WorldWideScience

Sample records for cellulosic ethanol production

  1. African perspective on cellulosic ethanol production

    DEFF Research Database (Denmark)

    Bensah, Edem Cudjoe; Kemausuor, Francis; Miezah, Kodwo;

    2015-01-01

    widely available crops and municipal waste and determines their respective theoretical ethanol potential (around 22 billion litres annually). It further reviews stages involved in the production of cellulosic ethanol, focussing on processing methods that can be adapted to current situation in most...... materials. Though the falling price of enzymes is improving economic production of ethanol, advancements in heterogeneous catalytic hydrolysis will considerably favour economic production of ethanol in Africa due to the potential of recycling and reusing solid acid catalysts....

  2. Prospects for Irradiation in Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Anita Saini

    2015-01-01

    Full Text Available Second generation bioethanol production technology relies on lignocellulosic biomass composed of hemicelluloses, celluloses, and lignin components. Cellulose and hemicellulose are sources of fermentable sugars. But the structural characteristics of lignocelluloses pose hindrance to the conversion of these sugar polysaccharides into ethanol. The process of ethanol production, therefore, involves an expensive and energy intensive step of pretreatment, which reduces the recalcitrance of lignocellulose and makes feedstock more susceptible to saccharification. Various physical, chemical, biological, or combined methods are employed to pretreat lignocelluloses. Irradiation is one of the common and promising physical methods of pretreatment, which involves ultrasonic waves, microwaves, γ-rays, and electron beam. Irradiation is also known to enhance the effect of saccharification. This review explains the role of different radiations in the production of cellulosic ethanol.

  3. USE OF IONIC LIQUIDS FOR IMPROVEMENT OF CELLULOSIC ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2011-02-01

    Full Text Available Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.

  4. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.

    Science.gov (United States)

    Brethauer, Simone; Wyman, Charles E

    2010-07-01

    Ethanol made biologically from a variety of cellulosic biomass sources such as agricultural and forestry residues, grasses, and fast growing wood is widely recognized as a unique sustainable liquid transportation fuel with powerful economic, environmental, and strategic attributes, but production costs must be competitive for these benefits to be realized. Continuous hydrolysis and fermentation processes offer important potential advantages in reducing costs, but little has been done on continuous processing of cellulosic biomass to ethanol. As shown in this review, some continuous fermentations are now employed for commercial ethanol production from cane sugar and corn to take advantage of higher volumetric productivity, reduced labor costs, and reduced vessel down time for cleaning and filling. On the other hand, these systems are more susceptible to microbial contamination and require more sophisticated operations. Despite the latter challenges, continuous processes could be even more important to reducing the costs of overcoming the recalcitrance of cellulosic biomass, the primary obstacle to low cost fuels, through improving the effectiveness of utilizing expensive enzymes. In addition, continuous processing could be very beneficial in adapting fermentative organisms to the wide range of inhibitors generated during biomass pretreatment or its acid catalyzed hydrolysis. If sugar generation rates can be increased, the high cell densities in a continuous system could enable higher productivities and yields than in batch fermentations. PMID:20006926

  5. Review: Continuous hydrolysis and fermentation for cellulosic ethanol production.

    Science.gov (United States)

    Brethauer, Simone; Wyman, Charles E

    2010-07-01

    Ethanol made biologically from a variety of cellulosic biomass sources such as agricultural and forestry residues, grasses, and fast growing wood is widely recognized as a unique sustainable liquid transportation fuel with powerful economic, environmental, and strategic attributes, but production costs must be competitive for these benefits to be realized. Continuous hydrolysis and fermentation processes offer important potential advantages in reducing costs, but little has been done on continuous processing of cellulosic biomass to ethanol. As shown in this review, some continuous fermentations are now employed for commercial ethanol production from cane sugar and corn to take advantage of higher volumetric productivity, reduced labor costs, and reduced vessel down time for cleaning and filling. On the other hand, these systems are more susceptible to microbial contamination and require more sophisticated operations. Despite the latter challenges, continuous processes could be even more important to reducing the costs of overcoming the recalcitrance of cellulosic biomass, the primary obstacle to low cost fuels, through improving the effectiveness of utilizing expensive enzymes. In addition, continuous processing could be very beneficial in adapting fermentative organisms to the wide range of inhibitors generated during biomass pretreatment or its acid catalyzed hydrolysis. If sugar generation rates can be increased, the high cell densities in a continuous system could enable higher productivities and yields than in batch fermentations.

  6. Enhancing ethanol production from cellulosic sugars using Scheffersomyces (Pichia) stipitis.

    Science.gov (United States)

    Okonkwo, C C; Azam, M M; Ezeji, T C; Qureshi, N

    2016-07-01

    Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L(-1) ethanol with a productivity of 0.17 ± 0.00 g L(-1) h(-1), while xylose plus 3 g L(-1) CaCO3 resulted in the production of 24.68 ± 0.75 g L(-1) ethanol with a productivity of 0.21 ± 0.01 g L(-1) h(-1). Use of xylose plus glucose in combination with 3 g L(-1) CaCO3 resulted in the production of 47.37 ± 0.55 g L(-1) ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L(-1) h(-1). These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L(-1) CaCl2 resulted in the production of 44.84 ± 0.28 g L(-1) ethanol with a productivity of 0.37 ± 0.02 g L(-1) h(-1). Use of glucose plus 3 g L(-1) CaCO3 resulted in the production of 57.39 ± 1.41 g L(-1) ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues. PMID:26966011

  7. Method for producing ethanol and co-products from cellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Quang A

    2013-10-01

    The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

  8. Cellulosic ethanol production from agricultural residues in Nigeria

    International Nuclear Information System (INIS)

    Nigeria′s Biofuels Policy introduced in 2007 mandates a 10% blend (E10) of bioethanol with gasoline. This study investigates the potential for the development of a cellulosic ethanol industry based on the availability of agricultural residues and models the number of commercial processing facilities that could be sited in the six Geo-political zones. The potential for cellulosic ethanol production from agricultural residues in Nigeria is 7556 km3 per annum exceeding the mandate of 10% renewable fuel required and providing the potential for 12 large- and 11 medium-scale processing facilities based on the use of a single feedstock. Cassava and yam peelings provided in excess of 80% of the process residues available with enough feedstock to supply 10 large-scale facilities with a fairly even distribution across the zones. Sorghum straw, millet straw and maize stalks represented 75% of the potential resource available from field residues with the potential to supply 2 large- and 7 medium-scale processing facilities, all of which would be located in the north of the country. When a multi-feedstock approach is used, this provides the potential for either 29 large- or 58 medium-scale facilities based on outputs of 250 and 125 km3 per annum respectively. - Highlights: • Nigeria′s Biofuels Policy mandates a 10% blend of bioethanol with gasoline. • Total bioethanol production from agricultural residues was 7556 km3 per annum. • Process residues offer the greatest potential accounting for 62% of production. • Nigeria has the potential for 12 large- and 11 medium scale commercial. • The use of mixed feedstocks significantly increases the potential for production

  9. Optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production

    International Nuclear Information System (INIS)

    The purpose of this project is optimization of upstream and development of cellulose hydrolysis process for cellulosic bio-ethanol production. The 2nd year Research scope includes: 1) Optimization of pre-treatment conditions for enzymatic hydrolysis of lignocellulosic biomass and 2) Demonstration of enzymatic hydrolysis by recombinant enzymes. To optimize the pretreatment, we applied two processes: a wet process (wet milling + popping), and dry process (popping + dry milling). Out of these, the wet process presented the best glucose yield with a 93.1% conversion, while the dry process yielded 69.6%, and the unpretreated process yielded <20%. The recombinant cellulolytic enzymes showed very high specific activity, about 80-1000 times on CMC and 13-70 times on filter paper at pH 3.5 and 55 .deg. C

  10. Modelling ethanol production from cellulose: separate hydrolysis and fermentation versus simultaneous saccharification and fermentation

    NARCIS (Netherlands)

    Drissen, R.E.T.; Maas, R.H.W.; Tramper, J.; Beeftink, H.H.

    2009-01-01

    In ethanol production from cellulose, enzymatic hydrolysis, and fermentative conversion may be performed sequentially (separate hydrolysis and fermentation, SHF) or in a single reaction vessel (simultaneous saccharification and fermentation, SSF). Opting for either is essentially a trade-off between

  11. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning;

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  12. Stochastic molecular model of enzymatic hydrolysis of cellulose for ethanol production

    OpenAIRE

    Kumar, Deepak; Murthy, Ganti S.

    2013-01-01

    Background During cellulosic ethanol production, cellulose hydrolysis is achieved by synergistic action of cellulase enzyme complex consisting of multiple enzymes with different mode of actions. Enzymatic hydrolysis of cellulose is one of the bottlenecks in the commercialization of the process due to low hydrolysis rates and high cost of enzymes. A robust hydrolysis model that can predict hydrolysis profile under various scenarios can act as an important forecasting tool to improve the hydrol...

  13. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  14. Lower-cost cellulosic ethanol production using cellobiose fermenting yeast Clavispora NRRL Y-50464

    Science.gov (United States)

    For ethanol production from cellulosic materials, there are generally two major steps needed including enzymatic hydrolysis to break down biomass sugars and microbial fermentation to convert available simple sugars into ethanol. It often requires two different kinds of microorganisms since ethanolog...

  15. Implications of Industrial Processing Strategy on Cellulosic Ethanol Production at High Solids Concentrations

    DEFF Research Database (Denmark)

    Cannella, David

    solids strategy resulted critical for its cost effectiveness: high concentration of initial biomass it will lead to high concentration of the final product (ethanol), thus more convenient to isolate. This thesis investigate the implementation of a high solids loading concept into cellulosic ethanol...... technology using new enzymatic cellulolytic cocktails, and how a high solids setup may affect the overall process design. The thesis focuses on two main biomasses: an agricultural feedstock such as wheat straw and a woody feedstock such as Norwegian spruce. The best performing strategy for cellulosic ethanol...

  16. Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie; Fridley, David

    2008-07-17

    California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

  17. Study of bio-ethanol production from cellulosic waste (rice straw)

    OpenAIRE

    Tadayosi, YOSHIMURA; Marie, HATAKAWA; Fumio, TAKAHASHI; Takatoshi, KAWASHIMA

    2012-01-01

    This basic research was carried out on bio-ethanol derived from cellulosic waste (rice straw). In view of the fact that rice straw is incorporated into the soil after harvesting the grains to increase mineral soil content, we examined the option of using high pressure pretreatment which does not involve chemical treatment, thus allowing residues from bio-ethanol production to be returned to the soil as a liquid fertilizer. Results from this study showed that i) high-pressure treatment enhance...

  18. Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Murthy Ganti S

    2011-09-01

    Full Text Available Abstract Background While advantages of biofuel have been widely reported, studies also highlight the challenges in large scale production of biofuel. Cost of ethanol and process energy use in cellulosic ethanol plants are dependent on technologies used for conversion of feedstock. Process modeling can aid in identifying techno-economic bottlenecks in a production process. A comprehensive techno-economic analysis was performed for conversion of cellulosic feedstock to ethanol using some of the common pretreatment technologies: dilute acid, dilute alkali, hot water and steam explosion. Detailed process models incorporating feedstock handling, pretreatment, simultaneous saccharification and co-fermentation, ethanol recovery and downstream processing were developed using SuperPro Designer. Tall Fescue (Festuca arundinacea Schreb was used as a model feedstock. Results Projected ethanol yields were 252.62, 255.80, 255.27 and 230.23 L/dry metric ton biomass for conversion process using dilute acid, dilute alkali, hot water and steam explosion pretreatment technologies respectively. Price of feedstock and cellulose enzymes were assumed as $50/metric ton and 0.517/kg broth (10% protein in broth, 600 FPU/g protein respectively. Capital cost of ethanol plants processing 250,000 metric tons of feedstock/year was $1.92, $1.73, $1.72 and $1.70/L ethanol for process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Ethanol production cost of $0.83, $0.88, $0.81 and $0.85/L ethanol was estimated for production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment respectively. Water use in the production process using dilute acid, dilute alkali, hot water and steam explosion pretreatment was estimated 5.96, 6.07, 5.84 and 4.36 kg/L ethanol respectively. Conclusions Ethanol price and energy use were highly dependent on process conditions used in the ethanol production plant. Potential for

  19. Preliminary analysis of cellulose-based ethanol production: pathways and challenges in the Rio Grande do Sul alcohol production

    Directory of Open Access Journals (Sweden)

    André Luiz Fialho Blos

    2009-08-01

    Full Text Available The production of ethanol in Brazil has contributed towards the replacement of fossil fuels over the past few years. Among those initiatives, the production of ethanol from cellulose is one of the areas drawing the interest of different research centers in developed countries. Hence, the production of ethanol opens up new perspectives for Brazilian states. In light of this backdrop, this paper aims at characterizing and understanding the state of the art in different technological courses and production configuration alternatives present in different parts of the world regarding cellulose-based ethanol production. To that end, research was conducted at the lumber and industrial companies connected to cellulose-based ethanol production. In other parts of the globe, the ability of planned forests to provide energy is promising, given the positive energy balance and the increase in carbon dioxide sequestering, paramount in times of global warming. The association with other crops may become a source of productive diversity for small farmers residing in degraded areas or those presenting low economic dynamism. There is the need to develop new research efforts and look more deeply into the environmental issues involved, as well as further assessment on the economic and social viability of such projects.Key-words: cellulosic ethanol, biorefinery, biomass, agrienergy, bioenergy.

  20. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates.

    Science.gov (United States)

    Ryu, Seunghyun; Karim, Muhammad Nazmul

    2011-08-01

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum--endoglucanase (Cel5A), exoglucanase (Cel9E), and β-glucosidase--on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 ± 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 ± 0.15%. Ethanol production was 0.30 ± 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 ± 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. PMID:21519935

  1. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  2. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    OpenAIRE

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E

    2009-01-01

    Municipal solid waste (MSW) is an attractive cellulosic resource for sustainable production of transportation fuels and chemicals because of its abundance, the need to find uses for this problematic waste, and its low and perhaps negative cost. However, significant heterogeneity and possible toxic contaminants are barriers to biological conversion to ethanol and other products. In this study, we obtained six fractions of sorted MSW from a waste processing facility in Fontana, California: 1) f...

  3. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes.

    Science.gov (United States)

    Maehara, Tomoko; Ichinose, Hitomi; Furukawa, Takanori; Ogasawara, Wataru; Takabatake, Koji; Kaneko, Satoshi

    2013-03-01

    Ethanol production by Flammulina velutipes from high substrate concentrations was evaluated. F. velutipes produces approximately 40-60 g l(-1) ethanol from 15% (w/v) D-glucose, D-fructose, D-mannose, sucrose, maltose, and cellobiose, with the highest conversion rate of 83% observed using cellobiose as a carbon source. We also attempted to assess direct ethanol fermentation from sugarcane bagasse cellulose (SCBC) by F. velutipes. The hydrolysis rate of 15% (w/v) SCBC with commercial cellulase was approximately 20%. In contrast, F. velutipes was able to produce a significant amount of ethanol from 15% SCBC with the production of β-glucosidase, cellobohydrolase, and cellulase, although the addition of a small amount of commercial cellulase to the culture was required for the conversion. When 9 mg g(-1) biomass of commercial cellulase was added to cultures, 0.36 g of ethanol was produced from 1 g of cellulose, corresponding to an ethanol conversion rate of 69.6%. These results indicate that F. velutipes would be useful for consolidated bioprocessing of lignocellulosic biomass to bioethanol.

  4. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis.

    Science.gov (United States)

    Piriya, P Sobana; Vasan, P Thirumalai; Padma, V S; Vidhyadevi, U; Archana, K; Vennison, S John

    2012-01-01

    The ethanol fermenting genes such as pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adh II) were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v) ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  5. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    P. Sobana Piriya

    2012-01-01

    Full Text Available The ethanol fermenting genes such as pyruvate decarboxylase (pdc and alcohol dehydrogenase II (adh II were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  6. Nanofibrillated Cellulose (NFC: A High-Value Co-Product that Improves the Economics of Cellulosic Ethanol Production

    Directory of Open Access Journals (Sweden)

    Qiong Song

    2014-02-01

    Full Text Available Cellulosic ethanol is a sustainable alternative to petroleum as a transportation fuel, which could be made biologically from agricultural and forestry residues, municipal waste, or herbaceous and woody crops. Instead of putting efforts on steps overcoming the natural resistance of plants to biological breakdown, our study proposes a unique pathway to improve the outcome of the process by co-producing high-value nanofibrillated cellulose (NFC, offering a new economic leverage for cellulosic ethanol to compete with fossil fuels in the near future. In this study, glucose has been produced by commercial enzymes while the residual solids are converted into NFC via sonification. Here, we report the morphology of fibers changed through the process and yield of glucose in the enzymatic hydrolysis step.

  7. The feasibility of producing adequate feedstock for year–round cellulosic ethanol production in an intensive agricultural fuelshed

    Science.gov (United States)

    Uden, Daniel R.; Mitchell, Rob B.; Allen, Craig R.; Guan, Qingfeng; McCoy, Tim D.

    2013-01-01

    To date, cellulosic ethanol production has not been commercialized in the United States. However, government mandates aimed at increasing second-generation biofuel production could spur exploratory development in the cellulosic ethanol industry. We conducted an in-depth analysis of the fuelshed surrounding a starch-based ethanol plant near York, Nebraska that has the potential for cellulosic ethanol production. To assess the feasibility of supplying adequate biomass for year-round cellulosic ethanol production from residual maize (Zea mays) stover and bioenergy switchgrass (Panicum virgatum) within a 40-km road network service area of the existing ethanol plant, we identified ∼14,000 ha of marginally productive cropland within the service area suitable for conversion from annual rowcrops to switchgrass and ∼132,000 ha of maize-enrolled cropland from which maize stover could be collected. Annual maize stover and switchgrass biomass supplies within the 40-km service area could range between 429,000 and 752,000 metric tons (mT). Approximately 140–250 million liters (l) of cellulosic ethanol could be produced, rivaling the current 208 million l annual starch-based ethanol production capacity of the plant. We conclude that sufficient quantities of biomass could be produced from maize stover and switchgrass near the plant to support year-round cellulosic ethanol production at current feedstock yields, sustainable removal rates and bioconversion efficiencies. Modifying existing starch-based ethanol plants in intensive agricultural fuelsheds could increase ethanol output, return marginally productive cropland to perennial vegetation, and remove maize stover from productive cropland to meet feedstock demand.

  8. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions

    DEFF Research Database (Denmark)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr;

    2013-01-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated...... wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50. °C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50. °C, though ideal for ethanol yield, should be kept short or carried out at lower temperature...... to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose...

  9. Lower-cost cellulosic ethanol production from corn stover using ß-glucosidase producing yeast Clavispora NRRL Y-50464

    Science.gov (United States)

    For cellulosic ethanol production, decomposition of cellulosic polymers and enzymatic hydrolysis and saccharification are necessary for microbes to efficiently utilize the biomass harbored sugars. The need of additional enzymes and processing steps increase cost of biofuels. To reduce the cost of ce...

