operation which will help improved quality and innovation with the goal of gaining completive advantage through human resource. That the contribution of HCD can lead to organizational performance and effectively linked to changes in different business environment including micro and macro context.

  18. Mesoscale texture of cement hydrates.

    Science.gov (United States)

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  19. The cement recycling of the earthquake disaster debris by Hachinohe Cement Co., Ltd

    International Nuclear Information System (INIS)

    A tremendous quantity of earthquake disaster debris and tsunami sediment was resulted by the Great East Japan Earthquake on March 11, 2011. Hachinohe Cement Co., Ltd., a Sumitomo Osaka Cement subsidiary, was the first cement industry company to receive and process such waste materials outside of their usual prefecture area, while the company is performing their treatment and recycling services locally in Hachinohe City and Aomori Prefecture. This report provides an explanation about the recycling mechanism of waste materials and by-products in cement manufacturing process, and introduces an example of actual achievements for the disaster debris treatment by utilizing the cement recycling technologies at the Hachinohe Cement Plant. (author)

  20. 谈硅酸盐水泥的强度%On strength of Portland cement

    Institute of Scientific and Technical Information of China (English)

    牛崇霞

    2012-01-01

    The paper illustrates the formation and development of the cement strength,analyzes the factors which influence the strength of the Portland cement from the mineral components of the clinker,the cement fineness,and the construction conditions,and points out the cement strength could adhere to the regulation of the relative standards only by controlling these factors in a strict way.%简要阐述了水泥强度的产生与发展,从熟料的矿物组成、水泥细度、施工条件三方面分析了影响硅酸盐水泥强度的因素,指出只有严格控制这些因素,才能保证水泥强度符合有关标准规定。

  1. Alkali Aggregate Reaction in Alkali Slag Cement Mortars

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By means of "Mortar Bar Method",the ratio of cement to aggregate was kept as a constant 1∶2.25,the water-cement ratio of the mixture was 0.40,and six prism specimens were prepared for each batch of mixing proportions with dimensions of 10×10×60mm3 at 38±2℃ and RH≥95%, the influences of content and particle size of active aggregate, sort and content of alkali component and type of slag on the expansion ratios of alkali-activated slag cement(ASC) mortars due to alkali aggregate reaction(AAR) were studied. According to atomic absorption spectrometry,the amount of free alkali was measured in ASC mortars at 90d.The results show above factors affect AAR remarkably,but no dangerous AAR will occur in ASC system when the amount of active aggregate is below 15% and the mass fraction of alkali is not more than 5% (Na2O).Alkali participated in reaction as an independent component, and some hydrates containing alkali cations were produced, free alkalis in ASC system can be reduced enormously.Moreover,slag is an effective inhibitor, the possibility of generating dangerous AAR in ASC system is much lower at same conditions than that in ordinary Portland cement system.

  2. 水泥搅拌砂土强度特性及影响因素研究%Study on Strength Characteristics and Influence Factors of Sand Mixing Cement

    Institute of Scientific and Technical Information of China (English)

    马殷军

    2014-01-01

    The saturated loess foundation with sand lens is mostly distributed along the railway project of Lanzhou to Zhongchuan Airport,so the cement mixed pile foundation is applied.The strength properties of cement mixing sand are studied by experiment in different lime-fly ash in-corporation ratios,curing time and stirring uniformity,and the variation of unconfined compres-sive strength of the cement mixing sand is analyzed.The results show that the unconfined com-pressive strength of cement mixing sand increases with the increase of lime-fly ash incorporation, whose increasing from 7% to 20% makes the unconfined compressive strength of cement mixing sand increase by 160.1%,and it increases with the growth of curing period;it grows rapidly dur-ing 7 d to 28 d,and still grows much after 28 d;the compressive strength of age 90 d has good cor-relation with that of 28 d,so the strength of 28 d can be predicted from that of 90 d,thus to short-en the test cycle;furthermore,the unconfined compressive strength of cement mixed soil increases obviously with the increase of stirring uniformity,and the unconfined compressive strength of uni-form specimen increases by 238%~263% than that of uneven specimen.%兰州至中川机场铁路工程沿线大多地段为饱和黄土地基,设计采取水泥土搅拌桩复合地基加固;该线部分地段饱和黄土地基中含有呈透镜状分布的砂土.对水泥搅拌砂土在不同的水泥和粉煤灰(以下简称“二灰”)掺合比、养护龄期、搅拌均匀程度下进行强度特性试验研究,分析了水泥搅拌砂土无侧限抗压强度的变化规律.试验表明:水泥搅拌砂土无侧限抗压强度随二灰掺量的增加而增加,二灰掺入量从7%增加到20%水泥搅拌砂土的无侧限抗压强度增长了160.1%;随养护龄期的增加而增大,7~28 d 增长较快,28 d 以后仍有较大程度的增长,龄期90 d 抗压强度与28 d 强度有

  3. Acoustic probing of elastic behavior and damage in weakly cemented granular media

    OpenAIRE

    Langlois, Vincent; Jia, X.

    2014-01-01

    International audience We investigate the elastic behavior and damage of weakly cemented granular media under external load with ultrasound. The cementation controlled experiments are performed by freezing the capillary liquid at the bead contact in a dense glass or polymeric [poly(methyl methacrylate)] bead pack wet by tetradecane of volume fraction φ = 0.1%–4%. When the pendular rings are solidified, an abrupt increase by a factor of 2 in the compressional wave velocity is observed. We i...

  4. The use of cement grouts for the immobilisation of solid radioactive waste

    International Nuclear Information System (INIS)

    The use of cement grouts is being considered for the immobilisation of solid items of radioactive waste. In this report the factors which influence the selection of a grout for use in an active plant are identified. The properties and limitations of standard cement grouts are summarised. Inactive grouting trials carried out in the period September 1981 to June 1982 on the 220 dm3 scale are described. (author)

  5. Adsorption of Superplasticizers in Fly Ash Blended Cement Pastes and Its Rheological Effects

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; SHEN Peiliang; SHUI Zhonghe; FAN Jianfeng

    2012-01-01

    The adsorption of superplasticizers in fly ash blended cement paste and its rheological effects were investigated.It is shown that the absorption of superplasticizer on portland cement particles is very different from that on fly ash particles.The fly ash particles have smooth surfaces and are negatively charged,so its adsorption capacity is weaker than the portland cement particles.The amount of adsorbed SP in the fly ash blended cement paste depends highly on the replacement proportion of portland cement with fly ash,and to a much less extent on the nature of the fly ash.However,the amount of adsorbed superplasticizer does not correspond well the ζ-potential of the solid particles,due the strong adsorbing capacities of the Portland cement particles.When fly ash replaces portland cement in the paste,the rheological behavior is radically changed,which is closely related to the fineness and density of the ash.The packing and agglomeration of the solid particles are the controlling factors on the rheological parameters of the fresh paste,instead of the amount and type of adsorbed superplasticizer.

  6. Study to determine the feasibility of asbestos cement sheets as cladding for concrete offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-01

    The purpose of this study was to determine the feasibility of using asbestos cement sheets as cladding against ice action in concrete offshore structures. Physical properties and cost factors were compared for asbestos cement, steel sheets, steel and Teflon, and high strength concrete. The comparison shows that asbestos cement is not well suited to the proposed use. A library search produced only one relevant research paper. Asbestos cement has been tested in seawater (but not in a cold climate) and in the laboratory to examine its properties for use a sheet piling in a marine evironment. The results for normal and for autoclaved asbestos cement were not encouraging. Extracts from the report are included. The information available strongly suggests that asbestos cement is not well suited to the proposed use on offshore structures. To show this conclusively, it is recommended that tests on asbestos cement in cold seawater be conducted, and the results compared to those for high strength concrete and for steel sheets. These materials are considered to be more appropriate for providing protection to offshore structures. 1 ref., 3 tabs.

  7. Influence of various acids on the physico–mechanical properties of pozzolanic cement mortars

    Indian Academy of Sciences (India)

    S Türkel; B Felekoǧlu; S Dulluç

    2007-12-01

    Acidic attack represents a topic of increasing significance, owing to the spread of damages of concrete structures in both urban and industrial areas. Cement type is an important factor affecting performance of cement based materials in an aggressive environment. The goal of this study was to compare the acid resistance of a pozzolanic cement (CEM IV-A/32·5) with Portland cement (CEM I 32·5) that was made from the same clinker. For this purpose, 50 mm mortar cubes were prepared with two different kinds of cement according to TS EN 196-1. After 28 days of hardening, the samples were immersed into four different concentrations of hydrochloric, nitric and sulfuric acid solutions for a period of 120 days. The changes in weight loss and compressive strength values for each acid solution within the test period were recorded. The acid resistance of mortars made from Portland cement was better than the pozzolanic cement incorporated samples after 120 days of acid attack.

  8. Strength improvement of fibre cement product

    Directory of Open Access Journals (Sweden)

    Waranya Sonphuak

    2013-10-01

    Full Text Available This paper presents a methodology to improve the strength or the Modulus of Rupture (MOR of fibre cement. The Six Sigma approach with the DMAIC steps was applied to a case study company. This research started from defining problem, setting the project objective and the project scope. Next, the measurement system was analyzed and the process map was set up. The potential factors of the problem was then determined. Due to there were many factors that affect the MOR, the Cause and Effect Matrix and the Failure Mode and Effect Analysis technique were then used to reduce the number of factors to be studied further. Next, three process factors, which were the pulp slurry freeness, the film-layer thickness, and the pressure step, were optimized using the results from the Box-Behnken experimental design. Other 13 remaining factors were improved by creating or revising the standard work instructions and training the operators. After that, the statistical process control and the control plan were set up to control the production processes. After improvement, the process capability index (Ppk significantly increased from 0.26 to 1.35.

  9. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    OpenAIRE

    Y.C.P RAMANA BABU; B.SAI DOONDI; N. M .V .VAMSI KRISHNA; K.Prasanthi

    2013-01-01

    India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO) and carbon dioxide (CO2) are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green hous...

  10. ROTARY SCREW SYSTEMS IN CEMENT

    OpenAIRE

    Taratuta V. D.; Belokur K. A.; Serga G. V.

    2016-01-01

    The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometr...

  11. WHITE CEMENT IN SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Y.C.P RAMANA BABU

    2013-04-01

    Full Text Available India is one among the fast developing countries in the world in the areas of Infrastructure. Now a day, Carbon monoxide (CO and carbon dioxide (CO2 are the temporary atmospheric pollutants in the environment chiefly emitted from the fuel burning vehicles and street lights which lead to global warming and pose a major threat tothe survival and sustainable development. This paper deals with the principal purpose of use of white cement in pavement design which will take care of the Green house gases (i.e., CO and CO2 and also saves lot of money in the long run process. A small amount of these gases in environment can cause major problems over time. Use of white cement in composite pavement design where there is heavy traffic loads are acting as well as number of vehicles are more such as junctions, bus stops, check posts etc., can perform better and acts asenvironment friendly. Its light colour reflects more than bituminous pavement so that it can be easily identified and avoid accidents to some extent. White cement helps to lower the average bus stop, junction temperature providing comfort to the people because it has high solar reflectance there by reducing “urban heat island” effect. In addition to this it has some more advantages which increase the sustainability, durability and workability of the pavements.

  12. Scanning electron microscopy analysis of dental cements

    Directory of Open Access Journals (Sweden)

    Radosavljević Radivoje D.

    2009-01-01

    Full Text Available The aim of this study was to compare in vitro the characteristics of different types of luting cements (zinc phosphate, glass-ionomer and resin based composite cement using scanning electron microscopy (SEM analysis and microleakage for the quality range of materials. Dental cements were mixed in accordance with the manufacturer's instructions and formed with posts in dental root canals of extracted teeth. The quality of cement was determined by SEM observation on horizontal sectioned roots with fixed posts according to specific pore and marginal gap diameter. The microleakage was measured on specimens immersed in Lofler (methylene blue solution. The mean values of the maximal diameter of pores, marginal gaps and microleakage of conventional cements are remarkably larger in comparison with composite luting agents. In conclusion, the quality and efficiency of composite luting agents in comparison with conventional cements are more successful in protecting the interior of tooth from penetration of oral fluids, bacteria and bacterial toxins into unprotected dentine.

  13. Cement replacement materials. Properties, durability, sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanianpour, Ali Akbar [Amirkabir Univ. of Technology, Tehran (Iran, Islamic Republic of). Concrete Technology Center

    2014-04-01

    The aim of this book is to present the latest findings in the properties and application of Supplementary Cementing Materials and blended cements currently used in the world in concrete. Sustainability is an important issue all over the world. Carbon dioxide emission has been a serious problem in the world due to the greenhouse effect. Today many countries agreed to reduce the emission of CO2. Many phases of cement and concrete technology can affect sustainability. Cement and concrete industry is responsible for the production of 7% carbon dioxide of the total world CO2 emission. The use of supplementary cementing materials (SCM), design of concrete mixtures with optimum content of cement and enhancement of concrete durability are the main issues towards sustainability in concrete industry.

  14. Global Cement Industry: Competitive and Institutional Dimensions

    OpenAIRE

    Selim, Tarek; Salem, Ahmed

    2010-01-01

    The cement industry is a capital intensive, energy consuming, and vital industry for sustaining infrastructure of nations. The international cement market –while constituting a small share of world industry output—has been growing at an increasing rate relative to local production in recent years. Attempts to protect the environment in developed countries –especially Europe—have caused cement production plants to shift to countries with less stringent environmental regulations. Along with con...

  15. Characterization of cement composites with mineral additives

    OpenAIRE

    Korat, Lidija

    2015-01-01

    Doctoral dissertation is aimed at characterizing cement composites with mineral additives representing the industrial waste material (fly ash, granulated blast furnace slag and biomass fly ash). Their usage can replace high cement shares in individual cases and is, however, favourable due to the production costs reduction and environment burden decrease, including the decreased emission of greenhouse gases as well as lower energy use. Cement composites (in fresh or hardened state)...

  16. Premixed calcium silicate cement for endodontic applications

    OpenAIRE

    Persson, Cecilia; Engqvist, Håkan

    2011-01-01

    Calcium silicate-based materials (also called MTA) are increasingly being used in endodontic applications. However, the handling properties of MTA are not optimal when it comes to injectability and cohesion. Premixing the cements using glycerol avoids these issues. However, there is a lack of data on the effect of common cement variables on important properties of premixed cements for endodontic applications. In this study, the effects of liquid-to-powder ratio, amount of radiopacifier and am...

  17. Water dynamics in glass ionomer cements

    Science.gov (United States)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  18. Retention of Root Canal Posts: Effect of Cement Film Thickness, Luting Cement, and Post Pretreatment.

    Science.gov (United States)

    Sahafi, A; Benetti, A R; Flury, S; Peutzfeldt, A

    2015-01-01

    The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment. PMID:25764045

  19. The mechanical effects of different levels of cement penetration at the cement-bone interface.

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2010-01-01

    The mechanical effects of varying the depth of cement penetration in the cement-bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement-bone interface were created from micro-computed tomography data and the p

  20. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  1. Case Study of the California Cement Industry

    OpenAIRE

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-01-01

    California is the largest cement producing state in the U.S., accounting for between 10 percent and 15 percent of U.S. cement production and cement industry employment. The cement industry in California consists of 31 sites that consume large amounts of energy, annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3 million tons of coal, 0.25 tons of coke, and smaller amounts of waste materials, including tires. The case study summarized in this paper focused on providi...

  2. Shrinkage Properties of Cement Stabilized Gravel

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard

    2014-01-01

    Cement stabilized gravel is an attractive material in road construction because its strength prop-erties are accommodating the increasingly higher requirements to the bearing capacity of a base course. However, reflection cracking of cement stabilized gravel is a major concern. In this pa......-per the shrinkage properties of cement stabilized gravel have been documented under various temperature and relative humidity conditions. Two cement contents corresponding to a 28-days compressive strength of 6.2 MPa and 12.3 MPa have been tested and compared. It is found that the coefficient of linear expansion...

  3. Immobilisation of radwaste in cement based matrices

    International Nuclear Information System (INIS)

    The solubilities and influence on cement pH are reported for calcium aluminate and aluminosulphate hydrates. The solubility of Ca(OH)2 is reported to 700 bars. Polymerization of C-S-H is investigated by NMR. Specific interactions of U6+ and iodine (I-, IO3-) with cement components are described. The impact of radiation on cements and the influence of higher temperature are documented. The role of dissolved Ca and CO2 in groundwaters as dissolution media for cements are reported. (author)

  4. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    Science.gov (United States)

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond strength, self-adhesive cement, silane, dentin, indirect composite. PMID:26855700

  5. Acoustic evaluation of cementing quality using obliquely incident ultrasonic signals

    Institute of Scientific and Technical Information of China (English)

    Duan Wen-Xing; Qiao Wen-Xiao; Che Xiao-Hua; Xie Hui

    2014-01-01

    Ultrasonic cement bond logging is a widely used method for evaluating cementing quality. Conventional ultrasonic cement bond logging uses vertical incidence and cannot accurately evaluate lightweight cement bonding. Oblique incidence is a new technology for evaluating cement quality with improved accuracy for lightweight cements. In this study, we simulated models of acoustic impedance of cement and cementing quality using ultrasonic oblique incidence, and we obtained the relation between cementing quality, acoustic impedance of cement, and the acoustic attenuation coeffi cient of the A0-mode and S0-mode Lamb waves. Then, we simulated models of different cement thickness and we obtained the relation between cement thickness and the time difference of the arrival between the A0 and A0′ modes.

  6. Influence of calcium sulfoaluminate cement on the pullout performance of reinforcing fibers: An evaluation of the micro-mechanical behavior

    Science.gov (United States)

    Jewell, Robert Benjamin

    The objective of this research was to determine the influence of calcium sulfoaluminate (CSA) cement on reinforcing fibers by evaluating the fiber pullout behavior, and bonding characteristics, of a single fiber embedded in a cementitious paste matrix. Four types of fibers commonly used in industry were evaluated: 1) Polyvinyl alcohol; 2) Polypropylene; 3) Coated Steel; and 4) Plain Steel. Upward trends in energy costs and potential greenhouse gas regulations favor an increased use of construction materials that require lower energy and lower CO2 emissions to fabricate, such as CSA cement, as opposed to the production of ordinary portland cement (OPC), which is more energy intensive and produces more CO2 emissions. However, widespread use of CSA cement requires a more in-depth understanding of the engineering characteristics that govern its performance, including interaction with reinforcing fibers. The overarching objective of this research was to provide the engineering base needed for the utilization of reinforcing fibers in CSA cement-based construction materials. The aims of the research were (1) to develop an ettringite-rich calcium sulfoaluminate cement, and (2) evaluate the pullout characteristics of reinforcing fibers embedded in a CSA-cement matrix. Key elements of the strategy included (1) Compare the performance of a laboratory-fabricated CSA cement to a commercial CSA cement and OPC, (2) Evaluate the peak load, and toughness of reinforcing fibers in CSA cement and OPC, (3) Evaluate the debonding-energy density and multiple-cracking behavior of fibers in CSA cement and OPC, and (4) Evaluate the shear bond strength of reinforcing fibers in CSA cement and OPC. Based on the findings of this PhD dissertation, calcium sulfoaluminate cement has a significant influence on the characteristics and behavior of embedded reinforcing fibers. An important factor contributing to the bond strength between fiber and matrix was the ability to transfer interfacial

  7. Design and manufacture of Portland cement Application of statistical analysis

    OpenAIRE

    Svinning, Ketil

    2011-01-01

    The purpose of the work is to enable design and manufacture of cement with emphasis on the quality and the properties of cement. Data used in the design and manufacture were collected from predictions of properties and characteristics of cement. The properties of cement were predicted from its characteristics and from the production conditions in cement kiln and mill. The cement characteristics were in some investigations predicted from the production conditions. The design was based on sensi...

  8. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    Science.gov (United States)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  9. Antibacterial activity of selected glass ionomer cements

    Directory of Open Access Journals (Sweden)

    Elżbieta Łuczaj-Cepowicz

    2014-01-01

    Full Text Available Introduction: The aim of the paper was to determine the antibacterial activity of four glass ionomer cements against bacteria of the genera Streptococcus and Lactobacillus. Material and methods: Four capsulated glass ionomer cements were applied in the study: Fuji Triage (GC, Fuji IX (GC, Ketac Molar (3M Espe and Ketac Silver (3M Espe. Four standard bacterial strains were used to assess the antibacterial activity of the studied cements: Streptococcus mutans, S. sanguis, S. salivarius and Lactobacillus casei. The antibacterial activity was determined by the agar diffusion method. The bacterial suspension was spread with a cotton swab on TSA plates. For each material six wells (7 mm diameter, 5 mm deep were made with a cork borer. Each well was then filled with freshly prepared cements. The results were obtained by measuring the bacterial growth inhibition zone after 1, 2, 3 and 7 days. Results: Fuji Triage cement inhibited the growth of all bacterial strains. Fuji IX cement demonstrated the most potent antibacterial activity against S. sanguis. Ketac Molar showed antibacterial activity against S. sanguis and S. salivarius, whereas Ketac Silver was efficient against S. mutans as well. Neither of the Ketac cements inhibited growth of the standard L. casei strain. Discussion: Antibacterial activity of glass ionomer cements has attracted the interest of scientists in recent years. Most authors, including us, carried out experiments using the agar diffusion method and demonstrated antibacterial activity of glass ionomer cements. Different antibacterial activity of glass ionomer cements, observed in our study and studies of other authors, depended on the evaluated cement, bacterial strain and period of evaluation.

  10. Microscopic evaluation regarding time behavior of orthodontic cements used for disjunctor cementing

    Directory of Open Access Journals (Sweden)

    Ruxandra Bartok

    2015-11-01

    Full Text Available In order to fulfill their function, orthodontic devices must be cemented on teeth using orthodontic rings. The retention of the orthodontic ring is influenced mainly by the type of dental-ring adhesion. This study was initiated to determine possible microleakage events while using zinc phosphate cement Adhesor (Spofa Dental, conventional glass ionomer Ketac Cem (3M ESPE and Fuji Ortho (GC and a compomer Transbond Plus (3M Unitek. The results of the study are consistent with those reported in the literature reference, the compomer is the preferred adhesive material for cementing the orthodontic rings, compared to conventional glass ionomer cements and zinc-phosphate cement.

  11. Consolidation behavior of cement-and lime/cement-mixed column foundations

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 徐长节

    2002-01-01

    The consolidation behavior of mixed in place cement- and lime/cement-mixed column was studied. Consolidation of the composite foundation was modeled as a three-dimensional axi-symmetric problem. The authors used the finite difference method to obtain the pore pressure variation with time at any location below the surface. A computer program developed by the authors was used to draw some interesting conclusions about the consolidation behaviors of cement- and lime/cement-mixed pile foundation. Finally, a combined model including the permeability coefficients of cement-mixed piles and soil, was studied and its feasibility was evaluated.

  12. Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis.

    Science.gov (United States)

    Korsch, Michael; Walther, Winfried; Marten, Silke-Mareike; Obst, Ursula

    2014-09-05

    The cementation of implant-supported restorations always poses the risk of excess cement retained in the peri-implant sulcus despite careful clinical control. Excess cement can become the basis of colonization by oral microorganisms. As a result of the biofilm formation peri-mucositis or peri-implantitis may develop. Complications were observed in the routine prosthetic restoration of implants when a methacrylate-based cement was used. These developed a few weeks after cementation of the suprastructure and caused bleeding on probing as well as suppuration from the peri-implant tissue. In the revision therapy, excess cement in the peri-implant sulcus was found in many cases. This excess cement was sampled from ten patients and investigated for biofilm formation. For this purpose, the cement samples were collected and analyzed for bacterial in situ colonization by 16S rDNA-based methods. In laboratory experiments, the methacrylate-based cement and two other dental cements were then investigated for their proneness to form biofilm. The results of the in situ and in vitro investigations revealed a strong tendency towards bacterial invasion of the methacrylate-based cement by opportunistic species and pathogens.

  13. The influence of cement type and temperature on chloride binding in cement paste

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Korzen, Migge Sofie Hoffmann; Skibsted, Jørgen

    1998-01-01

    cement clinker. Both theoretical considerations and experimental data for chloride binding in cement pastes are presented. A physico-chemically based model to describe the influence of temperature on physical binding of chloride is presented. Solid-state 27Al and 29Si magic-angle spinning (MAS) nuclear......This paper describes effects of cement type and temperature on chloride binding in cement paste, which is an important subject in relation to life-time modelling of reinforced concrete structures. The influence of cement type on chloride binding is investigated by substituting cement with pure...... magnetic resonance (NMR) spectroscopy has been used for quantification of the anhydrous and hydrated aluminate and silicate phases in the chloride exposed cement pastes. The 27Al isotropic chemical shift and nuclear quadrupole coupling is reported for a synthetic sample of Friedel's salt, Ca2Al(OH)6Cl×2H2O....

  14. Copper Slag Blended Cement: An Environmental Sustainable Approach for Cement Industry in India

    Directory of Open Access Journals (Sweden)

    Jagmeet Singh

    2016-04-01

    Full Text Available Indian cement industry is facing environmental issue of emission of carbon dioxide (CO2, a greenhouse gas. Blended cements including supplementary cementitious materials are substitute of Portland cement to reduce CO2 emission. The present paper investigates theappropriateness of copper slag (CS as supplementary cementitious material. Strength properties and hydration of mixes were determined at different replacement levels of CS with cement. Compressive, flexural and tensile strength of each mix was found out at different curing periods. The hydration of cement was investigated through X-ray diffraction (XRD. The strength test results showed that substitution of up to 20% of CS can significantly replace Portland cement.XRD test results were corresponding to strength test results. The present study encourages the utilization of CS as supplementary cementitious material to make economical and environmentally sustainable blended cement

  15. Cements in radioactive waste management. Characterization requirements of cement products for acceptance and quality assurance purposes

    International Nuclear Information System (INIS)

    Cementitious materials are used as immobilizing matrices for low (LLW) and medium-level wastes (MLW) and are also components of the construction materials in the secondary barriers and the repositories. This report has concerned itself with a critical assessment of the quality assurance aspects of the immobilization and disposal of MLW and LLW cemented wastes. This report has collated the existing knowledge of the use and potential of cementitious materials in radioactive waste immobilization and highlighted the physico-chemical parameters. Subject areas include an assessment of immobilization objectives and cement as a durable material, waste stream and matrix characterization, quality assurance concepts, nature of cement-based systems, chemistry and modelling of cement hydration, role and effect of blending agents, radwaste-cement interaction, assessment of durability, degradative and radiolytic processes in cements and the behaviour of cement-based matrices and their near-field interactions with the environment and the repository conditions

  16. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    in particular is influenced by insufficient carbon burnout in the calciner system, which results in reducing conditions in the material inlet of the rotary kiln and consequently an increased tendency to form deposits induced by sticky eutectic melts. Clinker quality is mainly affected by minor components from...... a decisive influence on the fuel carbon burnout in cement kiln systems. The oxidation kinetics of a char from TDF was investigated experimentally and by mathematical modelling. Experiments were performed in a fixed bed reactor under well - iii - defined conditions, where small particles (102-212μm) of TDF...

  17. A note on cement in asteroids

    Science.gov (United States)

    Bilalbegović, G.

    2016-09-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 μm were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 μm.

  18. Basic Chemistry for the Cement Industry.

    Science.gov (United States)

    Turner, Mason

    This combined student workbook and instructor's guide contains nine units for inplant classes on basic chemistry for employees in the cement industry. The nine units cover the following topics: chemical basics; measurement; history of cement; atoms; bonding and chemical formulas; solids, liquids, and gases; chemistry of Portland cement…

  19. Investigation of a Hardened Cement Paste Grout

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro; Sørensen, Eigil Verner

    This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S.......This report documents a series of tests performed on a hardened cement paste grout delivered by the client, Det Norske Veritas A/S....

  20. A note on cement in asteroids

    CERN Document Server

    Bilalbegovic, G

    2016-01-01

    Cement mineral tobermorite was formed in hydrothermal experiments on alternation of calcium-aluminum-rich inclusions (CAIs) in carbonaceous chondrite meteorites. Unidentified bands at 14 microns were measured for CAIs and the matrix of the Allende meteorite sample, as well as for Hektor and Agamemnon asteroids. The presence of cement nanoparticles may explain the feature at 14 microns.

  1. Chloride ingress in cement paste and mortar

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Coats, Alison M.;

    1999-01-01

    In this paper chloride ingress in cement paste and mortar is followed by electron probe microanalysis. The influence of several paste and exposure parameters on chloride ingress are examined (e.g., water-cement ratio, silica fume addition, exposure time, and temperature), The measurements...

  2. A Pause for China's Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Li Zhen

    2009-01-01

    @@ Cement industry suffers excess productionWith the advent of global financial crisis,the Chinese government has laid out a stimulus package on infrastructure construction.Driven by the investment spree,China's cement makers are flocking to expand output capacity,which is now leading the industry into a much-higher-thanneeded state.

  3. Resistance Responses of Carbon Fiber Cement to Cycled Compressive Stresses

    Institute of Scientific and Technical Information of China (English)

    SHUI Zhonghe; LI Chao; LIAO Weidong

    2005-01-01

    The stress-resistance relationship of carbon fiber cement was studicd. Attention has been paid to explore the improvement of the stress-resistance sensitivity under cycled stress restriction. The prismy carbon fiber cement sensors were pre-fabricated. The factors such as contents of carbon fibers, silica fume, dispersant and the w/ c were taken into account. The electrical resistance variations with the dynamic and static loads were simulated using a strain-controlled test machine. The test results show that there is an optimal fiber content, with which the compression-sensitivity achieves a high level. The addition of silica fume can improve the sensitivity. Urder the optimal test conditions, the measured resistances can greatly correspond with the changes of the load.

  4. The Compatibility of Polycarboxylate-Type Superplasticizers with Cement

    Institute of Scientific and Technical Information of China (English)

    LI Chongzhi; WANG Dongmin; SONG Shaomin; CHEN Jialong

    2005-01-01

    Four polycarboxylate-type (PC) superplasticizers of different functional groups were used;their dispersing and retaining behaviors were analyzed through ZETA potential measurement, mini-slump test of cement paste and performance test of concrete. The experimental results show that the dispersing and flow-retaining ability of PC was determined by two factors of anionic groups and nonionic groups: the density of anionic groups - COO- or -SOf acted on the electronic repulsive force, and the length and proportion of nonionic graft groups of PEO in PC chemical structure affected the steric effect. The compatibility between PC superplasticizers and cement mainly depended on the type of PEO groups; furthermore, adding mineral powders is good to the compatibility for high performance concretes ( HPCs ).

  5. Energetically Modified Cement (EMC) - Performance Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ronin, Vladimir; Elfgren, Lennart [Luleaa Univ. of Technology (Sweden). Centre for High Performance Cement

    2003-03-01

    Energetically Modified Cements, EMC, made of intensively milled cement (50%) and fillers (50%) of quartz or fly ash have been compared to blends of Ordinary Portland Cement, OPC, and fillers. The EMCs have better properties than other blends and are comparable to unblended OPC. This remarkable fact can probably be explained as follows. The grinding process reduces the size of both cement grains and fillers. This combined with the creation of micro defects gives the ground cement a very high degree of hydration. The increased early hydration and a better distribution of hydration products results in an extensive pore size refinement of the hardened binder. This pore size refinement leads to a favorably reduced permeability and diffusivity and very good mechanical properties.

  6. Conditioning of radioactive waste solutions by cementation

    International Nuclear Information System (INIS)

    For the cementation of the low and intermediate level evaporator concentrates resulting from the reprocessing of spent fuel numerous experiments were performed to optimize the waste form composition and to characterize the final waste form. Concerning the cementation process, properties of the waste/cement suspension were investigated. These investigations include the dependence of viscosity, bleeding, setting time and hydration heat from the waste cement slurry composition. For the characterization of the waste forms, the mechanical, thermal and chemical stability were determined. For special cases detailed investigations were performed to determine the activity release from waste packages under defined mechanical and thermal stresses. The investigations of the interaction of the waste forms with aqueous solutions include the determination of the Cs/Sr release, the corrosion resistance and the release of actinides. The Cs/Sr release was determined in dependence of the cement type, additives, setting time and sample size. (orig./DG)

  7. Physico-mechanical and physico-chemical properties of synthesized cement based on plasma- and wet technologies

    Science.gov (United States)

    Sazonova, Natalya; Skripnikova, Nelli

    2016-01-01

    In this work we studied the influence of plasma-chemical technology of cement clinker synthesis under conditions of high-concentrated heat streams on the properties of cement on fixing such factors as raw-material type (chemical and mineralogical composition), fraction composition, homogenization and module characters of the raw-material mixture. In this connection the sludge of the cement plant in town Angarsk, based on which the cement clinker synthesis using the wet- and plasma-chemical technologies was performed, was used in the studies. The results of chemical X-ray-phase analysis, petrography of cement clinkers, differential scanning colorimetry of hardened cement paste are represented in this work. The analysis of building-technical properties of inorganic viscous substances was performed. It was found that in using the identical raw-material mixture the cement produced with temperature higher by 1650 °C than the traditional one may indicate the higher activity. The hardened cement paste compressive strength at the age of 28 days was higher than the strength of the reference samples by 40.8-41.4 %.

  8. Finite element analysis of stresses in fixed prosthesis and cement layer using a three-dimensional model

    Directory of Open Access Journals (Sweden)

    Arunachalam Sangeetha

    2012-01-01

    Full Text Available Context: To understand the effect of masticatory and parafunctional forces on the integrity of the prosthesis and the underlying cement layer. Aims: The purpose of this study was to evaluate the stress pattern in the cement layer and the fixed prosthesis, on subjecting a three-dimensional finite element model to simulated occlusal loading. Materials and Methods: Three-dimensional finite element model was simulated to replace missing mandibular first molar with second premolar and second molar as abutments. The model was subjected to a range of occlusal loads (20, 30, 40 MPa in two different directions - vertical and 30° to the vertical. The cements (zinc phosphate, polycarboxylate, glass ionomer, and composite were modeled with two cement thicknesses - 25 and 100 μm. Stresses were determined in certain reference points in fixed prosthesis and the cement layer. Statistical Analysis Used: The stress values are mathematic calculations without variance; hence, statistical analysis is not routinely required. Results: Stress levels were calculated according to Von Mises criteria for each node. Maximum stresses were recorded at the occlusal surface, axio-gingival corners, followed by axial wall. The stresses were greater with lateral load and with 100-μm cement thickness. Results revealed higher stresses for zinc phosphate cement, followed by composites. Conclusions: The thinner cement interfaces favor the success of the prosthesis. The stresses in the prosthesis suggest rounding of axio-gingival corners and a well-established finish line as important factors in maintaining the integrity of the prosthesis.