  10. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome

    Directory of Open Access Journals (Sweden)

    Madan Bhawna

    2011-11-01

    Full Text Available Abstract Background The recalcitrant nature of cellulosic materials and the high cost of enzymes required for efficient hydrolysis are the major impeding steps to their practical usage for ethanol production. Ideally, a recombinant microorganism, possessing the capability to utilize cellulose for simultaneous growth and ethanol production, is of great interest. We have reported recently the use of a yeast consortium for the functional presentation of a mini-cellulosome structure onto the yeast surface by exploiting the specific interaction of different cohesin-dockerin pairs. In this study, we engineered a yeast consortium capable of displaying a functional mini-cellulosome for the simultaneous growth and ethanol production on phosphoric acid swollen cellulose (PASC. Results A yeast consortium composed of four different populations was engineered to display a functional mini-cellulosome containing an endoglucanase, an exoglucanase and a β-glucosidase. The resulting consortium was demonstrated to utilize PASC for growth and ethanol production. The final ethanol production of 1.25 g/L corresponded to 87% of the theoretical value and was 3-fold higher than a similar yeast consortium secreting only the three cellulases. Quantitative PCR was used to enumerate the dynamics of each individual yeast population for the two consortia. Results indicated that the slight difference in cell growth cannot explain the 3-fold increase in PASC hydrolysis and ethanol production. Instead, the substantial increase in ethanol production is consistent with the reported synergistic effect on cellulose hydrolysis using the displayed mini-cellulosome. Conclusions This report represents a significant step towards the goal of cellulosic ethanol production. This engineered yeast consortium displaying a functional mini-cellulosome demonstrated not only the ability to grow on the released sugars from PASC but also a 3-fold higher ethanol production than a similar yeast

  11. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  12. Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, A. J.; Coors, J. G.; de Leon, N.; Wolfrum, E. J.; Hames, B. R.; Sluiter, A. D.; Weimer, P. J.

    2009-01-01

    Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.

  13. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    Science.gov (United States)

    Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.

    2012-03-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.

  14. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase

    Directory of Open Access Journals (Sweden)

    Kim Sujin

    2013-02-01

    Full Text Available Abstract Background Cellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP, combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic bioethanol. In this study, we developed a cellulolytic yeast consortium for CBP, based on the surface display of cellulosome structure, mimicking the cellulolytic bacterium, Clostridium thermocellum. Results We designed a cellulolytic yeast consortium composed of four different yeast strains capable of either displaying a scaffoldin (mini CipA containing three cohesin domains derived from C. thermocellum, or secreting one of the three types of cellulases, C. thermocellum CelA (endoglucanase containing its own dockerin, Trichoderma reesei CBHII (exoglucanase fused with an exogenous dockerin from C. thermocellum, or Aspergillus aculeatus BGLI (β-glucosidase. The secreted dockerin-containing enzymes, CelA and CBHI, were randomly assembled to the surface-displayed mini CipA via cohesin-dockerin interactions. On the other hand, BGLI was independently assembled to the cell surface since we newly found that it already has a cell adhesion characteristic. We optimized the cellulosome activity and ethanol production by controlling the combination ratio among the four yeast strains. A mixture of cells with the optimized mini CipA:CelA:CBHII:BGLI ratio of 2:3:3:0.53 produced 1.80 g/l ethanol after 94 h, indicating about 20% increase compared with a consortium composed of an equal amount of each cell type (1.48 g/l. Conclusions We produced cellulosic ethanol using a cellulolytic yeast consortium, which is composed of cells displaying mini cellulosomes generated via random assembly of CelA and CBHII to a mini CipA, and cells displaying BGLI independently. One

  15. Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

    2010-06-01

    A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

  16. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved.

    Science.gov (United States)

    Li, Yuanjing; Tian, Chunjie; Tian, Hua; Zhang, Jiliang; He, Xin; Ping, Wenxiang; Lei, Hong

    2012-12-01

    Nowadays, bacterial cellulose has played more and more important role as new biological material for food industry and medical and industrial products based on its unique properties. However, it is still a difficult task to improve the production of bacterial cellulose, especially a large number of byproducts are produced in the metabolic biosynthesis processes. To improve bacterial cellulose production, ethanol and sodium citrate are added into the medium during the fermentation, and the activities of key enzymes and concentration of extracellular metabolites are measured to assess the changes of the metabolic flux of the hexose monophosphate pathway (HMP), the Embden-Meyerhof-Parnas pathway (EMP), and the tricarboxylic acid cycle (TCA). Our results indicate that ethanol functions as energy source for ATP generation at the early stage of the fermentation in the HMP pathway and the supplementation of ethanol significantly reduces glycerol generation (a major byproduct). While in the EMP pathway, sodium citrate plays a key role, and its supplementation results in the byproducts (mainly acetic acid and pyruvic acid) entering the gluconeogenesis pathway for cellulose synthesis. Furthermore, by adding ethanol and sodium citrate, the main byproduct citric acid in the TCA cycle is also reduced significantly. It is concluded that bacterial cellulose production can be improved by increasing energy metabolism and reducing the formation of metabolic byproducts through the metabolic regulations of the bypasses.

  17. Heterogeneous Catalysis of C–O Bond Cleavage for Cellulose Deconstruction: A Potential Pathway for Ethanol Production

    OpenAIRE

    Crews, Kristy; Reeves, Crystal; Thomas, Porsha; Abugri, Daniel; Russell, Albert; Michael L. Curry

    2014-01-01

    Due to difficulty deconstructing the linkages between lignin, hemicellulose and cellulose during the conversion of cellulose to sugar, the commercial production of cellulosic ethanol is limited. This can be overcome by using a high surface-area metal catalyst. In this study, high surface-area metal NPs were synthesized using 20 mM of chloroplatinic acid and cobalt chloride prepared in THF with 0.1 mM of generation four poly(amido)amine (PAMAM) terminated dendrimer (G4-NH2) prepared in methano...

  18. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  19. Effect of Yeast Extract and Vitamin B12 on Ethanol Production from Cellulose by Clostridium thermocellum I-1-B

    OpenAIRE

    Sato, Kanji; Goto, Shingo; Yonemura, Sotaro; Sekine, Kenji; Okuma, Emiko; Takagi, Yoshio; Hon-Nami, Koyu; Saiki, Takashi

    1992-01-01

    Addition to media of yeast extract, a vitamin mixture containing vitamin B12, biotin, pyridoxamine, and p-aminobenzoic acid, or vitamin B12 alone enhanced formation of ethanol but decreased lactate production in the fermentation of cellulose by Clostridium thermocellum I-1-B. A similar effect was not observed with C. thermocellum ATCC 27405 and JW20.

  20. Influence of the crystalline structure of cellulose on the production of ethanol from lignocellulose biomass

    Science.gov (United States)

    Smuga-Kogut, Małgorzata; Zgórska, Kazimiera; Szymanowska-Powałowska, Daria

    2016-01-01

    In recent years, much attention has been devoted to the possibility of using lignocellulosic biomass for energy. Bioethanol is a promising substitute for conventional fossil fuels and can be produced from straw and wood biomass. Therefore, the aim of this paper was to investigate the effect of 1-ethyl-3-methylimidazolium pretreatment on the structure of cellulose and the acquisition of reducing sugars and bioethanol from cellulosic materials. Material used in the study was rye straw and microcrystalline cellulose subjected to ionic liquid 1-ethyl-3-methylimidazolium pretreatment. The morphology of cellulose fibres in rye straw and microcrystalline cellulose was imaged prior to and after ionic liquid pretreatment. Solutions of ionic liquid-treated and untreated cellulosic materials were subjected to enzymatic hydrolysis in order to obtain reducing sugars, which constituted a substrate for alcoholic fermentation. An influence of the ionic liquid on the cellulose structure, accumulation of reducing sugars in the process of hydrolysis of this material, and an increase in ethanol amount after fermentation was observed. The ionic liquid did not affect cellulolytic enzymes negatively and did not inhibit yeast activity. The amount of reducing sugars and ethyl alcohol was higher in samples purified with 1-ethyl-3-methy-limidazolium acetate. A change in the supramolecular structure of cellulose induced by the ionic liquid was also observed.

  1. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.

  2. Cost evaluation of cellulase enzyme for industrial-scale cellulosic ethanol production based on rigorous Aspen Plus modeling.

    Science.gov (United States)

    Liu, Gang; Zhang, Jian; Bao, Jie

    2016-01-01

    Cost reduction on cellulase enzyme usage has been the central effort in the commercialization of fuel ethanol production from lignocellulose biomass. Therefore, establishing an accurate evaluation method on cellulase enzyme cost is crucially important to support the health development of the future biorefinery industry. Currently, the cellulase cost evaluation methods were complicated and various controversial or even conflict results were presented. To give a reliable evaluation on this important topic, a rigorous analysis based on the Aspen Plus flowsheet simulation in the commercial scale ethanol plant was proposed in this study. The minimum ethanol selling price (MESP) was used as the indicator to show the impacts of varying enzyme supply modes, enzyme prices, process parameters, as well as enzyme loading on the enzyme cost. The results reveal that the enzyme cost drives the cellulosic ethanol price below the minimum profit point when the enzyme is purchased from the current industrial enzyme market. An innovative production of cellulase enzyme such as on-site enzyme production should be explored and tested in the industrial scale to yield an economically sound enzyme supply for the future cellulosic ethanol production.

  3. Immobilized Kluyveromyces marxianus cells in carboxymethyl cellulose for production of ethanol from cheese whey: experimental and kinetic studies.

    Science.gov (United States)

    Roohina, Fatemeh; Mohammadi, Maedeh; Najafpour, Ghasem D

    2016-09-01

    Cheese whey fermentation to ethanol using immobilized Kluyveromyces marxianus cells was investigated in batch and continuous operation. In batch fermentation, the yeast cells were immobilized in carboxymethyl cellulose (CMC) polymer and also synthesized graft copolymer of CMC with N-vinyl-2-pyrrolidone, denoted as CMC-g-PVP, and the efficiency of the two developed cell entrapped beads for lactose fermentation to ethanol was examined. The yeast cells immobilized in CMC-g-PVP performed slightly better than CMC with ethanol production yields of 0.52 and 0.49 g ethanol/g lactose, respectively. The effect of supplementation of cheese whey with lactose (42, 70, 100 and 150 g/l) on fermentative performance of K. marxianus immobilized in CMC beads was considered and the results were used for kinetic studies. The first order reaction model was suitable to describe the kinetics of substrate utilization and modified Gompertz model was quite successful to predict the ethanol production. For continuous ethanol fermentation, a packed-bed immobilized cell reactor (ICR) was operated at several hydraulic retention times; HRTs of 11, 15 and 30 h. At the HRT of 30 h, the ethanol production yield using CMC beads was 0.49 g/g which implies that 91.07 % of the theoretical yield was achieved. PMID:27126500

  4. Economic evaluation of United States ethanol production from ligno-cellulosic feedstocks

    Science.gov (United States)

    Choi, Youn-Sang

    This paper evaluates the economic feasibility and economy-wide impacts of the U. S. ethanol production from lignocellulosic feedstocks (LCF) using Tennessee Valley Authority's (TVA's) dilute acid hydrolysis process. A nonlinear mathematical programming model of a single ethanol producer, whose objective is profit maximization, is developed. Because of differences in their chemical composition and production process, lignocellulosic feedstocks are divided into two groups: Biomass feedstocks, which refer to crop residues, energy crops and woody biomass, and municipal solid waste (MSW). Biomass feedstocks are more productive and less costly in producing ethanol and co-products, while MSW generates an additional income to the producer from a tipping fee and recycling. The analysis suggests that, regardless of types of feedstocks used, TVA's conversion process can enhance the economic viability of ethanol production as long as furfural is produced from the hemicellulose fraction of feedstocks as a co-product. The high price of furfural makes it a major factor in determining the economic feasibility of ethanol production. Along with evaluating economic feasibility of LCF-to-ethanol production, the optimal size of a plant producing ethanol using TVA's conversion process is estimated. The larger plant would have the advantage of economies of scale, but also have a disadvantage of increased collection and transportation costs for bulky biomass from more distant locations. We assume that the plant is located in the state of Missouri and utilizes only feedstocks produced in the state. The results indicate that the size of a plant using Biomass feedstocks is much bigger than one using MSW. The difference of plant sizes results from plant location and feedstock availability. One interesting finding is that energy crops are not feasible feedstocks for LCF-to-ethanol production due to their high price. Next, a static CGE model is developed to estimate the U.S. economy

  5. Sustainable Production of Crop Residue as a Cellulosic Ethanol Feedstock: REAP – Renewable Energy Assessment Project

    Science.gov (United States)

    Domestic ethanol production is a strategy for reducing dependence on imported energy and release of greenhouse gases from use of fossil-energy-derived motor vehicle fuel. Federal and state governments are encouraging the use of ethanol. Initially energy crops, such as switchgrass, willow, and poplar...

  6. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  7. Removal of the Fermentation Inhibitor, Furfural, Using Activated Carbon in Cellulosic-Ethanol Production

    KAUST Repository

    Zhang, Kuang

    2011-12-21

    Ethanol can be produced from lignocellulosic biomass through fermentation; however, some byproducts from lignocellulosics, such as furfural compounds, are highly inhibitory to the fermentation and can substantially reduce the efficiency of ethanol production. In this study, commercial and polymer-derived activated carbons were utilized to selectively remove the model fermentation inhibitor, furfural, from water solution during bioethanol production. The oxygen functional groups on the carbon surface were found to influence the selectivity of sorbents between inhibitors and sugars during the separation. After inhibitors were selectively removed from the broth, the cell growth and ethanol production efficiency was recovered noticeably in the fermentation. A sorption/desorption cycle was designed, and the sorbents were regenerated in a fixed-bed column system using ethanol-containing standard solution. Dynamic mass balance was obtained after running four or five cycles, and regeneration results were stable even after twenty cycles. © 2011 American Chemical Society.

  8. Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw

    DEFF Research Database (Denmark)

    Lindedam, Jane; Andersen, Sven Bode; DeMartini, J.;

    2012-01-01

    Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well-plate techni......Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well......-plate technique. This technique enabled us to estimate cultivar-related and environmental correlations between sugar yield, chemical composition, agronomic qualities, and distribution of botanical plant parts of wheat straw cultivars. Straws from 20 cultivars were collected in duplicates on two sites in Denmark....... Following hydrothermal pretreatment (180 °C for 17.6 min) and co-hydrolysis, sugar release and sugar conversion were measured. Up to 26% difference in sugar release between cultivars was observed. Sugar release showed negative cultivar correlation with lignin and ash content, whereas sugar release showed...

  9. Comparing oxidative and dilute acid wet explosion pretreatment of Cocksfoot grass at high dry matter concentration for cellulosic ethanol production

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2013-01-01

    into cellulose monomeric C6 sugars was achieved for WEx condition AC-E (180°C, 15 min, and 0.2% sulfuric acid). For that condition, the highest ethanol yield of 197 g/kg DM (97% of theoretical maximum value) was achieved for SSF process by Saccharomyces cerevisiae. However, the highest concentration...... of hemicellulose C5 sugars was found for WEx pretreatment condition O2-A (160°C, 15 min, and 6 bar O2) which means that the highest potential ethanol yield was found at this moderate pretreatment condition with oxygen added. Increasing the pretreatment temperature to 180–190°C with addition of oxygen or dilute...... sulfuric acid significantly degrades the solubilized hemicellulose sugars and thus, achieved the highest formation of by-products....

  10. Comparative Study of SPORL and Dilute Acid Pretreatments of Spruce for Cellulosic Ethanol Production

    Science.gov (United States)

    The performance of two pretreatment methods, Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) and Dilute Acid (DA), was compared in pretreating softwood (spruce) for fuel ethanol production under the same conditions of temperature (180°C), time (30 min), sulfuric acid loading...

  11. Pilot plant studies of the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1977-06-30

    Progress is reported in the following studies on analysis and evaluation of potential raw materials: preliminary pretreatment studies using wheat straw; extraction of wheat straw with alcohol and water at elevated temperatures; extraction of ground wood with alcohol and water at elevated temperatures; and, delignification of newsprint with ethylene glycol. Other research in progress includes studies on: utilization of hemicellulose sugars; process design and economics of hydrolysis processes and ethanol fermentation; and, pilot plant process development and design, including cell-recycle systems for cellulase production, continuous hydrolysis, countercurrent hydrolysis, and ethanol fermentation studies. (JGB)

  12. Process development studies of the bioconversion of cellulose and production of ethanol. Semi annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.; Blanch, H.W.

    1981-04-01

    Progress in the following process development studio is reported: economic evaluation of hydrolysis and ethanol fermentation schemes, economic evaluation of alternative fermentation processes, raw materials evaluation, and evaluation of pretreatment process. Microbiological and enzymatic studies reported are: production of cellulase enzyme from high yielding mutants, hydrolysis reactor development, xylose fermentation, and xylanese production. Fermentation and separation processes include: process development studies on vacuum fermentation and distillation, evaluation of low energy separations processes, large scale hollow fiber reactor development. (MHR)

  13. Ammonia fiber expansion (AFEX) pretreatment, enzymatic hydrolysis, and fermentation on empty palm fruit bunch fiber (EPFBF) for cellulosic ethanol production.

    Science.gov (United States)

    Lau, Ming J; Lau, Ming W; Gunawan, Christa; Dale, Bruce E

    2010-11-01

    Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials. PMID:20419480

  14. Process development studies on the bioconversion of cellulose and production of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.; Blanch, H.W.

    1979-12-01

    Preliminary studies show minimal conversion of wood by sulfur dioxide at pressures of 38 psi at room temperature. Evaluation studies of Rut-C-30 and Rut-L-5 Trichoderma viride strains were compared. Studies on the continuous production system by manipulating temperature, pH, Tween 80 level substrate concentration, and dilution rate were performed. The known major components of cellulases were characterized. Studies on the reduction of the cost of producing sugar from corn stover were performed. Development of medium for continuous ethanol fermentation is discussed. Experiments show that the growth limiting factors for continuous fermentation were in the yeast extract. Biotin, pantothenic acid, and pyridoxine appear to be growth limiting factors. Addition of other vitamins had no effect on cell yield but increased ethanol production. The flash ferm process is discussed. Utilization of hemicellulose sugars is described. (DC)

  15. Cellulosic ethanol. Potential, technology and development status

    Energy Technology Data Exchange (ETDEWEB)

    Rarbach, M. [Sued-Chemie AG, Muenchen (Germany)

    2012-07-01

    In times of rising oil prices and a growing energy demand, sustainable alternative energy sources are needed. Cellulosic ethanol is a sustainable biofuel, made from lignocellulosic feedstock such as agricultural residues (corn stover, cereal straw, bagasse) or dedicated energy crops. Its production is almost carbon neutral, doesn't compete with food or feed production and induces no land use changes. It constitutes a new energy source using an already existing renewable feedstock without needing any further production capacity and can thus play a major role on the way to more sustainability in transport and the chemical industry and reducing the dependence on the import of fossil resources. The potential for cellulosic ethanol is huge: In the US, the annual production of agricultural residues (cereal straw and corn stover) reached almost 384 million tons in 2009 and Brazil alone produced more than 670 million tons of sugar cane in 2009 yielding more than 100 million tons of bagasse (dry basis). And alone in the European Union, almost 300 million tons of crop straw are produced annually. The last years have seen success in the development and deployment in the field of cellulosic ethanol production. The main challenge thereby remains to demonstrate that the technology is economically feasible for the up-scaling to industrial scale. Clariant has developed the sunliquid {sup registered} process, a proprietary cellulosic ethanol technology that reaches highest greenhouse gas (GHG) emission savings while cutting production costs to a minimum. The sunliquid {sup registered} process for cellulosic ethanol matches the ambitious targets for economically and ecologically sustainable production and greenhouse gas reduction. It was developed using an integrated design concept. Highly optimized, feedstock and process specific biocatalysts and microorganisms ensure a highly efficient process with improved yields and feedstock-driven production costs. Integrated, on

  16. Biochemical Disincentives to Fertilizing Cellulosic Ethanol Crops

    Science.gov (United States)

    Gallagher, M. E.; Hockaday, W. C.; Snapp, S.; McSwiney, C.; Baldock, J.

    2010-12-01

    Corn grain biofuel crops produce the highest yields when the cropping ecosystem is not nitrogen (N)-limited, achieved by application of fertilizer. There are environmental consequences for excessive fertilizer application to crops, including greenhouse gas emissions, hypoxic “dead zones,” and health problems from N runoff into groundwater. The increase in corn acreage in response to demand for alternative fuels (i.e. ethanol) could exacerbate these problems, and divert food supplies to fuel production. A potential substitute for grain ethanol that could reduce some of these impacts is cellulosic ethanol. Cellulosic ethanol feedstocks include grasses (switchgrass), hardwoods, and crop residues (e.g. corn stover, wheat straw). It has been assumed that these feedstocks will require similar N fertilization rates to grain biofuel crops to maximize yields, but carbohydrate yield versus N application has not previously been monitored. We report the biochemical stocks (carbohydrate, protein, and lignin in Mg ha-1) of a corn ecosystem grown under varying N levels. We measured biochemical yield in Mg ha-1 within the grain, leaf and stem, and reproductive parts of corn plants grown at seven N fertilization rates (0-202 kg N ha-1), to evaluate the quantity and quality of these feedstocks across a N fertilization gradient. The N fertilization rate study was performed at the Kellogg Biological Station-Long Term Ecological Research Site (KBS-LTER) in Michigan. Biochemical stocks were measured using 13C nuclear magnetic resonance spectroscopy (NMR), combined with a molecular mixing model (Baldock et al. 2004). Carbohydrate and lignin are the main biochemicals of interest in ethanol production since carbohydrate is the ethanol feedstock, and lignin hinders the carbohydrate to ethanol conversion process. We show that corn residue carbohydrate yields respond only weakly to N fertilization compared to grain. Grain carbohydrate yields plateau in response to fertilization at

  17. An oil palm-based biorefinery concept for cellulosic ethanol and phytochemicals production: Sustainability evaluation using exergetic life cycle assessment

    International Nuclear Information System (INIS)

    In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO2 eq.), acidification potential (AP = 355.34 kg SO2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system. -- Highlights: • Thermo-environmental sustainability of palm-based biorefinery was assessed. • OPFs' exergy content was degraded when converted into bioethanol and phytochemicals. • Exergy efficiency (59.05%) and TSI (2.44) were recorded for the biorefinery • Global warming potential of 2265.6 kg CO2 eq. was recorded for the whole biorefinery

  18. Cellulosic Ethanol Production from Xylose-extracted Corncob Residue by SSF Using Inhibitor- and Thermal-tolerant Yeast Clavispora NRRL Y-50339

    Science.gov (United States)

    Xylose-extracted corncob residue, a byproduct of the xylose-producing industry using corncobs, is an abundant potential energy resource for cellulosic ethanol production. Simultaneous saccharification and fermentation (SSF) is considered an ideal one-step process for conversion of lignocellulosic b...

  19. Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation.

    Science.gov (United States)

    Zhu, J Y; Pan, X J

    2010-07-01

    This review presents a comprehensive discussion of the key technical issues in woody biomass pretreatment: barriers to efficient cellulose saccharification, pretreatment energy consumption, in particular energy consumed for wood-size reduction, and criteria to evaluate the performance of a pretreatment. A post-chemical pretreatment size-reduction approach is proposed to significantly reduce mechanical energy consumption. Because the ultimate goal of biofuel production is net energy output, a concept of pretreatment energy efficiency (kg/MJ) based on the total sugar recovery (kg/kg wood) divided by the energy consumption in pretreatment (MJ/kg wood) is defined. It is then used to evaluate the performances of three of the most promising pretreatment technologies: steam explosion, organosolv, and sulfite pretreatment to overcome lignocelluloses recalcitrance (SPORL) for softwood pretreatment. The present study found that SPORL is the most efficient process and produced highest sugar yield. Other important issues, such as the effects of lignin on substrate saccharification and the effects of pretreatment on high-value lignin utilization in woody biomass pretreatment, are also discussed.

  20. A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation.

    Science.gov (United States)

    Liu, Z Lewis; Weber, Scott A; Cotta, Michael A; Li, Shi-Zhong

    2012-01-01

    This study reports a new yeast strain of Clavispora NRRL Y-50464 that is able to utilize cellobiose as sole source of carbon and produce sufficient native β-glucosidase enzyme activity for cellulosic ethanol production using SSF. In addition, this yeast is tolerant to the major inhibitors derived from lignocellulosic biomass pre-treatment such as 2-furaldehyde (furfural) and 5-(hydroxymethyl)-2-furaldehyde (HMF), and converted furfural into furan methanol in less than 12h and HMF into furan-2,5-dimethanol within 24h in the presence of 15 mM each of furfural and HMF. Using xylose-extracted corncob residue as cellulosic feedstock, an ethanol production of 23 g/l was obtained using 25% solids loading at 37 °C by SSF without addition of exogenous β-glucosidase. Development of this yeast aids renewable biofuels development efforts for economic consolidated SSF bio-processing. PMID:22133603

  1. Potential Cellulosic Ethanol Production from Organic Residues of Agro-Based Industries in Nepal

    OpenAIRE

    Ram Kailash P. Yadav; Arbindra Timilsina; Rupesh K. Yadawa; Pokhrel, Chandra P.

    2014-01-01

    With the objective of exploring the potential of bioethanol production from lignocellulosic wastes from major agro-based industries in Nepal, four types of major industries using raw materials from agriculture are selected as sources of lignocellulosic residues. They include a sugar industry, a paper industry, a tobacco industry, and a beer industry. Data from secondary/primary sources were used to record organic residues from these industries and estimates were made of potential production o...

  2. Ethanol production from waste materials

    Directory of Open Access Journals (Sweden)

    Muhammad Shahid Iqbal

    2012-08-01

    Full Text Available Experiment was designed for ethanol production using corn andother organic waste material containing starch contents andcellulosic material while barely used for diastase and acidicdigestion methods. The effect of temperature, yeast, barely diastaseand various dilutions of acid (sulfuric acids were investigated onethanol production. The result showed that corn yielded highamount of ethanol (445ml as compared to cellulosic material whichproduced 132ml of ethanol from one kg of weight. It was also notedthat with the increase of barely and yeast amount in a proper mannercan increase ethanol production from different starch sources. It wasalso noted that acid dilutions affected cellulose digestion where highyield of reducing sugar was noted at 0.75% of sulfuric acid dilution.It was concluded from the present experiment that economicalsources of starch and various dilutions of acids should be tried oncellulose digestion for bio-fuel production to withstand in thisenergy crisis time.

  3. Effects of Ethanol Pulping on the Length of Bamboo Cellulose

    Institute of Scientific and Technical Information of China (English)

    Tao Yang; Liao Junhe; Luo Xuegang

    2006-01-01

    On the conditions of different ethanol concentration, acids and catalyzers, the effects of ethanol pulping on the cellulose length of bamboo were studied. The results indicates that ethanol pulping has remarkable effects on the length of cellulose, which is clearly reduced with adding ethanol and acid. The margin of length of cellulose become smaller with the increase of the catalyzer. When the ethanol concentration was 70%, the concentration of acid was 0.3% and some NaOH was used as catalyzer, the length of cellulose was the longest.

  4. A novel marine bacterium Isoptericola sp. JS-C42 with the ability to saccharifying the plant biomasses for the aid in cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Velayudhan Satheeja Santhi

    2014-06-01

    Full Text Available The ever growing demands for food products such as starch and sugar produces; there is a need to find the sources for saccharification for cellulosic bioethanol production. This study provides the first evidence of the lignocellulolytic and saccharifying ability of a marine bacterium namely Isoptericola sp. JS-C42, a Gram positive actinobacterium with the cocci cells embedded on mycelia isolated from the Arabian Sea, India. It exhibited highest filter paper unit effect, endoglucanase, exoglucanase, cellobiohydrolase, β-glucosidase, xylanase and ligninase effect. The hydrolytic potential of the enzymes displayed the efficient saccharification capability of steam pretreated biomass. It was also found to degrade the paddy, sorghum, Acacia mangium and Ficus religiosa into simple reducing sugars by its efficient lignocellulose enzyme complex with limited consumption of sugars. Production of ethanol was also achieved with the Saccharomyces cerevisiae. Overall, it offers a great potential for the cellulosic ethanol production in an economically reliable and eco-friendly point-of-care.

  5. Biomass Supply Chain and Conversion Economics of Cellulosic Ethanol

    Science.gov (United States)

    Gonzalez, Ronalds W.

    2011-12-01

    Cellulosic biomass is a potential and competitive source for bioenergy production, reasons for such acclamation include: biomass is one the few energy sources that can actually be utilized to produce several types of energy (motor fuel, electricity, heat) and cellulosic biomass is renewable and relatively found everywhere. Despite these positive advantages, issues regarding cellulosic biomass availability, supply chain, conversion process and economics need a more comprehensive understanding in order to identify the near short term routes in biomass to bioenergy production. Cellulosic biomass accounts for around 35% to 45% of cost share in cellulosic ethanol production, in addition, different feedstock have very different production rate, (dry ton/acre/year), availability across the year, and chemical composition that affect process yield and conversion costs as well. In the other hand, existing and brand new conversion technologies for cellulosic ethanol production offer different advantages, risks and financial returns. Ethanol yield, financial returns, delivered cost and supply chain logistic for combinations of feedstock and conversion technology are investigated in six studies. In the first study, biomass productivity, supply chain and delivered cost of fast growing Eucalyptus is simulated in economic and supply chain models to supply a hypothetic ethanol biorefinery. Finding suggests that Eucalyptus can be a potential hardwood grown specifically for energy. Delivered cost is highly sensitive to biomass productivity, percentage of covered area. Evaluated at different financial expectations, delivered cost can be competitive compared to current forest feedstock supply. In the second study, Eucalyptus biomass conversion into cellulosic ethanol is simulated in the dilute acid pretreatment, analysis of conversion costs, cost share, CAPEX and ethanol yield are examined. In the third study, biomass supply and delivered cost of loblolly pine is simulated in economic

  6. Production of the Anaerobic GMAX-L Yeast Using High-Throughput Mating and Transformation of Saccharomyces cerevisiae With Identified Genes For Simultaneous Cellulosic Ethanol and Biodiesel Production

    Science.gov (United States)

    Tailored GMAX-L yeast engineering for strains capable of universal ethanol production industrially with coproduction of an expressed lipase catalyst for coproduction of ethyl esters from corn oil and ethanol from the modern dry grind ethanol facility: Production of the stable baseline glucose, mann...

  7. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.

    Science.gov (United States)

    Silva, Neumara Luci Conceição; Betancur, Gabriel Jaime Vargas; Vasquez, Mariana Peñuela; Gomes, Edelvio de Barros; Pereira, Nei

    2011-04-01

    Current research indicates the ethanol fuel production from lignocellulosic materials, such as residual wood chips from the cellulose industry, as new emerging technology. This work aimed at evaluating the ethanol production from hemicellulose of eucalyptus chips by diluted acid pretreatment and the subsequent fermentation of the generated hydrolysate by a flocculating strain of Pichia stipitis. The remaining solid fraction generated after pretreatment was subjected to enzymatic hydrolysis, which was carried out simultaneously with glucose fermentation [saccharification and fermentation (SSF) process] using a strain of Saccharomyces cerevisiae. The acid pretreatment was evaluated using a central composite design for sulfuric acid concentration (1.0-4.0 v/v) and solid to liquid ratio (1:2-1:4, grams to milliliter) as independent variables. A maximum xylose concentration of 50 g/L was obtained in the hemicellulosic hydrolysate. The fermentation of hemicellulosic hydrolysate and the SSF process were performed in bioreactors and the final ethanol concentrations of 15.3 g/L and 28.7 g/L were obtained, respectively.

  8. [Display cellulolytic enzymes on Saccharomyces cerevisiae cell surface by using Flo1p as an anchor protein for cellulosic ethanol production].

    Science.gov (United States)

    Mo, Chunling; Yang, Yueyue; Chen, Ning; Yang, Xiushan; Tian, Shen

    2014-09-01

    In this study, we constructed a yeast consortium surface-display expression system by using Flo1 as an anchor protein. Endoglucanase II (EGII) and cellobiohydrolase II (CBHII) from Trichoderma reesei, and β3-glucosidase 1 (BGLI) from Aspergillus aculeatus were immobilized on Saccharomyces cerevisiae Y5. We constructed the cellulose-displaying expression yeast consortium (Y5/fEGII:Y5/fCBHII:Y5/fBGLI = 1:1:1) and investigated the enzymatic ability and ethanol fermentation. The displayed cellulolytic enzymes was stabile during the 96-h fermentation. The yeast consortium produced 0.77 g/L ethanol from 10 g/L phosphoric acid swollen cellulose (PASC) within 96 h. The yield (in grams of ethanol produced per gram of carbohydrate consumed) was 0.35 g/g, which correspond to 68.6% of the theoretical yield. PMID:25720155

  9. Quantitative Trait Loci and Trait Correlations for Maize Stover Cell Wall Composition and Glucose Release for Cellulosic Ethanol

    Science.gov (United States)

    In cellulosic ethanol production, the efficiency of converting maize (Zea mays L.) stover into fermentable sugars partly depends on the stover cell wall structure. Breeding for improved stover quality for cellulosic ethanol may benefit from the use of molecular markers. However, limited quantitative...

  10. Conversion of bagasse cellulose into ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cuzens, J.E.

    1997-11-19

    The study conducted by Arkenol was designed to test the conversion of feedstocks such as sugar cane bagasse, sorghum, napier grass and rice straw into fermentable sugars, and then ferment these sugars using natural yeasts and genetically engineered Zymomonis mobilis bacteria (ZM). The study did convert various cellulosic feedstocks into fermentable sugars utilizing the patented Arkenol Concentrated Acid Hydrolysis Process and equipment at the Arkenol Technology Center in Orange, California. The sugars produced using this process were in the concentration range of 12--15%, much higher than the sugar concentrations the genetically engineered ZM bacteria had been developed for. As a result, while the ZM bacteria fermented the produced sugars without initial inhibition, the completion of high sugar concentration fermentations was slower and at lower yield than predicted by the National Renewable Energy Laboratory (NREL). Natural yeasts performed as expected by Arkenol, similar to the results obtained over the last four years of testing. Overall, at sugar concentrations in the 10--13% range, yeast produced 850090% theoretical ethanol yields and ZM bacteria produced 82--87% theoretical yields in 96 hour fermentations. Additional commercialization work revealed the ability to centrifugally separate and recycle the ZM bacteria after fermentation, slight additional benefits from mixed culture ZM bacteria fermentations, and successful utilization of defined media for ZM bacteria fermentation nutrients in lieu of natural media.

  11. Recycling cellulases for cellulosic ethanol production at industrial relevant conditions: potential and temperature dependency at high solid processes.

    Science.gov (United States)

    Lindedam, Jane; Haven, Mai Østergaard; Chylenski, Piotr; Jørgensen, Henning; Felby, Claus

    2013-11-01

    Different versions of two commercial cellulases were tested for their recyclability of enzymatic activity at high dry matter processes (12% or 25% DM). Recyclability was assessed by measuring remaining enzyme activity in fermentation broth and the ability of enzymes to hydrolyse fresh, pretreated wheat straw. Industrial conditions were used to study the impact of hydrolysis temperature (40 or 50°C) and residence time on recyclability. Enzyme recycling at 12% DM indicated that hydrolysis at 50°C, though ideal for ethanol yield, should be kept short or carried out at lower temperature to preserve enzymatic activity. Best results for enzyme recycling at 25% DM was 59% and 41% of original enzyme load for a Celluclast:Novozyme188 mixture and a modern cellulase preparation, respectively. However, issues with stability of enzymes and their strong adsorption to residual solids still pose a challenge for applicable methods in enzyme recycling.

  12. Process Design of Wastewater Treatment for the NREL Cellulosic Ethanol Model

    Energy Technology Data Exchange (ETDEWEB)

    Steinwinder, T.; Gill, E.; Gerhardt, M.

    2011-09-01

    This report describes a preliminary process design for treating the wastewater from NREL's cellulosic ethanol production process to quality levels required for recycle. In this report Brown and Caldwell report on three main tasks: 1) characterization of the effluent from NREL's ammonia-conditioned hydrolyzate fermentation process; 2) development of the wastewater treatment process design; and 3) development of a capital and operational cost estimate for the treatment concept option. This wastewater treatment design was incorporated into NREL's cellulosic ethanol process design update published in May 2011 (NREL/TP-5100-47764).

  13. SYNTHESIS AND CHARACTERIZATION OF CELLULOSE-SILICA COMPOSITE FIBER IN ETHANOL/WATER MIXED SOLVENTS

    Directory of Open Access Journals (Sweden)

    Ning Jia

    2011-04-01

    Full Text Available Cellulose-silica composite fiber samples have been successfully synthesized using cellulose solution, tetraethoxysilane, and NH3•H2O in ethanol/water mixed solvents at room temperature for 24 h. The cellulose solution was previously prepared by the dissolution of microcrystalline cellulose in a solvent mixture of N,N-dimethylacetamide (DMAc/lithium chloride (LiCl. The effect of the tetraethoxysilane concentration on the product was investigated. The products were characterized by X-ray powder diffraction (XRD, thermogravimetric analysis (TG, differential scanning calorimetric analysis (DSC, scanning electron microscopy (SEM, Fourier transform infrared spectrometry (FT-IR, energy-dispersive X-ray spectrum (EDS, and cross polarization magic angle spinning (CP/MAS solid state 13C-NMR. The morphology of the cellulose-silica composite fiber was investigated by SEM, while their composition was established from EDS measurements combined with the results of FT-IR spectral analysis and XRD patterns. The XRD, FT-IR and EDS results indicated that the obtained product was cellulose-silica composite fiber. The SEM micrographs showed that the silica particles were homogeneously dispersed in the cellulose fiber. The CP/MAS solid state 13C-NMR results indicated that the silica concentration had an influence on the crystallinity of the cellulose. This method is simple for preparation of cellulose-based composites.

  14. Ethanol production from lignocellulose

    Science.gov (United States)

    Ingram, Lonnie O.; Wood, Brent E.

    2001-01-01

    This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

  15. Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone-butanol-ethanol (ABE) fermentation using Clostridium beijerinckii P260

    Science.gov (United States)

    Studies were performed to identify chemicals present in wheat straw hydrolysate (WSH) that enhance acetone butanol ethanol (ABE) productivity. These chemicals were identified as furfural and hydroxymethyl furfural (HMF). Control experiment resulted in the production of 21.09-21.66 gL**-1 ABE with a ...

  16. 纤维素乙醇的原料预处理方法及工艺流程研究进展%Feedstock pretreatment and technological process of cellulose ethanol production

    Institute of Scientific and Technical Information of China (English)

    杨娟; 滕虎; 刘海军; 徐友海; 吕继萍; 王继艳

    2013-01-01

    木质纤维生物质是储量丰富且最有前景的生产燃料乙醇的可再生生物质资源,利用木质纤维生物质生产乙醇主要包括以下步骤:原料预处理、发酵以及产物分离纯化,其中,原料的预处理工艺是限制纤维素乙醇产业化的一个技术瓶颈.本文对酸法、碱法、蒸汽爆破法、合成气法等7种典型预处理方法进行了介绍并对其工艺流程进行简要的说明,同时对不同的预处理方法的优劣、适用范围和工艺流程转化效率等进行了对比,以期为纤维素乙醇预处理方法的工艺选择和评价提供一些参考.提出了纤维素乙醇的产业化前景:不同预处理技术的合理结合使用会有效提高转化率;较好的过程设计能够降低成本,有利于整个过程的经济性.%Lignocellulose is a promising resource for bioethanol production due to its abundance, renewablility, and low cost. Ethanol production from lignocellulose biomass comprises the following critical steps: feedstock pretreatment, sugar fermentation, separation and purification of the ethanol, among which pretreatment step is identified as technological bottleneck for commercialization of cellulosic ethanol technology. The characteristics and technological processes of typical pretreatment methods are reviewed, such as acid pretreatment, alkali pretreatment, steam explosion, syngas etc., and the advantages and disadvantages, available materials and process efficiency of those methods are compared and discussed to provide guidance for the selection and evaluation of pretreatment process in cellulose ethanol production. Finally, the prospect of commercialization of fuel ethanol production from cellulosic biomass is presented. Reasonable integration of different pretreatment technologies will effectively improve the conversion rate. A preferable process design can help in reducing cost, contributing to the economy of the whole process.