  9. Cements with low Clinker Content

    Science.gov (United States)

    García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.

    2015-11-01

    Hybrid alkaline cements are multi-component systems containing a high percentage of mineral additions (fly ash, blast furnace slag), low proportions (alkaline activators. The substantially lower amount of clinker needed to manufacture these binders in comparison to ordinary Portland cement is both economically and ecologically beneficial. Their enormous versatility in terms of the raw materials used has made them the object of considerable interest. The present study explored the mechanical strength of binary blends mixes; B1= 20% clinker (CK) + 80% fly ash (FA) and B2=20% clinker + 80% blast furnace slag (BFS), both hydrated in the presence and absence of an alkaline activator specifically designed for this purpose. The use of the activator enhanced the development of early age strength considerably. All the hydrated matrices were characterised with XRD, SEM/EDX and (29Si and 27Al) NMR. The use of the alkaline activator generated reaction products consisting primarily of a mix of gels ((N,C)-A-S-H and C-A-S-H) whose respective proportions were found to depend upon system composition and initial reactivity.

  10. ROTARY SCREW SYSTEMS IN CEMENT

    Directory of Open Access Journals (Sweden)

    Taratuta V. D.

    2016-01-01

    Full Text Available The article presents results of research of rotary-screw systems in relation to the creation of rotary kilns for the annealing of-cuttings in the preparation of cement clinker. Using the proposed design, in comparison with known designs of similar purpose, it significantly improves performance, reduces size and power consumption through the use of rotary screw systems in the form of screw rotors and drums made hollow with sidewalls assembled from separate strips or plates of different geometrical shapes with form inside the screw breaks or smooth edges, screw surfaces and screw grooves. It is shown that the housing of the rotary kiln is expedient to produce helical surfaces whose centers of curvature are located within the housing. Using the proposed constructions rotary kiln during the firing when preparing cement wedge can increase the speed of rotation of the housing, furnaces 5-10 times due to changes in the rotary-screw systems increase efficiency and reduce the size of furnaces

  11. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  12. Leaching of asbestos-cement cooling-tower fill. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C.N.; Stone, R.W.

    1981-04-01

    Cooling-tower fill is sometimes made of asbestos cement. Asbestos-cement fill has frequently been damaged by leaching and mechanical problems. This leaching was investigated. Previous studies of asbestos-cement water pipe and cooling-tower fill are summarized. Five plants were visited, and 43 others were contacted by telephone. Water and fill samples were collected and analyzed. About half of the cooling towers with asbestos-cement fill have experienced significant deterioration. To control leaching, water should not be undersaturated with respect to calcium carbonate. The Langelier saturation index is a useful tool for controlling blowdown rates and chemical feed. However, because this index does not allow for all of the relevant factors, it is not possible to recommend values that are suitable for all plants. If no scale inhibitors are used, the index should be kept as high as possible without causing calcium carbonate scale. If scale inhibitors are used, overdosing should be avoided. Asbestos-cement fill should be used only if the cooling-water chemistry can be well controlled. Specifications for asbestos-cement fill can be improved. Other design features, operating practices, and research are suggested.

  13. Research on Hydration of Steel Slag Cement Activated with Waterglass

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper studied the hydration and strength influence factors of Steel Slag Cement (SSC),such as the quantity of steel slag and slag and the dosage of additive.The results show that:(a) In the process of hydration of SSC,steel slag and slag activate each other;(b) Waterglass's structure forms the preliminary skeleton of SSC,and the hydration products of SSC link or fill in the skeleton;(c) Sodium in waterglass is the catalytic and its concentration does not change in the process of hydration.(d) Structure of activation is a significant factor to the property of SSC.

  14. CITRIC ACID AS A SET RETARDER FOR CALCIUM ALUMINATE PHOSPHATE CEMENTS.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA,T.; BROTHERS, L.E.

    2005-01-01

    Citric acid added as set retarder significantly contributed to enhancing the setting temperature and to extending the thickening time of a calcium aluminate phosphate (CaP) geothermal cement slurry consisting of calcium aluminate cement (CAC) as the base reactant and sodium polyphosphate (NaP) solution as the acid reactant. The set-retarding activity of citric acid was due to the uptake of Ca{sup 2+} ions from the CAC by carboxylic acid groups within the citric acid. This uptake led to the precipitation of a Ca-complexed carboxylate compound as a set-retarding barrier layer on the CAC grains' surfaces. However, this barrier layer was vulnerable to disintegration by the attack of free Ca{sup 2+} ions from CAC, and also to degradation at elevated temperature, thereby promoting the generation of exothermic energy from acid-base reactions between the CAC and NaP after the barrier was broken. The exothermic reaction energy that was promoted in this way minimized the loss in strength of the citric acid-retarded cement. The phase composition assembled in both retarded and non-retarded cements after autoclaving at 180 C encompassed three reaction products, hydroxyapatite (HOAp), hydrogrossular and boehmite, which are responsible for strengthening the autoclaved cement. The first two reaction products were susceptible to reactions with sulfuric acid and sodium sulfate to form crystalline bassanite scale as the corrosion product. The boehmite phase possessed a great resistance to acid and sulfate. Although the bassanite scales clinging to the cement's surfaces were the major factor governing the loss in weight, they served in protecting the cement from further acid- and sulfate-corrosion until their spallation eventually occurred. Nevertheless, the repetitive processes of HOAp and hydrogrossular {yields} bassanite {yields} spallation played an important role in extending the useful lifetime of CaP cement in a low pH environment at 180 C.

  15. Strength of Blended Cement Sandcrete & Soilcrete Blocks Containing Cassava Waste Ash and Plantain Leaf Ash

    Directory of Open Access Journals (Sweden)

    L. O. Ettu

    2013-01-01

    Full Text Available This work investigated the compressive strength of binary and ternary blended cement sandcrete and soilcrete blocks containing cassava waste ash (CWA and plantain leaf ash (PLA. 135 solid sandcrete blocks and 135 solid soilcrete blocks of 450mm x 225mm x 125mm were produced with OPC-CWA binary blended cement, 135 with OPC-PLA binary blended cement, and 135 with OPC-CWA-PLA ternary blended cement, each at percentage OPC replacement with pozzolan of 5%, 10%, 15%, 20%, and 25%.Three sandcrete blocks and three soilcrete blocks for each OPC-pozzolan mix and the control were crushed to obtain their compressive strengths at 3, 7, 14, 21, 28, 50, 90, 120, and 150 days of curing. Sandcrete and soilcrete block strengths from binary and ternary blended cements were found to be higher than the control values beyond 90 days of hydration. The 150-day strength values for OPC-CWA-PLA ternary blended cement sandcrete and soilcrete blocks were respectively 5.90N/mm2and 5.10N/mm2for 5% replacement, 5.80N/mm2and 4.95N/mm2for 10% replacement, 5.65N/mm2and 4.85N/mm2for 15% replacement, 5.60N/mm2and 4.75N/mm2for 20% replacement, and 5.25N/mm2and 4.65N/mm2for 25% replacement; while the control values were 5.20N/mm2and 4.65N/mm2. Thus, OPC-CWA and OPC-PLA binary blended cements as well as OPC-CWA-PLA ternary blended cement could be used in producing sandcrete and soilcrete blocks with sufficient strength for use in building and minor civil engineering works where the need for high early strength is not a critical factor.

  16. Extraoral Cementation Technique to Minimize Cement-Associated Peri-implant Marginal Bone Loss: Can a Thin Layer of Zinc Oxide Cement Provide Sufficient Retention?

    Science.gov (United States)

    Frisch, Eberhard; Ratka-Krüger, Petra; Weigl, Paul; Woelber, Johan

    2016-01-01

    This report describes the use of laboratory-fabricated crown intaglio replicas for extraorally prepared cementation of fixed restorations to implants. This technique minimizes excess cement and may therefore reduce the risk of cement-related marginal peri-implant bone loss. It is unclear whether the remaining thin layer of luting agent provides sufficient retention if low-adhesive zinc oxide (ZnO) cement is used. In 85 consecutive patients, 113 single crowns were cemented to implants using extraoral cementation technique (ECT) and ZnO cement. All patients were followed for 6 months and investigated for decementation. Seven events of decementation (incidence: 6.19%) were found in 7 patients (8.24%). ECT may represent a viable cementation technique for implant-supported single crowns, even using low-adhesion cements. PMID:27479343

  17. Dermatoses in cement workers in southern Taiwan.

    Science.gov (United States)

    Guo, Y L; Wang, B J; Yeh, K C; Wang, J C; Kao, H H; Wang, M T; Shih, H C; Chen, C J

    1999-01-01

    Construction workers are known to have occupational dermatoses. The prevalence of such dermatoses was unknown in Taiwanese construction workers. The objective of this study was to determine the work exposure, prevalence of skin manifestations, and sensitivity to common contact allergens in cement workers of southern Taiwan. A total of 1147 current regular cement workers were telephone-interviewed about skin problems during the past 12 months, work exposure, and personal protection. Among those interviewed, 166 were examined and patch tested with common contact allergens. A high % of cement workers reported skin problems in the past 12 months. More men (13.9%) reported skin problems possibly related to work than women (5.4%). Prevalence was associated with lower use of gloves, duration of work as cement worker, and more time in jobs involving direct manual handling of cement, especially tiling. A high % of dermatitis was noted in the 166 workers examined, which correlated with reported skin problems. On patch testing, construction workers had a high frequency of sensitivity to chromate. Sensitivity to chromate or cobalt was associated with reported skin problems, or dorsal hand dermatitis on examination. These workers' dermatitis was under-diagnosed and inadequately managed. It is concluded that cement workers in southern Taiwan had a high prevalence of skin problems related to cement use. Protective measures, work practice, and physician education should be improved to prevent or manage such problems.

  18. Influence of endodontic sealer composition and time of fiber post cementation on sealer adhesiveness to bovine root dentin.

    Science.gov (United States)

    Rosa, Ricardo Abreu da; Barreto, Mirela Sangoi; Moraes, Rafael do Amaral; Broch, Juliana; Bier, Carlos Alexandre Souza; Só, Marcus Vinícius Reis; Kaizer, Osvaldo Bazzan; Valandro, Luiz Felipe

    2013-01-01

    This study aimed to assess the influence of the type of endodontic sealer (salicylate resin-based sealer vs. two endodontic sealers) and the time of fiber post cementation after root filling on the post adhesion to bovine root dentin. Sixty bovine roots were assigned to six groups (n=10), considering an experimental design with two factors (factorial 3x2): endodontic sealer factor in three levels [epoxy resin-based sealer (AH Plus), eugenol-based sealer (Endofill), and salicylate resin-based sealer plus mineral trioxide aggregate - MTA (MTA Fillapex)] and time for post cementation factor in two levels (immediate post cementation or 15 days after root canal filling). After post cementation, 2-mm-thick slices were produced and submitted to push-out test. The failure modes were analyzed under a 40× stereomicroscope and scored as: adhesive at cement/dentin interface; adhesive at cement/post interface; cement cohesive; post cohesive; dentin cohesive; or mixed. Data were analyzed using two-way ANOVA and Tukey's post-hoc tests (α=0.05). When the fiber posts were cemented immediately after the root canal filling, the bond strengths were similar, independent of the endodontic sealer type. However, after 15 days, the epoxy resin-based sealer presented higher bond strength than the other sealers (pcement interface (89.4%). The time elapsed between the root canal filling and post cementation has no influence on post/root dentin adhesion. On the contrary, the type of endodontic sealer can influence the adhesion between fiber posts and root dentin. PMID:23969913

  19. Effect of cements on fracture resistance of monolithic zirconia crowns

    OpenAIRE

    Nakamura, Keisuke; Mouhat, Mathieu; Nergård, John Magnus; Lægreid, Solveig Jenssen; Kanno, Taro; Milleding, Percy; Örtengren, Ulf

    2016-01-01

    Abstract Objectives The present study investigated the effect of cements on fracture resistance of monolithic zirconia crowns in relation to their compressive strength. Materials and methods Four different cements were tested: zinc phosphate cement (ZPC), glass-ionomer cement (GIC), self-adhesive resin-based cement (SRC) and resin-based cement (RC). RC was used in both dual cure mode (RC-D) and chemical cure mode (RC-C). First, the compressive strength of each cement was tested according to a...

  20. Laboratory studies on the longevity of cement grouts

    International Nuclear Information System (INIS)

    This paper describes laboratory studies of the longevity of cement-based grouts being carried out as part of the International Stripa Project Phase III. The longevity properties determined for a reference grout (90% Sulphate Resistant Portland Cement, 10% silica fume, 0.4< water/cement<0.6 and superplasticizer) are compared with those of a slag cement grout. Laboratory tests have been carried out to determine the following: the mechanistic function of superplasticizer in fresh cement pastes; the leachability of the sorbed superplasticizer and its location in the structure of hardened cement paste; and the general leaching properties of selected cement-based grouts

  1. Simulated Wear of Self-Adhesive Resin Cements.

    Science.gov (United States)

    Takamizawa, T; Barkmeier, W W; Latta, M A; Berry, T P; Tsujimoto, A; Miyazaki, M

    2016-01-01

    One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p<0.001) and the interaction of the cement and cure method (p<0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a

  2. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  3. Silica Transport and Cementation in Quartz Aggregates

    Science.gov (United States)

    Pebble, C.; Farver, J.; Onasch, C.; Winslow, D.

    2008-12-01

    Silica transport and cementation in quartz aggregates have been experimentally investigated. Starting materials include a natural quartz arenite (Pocono sandstone), sized clasts of synthetic quartz, and sized grains of disaggregated natural sandstones. Experimental charges consisted of amorphous silica powder (~25 mg), AlCl3 powder (~3 mg), 25 wt% NaCl brine solution (~20 mg), and the starting material (~150 mg). The charges were weld-sealed in gold capsules and run in cold-seal pressure vessels at 300°C to 600°C at 150 MPa confining pressure for up to 4 weeks. Detailed calibrations of the furnaces indicate the maximum temperature variation across the length of the sample charges (3-7mm) was vacuum impregnated with epoxy containing a blue dye and sawn in half along the long axis of the sample charge. The nature and amount of silica transport and cementation in the samples was determined by a combination of Cathodoluminescence (CL), Light Microscopy (LM), and Scanning Electron Microscopy (SEM). Photomosaics of the samples were collected and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement was easily recognized from the quartz grains by the difference in luminescence. The experiments indicate that the presence of amorphous silica results in rapid silica cementation in quartz aggregates (e.g., up to 12% cement by volume in 4 weeks at 450°C). The amount of cementation is a function of substrate type, time, temperature, and ionic strength of the brine. The rate of silica transport through the length of the experimental charge appears to be limited by the silica solubility and its rapid depletion by cementation. Although most of the cement was derived from the amorphous silica, evidence for local dissolution-precipitation was observed. The experiments demonstrate that the mobility of silica, and consequent precipitation of cement, does not require a temperature or pressure gradient as is commonly assumed. Rather

  4. Reinforcement of osteosynthesis screws with brushite cement.

    Science.gov (United States)

    Van Landuyt, P; Peter, B; Beluze, L; Lemaître, J

    1999-08-01

    The fixation of osteosynthesis screws remains a severe problem for fracture repair among osteoporotic patients. Polymethyl-methacrylate (PMMA) is routinely used to improve screw fixation, but this material has well-known drawbacks such as monomer toxicity, exothermic polymerization, and nonresorbability. Calcium phosphate cements have been developed for several years. Among these new bone substitution materials, brushite cements have the advantage of being injectable and resorbable. The aim of this study is to assess the reinforcement of osteosynthesis screws with brushite cement. Polyurethane foams, whose density is close to that of cancellous bone, were used as bone model. A hole was tapped in a foam sample, then brushite cement was injected. Trabecular osteosynthesis screws were inserted. After 24 h of aging in water, the stripping force was measured by a pull-out test. Screws (4.0 and 6.5 mm diameter) and two foam densities (0.14 and 0.28 g/cm3) were compared. Cements with varying solid/liquid ratios and xanthan contents were used in order to obtain the best screw reinforcement. During the pull-out test, the stripping force first increases to a maximum, then drops to a steady-state value until complete screw extraction. Both maximum force and plateau value increase drastically in the presence of cement. The highest stripping force is observed for 6.5-mm screws reinforced with cement in low-density foams. In this case, the stripping force is multiplied by 3.3 in the presence of cement. In a second experiment, cements with solid/liquid ratio ranging from 2.0 to 3.5 g/mL were used with 6.5-mm diameter screws. In some compositions, xanthan was added to improve injectability. The best results were obtained with 2.5 g/mL cement containing xanthan and with 3.0 g/mL cements without xanthan. A 0.9-kN maximal stripping force was observed with nonreinforced screws, while 1.9 kN was reached with reinforced screws. These first results are very promising regarding screw

  5. Operating experience with KRAFTWERK UNION cementation line

    International Nuclear Information System (INIS)

    A facility is described designed for fixation in a cement matrix of the radioactive concentrate produced by thickening waste water from the Bohunice nuclear power plant. The cementation line output is 0.6 m3 concentrate/h. The concentrate is put in 200 l drums. The individual operating units, cement management, air conditioning, dosimetric monitoring and the building part are described. The requirements for the operators and the assessment of the quality of raw materials and the product are discussed. (M.D.). 3 figs., 4 refs

  6. Thermal behavior of asphalt cements

    International Nuclear Information System (INIS)

    Asphalt cements are highly complex mixtures of hydrocarbon molecules whose thermal behavior is of prime importance for petroleum and road industry. From DSC, the determination of several thermal properties of asphalts is given, e.g. glass-transition temperature and crystallized fraction content.The dissolution of a pure n-paraffin CnH2n+2 in an asphalt, as seen by DSC, should be a single peak. For 20g of these glasses change with time and temperature. The formation of the crystallized phases is superposed to the enthalpic relaxation of the glasses, making a kinetic study very difficult. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty - a numerical study

    NARCIS (Netherlands)

    Janssen, D.; Srinivasan, P.; Scheerlinck, T.; Verdonschot, N.J.J.

    2012-01-01

    Femoral fractures within resurfacing implants have been associated with bone necrosis, possibly resulting from heat generated by cement polymerization. The amount of heat generated depends on cement mantle volume and type of cement. Using finite element analysis, the effect of cement type and volume

  8. The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement

    NARCIS (Netherlands)

    Waanders, D.; Janssen, D.; Mann, K.A.; Verdonschot, N.J.J.

    2011-01-01

    In the current study, the effects of different ways to implement the complex micro-mechanical behavior of the cement-bone interface on the fatigue failure of the cement mantle were investigated. In an FEA-model of a cemented hip reconstruction the cement-bone interface was modeled and numerically im

  9. Preliminary study using pulsating water jet for bone cement demolition

    OpenAIRE

    S. Hloch; Kloc, J.; Foldyna, J.; Pude, F.; Smolko, I.; M. Zeleňák; Sitek, L. (Libor); Hvizdoš, P.; Monka, P.; Monková, K.; Kozak, D.; A. Stoić; A. Sedmak; Milosevic, M; Lehocká, D.

    2015-01-01

    The paper deals with the study of using the selective property of ultrasonic pulsating water jet for the disintegration of bone cement which creates the interface between femoral stem and trabecular bone tissue. For investigation, commercial bone cements were used. Bone cements were tested by nanoindentation in order to review their mechanical properties. A representative sample Palacos R+G was selected for disintegration of bone cement. Bone cements samples fixed between two plexiglass...

  10. ANALYSIS OF UNCERTAINTIES IN CEMENT INDUSTRY IN TURKEY

    OpenAIRE

    Kemal Yildirim; Omer Arioz

    2013-01-01

    Cement industry having 4,5 billion Dollars revenue and 1 billion Dollar export volume plays very important role in Turkey’s economy. Turkish cement industry is very sensitive to economic crisis and involves many uncertainties. In this study, price uncertainties, technological uncertainties, and price-technological uncertainties in Turkish cement industry were analyzed. The cement demand is mostly affected by demand to ready mixed concrete. Demand to cement is also related to the picture of co...

  11. Composite cements containing natural pozzolan and granulated blast furnace slag

    OpenAIRE

    Irassar, E. F.; Rahhal, V. F.; Donza, H. A.; Menéndez, G.; Bonavetti, V. L.

    2006-01-01

    For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as p...

  12. Effect of Abutment Modification and Cement Type on Retention of Cement-Retained Implant Supported Crowns

    OpenAIRE

    Mitra Farzin; Kianoosh Torabi; Ahmad Hasan Ahangari; Reza Derafshi

    2014-01-01

    Objective: Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations. Materials and Method: Two prefabricated abutments were attached to their corresponding analogs and embedded in an ac...

  13. Slagment Cement Improve the Cement Resistance Toward Acids Attack During Acidizing Treatment

    Directory of Open Access Journals (Sweden)

    Nik Khairul Irfan Bin Nik Ab. Lah.

    2013-05-01

    Full Text Available Acidizing treatment in past experience shows several zonal isolation problems after the treatment. This study presents the effect of the acid treatment toward class G cement and slagment cement as the improvement method to improve the cement resistance toward the acid. Lab experiments were conducted by immerge the respective cement cubes into 12% HCl/3% HF solution for 40 min before several analysis were conducted. Based on the result, the mass loss and compressive strength loss of the cement cubes decrease as the curing temperature and pressure increase due to more evenly distributed cement chemical composition crystal in high curing condition as shown in Scanning Electron Microscopy (SEM analysis. From X-Ray Diffraction (XRD and X-Ray Fluorescence (XRF analysis, only the first layer of the cement cubes shows chemical component change due to the reaction between the acid. This study found that, replacing class G cement to slagment cement can reduce the mass loss and compressive strength loss up to 72% and 82%, respectively.

  14. Exposure to cement dust at a Portland cement factory and the risk of cancer.

    OpenAIRE

    Vestbo, J; Knudsen, K.M.; Raffn, E; Korsgaard, B; Rasmussen, F V

    1991-01-01

    The relation between exposure to cement dust and cancer was examined in a population of 546 cement workers and a reference population of 858 randomly sampled men of similar age and area of residence. In 1974 all men gave lifelong occupational and smoking histories; information on incidence of cancer in the period 1974-85 was obtained from the Danish Cancer Registry. No increased risk of overall cancer was found among cement workers. Among men with more than 20 years exposure to cement dust, 1...

  15. INFLUENCE OF WINE ACID ON RHEOLOGICAL PROPERTIES OF WELL BORE CEMENT SLURRIES AND HARDENED CEMENT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1989-12-01

    Full Text Available Adaptation of commercial types of domestic cements for use in cementing the deep wells is a process by which Yugoslav oil industry tends to solve problems of completion of those wells independently. In order to design a domestic, cheep and effective retarder, tests of applicability of wine acid on cement slurries have been carried out. Besides examining the necessary wine acid content to achieve desirable Theological properties, the influence of this additive on properties of hardened cement samples has been tested too (the paper is published in Croatian.

  16. Radiographic appearance of commonly used cements in implant dentistry.

    Science.gov (United States)

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  17. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    Science.gov (United States)

    Zeng, Qiang; Li, Kefei; Fen-Chong, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and analyzed by classical heterogeneous nucleation theory. The kinetic factor, contact-angle factor including the contact angle between ice and the substrate were evaluated. The results revealed that the contact angle between ice and the substrate showed the minimum value when adding 3% NaCl into water. The heterogeneous ice nucleation rates were found to be proportional to the water activity shifts.

  18. Influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles

    OpenAIRE

    Ortega Álvarez, José Marcos; Albaladejo Ruiz, Arturo; Pastor Navarro, José Luis; Sánchez Martín, Isidro; Climent, Miguel-Ángel

    2013-01-01

    Today, the use of micropiles for different applications has become very common. In Spain, the cement grouts for micropiles are prepared using ordinary Portland cement and w:c ratio 0.5, although the micropiles standards do not restrict the cement type to use, provided that it reaches a certain compressive strength. In this study, the influence of using slag cement on the microstructure and durability related properties of cement grouts for micropiles have been studied until 90 hardening days,...

  19. The Setting Chemistry of Glass Ionomer Cement

    Institute of Scientific and Technical Information of China (English)

    CHENG Hanting; LIU Hanxing; ZHANG Guoqing

    2005-01-01

    The setting chemistry of glass ionomer cement was investigated by using mechanical determination of compressive strength at predetermined intervals, and measurement of structure changes of corresponding fracture sample by means of IR spectra and differential scanning calorimetry ( DSC). Zinc polycarboxylate cement was used as a comparison sample. The compressive strength of glass ionomer cement (GIC) increases with aging. IR spectra and DSC of corresponding fracture sample show the structure changes of the matrix and interface layer comprising of silica gel during the predetermined intervals studied, however, no significant changes occur in the zinc polycarxyolate cement. Hence the structure changes of the matrix and/or interface layer are responsible for compressive strength increasing with aging. The structure changes include the crosslink density, the ratio of complex form to ionic form, the content ratio of Al-PAA to Ca-PAA, the forming and mauring process of the interface layer comprising of silica gel.

  20. Calcium phosphate cements properties with polymers addition

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers

  1. Characterization of cement-based ancient building materials in support of repository seal materials studies

    International Nuclear Information System (INIS)

    Ancient mortars and plasters collected from Greek and Cypriot structures dating to about 5500 BC have been investigated because of their remarkable durability. The characteristics and performance of these and other ancient cementitious materials have been considered in the light of providing information on longevity of concrete materials for sealing nuclear waste geological repositories. The matrices of these composite materials have been characterized and classified into four categories: (1) gypsum cements; (2) hydraulic hydrated lime and hydrated-lime cements; (3) hydraulic aluminous and ferruginous hydrated-lime cements (+- siliceous components); and (4) pozzolana/hydrated-lime cements. Most of the materials investigated, including linings of ore-washing basins and cisterns used to hold water, are in categories (2) and (3). The aggregates used included carbonates, sandstones, shales, schists, volcanic and pyroclastic rocks, and ore minerals, many of which represent host rock types of stratigraphic components of a salt repository. Numerous methods were used to characterize the materials chemically, mineralogically, and microstructurally and to elucidate aspects of both the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical (mineralogical) and microstructural factors. Durability was found to be affected by matrix mineralogy, particle size and porosity, and aggregate type, grading, and proportioning, as well as method of placement and exposure conditions. Similar factors govern the potential for durability of modern portland cement-containing materials, which are candidates for repository sealing. 29 references, 29 figures, 6 tables

  2. Acrylic Bone Cements Modified with Starch

    OpenAIRE

    Krilova, V; Vītiņš, V

    2010-01-01

    The successful result of restorative and replacement surgical operation depends significantly on properties of used bone cement. Acrylic bone cements are usually based on methylmethacrylate polymer, while monomer polymerization begins after mixing of components in mixing device and terminates in living tissue. Polymerization of methylmethacrylate is exothermic process, and temperature increase might cause tissue necrosis with concomitant implant aseptic loosening. Developed non-ionogenic and ...

  3. Radiological changes in asbestos cement workers.

    OpenAIRE

    Jakobsson, K; Strömberg, U; Albin, M; Welinder, H; Hagmar, L

    1995-01-01

    OBJECTIVE--To explore associations between exposure to asbestos cement dust and radiographic findings in lung parenchyma and pleura. METHODS--Radiographs from 174 blue collar workers and 29 white collar workers from an asbestos cement plant formed one part of the study. Progression of small opacities was further studied in those 124 blue collar workers, for whom two radiographs taken after the end of employment were available. The median readings from five readers who used the full ILO 1980 c...

  4. Microstructure Analysis of Heated Portland Cement Paste

    OpenAIRE

    Q. Zhang; Ye, G.

    2011-01-01

    When a concrete structure is exposed to high temperature, the mechanical damage and chemical transformation take place simultaneously, which will change the microstructure of material. On the other hand, the mechanical properties and transport properties depend on the development of microstructure of cement paste. In order to study the microstructure changes at high temperature, in this contribution the cement paste samples were firstly heated to varied temperatures from 100 °C to 1000 °C wit...

  5. Dynamic properties of composite cemented clay

    Institute of Scientific and Technical Information of China (English)

    蔡袁强; 梁旭

    2004-01-01

    In this work,the dynamic properties of composite cemented clay under a wide range of strains were studied considering the effect of different mixing ratio and the change of confining pressures through dynamic triaxial test. A simple and practical method to estimate the dynamic elastic modulus and damping ratio is proposed in this paper and a related empirical normalized formula is also presented. The results provide useful guidelines for preliminary estimation of cement requirements to improve the dynamic properties of clays.

  6. Topics in Cement and Concrete Research

    OpenAIRE

    Brouwers, H. J. H.

    2006-01-01

    The present paper addresses several topics in regard to the sustainable design and use of concrete. First, major features concerning the sustainable aspects of the material concrete are summarised. Then the major constituent, from an environmental point of view, cement is discussed in detail, particularly the hydration and application of slag cement. The intelligent combining of mineral oxides, which are found in clinker, slag, fly ashes etc., is designated as mineral oxide engineering. It re...

  7. Improvement of Cement Strength by Induction Method

    Institute of Scientific and Technical Information of China (English)

    YANG Li-yuan; LIN Zong-shou

    2004-01-01

    The induction method of improving the strength of Portland cement by adding fine slag powder,high aluminate component and hydrated paste was investigated through determining the physical properties,hydration heat and pore size distribution,and its mechanism was discussed.The experimental results reveal that a certain content of high aluminate component,fine slag powder and hydrated paste can improve remarkably the strength of Portland cement.

  8. Estimating the chloride transport in cement paste

    OpenAIRE

    Princigallo, A.

    2012-01-01

    A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method prov...

  9. Revision total hip replacement with a cemented long femoral component: minimum 9-year follow-up results.

    OpenAIRE

    So, Kazutaka; Kuroda, Yutaka; Matsuda, Shuichi; Akiyama, Haruhiko

    2013-01-01

    [Background] Surgical revision after failed total hip replacement is a technically challenging procedure. The aim of this study was to analyze the long-term results of revision total hip replacement using a cemented long femoral component and identify factors that influence the results. [Methods] We retrospectively reviewed 34 hips in 33 patients who had undergone revision total hip replacement using a cemented long femoral component between 1994 and 2001. Hip function was evaluated according...

  10. Case Study of the California Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Coito, Fred; Powell, Frank; Worrell, Ernst; Price, Lynn; Friedmann, Rafael

    2005-05-01

    California is the largest cement producing state in theU.S., accounting for between 10 percent and 15 percent of U.S. cementproduction and cement industry employment. The cement industry inCalifornia consists of 31 sites that consume large amounts of energy,annually: 1,600 GWh of electricity, 22 million therms of natural gas, 2.3million tons of coal, 0.25 tons of coke, and smaller amounts of wastematerials, including tires. The case study summarized in this paperfocused on providing background information, an assessment ofenergy-efficiency opportunities and barriers, and program recommendationsthat can be used by program planners to better target products to thecement industry. The primary approach to this case study involvedwalk-through surveys of customer facilities and in depth interviews withcustomer decision makers and subsequent analysis of collected data. Inaddition, a basic review of the cement production process was developed,and summary cement industry energy and economic data were collected, andanalyzed. The analysis of secondary data provides background informationon the cement industry and identification of potential energy-efficiencyopportunities. The interviews provide some understanding of the customerperspective about implementation of energy-efficiencyprojects.

  11. Model of Coherent Interface Formation in Cement-Based Composites Containing Polyblend of Polyvinyl Alcohol and Methylcellulose

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The texture of interfacial zone between cement paste and quartz in the cement-based composites containing polyvinyl alcohol (PVA),methylcellulose (MC) and their polyblend in an amount of 10 wt % with respect to cement,as well as the texture of dehydrated bodies of PVA,MC,and the polyblend solutions,were investigated with SEM.The network texture of the dehydrated polyblend is confirmed by comparing the texture of dehydrated bodies of PVA and MC.The network texture has restrained the movement of polyblend molecules in the cement mortar but is helpful to forming a coherent interface between cement paste and quartz.The key factor of forming the coherent interface is not the neutralization reaction between H+ from hydrolysis of quartz and OH- from hydration of cement,but the electrostatic attraction and the chemical reaction between polar groups on the polyblend molecule and cations and anions from hydrolysis of quartz and hydration of cement,respectively.The model of the coherent interface formation is that excessive [HSiO3]- and [SiO3]2- anions are bonded with the hydrated cations such as Ca2+ and Al3+,which is confirmed by the gel containing Ca and Si on the quartz surface.

  12. Multi-scale Modeling of the Effective Chloride lon Diffusion Coefficient in Cement-based Composite Materials

    Institute of Scientific and Technical Information of China (English)

    SUN Guowen; SUN Wei; ZHANG Yunsheng; LIU Zhiyong

    2012-01-01

    N-layered spherical inclusions model was used to calculate the effective diffusion coefficient of chloride ion in cement-based materials by using multi-scale method and then to investigate the relationship between the diffusivity and the microstructure of cement-basted materials where the microstructure included the interfacial transition zone (ITZ) between the aggregates and the bulk cement pastes as well as the microstructure of the bulk cement paste itself.For the convenience of applications,the mortar and concrete were considered as a four-phase spherical model,consisting of cement continuous phase,dispersed aggregates phase,interface transition zone and their homogenized effective medium phase.A general effective medium equation was estabhshed to calculate the diffusion coefficient of the hardened cement paste by considering the microstructure.During calculation,the tortuosity (n) and eonstrictivity factors (Ds/D0) of pore in the hardened pastes are n≈3.2,Ds/D0=1.0× 10-4 respectively from the test data.The calculated results using the n-layered spherical inclusions model are in good agreement with the experimental results; The effective diffusion coefficient of ITZ is 12 times that of the bulk cement for mortar and 17 times for concrete due to the difference between particle size distribution and the volume fraction of aggregates in mortar and concrete.