  17. Biofuel Food Disasters and Cellulosic Ethanol Problems

    Science.gov (United States)

    Pimentel, David

    2009-01-01

    As shortages of fossil energy, especially oil and natural gas, become evident, the United States has moved to convert corn grain into ethanol with the goal to make the nation oil independent. Using more than 20% of all U.S. corn on 15 million acres in 2007 was providing the nation with less than 1% of U.S. oil consumption. Because the corn ethanol…

  18. Comparative study on processes of simultaneous saccharification and fermentation with high solid concentration for cellulosic ethanol production%高底物浓度纤维乙醇同步糖化发酵工艺的比较

    Institute of Scientific and Technical Information of China (English)

    常春; 王铎; 王林风; 马晓建

    2012-01-01

    The effects of various simultaneous saccharification fermentation (SSF) technologies on ethanol yield from cellulose were investigated. Using steam-exploded corn stalks as raw materials, five SSF technologies, including traditional SSF, SSF combined with preliminary enzymatic hydrolysis, fed-batch SSF coupled with preliminary enzymatic hydrolysis, SSF united with preliminary enzymatic hydrolysis coupling with vacuum separation and fed-batch SSF associated with preliminary enzymatic hydrolysis coupling with vacuum separation, were used for decomposition of the stalks. By comparing the fermentation process with higher solid concentration including 15% (mass) and 30% (mass), it was found that the fed-batch SSF combined with preliminary enzymatic hydrolysis is an effective way for raising substrate concentration. However, higher substrate concentration may lead to decrease of final ethanol yield. Moreover, SSF coupled with vacuum separation can weaken the product inhibition, and increase the ethanol yield. The ethanol productivity by the fed-batch SSF associated with preliminary enzymatic hydrolysis coupling with vacuum separation is 0. 40 g · L-1 · h-1, the highest value obtained, indicating that this technology can be a potential new technology.

  19. Systems biology and pathway engineering enable Saccharomyces cerevisiae to utilize C-5 and C-6 sugars simultaneously for cellulosic ethanol production

    Science.gov (United States)

    Saccharomyces cerevisiae is a traditional industrial workhorse for ethanol production. However, conventional ethanologenic yeast is superior in fermentation of hexose sugars (C-6) such as glucose but unable to utilize pentose sugars (C-5) such as xylose richly embedded in lignocellulosic biomass. In...

  20. Extraction of cellulose with subcritical and supercritical ethanol

    Institute of Scientific and Technical Information of China (English)

    Qian Xueren; Li Jian

    1999-01-01

    Cotton cellulose was extracted with ethanol in sub-and supercritical states dynamically. The degree of conversion was 95.4% and the extract yield was 55.2% when cotton cellulose was non-isothermally extracted with ethanol from 20℃ to 400℃. From an engineering standpoint, in the temperature range from 200℃ to 320℃,the rate of extract formation could adequately be described by a second-order reaction kinetics equation with the activation energy of 105.3 k J/mol and the pre-exponential factor of 3.53 × 107 s-1. With the non-isothermal experimental technique, it was possible to determine the kinetic parameters; conversion degree and extract yield by one experiment.

  1. CELLULOSIC ETHANOL VIA BIOCHEMICAL PROCESSING POSES A CHALLENGE FOR DEVELOPERS AND IMPLEMENTORS

    Directory of Open Access Journals (Sweden)

    Ilkka Virkajärvi

    2009-11-01

    Full Text Available In the future liquid biofuels will need to be renewable, sustainable, as well as technically and economically viable. This paper provides an overview of the challenges that the biochemical production of cellulosic ethanol process still faces. The main emphasis of the paper is on challenges that emerge from the scale of liquid biofuel production. These challenges include raw material availability, other consumables, and side stream handling. The pretreatment, C5 fermentation, and concentration of sugars in processing need improvements, too. Sustainability issues and greenhouse gas reduction also pose a challenge for implementation and require development of internationally recognized sustainability principles and standards, and certification of sustainable operation. Economics of cellulosic ethanol processes are still also an area under development and debate. Yet, the Energy Independence and Security Act mandate together with the European Union Renewable Energy Directive and other local targets are driving the development and implementation forward towards more significant contribution of biofuels in the transportation sector.

  2. Fair Oaks Dairy Farms Cellulosic Ethanol Technology Review Summary

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wold; Robert Divers

    2011-06-23

    At Fair Oaks Dairy, dried manure solids (''DMS'') are currently used as a low value compost. United Power was engaged to evaluate the feasibility of processing these DMS into ethanol utilizing commercially available cellulosic biofuels conversion platforms. The Fair Oaks Dairy group is transitioning their traditional ''manure to methane'' mesophilic anaerobic digester platform to an integrated bio-refinery centered upon thermophilic digestion. Presently, the Digested Manure Solids (DMS) are used as a low value soil amendment (compost). United Power evaluated the feasibility of processing DMS into higher value ethanol utilizing commercially available cellulosic biofuels conversion platforms. DMS was analyzed and over 100 potential technology providers were reviewed and evaluated. DMS contains enough carbon to be suitable as a biomass feedstock for conversion into ethanol by gasification technology, or as part of a conversion process that would include combined heat and power. In the first process, 100% of the feedstock is converted into ethanol. In the second process, the feedstock is combusted to provide heat to generate electrical power supporting other processes. Of the 100 technology vendors evaluated, a short list of nine technology providers was developed. From this, two vendors were selected as finalists (one was an enzymatic platform and one was a gasification platform). Their selection was based upon the technical feasibility of their systems, engineering expertise, experience in commercial or pilot scale operations, the ability or willingness to integrate the system into the Fair Oaks Biorefinery, the know-how or experience in producing bio-ethanol, and a clear path to commercial development.

  3. 纤维素乙醇产业进展%Industry Progress of Cellulosic Ethanol

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    燃料乙醇已发展成为世界可再生能源产业之一,在经济、环境、能源等领域发挥着重要作用。利用能量及环境效益更佳的木质纤维素作为原料生产燃料乙醇,已是这一产业可持续发展的基石。自2014年下半年开始剧烈下跌的原油价格虽然带来了一些不确定因素,但在政策性因素引导下,世界燃料乙醇产业有序发展,在年产量创出新高的同时,纤维素乙醇示范装置也在加速建设。2017年纤维素乙醇生产能力有望突破100万吨。本文在综述世界燃料乙醇产业发展现状基础上,详细介绍了纤维素乙醇的产业进展,并对纤维素乙醇的发展趋势作了展望。%Fuel ethanol has become one of the world's renewable energy industries, and plays an important role in areas such as economy, environment and energy. To use lignocellulose with good energy efficient and environment benefit as raw material to produce fuel ethanol has become a footstone for the sustainable development of the fuel ethanol industry. Although sharp decrease of crude oil price has brought some uncertainties in the second half of 2014, the world ethanol industry continued development with positive policies. Not only the annual production set a new record, but also the construction of cellulosic ethanol commercial facilities accelerated. It is expected that the cellulosic ethanol production capacity will exceed 1 million tons in 2017. In this paper, current status of the fuel ethanol industry was introduced, progress of the cellulosic ethanol industry was reviewed, and development trend of the cellulosic ethanol industry is also discussed.

  4. Breaking the Biological Barriers to Cellulosic Ethanol: A Joint Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, John [Dept. of Energy (DOE), Washington DC (United States); Weatherwax, Sharlene [Dept. of Energy (DOE), Washington DC (United States); Ferrell, John [Dept. of Energy (DOE), Washington DC (United States)

    2006-06-07

    The Biomass to Biofuels Workshop, held December 7–9, 2005, was convened by the Department of Energy’s Office of Biological and Environmental Research in the Office of Science; and the Office of the Biomass Program in the Office of Energy Efficiency and Renewable Energy. The purpose was to define barriers and challenges to a rapid expansion of cellulosic-ethanol production and determine ways to speed solutions through concerted application of modern biology tools as part of a joint research agenda. Although the focus was ethanol, the science applies to additional fuels that include biodiesel and other bioproducts or coproducts having critical roles in any deployment scheme.

  5. Ligno cellulosic-ethanol : a second opinion

    NARCIS (Netherlands)

    Zessen, van E.; Weismann, M.; Bakker, R.R.C.; Elbersen, H.W.; Reith, J.H.; Uil, den H.

    2003-01-01

    Up to now renewable energy sources are primarily used in the Netherlands for electricity production. At the end of the past decade the GAVE programme was launched to facilitate the introduction of climate neutral gaseous and liquid fuels. A comprehensive study by ADL evaluated a large number of opti

  6. Ethanol production by engineered thermophiles.

    Science.gov (United States)

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. PMID:25745810

  7. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    Science.gov (United States)

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-01

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water.

  8. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    Science.gov (United States)

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-01

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. PMID:26685114

  9. A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering

    International Nuclear Information System (INIS)

    This work compares the calculated techno-economic performance for thermochemical and biochemical conversion of sugarcane residues, considering future conversion plants adjacent to sugarcane mills in Brazil. Process models developed by the National Renewable Energy Laboratory were adapted to reflect the Brazilian feedstock composition and used to estimate the cost and performance of these two conversion technologies. Models assumed that surplus bagasse from the mill would be used as the feedstock for conversion, while cane trash collected from the field would be used as supplementary fuel at the mill. The integration of the conversion technology to the mill enabled an additional ethanol production of 0.033 m3 per tonne of cane for the biochemical process and 0.025 m3 t-1 of cane plus 0.004 m3 t-1 of cane of higher alcohols for the thermochemical process. For both cases, electricity is an important co-product for the biorefinery, but especially for biochemical conversion, with surpluses of about 50 kWh t-1 of cane. The economic performance of the two technologies is quite similar in terms of the minimum ethanol selling price (MESP), at 318 $ m-3 (United States 2007 dollars) for biochemical conversion and 329 $ m-3 for thermochemical conversion. (author)

  10. Assessing Resource Intensity and Renewability of Cellulosic Ethanol Technologies using Eco-LCA

    Science.gov (United States)

    Recognizing the contributions of natural resources and the lack of their comprehensive accounting in life cycle assessment (LCA) of cellulosic ethanol, an in-depth analysis of the contribution of natural resources in the life cycle of cellulosic ethanol derived from five differen...

  11. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa

    Science.gov (United States)

    van Zyl, W. H.; Chimphango, A. F. A.; den Haan, R.; Görgens, J. F.; Chirwa, P. W. C.

    2011-01-01

    The world is currently heavily dependent on oil, especially in the transport sector. However, rising oil prices, concern about environmental impact and supply instability are among the factors that have led to greater interest in renewable fuel and green chemistry alternatives. Lignocellulose is the only foreseeable renewable feedstock for sustainable production of transport fuels. The main technological impediment to more widespread utilization of lignocellulose for production of fuels and chemicals in the past has been the lack of low-cost technologies to overcome the recalcitrance of its structure. Both biological and thermochemical second-generation conversion technologies are currently coming online for the commercial production of cellulosic ethanol concomitantly with heat and electricity production. The latest advances in biological conversion of lignocellulosics to ethanol with a focus on consolidated bioprocessing are highlighted. Furthermore, integration of cellulosic ethanol production into existing bio-based industries also using thermochemical processes to optimize energy balances is discussed. Biofuels have played a pivotal yet suboptimal role in supplementing Africa's energy requirements in the past. Capitalizing on sub-Saharan Africa's total biomass potential and using second-generation technologies merit a fresh look at the potential role of bioethanol production towards developing a sustainable Africa while addressing food security, human needs and local wealth creation. PMID:22482027

  12. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  13. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  14. A pilot plant scale reactor/separator for ethanol from cellulosics. ERIP/DOE quarterly report no. 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Moelhman, M.; Butters, R.

    1998-12-01

    The objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive simultaneous saccharification/fermentation (SSF) of cellulose (glucans) followed by hemi-cellulose (pentosans) in a multi-stage continuous stirred reactor separator (CSRS). During quarters 3 and 4, we have completed a literature survey on cellulase production, activated one strain of Trichoderma reesei. We continued developing our proprietary Steep Delignification (SD) process for biomass pretreatment. Some problems with fermentations were traces to bad cellulase enzyme. Using commercial cellulase enzymes from Solvay & Genecor, SSF experiments with wheat straw showed 41 g/L ethanol and free xylose of 20 g/L after completion of the fermentation. From corn stover, we noted 36 g/L ethanol production from the cellulose fraction of the biomass, and 4 g/L free xylose at the completion of the SSF. We also began some work with paper mill sludge as a cellulose source, and in some preliminary experiments obtained 23 g/L ethanol during SSF of the sludge. During year 2, a 130 L process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation.

  15. Metabolic and process engineering of Clostridium cellulovorans for biofuel production from cellulose.

    Science.gov (United States)

    Yang, Xiaorui; Xu, Mengmeng; Yang, Shang-Tian

    2015-11-01

    Production of cellulosic biofuels has drawn increasing attention. However, currently no microorganism can produce biofuels, particularly butanol, directly from cellulosic biomass efficiently. Here we engineered a cellulolytic bacterium, Clostridium cellulovorans, for n-butanol and ethanol production directly from cellulose by introducing an aldehyde/alcohol dehydrogenase (adhE2), which converts butyryl-CoA to n-butanol and acetyl-CoA to ethanol. The engineered strain was able to produce 1.42 g/L n-butanol and 1.60 g/L ethanol directly from cellulose. Moreover, the addition of methyl viologen as an artificial electron carrier shifted the metabolic flux from acid production to alcohol production, resulting in a high biofuel yield of 0.39 g/g from cellulose, comparable to ethanol yield from corn dextrose by yeast fermentation. This study is the first metabolic engineering of C. cellulovorans for n-butanol and ethanol production directly from cellulose with significant titers and yields, providing a promising consolidated bioprocessing (CBP) platform for biofuel production from cellulosic biomass.

  16. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    Science.gov (United States)

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield.

  17. Catalytic conversion of sugarcane bagasse to cellulosic ethanol: TiO2 coupled nanocellulose as an effective hydrolysis enhancer.

    Science.gov (United States)

    Jabasingh, S Anuradha; Lalith, D; Prabhu, M Arun; Yimam, Abubekker; Zewdu, Taye

    2016-01-20

    The present study deals with the production of cellulosic ethanol from bagasse using the synthesized TiO2 coupled nanocellulose (NC-TiO2) as catalyst. Aspergillus nidulans AJSU04 cellulase was used for the hydrolysis of bagasse. NC-TiO2 at various concentrations was added to bagasse in order to enhance the yield of reducing sugars. Complex interaction between cellulase, bagasse, NC-TiO2 and the reaction environment is thoroughly studied. A mathematical model was developed to describe the hydrolysis reaction. Ethanol production from enzymatically hydrolyzed sugarcane bagasse catalyzed with NC-TiO2 was carried out using Saccharomyces cerevisiae ATCC 20602. The glucose release rates and ethanol concentrations were determined. Ethanol produced was found to be strongly dependent on pretreatment given, hydrolysis and fermentation conditions. The study confirmed the promising accessibility of NC-TiO2, for enhanced glucose production rates and improved ethanol yield. PMID:26572403

  18. Ethanol from wood. Cellulase enzyme production

    Energy Technology Data Exchange (ETDEWEB)

    Szengyel, Zsolt

    2000-03-01

    Conversion of biomass to liquid fuels, such as ethanol, has been investigated during the past decades. First due to the oil crisis of the 1970s and lately because of concerns about greenhouse effect, ethanol has been found to be a suitable substitute for gasoline in transportation. Although ethanol is produced in large quantities from corn starch, the conversion of lignocellulosic biomass to ethanol is rather problematic. However, cellulosic raw materials are important as they are available in large quantities from agriculture and forestry. One of the most extensively investigated processes is the enzymatic process, in which fungal cellulolytic enzymes are used to convert the cellulose content of the biomass to glucose, which is then fermented to ethanol. In order to make the raw material accessible to biological attack, it has to be pretreated first. The most successful method, which has been evaluated for various lignocellulosic materials, is the steam pretreatment. In this thesis the utilization of steam pretreated willow (hardwood) and spruce (softwood) was examined for enzyme production using a filamentous fungus T. reesei RUT C30. Various carbon sources originating from the steam pretreated materials have been investigated. The replacement of the solid carbon source with a liquid carbon source, as well as the effect of pH, was studied. The effect of toxic compounds generated during pretreatment was also examined. Comparative study of softwood and hardwood showed that steam pretreated hardwood is a better carbon source than softwood. The hydrolytic potential of enzyme solutions produced on wood derived carbon sources was better compared to commercial cellulases. Also enzyme solutions produced on steam pretreated spruce showed less sensitivity towards toxic compounds formed during steam pretreatment.

  19. Ethanol production in China: Potential and technologies

    International Nuclear Information System (INIS)

    Rising oil demand in China has resulted in surging oil imports and mounting environmental pollution. It is projected that by 2030 the demand for fossil fuel oil will be 250 million tons. Ethanol seems to be an attractive renewable alternative to fossil fuel. This study assesses China's ethanol supply potential by examining potential non-food crops as feedstock; emerging conversion technologies; and cost competitiveness. Results of this study show that sweet sorghum among all the non-food feedstocks has the greatest potential. It grows well on the available marginal lands and the ASSF technology when commercialized will shorten the fermentation time which will lower the costs. Other emerging technologies such as improved saccharification and fermentation; and cellulosic technologies will make China more competitive in ethanol production in the future. Based on the estimated available marginal lands for energy crop production and conversion yields of the potential feedstocks, the most likely and optimistic production levels are 19 and 50 million tons of ethanol by 2020. In order to achieve those levels, the roadmap for China is to: select the non-food feedstock most suitable to grow on the available marginal land; provide funding to support the high priority conversion technologies identified by the scientists; provide monetary incentives to new and poor farmers to grow the feedstocks to revitalize rural economy; less market regulation and gradual reduction of subsidies to producers for industry efficiency; and educate consumers on the impact of fossil fuel on the environment to reduce consumption. Since the share of ethanol in the overall fuel demand is small, the impact of ethanol on lowering pollution and enhancing fuel security will be minimal. (author)

  20. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda;

    2011-01-01

    The potential of wheat straw for ethanol production after pretreatment with O3 generated in a plasma at atmospheric pressure and room temperature followed by fermentation was investigated. We found that cellulose and hemicellulose remained unaltered after ozonisation and a subsequent washing step...... (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... and unwashed wheat straw for ethanol production (maximum ethanol yield, 52%). O3 cost estimations were made for the production of ethanol at standard conditions....

  1. The Canadian Petroleum Products Institute : position on ethanol

    International Nuclear Information System (INIS)

    A brief overview of the Canadian Petroleum Products Institute (CPPI), an industry association which represents Canadian Petroleum Refiners and Marketers is provided. It is not against nor for the use of ethanol as a fuel. Ethanol blends are marketed by some CPPI members. It is mentioned that consumers accept ethanol fuels when the price is competitive with the price of non-ethanol fuel. Mandating the use of ethanol in fuels is not an issue supported by the CPPI. A subsidy is required in order for ethanol to be an economically attractive option, and the consumers would be forced to bear subsidy costs if the use of ethanol in fuels were to be mandated. The technology is still some years away for ethanol from cellulose to be an attractive option. It is difficult to finance new plants, and 50 million of the 240 million litres of ethanol blended has to be imported. The advantages of ethanol as a fuel are marginal and not cost effective. Some changes to the gasoline distribution system would be required, as ethanol must be added near the consumer, and it may not be appropriate for some older vehicles and some off-road equipment. The gasoline industry's flexibility would be reduced by provincial mandates. Several questions have not yet been answered, such as what is the real purpose of mandating ethanol in motor fuels? when will new technology be available? The CPPI makes four recommendations: (1) the development of a clear understanding of and the articulation of the objectives of a new ethanol policy, (2) support the development of new cellulose based technology, (3) take a prudent and gradual approach to development of a new policy, and (4) CPPI does not believe that an ethanol mandate is in the best interests of all Canadians

  2. Reactor scale up for biological conversion of cellulosic biomass to ethanol.

    Science.gov (United States)

    Shao, Xiongjun; Lynd, Lee; Bakker, André; LaRoche, Richard; Wyman, Charles

    2010-05-01

    The absence of a systematic scale-up approach for biological conversion of cellulosic biomass to commodity products is a significant bottleneck to realizing the potential benefits offered by such conversion. Motivated by this, we undertook to develop a scale-up approach for conversion of waste paper sludge to ethanol. Physical properties of the system were measured and correlations were developed for their dependence upon cellulose conversion. Just-suspension of solid particles was identified as the scale up criterion based on experiments at lab scale. The impeller speed for just solids suspension at large scale was predicted using computational fluid dynamics simulations. The scale-up strategy was validated by analyzing mixing requirements such as solid-liquid mass transfer under the predicted level of agitation at large scale. The scale-up approach enhances the prediction of reactor performance and helps provide guidelines for the analysis and design of large scale bioreactors based on bench scale experimentation. PMID:19649658

  3. Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST and Zymomonas mobilis AX101 for cellulosic ethanol production

    Directory of Open Access Journals (Sweden)

    Dale Bruce E

    2010-05-01

    Full Text Available Abstract Background Fermentations using Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST, and Zymomonas mobilis AX101 are compared side-by-side on corn steep liquor (CSL media and the water extract and enzymatic hydrolysate from ammonia fiber expansion (AFEX-pretreated corn stover. Results The three ethanologens are able produce ethanol from a CSL-supplemented co-fermentation at a metabolic yield, final concentration and rate greater than 0.42 g/g consumed sugars, 40 g/L and 0.7 g/L/h (0-48 h, respectively. Xylose-only fermentation of the tested ethanologenic bacteria are five to eight times faster than 424A(LNH-ST in the CSL fermentation. All tested strains grow and co-ferment sugars at 15% w/v solids loading equivalent of ammonia fiber explosion (AFEX-pretreated corn stover water extract. However, both KO11 and 424A(LNH-ST exhibit higher growth robustness than AX101. In 18% w/w solids loading lignocellulosic hydrolysate from AFEX pretreatment, complete glucose fermentations can be achieved at a rate greater than 0.77 g/L/h. In contrast to results from fermentation in CSL, S. cerevisiae 424A(LNH-ST consumed xylose at the greatest extent and rate in the hydrolysate compared to the bacteria tested. Conclusions Our results confirm that glucose fermentations among the tested strains are effective even at high solids loading (18% by weight. However, xylose consumption in the lignocellulosic hydrolysate is the major bottleneck affecting overall yield, titer or rate of the process. In comparison, Saccharomyces cerevisiae 424A(LNH-ST is the most relevant strains for industrial production for its ability to ferment both glucose and xylose from undetoxified and unsupplemented hydrolysate from AFEX-pretreated corn stover at high yield.

  4. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin.The highest ethanol yield obtained was 67% after fermenting the whole slurry...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  5. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Science.gov (United States)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  6. Energy Integration by Fuel Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Frosterud, Daniel [Christian Berner AB, Partille (Sweden); Geest, Jan de [GEA Wiegand GmbH, Ettlingen (Germany)

    2006-07-15

    The presentation gives an overview of 3 different concepts for energy integration by fuel ethanol production; for a typical wheat and rye based bio ethanol plant, for the ethanol plants with corn as basic material, and for products on cellulose or sugar basis, such as sugar cane. For the latter, the Ecostill concept is presented, consisting of a combination of a mash evaporator heated by the rectification column.The differences between the rye and the corn based plants is in the temperature tolerance of the stillage, giving different options for energy integration. For the wheat, rye and corn based processes the stillage evaporation is explained, using an MVR driven pre-evaporator and a finisher on drier vapours. The ecostill concept for sugar and celloluse based feedstock is a combination of beer or molasses concentration in combination with ethanol rectification, without any drying of the vinasses. The rectifier supplies the energy for the evaporator. With the 3 vessel ethanol de-hydration system there is always a constant energy stream available which is re-used.Further more operational cost, investment and energy cost figures of a typical up to date 400,000 l/d Bio Ethanol plant on corn are given in the form of pies.These show how important it is the have a low energy consumption and how important it is to generate as much alcohol from the feed material as possible, since 1/2 of the operational cost of a corn based plant is the costs for the feedstock. (Full text of contribution)

  7. Fuel ethanol production using nuclear-plant steam

    International Nuclear Information System (INIS)

    In the United States, the production of fuel ethanol from corn for cars and light trucks has increased from about 6 billion liters per year in 2000 to 19 billion liters per year in 2006. A third of the world's liquid fuel demands could ultimately be obtained from biomass. The production of fuel ethanol from biomass requires large quantities of steam. For a large ethanol plant producing 380 million liters of fuel ethanol from corn per year, about 80 MW(t) of 1-MPa (∼180 deg. C) steam is required. Within several decades, the steam demand for ethanol plants in the United States is projected to be tens of gigawatts, with the worldwide demand being several times larger. This market may become the largest market for cogeneration of steam from nuclear electric power plants. There are strong incentives to use steam from nuclear power plants to meet this requirement. The cost of low-pressure steam from nuclear power plants is less than that of natural gas, which is now used to make steam in corn-to-ethanol plants. Steam from nuclear power plants reduces greenhouse gases compared with steam produced from fossil fuels. While ethanol is now produced from sugarcane and corn, the next-generation ethanol plants will use more abundant cellulose feedstocks. It is planned that these plants will burn the lignin in the cellulosic feedstocks to provide the required steam. Lignin is the primary non-sugar-based component in cellulosic biomass that can not be converted to ethanol. Low-cost steam from nuclear plants creates the option of converting the lignin to other liquid fuels and thus increase the liquid fuel production per unit of biomass. Because liquid fuel production from biomass is ultimately limited by the availability of biomass, steam from nuclear plants can ultimately increase the total liquid fuels produced from biomass. (author)

  8. Ethanol Production, Food and Forests

    OpenAIRE

    Andrade de Sa, Saraly; Palmer, Charles; Engel, Stefanie

    2010-01-01

    This paper investigates the direct and indirect impacts of ethanol production on land use, deforestation and food production. A partial equilibrium model of a national economy with two sectors and two regions, one of which includes a residual forest, is developed. It analyses how an exogenous increase in the ethanol price affects input allocation (land and labor) between sectors (energy crop and food). Three potential effects are identified. First, the standard and well-documented effect of d...

  9. Cellulosic ethanol fermentation using Saccharomyces cerevisiae seeds cultured by pretreated corn stover material.

    Science.gov (United States)

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-03-01

    Utilization of lignocellulose materials to replace the pure glucose for preparation of the fermenting yeast seeds could reduce the cost of ethanol fermentation, because a large quantity of glucose is saved in the large-scale seed fermentor series. In this study, Saccharomyces cerevisiae DQ1 was cultured using the freshly pretreated corn stover material as the carbon source, and then the culture broth was used as the inoculation seeds after a series of seed transfer and inoculated into the ethanol production fermentor. The results show that the yeast cell growth and ethanol fermentation performance have essentially no difference when the yeast seeds were cultured by glucose, the corn stover hydrolysate liquid, and the pretreated corn stover solids as carbon sources, respectively. Approximately 22% of the yeast cell culture cost was saved, and the process flow sheet in industrial scale plants was simplified by using the pretreated corn stover for seed culture. The results provided a practical method for materials and operational cost reduction for cellulosic ethanol production.

  10. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    Energy Technology Data Exchange (ETDEWEB)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  11. Ethanol production from Eucalyptus plantation thinnings.

    Science.gov (United States)

    McIntosh, S; Vancov, T; Palmer, J; Spain, M

    2012-04-01

    Conditions for optimal pretreatment of eucalypt (Eucalyptus dunnii) and spotted gum (Corymbia citriodora) forestry thinning residues for bioethanol production were empirically determined using a 3(3) factorial design. Up to 161mg/g xylose (93% theoretical) was achieved at moderate combined severity factors (CSF) of 1.0-1.6. At CSF>2.0, xylose levels declined, owing to degradation. Moreover at high CSF, depolymerisation of cellulose was evident and corresponded to glucose (155mg/g, ∼33% cellulose) recovery in prehydrolysate. Likewise, efficient saccharification with Cellic® CTec 2 cellulase correlated well with increasing process severity. The best condition yielded 74% of the theoretical conversion and was attained at the height of severity (CSF of 2.48). Saccharomyces cerevisiae efficiently fermented crude E. dunnii hydrolysate within 30h, yielding 18g/L ethanol, representing a glucose to ethanol conversion rate of 0.475g/g (92%). Based on our findings, eucalyptus forest thinnings represent a potential feedstock option for the emerging Australian biofuel industry. PMID:22342086

  12. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification...... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  13. Cellulosic Ethanol: Securing the Planet Future Energy Needs

    Directory of Open Access Journals (Sweden)

    Hannah Uckelmann

    2008-05-01

    Full Text Available Bioenergy is fairly recognized as not only a necessity, but an inevitable path to secure the planet future energy needs. There is however a global consensus that the overall feasibility of bioenergy will require an integrated approach based on diversified feedstocks and conversion processes. As illustrated in the Brazilian experience, the thrust of any bioenergy program should be centered on the principles and criteria of sustainable production. In general the trends are towards exploiting low value cellulosic materials to obtain high-end value energy products. To this end, it is expected that scientific or technical innovation will come to play a critical role on the future prospects and potential of any bioenergy initiative.

  14. Analysis of a Modern Hybrid and an Ancient Sugarcane Implicates a Complex Interplay of Factors in Affecting Recalcitrance to Cellulosic Ethanol Production.

    Directory of Open Access Journals (Sweden)

    Viviane Guzzo de Carli Poelking

    Full Text Available Abundant evidence exists to support a role for lignin as an important element in biomass recalcitrance. However, several independent studies have also shown that factors apart from lignin are also relevant and overall, the relative importance of different recalcitrance traits remains in dispute. In this study we used two genetically distant sugarcane genotypes, and performed a correlational study with the variation in anatomical parameters, cell wall composition, and recalcitrance factors between these genotypes. In addition we also tracked alterations in these characteristics in internodes at different stages of development. Significant differences in the development of the culm between the genotypes were associated with clear differential distributions of lignin content and composition that were not correlated with saccharification and fermentation yield. Given the strong influence of the environment on lignin content and composition, we hypothesized that sampling within a single plant could allow us to more easily interpret recalcitrance and changes in lignin biosynthesis than analysing variations between different genotypes with extensive changes in plant morphology and culm anatomy. The syringyl/guaiacyl (S/G ratio was higher in the oldest internode of the modern genotype, but S/G ratio was not correlated with enzymatic hydrolysis yield nor fermentation efficiency. Curiously we observed a strong positive correlation between ferulate ester level and cellulose conversion efficiency. Together, these data support the hypothesis that biomass enzymatic hydrolysis recalcitrance is governed by a quantitative heritage rather than a single trait.

  15. THE FEASIBILITY OF ETHANOL PRODUCTION IN TEXAS

    OpenAIRE

    Klose, Steven L.; Anderson, David P.; Outlaw, Joe L.; Herbst, Brian K.; Richardson, James W.

    2003-01-01

    The resurgence of interest in ethanol production has also prompted interest in Texas. Projected net present values for ethanol plant investment are well below zero for corn based ethanol plants, but are positive for sorghum. Sensitivity analysis indicates relatively small increases in ethanol price are needed to make production viable.

  16. Microbial Investigation on Assimilation and Ethanol Fermentation of Levoglucosan from Cellulosic Pyrolysis Products%纤维素热解产物内醚糖的微生物同化与乙醇发酵测试

    Institute of Scientific and Technical Information of China (English)

    余志晟; 宁洎英; 张玲; 张洪勋

    2011-01-01

    以纤维素的热解产物1,6-缩水-β-D-吡喃葡萄糖(Levoglucosan,简称内醚糖)为唯一碳源对89株微生物(大部分为产酒菌株)进行了同化和乙醇发酵测试,并对319份土样进行了分离纯化培养.筛选结果表明,在89株微生物中,一株Sporobolomyces酵母、一株Rhodotonda酵母、4株Rhizopus霉菌、2株Monascus霉菌有同化内醚糖的能力,但它们利用内醚糖的能力都较弱,在培养3天后,2%内醚糖的利用率低于30%;在319份土样中,发现77份土样有微生物生长,并从中分离到70株酵母和10株细菌.通过内醚糖同化比较测试,发现Y215号菌的同化能力最强,在培养3天后,2%内醚糖的利用率达到了64.12%,经鉴定为斯达油脂酵母(Lipomyces starkeyi).然而,在所有测试和分离的微生物中,没有发现既能同化又能发酵内醚糖为乙醇的菌株.本研究为通过遗传工程方法构建发酵内醚糖为乙醇的工程菌株提供了较好的菌种资源.%The levoglucosan-assimilating and ethanol-producing microorganisms were screened using 1,6-anhydro-β-D-glucopyranose (levoglucosan) of cellulosic pyrolysis products as a sole carbon source from 89 strains of microorganisms (mostly producing ethanol) and 319 soil samples, respectively. 2 strains of yeasts (Sporobolomyces 1 and Rhodotorula 1) and 6 strains of moulds (Rhizopus 4 and Monascus 2) had weak levoglucosan-assimilating ability in 89 strains of microorganisms. 70 strains of yeasts and 10 strains of bacteria were isolated from the 319 soil samples. In all isolated microorganisms, the strain of No. Y215 showed the strongest levoglucosan-asaimilating ability. After it was cultured for three days, the utilization rate of 2% levoglucosan was up to 64.12%. This strain was classified as Lipomyces starkeyi according to a taxonomic identification. Among all tested microorganisms, no microorganisms could ferment levoglucosan to ethanol. The results gave microbial strains for constructing

  17. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Science.gov (United States)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  18. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. PMID:24607460

  19. Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.

    Science.gov (United States)

    Obama, Patrick; Ricochon, Guillaume; Muniglia, Lionel; Brosse, Nicolas

    2012-05-01

    Enzymatic pre-hydrolysis using the industrial enzymatic cocktail Cellulyve® was assessed as a first step in a pretreatment process of Miscanthus biomass involving an aqueous-ethanol organosolv treatment. (13)C and (31)P Nuclear Magnetic Resonance and size exclusion chromatography were used to analyze the cellulose and lignin before and after treatment. It was demonstrated that despite a very low impact on the fibre structure (observed by Scanning Electron Microscopy) and composition (in terms of sugars and polyphenolics content), the enzymatic pre-treatment disrupted the lignocellulosic matrix to a considerable extend. This weakening permitted enhanced removal of lignin during organosolv pulping and increased hydrolysability of the residual cellulosic pulp for the production of monomeric glucose. Using this combined treatment, a delignification yield of 93% and an enzymatic cellulose-to-glucose conversion of 75% were obtained. PMID:22424922

  20. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A [ORNL; Leon, R. V. [University of Tennessee, Knoxville (UTK); O' Neill, Hugh Michael [ORNL; Evans, Barbara R [ORNL

    2007-01-01

    The purpose of this study was to analyze the effects of different culture parameters on Gluconacetobacter hansenii (ATCC 10821) to determine which conditions provided optimum cellulose growth. Five culture factors were investigated: carbon source, addition of ethanol, inoculation ratio, pH and temperature. JMP Software (SAS, Cary, NC, USA) was used to design this experiment using a fractional factorial design. After 22 days of static culture, the cellulose produced by the bacteria was harvested, purified and dried to compare the cellulose yields. The results were analyzed by fitting the data to a first-order model with two-factor interactions. The study confirmed that carbon source, addition of ethanol, and temperature were significant factors in the production of cellulose of this G. hansenii strain. While pH alone does not significantly affect average cellulose production, cellulose yields are affected by pH interaction with the carbon source. Culturing the bacteria on glucose at pH 6-5 produces more cellulose than at pH 5-5, while using mannitol at pH 5-5 produces more cellulose than at pH 6-5. The bacteria produced the most cellulose when cultured on mannitol, at pH 5-5, without ethanol, at 20 C. Inoculation ratio was not found to be a significant factor or involved in any significant two-factor interaction. These findings give insight into the conditions necessary to maximize cellulose production from this G. hansenii strain. In addition, this work demonstrates how the fractional factorial design can be used to test a large number of factors using an abbreviated set of experiments. Fitting a statistical model determined the significant factors as well as the significant two-factor interactions.

  1. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  2. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  3. Re-engineering bacteria for ethanol production

    Science.gov (United States)

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  4. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    Science.gov (United States)

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  5. Maleic acid treatment of bioabated corn stover liquors improves cellulose conversion to ethanol

    Science.gov (United States)

    Elimination of inhibitory compounds released during pretreatment of lignocellulose is critical for efficient cellulose conversion and ethanol fermentation. This study examined the effect of bioabated liquor from pretreated corn stover on enzyme hydrolysis of Solka Floc or pretreated corn stover soli...

  6. Ethanol Demand in United States Gasoline Production

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  7. Application in the Ethanol Fermentation of Immobilized Yeast Cells in Matrix of Alginate/Magnetic Nanoparticles, on Chitosan-Magnetite Microparticles and Cellulose-coated Magnetic Nanoparticles

    CERN Document Server

    Ivanova, Viara; Hristov, Jordan

    2011-01-01

    Saccharomyces cerevisiae cells were entrapped in matrix of alginate and magnetic nanoparticles and covalently immobilized on magnetite-containing chitosan and cellulose-coated magnetic nanoparticles. Cellulose-coated magnetic nanoparticles with covalently immobilized thermostable {\\alpha}-amylase and chitosan particles with immobilized glucoamylase were also prepared. The immobilized cells and enzymes were applied in column reactors - 1/for simultaneous corn starch saccharification with the immobilized glucoamylase and production of ethanol with the entrapped or covalently immobilized yeast cells, 2/ for separate ethanol fermentation of the starch hydrolysates with the fixed yeasts. Hydrolysis of corn starch with the immobilized {\\alpha}-amylase and glucoamylase, and separate hydrolysis with the immobilized {\\alpha}-amylase were also examined. In the first reactor the ethanol yield reached approx. 91% of the theoretical; the yield was approx. 86% in the second. The ethanol fermentation was affected by the typ...

  8. Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.

    Science.gov (United States)

    Negro, Maria José; Manzanares, Paloma; Ballesteros, Ignacio; Oliva, Jose Miguel; Cabañas, Araceli; Ballesteros, Mercedes

    2003-01-01

    Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid fractions obtained after pretreatment, enzymatic digestibility, and ethanol production of poplar biomass pretreated at different experimental conditions was analyzed. The best results were obtained in steam explosion pretreatment at 210 C and 4 min, taking into account cellulose recovery above 95%, enzymatic hydrolysis yield of about 60%, SSF yield of 60% of theoretical, and 41% xylose recovery in the liquid fraction. Large particles can be used for poplar biomass in both pretreatments, since no significant effect of particle size on enzymatic hydrolysis and SSF was obtained.

  9. Understanding the Growth of the Cellulosic Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallace, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Peterson, S. [Peterson Group, Anchorage, AK (United States)

    2008-04-01

    Report identifies and documents plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017 as a guide for setting government policy and targeting government investment to areas with greatest potential impact.

  10. Understanding the Growth of the Cellulosic Ethanol Industry

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, D.; Wallace, R.; Peterson, S.

    2008-04-01

    This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

  11. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders;

    2010-01-01

    In order to find out the appropriate process for ethanol production from corn straw, alkaline wet-oxidation pretreatment (195°C, 15 min, Na2CO3 2 g/L, O2 1200 kPa) and simultaneous saccharification and fermentation (SSF) were adopted to produce ethanol. The results showed that 90% of cellulose...... was obtained. The estimated total ethanol production was 262.7 kg/t raw material by assuming the consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These offered experiment evidences for ethanol production from corn straw....