  13. Fatigue crack growth rate does not depend on mantle thickness: an idealized cemented stem construct under torsional loading.

    Science.gov (United States)

    Hertzler, Justin; Miller, Mark A; Mann, Kenneth A

    2002-07-01

    Retrieval studies indicate that cemented stem loosening in femoral components of total hip replacement can initiate at the stem-cement interface. The etiology of the crack propagation process from the stem-cement interface is not well understood, but cracks are typically associated with thin cement mantles. In this study, a combination of experimental and computational methods was used to investigate the fatigue crack propagation process from the stem-PMMA cement interface using a novel torsional loading model. Constructs with thin (1 mm), medium (3 mm) or thick (7 mm) cement mantles were evaluated. Crack growth was stable for all cases and the rate of crack growth diminished with increasing crack length. Crack growth rate did not depend on mantle thickness (p > 0.05) over the first 1 mm of crack length, but cracks in thin mantles reached the full thickness of the mantle in the fewest number of loading cycles. The fracture mechanics-based finite element models indicated decreased stress intensity factors with increasing crack length and were consistent with the experimental findings. When combined with a fatigue crack growth Paris-law for PMMA cement, the finite element models provided reasonable predictions of the crack growth process.

  14. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  15. Investigation of Possible Wellbore Cement Failures During Hydraulic Fracturing Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihoon; Moridis, George

    2014-11-01

    We model and assess the possibility of shear failure, using the Mohr-Coulomb model ? along the vertical well by employing a rigorous coupled flow-geomechanic analysis. To this end, we vary the values of cohesion between the well casing and the surrounding cement to representing different quality levels of the cementing operation (low cohesion corresponds to low-quality cement and/or incomplete cementing). The simulation results show that there is very little fracturing when the cement is of high quality.. Conversely, incomplete cementing and/or weak cement can causes significant shear failure and the evolution of long fractures/cracks along the vertical well. Specifically, low cohesion between the well and cemented areas can cause significant shear failure along the well, but the same cohesion as the cemented zone does not cause shear failure. When the hydraulic fracturing pressure is high, low cohesion of the cement can causes fast propagation of shear failure and of the resulting fracture/crack, but a high-quality cement with no weak zones exhibits limited shear failure that is concentrated near the bottom of the vertical part of the well. Thus, high-quality cement and complete cementing along the vertical well appears to be the strongest protection against shear failure of the wellbore cement and, consequently, against contamination hazards to drinking water aquifers during hydraulic fracturing operations.

  16. Viscoelastic Property Evaluation of Asphalt Cement by Ultrasonic Measurement

    International Nuclear Information System (INIS)

    This study investigates the method to measure the viscoelastic properties of asphalt cement, one of the viscoelastic materials, using the ultrasound. The wave speed and attenuation were measured from -20 .deg. C to 60 .deg. C at the frequency of 2.25MHz. Then, the storage and loss longitudinal moduli, loss tangent storage and loss longitudinal compliances were found depending on the temperatures based on the linear viscoelastic theory. Stress relaxation, creep, and viscosity were predicted using Maxwell and Voigt-Kelvin viscoelastic models. The validity of superposition principle and shift factor were verified by comparing the present results to the data reported in the literatures

  17. The economics of using prophylactic antibiotic-loaded bone cement in total knee replacement.

    Science.gov (United States)

    Gutowski, C J; Zmistowski, B M; Clyde, C T; Parvizi, J

    2014-01-01

    The rate of peri-prosthetic infection following total joint replacement continues to rise, and attempts to curb this trend have included the use of antibiotic-loaded bone cement at the time of primary surgery. We have investigated the clinical- and cost-effectiveness of the use of antibiotic-loaded cement for primary total knee replacement (TKR) by comparing the rate of infection in 3048 TKRs performed without loaded cement over a three-year period versus the incidence of infection after 4830 TKRs performed with tobramycin-loaded cement over a later period of time of a similar duration. In order to adjust for confounding factors, the rate of infection in 3347 and 4702 uncemented total hip replacements (THR) performed during the same time periods, respectively, was also examined. There were no significant differences in the characteristics of the patients in the different cohorts. The absolute rate of infection increased when antibiotic-loaded cement was used in TKR. However, this rate of increase was less than the rate of increase in infection following uncemented THR during the same period. If the rise in the rate of infection observed in THR were extrapolated to the TKR cohort, 18 additional cases of infection would have been expected to occur in the cohort receiving antibiotic-loaded cement, compared with the number observed. Depending on the type of antibiotic-loaded cement that is used, its cost in all primary TKRs ranges between USD $2112.72 and USD $112 606.67 per case of infection that is prevented.

  18. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... review. Background The Commission instituted this review on May 2, 2011 (76 FR 24519) and determined on August 5, 2011 that it would conduct an expedited review (76 FR 50252, August 12, 2011). The Commission... COMMISSION Gray Portland Cement and Cement Clinker From Japan Determination On the basis of the record...

  19. Characterization of cement minerals, cements and their reaction products at the atomic and nano scale

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Hall, Christopher

    2008-01-01

    Recent advances and highlights in characterization methods are reviewed for cement minerals, cements and their reaction products. The emphasis is on X-ray and neutron diffraction, and on nuclear magnetic resonance methods, although X-ray absorption and Raman spectroscopies are discussed briefly...

  20. Chromium content in human skin after in vitro application of ordinary cement and ferrous-sulphate-reduced cement

    DEFF Research Database (Denmark)

    Fullerton, A; Gammelgaard, Bente; Avnstorp, C;

    1993-01-01

    The amount of chromium found in human skin after in vitro application of cement suspensions on full-thickness human skin in diffusion cells was investigated. Cement suspensions made from ordinary Portland cement or Portland cement with the chromate reduced with added ferrous sulphate were used....... The cement suspensions were either applied on the skin surface under occlusion for 48 h or applied repeatedly every 24 h for 96 h. No statistically significant difference in chromium content of skin layers between skin exposed to ordinary Portland cement, skin exposed to cement with added ferrous sulphate...... and unexposed skin was observed, despite a more permeable skin barrier at the alkaline pH of the cement suspensions, i.e., pH 12.5. Increased chromium levels in epidermis and dermis were seen when ordinary Portland cement was applied as a suspension with added sodium sulphate (20%) on the skin surface for 96 h...

  1. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  2. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Anton K. Schindler; Steve R. Duke; Thomas E. Burch; Edward W. Davis; Ralph H. Zee; David I. Bransby; Carla Hopkins; Rutherford L. Thompson; Jingran Duan; Vignesh Venkatasubramanian; Stephen Giles.

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  3. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  4. [Burns caused by cement mortar (based on expert opinion)].

    Science.gov (United States)

    Kleinhans, D

    1984-01-01

    A 35-year-old farmer with scars on his right arm, following erosion obviously due to wet cement (case of an expert opinion), was examined. Cement water had continuously soaked his shirt while he was planing a freshly applied wet cement ceiling with his right arm upwards. The cement did not contain special additives, so the normal alkalinity of wet cement and occlusion effects caused the erosion. The farmer sued the manufacturer of the cement for damages because of missing warning notices. The court decided in his favor.

  5. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO2-H2O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  6. A Blended Cement Containing Blast Furnace Slag and Phosphorous Slag

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Blended cement containing blast furnace slag(BFS) and phosphorous slag(PS) is a new kind of cement.The total content of blended materials could increase if two additives were used. Using the same admixtures, the properties of the blended cement with 70% additives could reach the standard of 525-grade slag cement according to GB.The strength of cement with 80% additives could reach the standard of 425-grade slag cement.The tests of strength, pore structure,hydration products,inhibiting alkali-aggregate reaction, resistance to sulfate corrosion of BFS-PSC were performed.

  7. Prediction of long-term chemical evolution of a low-pH cement designed for underground radioactive waste repositories

    International Nuclear Information System (INIS)

    Low-pH cements, also referred as low-alkalinity cements, are binders with a pore solution pH ≤ 11. They can be designed by replacing significant amounts of Portland cement (OPC) (>40%) by silica fume, which can be associated in some cases to low-CaO fly ash and/or ground granulated blast furnace slag to decrease the heat output during hydration by dilution of OPC and improve the mechanical strength of the final material. With the prospect of using these materials in a geological repository, it is of main importance to estimate their long-term properties and the influence of external and internal factors (chemical composition of the binder, storage temperature) on their characteristics. For this purpose, a three-way original approach was adopted. First, the hydration of low-pH cements was accelerated by milling cement slurries with zirconia beads. Secondly, the low-pH cement pastes were mimicked from mixtures of appropriate highly reactive oxides (lime, silica, calcium aluminate and calcium sulphate) in diluted suspensions. Thirdly, thermodynamic modelling was carried out to predict the mineral assemblage and composition of the solution at equilibrium, starting from the composition of the initial low-pH cement studied. Comparing the different results showed that this three-way approach is suitable to understand and predict the long-term chemical evolution of the cements since the final states obtained in all cases were equivalent. This method was then used to investigate the influence of temperature in the range 20-80 C on the chemical evolution of a low-pH cement. (authors)

  8. Quality control of cemented waste forms

    Energy Technology Data Exchange (ETDEWEB)

    Slate, L.J.

    1994-12-31

    To insure that cemented radwaste remains immobilized after disposal, certain standards have been set in Europe by the Commission of the European Communities. One such standard is compressive strength. If the compressive strength can be predicted during the early curing stages, time and money can be saved and the quality of the final waste form guaranteed. It was determined that the 7- and 28-day compressive strength from radwaste cementation can be predicted during the mixing and early curing stages by at least three methods. The three that were studied were maturity, rheology, and impedance. Maturity is a temperature-to-time measurement, rheology is a shear stress-to-shear rate measurement, and impedance is the opposition offered to the flow of alternating current. These three methods were employed on five different cemented radwaste concentrations with three different water-to-cement ratios; thus, a total of 15 different mix designs were considered. The results showed that the impedance was the easiest to employ for an on-line process. The results of the impedance method showed a very good relationship between impedance and water-to-cement ratio; therefore, an accurate prediction of compressive strength of cemented radwaste can be drawn from this method. The results of the theology method were very good. The method showed that concrete conforms to the Bingham plastic rheologic model, and the theology method can be used to predict the compressive strength of cemented radwaste, but may be too cumbersome. The results of the maturity method were shown to be limited in accuracy for determining compressive strength.

  9. Experimental Study on Artificial Cemented Sand Prepared with Ordinary Portland Cement with Different Contents

    Directory of Open Access Journals (Sweden)

    Dongliang Li

    2015-07-01

    Full Text Available Artificial cemented sand test samples were prepared by using ordinary Portland cement (OPC as the cementing agent. Through uniaxial compression tests and consolidated drained triaxial compression tests, the stress-strain curves of the artificial cemented sand with different cementing agent contents (0.01, 0.03, 0.05 and 0.08 under various confining pressures (0.00 MPa, 0.25 MPa, 0.50 MPa and 1.00 MPa were obtained. Based on the test results, the effect of the cementing agent content (Cv on the physical and mechanical properties of the artificial cemented sand were analyzed and the Mohr-Coulomb strength theory was modified by using Cv. The research reveals that when Cv is high (e.g., Cv = 0.03, 0.05 or 0.08, the stress-strain curves of the samples indicate a strain softening behavior; under the same confining pressure, as Cv increases, both the peak strength and residual strength of the samples show a significant increase. When Cv is low (e.g., Cv = 0.01, the stress-strain curves of the samples indicate strain hardening behavior. From the test data, a function of Cv (the cementing agent content with c′ (the cohesion force of the sample and Δϕ′ (the increment of the angle of shearing resistance is obtained. Furthermore, through modification of the Mohr-Coulomb strength theory, the effect of cementing agent content on the strength of the cemented sand is demonstrated.

  10. Colorectal cancer and non-malignant respiratory disease in asbestos cement and cement workers

    International Nuclear Information System (INIS)

    Radiologically visible parenchymal changes (small opacities >= 1/0;ILO 1980 classification) were present in 20% of a sample of workers (N=174), employed for 20 years (median) in an asbestos cement plant. Exposure-response relationships were found, after controlling for age and smoking habits. In a sample of asbestos cement workers with symptoms and signs suggestive of pulmonary disease (N=33), increased lung density measured by x-ray computed tomography, and reduced static lung volumes and lung compliance was found. In a cohort of asbestos cement workers (N=1.929) with an estimated median exposure of 1.2 fibres/ml, the mortality from non-malignant respiratory disease was increased in comparison to a regional reference cohort (N=1.233). A two-to three-fold increase of non-malignant respiratory mortality was noted among workers employed for more than a decade in the asbestos cement plant, compared to cement workers (N=1.526), who in their turn did not experience and increased risk compared to the general population. In the cohorts of asbestos cement and cement workers, there was a tow-to three-fold increased incidence of cancer in the right part of the colon, compared to the general population as well as to external reference cohorts of other industrial workers (N=3.965) and fishermen (N=8.092). A causal relation with the exposure to mineral dust and fibres was supported by the findings of higher risk estimated in subgroups with high cumulated asbestos doses or longer duration of cement work. The incidence of cancer in the left part of the colon was not increased. Morbidity data, but not mortality data, disclosed the subsite-specific risk pattern. Both asbestos cement workers and cement workers has an increased incidence of rectal cancer, compared with the general population, and with the fishermen. The risk was, however, of the same magnitude among the other industrial workers. 181 refs

  11. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    Directory of Open Access Journals (Sweden)

    Adriana Eštoková

    2013-12-01

    Full Text Available The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites.

  12. A hybrid multidimensional approach to select a country for global cement plant location

    International Nuclear Information System (INIS)

    The globalization and saturated domestic markets force international firms to gradually expand their businesses across the borders to capture potential emerging markets. The decision to select a country for a new cement plant location demands analysis of a large number of factors. It is a multifaceted problem which requires investigation and prioritization of factors in a hierarchical way. This paper uses an FAHP (Fuzzy Analytic Hierarchy Process) based procedure proposing a practical framework for solution of the GCPLP (Global Cement Plant Location Problem). It deals with real world ambiguities and handles a broader spectrum of influencing factors. The criteria for selection of a country for a new cement plant installation are prioritized from the FAHP based evaluation made by experts. Different global databases including the World Bank are used for the fuzzy ratings of the alternatives. It has been learnt in this particular problem that cement specific and cost related factors are the most sensitive while legal regulations and economic conditions are relatively less sensitive for the decision makers. Therefore, the countries having strong lime stone reserves, cheaper fuel costs and good internal marketing positions are higher in ranking. The paper concludes with different rankings of the four countries analyzed which assist the strategic managers in making decisions on the basis of mathematically computed results. (author)

  13. A Hybrid Multidimensional Approach to Select a Country for Global Cement Plant Location

    Directory of Open Access Journals (Sweden)

    Muhammad Khurram Ali

    2015-04-01

    Full Text Available The globalization and saturated domestic markets force international firms to gradually expand their businesses across the borders to capture potential emerging markets. The decision to select a country for a new cement plant location demands analysis of a large number of factors. It is a multifaceted problem which requires investigation and prioritization of factors in a hierarchical way.This paper uses an FAHP (Fuzzy Analytic Hierarchy Process based procedure proposing a practical framework for solution of the GCPLP (Global Cement Plant Location Problem. It deals with real world ambiguities and handles a broader spectrum of influencing factors. The criteria for selection of a country for a new cement plant installation are prioritized from the FAHP based evaluation made by experts. Different global databases including the World Bank are used for the fuzzy ratings of the alternatives. It has been learnt in this particular problem that cement specific and cost related factors are the most sensitive while legal regulations and economic conditions are relatively less sensitive for the decision makers. Therefore, the countries having strong lime stone reserves, cheaper fuel costs and good internal marketing positions are higher in ranking. The paper concludes with different rankings of the four countries analyzed which assist the strategic managers in making decisions on the basis of mathematically computed results.

  14. Radon induced radiological impact of coal, fly ash and cement samples

    International Nuclear Information System (INIS)

    Coal and its by-product fly ash are technologically important materials being used for power generation and in the manufacture of bricks, sheets, cement, land-filling, etc., respectively. Increased interest in measuring radon concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. As the presence of radon in the environment (indoor and outdoor), soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, tracking its concentration is thus of paramount importance for radiological protection. Samples of coal and fly ash were collected from different thermal power stations in northern India and cement samples from National Council for Cement and Building Materials, Ballabgarh (Haryana), India and were analysed for radon concentration. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Based upon the available data, the annual effective dose and the lifetime fatality risk factors have been calculated. The radon concentration from coal samples varied from 433 ± 28 Bqm-3 to 2086 ± 28 Bqm-3. The radon concentration from fly ash samples varied from 748 ± 28 Bqm-3 to 1417 ± 111 Bqm-3 and from 158 Bqm-3 to 1810 Bqm-3 in cement samples, with an average of 624 ± 169 Bqm-3. (author)

  15. Pathophysiological Characteristics of Phlegm-stasis Cementation Syndrome in Coronary Heart Disease: a Review and Update

    Directory of Open Access Journals (Sweden)

    Jian-Xun Ren

    2016-10-01

    Full Text Available The pathophysiological characteristics of Phlegm-stasis Cementation Syndrome in Coronary Heart Disease (CHD has been summarized in this article. According to epidemiological investigations, phlegm-stasis cementation syndrome has become a dominant syndrome in CHD along with the improvement in living and dietary condition. The interaction between blood stasis and phlegm turbidity that is called Phlegm-stasis Cementation Syndrome exists in CHD and other diseases. The bridge linked blood stasis and phlegm turbidity lies in the adversely effects of lipid metabolism disorder on platelet activation, vascular function and hemorheology indexes. Lipid metabolism disorder also can induce persistent inflammation including monocyte/macrophage activation and oxidative stress. Inflammation also is an important stimulating factor for atherosclerosis and the biology that underlies the complications of CHD, which belonged to the concept of “toxin” in Traditional Chinese medicines (TCM. On the other hand, the important function of inflammatory process on abnormal hemorheology, platelet activation and vascular dysfunction can be used to elucidate the basic pathogenetic condition of the toxin inducing blood stasis in TCM. Therefore, it is this pathological process that can be used to address the basic pathogenetic theory of phlegm turbidity inducing the symptom of toxin and blood stasis, and subsequently phlegm-stasis cementation in TCM. We deduced that lipid metabolic disturbance, inflammation activation, vascular dyfunction and hemorheological disorders could be as pathophysiological characteristics of Phlegm-stasis cementation syndrome.

  16. A new design of cemented stem using functionally graded materials (FGM).

    Science.gov (United States)

    Hedia, H S; Aldousari, S M; Abdellatif, A K; Fouda, N

    2014-01-01

    One of the most frequent complications of total hip replacement (THR) is aseptic loosening of femoral component which is primarily due to changes of post-operative stress distribution pattern with respect to intact femur. Stress shielding of the femur is known to be a principal factor in aseptic loosening of hip replacements. Many designers show that a stiff stem shields the surrounding bone from mechanical loading causing stress shielding. Others show that reducing stem stiffness promotes higher proximal interface shear stress which increases the risk of proximal interface failure. Therefore, the task of this investigation is to solve these conflicting problems appeared in the cemented total hip replacement. The finite element method and optimization technique are used in order to find the optimal stem material which gives the optimal available stress distribution between the proximal medial femoral bone and the cement mantle interfaces. The stem is designed using the concept of functionally graded material (FGM) instead of using the conventional most common used stem material. The results showed that there are four feasible solutions from the optimization runs. The best of these designs is to use a cemented stem graded from titanium at the upper stem layer to collagen at the lower stem layer. This new cemented stem design completely eliminates the stress shielding problem at the proximal medial femoral region. The stress shielding using the cemented functionally graded stem is reduced by 98% compared to titanium stem. PMID:24840196

  17. Leaching characteristics of heavy metals during cement stabilization of fly ash from municipal solid waste incinerators

    Institute of Scientific and Technical Information of China (English)

    Shunwen LIANG; Jianguo JIANG; Yan ZHANG; Xin XU

    2008-01-01

    The leaching characteristics of heavy metals in products of cement stabilization of fly ash from a muni-cipal solid waste incinerator were investigated in this paper. The stabilization of heavy metals such as Cd, Pb, Cu, and Zn in fly ash from such incinerators was exam-ined through the national standard method in China based on the following-factors: additive quantity of cement and Na2S, curing time, and pH of leaching liquor. The results showed that as more additives were used, less heavy metals were leached except for Pb, which is sensitive to pH of the leachate, and the worse effect was observed for Cd. The mass ratio of cement to fly ash=10% is the most appropriate parameter according to the national standard method. When the hydration of cement was basically finished, stabilization of heavy metals did not vary after curing for 1 d. The mixtures of cement and fly ash had excellent adaptability to environmental pH. The pH of leachate was maintained at 7 when pH of leaching liquor varied from 3 to 11.

  18. Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack

    Science.gov (United States)

    Kovalcikova, M.; Estokova, A.; Luptakova, A.

    2015-11-01

    The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.

  19. Advanced high-temperature lightweight foamed cements for geothermal well completions

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.; Kukacka, L.E.; Galen, B.G.

    1986-04-01

    Foamed cement slurries that were prepared by mixing a cementitious material having a Class H cement-to-silica flour ratio of 1.0 in conjunction with a alpha-olefin sulfate foam surfactant and a coconut diethanolamide foam stabilizer were exposed in an autoclave at a temperature of 300/sup 0/C and a hydrostatic pressure of 2000 psi (13.79 MPa). One lightweight slurry having a density of 9.61 lb/gal (1.15 g/cc) yielded a cellular cement having a compressive strength at 24 hr of >1000 psi (6.9 MPa) and a water permeability of approx.10/sup -3/ darcys. The factors responsible for the attainment of these mechanical and physical properties were identified to be well-crystallized truscottite phases and a uniform distribution of discrete fine bubbles. The addition of graphite fiber reinforcement for the cement matrix significantly suppressed any segregation of foam caused by thermal expansion of the air bubbles and further improved the mechanical characteristics of the cured cements.

  20. An experimental approach to the study of the rheology behaviour of synthetic bone calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Friberg, J.; Fernandez, E.; Sarda, S.; Nilsson, M.; Ginebra, M.P.; Planell, J.A. [Universidad Politecnica de Catalunya, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering; Martinez, S. [Barcelona Univ. (Spain). Mineralogia i Recursos Minerals

    2001-07-01

    Calcium phosphate cements were developed to fit surgical needs in biomedical fields such as odontology or traumatology. Nowadays, a broad field of new applications have been found for this kind of materials. Drug delivery systems, tissue-engineering scaffolds and osteoporotic bone filling applications are some of the new fields that are being benefited with these materials. Looking at both, commercial and new experimental calcium phosphate cements it is found that {alpha}-tricalcium phosphate is the main reactive powder responsible for the setting and the hardening of the cement. Thus, it is important to know how {alpha}-tricalcium phosphate affects injectability of these cements. The aim of this study was to investigate the rheological behaviour of {alpha}-tricalcium phosphate slurries in order to know how the cement injectability should be modified. Factors such as liquid to powder ratio, particle size of the main reactive powder and the addition of dispersants have been considered. The results showed that viscosity decreased when particle size of reactant was increased and when liquid to powder ratio was increased. It was also found that a minimum of viscosity exists at an optimum value of the weight percentage of dispersant. (orig.)

  1. Combustion of large solid fuels in cement rotary kilns

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Anders Rooma

    2012-03-15

    The cement industry has a significant interest in replacing fossil fuels with alternative fuels in order to minimize production costs and reduce CO{sub 2} emissions. These new alternative fuels are in particular solid fuels such as refuse derived fuel (RDF), tire-derived fuel (TDF), meat and bone meal (MBM), waste wood, sewage sludge, paper and plastics. This thesis provides an insight into the utilization of solid alternative fuels in the material inlet end of rotary kilns. This position is interesting because it allows utilization of large fuel particles, thereby eliminating the need for an expensive shredding of the fuels. The challenge, however, is that the solid fuels will be mixed into the cement raw materials, which is likely to affect process stability and clinker quality, as described above. The mixing of fuels and raw materials was studied experimentally in a pilot-scale rotary drum and was found to be a fast process, reaching steady state within few drum revolutions. Thus, heat transfer by conduction from the cement raw materials to the fuel particles is a major heat transfer mechanism rather than convection or radiation from the freeboard gas above the material bed. Consequently, the temperature of the cement raw materials becomes a factor of great importance for heating the fuel particles. Combustion of different alternative fuels has been investigated experimentally in a pilot-scale rotary furnace under conditions similar to those in the material inlet end of cement rotary kilns. The main focus was on tire rubber and pine wood which are relevant fuels in this context. Heating, drying and devolatilization of alternative fuels are fast processes that primarily depend on heat transfer and fuel particle size. Devolatilization of a large wood or tire particle with a thickness of 20 mm at 900 deg. C is for example around 2 minutes. By contrast, char oxidation is a slow process which may greatly reduce the amounts of solid fuels to be utilized in the

  2. Numerical simulation of granular flow on factors for the horizontal displacement of cement mixing pile in the foundation pit%基坑水泥搅拌桩桩身水平位移影响因素的颗粒流数值模拟

    Institute of Scientific and Technical Information of China (English)

    沈一帆; 胡敏云; 计国贤

    2011-01-01

    Based on granular Media-based theory of micromechanics of particle flow method,horizontal displacement characteristics and influencing factors of the cement mixing pile in the excavation process were calculated and analyzed. Five main factors were considered in the analysis: pile embedded depth, pile diameter size, soil body friction coefficient, particle stiffness parameters and construction schedule. Numerical simulation results showed that when the pile embedded depth is small, increasing the depth of the pile can significantly reduce the laying of the horizontal displacement of foundation pit wall deformation, however, when the pile embedded depth is beyond the depth of excavation, the restrictions on the shaft the role of horizontal displacement bam be ignored. The pile diameter size of the pit of cement mixing pile horizontal displacement of the body affected more significantly, can effectively control the size of the horizontal displacement of the pile. Soil body increases the friction coefficient of the horizontal displacement effect on the shaft has a certain influence, but not for control purposes. A change of particle stiffness of different soil characteristics of the differences in the level of displacement on the shaft of its change is also more obvious. Excavation layered construction schedule on the shaft speed of the maximum horizontal displacement of a larger impact, with the excavation of the longer exposure time, the gradual increase in horizontal displacement of the pile, reflects excavation process of cement mixing pile horizontal displacement of the body has a time-sensitive.%采用基于散体介质理论建立的颗粒流细观力学方法,对基坑开挖过程中水泥搅拌桩支护的桩身水平位移特征及影响因素进行了计算分析.分析中主要考虑了5个影响因素:桩身埋置深度,桩径尺寸,土体内摩擦系数,颗粒刚度参数及施工进度.数值模拟结果表明,当桩身埋置深度较小时,增加桩身

  3. Analysis of system and methods for improved cementing of oil- and gas wells

    OpenAIRE

    Stensrud, Magnus

    2011-01-01

    Cement is a crucial part of well construction. If a good cement bond between the casing and well bore wall cannot be achieved in the primary cementing, expensive remedial cementing jobs or possible loss of the well bore can occur.When cementing casings and liners in deep waters or pressure depleted reservoirs there is often a small pressure margin between pore pressure and fracture pressure, this makes cement operations more complex. New cementing techniques and cements are being developed to...

  4. Effect of Admixtures on the Yield Stresses of Cement Pastes under High Hydrostatic Pressures

    Directory of Open Access Journals (Sweden)

    Hong Jae Yim

    2016-03-01

    Full Text Available When cement-based materials are transported at a construction site, they undergo high pressures during the pumping process. The rheological properties of the materials under such high pressures are unknown, and estimating the workability of the materials after pumping is a complex problem. Among various influential factors on the rheology of concrete, this study investigated the effect of mineral and chemical admixtures on the high-pressure rheology. A rheometer was fabricated that could measure the rheological properties while maintaining a high pressure to simulate the pumping process. The effects of superplasticizer, silica fume, nanoclay, fly ash, or ground granulated blast furnace slag were investigated when mixed with two control cement pastes. The water-to-cement ratios were 0.35 and 0.50.

  5. The Influence of Free Water Content on Dielectric Properties of Alkali Active Slag Cement Paste

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The dielectric performance of alkali activated slag (AAS) cement paste was investigated in the frequency range of 1 to 1000 MHz. The experimental results showed the unstable dielectric properties of harden paste were mostly influenced by the fraction of free water in paste or absorbed water from ambient, but not including hydration water and microstructure. The free water was completely eliminated by heat treatment at 105 ℃ about 4 hours, and then its dielectric loss was depressed; but with the exposure time in air increasing,the free water adsorption in ambient air made the dielectric property of harden cement paste to be bad. The temperature and relative humidity of environment was the key factors of free water adsorption; hence, if the influence of free water on dielectric constant was measured or eliminated, the cement-based materials may be applied in humidity sensitive materials or dielectric materials domains.

  6. Cement embolism into the venous system after pedicle screw fixation: case report, literature review, and prevention tips

    Directory of Open Access Journals (Sweden)

    Ghassan Kerry

    2013-09-01

    Full Text Available The strength of pedicle screws attachment to the vertebrae is an important factor affecting their motion resistance and long term performance. Low bone quality, e.g. in osteopenic patients, keeps the screw bone interface at risk for subsidence and dislocation. In such cases, bone cement could be used to augment pedicle screw fixation. But its use is not free of risk. Therefore, clinicians, especially spine surgeons, radiologists, and internists should become increasingly aware of cement migration and embolism as possible complications. Here, we present an instructive case of cement embolism into the venous system after augmented screw fixation with fortunately asymptomatic clinical course. In addition we discuss pathophysiology and prevention methods as well as therapeutic management of this potentially life-threatening complication in a comprehensive review of the literature. However, only a few case reports of cement embolism into the venous system were published after augmented screw fixation.

  7. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    Science.gov (United States)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  8. EFFECT OF NANOMATERIALS IN CEMENT MORTAR CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    WAIL N. AL-RIFAIE

    2016-09-01

    Full Text Available Concrete is considered as brittle materials and widely used due to high compressive strength but unfortunately having and has low tensile strength that has a numerous negative impacts on the lifespan of concrete made structures. Therefore, mechanical properties of cement mortar have been investigated experimentally using different types and ratios of nano material to improve the properties. Since the strength of the concrete is of high importance, different materials have been used to enhance the compressive and the tensile characteristics of the cement mortar compressive and tensile strength. Mainly, this objective has been implemented through using micro cement, micro sand, nano silica, and nano clay in developing a nano-cement mortar which can to improve the concrete for the constructional applications. The samples were prepared and tested under tensile and compressive mode according to ASTM-2011 regulations for concrete. The parameters that are taken consideration during the investigation were micro sand, micro cement, nano silica, developed nano clay, and naphthalene sulphonate as super- plasticizers. In general, it has been observed that the results showed a significant increase in both compressive and tensile strength of the mortar at early stages of hardening, where a maximum increase of 22% in the compressive strength was achieved , whereas 3.7 time increase in the compressive strength was recorded over the tradition levels of the concrete strength.

  9. Pulmonary Artery Cement Embolism after a Vertebroplasty

    Directory of Open Access Journals (Sweden)

    Anas Nooh

    2015-01-01

    Full Text Available Background Context. Vertebroplasty is a minimally invasive procedure most commonly used for the treatment of vertebral compression fractures. Although it is relatively safe, complications have been reported over time. Among those complications, massive cement pulmonary embolism is considered a rare complication. Here we report a case of massive diffuse cement pulmonary embolism following percutaneous vertebroplasty for a vertebral compression fracture. Study Design. Case report. Methods. This is a 70-year-old female who underwent vertebroplasty for T11 and T12 vertebral compression fracture. Results. CT-scan revealed an incidental finding of cement embolism in the pulmonary trunk and both pulmonary arteries. Since the patient was asymptomatic, she was monitored closely and she did not need any intervention. Conclusion. Vertebroplasty is a minimally invasive procedure used for treatment of vertebral compression fracture. Despite the low rate of complications, a pulmonary cement embolism can occur. The consequences of cement embolism range widely from being asymptomatic to embolism that can cause paralysis, radiculopathy, or a fatal pulmonary embolism.

  10. Microbial-influenced cement degradation: Literature review

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission stipulates that disposed low-level radioactive waste (LLW) be stabilized. Because of apparent ease of use and normal structural integrity, cement has been widely used as a binder to solidify LLW. However, the resulting waste forms are sometimes susceptible to failure due to the actions of waste constituents, stress, and environment. This report reviews literature which addresses the effect of microbiologically influenced chemical attack on cement-solidified LLW. Groups of microorganisms are identified, which are capable of metabolically converting organic and inorganic substrates into organic and mineral acids. Such acids aggressively react with concrete and can ultimately lead to structural failure. Mechanisms inherent in microbial-influenced degradation of cement-based material are the focus of this report. This report provides sufficient evidence of the potential for microbial-influenced deterioration of cement-solidified LLW to justify the enumeration of the conditions necessary to support the microbiological growth and population expansion, as well as the development of appropriate tests necessary to determine the resistance of cement-solidified LLW to microbiological-induced degradation that could impact the stability of the waste form

  11. Factoring

    OpenAIRE

    Lenstra, Arjen K.

    1994-01-01

    Factoring, finding a non-trivial factorization of a composite positive integer, is believed to be a hard problem. How hard we think it is, however, changes almost on a daily basis. Predicting how hard factoring will be in the future, an important issue for cryptographic applications of composite numbers, is therefore a challenging task. The author presents a brief survey of general purpose integer factoring algorithms and their implementations

  12. Comparing the effect of a resin based sealer on crown retention for three types of cements: an in vitro study.

    Science.gov (United States)

    Patel, Pankaj; Thummar, Mansukh; Shah, Dipti; Pitti, Varun

    2013-09-01

    To determine the effect of resin based sealer on retention of casting cemented with three different luting agents. 55 extracted molar teeth were prepared with a flat occlusal surface, 20° taper and 4 mm axial height. The axial surface of each specimen was determined. The specimen were then distributed into five groups based on decreasing surface area, so each cementation group contained 11 specimens with similar mean axial surface area. A two-step, single bottle universal adhesive system (One-Step-Resinomer, Bisco) was used to seal dentin after the tooth preparation. Sealer was not used on the control specimens except for the modified-resin cement (Resinomer, Bisco) specimens that required use of adhesive with cementation. Using ceramometal (Wirobond(®), BEGO), a casting was produced for each specimen and cemented with either zinc phosphate (Harvard), glass ionomer (Vivaglass) or modified resin cement (Resinomer) with single bottle adhesive. All the castings were cemented with a force of 20 kg. Castings were thermal cycled at 5 and 55 °C for 2,500 cycles and were then removed along the path of insertion using a universal testing machine at 0.5 mm/min. A single-factor ANOVA was used with a = 0.05. The nature of failure was also recorded. The mean stress removal for non sealed zinc phosphate, sealed zinc phosphate, non sealed glass ionomer, sealed glass ionomer and modified resin cement was found to be 3.56, 1.92, 2.40, 4.26, 6.95 MPa respectively. Zinc phosphate cement remained principally on the castings when the tooth surface was treated with the sealer and was found on both the tooth and the casting when the sealer was not used. Fracture of root before dislodgement was seen in 9 of 11 specimens with modified resin cement. Resin sealer decreases the retention of the castings when used with zinc phosphate and increases it when used with glass ionomer cement. The highest mean dislodgement force was measured with modified resin cement. PMID:24431752

  13. Experimental research on the strength of cemented backfilling body of waste rocks%废石尾砂胶结充填体强度试验研究

    Institute of Scientific and Technical Information of China (English)

    罗根平; 乔登攀

    2015-01-01

    Experimental study is systematically conducted on cemented backfilling with waste rocks.The paper states the applicability and mechanism of waste rock cemented filling process and focuses on the influencing factors on the strength of cemented filling body of waste rocks,namely the water-cement ratio,cement-sand ratio,cement content, the grading and proportioning of the particle size of waste rocks.The research results show that the lager the water-ce-ment ratio and cement-sand ratio are,the less the strength of cemented backfilling body becomes,contrary to that rela-tion between cement content and the backfilling body's strength.With constant strength,cemented filling with waste rocks consumes less cement per unit volume and cost less than other filling methods.%对废石尾砂胶结充填进行了系统的试验研究。阐述了废石尾砂胶结充填工艺的工业性及原理,着重研究了废石尾砂胶结充填体强度的影响因素:水灰比、灰砂比、水泥含量、废石尾砂的粒径级配及配比。研究结果表明,废石尾砂胶结充填体强度随水灰比、灰砂比的减小而增大,随水泥含量的增加而增加。在强度一定的条件下,废石尾砂胶结充填比其他充填方式,单位体积内水泥耗量少,成本低。

  14. Present Situation and Perspective of Chinese Cement Industry

    Institute of Scientific and Technical Information of China (English)

    Gao Changming

    2003-01-01

    @@ Totally, there are 12 types of cement kiln pro-duction lines in China and running with a quite differenttechnical- economical levels. The cement productionof different types product lines in 1997 ~ 2002 is shownin Table 1.

  15. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  16. Migration of ions in cement paste as studied by SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Prince, K.E.; Aldridge, L.P. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); Rougeron, P. [Electricite de France Direction des Etudes et Recherches, Les Renardiers (France)

    1998-06-01

    Cement is often used to condition and encapsulate low level radioactive waste before it is disposed of in a repository. Ground water can attack these waste-forms by transporting aggressive ions into the cement paste and by removing radioactive ions from the paste. The extent of the attack will be governed by the diffusion of the ions in the cement paste. In this study we examine the migration of aggressive carbonate ions and inactive Cs and Sr through cement pastes. The use of SIMS for establishing the penetration depths and diffusion profiles for Cs and Sr in cement will be explored. The penetration profiles of Cs and Sr in a non-zeolite cement paste were examined and compared to those of a paste made with zeolite. The effects of the non-homogeneous nature of the cement was most pronounced in the study of the zeolite rich cement; Cs being preferentially accumulated in the zeolite material. (authors). 4 refs., 2 figs.

  17. Exposure to cement dust at a Portland cement factory and the risk of cancer.

    Science.gov (United States)

    Vestbo, J; Knudsen, K M; Raffn, E; Korsgaard, B; Rasmussen, F V

    1991-01-01

    The relation between exposure to cement dust and cancer was examined in a population of 546 cement workers and a reference population of 858 randomly sampled men of similar age and area of residence. In 1974 all men gave lifelong occupational and smoking histories; information on incidence of cancer in the period 1974-85 was obtained from the Danish Cancer Registry. No increased risk of overall cancer was found among cement workers. Among men with more than 20 years exposure to cement dust, 14 cases of respiratory cancer were observed (observed/expected (O/E) 1.52, 95% confidence interval (95% CI) 0.90-2.57) when compared with all Danish men. Men with 1-20 years exposure had O/E 1.14 (95% CI 0.59-2.19) based on nine cases of cancer. After excluding all men with documented exposure to asbestos during employment in an asbestos cement factory no increased risk of overall cancer or respiratory cancer was found among cement workers compared with white collar workers from the local reference population, using a Cox regression model controlling for age and smoking habits. Relative risks were 0.5 (95% CI 0.1-1.5) and 1.0 (95% CI 0.4-2.6) for men with 1-20 and more than 20 years of exposure to cement dust respectively compared with white collar workers. PMID:1772795

  18. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    Science.gov (United States)

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis. PMID:27002788

  19. Influencing Factors on the Interface Microhardness of Lightweight Aggregate Concrete Consisting of Glazed Hollow Bead

    OpenAIRE

    Gang Ma; Yu Zhang; Zhu Li

    2015-01-01

    Lightweight aggregate concrete consisting of glazed hollow bead (GHB) as lightweight aggregate is studied for the influence of nanosilica (NS) content, prewetting time for GHB, water-cement ratio, and curing humidity, on the interface structure between GHB and cement paste. This research analyzed the influences of various factors on the interface zone structure by measuring microhardness (HV) and hydration degree of cement paste (HD) nearby the interface zone (1 mm) between GHB and cement pas...

  20. Pore structure in blended cement pastes

    DEFF Research Database (Denmark)

    Canut, Mariana Moreira Cavalcanti

    Supplementary cementitious materials (SCMs), such as slag and fly ash, are increasingly used as a substitute for Portland cement in the interests of improvement of engineering properties and sustainability of concrete. According to studies improvement of engineering properties can be explained...... supplement each other. Cement pastes (w/b=0.4) with and without slag and fly ash cured at two moisture (sealed and saturated) and temperature (20 and 55ºC) conditions were used to investigate the combined impact of SCMs addition and curing on the pore structure of pastes cured up to two years. Also...... volume and threshold pore size were found when comparing with plain cement paste at the same curing conditions. The porosity methods MIP, LTC and SEM have been shown to be suitable to characterise pore parameters of the pastes. MIP is a simple and fast method which covers a large range of pore sizes...

  1. Immobilisation of ion exchange resins in cement

    International Nuclear Information System (INIS)

    Over the last seven years, Low Oxidation State Metal Ion reagents (LOMI) have been used to decontaminate the 100 MW(e) Steam Generating Heavy Water Ractor (SGHWR) at Winfrith. The use of these reagents has resulted in a dilute ionic solution containing activation products which are produced by corrosion of metallic components in the reactor. It has been demonstrated that the amount of activity in the solution can be reduced using organic ion exchanger resins. These resins consist of a cross linked polystyrene with sulphonic acid or quaternary ammonium function groups and can be successfully immobilised in blended cement systems. The formulation which has been developed is produced from a 9 to 1 blend of ground granulated blast furnace slag (BFS) and ordinary Portland cement (OPC) containing 28% ion exchange resin in the water saturated form. If 6% Microsilica is added to the blended cement the waste loading can be increased to 36 w/o. (author)

  2. Micromotion of cemented and uncemented femoral components.

    Science.gov (United States)

    Burke, D W; O'Connor, D O; Zalenski, E B; Jasty, M; Harris, W H

    1991-01-01

    We evaluated the initial stability of cemented and uncemented femoral components within the femoral canals of cadaver femurs during simulated single limb stance and stair climbing. Both types were very stable in simulated single limb stance (maximum micromotion of 42 microns for cemented and 30 microns for uncemented components). However, in simulated stair climbing, the cemented components were much more stable than the uncemented components (76 microns as against 280 microns). There was also greater variation in the stability of uncemented components in simulated stair climbing, with two of the seven components moving 200 microns or more. Future implant designs should aim to improve the initial stability of cementless femoral components under torsional loads; this should improve the chances of bony ingrowth. PMID:1991771

  3. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  4. Applications of Moessbauer spectroscopy in cement studies

    International Nuclear Information System (INIS)

    In the last two decades Moessbauer spectrometer has been employed to investigate cement and its clinker. In this work some of these investigations are exhibited briefly hoping that this would facilitate further investigations. It has already been seen that Moessbauer spectroscopy gives good information about some vague points which were present before using this technique as a tool in cement studies such as clinker formation, iron solubility, the iron states in the different phases of clinker as well as the effect of hydration at different times on the states of iron cement pastes, methods for the quality control of the manufactured clinker, the evaluation of the degree of hydration and the compressive strength have been assessed. A concept about the Moessbauer spectroscopy is presented. (author)

  5. Performance of cemented coal gangue backfill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qin-li; WANG Xin-min

    2007-01-01

    Possibility of cemented gangue backfill was studied with gangue of Suncun Coal Mine, Xinwen Coal Group, Shandong,and fly ash of nearby thermal power plant, in order to treat enormous coal gangue on a large scale and to recovery safety coal pillars.The results indicate that coal gangue is not an ideal aggregate for pipeline gravity flow backfill, but such disadvantages of gangue as bad fluidity and serious pipe wear can be overcome by addition of fly ash. It is approved that quality indexes such as strength and dewatering ratio and piping feature of slurry can satisfy requirement of cemented backfill if mass ratio of cement to fly ash to gangue higher middle and long term comprehensive strength.

  6. Spatial analysis of cement production and consumption in Turkey

    OpenAIRE

    Beygo, Cem; Cakmak, Goksenin

    1998-01-01

    After 1950?s, the rapid urbanization of Turkey stimulated the production and consumption of cement and the number of cement factories increased since then. In addition, construction of highways, bridges, dams and industrialization also contribute to the consumption of cement. Construction industry became a locomotif of the economy of the country and cement industry is the most element of the construction industry. This study analyzes the growth of population and urbanization according to new ...

  7. Respiratory tract mortality in cement workers: a proportionate mortality study

    OpenAIRE

    Rachiotis George; Drivas Spyros; Kostikas Konstantinos; Makropoulos Vasilios; Hadjichristodoulou Christos

    2012-01-01

    Abstract Background The evidence regarding the association between lung cancer and occupational exposure to cement is controversial. This study investigated causes of deaths from cancer of respiratory tract among cement workers. Methods The deaths of the Greek Cement Workers Compensation Scheme were analyzed covering the period 1969-1998. All respiratory, lung, laryngeal and urinary bladder cancer proportionate mortality were calculated for cement production, maintenance, and office workers i...

  8. A new geopolymeric binder from hydrated-carbonated cement

    OpenAIRE

    Paya Bernabeu, Jorge Juan; Borrachero Rosado, María Victoria; Monzó Balbuena, José Mª; Soriano Martinez, Lourdes; Mitsuuchi Tashima, Mauro

    2012-01-01

    This paper evaluates the use of hydrated Portland cement as the raw material in the production of geopolymers. The silicon and aluminium oxides needed for the geopolymerization process were produced by the carbonation of hydrated Portland cement, which transforms CSH and CAH (Portland cement hydrates) into silica and alumina gels. Hydrated-carbonated Portland cement was alkali activated with a NaOH/waterglass solution. Pastes and mortars were prepared, and micro-structural and mechanical prop...

  9. STUDY ON HIGH CONTENT OF BLENDS IN CEMENT

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The technology of activation by a]dding few activators(<1%) to increase the amount of blends in cement was investigated.The results show that outer activation has a remarkable effect on improving the physical properties of slag cement,flyash cement and volcanic cement.For example,the compressive strength was increased by 5-10 MPa.Morever,the application of activation is beneficial to grind-aiding,early strength and water-reducing etc.

  10. Practical clinical considerations of luting cements: A review

    OpenAIRE

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-01-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician’s understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc pho...

  11. Rietveld quantitative phase analysis of Yeelimite-containing cements

    OpenAIRE

    Álvarez-Pinazo, Gema; Cuesta, Ana; García-Maté, Marta; Santacruz, Isabel; Losilla, Enrique R.; De la Torre, Ángeles G.; León-Reina, Laura; Aranda, Miguel A. G.

    2012-01-01

    Yeelimite-containing cements are attracting attention for their tailored properties. Calcium sulfoaluminate, CSA, cements have high contents of Yeelimite and they are used for special applications. Belite calcium sulfoaluminate, BCSA or sulfobelite, cements have high contents of belite and intermediate contents of Yeelimite, and they may become an alternative to OPC. Here, we report Rietveld quantitative phase analyses for three commercially available CSA clinkers, one CSA cement,...

  12. Survival in cohorts of asbestos cement workers and controls.

    OpenAIRE

    Albin, M; Horstmann, V; Jakobsson, K; Welinder, H

    1996-01-01

    OBJECTIVES: To measure the impact on survival of being exposed to asbestos cement dust. METHODS: Survival of 866 asbestos cement workers and 755 controls was studied with Cox's proportional hazards regression models with age as the basic time variable. The effect of cumulative exposure up to the age of 40 was investigated in an internal analysis of 635 asbestos cement workers who had dose estimates. RESULTS: The death risk was higher for the asbestos cement workers than for the controls with ...

  13. The aggressiveness of pig slurry to cement mortars

    OpenAIRE

    Massana Guitart, Jordi; Guerrero Bustos, Ana; Antón Fuentes, Rebeca; Garcimartin Molina, Miguel Angel; Sanchez Espinosa, Elvira

    2013-01-01

    The aim was to measure the behaviour of various mortars employed in livestock media in central Spain and to analyse the aggressiveness of pig slurry to cement blended with fly ash mortars. To achieve this, mortar specimens were immersed in ponds storing pig slurry. Mortar specimens, of 40 ? 40 ? 160 mm, were made from four types of cement commonly used and recommended for rural areas. The types were a sulphate-resistant Portland cement and three cements blended in different proportions with ...

  14. Compressibility Behavior of Tropical Peat Reinforced with Cement Columns

    OpenAIRE

    Youventharan Duraisamy; Bujang B.K. Huat; Azlan A. Aziz

    2007-01-01

    This paper presents the compressibility of tropical peat reinforced with cylindrical cement columns. When a cement column is installed vertically in peat, its com-pressibility is reduced because of the hardened skeleton matrix formed by cement parti-cles bonding with adjacent soil particles in the presence of pore water. The effects of the cement column diameter on the compressibility have been investigated in this study. The results indicated that compressibility index Cc and Cα decreas...

  15. Expansion control for cementation of incinerated ash

    International Nuclear Information System (INIS)

    A method, in which incinerated ash is solidified with a cement material, has been developed to dispose of radioactive incinerated ash waste. A small amount of metallic Al, which was not oxidized in the incineration, existed in the ash. When such ash was mixed with a cement material and water, alkaline components in the ash and the cement were dissolved in the mixing water and then metallic Al reaction with the alkaline compounds resulted in generation of H2. Because the H2 generation began immediately just after the mixing, H2 bubbles pushed up the mixed grout material and an expanded solidified form was obtained. The expansion leads to lowering the strength of the solidified form and making harmful void. In this study, we tried to control H2 generation from the reaction of metallic Al in the cementation by means of following two methods, one was a method to let metallic Al react prior to the cementation and the other was a method to add an expansion inhibitor that made an oxide film on the surface of metallic Al. In the pre-treatment, the ash was soaked in water in order to let metallic Al react with it, and then the ash with the immersion solution was dried at 105 Celsius degrees. The pre-treated ash was mixed with an ordinary portland cement and water. The inhibitor of lithium nitrite, sodium nitrite, phosphoric acid, or potassium dihydrogen phosphate was added at the mixing process. The solidified forms prepared using the pre-treated ash and lithium nitrite were not expanded. Phosphoric acid and sodium nitrite were effective for expansion control, but potassium dihydrogen phosphate did not work. (authors)

  16. Influence of Calcium Sulfate State and Fineness of Cement on Hydration of Portland Cements Using Electrical Measurement

    Institute of Scientific and Technical Information of China (English)

    WEI Xiaosheng; LI Zongjin; XIAO Lianzhen; THONG Wangfai

    2006-01-01

    The influence of calcium sulfate state and fineness of cement on hydration of Portland cement was studied using electrical resistivity measurement. The bulk resistivity curve of the paste from the abnormal cement mainly with hemihydrate had a characteristic abnormal peak and rapid increase in early period. The resistivity measurement technique can be used to discriminate abnormal setting. For normal cement with gypsum, the increase in fineness of the Portland cement decreases the minimum resistivity due to a higher ionic concentration and increases the 24 hour resistivity due to a reduction in macroscopic pore size. Thesetting time, compressive strength, pore structure of pastes made from different cements were carried out to compare the influence of water to cement ratio, calcium sulfate state and fineness. It is found that the electrical and mechanical properties are strongly affected by the initial porosity, the presence of hemihydrate or gypsum, and the fineness of cement.

  17. Experimental Investigation of Second Interface Cement Bond Evaluation

    Institute of Scientific and Technical Information of China (English)

    Che Xiaohua; Qiao Wenxiao

    2007-01-01

    Cement bond model wells (1:10 scaled-down) were made with a gradually degrading cement annulus for cement bond evaluation of the first interface (between the casing and the cement annulus) and the second interface (between the cement annulus and the formation).Experimental simulation on cement bond logging was carried out with these model wells.The correlation of acoustic waveforms,casing wave energy and free casing area before and after cement bonding of the second interface was established.The experimental results showed that the arrival of the casing waves had no relationship with the cement bonding of the second interface,but the amplitude of the casing head wave decreased obviously after the second interface was bonded.So,cement bonding of the second interface had little effect on the evaluation of the cement bond quality of the first interface by using casing head wave arrivals.Strong cement annulus waves with early arrivals were observed before the second interface was bonded,while obvious "formation waves" instead of cement annulus waves were observed after the second interface was bonded.

  18. 21 CFR 888.4210 - Cement mixer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement mixer for clinical use. 888.4210 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4210 Cement mixer for clinical use. (a) Identification. A cement mixer for clinical use is a device consisting of a container intended for use in...

  19. Research of dynamic mechanical performance of cement rock

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; WANG Tong; WANG Xiang-lin

    2007-01-01

    As Daqing Oilfield is developing oil layer with a big potential, the requirement for the quality of well cementation is higher than ever before. Cement rock is a brittle material containing a great number of microcracks and defects. In order to reduce the damage to cement ring and improve sealed cementing property at the interface, it is necessary to conduct research on the modification of the cement rock available. According to the principle of super mixed composite materials, various fillers are added to the ingredients of cement rock. Dynamic fracture toughness of cement rock will be changed under the influence of filler. In order to study the damage mechanism of the cement circle during perforation and carry out comprehensive experiments on preventing and resisting connection, a kind of comprehensive experiment equipment used to simulate perforation and multifunctional equipment for testing the dynamic properties of the material are designed. Experimental study of the dynamical mechanical performance of original and some improved cement rock and experiment used to simulate the well cementation and perforation are carried out. Standard for dynamical mechanical performance of the cement rock with fine impact resistance and mechanical properties of some improved cement rock are also given.

  20. 21 CFR 888.4230 - Cement ventilation tube.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement ventilation tube. 888.4230 Section 888.4230...) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4230 Cement ventilation tube. (a) Identification. A cement ventilation tube is a tube-like device usually made of plastic intended to be inserted...

  1. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or...

  2. ASSESSMENT OF DEFORMATION AND STRENGTH OF SOILS STRENGTHENED BY CEMENTING

    Directory of Open Access Journals (Sweden)

    Sainov Mihail Petrovich

    2014-09-01

    Full Text Available Currently there are few studies of deformation and strength properties of loose soils strengthened by cementing. Based on the data of already arranged grout curtains it was determined that in cemented gravel-pebble soil there are 7...9 % of cement, which is less than in concrete. To assess deformation and strength of such soils it is possible to use the data of tests conducted by other authors, where the effect of cement contents on sand-cement mix properties was studied. Analysis of experimental data showed that cemented soil may be identified with concrete only with high content of cement (more than 10 %. At cement content 7...9 % in soil the strength deformation of cemented soil varies to a small extent. Its deformation becomes 2-3 times less. It greatly depends on compression stresses. The formulae are proposed which permit assessing the effect of compression and cement content on deformation of cemented soil. It is shown that strength of cemented soil is less than that even of the weakest concrete. It has a sufficiently high cohesion, but the friction angle is approximately the same as that of the initial soil.

  3. The suitability of a supersulfated cement for nuclear waste immobilisation

    Science.gov (United States)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  4. Porosity and liquid absorption of cement paste

    DEFF Research Database (Denmark)

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    be a slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which...... are not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square root...

  5. DMTA method in determining strength parameters of acrylic cements

    Directory of Open Access Journals (Sweden)

    J. Koszkul

    2007-05-01

    Full Text Available Purpose: The paper presents the results of investigations of dynamic properties for bone cement with different fillers by means of DMTA method. Addition of any substance causes the change in mechanical properties. Pure PALAMED® material and material filled with four different fillers have been analysed.Design/methodology/approach: One of the methods of thermal analysis for polymeric materials has been used for investigations. DMTA method is based on the analysis of the signal (reaction from the deformed material under particular conditions, at the changeable ambient temperature as well as vibrations frequency and amplitude. DMTA thermograms give information on change in storage modulus E’ and the mechanical loss factor tgδ, which is responsible for dissipation of energy during deformation. Pure cement as well as the cement filled with: BiO-OSS and PORESORB bone graft substitute materials, Al2O3 ceramic material and powdered animal bones. Method of specimen preparation and proportion in which the specimens were prepared are presented in the text.Practical implications: As it results from the literature analysis, no investigations of such a wide group of fillers, both organic and inorganic have been carried out yet. The investigations enabled the storage modulus and tgδ to be determined for each of the prepared materials, thus to indicate the material whose properties enable this material to be used in further alloplasty surgeries for hip joint. Practical application of the results of the investigations described in this paper will be possible after long and comprehensive clinical trials.Originality/value: Original value of this paper are the results of tests since such an analysis has never been conducted by scientific environment working on this subject.

  6. Cement Formation:A Success Story in a Black Box: High Temperature Phase Formation of Portland Cement Clinker

    OpenAIRE

    Telschow, Samira; Jappe Frandsen, Flemming; Theisen, Kirsten; Dam-Johansen, Kim

    2012-01-01

    Cement production has been subject to several technological changes, each of which requires detailed knowledgeabout the high multiplicity of processes, especially the high temperature process involved in the rotary kiln. This article gives an introduction to the topic of cement, including an overview of cement production, selected cement properties, and clinker phase relations. An extended summary of laboratory-scale investigations on clinkerization reactions, the most important reactions in ...

  7. Glass powder blended cement hydration modelling

    Science.gov (United States)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  8. Advanced cement solidification technique for spent resins

    International Nuclear Information System (INIS)

    In the past 40 years, the nuclear facilities of China Institute of Atomic Energy (CIAE) produced an amount of radioactive organic resins, a kind of problematic stream in nuclear industry. As these facilities were stepping into decommissioning, the treatment of the spent organic resins was put on the agenda. The various routes for spent resin treatment such as incineration, advanced oxidation, cement immobilization, etc, were considered. Each method has its advantages and disadvantages when applied in the treatment of spent resins. Since the quantities of the spent organic resins were relatively small and an experience with variety of cementation processes existed in CIAE, predominately for immobilization of the evaporated concentrates, the option of direct encapsulation of the spent organic resins into cementitious materials was adopted in 2003, as a preferred method from the point of view of saving the on the cost of the disposal. In order to realize the end goal, the main work consisted of: the survey of the source terms; cementitious material formula investigation; and the process development. This work, which was undertaken in the following years, is addressed as follows. Source terms of the spent resins in CIAE were to be made clear firstly. The results showed that a total of 24-29 m3 of spent resins was generated and accumulated in the past 40 years. Spent resin arose from two research reactors (heavy water reactor and light water reactor), and from the waste management plant. The amount of the spent resins from the heavy water reactor was 1m3 or so, but its radioactive concentration was high to ∼108-∼109Bq/m3. Two kinds of cements, ASC and OPC cement were selected next, as the solidifying matrix to be investigated. A mixture surface response approach was employed to design experiment and interpret data. In comparison, ASC was superior to OPC cement and it displayed preferable performances to encapsulate spent resins. The optimum formulation is:1) resin

  9. The suitability of a supersulfated cement for nuclear waste immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Collier, N.C., E-mail: nick.collier@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Milestone, N.B. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Callaghan Innovation, 69 Gracefield Road, PO Box 31310, Lower Hutt 5040 (New Zealand); Gordon, L.E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Geopolymer and Minerals Processing Group, Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010 (Australia); Ko, S.-C. [Holcim Technology Ltd, Hagenholzstrasse 85, CH-8050 Zurich (Switzerland)

    2014-09-15

    Highlights: • We investigate a supersulfated cement for use as a nuclear waste encapsulant. • High powder fineness requires a high water content to satisfy flow requirements. • Heat generation during hydration is similar to a control cement paste. • Typical hydration products are formed resulting in a high potential for waste ion immobilisation. • Paste pH and aluminium corrosion is less than in a control cement paste. - Abstract: Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  10. Development of an Improved Cement for Geothermal Wells

    Energy Technology Data Exchange (ETDEWEB)

    Trabits, George [Trabits Group, LLC, Wasilla, AK (United States)

    2015-04-20

    After an oil, gas, or geothermal production well has been drilled, the well must be stabilized with a casing (sections of steel pipe that are joined together) in order to prevent the walls of the well from collapsing. The gap between the casing and the walls of the well is filled with cement, which locks the casing into place. The casing and cementing of geothermal wells is complicated by the harsh conditions of high temperature, high pressure, and a chemical environment (brines with high concentrations of carbon dioxide and sulfuric acid) that degrades conventional Portland cement. During the 1990s and early 2000s, the U.S. Department of Energy’s Geothermal Technologies Office (GTO) provided support for the development of fly-ash-modified calcium aluminate phosphate (CaP) cement, which offers improved resistance to degradation compared with conventional cement. However, the use of CaP cements involves some operational constraints that can increase the cost and complexity of well cementing. In some cases, CaP cements are incompatible with chemical additives that are commonly used to adjust cement setting time. Care must also be taken to ensure that CaP cements do not become contaminated with leftover conventional cement in pumping equipment used in conventional well cementing. With assistance from GTO, Trabits Group, LLC has developed a zeolite-containing cement that performs well in harsh geothermal conditions (thermal stability at temperatures of up to 300°C and resistance to carbonation) and is easy to use (can be easily adjusted with additives and eliminates the need to “sterilize” pumping equipment as with CaP cements). This combination of properties reduces the complexity/cost of well cementing, which will help enable the widespread development of geothermal energy in the United States.

  11. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    Science.gov (United States)

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  12. Chemical stability of seven years aged cement-PET composite waste form containing radioactive borate waste simulates

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt); Tawfik, M.E. [Department of Polymers and Pigments, National Research Center, Dokki (Egypt); Bayoumi, T.A. [Radioisotope Department, Atomic Energy Authority, Dokki (Egypt)

    2011-04-15

    Different samples of radioactive borate waste simulate [originating from pressurized water reactors (PWR)] have been prepared and solidified after mixing with cement-water extended polyester composite (CPC). The polymer-cement composite samples were prepared from recycled poly (ethylene terephthalate) (PET) waste and cement paste (water/cement ratio of 40%). The prepared samples were left to set at room temperature (25 deg. C {+-} 5) under humid conditions. After 28 days curing time the obtained specimens were kept in their molds to age for 7 years under ambient conditions. Cement-polymer composite waste form specimens (CPCW) have been subjected to leach tests for both {sup 137}Cs and {sup 60}Co radionuclides according to the method proposed by the International Atomic Energy Agency (IAEA). Leaching tests were justified under various factors that may exist within the disposal site (e.g. type of leachant, surrounding temperature, leachant behavior, the leachant volume to CPCW surface area...). The obtained data after 260 days of leaching revealed that after 7 years of aging the candidate cement-polymer composite (CPC) containing radioactive borate waste samples are characterized by adequate chemical stability required for the long-term disposal process.

  13. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    International Nuclear Information System (INIS)

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties

  14. A Biomechanical Comparison of Expansive Pedicle Screws for Severe Osteoporosis: The Effects of Screw Design and Cement Augmentation.

    Science.gov (United States)

    Tai, Ching-Lung; Tsai, Tsung-Ting; Lai, Po-Liang; Chen, Yi-Lu; Liu, Mu-Yi; Chen, Lih-Huei

    2015-01-01

    Expansive pedicle screws significantly improve fixation strength in osteoporotic spines. However, the previous literature does not adequately address the effects of the number of lengthwise slits and the extent of screw expansion on the strength of the bone/screw interface when expansive screws are used with or without cement augmentation. Herein, four designs for expansive pedicle screws with different numbers of lengthwise slits and different screw expansion levels were evaluated. Synthetic bones simulating severe osteoporosis were used to provide a comparative platform for each screw design. The prepared specimens were then tested for axial pullout failure. Regardless of screw design, screws with cement augmentation demonstrated significantly higher pullout strength than pedicle screws without cement augmentation (p screws without cement augmentation, solid screws exhibited the lowest pullout strength compared to the four expansive groups (p screws with different designs (p > 0.05). Taken together, our results show that pedicle screws combined with cement augmentation may greatly increase screw fixation regardless of screws with or without expansion. An increase in both the number of slits and the extent of screw expansion had little impact on the screw-anchoring strength. Cement augmentation is the most influential factor for improving screw pullout strength. PMID:26720724

  15. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  16. Properties of Non-Structural Concrete Made with Mixed Recycled Aggregates and Low Cement Content

    Directory of Open Access Journals (Sweden)

    Antonio López-Uceda

    2016-01-01

    Full Text Available In spite of not being legally accepted in most countries, mixed recycled aggregates (MRA could be a suitable raw material for concrete manufacturing. The aims of this research were as follows: (i to analyze the effect of the replacement ratio of natural coarse aggregates with MRA, the amount of ceramic particles in MRA, and the amount of cement, on the mechanical and physical properties of a non-structural concrete made with a low cement content; and (ii to verify if it is possible to achieve a low-strength concrete that replaces a greater amount of natural aggregate with MRA and that has a low cement content. Two series of concrete mixes were manufactured using 180 and 200 kg/m3 of CEM II/A-V 42.5 R type Portland cement. Each series included seven concrete mixes: one with natural aggregates; two MRA with different ceramic particle contents; and one for each coarse aggregate replacement ratio (20%, 40%, and 100%. To study their properties, compressive and splitting tensile strength, modulus of elasticity, density, porosity, water penetration, and sorptivity, tests were performed. The results confirmed that the main factors affecting the properties analyzed in this research are the amount of cement and the replacement ratio; the two MRAs used in this work presented a similar influence on the properties. A non-structural, low-strength concrete (15 MPa with an MRA replacement ratio of up to 100% for 200 kg/m3 of cement was obtained. This type of concrete could be applied in the construction of ditches, sidewalks, and other similar civil works.

  17. Energy efficiency of cement finish grinding in a dry batch ball mill

    OpenAIRE

    Touil, Djamel; Belaadi, Salah; Frances, Christine

    2006-01-01

    Dry grinding experiments on cement clinker were carried out using a laboratory batch ball mill equipped with torque measurement. The specific energy was found to be dependent on operating parameters and clinker environment. Additional compounds such as gypsum and pozzolanic tuff improve energy efficiency. The optimal parameters allowing maximising the energy efficiency factor were determined. Energy efficiency factors were obtained both on the crude material (size minus 2.8 mm) and on a sieve...

  18. Design of Fit-for-Purpose Cement to Restore Cement-Caprock Seal Integrity

    Science.gov (United States)

    Provost, R.

    2015-12-01

    This project aims to study critical research needs in the area of rock-cement interfaces, with a special focus on crosscutting applications in the Wellbore Integrity Pillar of the SubTER initiative. This study will focus on design and test fit-for-purpose cement formulations. The goals of this project are as follows: 1) perform preliminary study of dispersing nanomaterial admixtures in Ordinary Portland Cement (OPC) mixes, 2) characterize the cement-rock interface, and 3) identify potential high-performance cement additives that can improve sorption behavior, chemical durability, bond strength, and interfacial fracture toughness, as appropriate to specific subsurface operational needs. The work presented here focuses on a study of cement-shale interfaces to better understand failure mechanisms, with particular attention to measuring bond strength at the cement-shale interface. Both experimental testing and computational modeling were conducted to determine the mechanical behavior at the interface representing the interaction of cement and shale of a typical wellbore environment. Cohesive zone elements are used in the finite element method to computationally simulate the interface of the cement and rock materials with varying properties. Understanding the bond strength and mechanical performance of the cement-formation interface is critical to wellbore applications such as sequestration, oil and gas production and exploration and nuclear waste disposal. Improved shear bond strength is an indication of the capability of the interface to ensure zonal isolation and prevent zonal communication, two crucial goals in preserving wellbore integrity. Understanding shear bond strength development and interface mechanics will provide an idea as to how the cement-formation interface can be altered under environmental changes (temperature, pressure, chemical degradation, etc.) so that the previously described objectives can be achieved. Sandia National Laboratories is a multi

  19. Alkali-silica reaction resistant concrete using pumice blended cement

    Science.gov (United States)

    Ramasamy, Uma

    Durability of structures is a major challenge for the building industry. One of the many types of concrete deterioration that can affect durability is alkali-silica reaction (ASR). ASR has been found in most types of concrete structures, including dams, bridges, pavements, and other structures that are 20 to 50 years old. The degradation mechanism of ASR produces a gel that significantly expands in the presence of water as supplied from the surrounding environment. This expansion gel product can create high stresses and cracking of the concrete, which can lead to other forms of degradation and expensive structural replacement costs. The four essential factors that produce an expansive ASR gel in concrete are the presence of alkalis, siliceous aggregate, moisture, and free calcium hydroxide (CH). If concrete is starved of any one of these essential components, the expansion can be prevented. Reducing CH through the use of a supplementary cementitious material (SCM) such as natural pozzolan pumice is the focus of this research. By using a pozzolan, the amount of CH is reduced with time based on the effectiveness of the pozzolan. Many pozzolans exist, but one such naturally occurring pozzolanic material is pumice. This research focuses on determining the effect of a finely ground pumice as a SCM in terms of its resistance to ASR expansion, as well as improving resistance to other potential concrete durability mechanisms. In spite of having high alkali contents in the pumice, mixtures containing the SCM pumice more effectively mitigated the ASR expansion reaction than other degradation mechanisms. Depending on the reactivity of the aggregates and fineness of the pumice, 10-15% replacement of cement with the pumice was found to reduce the ASR expansion to the acceptable limits. The amount of CH remaining in the concrete was compared to the ASR expansion in order to improve understanding of the role of CH in the ASR reaction. Thermo-gravimetric analysis (TGA) and X

  20. Microscopic evaluation regarding time behavior of orthodontic cements used for disjunctor cementing

    OpenAIRE

    Ruxandra Bartok; Dimitriu B.; Varlan C.; Stanciu R; Sanziana Scarlatescu; Loredana Mitran; Mitran M.; Irina Gheorghiu; Ioana Suciu; Iliescu D.M.