  12. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2008-11-01

    Full Text Available The present study investigates the economical production of bacterial cellulose (BC by Gluconacetobacter subsp. Xylinus (ATCC 10245 in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL, which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as coloring substances, heavy metals, and other compounds that may act as inhibitors, and in order to eliminate them, crude molasses has been treated with an acid, as an attempt to increase BC productivity. The amount of BC produced using these carbon and nitrogen sources was determined and compared to that produced using previously reported fermentation media. The characterizations of the bacterial cellulose (BC pellicles obtained using either conventional or by-product media were studied by thermal and spectral techniques and compared to those of plant-derived cellulose such as cotton linter, viscose pulp, and microcrystalline cellulose.

  13. Ethanol production of banana shell and cassava starch

    International Nuclear Information System (INIS)

    In this work the acid hydrolysis of the starch was evaluated in cassava and the cellulose shell banana and its later fermentation to ethanol, the means of fermentation were adjusted for the microorganisms saccharomyces cerevisiae nrrl y-2034 and zymomonas mobilis cp4. The banana shell has been characterized, which possesses a content of starch, cellulose and hemicelluloses that represent more than 80% of the shell deserve the study of this as source of carbon. The acid hydrolysis of the banana shell yield 20g/l reducing sugar was obtained as maximum concentration. For the cassava with 170 g/l of starch to ph 0.8 in 5 hours complete conversion is achieved to you reducing sugars and any inhibitory effect is not noticed on the part of the cultivations carried out with banana shell and cassava by the cyanide presence in the cassava and for the formation of toxic compounds in the acid hydrolysis the cellulose in banana shell. For the fermentation carried out with saccharomyces cerevisiae a concentration of ethanol of 7.92± 0.31% it is achieved and a considerable production of ethanol is not appreciated (smaller than 0.1 g/l) for none of the means fermented with zymomonas mobilis

  14. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia

    The aim of this study was 1) present an oilseed rape whole crop biorefinery; 2) to investigate the best available experimental conditions for production of cellulosic ethanol from rape straw, and included the processes of thermo-chemical pretreatment, enzymatic hydrolysis, and C6 fermentation......, and 3) to couple cellulosic ethanol production to production of cellulolytic enzymes that are needed for cellulosic ethanol production, inside a rape straw biorefinery. For the first is based less on available experiments, and more on literature review. The second and third study conclusions were drawn...... based more on experimental findings, and less to literature review. In Chapter 1, the problem context and background theory for biorefineries is presented. Finally, latest developments of upscaled biorefineries in Europe are summarized. In Chapter 2, a scenario about upgrading and expanding a typical...

  15. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    OpenAIRE

    Houssni El-Saied; Ahmed I. El-Diwany; Altaf H. Bast; Nagwa A. Atwa; Dina E. El-Ghwas

    2008-01-01

    The present study investigates the economical production of bacterial cellulose (BC) by Gluconacetobacter subsp. Xylinus (ATCC 10245) in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL), which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as colo...

  16. Logistical design of a regional herbaceous crop residue-based ethanol production complex

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, David K. [Department of Agricultural Economics, Kansas State University, 324 Waters Hall, Manhattan, Kansas 66506-4011 (United States); Middleton, Jason [Department of Agribusiness and Applied Economics, Dept. 7610, North Dakota State University, Fargo, ND 58108-6050 (United States)

    2010-01-15

    Political and economic arguments underlie the focus on cellulosic ethanol production as a preferred process for meeting future renewable fuel demand. Cellulosic ethanol production requires large volumes of the biomass input, adding logistical challenges to the feasibility of the technology. The objective of this research is to evaluate the profitability of a field-to-refinery model developed to identify optimal harvest, storage, transportation, pretreatment, and refining activities for a study area in Northeastern North Dakota. Sensitivity analysis indicates profitability of the ethanol complex is marginal under current prices and anticipated technologies. However, increases in ethanol prices and reduced conversion costs to produce ethanol from herbaceous crop residues suggest future viability of the process. Finally, development of a viable livestock feeding industry using some or all of the AFEX-pretreated crop residue increases the profitability of harvesting crop residues for further use. (author)

  17. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia;

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  18. Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation.

    Science.gov (United States)

    Nishimura, Hiroto; Tan, Li; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji; Morimura, Shigeru

    2016-02-01

    Waste paper can serve as a feedstock for ethanol production due to being rich in cellulose and not requiring energy-intensive thermophysical pretreatment. In this study, an efficient process was developed to convert waste paper to ethanol. To accelerate enzymatic saccharification, pH of waste paper slurry was adjusted to 4.5-5.0 with H2SO4. Presaccharification and simultaneous saccharification and fermentation (PSSF) with enzyme loading of 40 FPU/g waste paper achieved an ethanol yield of 91.8% and productivity of 0.53g/(Lh) with an ethanol concentration of 32g/L. Fed-batch PSSF was used to decrease enzyme loading to 13 FPU/g waste paper by feeding two separate batches of waste paper slurry. Feeding with 20% w/w waste paper slurry increased ethanol concentration to 41.8g/L while ethanol yield decreased to 83.8%. To improve the ethanol yield, presaccharification was done prior to feeding and resulted in a higher ethanol concentration of 45.3g/L, a yield of 90.8%, and productivity of 0.54g/(Lh). Ethanol fermentation recovered 33.2% of the energy in waste paper as ethanol. The biochemical methane potential of the stillage eluted from ethanol fermentation was 270.5mL/g VTS and 73.0% of the energy in the stillage was recovered as methane. Integrating ethanol fermentation with methane fermentation, recovered a total of 80.4% of the energy in waste paper as ethanol and methane.

  19. Ethanol production from steam-explosion pretreated wheat straw.

    Science.gov (United States)

    Ballesteros, Ignacio; Negro, Ma José; Oliva, José Miguel; Cabañas, Araceli; Manzanares, Paloma; Ballesteros, Mercedes

    2006-01-01

    Bioconversion of cereal straw to bioethanol is becoming an attractive alternative to conventional fuel ethanol production from grains. In this work, the best operational conditions for steam-explosion pretreatment of wheat straw for ethanol production by a simultaneous saccharification and fermentation process were studied, using diluted acid [H2SO4 0.9% (w/w)] and water as preimpregnation agents. Acid- or water-impregnated biomass was steam-exploded at different temperatures (160-200 degrees C) and residence times (5, 10, and 20 min). Composition of solid and filtrate obtained after pretreatment, enzymatic digestibility and ethanol production of pretreated wheat straw at different experimental conditions was analyzed. The best pretreatment conditions to obtain high conversion yield to ethanol (approx 80% of theoretical) of cellulose-rich residue after steam-explosion were 190 degrees C and 10 min or 200 degrees C and 5 min, in acid-impregnated straw. However, 180 degrees C for 10 min in acid-impregnated biomass provided the highest ethanol yield referred to raw material (140 L/t wheat straw), and sugars recovery yield in the filtrate (300 g/kg wheat straw).

  20. Current Pretreatment Technologies for the Development of Cellulosic Ethanol and Biorefineries.

    Science.gov (United States)

    Silveira, Marcos Henrique Luciano; Morais, Ana Rita C; da Costa Lopes, Andre M; Olekszyszen, Drielly Nayara; Bogel-Łukasik, Rafał; Andreaus, Jürgen; Pereira Ramos, Luiz

    2015-10-26

    Lignocellulosic materials, such as forest, agriculture, and agroindustrial residues, are among the most important resources for biorefineries to provide fuels, chemicals, and materials in such a way to substitute for, at least in part, the role of petrochemistry in modern society. Most of these sustainable biorefinery products can be produced from plant polysaccharides (glucans, hemicelluloses, starch, and pectic materials) and lignin. In this scenario, cellulosic ethanol has been considered for decades as one of the most promising alternatives to mitigate fossil fuel dependence and carbon dioxide accumulation in the atmosphere. However, a pretreatment method is required to overcome the physical and chemical barriers that exist in the lignin-carbohydrate composite and to render most, if not all, of the plant cell wall components easily available for conversion into valuable products, including the fuel ethanol. Hence, pretreatment is a key step for an economically viable biorefinery. Successful pretreatment method must lead to partial or total separation of the lignocellulosic components, increasing the accessibility of holocellulose to enzymatic hydrolysis with the least inhibitory compounds being released for subsequent steps of enzymatic hydrolysis and fermentation. Each pretreatment technology has a different specificity against both carbohydrates and lignin and may or may not be efficient for different types of biomasses. Furthermore, it is also desirable to develop pretreatment methods with chemicals that are greener and effluent streams that have a lower impact on the environment. This paper provides an overview of the most important pretreatment methods available, including those that are based on the use of green solvents (supercritical fluids and ionic liquids).

  1. OPTIMIZATION OF YEAST FOR ETHANOL PRODUCTION

    OpenAIRE

    Taghizadeh Ghassem; Delbari Azam Sadat; Kulkarni D. K.

    2012-01-01

    The production of pure ethanol apparently begins in the 12-14th century. Improvements in the distillation process with the condensation of vapors of lower boiling liquids. Ethanol is produced commercially by chemical synthesis or biosynthesis. High ethanol producing yeast exhibits rapid metabolic activity and a high fermentation rate with high product output in less time.Yeasts were isolated from Corn, Curd, Grapes, Water 1, Water 2, and Paneer. Isolation was done on MGYP (Malt Extract Glucos...

  2. Water consumption in the production of ethanol and petroleum gasoline.

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  3. Water Consumption in the Production of Ethanol and Petroleum Gasoline

    Science.gov (United States)

    Wu, May; Mintz, Marianne; Wang, Michael; Arora, Salil

    2009-11-01

    We assessed current water consumption during liquid fuel production, evaluating major steps of fuel lifecycle for five fuel pathways: bioethanol from corn, bioethanol from cellulosic feedstocks, gasoline from U.S. conventional crude obtained from onshore wells, gasoline from Saudi Arabian crude, and gasoline from Canadian oil sands. Our analysis revealed that the amount of irrigation water used to grow biofuel feedstocks varies significantly from one region to another and that water consumption for biofuel production varies with processing technology. In oil exploration and production, water consumption depends on the source and location of crude, the recovery technology, and the amount of produced water re-injected for oil recovery. Our results also indicate that crop irrigation is the most important factor determining water consumption in the production of corn ethanol. Nearly 70% of U.S. corn used for ethanol is produced in regions where 10-17 liters of water are consumed to produce one liter of ethanol. Ethanol production plants are less water intensive and there is a downward trend in water consumption. Water requirements for switchgrass ethanol production vary from 1.9 to 9.8 liters for each liter of ethanol produced. We found that water is consumed at a rate of 2.8-6.6 liters for each liter of gasoline produced for more than 90% of crude oil obtained from conventional onshore sources in the U.S. and more than half of crude oil imported from Saudi Arabia. For more than 55% of crude oil from Canadian oil sands, about 5.2 liters of water are consumed for each liter of gasoline produced. Our analysis highlighted the vital importance of water management during the feedstock production and conversion stage of the fuel lifecycle.

  4. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum.

    Directory of Open Access Journals (Sweden)

    Ranjita Biswas

    Full Text Available Large-scale production of lignocellulosic biofuel is a potential solution to sustainably meet global energy needs. One-step consolidated bioprocessing (CBP is a potentially advantageous approach for the production of biofuels, but requires an organism capable of hydrolyzing biomass to sugars and fermenting the sugars to ethanol at commercially viable titers and yields. Clostridium thermocellum, a thermophilic anaerobe, can ferment cellulosic biomass to ethanol and organic acids, but low yield, low titer, and ethanol sensitivity remain barriers to industrial production. Here, we deleted the hypoxanthine phosphoribosyltransferase gene in ethanol tolerant strain of C. thermocellum adhE*(EA in order to allow use of previously developed gene deletion tools, then deleted lactate dehydrogenase (ldh to redirect carbon flux towards ethanol. Upon deletion of ldh, the adhE*(EA Δldh strain produced 30% more ethanol than wild type on minimal medium. The adhE*(EA Δldh strain retained tolerance to 5% v/v ethanol, resulting in an ethanol tolerant platform strain of C. thermocellum for future metabolic engineering efforts.

  5. Acid hydrolysis of sisal cellulose: studies aiming at nano fibers and bio ethanol preparation

    International Nuclear Information System (INIS)

    The hydrolysis of cellulose can result in nanofibers and also is an important stage in the bioethanol production process. In order to evaluate the influence of acid (sulfuric) concentration, temperature, and native cellulose (sisal) pretreatment on cellulose hydrolysis, the acid concentration was varied between 5% and 30% (v/v) in the temperature range from 60 to 100 deg C using native and alkali-treated (mercerized) sisal cellulose. The following techniques were used to evaluate the residual (non-hydrolysed) cellulose characteristics: viscometry, average degree of polymerization (DP), X-ray diffraction, crystallinity index, and Scanning Electron Microscopy. The sugar cane liquor was analyzed in terms of sugar composition, using High Performance Liquid Chromatography (HPLC). The results showed that increasing the concentration of sulfuric acid and temperature afforded residual cellulose with lower molecular weight and, up to specific acid concentrations, higher crystallinity indexes, when compared to the original cellulose values, and increased the glucose (the bioethanol precursor ) production of the liquor, which was favored for mercerized cellulose. (author)

  6. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Park Enoch Y

    2012-08-01

    Full Text Available Abstract Background While the ethanol production from biomass by consolidated bioprocess (CBP is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF, respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol

  7. 40 CFR 80.1155 - What are the additional requirements for a producer of cellulosic biomass ethanol or waste...

    Science.gov (United States)

    2010-07-01

    ..., 40 CFR part 32, or the Debarment, Suspension and Ineligibility provisions of the Federal Acquisition Regulations, 48 CFR, part 9, subpart 9.4, shall be deemed noncompliance with the requirements of this section... for a producer of cellulosic biomass ethanol or waste derived ethanol? 80.1155 Section...

  8. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. - Research highlights: → The likelihood of a significant cellulosic ethanol industry in the US looks dim. → Drop-in biofuels made from cellulosic feedstocks have a more promising future. → The spatial dimension of markets for cellulosic feedstocks will be limited. → Corn ethanol will be a tough competitor for cellulosic ethanol.

  9. Evaluation of environmental impacts of cellulosic ethanol using life cycle assessment with technological advances over time

    International Nuclear Information System (INIS)

    Life Cycle Assessment (LCA) has been used in quantifying the environmental impacts of materials, processes, products, or systems across their entire lifespan from creation to disposal. To evaluate the environmental impact of advancing technology, Life Cycle Assessment with Technological Advances over Time (LCA-TAT) incorporates technology improvements within the traditional LCA framework. In this paper, the LCA-TAT is applied to quantify the environmental impacts of ethanol production using cellulosic biomass as a feedstock through the simultaneous saccharification and co-fermentation (SSCF) process as it improves over time. The data for the SSCF process are taken from the Aspen Plus® simulation developed by the National Renewable Energy Lab (NREL). The Environmental Fate and Risk Assessment Tool (EFRAT) is used to calculate the fugitive emissions and SimaPro 7.1 software is used to quantify the environmental impacts of processes. The impact indicators of the processes are calculated using the Eco-indicator 95 method; impact categories analyzed include ozone layer depletion, heavy metals, carcinogens, summer smog, winter smog, pesticides, greenhouse effect, acidification, and eutrophication. Based on the LCA-TAT results, it is found that removal of the continuous ion exchange step within the pretreatment area increases the environmental impact of the process. The main contributor to the increase in the environmental impact of the process is the heavy metal indicator. In addition, a sensitivity analysis is performed to identify major inputs and outputs that affect environmental impacts of the overall process. Based on this analysis it is observed that an increase in waste production and acid use have the greatest effect on the environmental impacts of the SSCF process. Comparing economic analysis with projected technological advances performed by NREL, the improvement in environmental impact was not matched by a concomitant improvement in economic performance. In

  10. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  11. Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.

    1980-05-01

    The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

  12. Rewiring Lactococcus lactis for Ethanol Production

    DEFF Research Database (Denmark)

    Solem, Christian; Dehli, Tore Ibsen; Jensen, Peter Ruhdal

    2013-01-01

    to redirect the metabolism of LAB model organism Lactococcus lactis toward ethanol production. Codon-optimized Zymomonas mobilis pyruvate decarboxylase (PDC) was introduced and expressed from synthetic promoters in different strain backgrounds. In the wild-type L. lactis strain MG1363 growing on glucose, only...... small amounts of ethanol were obtained after introducing PDC, probably due to a low native alcohol dehydrogenase activity. When the same strains were grown on maltose, ethanol was the major product and lesser amounts of lactate, formate, and acetate were formed. Inactivating the lactate dehydrogenase...... genes ldhX, ldhB, and ldh and introducing codon-optimized Z. mobilis alcohol dehydrogenase (ADHB) in addition to PDC resulted in high-yield ethanol formation when strains were grown on glucose, with only minor amounts of by-products formed. Finally, a strain with ethanol as the sole observed...

  13. Study on the treatment of wastewater from cellulose ethanol production and its engineering application%纤维素乙醇废水处理研究与工程应用

    Institute of Scientific and Technical Information of China (English)

    王宗华; 郑伟花

    2012-01-01

    采用铁炭微电解-Fenton+UASB+MBR组合工艺处理纤维素乙醇废水,并对工程设计运行参数和污染物去除机理进行了探索.结果表明:在微电解反应5h,UASB停留时间36 h,MBR停留时间25h条件下处理纤维素乙醇废水,经絮凝脱色后出水COD、氨氮等指标均达到《发酵酒精和白酒工业水污染物排放标准》(GB 27631—2011)中的规定,且运行效果稳定,费用较低.%A combined process of iron-carbon micro-electrolysis-Fenton+UASB+membrane bioreactor(MBR) has been used for treating cellulose ethanol wastewater. Its engineering design operation parameters and pollutant re-moving mechanisms have been explored. The results show that after the flocculation decolonization process, all of th< indexes,such as effluent COD,ammonia-nitrogen,etc. can reach the requirements of the Discharge Standard of Water Pollutants from Fermentation Alcohol and Distilled Spirits Industry (GB 27631—2011) ,the effect of the operation is stable,and cost is low,under the following conditions: reaction time of micro-electrolysis is 5 h,UASB retention time 36 h, and MBR retention time 25 h.

  14. A novel biochemical route for fuels and chemicals production from cellulosic biomass.

    Directory of Open Access Journals (Sweden)

    Zhiliang Fan

    Full Text Available The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1 cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2 both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.

  15. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  16. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification.

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z Conrad

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms. PMID:26837707

  17. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    Science.gov (United States)

    Liu, Xiumei; Xu, Wenjuan; Mao, Liaoyuan; Zhang, Chao; Yan, Peifang; Xu, Zhanwei; Zhang, Z. Conrad

    2016-02-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.

  18. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    Science.gov (United States)

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date.

  19. Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process.

    Science.gov (United States)

    Oberoi, Harinder Singh; Vadlani, Praveen V; Saida, Lavudi; Bansal, Sunil; Hughes, Joshua D

    2011-07-01

    Dried and ground banana peel biomass (BP) after hydrothermal sterilization pretreatment was used for ethanol production using simultaneous saccharification and fermentation (SSF). Central composite design (CCD) was used to optimize concentrations of cellulase and pectinase, temperature and time for ethanol production from BP using SSF. Analysis of variance showed a high coefficient of determination (R(2)) value of 0.92 for ethanol production. On the basis of model graphs and numerical optimization, the validation was done in a laboratory batch fermenter with cellulase, pectinase, temperature and time of nine cellulase filter paper unit/gram cellulose (FPU/g-cellulose), 72 international units/gram pectin (IU/g-pectin), 37 °C and 15 h, respectively. The experiment using optimized parameters in batch fermenter not only resulted in higher ethanol concentration than the one predicted by the model equation, but also saved fermentation time. This study demonstrated that both hydrothermal pretreatment and SSF could be successfully carried out in a single vessel, and use of optimized process parameters helped achieve significant ethanol productivity, indicating commercial potential for the process. To the best of our knowledge, ethanol concentration and ethanol productivity of 28.2 g/l and 2.3 g/l/h, respectively from banana peels have not been reported to date. PMID:21376555

  20. Comparison of Different Pretreatment Strategies for Ethanol Production of West African Biomass

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Gonzalez Londono, Jorge Enrique; Schmidt, Jens Ejbye;

    2015-01-01

    husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. It was found that four biomass’ (plantain peelings, plantain trunks, maize cobs and maize stalks) were most promising for production of cellulosic ethanol with profitable enzymatic conversion...