    2015-01-01

    In order to fulfill their function, orthodontic devices must be cemented on teeth using orthodontic rings. The retention of the orthodontic ring is influenced mainly by the type of dental-ring adhesion. This study was initiated to determine possible microleakage events while using zinc phosphate cement Adhesor (Spofa Dental), conventional glass ionomer Ketac Cem (3M ESPE) and Fuji Ortho (GC) and a compomer Transbond Plus (3M Unitek). The results of the study are consistent with those reported...

  1. Serviceability and Reinforcement of Low Content Whisker in Portland Cement

    Institute of Scientific and Technical Information of China (English)

    CAO Mingli; WEI Jianqiang; WANG Lijiu

    2011-01-01

    In order to explore the serviceability and reinforcement of CaCO3 whisker in portland cement matrix,the durability of CaCO3 whisker and effect of low whisker content(0%-4.0%)on the working performance and mechanical properties of portland cement were investigated.The experimental results show that CaCO3 whiskers have a good stability and serviceability in cement,and should not significantly alter the rheological properties of the cement paste.The flexural and compressive strength of portland cement reinforced by CaCO3 whiskers was increased by 33.3% and 12.83%,respectively.

  2. Development of Clinical Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new type of inorganicorganic biomimetic bone cement consisting of nanohydroxyapatite and polyamide 66 composite was investigated. This cement can be handled as paste and easily shaped into any contour. Nanoapatite and polyamide composite cement has a reasonable setting time, excellent washout resistance, high mechanical strength and bioactivity, and it is easily handled and shaped, which can be developed as a clinical cement. It can be predicted that nanoapatite/polymer composite cement would be a new trend of biomedical material, showing a promising prospect.

  3. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, W.; Brouwers, H.J.H.

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  4. Formulation of an injectable phosphocalcium cement

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, S. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); TEKNIMED, Vic en Bigorre (France); Brouchet, A.; Delisle, B. [CHU Rangueil, Toulouse (France). Service d' Anatomie Pathologie; Freche, M.; Lacout, J.L. [CIRIMAT Equipe de Physico-Chimie des Phosphates ENSCT INP, Toulouse (France); Rodriguez, F. [Lab. de Galenique, Chmin des Maraichers, Toulouse (France)

    2001-07-01

    In orthopedic surgery, the loss or the reinforcement of osseous substance often requires filling of the defective part. In order to make the surgical operations easier we sought to make an injectable form. This study examined the effect of silicone and polyglycol on the injectability, setting time and mechanical properties of the cement. The basic solid phase was composed of a mixture of tetracalcium phosphate (Ca{sub 4}(PO{sub 4}){sub 2}O), {alpha}-tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) and sodium glycerophosphate. The basic liquid phase was made up of lime, orthophosphoric acid and water. Silicone was previously dissolved in cyclohexane and introduced in the solid phase. Polyglycol is a water-soluble compound so it is introduced in the liquid phase. For the mechanical properties, the strong increase in the percentage of additives decreased the compressive strength. Silicone and polyglycol made it possible to improve viscosity without modifying the basic setting time. The rate of evolution was different with the two different additives. From the data it was possible to optimize the formulation of cements to give predicted properties. Testing the in vivo implantation of the cement has already started. Preliminary results show the perfect osteointegration of the new cements without reactions to the foreign body in spite of the presence of silicone. (orig.)

  5. Marginal adaptation of ceramic inserts after cementation

    NARCIS (Netherlands)

    Ozcan, M; Pfeiffer, P; Nergiz, [No Value

    2002-01-01

    The advantage of using ceramic inserts is to prevent major drawbacks of composite resins such as polymerization shrinkage, wear and microleakage. This in vitro study evaluated the marginal adaptation of two approximal ceramic insert systems after cementation to the cavities opened with ultrasonic ti

  6. Cement/caprock fracture healing experiments to assess the integrity of CO2 injection wells

    Science.gov (United States)

    Du Frane, W. L.; Mason, H. E.; Walsh, S. D.; Ruddle, D. G.; Carroll, S.

    2012-12-01

    It has been speculated that fractures along wellbore cement/caprock interfaces may provide a path for release of carbon from both long-term sequestration-sites and CO2-based enhanced oil recovery operations. The goal of this study is to evaluate the potential for fracture growth and healing in the wellbore environment, and its impact on wellbore permeability. A series of flow-through experiments was conducted, in which sample cores containing a planar fracture between impermeable caprock (compacted quartz, from 13,927' depth in Kern County) and cement (Portland G cured by ATSM standards) were reacted with brine containing variable amounts of carbonic acid (pCO2 between 0 and 3 MPa). The initial fracture geometry was controlled by grinding the caprock and cement pieces flat, and then bead blasting topography into the cement surfaces. Runs lasted 4-8 days with cores and brine maintained at constant temperature (60 °C). Constant confining pressure (24.8 MPa) was applied to cores, while brine was flowed with constant rates (0.05-0.10 mL/min) and pore pressure (12.4 MPa). Geomechanical and geochemical responses of the fractures were monitored by in situ measurements of differential pressure, and by periodically sampling output brine to analyze compositional changes. In every experiment the total permeability of samples cores decreased substantially. For runs using brine with pCO2 = 3 MPa, sample permeability continually decreased by over a factor of 200. Sample permeability also decreased by a factor of 50 having stabilized after ~3 days in a run using brine without CO2 (pCO2 = 0 MPa). These reductions in permeability appear to be the result of chemically-induced changes to the mechanical properties of the cement surface. Prior to reaction, the cement-caprock samples had high strength and elastic response to changes in stress during loading. After the experiments, the samples were weaker, and showed inelastic response to changes in stress during unloading. All cement

  7. Absorption Characteristics of Cement Combination Concrete Containing Portland Cement, fly ash, and Metakaolin

    Directory of Open Access Journals (Sweden)

    Folagbade S.O.

    2016-03-01

    Full Text Available The resistance to water penetration of cement combination concretes containing Portland cement (PC, fly ash (FA, and metakaolin (MK have been investigated at different water/cement (w/c ratios, 28-day strengths, and depths of water penetration using their material costs and embodied carbon-dioxide (eCO2 contents. Results revealed that, at equal w/c ratio, eCO2 content reduced with increasing content of FA and MK. MK contributed to the 28-day strengths more than FA. Compared with PC, FA reduced cost and increased the depth of water penetration, MK increased cost and reduced the depth of water penetration, and their ternary combinations become beneficial. At equal strengths and levels of resistance to water penetration, most of the cement combination concretes are more environmentally compatible and costlier than PC concrete. Only MK binary cement concretes with 10%MK content or more and ternary cement concretes at a total replacement level of 55% with 10%MK content or more have higher resistance to water penetration than PC concrete.

  8. Retention of overdenture posts cemented with self-adhesive resin cements.

    Science.gov (United States)

    Elsayed, Mohamed Ezzat; El-Mowafy, Omar; Fenton, Aaron

    2009-01-01

    This study investigated the effects of two self-adhesive resin cements on the retention of overdenture anchor posts after 30 days of aging in water. Forty caries-free human canines were randomly assigned to four test groups. Uni-Anchor posts were cemented to specimens in groups A and B with Breeze and Maxcem self-adhesive resin cements, respectively. In groups C and D, Fuji glass-ionomer cement and Fleck's zinc phosphate cement were used, respectively. Specimens were stored in distilled water at 37 degrees C for 30 days. Each specimen was loaded in tension in an Instron universal testing machine. The maximum force required to dislodge each post was recorded. Means and standard deviations (SDs) were calculated and data were statistically analyzed with analysis of variance (ANOVA). Means and SDs were 706.5 +/- 204.6 N for Breeze, 585.1 +/- 213.5 N for Maxcem, 449.2 +/- 181.1 N for Fuji, and 330.4 +/- 120.6 N for Fleck's. ANOVA revealed significant differences among the means (P < .0003). Adhesive failure was observed with all groups except group A, in which eight specimens underwent a cohesive fracture of the dentin. Breeze cement (group A) resulted in the highest retention force and most frequent cohesive failure and thus would be expected to clinically perform in a superior manner.

  9. Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement.

    Science.gov (United States)

    Lewis, Gladius; Janna, Si; Bhattaram, Anuradha

    2005-07-01

    Two variants of antibiotic powder-loaded acrylic bone cements (APLBCs) are widely used in primary total joint replacements. In the United States, the antibiotic is manually blended with the powder of the cement at the start of the procedure, while, in Europe, pre-packaged commercially-available APLBCs (in which the blending is carried out using an industrial mixer) are used. Our objective was to investigate the influence of the method of blending gentamicin sulphate with the powder of the Cemex XL formulation on a wide collection of properties of the cured cement. The blending methods used were manual mixing (the MANUAL Set), use of a small-scale, easy-to-use, commercially-available mechanical powder mixer, OmoMix 1 (the MECHANICAL Set), and use of a large-scale industrial mixer (Cemex Genta) [the INDUSTRIAL Set]. In the MECHANICAL and MANUAL Sets, the blending time was 3 min. In preparing the test specimens for each set, the blended powder used contained 4.22 wt% of the gentamicin powder. The properties determined were the strength, modulus, and work-to-fracture (all obtained under four-point bending), plane-strain fracture toughness, Weibull mean fatigue life (fatigue conditions: +/-15 MPa; 2 Hz), activation energy and frequency factor for the cement polymerization process (both determined using differential scanning calorimetry, at heating rates of 5, 10, 15, and 20 Kmin(-1)), the diffusion coefficient for the absorption of phosphate buffered saline, PBS, at 37 degrees C, and the rate of elution of the gentamicin into PBS, at 37 degrees C (E). Also determined were the particle size, particle size distribution, and morphology of the blended powders and of the gentamicin. For each of the cured cement properties (except for E), there is no statistically significant difference between the means for the 3 cements, a finding that parallels the observation that there are no significant differences in either the mean particle size or the morphology of the blended cement

  10. Mechanical properties of femoral cortical bone following cemented hip replacement.

    Science.gov (United States)

    Ni, G X; Lu, W W; Chiu, P K Y; Wang, Y; Li, Z Y; Zhang, Y G; Xu, B; Deng, L F; Luk, K D K

    2007-11-01

    Femoral bone remodeling following total hip replacement is a big concern and has never been examined mechanically. In this study, six goats underwent unilateral cemented hip hemiarthroplasty with polymethyl methacrylate (PMMA) bone cement. Nine months later animals were sacrificed, and the femoral cortical bone slices at different levels were analysed using microhardness testing and microcomputed tomography (micro-CT) scanning. Implanted femurs were compared to contralateral nonimplanted femurs. Extensive bone remodeling was demonstrated at both the proximal and middle levels, but not at the distal level. Compared with the nonimplanted side, significant decreases were found in the implanted femur in cortical bone area, bone mineral density, and cortical bone hardness at the proximal level, as well as in bone mineral density and bone hardness at the middle level. However, no significant difference was observed in either variable for the distal level. In addition, similar proximal-to-distal gradient changes were revealed both in cortical bone microhardness and bone mineral density. From the mechanical point of view, the results of the present study suggested that stress shielding is an important mechanical factor associated with bone adaptation following total hip replacement. PMID:17506504

  11. Physical Origins of Thermal Properties of Cement Paste

    Science.gov (United States)

    Abdolhosseini Qomi, Mohammad Javad; Ulm, Franz-Josef; Pellenq, Roland J.-M.

    2015-06-01

    Despite the ever-increasing interest in multiscale porous materials, the chemophysical origin of their thermal properties at the nanoscale and its connection to the macroscale properties still remain rather obscure. In this paper, we link the atomic- and macroscopic-level thermal properties by combining tools of statistical physics and mean-field homogenization theory. We begin with analyzing the vibrational density of states of several calcium-silicate materials in the cement paste. Unlike crystalline phases, we indicate that calcium silicate hydrates (CSH) exhibit extra vibrational states at low frequencies (factor of 4. Furthermore, full thermal conductivity tensors for all phases are calculated via the Green-Kubo formalism. We estimate the mean free path of phonons in calcium silicates to be on the order of interatomic bonds. This satisfies the scale separability condition and justifies the use of mean-field homogenization theories for upscaling purposes. Upscaling schemes yield a good estimate of the macroscopic specific-heat capacity and thermal conductivity of cement paste during the hydration process, independent of fitting parameters.

  12. Reactive-Transport Model of Buffer Cementation

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Randy; Wei Zhou [Monitor Scientific LLC, Denver, CO (United States)

    2005-10-15

    Thermal gradients during the early, non-isothermal period of near-field evolution in a KBS-3 repository for spent nuclear fuel could alter the mineralogy of the bentonite buffer and cause the constituent clay particles to become cemented together by mineral precipitates. Cementation is a potential concern because it could alter the ductility, mechanical strength and swelling pressure of the buffer, thereby possibly adversely affecting the primary performance function of this key barrier to provide a stable diffusional transport pathway between the canister and rock. The present study uses the TOUGHREACT computer program to simulate reactive-transport processes that are thought to control buffer cementation. TOUGHREACT is generally applicable to problems involving non-isothermal, multiphase reactive transport in variably saturated media. For cementation problems, the modeling approach must account specifically for the temperature dependence of equilibrium and kinetic constraints on dissolution/precipitation reactions involving the primary smectite clays and accessory phases in bentonite, and for diffusive transport of aqueous reactants and products along concentration gradients that are aligned with, or in opposition to, the direction of decreasing temperatures across the near field. The modeling approach was evaluated in two stages. A conceptual model of buffer cementation was first calibrated using observations from field tests carried out at the Stripa mine and Aespoe HRL (LOT pilot experiments). The calibrated model was then used to simulate the geochemical evolution of the KBS-3 buffer during the non-isothermal period of repository evolution. This model accounts for the imbibition of groundwater from a granitic host rock into initially unsaturated buffer materials under capillary and hydraulic pressure gradients, and uses realistic time-temperature constraints on the thermal evolution of the near-field. Preliminary results suggest that the total extent of

  13. Practical clinical considerations of luting cements: A review.

    Science.gov (United States)

    Lad, Pritam P; Kamath, Maya; Tarale, Kavita; Kusugal, Preethi B

    2014-02-01

    The longevity of fixed partial denture depends on the type of luting cement used with tooth preparation. The clinician's understating of various cements, their advantages and disadvantages is of utmost importance. In recent years, many luting agents cements have been introduced claiming clinically better performance than existing materials due to improved characteristics. Both conventional and contemporary dental luting cements are discussed here. The various agents discussed are: Zinc phosphate, Zinc polycarboxylate, Zinc oxide-eugenol, Glass-ionomer, Resin modified GIC, Compomers and Resin cement. The purpose of this article is to provide a discussion that provides a clinical perspective of luting cements currently available to help the general practitioner make smarter and appropriate choices. How to cite the article: Lad PP, Kamath M, Tarale K, Kusugal PB. Practical clinical considerations of luting cements: A review. J Int Oral Health 2014;6(1):116-20. PMID:24653615

  14. Mechanical Properties and Decay Resistance of Hornbeam Cement Bonded Particleboards

    Directory of Open Access Journals (Sweden)

    Antonios N. Papadopoulos

    2008-01-01

    Full Text Available Cement bonded particleboards were manufactured from hornbeam (Carpinus betulus L. wood particles. Hydration tests were carried out to determine the inhibitory index in order to characterise wood-cement compatibility. The results revealed that the mixture of hornbeam-cement can be classified as moderate inhibition. Two wood: cement ratios were applied in this study, namely, 1 : 3 and 1 : 4, for the board manufacture. It was found that an increase of cement-wood ratio resulted in an improvement in all properties examined, except MOR. All properties of the boards made from 1 : 4 wood: cement ratio surpassed the minimum requirements set forth by the building type HZ code. Boards were exposed to brown and white rot fungi, Coniophora puteana, and Trametes versicolor, respectively. Overall, both fungi failed to attack the cement-bonded boards.

  15. In vitro tensile strength of luting cements on metallic substrate.

    Science.gov (United States)

    Orsi, Iara A; Varoli, Fernando K; Pieroni, Carlos H P; Ferreira, Marly C C G; Borie, Eduardo

    2014-01-01

    The aim of this study was to determine the tensile strength of crowns cemented on metallic substrate with four different types of luting agents. Twenty human maxillary molars with similar diameters were selected and prepared to receive metallic core castings (Cu-Al). After cementation and preparation the cores were measured and the area of crown's portion was calculated. The teeth were divided into four groups based on the luting agent used to cement the crowns: zinc phosphate cement; glass ionomer cement; resin cement Rely X; and resin cement Panavia F. The teeth with the crowns cemented were subjected to thermocycling and later to the tensile strength test using universal testing machine with a load cell of 200 kgf and a crosshead speed of 0.5 mm/min. The load required to dislodge the crowns was recorded and converted to MPa/mm(2). Data were subjected to Kruskal-Wallis analysis with a significance level of 1%. Panavia F showed significantly higher retention in core casts (3.067 MPa/mm(2)), when compared with the other cements. Rely X showed a mean retention value of 1.877 MPa/mm(2) and the zinc phosphate cement with 1.155 MPa/mm(2). Glass ionomer cement (0.884 MPa/mm(2)) exhibited the lowest tensile strength value. Crowns cemented with Panavia F on cast metallic posts and cores presented higher tensile strength. The glass ionomer cement showed the lowest tensile strength among all the cements studied. PMID:25140718

  16. Stiffness and strength of composite acrylic bone cements

    Directory of Open Access Journals (Sweden)

    I. Knets

    2007-01-01

    Full Text Available Purpose: Different acrylic bone cements based upon PMMA-MMA system are applicable for implant fixation inbone tissue. The aim of present study is the optimisation of the structure of some new bone acrylic cements madeon the basis of PMMA-ethylmethacrylate-triethyleneglycoldimethacrylate and bone cements having additives (HAand radio pacifier, and the finding of the effect of these modifications on the flexural strength and stiffness.Design/methodology/approach: Different new bone cements on the basis of PMMA-EMA-TEGDMA system(ABC were developed experimentally. The stiffness and strength of the samples of these modified cements weredetermined in the special three point bending equipment.Findings: A comparison of the flexural properties of new PMMA-EMA-TEGDMA cements and commercialavailable PMMA-MMA cement showed that commercial bone cement had larger values of ultimate strengthand modulus of elasticity, but the difference is not very important. As concerns the polymerisation peaktemperature, then there is a significant difference between commercial PMMA-MMA cement (~ 800C andPMMA-EMA-TEGDMA modified cements (50 – 600C. The introduction of 10% and 18% of HA into solidphase does not influence essentially strength and modulus of elasticity of the PMMA-EMA-TEGDMA bonecements. The introduction of radio pacifier BaSO4 into bone cement leads to flexural strength diminishing.Low polymerisation peak temperature and appropriate mechanical properties of bone cements developed allowsregarding new 3-D structure acrylic bone cements as promising biomaterials.Research limitations/implications: It is supposed to carry out animal testing to learn more about reaction ofmodified implanted material on the biological environment.Practical implications: The new materials could be efficiently used as bone cements because they will notdamage surrounding biological tissue during curing.Originality/value: Paper is providing the new information about possibilities to

  17. 浅析水泥稳定基层施工质量控制方法%Brief Analysis on Quality Control Methods of Cement Stabilized Base Construction

    Institute of Scientific and Technical Information of China (English)

    刘志刚

    2012-01-01

    对影响水泥稳定基层施工质量因素进行分析,阐述了水泥稳定基层施工中应该注意的问题及水泥稳定基层施工质量控制方法。%The factors effecting needing attention in cement stabilized construction are elaborated. cement stabilized base construction quality are base construction and quality controlling methods analyzed. The problems of cement stabilized base

  18. Obtaining mineral powder for bitumen cement

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, S.; Dlugoiz, B.; Frackowiak, F.; Nowakowski, S.; Walasek, J.; Wisniewski, L.; Wozniakowski, B.

    1979-07-30

    In order to prepare mineral powder used as a filler for bitumen cement, especially for road and runway coatings, combined grinding of three sedimentary rocks in the following proportions is carried out: 18-75 percent sandstone, 19-63 percent dolomites and limestones and less than or equal to 13 percent clayey shales to obtain the granulometric composition required in roadbuilding. The sandstone consists primarily of quartz with small amounts of feldspars, quartzites and other rock cemented by carbonate, carbonate-clay and clay cement. Some of the silocon dioxide is bound to A1203, CaO, K20 and Na20 in the form of feldspars. The carbonate cement contains along with CaO, MgO and A1203 also organic carbon which determines the high activity of the mineral powder obtained after grinding. Carbonate components are represented primarily by dolomite and calcite, and secondarily by clay minerals, quartzite pelite, bituminous v-v, mica, gypsum and adhydrite. The shales consist primarily of bituminous shale and dolomite shale. The chemical composition of the rock for manufacture of the mineral powder (percent): sandstone -- Si02 74.17, A1203 4.52, Ca0 6.29, Mg0 1.43, C02 2.65, Corg 0.38; dolomites and sanstones -- Si02 17.59, A1203 6.54, Ca0 23.59, MgO 19.96, CO2 31.10, Corg 0.86; shales Si02 24.38, A1203 10.00, Ca0 10.35, MgO 7.38, CO2 16.66, Corg 4.01. A similar feestock for combined grinding makes it possible to obtain continuity of the grain composition and simplies grinding to the required sizes (greater than or equal to 80 percent finer than 0.075 mm). Solid and larger grains of quartz and dolomite improve the roughness of the cement, and fine and less hard grains of calcite, kaolinite, and gypsum stabilize the cement.

  19. The contemporary cement cycle of the United States

    Science.gov (United States)

    Kapur, A.; Van Oss, H. G.; Keoleian, G.; Kesler, S.E.; Kendall, A.

    2009-01-01

    A country-level stock and flow model for cement, an important construction material, was developed based on a material flow analysis framework. Using this model, the contemporary cement cycle of the United States was constructed by analyzing production, import, and export data for different stages of the cement cycle. The United States currently supplies approximately 80% of its cement consumption through domestic production and the rest is imported. The average annual net addition of in-use new cement stock over the period 2000-2004 was approximately 83 million metric tons and amounts to 2.3 tons per capita of concrete. Nonfuel carbon dioxide emissions (42 million metric tons per year) from the calcination phase of cement manufacture account for 62% of the total 68 million tons per year of cement production residues. The end-of-life cement discards are estimated to be 33 million metric tons per year, of which between 30% and 80% is recycled. A significant portion of the infrastructure in the United States is reaching the end of its useful life and will need to be replaced or rehabilitated; this could require far more cement than might be expected from economic forecasts of demand for cement. ?? 2009 Springer Japan.

  20. Contamination effects of drilling fluid additives on cement slurry

    Directory of Open Access Journals (Sweden)

    Youzhi Zheng

    2015-10-01

    Full Text Available During the cementation of deep wells, contamination at the contact surface between cement slurry and drilling fluid will present a technical challenge, which may threaten operation safety. To deal with the problem, lab tests and analysis were performed specifically on the compatibility of fluids during cementation in Sichuan and Chongqing gas fields. Impacts of commonly used additives for drilling fluids were determined on fluidity and thickening time of conventional cement slurry. Through the infrared spectrum analysis, SEM and XRD, infrared spectrum data of kalium polyacrylamide (KPAM and bio-viscosifier were obtained, together with infrared spectrum, SEM and XRD data of cement slurry with additives. Contamination mechanisms of the cement slurry by conventional additives for drilling fluid were reviewed. Test results show that both KPAM and bio-viscosifier are such high-molecular materials that the long chains in these materials may easily absorb cement particles in the slurry to form mixed network structures; as a result, cement particles were prone to agglomeration and eventually lost their pumpability. Finally, assessment of and testing methods for the contamination effects of drilling fluid additives on cement slurry were further improved to form standards and codes that may help solve the said problems. This study will provide technological supports for the preparation of drilling fluids with desirable properties prior to cementation, the selection of optimal drilling fluids additives, and the development of innovative drilling fluids additives.

  1. Experimental study on the electrical resistivity of soil cement admixtures

    Science.gov (United States)

    Liu, Song Yu; Du, Yan Jun; Han, L. H.; Gu, M. F.

    2008-05-01

    Recently in China, soil cement is widely used to improve the soft ground in the highway construction engineering. Literature studies are mainly investigating the mechanical properties of the soil cement, while its properties of the electrical resistivity are not well addressed. In this paper, the properties of the electrical resistivity of the reconstituted soil-cement and the in situ soil cement columns are investigated. The test results show that the electrical resistivity of the soil cement increases with the increase in the cement-mixing ratio and curing time, whereas it decreases with the increase in the water content, degree of saturation and water cement ratio. A simple equation is proposed to predict the electrical resistivity of soil cement under the condition of the specified curing time and water cement ratio. It is found that the electrical resistivity has a good relationship with the unconfined compression strength and blow count of SPT. It is expected that the electrical resistivity method can be widely used for checking/controlling the quality of soil cement in practice.

  2. Strength Mechanism and Influence Factors for Cold Recycled Asphalt Mixture

    OpenAIRE

    Tao Ma; Hao Wang; Yongli Zhao; Xiaoming Huang; Yuhui Pi

    2015-01-01

    This study focused on the key factors affecting the tensile strength of cold recycled asphalt mixture with cement and emulsified asphalt. The specific surface areas and strength of RAP were analyzed. The interaction between the emulsified asphalt and cement was observed. Comprehensive laboratory testing was conducted to evaluate the influences of RAP, emulsified asphalt, and cement on the tensile strength of cold recycled asphalt mixture. It is found that although RAP is used as aggregates, i...

  3. Crystal chemistry of the high temperature product of transformation of cement-asbestos.

    Science.gov (United States)

    Viani, Alberto; Gualtieri, Alessandro F; Pollastri, Simone; Rinaudo, Caterina; Croce, Alessandro; Urso, Giancarlo

    2013-03-15

    In this work, the high-temperature inertization product of a representative batch of samples of cement-asbestos (CA) from different localities in Italy have been characterized with a multidisciplinary approach. All the raw CA samples were heated at 1200°C for 15 min. After firing, they underwent a series of solid state reactions leading to global structural changes of the matrix. Effects of annealing time and temperature on the crystallization kinetics were thoroughly investigated. Both factors acted in favour of equilibrium. Three classes of CA were identified with the aid of phase diagrams and of specific plots relating chemical and mineralogical parameters. This result was considered of importance in view of the potential use of transformed cement-asbestos as a secondary raw material. In principle, the content of CA packages removed from the environment and their corresponding heat-treated products can be classified simply using XRF. This method allows for the selection of appropriate fractions in function of the most suitable recycling solution adopted. Samples belonging to the class called larnite-rich, turned out to be of great interest as possible candidate for substituting a fraction of cement in many building materials and innovative green cement productions. PMID:23380447

  4. Experimental and Numerical Analysis of the Shear Behaviour of Cemented Concrete-Rock Joints

    Science.gov (United States)

    Tian, H. M.; Chen, W. Z.; Yang, D. S.; Yang, J. P.

    2015-01-01

    The shear behaviour of cemented concrete-rock joints is a key factor affecting the shear resistance of dam foundations, arch bridge foundations, rock socketed piles and rock bolts in rock engineering. This paper presents an experimental and numerical investigation of the shear behaviour of cemented concrete-rock joints by direct shear tests. In this study we focused on the bond strength of cemented concrete-rock joints, so limestone with smooth surfaces was used for samples preparation to reduce the roughness effect. The experimental results show that the shear strength of joints with good adhesion is strongly dependent on the bond strength of the cohesive interfaces when the applied normal stress is less than 6 MPa. In addition, the sudden and gradual bond failure processes of the cohesive interfaces were observed with an increase of the normal stress. A simple, yet realistic, model of cemented concrete-rock joint is proposed to simulate the observed behaviour, including elastic behaviour of the bond before peak shear stress and post-peak behaviour due to bond failure and friction increase. Finally, the parameters analysis and calibration of the proposed model are presented.

  5. Action-Dependent Adaptive Critic Design Based Neurocontroller for Cement Precalciner Kiln

    Directory of Open Access Journals (Sweden)

    Baosheng Yang

    2009-10-01

    Full Text Available There are many factors that can affect the calciner process of cement production, such as highly nonlinearity and time-lag, making it very difficult to establish an accurate model of the cement precalciner kiln (PCK system. In order to reduce transport energy consumption and to ensure the quality of cement clinker burning, one needs to explore different control methods from the traditional way. Adaptive Critic Design (ACD integrated neural network, reinforcement learning and dynamic programming techniques, is a new optimal method. As the PCK system parameters change frequently with high real-time property, ADACD (Action-Dependant ACD algorithm is used in PCK system to control the temperature of furnace export and oxygen content of exhaust. ADACD does not depend on the system model, it may use historical data to train a controller offline, and then adapt online. Also the BP network of artificial neural network is used to accomplish the network modeling, and action and critic modules of the algorithm. The results of simulation show that, after the fluctuations in the early control period, the controlled parameters tend to be stabilized guaranteeing the quality of cement clinker calcining.

  6. Piezoresistivity of Carbon Fiber Graphite Cement-based Composites with CCCW

    Institute of Scientific and Technical Information of China (English)

    FAN Xiaoming; FANG Dong; SUN Mingqing; LI Zhuoqiu

    2011-01-01

    The electrical conductivity and piezoresistivity of carbon fiber graphite cement-matrix composites(CFGCC) with carbon fiber content(l% by the weight of cement), graphite powder contents (0%-50% by the weight of cement) and CCCW(cementitious capillary crystalline waterproofing materials, 4% by the weight of cement) were studied. The experimental results showed that the relationship between the resistivity of CFGCC and the concentration of graphite powders had typical features of percolation phenomena. The percolation threshold was about 20%. A clear piezoresistive effect was observed in CFGCC with 1 wt% of carbon fibers, 20wt% or 30wt% of graphite powders under uniaxial compressive tests, indicating that this type of smart composites was a promising candidate for strain sensing. The measured gage factor (defined as the fractional change in resistance per unit strain) of CFGCC with graphite content of 20wt% and 30wt% were 37 and 22, respectively. With the addition of CCCW, the mechanical properties of CFGCC were improved, which benefited CFGCC piezoresistivity of stability.

  7. Hydration of portland cement, natural zeolite mortar in water and sulphate solution

    Directory of Open Access Journals (Sweden)

    Janotka, I.

    2003-03-01

    Full Text Available The objective of this paper is to characterise sulphate resistance of mortars made from ordinary Portland cement ( PC and Portland-pozzolan cement with 35 wt.% of zeolite addition (zeolite-blended cement-ZBC . Mortars with two different cement types were tested in water and 5% sodium sulphate solution for 720 days. A favourable effect of zeolite on increased sulphate resistance of the cement is caused by decrease in free Ca(OH2 content of the mortar There is not sufficient of Ca(OH2 available for reacting with the sulphate solution to form voluminous reaction products. A decreased C3A, content due to 35 wt.% replacement of PC by zeolite is the next pronounced factor improving resistance of the mortar with such blended cement.

    El objetivo de este trabajo ha sido estudiar la resistencia a los sulfatos de morteros preparados con cemento portland ordinario (PC y cemento portland puzolánico, con un 35% en peso de zeolita (zeolite-blended cement (ZBC. Ambos tipos de morteros fueron conservados en agua y en una disolución de sulfato sódico al 5% durante 720 días. Se observó una mayor resistencia a los sulfatos en el mortero preparado con el cemento que contenía zeolita debido a su menor contenido en Ca(OH2. No hay cantidad suficiente de Ca(OH2 para que se produzca la reacción de los constituyentes de la pasta con la disolución de sulfato sódico y formar así productos de naturaleza expansiva. La disminución en el contenido de C,3A, debida a la sustitución de un 35% en peso de PC por zeolita, es el factor más determinante en el aumento de la resistencia del mortero en los cementos con adición.

  8. Hydrothermal Characteristics of Blended Cement Pastes Containing Silica Sand Using Cement Kiln Dust as an Activator

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The hydrothermal reactivity of silica sand was studied using cement kiln dust (CKD) as an activator in addition to the Portlandcement fraction of El-Karnak cement (a blend of ordinary Portland cement and ground sand). Autoclaved El-Karnak cementpastes were studied at pressures of 0.507, 1.013 and 1.520 MPa of saturated steam with respect to their compressive strength,kinetics of hydrothermal reaction and the phase composition of the formed hydrates. The role of CKD in affecting thephysicochemical and mechanical properties of El-Karnak cement pastes was studied by autoclaving of several pastes containing5, 7.5, 10 and 20% CKD at a pressure of 1.013 MPa of saturated steam. CKD was added either as a raw CKD (unwashed) orafter washing with water (washed CKD). The results of these physicochemical studies obtained could be related as much aspossible to the role of CKD (raw or washed) in affecting the hydrothermal reactivity of silica sand in El-Karnak cement pastes.

  9. Grouting Rock Fractures with Cement Grout

    Science.gov (United States)

    El Tani, Mohamed

    2012-07-01

    The radial flow rate of a cement grout in a rock fracture is obtained from Bingham's relation and the fact that the power expended by the injection mechanism is the energy dissipated by viscous effects. The energy balance reveals that the advance ratio is of fundamental importance in the grouting process and is inherently related to the rest and advance phases of a cement grout. This allows giving a precise definition of the zero flow path that divides the energy diagram into two distinct domains for advancing and non-advancing grout. The advance ratio and the zero flow path are used to explore the grouting of one or more fractures, analyze the GIN model in the context of the SL dispute, draw a terminal sequence considering the energy interval alternative, and reformulate the refusal criterion of the North American grouting method. Secondary grouting effects are also investigated.

  10. Scrap tire ashes in portland cement production

    Directory of Open Access Journals (Sweden)

    Mónica Adriana Trezza

    2009-01-01

    Full Text Available Scrap tires are not considered harmful waste, but their stocking and disposal are a potential health and environmental risk. Properly controlled calcinations at high temperatures make tire combustion an interesting alternative due to its high calorific power, comparable to that of fuel-oil. Consequently, using them as an alternative combustible material in cement kilns makes it possible to give it a valuable use. However, it remains to be assured whether the impurities added to the clinker through these fuels do not affect its structure or properties.This paper shows the studies carried out on different clinkers under laboratory conditions with different levels of addition of scrap tire ashes, added by partially replacing traditional fuel in cement kilns.

  11. DESIGN OF CEMENT COMPOSITES WITH INCREASED IMPERMEABILITY

    Directory of Open Access Journals (Sweden)

    Fedyuk Roman Sergeevich

    2016-05-01

    Full Text Available The paper deals with the development of composite binders for producing concrete with improved characteristics of gas, water and vapor permeability. The authors investigate the processes of composite materials formation in order of decreasing scale levels from macro to nanostructures. The criteria for optimization of the volume of dispersed additives in concrete are offered. The authors theoretically studied the technological features of the formation of hydrated cement stone structure. A positive effect of nanodispersed additives on the structure and physico-mechanical properties of cement composite materials are predicted. Thanks to its improved features, such as good ratio of strength and body density, high density and lifetime, the modified concrete may be used when solving various practical tasks of the construction branch.

  12. Effect of polycarboxylate admixture structure on cement paste rheology

    Directory of Open Access Journals (Sweden)

    Aranda, M. A. G.

    2007-06-01

    Full Text Available The purpose of the present study was to analyze the effect of the structural differences in four polycarboxylate and polyether admixtures on the rheological properties of cement pastes with different chemical and mineralogical compositions and different active additions (CEM I 42.5 R, CEM I 52.5 R, CEM I 52.5 N/SR, CEM II/AV 42.5R, CEM II/B-L 32.5 R, CEM III/B 32.5R, BL I 52.5R and CAC – European standard EN 197-1:2000. The results of the minislump test concurred with the variations observed in the values of the rheological parameters (shear stress and plastic viscosity. The structural characteristic of the admixtures found to play the most prominent role in their fluidizing effect was the proportion of carboxylate (CG and polyether (EG group components. In cements characteristics such as fineness and the C3A/calcium sulphate and C3S/C3A ratios were also observed to be essential to admixture effectiveness. In this regard, the rheological parameters varied most widely in CEM I 52.5N/SR pastes and least in BL I 52.5R cement pastes. Of the additioned cements, the CEM III/B 32.5R pastes, which contained granulated blast furnace slag, showed the highest rises in flowability. Finally, the fluidizing effect of polycarboxylate superplasticizers was much more intense in calcium aluminate cements, although flowability declined rapidly in this material.El objetivo de este trabajo ha sido estudiar el efecto de las diferencias estructurales de cuatro aditivos basados en policarboxilatos y poliéteres sobre las propiedades reológicas de pastas de cemento con diferente composición química, mineralógica y con distintas adiciones activas (CEM I 42,5 R, CEM I 52,5 R, CEM I 52,5 N/SR, CEM II/AV 42,5R, CEM II/ B-L 32,5 R, CEM III/B 32,5R, BL I 52,5R y CAC - Norma EN 197-1:2000. Los resultados obtenidos sobre la fluidez de la pasta en el ensayo del “Minislump” coinciden con la evolución de los valores de los parámetros reológicos (esfuerzo de

  13. Application of Magnetic Force Generator in Cementation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper introduces a new behavior of the heat treatment technique that is cementation with magnetic force generator (MFHS). The result shows that due to the strong magnetic field action of MFHS on seep means, the energy and activity of active atom are increased, which accelerates interface activating and atoms diffusing, forms action of speed-up seeping. This technique features are Iow in energy consuming, and high in seeping efficiency.

  14. Understanding acoustic methods for cement bond logging.

    Science.gov (United States)

    Wang, Hua; Tao, Guo; Shang, Xuefeng

    2016-05-01

    Well cementation is important for oil/gas production, underground gas storage, and CO2 storage, since it isolates the reservoir layers from aquifers to increase well integrity and reduce environmental footprint. This paper analyzes wave modes of different sonic/ultrasonic methods for cement bonding evaluation. A Two dimensional finite difference method is then used to simulate the wavefield for the ultrasonic methods in the cased-hole models. Waveforms of pulse-echo method from different interfaces in a good bonded well are analyzed. Wavefield of the pitch-catch method for free casing, partial or full bonded models with ultra-low density cement are studied. Based on the studies, the modes in different methods are considered as follows: the zero-order symmetric Leaky-Lamb mode (S0) for sonic method, the first-order symmetric Leaky-Lamb mode (S1) for the pulse-echo method, and the zero-order anti-symmetric Leaky-Lamb mode (A0) for the pitch-catch method. For the sonic method, a directional transmitter in both the azimuth and axial directions can generate energy with a large incidence angle and azimuth resolution, which can effectively generate S0 and break out the azimuth limitation of the conventional sonic method. Although combination of pulse-echo and pitch-catch methods can determine the bonding condition of the third interface for the ultra-low density cement case, the pitch-catch cannot tell the fluid annulus thickness behind casing for the partial bonded cased-hole. PMID:27250137

  15. Cement paste-epoxy adhesive interactions

    OpenAIRE

    Djouani, Fatma; CONNAN, Carole; Delamar, Michel; CHEHIMI, Mohamed M; BENZARTI, Karim

    2011-01-01

    In the field of civil engineering, the durability of concrete assemblies using adhesives is widely conditioned by the properties of the interface between the resin and the mineral support (concrete). In this context we studied first the molecular interactions at the interface between an epoxy resin and cement pastes by several approaches based on XPS and IR spectroscopies, DSC, and inverse gas chromatography (IGC). XPS showed evidence of crosslinking of the polymer at the surface of hardened ...

  16. Scrap tire ashes in portland cement production

    OpenAIRE

    Mónica Adriana Trezza; Alberto Néstor Scian

    2009-01-01

    Scrap tires are not considered harmful waste, but their stocking and disposal are a potential health and environmental risk. Properly controlled calcinations at high temperatures make tire combustion an interesting alternative due to its high calorific power, comparable to that of fuel-oil. Consequently, using them as an alternative combustible material in cement kilns makes it possible to give it a valuable use. However, it remains to be assured whether the impurities added to the clinker th...

  17. Estimating the chloride transport in cement paste

    Directory of Open Access Journals (Sweden)

    Princigallo, A.

    2012-06-01

    Full Text Available A method was developed to measure the diffusion coefficient of chloride ions in cement paste based on an analytical solution to Fick’s 2nd law in a cylindrical coordinate system. This natural method yielded diffusivity results within as little as a month. Testing time was reduced by exploiting the three-dimensional inward flux in the specimen. In an attempt to determine the saturation concentration, dense portland cement pastes were exposed to a concentrated chloride solution. The method proved to be useful for exploring cement hydration-induced changes in the diffusion coefficient of cement paste.

    Se ha desarrollado un método para medir el coeficiente de difusión de los iones cloruro en la pasta de cemento, partiendo de una aplicación analítica de la segunda ley de Fick en un sistema de coordinadas cilíndrico. Este método, que es natural, demostró ser capaz de producir resultados de difusividad en tan solo un mes. Se consiguió reducir el tiempo de ensayo mediante el aprovechamiento de la tridimensionalidad del flujo desde el exterior al interior de la probeta. A fin de determinar la concentración de saturación, se sometieron las pastas de cemento Portland a una disolución de cloruros concentrada. Este método resultó ser útil en el estudio de los cambios del coeficiente de difusión de la pasta de cemento provocados por las reacciones de hidratación que tienen lugar en esta.

  18. MTA versus Portland cement: review of literature

    OpenAIRE

    Naiana Viana Viola; Mário Tanomaru Filho; Paulo Sérgio Cerri

    2011-01-01

    Introduction: Both Mineral Trioxide Aggregate (MTA) and Portland cement (PC) have been highlighted because of their favorable biological properties, with extensive applications in Endodontics, including the possibility of using into root canal filling. Objective: This article reviews literature related to MTA and PC comparing their physical, chemical and biological properties, as well as their indications. Literature review: Literature reports studies revealing the similarities between these ...

  19. Immobilisation of radwaste in synthetic rock: an alternative to cementation

    International Nuclear Information System (INIS)

    SOGETER is a waste conditioning process for Low Level radwaste (LLW) or Intermediate Level radwaste (ILW) like sludge, soil, ashes, evaporator concentrate, concrete rubble, asbestos, sand,... Usually such radioactive waste is solidified into a cement matrix, resulting in a factor 2 to 5 volume increase: 1 m3 of initial raw waste generates 2 to 5 m3 of solidified waste. Sogeter consists in melting the waste at high temperature, up to 2000 K, and producing a synthetic rock. The main component of the matrix is the waste itself; therefore 1 m3 of initial raw waste generates only 0.2 to 0.5 m3 of solidified waste. Compared to cementation, synthetic rock decreases the volume to be disposed of by a factor of 4 to 25. By mixing different types of waste, or using additives, the composition of the waste is adjusted, so that a fluid melt is obtained at temperatures less than 2000 K, and so that the final 200 L ingot may be cooled down within 2 days, without shattering or dis-aggregating. We tested a wide range of compositions, demonstrating that almost every type of waste may be conditioned with Sogeter. We designed the industrial facility, based on a very robust and proven heating technology, and with a proven technology for off-gas treatment. We carried industrial tests on more than 2 tons of simulated, non-radioactive, waste, producing blocks of treated matter weighing up to 250 kg. During these tests, we checked all the parameters of the process: electrical consumption, throughput, robustness.. (author)

  20. Tunisian gypsums: Characteristics and use in cement

    Science.gov (United States)

    Mahmoudi, Salah; Bennour, Ali; Chalwati, Youssef; Souidi, Khouloud; Thabet, Manel; Srasra, Ezzedine; Zargouni, Fouad

    2016-09-01

    Gypsum materials of hundred meters thickness and interbedded with marine claystones and limestones from different paleogeographic sectors in the Tunisian territory are studied to assess their suitability for cement production. For this reason, thirty representative samples are analysed by chemical, physical and geotechnical tests. The obtained results for the studied gypsum materials are compared to Tunisian and European norms and with the local cements, currently marketed and which obey international norms. Indeed, for all samples hydraulic modulus HM, silica modulus SM and alumina modulus AM vary from (2.37-2.44), (2.48-2.68) and (1.45-2.5), respectively; whereas the required values for these modulus are (1.5-2.5), (2-3) and (1.5-2.5). The same behavior is observed for mineralogical analyses of C3S, C2S, C3A and C4AF and compressive strength at different ages. Briefly, Tunisia contains important reserves of gypsum scattered and spread over the Tunisian territory and can be used for cement production.

  1. Biological effects: asbestos-cement manufacturing.

    Science.gov (United States)

    Weill, H

    1994-08-01

    Fourteen cohorts of asbestos-cement workers have been studied. These studies have demonstrated exposure-response relationships for lung cancer, mesothelioma and asbestosis. For lung cancer, relatively consistent results have been observed, with risk two-fold or less in 13 of the 14 cohorts. Among New Orleans workers, excess risk was restricted to those with X-ray evidence of asbestosis. Workers employed at least 21 years but without X-ray abnormalities, experienced no elevated risk, while those with small opacities (1/0 or higher) had substantially elevated risk (SMR > 400). Exposures in these two groups had been similar. These results suggest that asbestosis may be a necessary precursor for asbestos-induced lung cancer; if so, then the no-threshold model for lung cancer risk is inappropriate since there is general agreement that very low exposures will not result in radiologically detectable lung fibrosis. Further data on this potential link are needed. As in other industries, mesothelioma risk was strongly related to amphibole exposure, especially to crocidolite in asbestos-cement pipe manufacture. A cluster of cases has recently been reported in a family amosite-cement business. Among New Orleans workers, risk of asbestosis was related to cumulative exposure but there was little evidence of risk below 30 f ml-1-years. Progression of asbestosis in these workers was slow, related to past cumulative exposure and not related to lung function decline. Asbestosis risk is therefore not likely to develop in workers under current controlled exposure conditions. PMID:7978975

  2. Leaching tests of cemented organic radioactive waste

    International Nuclear Information System (INIS)

    The use of radioisotopes in research, medical and industrial activities generates organic liquid radioactive wastes. At Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) are produced organic liquid wastes from different sources, one of these are the solvent extraction activities, whose the waste volume is the largest one. Therefore a research was carried out to treat them. Several techniques to treat organic liquid radioactive wastes have been evaluated, among them incineration, oxidation processes, alkaline hydrolysis, distillation, absorption and cementation. Laboratory experiments were accomplished to establish the most adequate process in order to obtain qualified products for storage and disposal. Absorption followed by cementation was the procedure used in this study, i.e. absorbent substances were added to the organic liquid wastes before mixing with the cement. Initially were defined the absorbers, and evaluated the formulation in relation to the compressive strength of its products. Bentonite from different suppliers (B and G) and vermiculite in two granulometries (M - medium and F - small) were tested. In order to assess the product quality the specimens were submitted to the leaching test according the Standard ISO 6961 and its results were evaluated. Then they were compared with the values established by Standard CNEN NN 6.09 Acceptance criteria for waste products to be disposed, to verify if they meet the requirements for safely storage and disposal. Through this study the best formulations to treat the organic wastes were established. (author)

  3. Cement encapsulation of uranyl nitrate waste

    International Nuclear Information System (INIS)

    During decontamination of the former nuclear fuel reprocessing plant at West Valley, New York, low-level radioactive waste streams are being identified which require disposal in an environmentally acceptable manner. One such waste stream, consisting essentially of uranyl nitrate, has been located in one of the processing cells. A study was conducted on this waste stream to determine if it could be stably encapsulated in cement. First, a recipe was developed for cement-encapsulating this highly acidic waste. Samples were then made to perform waste qualification testing as described in the NRC Branch Technical Position-Waste Form to determine the stability of this waste form. The testing showed that the waste form had a compressive strength much greater than the 345 kPA (50 psi) minimum guideline after room-temperature cure, irradiation, thermal cycling, immersion, and biodegradation. In addition, the encapsulated waste had uranium and cerium leachability index values greater than six, which is the minimum recommended by the NRC position paper. The cement-encapsulated uranyl nitrate waste thus met the NRC stability guidelines for the disposal of Class B and Class C radioactive wastes

  4. A novel cement-based hybrid material

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.

  5. Injectable Premixed Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type of injectable premixed bone cement consisting of nano-hydroxyapatite (n-HA) and polyamide 66(PA66) composite is investigated. This cement can be handled as paste and easily shaped, which can set in air, in physiological saline solution and in blood. The setting time, injectability and compressive strength of the cement largely depend on the ratio of liquid to powder (L/P). Moreover, the content of n-HA in composite also affects the compressive strength and injectability of the cement. The premixed composite cement can remain stable in the package for a long period and harden only after delivery to the defects site. The results suggest that injectable premixed cement has a reasonable setting time, reasonable viscosity for injecting, excellent washout resistance and high mechanical strength, which can be developed for root canal filling, sealing and various bone defects augmentation.

  6. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Tobermorite and xonotlite, two synthetic calcium silicate hydrates, improve the Cs retention of cement matrices for Cs, when incorporated at the 6 to 10% level. A kinetic and mechanistic scheme is presented for the reaction of fine grained, Cs-loaded clinoptilolite with cement. The Magnox waste form reacts quickly with cement, leading to an exchange of carbonate between waste form and cement components. Carbonation of cements leads to a marked improvement in their physical properties of Cs retentivity. Diffusion models are presented for cement systems whose variable parameters can readily be derived from experimental measurements. Predictions about scaled-up behaviour of large immobilized masses are applied to extrapolation of laboratory scale results to full-size masses. (author)

  7. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO2-H2O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO2-containing environments. (author)

  8. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  9. Chemical and physical properties of bone cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    Po-Liang Lai

    2013-08-01

    Full Text Available Vertebral compression fracture is the most common complication of osteoporosis. It may result in persistent severe pain and limited mobility, and significantly impacts the quality of life. Vertebroplasty involves a percutaneous injection of bone cement into the collapsed vertebrae by fluorescent guide. The most commonly used bone cement in percutaneous vertebroplasty is based on the polymerization of methylmethacrylate monomers to polymethylmethacrylate (PMMA polymers. However, information on the properties of bone cement is mostly published in the biomaterial sciences literature, a source with which the clinical community is generally unfamiliar. This review focuses on the chemistry of bone cement polymerization and the physical properties of PMMA. The effects of altering the portions and contents of monomer liquid and polymer powders on the setting time, polymerization temperature, and compressive strength of the cement are also discussed. This information will allow spine surgeons to manipulate bone cement characteristics for specific clinical applications and improve safety.

  10. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  11. Settlement Control of Soft Ground using Cement-Ricehusk Stabilization

    Directory of Open Access Journals (Sweden)

    Mokhtar M.

    2012-01-01

    Full Text Available Cement is widely used for improvement of soft soils, but financial and environmental concerns are causing genuine concerns to all parties, leading to the quest for alternative and effective stabilizers. Ricehusk is an agricultural waste in Malaysia, commonly disposed of by open burning or dumping in landfills. Considering that the ashes derived from ricehusk are pozzolanic in nature, there is a possibility that a cement-ricehusk mixture could effectively improve soft soils with reduced cement dosage. This study examines the mixture’s effectiveness by monitoring the settlement reduction in a clay soil. Standard oedometer tests were carried out on a soft marine clay sample admixed with cement-ricehusk. Test specimens contained 0-10% cement and 0-5% of ricehusk respectively, and were left to cure for either seven or 28 days. The stabilized specimens were observed to undergo significant reduction in compressibility, verifying the potential of cement-ricehusk as an alternative soft soil stabilizer.

  12. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration

    International Nuclear Information System (INIS)

    Novel injectable and degradable calcium-magnesium phosphate cement (CMPC) with rapid-setting characteristic was developed by the introduction of magnesium phosphate cement (MPC) into calcium phosphate cement (CPC). The calcium-magnesium phosphate cement prepared under the optimum P/L ratio exhibited good injectability and desired workability. It could set within 10 min at 37 0C in 100% relative humidity and the compressive strength could reach 47 MPa after setting for 48 h, indicating that the prepared cement has relatively high initial mechanical strength. The results of in vitro degradation experiments demonstrated the good degradability of the injectable CMPC, and its degradation rate occurred significantly faster than that of pure CPC in simulated body fluid (SBF) solution. It can be concluded that the novel injectable calcium-magnesium phosphate cement is highly promising for a wide variety of clinical applications, especially for the development of minimally invasive techniques.

  13. EQUIVALENT MODEL OF EXPANSION OF CEMENT MORTAR UNDER SULPHATE EROSION

    Institute of Scientific and Technical Information of China (English)

    Jue Zhu; Minqiang Jiaug; Jiankang Chen

    2008-01-01

    The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods.First,cement mortars are fabricated with the ratio of water to cement of 0.4,0.6,and 0.8.Secondly,the expansion of specimen immerged in sulphate solution is measured at different times.Thirdly,a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method.In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account.Finally,the numerical calculation is performed.The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.

  14. The Pore Structure and Hydration Performance of Sulphoaluminate MDF Cement

    Institute of Scientific and Technical Information of China (English)

    HUANG Cong-yun; YUAN Run-zhang; LONG Shi-zong

    2004-01-01

    The hydration and pore structure of sulphoaluminate MDF cement were studied by X-ray diffractometer ( XRD ), scanning electron microscope (SEM) and mercury intrusion porosimeter ( MIP ) etc. The ex-perimental results indicate that hydration products of the materials are entringites ( Aft ), aluminium hydroxide andCSH (Ⅰ) gel etc. Due to its very low water-cement ratio, hydration function is only confined to the surfaces of ce-ment grains, and there is a lot of sulphoaluminate cement in the hardenite which is unhydrated yet. Hydration re-action was rapidly carried under the condition of the heat-pressing. Therefore cement hydrates Aft, CSH (Ⅰ) andaluminium hydroxide gel fill in pores. The expansibility of Aft makes the porosity of MDF cement lower ( less than1 percent ) and the size of pore smaller (80 percent pore was less than 250A), and enhances its strength.

  15. Solidification of Spent Ion Exchange Resin Using ASC Cement

    Institute of Scientific and Technical Information of China (English)

    周耀中; 云桂春; 叶裕才

    2002-01-01

    Ion exchange resins (IERs) have been widely used in nuclear facilities. However, the spent radioactive IERs result in major quantities of low and intermediate level radioactive wastes. This article describes a laboratory experimental study on solidification processing of IERs using a new type of cement named ASC cement. The strength of the cementation matrix is in the range of 18-20 MPa (28 d); the loading of the spent IER in the cement-resin matrix is over 45% and leaching rates of 137Cs, 90Sr and 60Co are 7.92×10-5, 5.7×10-6, and 1.19×10-8 cm/d. The results show that ASC cement can be a preferable cementation material for immobilization of radioactive spent IER.

  16. Stimulation of Odontogenesis and Angiogenesis via Bioactive Nanocomposite Calcium Phosphate Cements Through Integrin and VEGF Signaling Pathways.

    Science.gov (United States)

    Lee, Sang-Im; Lee, Eui-Suk; El-Fiqi, Ahmed; Lee, So-Youn; Eun-Cheol Kim; Kim, Hae-Won

    2016-05-01

    Formulating self-setting calcium phosphate cements (CPCs) with secondary phases particularly in the nanoscale order holds great promise to improve biological properties. Here, we focus on the effect that bioactive glass nanoparticles (BGN) incorporated in CPC compositions can have on the proliferation, odontogenic differentiation, and angiogenic stimulation of stem cells derived from human dental pulp (HDPSCs). These odontogenic and angiogenic events are of special importance in the dentin-pulp regeneration processes. In comparison to pure CPCs, nanocomposite cements exhibit a significantly improved proliferation of HDPSCs, and the improvement is more significant as the BGN content increases. The nanocomposite cements substantially enhance the adhesion of cells, and significantly up-regulate odontogenic differentiation, including alkaline phosphatase (ALP) activity and the expressions of odontogenic genes (sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin). Furthermore, the use of nanocomposite cements result in stimulation of angiogenic gene expression (VEGF, FGF-2, VEGFRs, PECAM-1, and VE-cadherin) and protein production (VEGF, VEGFR-1). The angiogenic stimulation by the HDPSCs significantly affects the endothelial cell behaviors, that is, the endothelial cell migration and the tubular network formation are substantially improved when treated with HDPSC-conditioned medium, particularly with the help of nanocomposite cements. The integrin and VEGF signaling pathways are reasoned for the stimulation of the odontogenesis and angiogenesis of cells, where the nanocomposite cements up-regulate the integrin subsets α1, α2, α3, and β1, and activate the integrin downstream signal pathways, such as p-FAK, p-Akt, p-paxillin, JNK, EK, and NF-κB, as well as other nuclear transcriptional factors, including CREB, STAT-3, and ELK-1. The current results indicate that the new formulation of the nanocomposite self-setting cements might provide some

  17. Characteristics of Bamboo Leaf Ash Blended Cement Paste and Mortar

    OpenAIRE

    Umoh A.A.; Odesola I.

    2015-01-01

    The use of bamboo leaf ash as cement supplement can contribute to reduction in cost and environmental hazard associated with cement production as well as waste pollution caused by the littered bamboo leaves. Therefore, the characteristics of cement paste and mortar incorporating bamboo leaf ash were investigated. The results of the physical properties of the pastes were within the requirements stipulated by relevant standards while that of the mortar cubes indicated that the compressive stren...

  18. Environmental Efficiency Analysis of Listed Cement Enterprises in China

    OpenAIRE

    Fang Zhang; Hong Fang; Junjie Wu; Damian Ward

    2016-01-01

    China’s cement production has been the highest worldwide for decades and contributes significant environmental pollution. Using a non-radical DEA model with slacks-based measure (SBM), this paper analyzes the environmental efficiency of China’s listed cement companies. The results suggest that the average mean of the environmental efficiency for the listed cement enterprises shows a decreasing trend in 2012 and 2013. There is a significant imbalance in environmental efficiency in these firms ...

  19. Municipal solid waste ash as a cement raw material substitute

    OpenAIRE

    Somnuk Tangtermsirikul; Pichaya Rachdawong; Kritsada Sisomphon

    2000-01-01

    An investigation of using municipal solid waste (MSW) ash as a cement raw material substitute was performed to evaluate the potential use of ash in construction. The use of incineratior ash in cement production would not only get rid of the ash, but also alleviate many environmental problems, for example, reducing raw materials required for cement production, reducing CO2 emission into the atmosphere, and reducing landfill space requirement for the residue ash disposal. The metallic oxide con...

  20. Cancer Mortality and Incidence in Cement Industry Workers in Korea

    OpenAIRE

    Koh, Dong-Hee; Kim, Tae-Woo; Jang, Seung Hee; Ryu, Hyang-Woo

    2011-01-01

    Objectives Cement contains hexavalent chromium, which is a human carcinogen. However, its effect on cancer seems inconclusive in epidemiologic studies. The aim of this retrospective cohort study was to elucidate the association between dust exposure in the cement industry and cancer occurrence. Methods The cohorts consisted of male workers in 6 Portland cement factories in Korea. Study subjects were classified into five groups by job: quarry, production, maintenance, laboratory, and office wo...

  1. THE INFLUENCE OF ORTHOPHOSPHATES ON THE PROPERTIES OF PORTLAND CEMENT

    OpenAIRE

    Antanas Kaziliunas

    2014-01-01

    The article continues the research of input reduction of phosphogypsum preparation for the production of building materials. Desiccated apatite (2.18 % P2O5 in gypsum) makes the least changes in the properties of Portland cement: it prolongs the cement setting times and reduces the compressive strength about 10 %. The apatite formation in the pastes of soluble orthophosphate-cement occurs during the formation of X-ray amorphous colloidal calcium orthophosphate hydrate, which prolo...

  2. Environmental health survey in asbestos cement sheets manufacturing industry

    OpenAIRE

    Ansari F; Bihari V; Rastogi S; Ashquin M; Ahmad I

    2007-01-01

    About 673 small-scale asbestos mining and milling facilities and 33 large - scale asbestos manufacturing plants, (17 asbestos-cement product manufacturing plants and 16 other than asbestos-cement product plants) are situated in India. The present study reveals the exposure of commercial asbestos (chrysotile) in the occupational as well as ambient air environment of the asbestos-cement (AC) sheets industry using membrane filter method of Bureau of Indian Standards (BIS). The fibre concentratio...

  3. Resin cementation of zirconia ceramics with different bonding agents

    OpenAIRE

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-01-01

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cement...

  4. Dry-grinded ultrafine cements hydration. physicochemical and microstructural characterization

    OpenAIRE

    Foteini Kontoleontos; Petros Tsakiridis; Apostolos Marinos; Nikolaos Katsiotis; Vasileios Kaloidas; Margarita Katsioti

    2013-01-01

    The aim of the present research work was the evaluation of the physicochemical and microstructural properties of two ultrafine cements, produced by dry grinding of a commercial CEM I 42.5N cement. The effect of grinding on particle size distribution was determined by laser scattering analyzer. All cements were tested for initial and final setting times, consistency of standard paste, soundness, flow of normal mortar and compressive strengths after 1, 2, 7 and 28 days. The effect of the finene...

  5. Modifications induced by adding natural zeolitic pozzolans to cement paste

    OpenAIRE

    Blanco-Varela, M. T.; Martínez-Ramírez, S.; Gener, M.; Vázquez, T.

    2005-01-01

    Volcanic pozzolans owe their pozzolanic activity chiefly to the presence of vitreous or zeolitic material rich in SiO2, and Al20y compounds that react with the portlandite produced during cement hydration to generate amorphous gels with cementitious properties. The present study analyzes the modifications taking place in the composition, structure and micro structure of the hydra ted cement paste when 20% of the cement by we...

  6. Influence of Pore Structure on Compressive Strength of Cement Mortar

    OpenAIRE

    Haitao Zhao; Qi Xiao; Donghui Huang; Shiping Zhang

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement r...

  7. Norm in coal, fly ash and cement

    International Nuclear Information System (INIS)

    Coal is technologically important materials being used for power generation and its cinder (fly ash) is used in manufacturing of bricks, sheets, cement, land filling etc. 222Rn (radon) and its daughters are the most important radioactive and potentially hazardous elements, which are released in the environment from the naturally occurring radioactive material (NORM) present in coal, fly ash and cement. Thus it is very important to carry out radioactivity measurements in coal, fly ash and cement from the health and hygiene point of view. Samples of coal and fly ash from different thermal power stations in northern India and various fly ash using establishments and commercially available cement samples (O.P.C. and P.P.C.) were collected and analyzed for radon concentration and exhalation rates. For the measurements, alpha sensitive LR-115 type II plastic track detectors were used. The radon concentration varied from 147 Bq/m3 to 443 Bq/m3, the radium concentration varied from 1.5 to 4.5 Bq/kg and radon exhalation rate varied from 11.8 mBq.kg-1.h-1 to 35.7 mBq.kg-1.h-1 for mass exhalation rate and from 104.5 mBq.m-2.h-1 to 314.8 mBq.m-2.h-1 for surface exhalation rate in coal samples. The radon concentration varied from 214 Bq/m3 to 590 Bq/m3, the radium concentration varied from 1.0 to 2.7 Bq/kg and radon exhalation rate varied from 7.8 mBq.kg-1.h-1 to 21.6 mBq.kg-1.h-1 for mass exhalation rate and from 138 mBq m-2h-1 to 380.6 mBq.m-2.h-1 for surface exhalation rate in fly ash samples. The radon concentration varied from 157.62 Bq/m3 to 1810.48 Bq/m3, the radium concentration varied from 0.76 Bq/kg to 8.73 Bq/kg and radon exhalation rate varied from 6.07 mBq.kg-1.hr-1 to 69.81 mBq.kg-1.hr-1 for mass exhalation rate and from 107.10 mBq.m-2.hr-1 to 1230.21 mBq.m-2.hr-1 for surface exhalation rate in different cement samples. The values were found higher in P.P.C. samples than in O.P.C. samples. (authors)

  8. Use of Rice Husk Ash as Partial Replacement with Cement In Concrete- A Review

    OpenAIRE

    Sourav Ghosal; S. Moulik

    2015-01-01

    Rapid increase in construction activities has resulted in shortage of conventional construction materials.In the present scenario, the high cost of conventional building materials is a major factor affecting housing delivery in the world.This has necessitated research into alternative materials of construction.The effective housing techniques deal with reduction in cost of construction as well as providing strength to buildings.Mainly gravel,sand and cement are used in th...

  9. Influence of relationship water/cement upon the processing of cements with pozzolana in standard mortar

    Directory of Open Access Journals (Sweden)

    Gener Rizo, M.

    2002-03-01

    Full Text Available The processing of standard mortar is completed following different methods in accordance with the country, but they exist two fundamental tendecies, the ISO and the ASTM. The cuban norm for mechanic-physic tests is based in ISO, and so they use a constant relationship water/cement in the processing of standard mortar a great problem concerning the cement users when they tested those mixed with puzzolanes, because they don't take care of the bigger water needs of those materials. In this work we present an study of the behaviour of Pozzolanic Portland cements (PP-250 elaborates with a fix and changeable relationship water/cement, obtained starting from the fluidity of the pure Portland cement. (P-350 The results obtained shows that the mechanical resistance decreased in cement mortars PP-250 realised with changeable relationship water/cement. So we recommend the adoption of an optional procedure to elaborate a quality mortar with pozzolana cements.

    La elaboración del mortero normalizado se realiza internacionalmente por diferentes métodos, pero existen dos tendencias fundamentales, la enunciada por ISO y por ASTM. La norma cubana de ensayos físico-mecánicos de cemento se basa en la norma ISO, por lo que para la elaboración del mortero normalizado se utiliza una relación agua/cemento constante. Esto ha provocado discrepancias con los usuarios del cemento, especialmente cuando se ensayan los cementos que contienen puzolanas, ya que se plantea que no se tiene en cuenta la mayor demanda de agua de estos materiales. En el presente trabajo se presenta un estudio del comportamiento de cementos Portland Puzolánicos (PP-250 elaborados con una relación agua/ cemento fija y variable, lograda a partir de la fluidez de la pasta de cemento Portland puro (P-350. Los resultados obtenidos indican que se producen disminuciones en la resistencia mecánica en los morteros de cemento PP-250 elaborados con agua/ cemento variable y recomienda la

  10. Self-healing of cement fractures under dynamic flow of CO2-rich brine

    Science.gov (United States)

    Cao, Peilin; Karpyn, Zuleima T.; Li, Li

    2015-06-01

    Fractures and defects in wellbore cement can lead to increased possibilities of CO2 leakage from abandoned wells during geological carbon sequestration. To investigate the physicochemical response of defective wellbore cement to CO2-rich brine, we carried out a reactive flow-through experiment using an artificially fractured cement sample at a length of 224.8 mm. A brine solution with dissolved CO2 at a pH of approximately 3.9 was injected through the sample at a constant rate of 0.0083 cm3/s. Surface optical profilometry analysis and 3-D X-ray microtomography imaging confirmed fracture closure and self-healing behavior consistent with the measured permeability decrease. Visual inspection of the reacted fracture surface showed the development of reactive patterns mapping the flow velocity field inside the fracture, as well as restricted flow toward the sample outlet. The postexperiment permeability of the core sample was measured at half of its initial permeability. A reactive transport model was developed with parameters derived from the experiment to further examine property evolution of fractured cement under dynamic flow of CO2-rich brine. Sensitivity analysis showed that residence time and the size of initial fracture aperture are the key factors controlling the tendency to self-healing or fracture opening behavior and therefore determine the long-term integrity of the wellbore cement. Longer residence time and small apertures promote mineral precipitation, fracture closure, and therefore flow restriction. This work also suggests a narrow threshold separating the fracture opening and self-sealing behavior.