  1. Methods of detection using a cellulose binding domain fusion product

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Shimshon, IL); Shpiegl, Itai (North Gallilea, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. Potential Uses of Bagasse for Ethanol Production Versus Electricity Production

    Directory of Open Access Journals (Sweden)

    Zumalacárregui-De Cárdenas Lourdes Margarita

    2015-07-01

    Full Text Available The procedure to carry out the energy balance for ethanol production by bagasse’s hydrolysis is presented. The loss of potentialities for electric power generation when bagasse is used to produce ethanol instead of electricity directly is calculated. Potential losses are 45-64% according to the efficiency of the lignocellulosic ethanol production. The relationship that exists between the volume of ethanol and the efficiency of Otto and Rankine cycles is analyzed. Those cycles are used to produce electricity from ethanol and bagasse, respectively.

  3. Anaerobic digestion as final step of a cellulosic ethanol biorefinery:

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2010-01-01

    of suspended matter reduced the degradation efficiency. The retention time of the anaerobic system could be reduced from 70 to 7 h by additional removal of suspended matter by clarification. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher carbon utilization...

  4. Greenprint on ethanol production in Saskatchewan

    International Nuclear Information System (INIS)

    Investment in Saskatchewan's ethanol industry is being actively promoted by the provincial government. This document represents the provincial strategy in support of the ethanol industry, which will result in significant environmental benefits for the province and the residents through the increased use of ethanol as an additive to conventional gasoline. The big advantage offered by ethanol is a more complete fuel combustion, thereby reducing emissions of greenhouse gases by as much as 30 per cent. The production costs of ethanol have decreased in the last twenty years by 50 per cent. The competitiveness of ethanol should increase due to ongoing research and development progress being made. The agricultural sector should benefit through the creation of meaningful jobs in the sector, as well as offering new marketing opportunities to the grain producers of the province and the wood-product companies. A renewable resource, ethanol reduces carbon dioxide exhaust emissions bu up to 20 per cent, reduces the smog-creating compounds up to 15 per cent, and achieves a net reduction of up to 10 per cent in carbon dioxide emissions. The abundance of raw materials and resources required for the production of ethanol, Saskatchewan possesses an obvious advantage for becoming a world leader in the field. The government of Saskatchewan has developed its strategy, outlined in this document. It calls for tax incentives, the mandating of ethanol blend, opening up markets, working with communities. The industry size, economic impact, export potential, and future opportunities were briefly discussed in the last section of the document. 1 tab., 3 figs

  5. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  6. The sustainability of ethanol production from sugarcane

    International Nuclear Information System (INIS)

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production. (author)

  7. The sustainability of ethanol production from sugarcane

    International Nuclear Information System (INIS)

    The rapid expansion of ethanol production from sugarcane in Brazil has raised a number of questions regarding its negative consequences and sustainability. Positive impacts are the elimination of lead compounds from gasoline and the reduction of noxious emissions. There is also the reduction of CO2 emissions, since sugarcane ethanol requires only a small amount of fossil fuels for its production, being thus a renewable fuel. These positive impacts are particularly noticeable in the air quality improvement of metropolitan areas but also in rural areas where mechanized harvesting of green cane is being introduced, eliminating the burning of sugarcane. Negative impacts such as future large-scale ethanol production from sugarcane might lead to the destruction or damage of high-biodiversity areas, deforestation, degradation or damaging of soils through the use of chemicals and soil decarbonization, water resources contamination or depletion, competition between food and fuel production decreasing food security and a worsening of labor conditions on the fields. These questions are discussed here, with the purpose of clarifying the sustainability aspects of ethanol production from sugarcane mainly in Sao Paulo State, where more than 60% of Brazil's sugarcane plantations are located and are responsible for 62% of ethanol production

  8. Ionizing Radiation Conversion of Lignocellulosic Biomass from Sugarcane Bagasse to Production Ethanol Biofuel

    International Nuclear Information System (INIS)

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 75 % with 30 kGy of absorbed dose. (author)

  9. Develop and Demonstrate the Cellulose to Ethanol Process: Executive Summary of the Final Technical Report, 17 September 1980 - 17 March 1982

    Energy Technology Data Exchange (ETDEWEB)

    Emert, George H.; Becker, Dana K.; Bevernitz, Kurt J.; Gracheck, Stephen J.; Kienholz, Eldon W.; Rivers, Dougals B.; Zoldak, Bernadette R.; Woodford, Lindley C.

    1982-01-01

    The Biomass Research Center at the University of Arkansas was contracted by the Solar Energy Research Institute to 'Develop and Demonstrate the Cellulose to Ethanol Process.' The purpose of the contract was to accelerate site selection, site specific engineering, and research and development leading to the determination of the feasibility of economically operating a cellulose to ethanol commercial scale plant.

  10. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  11. Can Hawaii Meet Its Renewable Fuel Target? Case Study of Banagrass-Based Cellulosic Ethanol

    Directory of Open Access Journals (Sweden)

    Chinh Tran

    2016-08-01

    Full Text Available Banagrass is a biomass crop candidate for ethanol production in the State of Hawaii. This study examines: (i whether enough banagrass can be produced to meet Hawaii’s renewable fuel target of 20% highway fuel demand produced with renewable sources by 2020 and (ii at what cost. This study proposes to locate suitable land areas for banagrass production and ethanol processing, focusing on the two largest islands in the state of Hawaii—Hawaii and Maui. The results suggest that the 20% target is not achievable by using all suitable land resources for banagrass production on both Hawaii and Maui. A total of about 74,224,160 gallons, accounting for 16.04% of the state’s highway fuel demand, can be potentially produced at a cost of $6.28/gallon. Lower ethanol cost is found when using a smaller production scale. The lowest cost of $3.31/gallon is found at a production processing capacity of about 9 million gallons per year (MGY, which meets about 2% of state demand. This cost is still higher than the average imported ethanol price of $3/gallon. Sensitivity analysis finds that it is possible to produce banagrass-based ethanol on Hawaii Island at a cost below the average imported ethanol price if banagrass yield increases of at least 35.56%.

  12. Increasing cellulose production and transgenic plant growth in forest tree species

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; Aaron Nelson; Emmanuel Johnson

    2005-01-01

    Cellulose is one of many important polymers in plants. Cellulose is made of repeat units of the monomer glucose. Cellulose is a major industrial biopolymer in the forest products, textile, and chemical industries. It also forms a large portion of the biomass useful in the generation of energy. Moreover, cellulose-based biomass is a renewable energy source that can be used for the generation of ethanol as a fuel. Cellulose is synthesized by a variety of living organisms such as plants and algae. It is the major component of plant cell walls with secondary cell walls having a much higher content of cellulose. The relationship between cellulose and lignin biosynthesis is complicated, but it is confirmed that inhibition of lignin biosynthesis in transgenic trees will increase cellulose biosynthesis and plant growth. Cellulose accumulation may be increased by down-regulating 4-coumarate:coenzyme A ligase (4CL, EC 6.2.1.12) as shown in transgenic aspen. There is no similar reports on down-regulating 4CL in transgenic conifers. Based on our established Agrobacterium tumefaciens-mediated transformation system in loblolly pine, we are able to produce antisense 4-CL transgenic loblolly pine which is predicted to have increasing cellulose accumulation. The overall objective of this project is to genetically engineer forest tree species such as loblolly pine with reduced amount of lignin and increased cellulose content. The research strategy includes: (1) isolate the 4-coumarate:coenzyme A ligase gene from loblolly pine seedlings by reverse transcription-polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends-Polymerase Chain Reaction (RACE-PCR) techniques from the cDNA library; (2) construct binary expression vectors with antisense 4CL coding sequences and introduce antisense constructs of the 4-coumarate:coenzyme A ligase gene cloned from loblolly pine into the loblolly pine to down regulate the 4-coumarate:coenzyme A ligase gene expression; (3) study the

  13. Final report (September, 1999--February, 2002) [Public outreach and information dissemination - cellulosic and corn-based ethanol outreach project

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Jeremy; Werner, Carol

    2002-08-01

    EESI's ''Ethanol, Climate Protection, Oil Reduction'' (ECO) electr[on]ic newsletter reaches out to the environmental and agricultural communities, state/local government officials and other interested parties, and provides a forum for dialogue about ''the potential benefits of ethanol--and particularly the expanded opportunities provided by cellulosic ethanol--with a special focus on climate protection.'' Each issue features expert commentary, excerpts from recent studies about ethanol, a summary of current government activity on ethanol, and ''notable quotables.'' The newsletter is distributed primarily via email and is also posted on EESI's web site. EESI also conducts outreach on the benefits of ethanol and other biofuels by attending and speaking at conferences, meetings and workshops around the country. The 16 issues of the newsletter published through December 2001 are included as attachments.

  14. The commercial performance of cellulosic ethanol supply-chains in Europe

    Directory of Open Access Journals (Sweden)

    Shah Nilay

    2009-02-01

    Full Text Available Abstract Background The production of fuel-grade ethanol from lignocellulosic biomass resources has the potential to increase biofuel production capacity whilst minimising the negative environmental impacts. These benefits will only be realised if lignocellulosic ethanol production can compete on price with conventional fossil fuels and if it can be produced commercially at scale. This paper focuses on lignocellulosic ethanol production in Europe. The hypothesis is that the eventual cost of production will be determined not only by the performance of the conversion process but by the performance of the entire supply-chain from feedstock production to consumption. To test this, a model for supply-chain cost comparison is developed, the components of representative ethanol supply-chains are described, the factors that are most important in determining the cost and profitability of ethanol production are identified, and a detailed sensitivity analysis is conducted. Results The most important cost determinants are the cost of feedstocks, primarily determined by location and existing markets, and the value obtained for ethanol, primarily determined by the oil price and policy incentives. Both of these factors are highly uncertain. The best performing chains (ethanol produced from softwood and sold as a low percentage blend with gasoline could ultimately be cost competitive with gasoline without requiring subsidy, but production from straw would generally be less competitive. Conclusion Supply-chain design will play a critical role in determining commercial viability. The importance of feedstock supply highlights the need for location-specific assessments of feedstock availability and price. Similarly, the role of subsidies and policy incentives in creating and sustaining the ethanol market highlights the importance of political engagement and the need to include political risks in investment appraisal. For the supply-chains described here, and with

  15. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  16. Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium

    Science.gov (United States)

    Goyal, Garima

    Fossil fuels have been the major source for liquid transportation fuels for ages. However, decline in oil reserves and environmental concerns have raised a lot of interest in alternative and renewable energy sources. One promising alternative is the conversion of plant biomass into ethanol. The primary biomass feed stocks currently being used for the ethanol industry have been food based biomass (corn and sugar cane). However, interest has recently shifted to replace these traditional feed-stocks with more abundant, non-food based cellulosic biomass such as agriculture wastes (corn stover) or crops (switch grass). The use of cellulosic biomass as feed stock for the production of ethanol via bio-chemical routes presents many technical challenges not faced with the use of corn or sugar-cane as feed-stock. Recently, a new process called consolidated Bio-processing (CBP) has been proposed. This process combines simultaneous saccharification of lignocellulose with fermentation of the resulting sugars into a single process step mediated by a single microorganism or microbial consortium. Although there is no natural microorganism that possesses all properties of lignocellulose utilization and ethanol production desired for CBP, some bacteria and fungi exhibit some of the essential traits. The yeast Saccharomyces cerevisiae is the most attractive host organism for the usage of this strategy due to its high ethanol productivity at close to theoretical yields (0.51g ethanol/g glucose consumed), high osmo- and ethanol- tolerance, natural robustness in industrial processes, and ease of genetic manipulation. Introduction of the cellulosome, found naturally in microorganisms, has shown new directions to deal with recalcitrant biomass. In this case enzymes work in synergy in order to hydrolyze biomass more effectively than in case of free enzymes. A microbial consortium has been successfully developed, which ensures the functional assembly of minicellulosome on the yeast surface

  17. Determining the potential of inedible weed biomass for bio-energy and ethanol production

    Directory of Open Access Journals (Sweden)

    Siripong Premjet

    2013-02-01

    Full Text Available Surveys of indigenous weeds in six provinces located in the low northern part of Thailand were undertaken to determine the potential of weed biomass for bio-energy and bio-ethanol. The results reveal that most of the weed samples had low moisture contents and high lower heating values (LHVs. The LHVs at the highest level, ranging from 17.7 to 18.9 Mg/kg, and at the second highest level, ranging from 16.4 to 17.6 Mg/kg, were obtained from 11 and 31 weed species, respectively. It was found that most of the collected weed samples contained high cellulose and low lignin contents. Additionally, an estimate of the theoretical ethanol yields based on the amount of cellulose and hemicellulose in each weed species indicated that a high ethanol yield resulted from weed biomasses with high cellulose and hemicellulose contents. Among the collected weed species, the highest level of ethanol yield, ranging from 478.9 to 548.5 L/ton (substrate, was achieved from 11 weed species. It was demonstrated that most of the collected weed species tested have the potential for thermal conversion and can be used as substrates for ethanol production.

  18. Progress of cellulose ethanol research & development%纤维素乙醇研究开发进展

    Institute of Scientific and Technical Information of China (English)

    胡徐腾

    2011-01-01

    Cellulose ethanol has become a priority of research with a bright future. It may become one of the most important renewable energy sources in the future. Cellulose ethanol research &development is reviewed, and the development history and the latest worldwide progress of cellulose ethanol research & development are summarized. The difficulties and problems in current cellulose ethanol commercialization are analyzed. The directions of research & development are presented.%纤维素乙醇是当今的研究热点,具有广阔的发展前景,将成为未来最重要的可再生能源之一.本文介绍了纤维素乙醇的研发概况,综述了国内外研究开发历程与最新进展,分析了目前纤维素乙醇燃料产业化存在的困难和问题,指出了当前和今后的研发方向.

  19. An Indirect Route for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Eggeman, T.; Verser, D.; Weber, E.

    2005-04-29

    The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

  20. Exergy and CO2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production

    OpenAIRE

    Qian Kang; Tianwei Tan

    2016-01-01

    The background of bioethanol as an alternative to conventional fuels is analyzed with the aim of examining the efficiency of bioethanol production by first (sugar-based) and second (cellulose-based) generation processes. Energy integration is of paramount importance for a complete recovery of the processes’ exergy potential. Based upon literature data and our own findings, exergy analysis is shown to be an important tool in analyzing integrated ethanol production from an efficiency and cost p...

  1. Cellulose

    Science.gov (United States)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  2. Production of Cellulosic Polymers from Agricultural Wastes

    OpenAIRE

    Israel, A. U.; I. B. Obot; Umoren, S. A.; Mkpenie, V.; Asuquo, J. E.

    2008-01-01

    Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis), raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri), stem and cob of maize plant (Zea mays), fruit fiber from coconut fruit (Cocos nucifera), sawdusts from cotton tree (Cossypium hirsutum), pear wood (Manilkara obovata), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase (Sac...

  3. Innovative production technology ethanol from sweet sorghum

    Science.gov (United States)

    Kashapov, N. F.; Nafikov, M. M.; Gazetdinov, M. X.; Nafikova, M. M.; Nigmatzyanov, A. R.

    2016-06-01

    The paper considers the technological aspects of production of ethanol from nontraditional for Russian Federation crops - sweet sorghum. Presents the technological scheme of alcohol production and fuel pellets from sweet sorghum. Special attention is paid to assessing the efficiency of alcohol production from sweet sorghum. The described advantage of sugar content in stem juice of sweet sorghum compared with other raw materials. Allegedly, the use of the technology for producing alcohol from sweet sorghum allows to save resources.

  4. The Perspectives for Genetically Modified Cellulosic Ethanol in the Czech Republic

    OpenAIRE

    Blahova, Pavla; Janda, Karel; Kristoufek, Ladislav

    2014-01-01

    This paper connects the biofuels literature with genetic modifications literature by considering the potential of genetic modifications for increasing the efficiency of cellulosic biofuels production. This is done for one particular case through analyzing the effect of genetically modified corn adoption on overall yields of corn for silage. Our econometric model confirms that the use of genetically modified corn with inserted MON810 gene increases the overall corn biomass yield in the product...

  5. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    Science.gov (United States)

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  6. RECTIFIED ETHANOL PRODUCTION COST ANALYSIS

    OpenAIRE

    Nikola J Budimir; Jarić, Marko S.; Branislav M Jaćimović; Srbislav B Genić; Nikola B Jaćimović

    2011-01-01

    This paper deals with the impact of the most important factors of the total production costs in bioethanol production. The most influential factors are: total investment costs, price of raw materials (price of biomass, enzymes, yeast), and energy costs. Taking into account these factors, a procedure for estimation total production costs was establish. In order to gain insight into the relationship of production and selling price of bioethanol, price of bioethanol for some countries of the Eur...

  7. 中国纤维素乙醇技术的研究进展%Advancing Cellulosic Ethanol Technology in China

    Institute of Scientific and Technical Information of China (English)

    杨斌; Charles; E.; Wyman

    2007-01-01

    中国面临着严重的能源短缺和环境污染问题,中国政府正在局部几个省份内政策性鼓励燃料乙醇生产和使用.尽管当前主要是用玉米和谷物作为生产乙醇的原料,然而中国具有大量潜在的低成本的纤维素生物质原料,可以极大地扩大乙醇的产量,降低原料成本.近20年来,由于技术的革命性进步,已使得纤维素乙醇的生产成本从4美元/加仑以上,降低至约1.2-1.5美元/加仑.其中,每吨生物质约44美元.因此,目前乙醇掺汽油具有十分强的市场竞争力.已有几个公司正在建造首批商业纤维素乙醇工厂,虽然这些刚起步的小型设施在合理利用和管理上风险较小,但规模经济需要较大型工厂.尽管配送生物质原料的成本会随需求的增加而增加,但在乙醇生产基础上的生物精炼技术的发展,尤其是化工产品和动力的协同生产,将会使全过程的经济可行性大大提高.进一步深入的基础研究,将解决低成本下实现纤维素的完全利用,以确保在无政策性补贴的前提下,真正使纤维素乙醇成为具有市场竞争力的低成本纯液体燃料.%China now faces very serious energy shortages and environmental pollution problems. Thus, the Chinese government is encouraging ethanol use as an alternative transportation fuel by introducing fuel ethanol production and distribution within several provinces. Although the current emphasis is on ethanol production from corn and other grains,China has huge quantities of low cost cellulosic biomass that could significantly expand ethanol production volume and reduce feedstock costs. Over the last 20 years, a number of technical advances have dropped the cost of making cellulosic ethanol from more than $4.00/gallon to only about $1.20-1.50/gallon for biomass costing about $44 per ton. At this cost, ethanol is competitive for blending with gasoline, and several companies are working to build the first commercial

  8. Production of Cellulosic Polymers from Agricultural Wastes

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis, raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri, stem and cob of maize plant (Zea mays, fruit fiber from coconut fruit (Cocos nucifera, sawdusts from cotton tree (Cossypium hirsutum, pear wood (Manilkara obovata, stem of Southern gamba green (Andropogon tectorus, sugarcane baggase (Saccharium officinarum and plantain stem (Musa paradisiaca. They were subjected to soda pulping and hypochlorite bleaching system. Results obtained show that pulp yield from these materials were: 70.00, 39.59, 55.40, 86.00, 84.60, 80.00, 40.84, 81.67, 35.70, 69.11, 4.54, 47.19, 31.70 and 52.44% respectively. The pulps were acetylated with acetic anhydride in ethanoic acid catalyzed by conc. H2SO4 to obtain cellulose derivatives (Cellulose diacetate and triacetate. The cellulose diacetate yields were 41.20, 17.85, 23.13, 20.80, 20.23, 20.00, 39.00, 44.00, 18.80, 20.75, 20.03, 41.20, 44.00, and 39.00% respectively while the results obtained as average of four determinations for cellulose triacetate yields were: 52.00, 51.00, 43.10, 46.60, 49.00, 35.00, 40.60, 54.00, 57.50, 62.52, 35.70. 52.00, 53.00 and 38.70% respectively for all the agricultural wastes utilized. The presence of these cellulose derivatives was confirmed by a solubility test in acetone and chloroform.