  11. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  12. Study on the hardening mechanism of cement asphalt binder

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydration and hardening mechanism of cement asphalt binder(CAB) was studied.The early hydration process,hydration products and paste microstructure of CAB made by Portland cement and anionic asphalt emulsion were investigated by calorimetry,X-ray diffraction,and environmental scanning electron microscopy.The early hydration process of CAB can be characterized as 5 stages similar to those of Portland cement.There is no chemical reaction detected between cement and asphalt,hence no new hydration products other than those of Portland cement are produced.The hardening of CAB begins with the hydration of cement.When the hydration of cement comes into the acceleration period and its exothermic rate comes to the maximum,the coalescence of asphalt particles in asphalt emulsion is triggered.In the hardened system of CAB,it was found that the hydration products of cement form the skeleton and are covered by the continuous asphalt film.They formed an interpenetrating network system.The emulsifiers in the asphalt emulsion may retard the hydration process of cement.

  13. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2006-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  14. The interaction between nuclear waste glass and cement

    International Nuclear Information System (INIS)

    The interaction between simulated reference waste glasses SON68 and SM539 and cement has been studied in suspensions of Ordinary Portland Cement and synthetic young cement water with pH 13.5 at 30 C. The cement appears to trigger glass dissolution by consumption of glass matrix components. This leads to fast glass dissolution at a constant rate with formation of a porous gel layer on the glass. This is probably due mostly to the reaction of Si from the glass with portlandite, forming CSH phases. After consumption of the portlandite, the glass alteration rate is expected to decrease. (authors)

  15. Development of nanosilica bonded monetite cement from egg shells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Luchini, Timothy J.F.; Boroujeni, Nariman Mansouri [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Agarwal, Anand K.; Goel, Vijay K. [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement.

  16. Soft X-ray Microscopy of Green Cements

    Science.gov (United States)

    Monteiro, P. J. M.; Mancio, M.; Kirchheim, A. P.; Chae, R.; Ha, J.; Fischer, P.; Tyliszczak, T.

    2011-09-01

    The present status of the cement and concrete industry is not sustainable. The production of Portland cement is responsible for 7% of the CO2 emissions in the world and existing reinforced concrete infrastructure is deteriorating at a fast pace. The change in the existing technology requires new developments in our understanding of the nanostructure of hydration products and the complex deterioration reactions. We have been developing an elaborate research program to advance the existing cement and concrete science by characterizing its nanostructure by synchrotron radiation. A new generation of green cements is being studied using high-resolution soft x-ray microscopy at the nano-level.

  17. Leaching of metals from cement under simulated environmental conditions.

    Science.gov (United States)

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  18. Production of cement requiring low energy expenditure. An industrial test

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, S.; Blanco, M.T.; Palomo, A.; Puertas, F. (Instituto de Ciencias de la Construccion, Madrid (Spain))

    1991-01-01

    A new method for making cement is proposed. It is based on the use of CaF{sub 2} and CaSO{sub 4} for partial replacement of the usual raw materials in cement manufacturing. This paper shows the feasibility of the proposed method on an industrial scale. A test carried out in a Spanish cement factory (1500 t yield of the new cement) has revealed that the mehtod can not only be adapted to the current technology but also requires a much lower energy expenditure. The final product is shown to have excellent properties in comparison with OPC. (orig.).

  19. DEVELOPING A NEW GENERATION OF HIGH PERFORMANCE COMPOSITE CEMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the different components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast-furnace slag, high grade fly ash, silica fume etc.

  20. Immobilisation of ion exchange resins in cement: final report

    International Nuclear Information System (INIS)

    The removal of activity from spent decontaminating solutions eg LOMI can be achieved using organic ion exchange resins. These resins can be successfully immobilised in cement based matrices. The optimum cement system contained 10% Ordinary Portland Cement 84% gg Blast Furnace Slag, 6% Microsilica with a water cement ratio of 0.5 and a dry resin loading of 36% with respect to total weight. This information was successfully scaled up to 200 litres giving a product with acceptable compressive strength, dimensional stability and elastic modulus. Storage of samples under water appears to have no detrimental effects on the product's properties. (author)

  1. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  2. Symptoms, ventilatory function, and environmental exposures in Portland cement workers.

    OpenAIRE

    Abrons, H L; Petersen, M R; Sanderson, W T; Engelberg, A L; Harber, P

    1988-01-01

    Data on respiratory symptoms and pulmonary function were obtained for 2736 Portland cement plant workers and 755 controls. Personal dust samples contained a geometric mean concentration of 0.57 mg/m3 for respirable dust and 2.90 mg/m3 for total dust. Cement workers and controls had similar prevalences of symptoms, except that 5.4% of the cement workers had dyspnoea compared with 2.7% of the controls. The mean pulmonary function indices were similar for the two groups. Among cement plant worke...

  3. Hydration process in Portland cement blended with activated coal gangue

    Institute of Scientific and Technical Information of China (English)

    Xian-ping LIU; Pei-ming WANG; Min-ju DING

    2011-01-01

    This paper deals with the hydration of a blend of Portland cement and activated coal gangue in order to determine the relationship between the degree of hydration and compressive strength development.The hydration process was investigated by various means:isothermal calorimetry,thermal analysis,non-cvaporable water measurement,and X-ray diffraction analysis.The results show that the activated coal gangue is a pozzolanic material that contributes to the hydration of the cement blend.The pozzolanic reaction occurs over a period of between 7 and 90 d,consuming portlandite and forming both crystal hydrates and ill-crystallized calcium silicate hydrates.These hydrates are similar to those found in pure Portland cement.The results show that if activated coal gangue is substituted for cement at up to 30% (w/w),it does not significantly affect the final compressive strength of the blend.A long-term compressive strength improvement can in fact be achieved by using activated coal gangue as a supplementary cementing material.The relationship between compressive strength and degree of hydration for both pure Portland cement and blended cement can be described with the same equation.However,the parameters are different since blended cement produces fewer calcium silicate hydrates than pure Portland cement at the same degree of hydration.

  4. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Saharty

    2015-12-01

    Full Text Available The effects of Cu2+ ion concentration and temperature on the cementation rate of copper from copper sulphate on zinc and the effect of additives of the organic compound “sodium diethyldithiocarbamate” (NaDDC were studied. It was noticed that the cementation increases significantly by increasing the concentrations of NaDDC. The rate of cementation increased by 58.58−100.31%. Our data showed that sodium diethyldithiocarbamate reacts with the Cu2+ solution giving a complex of copper diethyldithiocarbamate, which enhances the rate of cementation.

  5. Development and clinical trial of a novel bioactive bone cement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Strontium(Sr)and related compounds have become more attractive in the prevention and treatment of osteoporosis.Previously,we developed a novel bioactive bone cement which is mainly composed of strontium-containing hydroxyapatite(Sr-HA)filler and bisphenol A diglycidylether dimethacrylate(Bis-GMA)resin.This bone cement is superior to conventional polymethylmethacrylate (PMMA)bone cement in bioactivity,biocompatibility,and osseointegration.It also has shown sufficient mechanical strength properties for its use in percutaneous vertebroplasty(PVP)and total hip replacement(THR).In this paper,we review the in vitro,in vivo and clinical evidence for the effectiveness of this bioactive bone cement.

  6. Magnesia Modification of Alkali-Activated Slag Fly Ash Cement

    Institute of Scientific and Technical Information of China (English)

    SHEN Weiguo; WANG Yiheng; ZHANG Tao; ZHOU Mingkai; LI Jiasheng; CUI Xiaoyu

    2011-01-01

    A new type of magnesia modification alkali-activated cement was prepared, the strength, setting time, shrinkage ratio and cracking behavior, as well as the composition and structure of the hydration product were investigated. The results indicate that the setting time of this cement is similar to that of the ordinary commercial cements; its strength reaches the standard of 42.5 degree cement, its cracking resistance has been remarkably improved because of the micro-aggregate effect of fly ash and shrinkage compensating of magnesia.

  7. Development of nanosilica bonded monetite cement from egg shells

    International Nuclear Information System (INIS)

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5 ± 1 min. The compressive strength after 24 h of incubation was approximately 8.45 ± 1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10 ± 1 min) process by about 2.5 min and improve compressive strength (20.16 ± 4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. - Highlights: • Cement raw powder is derived from egg shells. • A microwave assisted system is used for preparing monetite bone cement. • Colloidal silica is used to reinforce cement

  8. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...... seven days, dilatometers were manually recorded during at least 56 days. The dispersion model was applied to fit chemical shrinkage results and to estimate the maximum (or ultimate) value for calculation of degree of hydration. Except for a pure Portland cement best fits were obtained by the general...

  9. Analytical method to estimate resin cement diffusion into dentin

    Science.gov (United States)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C–O–C, 1113 cm-1) present in the cements, and the mineral content (P–O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  10. Statistical Study on Cement-Soil Mixture Strength

    Institute of Scientific and Technical Information of China (English)

    YU Zhiqiang; CAO Yonghua; YAN Shuwang

    2005-01-01

    This paper presents an investigation on strength of cement deep mixing (CDM) mixture. Four typical works of offshore or land-based projects are introduced. With samples from these projects and laboratory tests, statistical analysis is made on the increment law of the strength of cement-soil mixture with different amount of cement, and strengths under different working conditions are compared. It is found that the amount of cement in the cement-soil mixture is closely related to the unconfined compressive strength of the mixture. At the age of 90 d,the unconfined compressive strength of the cement-soil mixture increased by 0.054 Mpa-0.124 Mpa with each cement increasing 10 kg/m3 in the cement-soil mixture, averagely increased by 0.085 Mpa, while that at the age of 120 d increased by 11% in comparison.The quality of the cement-soil mixture should be comprehensively evaluated in accordance with the trimmed average of strength, coefficient of variation and rock quality designation (RQD) indicators of sampling ratio.

  11. Curing time effect on the fraction of 137Cs from cement-ion exchange resins-bentonite clay composition

    Directory of Open Access Journals (Sweden)

    Plećaš Ilija

    2010-01-01

    Full Text Available To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclides 137Cs have been studied. Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develops and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates Rn[cm/d] of 137Cs from cement-ion exchange resins-bentonite matrix after 240 days were measured. The results presented in this paper are examples of results obtained in a 30-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing centre.

  12. Correlation between the cytotoxicity of self-etching resin cements and the degree of conversion

    Directory of Open Access Journals (Sweden)

    Luís FSA Morgan

    2015-01-01

    Conclusion: These results indicate that photopolymerization of dual cure self-etching resin cements decrease toxic effects on cell culture. Adequate photopolymerization should be considered during cementation when using dual polymerization self-etching resin cements.

  13. A Biomechanical Comparison of Expansive Pedicle Screws for Severe Osteoporosis: The Effects of Screw Design and Cement Augmentation.

    Directory of Open Access Journals (Sweden)

    Ching-Lung Tai

    Full Text Available Expansive pedicle screws significantly improve fixation strength in osteoporotic spines. However, the previous literature does not adequately address the effects of the number of lengthwise slits and the extent of screw expansion on the strength of the bone/screw interface when expansive screws are used with or without cement augmentation. Herein, four designs for expansive pedicle screws with different numbers of lengthwise slits and different screw expansion levels were evaluated. Synthetic bones simulating severe osteoporosis were used to provide a comparative platform for each screw design. The prepared specimens were then tested for axial pullout failure. Regardless of screw design, screws with cement augmentation demonstrated significantly higher pullout strength than pedicle screws without cement augmentation (p 0.05. Taken together, our results show that pedicle screws combined with cement augmentation may greatly increase screw fixation regardless of screws with or without expansion. An increase in both the number of slits and the extent of screw expansion had little impact on the screw-anchoring strength. Cement augmentation is the most influential factor for improving screw pullout strength.

  14. Percutaneous bone cement refixation of aseptically loose hip prostheses: the effect of interface tissue removal on injected cement volumes

    Energy Technology Data Exchange (ETDEWEB)

    Malan, Daniel F. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Intelligent Systems, Delft (Netherlands); Valstar, Edward R. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands); Delft University of Technology, Department of Biomechanical Engineering, Delft (Netherlands); Nelissen, Rob G.H.H. [Leiden University Medical Center, Department of Orthopaedics, Leiden (Netherlands)

    2014-11-15

    To quantify whether injected cement volumes differed between two groups of patients who underwent experimental minimally invasive percutaneous cement injection procedures to stabilize aseptically loose hip prostheses. One patient group was preoperatively treated using gene-directed enzyme prodrug therapy to remove fibrous interface tissue, while the other group received no preoperative treatment. It was hypothesized that cement penetration may have been inhibited by the presence of fibrous interface tissue in periprosthetic lesions. We analyzed 17 patients (14 female, 3 male, ages 72-91, ASA categories 2-4) who were treated at our institution. Osteolytic lesions and injected cement were manually delineated using 3D CT image segmentation, and the deposition of injected cement was quantified. Patients who underwent preoperative gene-directed enzyme therapy to remove fibrous tissue exhibited larger injected cement volumes than those who did not. The observed median increase in injected cement volume was 6.8 ml. Higher cement leakage volumes were also observed for this group. We conclude that prior removal of periprosthetic fibrous interface tissue may enable better cement flow and penetration. This might lead to better refixation of aseptically loosened prostheses. (orig.)

  15. 灌注式路面用水泥胶浆的性能研究%Study on the Performance of Filling Cement Slurry

    Institute of Scientific and Technical Information of China (English)

    农卓松; 黎刚; 谭芳春

    2011-01-01

    文章对水泥胶浆的性能影响因素进行研究,分析不同水灰比、掺加不同渗透剂、聚合物材料对水泥胶浆流动性、强度特性等的影响,确定性能优良的水泥胶浆配比,为工程应用提供参考。%The article studys the factors that affect the performance of cement slurry.It analyzes the effect of different water cement ratio and adds different penetrating agent,polymer material on the fluidity and strength of cement slurry.It then determines the right cement slurry ratio,which provides reference to project application.

  16. Performance and Durability Evaluation of Bamboo Reinforced Cement Concrete Beams

    Directory of Open Access Journals (Sweden)

    Ankit Singh Mehra

    2016-04-01

    Full Text Available A big part of population in India is still homeless due to raising unaffordability of housing structures. People sleeping on roadsides and living in slums is a common sight in Indian cities. To overcome this problem India today needs millions of houses for their growing population, making concrete as the most widely to be used material in the country. Concrete has found to have excellent compressive strength but poor in tensile strength, to take care of the tensile stresses steel is commonly used as reinforcing material in concrete. Production of steel is a very costly business and its use in concrete as reinforcing material increases the cost of construction by many folds. Also production of steel emits a large amount of green house gases causing considerable deterioration of the environment. The above mentioned socio-economic and environmental factors creates a necessity for finding an appropriate environment friendly and cheap material that can successfully substitute steel as reinforcement in concrete elements of a low cost dwelling for the poor and homeless people of the country. It is here that engineered bamboo can be of great value to Civil Engineers owning to its several net worthy features. Production of every tone of bamboo consumes about a tone of atmospheric CO2 in addition to releasing fresh O2. From structural point of view bamboo has been used as a structural material from the earlier times as it possesses excellent flexure and tensile strength as well as high strength to weight ratio. All this necessitates examining bamboo-reinforced cement concrete in detail for its appropriateness as a structural material for construction of a low cost dwelling unit. The study focuses on evaluating the mechanical and durability properties of cement-concrete beams both singly and doubly reinforced with bamboo splints.

  17. Fiber reinforced cement boards made from recycled newsprint paper

    International Nuclear Information System (INIS)

    Highlights: → Recycled newsprint paper (RNP) fibers had significant effects on the physicomechanical properties of the boards. → Addition of 5% CaCl2 had the most significant positive effects on all properties of the boards. → Increase in RNP content had adverse effect on the samples and resulted in lower than expected strength properties. → The optimum condition was obtained when the RNP and CaCl2 contents were 10% and 5% by weight, respectively. - Abstract: In this study, the reinforcing effect of recycled newsprint paper (RNP) in cement boards has been investigated. The experimental design consisted of two variable factors namely RNP and calcium chloride (CaCl2). In the sample preparation, boards with density of 0.7 kg/m3 were manufactured using fiber/cement ratios of 10:90, 15:85 and 20:80 by weight and 3% and 5% CaCl2 as accelerator. At least four boards (replications) were fabricated for each treatment, and the mechanical and physical properties of the boards were evaluated. The statistical analysis showed that the differences between the mean values of the RNP and CaCl2 contents among each of the groups (treatments) compared were significant. Test results showed that addition of CaCl2 tends to enhance both the mechanical and physical properties of the boards. All properties of the boards were improved when the CaCl2 content was increased from 3% to 5%. The rupture and elasticity moduli of the boards decreased with an increase in the RNP content, and the maximum values were obtained at RNP loading of 10%. The results also showed that as the fiber content was increased, significant increased in water absorption and thickness swelling occurred. Increasing RNP fiber content from 10% to 20% reduced both the mechanical and physical properties considerably. The optimum condition was obtained when the RNP and CaCl2 contents were 10% and 5%, respectively.

  18. Experimental evaluation of cement materials for solidifying sodium nitrate

    International Nuclear Information System (INIS)

    Low-level liquid waste containing sodium nitrate is planned to be transformed to salt block by evaporation with sodium borate in the Low-level Waste Treatment Facility (LWTF), then salt block will be stored temporally. It should be important to investigate the method how to treat these liquid waste suitable to final disposal criteria that will be settled in future. Cement solidification is one of promising candidates because it has been achieved as the solidification material for the shallow land disposal. The research was conducted to evaluate applicability of various cement materials to solidification of sodium nitrate. The following cements were tested. Ordinary Portland Cement (OPC). Portland Blast-furnace Slag Cement; C type (PBFSC). Alkali Activated Slag Cement (AASC, supplied by JGC). The test results are as follows; (1) AASC is characterized by a high sodium nitrate loading (-70 wt%) compared with other types of cement material. High fluidity of the cement paste, high strength after solidification, and minimization of free water on the cement paste are achieved under all test conditions. (2) OOPC and PBFSC produced free water on the cement paste in the early days and delayed the hardening period. 3 or more days are required to harden evan with 30 wt% content of sodium nitrate. (3) Though PBFSC contains blast furnace slag similar to AASC, there is no advantage prior to OPC. To design an ideal cement conditioning system for sodium nitrate liquid waste in the LWTF, the further studies are necessary such as the simulated waste test, Kd test, pilot test, and layout design. (author)

  19. UTILIZATION OF AGARWOOD DISTILLATION WASTE IN OILWELL CEMENT AND ITS EFFECT ON FREE WATER AND POROSITY

    OpenAIRE

    Arina Sauki; Muhammad Hazman Md. Shahid; Ku Halim Ku Hamid; Azlinda Azizi; Siti Khatijah Jamaludin; Tengku Amran Tengku Mohd; Nur Hashimah Alias

    2013-01-01

    The intent of this research is to utilize the waste produced by distillation process of Agarwood oil and convert it into a profitable oilwell cement additive. Common problem during oilwell cementing is free wáter separation. This problem could weaken cement at the top, gas migration problem and non uniform density of cement slurry that are even worst in cementing deviated well. Another concern on cementing design is the porosity of the hardened cement. If the cement is too porous, it can lead...

  20. CEMENT. "A Concrete Experience." A Curriculum Developed for the Cement Industry.

    Science.gov (United States)

    Taylor, Mary Lou

    This instructor's guide contains 11 lesson plans for inplant classes on workplace skills for employees in a cement plant. The 11 units cover the following topics: goals; interpreting memoranda; applying a standard set of work procedures; qualities of a safe worker; accident prevention; insurance forms; vocabulary development; inventory control…

  1. Influence of CG With High Content of Metallic Particles as a Cement Admixture on Cement Strength

    Institute of Scientific and Technical Information of China (English)

    WAN Hui-wen; LIN Zong-shou; ZHAO Qian; HUANG Yun

    2003-01-01

    Copper gangue (CG), containing a large amount of water with grain sizes of 0.037 to 0.10mm,is an inactive industrial waste generated from copper refineries. When it is dried and used as a cement admixture, the influence of the presence of finely dispersed metallic particles in CG on the microstructure and compressive strength of cement paste has been studied.The results show that the higher the replacement of CG is,the lower the compressive strength of cement mortar is.However,the long-term strength of the specimens with 10% CG,especially after being cured for 3 months,approached to that of the plain mortar.Its mechanism was studied by an electron probe X-ray microanalyzer (EPXMA).The results indicate that a small quantity of Fe(OH)3·nH2O slowly formed from Fe2O3 in the presence of Ca(OH)2, free CaO and MgO of the clinker also slowly hydrated and formed Ca(OH)2 and Mg(OH)2 respectively,so the hardened cement paste became more compact.

  2. A new radionuclide sorption database for benchmark cement accounting for geochemical evolution of cement

    International Nuclear Information System (INIS)

    This paper presents the data selection strategy and the selected sorption values on cement for twenty-five elements (Ag, Am, Be, C, Ca, Cl, Cs, H, I, Mo, Nb, Ni, Np, Pa, Pb, Pd, Pu, Ra, Sr, Se, Sn, Tc, Th, U, Zr) that need to be considered in safety assessment calculations for the future near-surface disposal facility at Dessel, Belgium. Mainly on the basis of literature data, best estimate sorption values in addition to upper and lower bound values were determined for a so-called benchmark cement - the unperturbed cement without effects of organics, high chloride content or other chemical components that might adversely impact radionuclide sorption. Effects of perturbing components are discussed separately. The geochemical evolution of the cementitious engineered barriers was also addressed to clarify the conditions under which sorption values are applicable. A substantial part of the scientific basis supporting the data selection was established at several meetings of an International Panel of Experts who reviewed and endorsed the data selection. To this end, the sorption data were checked for: reliability, appropriateness for the conditions expected for the Dessel disposal facility, data quality, time frames (i.e. states of cement degradation), heterogeneity (presence of components in conditioned wastes that could affect sorption) and completeness (in terms of mechanisms explaining the sorption processes). (authors)

  3. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag ...

  4. Performance of Fiber Cement Slurry in the Oil and Gas Well Cementation

    Institute of Scientific and Technical Information of China (English)

    BuYuhuan; WangRuihe; ChengRongchao; LiYuhai

    2005-01-01

    Based on a carbon fiber cement slurry system developed in the previous work, the relationship between the carbon fiber and the performance of the cement slurry was experimentally investigated. Results show that the use of fiber has no effect on the slurry theological mode, but influences its rheological behavior. When the fiber proportion ranges from 0.12% to 0.19% and the fiber length from 400 to 1,400 μm the slurry rheological behavior can be improved. Under the normalpressure, the use of fiber can shorten the thickening time of the cement slurry. When the proportion of the constant-length fiber increases, the water loss of the cement slurry decreases first and then increases, and when the fiber length increases (the fiber proportion being kept constant), the water loss shows the same trend. This indicates that there are optimal values for the fiber length and proportion, which vary under the experimental conditions in the following respective ranges: 0.12%-0.37% and 700-1,400 μm.

  5. INFLUENCE OF WATER-TO-CEMENT RATIO ON AIR ENTRAILMENT IN PRODUCTION OF NON-AUTOCLAVED FOAM CONCRETE USING TURBULENCE CAVITATION TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Gorshkov Pavel Vladimirovich

    2012-10-01

    Full Text Available Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish strong concrete mixtures (with the water-to-cement ratio equal to 0.3…0.4 and ductile ones (with the water-to-cement ratio equal to 0.5…0.7. Strong concrete mixtures are more durable. The lower the water-to-cement ratio, the higher the foam concrete strength. However super-plastic substances cannot be mixed by ordinary turbulent mixers. Foam concrete produced using the turbulence cavitation technology needs air-entraining, its intensity being dependent on several factors. One of the main factors is the amount of free water, if it is insufficient, the mixture will not be porous enough. A researcher needs to identify the optimal water-to-cement ratio based on the water consumption rate. Practical production of prefabricated concrete products and structures has proven that the reduction of the water-to-cement ratio improves the strength of the product. The task is to find the water-to-cement ratio for the foam concrete mixture to be plastic enough for air entraining. An increase in the ratio causes loss in the strength. The ratio shall vary within one hundredth points. Super-plasticizers are an alternative solution.

  6. Effect of abutment modification and cement type on retention of cement-retained implant supported crowns.

    Directory of Open Access Journals (Sweden)

    Mitra Farzin

    2014-06-01

    Full Text Available Provisional cements are commonly used to facilitate retrievability of cement-retained fixed implant restorations; but compromised abutment preparation may affect the retention of implant-retained crowns.The purpose of this study was to investigate the effect of abutment design and type of luting agent on the retentive strength of cement-retained implant restorations.Two prefabricated abutments were attached to their corresponding analogs and embedded in an acrylic resin block. The first abutment (control group was left intact without any modifications. The screw access channel for the first abutment was completely filled with composite resin. In the second abutment, (test group the axial wall was partially removed to form an abutment with 3 walls. Wax models were made by CAD/CAM. Ten cast copings were fabricated for each abutment. The prepared copings were cemented on the abutments by Temp Bond luting agent under standardized conditions (n=20. The assemblies were stored in 100% humidity for one day at 37°C prior to testing. The cast crown was removed from the abutment using an Instron machine, and the peak removal force was recorded. Coping/abutment specimens were cleaned after testing, and the testing procedure was repeated for Dycal luting agent (n=20. Data were analyzed with two- way ANOVA (α=0.05.There was no significant difference in the mean transformed retention (Ln-R between intact abutments (4.90±0.37 and the abutments with 3 walls (4.83±0.25 using Dycal luting agent. However, in TempBond group, the mean transformed retention (Ln-R was significantly lower in the intact abutment (3.9±0.23 compared to the abutment with 3 walls (4.13±0.33, P=0.027.The retention of cement-retained implant restoration can be improved by the type of temporary cement used. The retention of cast crowns cemented to implant abutments with TempBond is influenced by the wall removal.

  7. Guidebook for Using the Tool BEST Cement: Benchmarking and Energy Savings Tool for the Cement Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Price, Lynn; Zhou, Nan; Fuqiu , Zhou; Huawen, Xiong; Xuemin, Zeng; Lan, Wang

    2008-07-30

    The Benchmarking and Energy Savings Tool (BEST) Cement is a process-based tool based on commercially available efficiency technologies used anywhere in the world applicable to the cement industry. This version has been designed for use in China. No actual cement facility with every single efficiency measure included in the benchmark will likely exist; however, the benchmark sets a reasonable standard by which to compare for plants striving to be the best. The energy consumption of the benchmark facility differs due to differences in processing at a given cement facility. The tool accounts for most of these variables and allows the user to adapt the model to operational variables specific for his/her cement facility. Figure 1 shows the boundaries included in a plant modeled by BEST Cement. In order to model the benchmark, i.e., the most energy efficient cement facility, so that it represents a facility similar to the user's cement facility, the user is first required to input production variables in the input sheet (see Section 6 for more information on how to input variables). These variables allow the tool to estimate a benchmark facility that is similar to the user's cement plant, giving a better picture of the potential for that particular facility, rather than benchmarking against a generic one. The input variables required include the following: (1) the amount of raw materials used in tonnes per year (limestone, gypsum, clay minerals, iron ore, blast furnace slag, fly ash, slag from other industries, natural pozzolans, limestone powder (used post-clinker stage), municipal wastes and others); the amount of raw materials that are preblended (prehomogenized and proportioned) and crushed (in tonnes per year); (2) the amount of additives that are dried and ground (in tonnes per year); (3) the production of clinker (in tonnes per year) from each kiln by kiln type; (4) the amount of raw materials, coal and clinker that is ground by mill type (in tonnes per

  8. Asbestos cement dust inhalation by hamsters

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, A.P.; Dagle, G.E.; Cannon, W.C.; Buschbom, R.L. (Pacific Northwest Laboratories, Richland, WA (USA))

    1978-12-01

    Two groups of 96 male Syrian golden hamsters were exposed to respirable asbestos cement aerosol at concentrations of approximately 1 and approximately 10 micrograms/liter, respectively, 3 hours/day, 5 days/week. Average fiber counts ranged from 5 to about 120 fibers/cm3. Each group was randomly divided into six subgroups of 16 animals. The first subgroup was sacrificed after 3 months of exposure, the second after 6 months, and the third after 15 months. The fourth subgroup was withdrawn from exposure after 3 months, observed for an additional 3 months, and then sacrificed. The fifth and sixth subgroups were withdrawn after 3 and 6 months of exposure, respectively, and maintained for observation up to the 15-month exposure point of the third subgroup at which time all surviving animals were sacrificed. All other experimental procedures were similar to those delineated in a previous publication describing the development of an animal model, techniques, and an exposure system for asbestos cement dust inhalation. The asbestos cement exposures had no significant effect on body weight and mortality of the animals. Higher aerosol concentration and longer exposure times increased the number of macrophages and ferruginous bodies found in the lungs of the exposed animals. Recovery periods had no effect on the incidence of macrophages and ferruginous bodies. The incidence of very slight to slight fibrosis in the animals sacrificed after 15 months of exposure shows a significant (P less than 0.01) trend when the untreated control group and the 1 and 10 microgram/liter dose level groups are compared, indicating a dose-response relationship. Development of minimal fibrosis continued in animals withdrawn from exposure. No primary carcinomas of the lung and respiratory tract and no mesotheliomas were found.

  9. Cement plant gaseous pollutant emission reduction technologies

    Directory of Open Access Journals (Sweden)

    Andrés Emilio Hoyos Barreto

    2010-10-01

    Full Text Available A brief description of SOX, NOX and CO2 formation is presented, these being the main pollutants emitted in the cement industry gas stream Several technologies for reducing NOX, SOX and CO2 emissions in long wet kilns are introduced: primary measures preventing contaminant formation and secondary/tube end emission reduction measures. Strategies for preventing CO2 (green-house effect gas formation are also addressed, such as fuel and raw material substitution and CO2 capture technologies which are still being developed.

  10. A consistent thermodynamic database for cement materials

    International Nuclear Information System (INIS)

    In the context of waste confinement and, more specifically, waste from the nuclear industry, concrete is used both as a confinement and as a building material. Alteration processes in contact with clayey formations are also of interest in the context of deep disposal. The present work aims to propose a collection of thermodynamic properties for geochemical calculation in cementitious media. This selection is extended to zeolites and clay minerals in the context of cement/clay interactions. Finally, because temperature is of importance in such contexts, the temperature dependency of the thermodynamic functions is also considered here. Uncertainties remain concerning especially katoite, and some low temperature zeolites like phillipsite, chabazite or gismondine

  11. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  12. Static Model of Cement Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available In this paper, a static model of cement rotary kilns is proposed. The system model is obtained through polynomial series. The proposed model is contrasted with data of a real plant, where optimal results are obtained. Expected results are measured with respect to the clinker production and the combustible consumption is measured in relation with the consumption calorific. The expected result of the approach is the increase of the profitability of the factory through the decrease of the consumption of the combustible.

  13. Specific Examples of Hybrid Alkaline Cement

    OpenAIRE

    Fernández-Jiménez Ana; García-Lodeiro Inés; Donatello Shane; Maltseva Olga; Palomo Ángel

    2014-01-01

    Hybrid alkaline cements are obtained by alkali-activating cementitious blends in the Na2O-CaO-SiO2-Al2O3-H2O system. The present paper discusses the results of activating different cementitious blends containing a low OPC clinker content ( 15MPa a 2 days) different alkaline activators were used (liquid and solid). The reaction products obtained were also characterised by XRD, SEM/EDX and 27Al and 29Si NMRMAS. The results showed that the main reaction product was a mix of cementitious gels C-A...

  14. Cement and Concrete Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Taijiro Sato

    2010-02-01

    Full Text Available Concrete science is a multidisciplinary area of research where nanotechnology potentially offers the opportunity to enhance the understanding of concrete behavior, to engineer its properties and to lower production and ecological cost of construction materials. Recent work at the National Research Council Canada in the area of concrete materials research has shown the potential of improving concrete properties by modifying the structure of cement hydrates, addition of nanoparticles and nanotubes and controlling the delivery of admixtures. This article will focus on a review of these innovative achievements.

  15. Liquid-Oxygen-Compatible Cement for Gaskets

    Science.gov (United States)

    Elmore, N. L.; Neale, B. C.

    1984-01-01

    Fluorelastomer and metal bonded reliably by new procedure. To cure fluoroelastomer cement, metal plate/gasket assembly placed in vacuum bag evacuated to minimum vacuum of 27 inches (69 cm) of mercury. Vacuum maintained throughout heating process and until assembly returns to ambient room temperature. Used to seal gaskets and O-rings or used to splice layers of elastomer to form non-standard sized O-rings. Another possible use is to apply protective, liquid-oxygen-compatible coating to metal parts.

  16. Enhancement of cemented waste forms by supercritical CO{sub 2} carbonation of standard portland cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Carey, J.; Taylor, C.M.V.

    1997-08-01

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented.

  17. Enhancement of cemented waste forms by supercritical CO2 carbonation of standard portland cements

    International Nuclear Information System (INIS)

    We are conducting experiments on an innovative transformation concept, using a traditional immobilization technique, that may significantly reduce the volume of hazardous or radioactive waste requiring transport and long-term storage. The standard practice for the stabilization of radioactive salts and residues is to mix them with cements, which may include additives to enhance immobilization. Many of these wastes do not qualify for underground disposition, however, because they do not meet disposal requirements for free liquids, decay heat, head-space gas analysis, and/or leachability. The treatment method alters the bulk properties of a cemented waste form by greatly accelerating the natural cement-aging reactions, producing a chemically stable form having reduced free liquids, as well as reduced porosity, permeability and pH. These structural and chemical changes should allow for greater actinide loading, as well as the reduced mobility of the anions, cations, and radionuclides in aboveground and underground repositories. Simultaneously, the treatment process removes a majority of the hydrogenous material from the cement. The treatment method allows for on-line process monitoring of leachates and can be transported into the field. We will describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of solid and semi-solid waste forms. some of the issues concerning the economic feasibility of industrial scale-up will be addressed, with particular attention to the engineering requirements for the establishment of on-site processing facilities. Finally, the initial results of physical property measurements made on portland cements before and after supercritical fluid processing will be presented

  18. The Effect of Cement Dust on the Lung Function in a Cement Factory, Iran

    Directory of Open Access Journals (Sweden)

    Farhad Ferasati

    2010-07-01

    Full Text Available The present study aimed at assessing cement dust exposure and its relationship to lung function at a Portland cement factory in Ilam, Iran. Lung function tests were carried out on 112 workers at the cement factory in 2008-09. Simultaneously 85 non exposed workers were used as control. Lung function tests were performed for all subjects. Additionally, total dust level was determined by the gravimetric method. Moreover, X-ray diffraction (XRD technique was performed to determine the SiO2 contents of the bulk samples. The arithmetic means (AM of personal total dust were higher in the crusher (27.49 mg/m3, packing (16.90 mg/m3, kiln (15.60 mg/m3, cement mill (13.07 mg/m3, raw mill (10.31 mg /m3 than in the maintenance (3.14 mg /m3, and administration (1.55 mg/m3. The geometrical mean (GM concentration was 12.12 mg/m3, which were considerably higher than occupational exposure limit (OEL of the American Conference of Governmental Industrial Hygienists (ACGIH, which is 10 mg/m3. Based on the results, the probability of the long-term mean exposure exceeding to the OEL of 10 mg/m3 for total dust were higher in the kiln (100%, packing (100%, cement mill (90%, crusher (73%, raw mill (60% than in the maintenance (0%, and administration (2.3%. Ventiliatory function evaluation, as measured by the function parameters, showed that 35.7% of the exposed workers had abnormality in lung function compared with 5.7% of those unexposed. Statistical analysis of the data indicated that exposed workers compared to the unexposed groups showed significant reductions in Forced Expiratory Volume in one second percent (FEV1, Forced Vital Capacity (FVC, and FEV1/FVC (p< 0.05.

  19. The influence of clay additives in Portland cement on the compressive strength of the cement stone

    Directory of Open Access Journals (Sweden)

    A.R. Gaifullin

    2015-11-01

    Full Text Available The introduction of mineral additives to binders, especially to Portland cement, is one of the promising trends for solving the resource and energy saving problems, as well as problems of environmental protection during production and application. Expanding the supplementary cementitious materials resource base can be achieved through the use of natural pozzolans and thermally activated polymineral clays(commonly known as glinites in Russia. One type of glinite is metakaolin, which is obtained by calcination of kaolin clays. Metakaolin is widely and effectively used as a pozzolanic additive due to its beneficial effect on the physical and mechanical properties of Portland cement-based materials. The obstacle to its wide production and use are the limited deposits of pure kaolin clays in many countries, including the Russian Federation. In this respect, the studies of pozzolanic activity of the most common mineral clays and their use in some countries have significantly advanced. Similar studies were widely performed in the 1940s in USSR. It seems reasonable to renew this trend to provide a scientific base for the production of local pozzolans made of clays commonly used in different regions. Comparative studies of the effect of 5 clays differing in mineral and chemical composition, calcination temperature and specific surface area, and high-quality metakaolin, on the strength of hardened Portland cement paste have been performed. It has been established that introducing 5…10 % of composite clays calcined at 400…8000 C° and milled to a specific surface area of 290…800 m2/kg into Portland cement enhanced the strength of the hardened cement paste considerably better than the introduction of metakaolin with a specific surface area of 1200 m2/kg. The findings of the study suggest that many kinds of commonly used polymineral clays have a specific calcination temperature and dispersity, which results in a higher pozzolanic activity compared with

  20. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust.

    Science.gov (United States)

    Moon, Deok Hyun; Grubb, Dennis G; Reilly, Trevor L

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO(3)(2-)) and selenate (SeO(4)(2-)). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO(3).H(2)O) and selenate substituted ettringite (Ca(6)Al(2)(SeO(4))(3)(OH)(12).26H(2)O), respectively.

  1. Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Deok Hyun, E-mail: dmoon10@hotmail.com [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Department of Environmental Engineering, Chosun University, Gwangju 501-759 (Korea, Republic of); Grubb, Dennis G. [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Schnabel Engineering, LLC, 510 East Gay Street, West Chester, PA 19380 (United States); Reilly, Trevor L. [W.M. Keck Geoenvironmental Laboratory, Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2009-09-15

    Stabilization/solidification (S/S) processes were utilized to immobilize selenium (Se) as selenite (SeO{sub 3}{sup 2-}) and selenate (SeO{sub 4}{sup 2-}). Artificially contaminated soils were prepared by individually spiking kaolinite, montmorillonite and dredged material (DM; an organic silt) with 1000 mg/kg of each selenium compound. After mellowing for 7 days, the Se-impacted soils were each stabilized with 5, 10 and 15% Type I/II Portland cement (P) and cement kiln dust (C) and then were cured for 7 and 28 days. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effectiveness of the S/S treatments. At 28 days curing, P doses of 10 and 15% produced five out of six TCLP-Se(IV) concentrations below 10 mg/L, whereas only the 15% C in DM had a TCLP-Se(IV) concentration <10 mg/L. Several treatments satisfied the USEPA TCLP best demonstrated available technology (BDAT) limits (5.7 mg/L) for selenium at pozzolan doses up to 10 times less than the treatments that established the BDAT. Neither pozzolan was capable of reducing the TCLP-Se(VI) concentrations below 25 mg/L. Se-soil-cement slurries aged for 30 days enabled the identification of Se precipitates by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX). XRD and SEM-EDX analyses of the Se(IV)- and Se(VI)-soil-cement slurries revealed that the key selenium bearing phases for all three soil-cement slurries were calcium selenite hydrate (CaSeO{sub 3}.H{sub 2}O) and selenate substituted ettringite (Ca{sub 6}Al{sub 2}(SeO{sub 4}){sub 3}(OH){sub 12}.26H{sub 2}O), respectively.

  2. Chronic lower respiratory diseases among demolition and cement workers

    DEFF Research Database (Denmark)

    Mølgaard, Ellen Fischer; Hannerz, Harald; Tüchsen, Finn;

    2013-01-01

    To estimate standardised hospitalisation ratios (SHR) for chronic lower respiratory diseases among demolition and cement workers in Denmark, 1995-2009.......To estimate standardised hospitalisation ratios (SHR) for chronic lower respiratory diseases among demolition and cement workers in Denmark, 1995-2009....

  3. Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty

    Directory of Open Access Journals (Sweden)

    T Calvo-Fernández

    2010-10-01

    Full Text Available This paper reports a biological evaluation of a non-resorbable acrylic cement loaded with alendronate for the treatment of osteoporotic vertebral compression fractures. The cement formulation was based on polymethyl methacrylate and acrylic monomers; one of these had covalently linked vitamin E residues. The same cement in the absence of alendronate was used as a control. The setting of the charged cement presented a maximum polymerization temperature of 44ºC, a setting time of 24 min, a residual monomer content lower than 3 wt.%, a compressive strength of 99±10 MPa and an elastic modulus of 1.2±0.2 GPa. Cytotoxicity studies using human osteoblast cultures revealed that the leachable substances of the alendronate loaded cement collected between 1 and 7 days decreased cell viability to values lower than 80%. However, morphological changes and cellular damage in cells produced by the extracts decreased with the leak time. Cell adhesion and growth on charged cement was significantly lower than on the control. Implantation of the cement paste in the intra-femoral cavity of rabbits showed that initially the osteogenic activity was evident for the cement charged with alendronate, and the osteosynthesis process took place mainly in the trabeculae and was manifested by the presence of a non-mineralised osseous spicule. The interface between material and adjacent bone tissue was initially characterized by a variable fibrous response that in many cases it appeared reduced to thin connective tissue after a 24-week-period.

  4. Personal exposure to inhalable cement dust among construction workers.

    NARCIS (Netherlands)

    Peters, S.M.; Thomassen, Y.; Fechter-Rink, E.; Kromhout, H.

    2009-01-01

    Objective- A case study was carried out to assess cement dust exposure and its determinants among construction workers and for comparison among workers in cement and concrete production.Methods- Full-shift personal exposure measurements were performed and samples were analysed for inhalable dust and

  5. Acoustic response of cemented granular sedimentary rocks: molecular dynamics modeling.

    Science.gov (United States)

    García, Xavier; Medina, Ernesto

    2007-06-01

    The effect of cementation processes on the acoustical properties of sands is studied via molecular dynamics simulation methods. We propose numerical methods where the initial uncemented sand is built by simulating the settling process of sediments. Uncemented samples of different porosity are considered by emulating natural mechanical compaction of sediments due to overburden. Cementation is considered through a particle-based model that captures the underlying physics behind the process. In our simulations, we consider samples with different degrees of compaction and cementing materials with distinct elastic properties. The microstructure of cemented sands is taken into account while adding cement at specific locations within the pores, such as grain-to-grain contacts. Results show that the acoustical properties of cemented sands are strongly dependent on the amount of cement, its stiffness relative to the hosting medium, and its location within the pores. Simulation results are in good correspondence with available experimental data and compare favorably with some theoretical predictions for the sound velocity within a range of cement saturation, porosity, and confining pressure.

  6. Preparation and mechanical properties of graphene oxide: cement nanocomposites.

    Science.gov (United States)

    Babak, Fakhim; Abolfazl, Hassani; Alimorad, Rashidi; Parviz, Ghodousi

    2014-01-01

    We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1-2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.

  7. Transport Properties of Carbon-Nanotube/Cement Composites

    NARCIS (Netherlands)

    Han, B.; Yang, Z.; Shi, X.; Yu, X.

    2012-01-01

    This paper preliminarily investigates the general transport properties (i.e., water sorptivity, water permeability, and gas permeability) of carbon-nanotube/cement composites. Carboxyl multi-walled carbon nanotubes (MWNTs) are dispersed into cement mortar to fabricate the carbon nanotubes (CNTs) rei

  8. Triaxial shear behavior of a cement-treated sandegravel mixture

    Institute of Scientific and Technical Information of China (English)

    Younes Amini; Amir Hamidi

    2014-01-01

    A number of parameters, e.g. cement content, cement type, relative density, and grain size distribution, can influence the mechanical behaviors of cemented soils. In the present study, a series of conventional triaxial compression tests were conducted on a cemented poorly graded sandegravel mixture containing 30%gravel and 70%sand in both consolidated drained and undrained conditions. Portland cement used as the cementing agent was added to the soil at 0%, 1%, 2%, and 3%(dry weight) of sandegravel mixture. Samples were prepared at 70%relative density and tested at confining pressures of 50 kPa, 100 kPa, and 150 kPa. Comparison of the results with other studies on well graded gravely sands indicated more dilation or negative pore pressure in poorly graded samples. Undrained failure envelopes determined using zero Skempton’s pore pressure coefficient ðA ¼ 0Þ criterion were consistent with the drained ones. Energy absorption potential was higher in drained condition than undrained condition, suggesting that more energy was required to induce deformation in cemented soil under drained state. Energy ab-sorption increased with increase in cement content under both drained and undrained conditions.

  9. Macrodefect-free cements: chemistry and impact of the environment

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M.; Galikova, L.; Mojumdar, S.C. [Slovak Academy of Sciences, Bratislava (Slovakia). Inst. of Inorganic Chemistry

    2002-07-01

    To control and improve the moisture resistance is a long felt necessity of the MDF cements, chemical approaches together with material science contribute to the progress. Present results support our previous hypothesis about the impregnation or barier effect of poly-P on the MDF cements and enlarge the validity of this hypothesis to the blends of SAFB clinker, Portland cement and HPMC or poly-P. Compactness of Al(Fe)-O-P cross-links increases the intrinsic density and, consequently, impregnates the system against the uptake of moisture. In a sense of the theory of functional polymers, the intensity of grafting of polymer chains to the surface of grains increases if poly-P is used and with the prolonged processing. The scope of moisture attack on MDF cements synthesized from the blends of SAFB clinker, Portland cement and HPMC or poly-P, as quantified using mass changes as measure of moisture resistance, is strongly affected by the nature of polymer. The addition of Portland cement in the raw mix improves the moisture resistance of MDF cements. Thermal analysis shows: (i) the irreversible mass gain of 3 - 10% is arisen from carbonation and secondary hydration of cement grains and (ii) the Al(Fe)-O-C(P) cross-links remain intact in the moist environment at either ambient or extreme levels of humidity. (orig.)

  10. Spalling Resistant Bauxite Based Bricks for Cement Kiln

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaohui; Peng Xigao

    2011-01-01

    @@ 1.Scope This standard specifies the term,definition,classification,labeling,technical requirements,test methods,inspection rules,packing,marking,transportation,storage,and quality certificate of spalling resistant bauxite based bricks for cement kiln.This standard is applicable to the spalling resistant bauxite based bricks for cement kiln.

  11. Preparation and Mechanical Properties of Graphene Oxide: Cement Nanocomposites

    Directory of Open Access Journals (Sweden)

    Fakhim Babak

    2014-01-01

    Full Text Available We investigate the performance of graphene oxide (GO in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H gels in GO cement mortar compared with the normal cement mortar.

  12. Ageing of Dry Cement Mixes for Finishing Purposes

    Directory of Open Access Journals (Sweden)

    Bronius VEKTARIS

    2013-09-01

    Full Text Available Dry building mixes, stored in the air, absorb water vapor and CO2 gas and ageing because properties of binding materials, mostly Portland cement, deteriorate after its prehydration and carbonation. In this paper the ageing singularities of dry cement mixes for finishing purposes and additives for retarding this process has been determinated. Ordinary and quickly hardening Portland cements absorb H2O and CO2 more than white cement – about 70 % – 75 % and 30 % – 38 % per month of innitial mass, respectively. White cement is more resistant to prehydration and carbonation, because it contains less C3A, C4AF and alkali, characterized initial activity. Dry mixes with white cement, although slower, but still worse after stored. Influence of routine dry mortar mixes ingredients and additives (methyl cellulose, pigments, sand and lime on prehydration properties of the mixes for finishing purpose is not substantial. Significant positive influence comes from the addition of fatty acid salts (zinc stearate or sodium oleate. The dry cement mixes for finishing purpose has been recomended to hydrophobisate with one of these additives, adding about 1 % by weight of cement during preducing mixes. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.5243

  13. Amino acid containing glass-ionomer cement for orthopedic applications

    Science.gov (United States)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  14. Experimental micromechanics of the cement-bone interface.

    NARCIS (Netherlands)

    Mann, K.A.; Miller, M.A.; Cleary, R.J.; Janssen, D.; Verdonschot, N.J.J.

    2008-01-01

    Despite the widespread use of cement as a means of fixation of implants to bone, surprisingly little is known about the micromechanical behavior in terms of the local interfacial motion. In this work, we utilized digital image correlation techniques to quantify the micromechanics of the cement-bone

  15. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2001-01-01

    Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long te

  16. Modelling the effects of waste components on cement hydration

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    2000-01-01

    Ordinary Portland Cement (OPC) is often used for the Solidification/Stabilization (S/S) of waste containing heavy metals and salts. These waste componenents will precipitate in the form of insoluble compounds onto unreacted cement clinker grains preventing further hydration. In this study the long t

  17. Application of multi-block methods in cement production

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar

    2008-01-01

    Compressive strength at 1 day of Portland cement as a function of the microstructure of cement was statistically modelled by application of multi-block regression method. The observation X-matrix was partitioned into four blocks, the first block representing the mineralogy, the second particle size...

  18. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  19. Multifunctional Cement Composites Strain and Damage Sensors Applied on Reinforced Concrete (RC Structural Elements

    Directory of Open Access Journals (Sweden)

    Pedro Garcés

    2013-03-01

    Full Text Available In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC beam. Carbon nanofiber (CNFCC and fiber (CFCC cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached, service location (under tension or compression and electrical contacts (embedded or superficial were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8, while CFCC only reached gage factors values of 178.9 (tension or 49.5 (compression. Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.

  20. 聚羧酸减水剂与不同新鲜度水泥的相容性%Compatibility of Polycarboxylate Superplasticizer with Cements of Different Freshness

    Institute of Scientific and Technical Information of China (English)

    赵菊梅; 李茂红; 邓思远; 余红权; 李云; 全明

    2013-01-01

    In order to study the factors influencing the compatibility of polycarboxylate superplasticizer with cements,cement paste fluidity methods were used to evaluate the compatibility between the superplasticizer and cements with different freshness at different temperatures and moistures.The Zeta potential of cements was measured by Zeta potential analyzer,the mean particle sizes were measured by laser particle analyzer,and the cement clinker phases were investigated by X-ray diffraction.The results show that lower cement freshness,lower temperature and higher moisture would lead to lower saturation point of polycarboxylate superplasticizer in cement,higher initial fluidity and lower flow loss,namely,higher compatibility.Compared with the stale cement,the fresh cement was 1.86 mV higher in Zeta potential,2.63 μm larger in particle size,and higher content of C3A and C4AF that would absorb more superplasticizer.It can be concluded that the possible factors that influence the compatibility of cements with the superplasticizer include temperature,moisture,Zeta potential and the clinker phases of cement.%为研究聚羧酸减水剂与水泥相容性的影响因素,采用净浆流动度法测试不同新鲜度、不同温度、不同湿度的水泥与聚羧酸减水剂的相容性,采用Zeta电位仪测试表面电荷、激光粒度仪测试平均粒径、X射线衍射仪测试物相成分.研究结果表明:新鲜度较低、温度较低、湿度较高将导致水泥与聚羧酸减水剂饱和掺量点更低、流动度更高,即相容性更好;新鲜度较高的水泥相对于新鲜度低的水泥Zeta电位高出1.86 mV,平均粒径高出2.63 μm,且对聚羧酸减水剂吸附较多的C3A、C4AF含量较高.可初步推断,导致相容性出现差异的因素主要包括水泥温度、湿度、水泥组分、Zeta电位.

  1. Reducing the permeability of cement by the use of commercially available additives

    International Nuclear Information System (INIS)

    The American Nuclear Society, in anticipation of Federal regulations in the area of waste leachability, formed the ANS 16.1 Working Group to develop a standardized leachability test method. In response to these trends Hittman Nuclear and Development Corporation (HITTMAN) has undertaken a substantial Research and Development program for the evaluation and possible improvement in the quality of cement solidified low-level nuclear power plant wastes. Starting with a series of leach tests, the results of which are in general agreement with previously referenced works, the authors embarked on a program to test and evaluate various commercially available additives designed to reduce the permeability of cement. This report discusses why permeability was considered an important factor, the materials tested, the method of testing and their results

  2. Salt zone cementing; Cimentacao em zonas de sal

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Fernando Jose Parente Neiva; Miranda, Cristiane Richard de; Martins, Andre Leibsohn [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1994-07-01

    This work introduces new concepts in the proposal of NaCl concentrations i cement slurry and operational parameters for cementing halite salt zones. Experiments carried out in the laboratory and in the Surface Hydraulic Simulator using real halite coring allowed the determination of halite dissolution rates in relation to flow, contact time, and initial Na Cl concentration in the cement slurries. An experimental procedure was developed to measure the adherence strength of hardened cement on halite formations. A Computer Simulator was developed with the adjustment of a model representing the physical phenomenon of mass transfer to the experimental results obtained, which enable us to calculate the Na Cl concentration profile on cement slurry after its positioning in the well's annular region, as well as the total mass of dissolved salt. Employment of the methodology developed in this work shall reduce risk of collapsed casing as well as the cost of the slurry. (author)

  3. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  4. In vitro bioactivity of a tricalcium silicate cement

    International Nuclear Information System (INIS)

    Tricalcium silicate is the major constituent of Portland cement and the responsible for their mechanical strength at early stages. In order to be used as and additive of conventional calcium phosphate cement (CPC), in vitro bioactivity of a calcium silicate cement (CSC) after soaking in simulated body fluid (SBF) for 14 days was study. The cement was obtained by mixing Ca3SiO5, obtained by sol-gel process, and a Na2HPO4 solution. The morphological and structural changes of the material before and after soaking were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed the formation of a layer of a Hydroxyapatite (HA) onto the CSC cement after soaking for 1h in SBF that became denser with the increase of soaking time. The study suggests that Ca3SiO5 would be an effective additive to improve the bioactivity and long term strength of conventional CPC. (author)

  5. EFFECT OF PORTLAND-POZZOLAN CEMENTS ON CONCRETE MATURITY

    Directory of Open Access Journals (Sweden)

    Arın YILMAZ

    2004-03-01

    Full Text Available The maturity concept expressed by the combined effect of time and temperature on the concrete is a useful technique for prediction of the strength gain of concrete. According to maturity concept, samples of the same concrete at same maturity whatever combination of temperature and time, have approximately the same strength. Many maturity functions have been proposed for the last 50 years. The validity of these functions are only for ordinary portland cements. In this study, the suitable of traditional maturity functions for different types of Portland-pozzolan cements were investigated and a new maturity-strength relationship was tried to be established. For this purpose, four different pozzolans and one Portland cement was selected. Portland-pozzolan cements were prepared by using three different replacement amounts of % 5, % 20 and 40 % by weight of cement.

  6. Influence of pore structure on compressive strength of cement mortar.

    Science.gov (United States)

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  7. Influence of Pore Structure on Compressive Strength of Cement Mortar

    Directory of Open Access Journals (Sweden)

    Haitao Zhao

    2014-01-01

    Full Text Available This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  8. Effect of supplementary cementing materials on the concrete corrosion control

    International Nuclear Information System (INIS)

    Failure of concrete after a period of years, less than the life expected for which it was designed, may be caused by the environment to which it has been exposed or by a variety of internal causes. The incorporation of supplementary materials has at the Portland cement the purpose of improving the concrete microstructure and also of influence the resistance of concrete to environmental attacks. Different mineral by-products as ground granulated blast furnaces slag (GGBS), silica fume (SF), meta kaolin (MK), fly ash (FA) and other products have been used as supplementary cementing materials. This paper is about the behavior of concrete in the presence of mineral additions. Compared to Portland cements, blended cements show lower heat of hydration, lower permeability, greater resistance to sulphates and sea water. These blended cements find the best application when requirements of durability are regarded as a priority specially on high performance concrete: (Author) 11 refs

  9. The Use of Supersulfated Cement(SSCin Mass Concrete

    Directory of Open Access Journals (Sweden)

    Wang Shu

    2016-01-01

    Full Text Available This paper isfocused on the use of Supersulfated Cement (SSC in mass concrete. The physicalproperties and mechanicalproperty was tested. Contrast with the common cement, this paper studied the temperature rise of hydration and the heat of hydration to obtain the advantage of SSC, which will provide the basis for the use of SSC in mass concrete.The micro properties were tested through Scanning Electron Microscope (SEM. The test shows that the SSC shows better workingperformance than ordinary cement. The compressive strength of SSC under standard curing condition is higher than that under room curing condition. The compressive strength of SSC is increasing with time and the rate of increasing is decreasing. The temperature rise of hydration of SSC are lower than that of ordinary cement. Different with the ordinary cement, the main hydrated products of SSC areettringite and scalycalcium silicate hydrate.

  10. Innovative cement plug setting process reduces risk and lowers NPT

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, T.; Rogers, H.; Lloyd, S.; Quinton, C. [Halliburton Energy Services, Calgary, AB (Canada); Tetrault, N. [Apache Canada, Calgary, AB (Canada)

    2006-07-01

    With increased drilling in mature fields and unconventional reservoirs, Canadian operators are experiencing a higher rate of lost circulation events. When drilling into lower fracture-gradient zones, operators face the risk of drilling through shallower depleted zones. The unique challenges associated with setting cement plugs in such open hole wells were described. The best solution to address lost circulation events is a properly designed cement slurry where cement can be squeezed into the lost circulation zones to strengthen the wellbore when set. The cement plug is drilled through, leaving the residual cement setting inside the problem zones. Since cement plugs are used for a wide range of reasons, such as healing losses, abandonment, and directional drilling, it is important that a competent cement plug is placed the first time. This paper presented a newly developed tool and a special process designed to meet the challenges associated with setting cement plugs. It is based on a tubing-release tool (TRT) in which a sacrificial tubing is placed into the lost circulation zone to balance the cement plug. The sacrificial tubing is released from the drillstring and remains in the wellbore. The TRT has been used as a plug-setting aid for lost-circulation plugs; shallow-water shut-off; kick-off plug placement; and multizone plugs to abandon. An overview of the TRT features was presented. The tool and process has been used by more than 20 operating companies around the world to successfully place cement plugs downhole on the first attempt. The disconnect has been used successfully in more than 120 wells throughout North and South America, Europe, the Middle East, and Australia. It has proven to lower the risk and non-productive time associated with drilling in mature fields and unconventional reservoirs. 7 refs., 5 figs.

  11. Porous surface modified bioactive bone cement for enhanced bone bonding.

    Directory of Open Access Journals (Sweden)

    Qiang He

    Full Text Available BACKGROUND: Polymethylmethacrylate bone cement cannot provide an adhesive chemical bonding to form a stable cement-bone interface. Bioactive bone cements show bone bonding ability, but their clinical application is limited because bone resorption is observed after implantation. Porous polymethylmethacrylate can be achieved with the addition of carboxymethylcellulose, alginate and gelatin microparticles to promote bone ingrowth, but the mechanical properties are too low to be used in orthopedic applications. Bone ingrowth into cement could decrease the possibility of bone resorption and promote the formation of a stable interface. However, scarce literature is reported on bioactive bone cements that allow bone ingrowth. In this paper, we reported a porous surface modified bioactive bone cement with desired mechanical properties, which could allow for bone ingrowth. MATERIALS AND METHODS: The porous surface modified bioactive bone cement was evaluated to determine its handling characteristics, mechanical properties and behavior in a simulated body fluid. The in vitro cellular responses of the samples were also investigated in terms of cell attachment, proliferation, and osteoblastic differentiation. Furthermore, bone ingrowth was examined in a rabbit femoral condyle defect model by using micro-CT imaging and histological analysis. The strength of the implant-bone interface was also investigated by push-out tests. RESULTS: The modified bone cement with a low content of bioactive fillers resulted in proper handling characteristics and adequate mechanical properties, but slightly affected its bioactivity. Moreover, the degree of attachment, proliferation and osteogenic differentiation of preosteoblast cells was also increased. The results of the push-out test revealed that higher interfacial bonding strength was achieved with the modified bone cement because of the formation of the apatite layer and the osseointegration after implantation in the bony

  12. 76 FR 24519 - Gray Portland Cement and Cement Clinker From Japan; Institution of a Five-Year Review Concerning...

    Science.gov (United States)

    2011-05-02

    ... order on imports of gray portland cement and cement clinker from Japan (56 FR 21658). Following first...), and part 207, subparts A, D, E, and F (19 CFR part 207), as most recently amended at 74 FR 2847... FR 68979). Following second five-year reviews by Commerce and the Commission, effective June 16,...

  13. [Comparison of fixation effects of heavy metals between cement rotary kiln co-processing and cement solidification/stabilization].

    Science.gov (United States)

    Zhang, Jun-li; Liu, Jian-guo; Li, Cheng; Jin, Yi-ying; Nie, Yong-feng

    2008-04-01

    Both cement rotary kiln co-processing hazardous wastes and cement solidification/stabilization could dispose heavy metals by fixation. Different fixation mechanisms lead to different fixation effects. The same amount of heavy metal compounds containing As, Cd, Cr, Cu, Pb, Zn were treated by the two kinds of fixation technologies. GB leaching test, TCLP tests and sequential extraction procedures were employed to compare the fixation effects of two fixation technologies. The leached concentration and chemical species distribution of heavy metals in two grounded mortar samples were analyzed and the fixation effects of two kinds of technologies to different heavy metals were compared. The results show the fixation effect of cement rotary kiln co-processing technology is better than cement solidification/stabilization technology to As, Pb, Zn. Calcinations in cement rotary kiln and then hydration help As, Pb, Zn contained in hazardous wastes transform to more steady chemical species and effectively dispose these heavy metals compounds. Cr3+ is liable to be converted to much more toxic and more mobile Cr6+ state in cement rotary kiln. And so Cr wastes are more fit for treatment by cement solidification/stabilization technology. The work could provide a basis when choosing disposal technologies for different heavy metals and be helpful to improve the application and development of cement rotary kiln co-processing hazardous wastes.

  14. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    Science.gov (United States)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  15. Wet deposition of mercury within the vicinity of a cement plant before and during cement plant maintenance

    Science.gov (United States)

    Rothenberg, Sarah E.; McKee, Lester; Gilbreath, Alicia; Yee, Donald; Connor, Mike; Fu, Xuewu

    2010-03-01

    Hg species (total mercury, methylmercury, reactive mercury) in precipitation were investigated in the vicinity of the Lehigh Hanson Permanente Cement Plant in the San Francisco Bay Area, CA., USA. Precipitation was collected weekly between November 29, 2007 and March 20, 2008, which included the period in February and March 2008 when cement production was minimized during annual plant maintenance. When the cement plant was operational, the volume weighted mean (VWM) and wet depositional flux for total Hg (Hg T) were 6.7 and 5.8 times higher, respectively, compared to a control site located 3.5 km east of the cement plant. In February and March, when cement plant operations were minimized, levels were approximately equal at both sites (the ratio for both parameters was 1.1). Due to the close proximity between the two sites, meteorological conditions (e.g., precipitation levels, wind direction) were similar, and therefore higher VWM Hg T levels and Hg T deposition likely reflected increased Hg emissions from the cement plant. Methylmercury (MeHg) and reactive Hg (Hg(II)) were also measured; compared to the control site, the VWM for MeHg was lower at the cement plant (the ratio = 0.75) and the VWM for Hg(II) was slightly higher (ratio = 1.2), which indicated the cement plant was not likely a significant source of these Hg species to the watershed.

  16. Effect of Duration of Exposure to Cement Dust on Respiratory Function of Non-Smoking Cement Mill Workers

    Science.gov (United States)

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Al Masri, Abeer A.; Al Rouq, Fawzia; Azeem, Muhammad Abdul

    2013-01-01

    This study aimed to determine the effect of long term exposure to cement dust on lung function in non-smoking cement mill workers. This is a cross-sectional study of respiratory functions. Spirometry was performed in 100 apparently healthy volunteers; 50 non-smoking cement mill workers and 50 non-smoking un-exposed subjects. Based on the duration of exposure, cement mill workers were divided into three groups, less than 5, 5–10 and greater than 10 years. All subjects were individually matched for age, height, weight, and socioeconomic status. Pulmonary function test was performed by using an electronic spirometer. Significant reduction was observed in the mean values of Forced Vital Capacity (FVC), Forced Expiratory Volume in one second (FEV1), Peak Expiratory Flow (PEF) and Maximal Voluntary Ventilation in cement mill workers who had been working in the cement industry for more than 10 years compared to their matched un-exposed group. Lung functions in cement mill workers were significantly impaired and results show a long term duration response effect of years of exposure to cement dust on lung functions. PMID:23325026

  17. Effect of Duration of Exposure to Cement Dust on Respiratory Function of Non-Smoking Cement Mill Workers

    Directory of Open Access Journals (Sweden)

    Fawzia Al Rouq

    2013-01-01

    Full Text Available This study aimed to determine the effect of long term exposure to cement dust on lung function in non-smoking cement mill workers. This is a cross-sectional study of respiratory functions. Spirometry was performed in 100 apparently healthy volunteers; 50 non-smoking cement mill workers and 50 non-smoking un-exposed subjects. Based on the duration of exposure, cement mill workers were divided into three groups, less than 5, 5–10 and greater than 10 years. All subjects were individually matched for age, height, weight, and socioeconomic status. Pulmonary function test was performed by using an electronic spirometer. Significant reduction was observed in the mean values of Forced Vital Capacity (FVC, Forced Expiratory Volume in one second (FEV1, Peak Expiratory Flow (PEF and Maximal Voluntary Ventilation in cement mill workers who had been working in the cement industry for more than 10 years compared to their matched un-exposed group. Lung functions in cement mill workers were significantly impaired and results show a long term duration response effect of years of exposure to cement dust on lung functions.

  18. Do cement nanoparticles exist in space ?

    CERN Document Server

    Bilalbegovic, G; Mohacek-Grosev, V

    2014-01-01

    The calcium-silicate-hydrate is used to model properties of cement on Earth. We study cementitious nanoparticles and propose these structures as components of cosmic dust grains. Quantum density functional theory methods are applied for the calculation of infrared spectra of Ca4Si4O14H4, Ca6Si3O13H2, and Ca12Si6O26H4 clusters. We find bands distributed over the near, mid and far-infrared region. A specific calcium-silicate-hydrate spectral feature at 14 microns, together with the bands at 10 and 18 microns which exist for other silicates as well, could be used for a detection of cosmic cement. We compare calculated bands with the 14 microns features in the spectra of HD 45677, HD 44179, and IRC+10420 which were observed by Infrared Space Observatory and classified as remaining. High abundance of oxygen atoms in cementitious nanoparticles could partially explain observed depletion of this element from the interstellar medium into dust grains.

  19. Radioactive wastes dispersed in stabilized ash cements

    International Nuclear Information System (INIS)

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO2) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO2 to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO2 to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms

  20. Radioactive wastes dispersed in stabilized ash cements

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.