  9. RECTIFIED ETHANOL PRODUCTION COST ANALYSIS

    Directory of Open Access Journals (Sweden)

    Nikola J Budimir

    2011-01-01

    Full Text Available This paper deals with the impact of the most important factors of the total production costs in bioethanol production. The most influential factors are: total investment costs, price of raw materials (price of biomass, enzymes, yeast, and energy costs. Taking into account these factors, a procedure for estimation total production costs was establish. In order to gain insight into the relationship of production and selling price of bioethanol, price of bioethanol for some countries of the European Union and the United States are given.

  10. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, December 1, 1978-February 28, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.C.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1979-02-01

    The ongoing progress of a coordinated research program aimed at optimizing the biodegradation of cellulosic biomass to ethanol and chemical feedstocks is summarized. Growth requirements and genetic manipulations of clostridium thermocellum for selection of high cellulose producers are reported. The enzymatic activity of the cellulase produced by these organisms was studied. The soluble sugars produced from hydrolysis were analyzed. Increasing the tolerance of C. thermocellum to ethanol during liquid fuel production, increasing the rate of product formation, and directing the catabolism to selectively achieve high ethanol concentrations with respect to other products were studied. Alternative substrates for C. thermocellum were evaluated. Studies on the utilization of xylose were performed. Single stage fermentation of cellulose using mixed cultures of C. thermocellum and C. thermosaccharolyticum were studied. The study of the production of chemical feedstocks focused on acrylic acid, acetone/butanol, acetic acid, and lactic acid.

  11. Sorghum as Dry Land Feedstock for Fuel Ethanol Production

    Institute of Scientific and Technical Information of China (English)

    WANG Donghai; WU Xiaorong

    2010-01-01

    Dry land crops such as sorghums(grain sorghum,sweet sorghum and forage sorghum)have been identified aspromising feedstocks for fuel ethanol production.The major issue for using the sweet sorghum as feedstock is its stability at room temperature.At room temperature,the sweet sorghum juice could lose from 40%to50%of its fermentable sugars from 7to14 days.No significant sugar content and profile changes were observed in juice stored at refrigerator temperature in two weeks.Ethanolfermentation efficiencies of fresh and frozen juice were high(-93%).Concentrated juice(≥25%sugar)had significantly lower efficiencies and large amounts of fructose left in finished beer; however,winery yeast strains and novel fermentation techniques maysolve these problems.The ethanol yield from sorghum grain increased as starch content increased.No linear relationship betweenstarch content and fermentation efficiency was found.Key factors affecting the ethanol fermentation efficiency of sorghum includestarches and protein digestibility,amylose-lipid complexes,tannin content,and mash viscosity.Life cycle analysis showed a positivenet energy value(NEV)=25 500 Btu/gal ethanol.Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)were used to determine changes in the structure and chemical composition of sorghum biomasses.Dilute sulfuric acid pretreatment waseffective in removing the hemicellulose from biomasses and exposing the cellulose for enzymatic hydrolysis.Forage sorghum ligninhad a lower syringyl/guaiacyl ratio and its pretreated biomass was easier to hydrolyze.Up to 72% hexose yield and 94% pentoseyield were obtained by using a modified steam explosion with 2% sulfuric acid at 140"C for 30 min and enzymatic hydrolysis withcellulase.

  12. Biological production of organic solvents from cellulosic wastes. Six-month progress report, June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Forro, J.R.; Nolan, E.J.

    1977-01-01

    Progress is reported in the following studies: production of cellulose by culturing Thermoactinomyces YX and derived mutants; the development of mutation techniques; cellulose mutant screening techniques; quantification of cellulose mutants; and alternate enhancement techniques. (JGB)

  13. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.

    Science.gov (United States)

    Kim, Soo Rin; Ha, Suk-Jin; Wei, Na; Oh, Eun Joong; Jin, Yong-Su

    2012-05-01

    The lack of microbial strains capable of fermenting all sugars prevalent in plant cell wall hydrolyzates to ethanol is a major challenge. Although naturally existing or engineered microorganisms can ferment mixed sugars (glucose, xylose and galactose) in these hydrolyzates sequentially, the preferential utilization of glucose to non-glucose sugars often results in lower overall yield and productivity of ethanol. Therefore, numerous metabolic engineering approaches have been attempted to construct optimal microorganisms capable of co-fermenting mixed sugars simultaneously. Here, we present recent findings and breakthroughs in engineering yeast for improved ethanol production from mixed sugars. In particular, this review discusses new sugar transporters, various strategies for simultaneous co-fermentation of mixed sugars, and potential applications of co-fermentation for producing fuels and chemicals. PMID:22356718

  14. Switchgrass biomass to ethanol production economics: Field to fuel approach

    Science.gov (United States)

    Haque, Mohua

    Scope and Method of Study. Switchgrass has been proposed as a dedicated energy crop. The first essay determines switchgrass yield response to nitrogen fertilizer for a single annual harvest in July and for a single annual harvest in October based on a field experiments conducted at Stillwater, OK. Data were fitted to several functional forms to characterize both the July harvest and the October harvest response functions. Extending the harvest window to take advantage of reduction in harvest machinery investment costs has important biological consequences. The second essay determines the cost to deliver a ton of switchgrass biomass to a 2,000 tons per day plant located in Oklahoma. The model accounts for differences in yield and nitrogen fertilizer requirements across harvest months. The data were incorporated into a multi-region, multi-period, monthly time-step, mixed integer mathematical programming model that was constructed to determine the optimal strategy. Desirable feedstock properties, biomass to biofuel conversion rate, and investment required in plant differs depending on which conversion technology is used. The third essay determines the breakeven ethanol price for a cellulosic biorefinery. A comprehensive mathematical programming model that encompasses the chain from land acquisition to ethanol production was constructed and solved. Findings and Conclusions. The July and October harvest plateau yield of 4.36 and 5.49 tons per acre were achieved with an estimated annual nitrogen fertilizer application of 80 and 63 pounds per acre, respectively. Farm gate production costs were estimated to be 60 per ton for the July harvest and 50 per ton for the October harvest. Based on the model results, the strategy of extending harvest over many months is economically preferable to a strategy of harvesting only in peak yield harvest months. Restricting harvest to a two-month harvest season would increase the cost to deliver feedstock by 23 percent. For a capital

  15. A New Proposal of Cellulosic Ethanol to Boost Sugarcane Biorefineries: Techno-Economic Evaluation

    Directory of Open Access Journals (Sweden)

    Juliana Q. Albarelli

    2014-01-01

    Full Text Available Commercial simulator Aspen Plus was used to simulate a biorefinery producing ethanol from sugarcane juice and second generation ethanol production using bagasse fine fraction composed of parenchyma cells (P-fraction. Liquid hot water and steam explosion pretreatment technologies were evaluated. The processes were thermal and water integrated and compared to a biorefinery producing ethanol from juice and sugarcane bagasse. The results indicated that after thermal and water integration, the evaluated processes were self-sufficient in energy demand, being able to sell the surplus electricity to the grid, and presented water intake inside the environmental limit for São Paulo State, Brazil. The processes that evaluated the use of the bagasse fine fraction presented higher economic results compared with the use of the entire bagasse. Even though, due to the high enzyme costs, the payback calculated for the biorefineries were higher than 8 years for all cases that considered second generation ethanol and the net present value for the investment was negative. The reduction on the enzyme load, in a way that the conversion rates could be maintained, is the limiting factor to make second generation ethanol competitive with the most immediate uses of bagasse: fuel for the cogeneration system to surplus electricity production.

  16. Fact sheet: Ethanol co-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-31

    During the conversion of starch to sugars by enzymes, and by fermentation of these sugars to ethanol and carbon dioxide, the non-fermentable portion of the grain contains most of the non-starch nutritive elements of the kernel, which is the source of a variety of co-products. The wet milling process is used exclusively for corn, whereas the dry milling process is the one usually employed for wheat , corn and other grains. The carbon dioxide produced in both these processes is used as a refrigerant, in carbonated beverages and for flushing oil wells. Co-products produced from wet milling include (1) corn oil, used in producing food products for human consumption, and (2) amino acids, corn gluten meal and corn gluten feed used as animal feed additives. Dry milling gives rise to dry distiller`s grains which are also used as high protein and high energy animal feed. Fibrotein{sup T}M , is also a co-product of ethanol from wheat and is used as a high fibre and protein food additive. Ethanol, carbon dioxide and co-products each represent about one third of the products of the fermentation process.

  17. Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jian; Sharma-Shivappa, Ratna R.; Chinn, Mari [Department of Biological and Agricultural Engineering, Campus Box 7625, North Carolina State University, Raleigh, NC 27695-7625 (United States); Howell, Noura [North Carolina School of Science and Mathematics, Durham, NC 27715 (United States)

    2009-01-15

    The potential of microbial pretreatment of cotton stalks by Phanerochaete chrysosporium to degrade lignin and facilitate fuel ethanol production was investigated under two culture conditions: submerged cultivation (SmC) and solid state (SSC) cultivation. Although microbial pretreatments showed significant lignin degradation (LD) (19.38% and 35.53% for SmC and SSC, respectively), a study on hydrolysis and fermentation of the microbial-pretreated cotton stalks showed no increase in cellulose conversion (10.98% and 3.04% for SmC and SSC pretreated samples, respectively) compared to untreated cotton stalks (17.93%). Solid state cultivation demonstrated better selectivity of 0.82 than 0.70 with submerged pretreatment. Washing of pretreated cotton stalks did not significantly increase cellulose conversion. However, heating and washing remarkably improved (P<0.05) cellulose conversion to 14.94% and 17.81% for SmC and SSC 14 day pretreatment, respectively. Ethanol yields, up to 0.027 g ethanol g{sup -1} initial cotton stalks, were low for all untreated and pretreated samples mainly due to the low cellulose conversion. Although potential and some critical aspects of fungal pretreatment using P. chrysosporium have been explored in this study, additional investigation is still required especially to improve the selectivity for preferential LD and to optimize hydrolysis efficiency. The mechanism of catalytic binding of cellulolytic enzymes to cotton stalks as affected by the presence of fungal mycelia also warrants further study. (author)

  18. Influence of Cellulose Ethers on Hydration Products of Portland Cement

    Institute of Scientific and Technical Information of China (English)

    MA Baoguo; OU Zhihua; JIAN Shouwei; XU Rulin

    2011-01-01

    Cellulose ethers are widely used to mortar formulations, and it is significant to understand the interaction between cellulose ethers and cement pastes. FT-IR spectra, thermal analysis and SEM are used to investigate hydration products in the cement pastes modified by HEMC and HPMC in this article. The results show that the hydration products in modified cement pastes were finally identical with those in the unmodified cement paste, but the major hydration products, such as CH (calcium hydroxide), ettringite and C-S-H, appeared later in the modified cement pastes than in the unmodified cement paste. The cellulose ethers decrease the outer products and increase inner products of C-S-H gels. Compared to unmodified cement pastes, no new products are found in the modified cement pastes in the present experiment. The HEMC and HPMC investigation shows almost the same influence on the hydration products of Portland cement.

  19. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass.

    Science.gov (United States)

    Tao, Ling; Aden, Andy; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    Six biomass pretreatment processes to convert switchgrass to fermentable sugars and ultimately to cellulosic ethanol are compared on a consistent basis in this technoeconomic analysis. The six pretreatment processes are ammonia fiber expansion (AFEX), dilute acid (DA), lime, liquid hot water (LHW), soaking in aqueous ammonia (SAA), and sulfur dioxide-impregnated steam explosion (SO(2)). Each pretreatment process is modeled in the framework of an existing biochemical design model so that systematic variations of process-related changes are consistently captured. The pretreatment area process design and simulation are based on the research data generated within the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI) 3 project. Overall ethanol production, total capital investment, and minimum ethanol selling price (MESP) are reported along with selected sensitivity analysis. The results show limited differentiation between the projected economic performances of the pretreatment options, except for processes that exhibit significantly lower monomer sugar and resulting ethanol yields.

  20. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification

    OpenAIRE

    Xiumei Liu; Wenjuan Xu; Liaoyuan Mao; Chao Zhang; Peifang Yan; Zhanwei Xu; Z. Conrad Zhang

    2016-01-01

    Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simpl...

  1. Energy consumption in the production of cellulose and paper

    Energy Technology Data Exchange (ETDEWEB)

    Kubelka, V.

    1979-01-01

    The specific consumption of energy in the cellulose and paper industry of Czechoslovakia is 20% higher than in Austria and the Federal Republic of Germany. For the last 20 years, the specific consumption of fuel decreased by 29% in the Austrian cellulose and paper industry, while the consumption of electricity increased by 16%. The possibility for decreasing the specific consumption of energy in Czechoslovakia by burning by-products, heat recovery, equipment modernization, etc. are examined.

  2. Cellulose fiber reinforced thermoplastic composites: Processing and Product Charateristics

    OpenAIRE

    Razaina Mat TAIB

    1998-01-01

    Cellulose Fiber-Reinforced Thermoplastic Composites: Process and Product Characterization Razaina Mat Taib ( Abstract ) Steam exploded fibers from Yellow Poplar (Liriodendron tulipifera) wood were assessed in terms of (a) their impact on torque during melt processing of a thermoplastic cellulose ester (plasticized CAB); (b) their fiber incorporation and dispersion characteristics in a CAB-based composite by SEM and image analysis, respectively; and (c) their impact on the me...

  3. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    OpenAIRE

    Römling, Ute; Galperin, Michael Y

    2015-01-01

    Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis ...

  4. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  5. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  6. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use

    Science.gov (United States)

    Wang, Michael; Han, Jeongwoo; Dunn, Jennifer B.; Cai, Hao; Elgowainy, Amgad

    2012-12-01

    Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus. We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19-48%, 40-62%, 90-103%, 77-97% and 101-115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.

  7. Ethanol Production for Automotive Fuel Usage

    Energy Technology Data Exchange (ETDEWEB)

    May, S.C.; Stenzel, R.A.; Weekes, M.C.; Yu, J.

    1979-10-01

    The production of ethanol from potatoes, sugar beet, and wheat using geothermal resources at the Raft River area of idaho is being evaluated. The south central section of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beet and 24 million cwt potatoes annually. Based on these production figures, a 20 million gallon/yr ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The plant will operate on all three feedstocks nominally processing potatoes for five months, sugar beet for four months and wheat for three months of the year. The process facility will use conventional alcohol technology utilizing geothermal fluid at a maximum of 280 F as an energy source. The process flow diagrams for all three feedstocks are currently being prepared. There will be basically three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat will involve common equipment. The fermentation, distillation and by-product handling sections will be common to all three feedstocks. Three geothermal energy extraction systems were considered to accommodate the energy requirements of the ethanol facility (flashed steam, pressurized fluid and secondary heat transfer). Pressured geothermal fluid with direct heat transfer has been selected as the usage mode to minimize scale deposition. Tentatively, the geothermal supply wells will be laid out in square grids with 1/4 mile spacing. The number of wells required will be determined after the process heat load is calculated.

  8. Ethanol production from rape straw: Part of an oilseed rape biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Arvaniti, E.

    2010-12-15

    Agricultural residues from rapeseed biodiesel industry (rapeseed cake, rape straw, crude glycerol), which represent the 82%wt. of the oilseed rape, currently have only low-grade applications in the market. For this, a scenario was built on exploiting qualities of rapeseed biodiesel residues for forming added-value products, and expanding and upgrading an existing biodiesel plant, to an oilseed rape biorefinery by 2020 in European ground. Selection of products was based on a technological feasibility study given the time frame, while priority was given to Low-Value-High-Volume readily marketed products, like production of energy and feed. Products selected except rapeseed biodiesel, were ethanol, biogas, enzymes energy, chemical building blocks, and superior quality animal fodder. The production lines were analyzed and prospects for 2020 were projected on a critical basis. Particular merit was given to two products, ethanol from cellulose, and cellulolytic enzymes from rape straw. Cellulosic ethanol from rape straw was optimized for all production steps, i.e. for thermo-chemical pretreatment, enzyme hydrolysis, and fermentation of C6 sugars. Thermo-chemical pretreatment was studied with Wet oxidation technique at different conditions of temperature, reaction time, and oxygen pressure, but also factors like pre-soaking straw in warm water, or recycling liquid were also studied. Wet oxidation has been extensively tested in the past for different substrates, and gives promising results with indicators that are important for cellulosic ethanol production; C6 sugars recovery, high digestibility for enzymes, and limited formed degradation products. Here, optimal pretreatment conditions for rape straw were first presoaking rape straw at 80 deg. C for 20 minutes, and then wet-oxidize with 12 bar of oxygen at 205 deg. C for 3 minutes. Recovery of cellulose and hemicellulose under these conditions was 105% and 106% respectively, while recovery of lignin was 86%. When this

  9. Production of pure hydrogen by ethanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Santacesaria, Elio; Carotenuto, Giuseppina; Tesser, Riccardo; Di Serio, Martino [Naples Univ. (Italy). Dipt. di Chimica

    2011-06-15

    Hydrogen production from bio-ethanol is one of the most promising renewable processes to generate electricity using fuel cells. In this work, we have studied the production of pure hydrogen as a by-product of the ethanol dehydrogenation reaction. This reaction is promoted by copper based catalysts and according to the catalyst used and the operating conditions gives place to acetaldehyde or ethyl acetate as main products. We studied in particular the performance of a commercial copper/copper chromite catalyst, supported on alumina and containing barium chromate as a promoter, which gave the best results. By operating at low pressure and temperature with short residence times, acetaldehyde is more selectively produced, while, by increasing the pressure (10-30 bars), the temperature (200-260 C) and the residence time (about 100 grams hour/mol of ethanol contact time) the selectivity is shifted to the production of ethyl acetate. However, in both cases pure hydrogen is obtained, as a by-product, which can easily be separated. Hydrogen obtained in this way is free of CO and can be directly fed to fuel cells without any inconvenience. In this work, runs performed under different operating conditions have been reported with the scope to select the best conditions. A carrier of H2 6% in N{sub 2} has been used. The studied catalyst has also shown a good thermal stability with respect to sintering phenomena, which generally occur during the dehydrogenation over other copper catalysts. Hydrogen productivities of 8-39 g{sub H2} (Kgcat){sup -1} (h){sup -1} were obtained for the explored temperature range of 200-260 C. Finally the most accredited reaction mechanism is reported and discussed on the basis of the obtained results. (orig.)

  10. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    Directory of Open Access Journals (Sweden)

    Bauen Ausilio

    2009-08-01

    Full Text Available Abstract Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy

  11. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.

    Science.gov (United States)

    Magnusson, Lauren; Cicek, Nazim; Sparling, Richard; Levin, David

    2009-02-15

    Continuous hydrogen (H2) production during fermentation of alpha-cellulose was established using the thermophillic, anaerobic bacterium Clostridium thermocellum ATCC 27405. The objectives of this work were to characterize growth of C. thermocellum, quantify H2 production and determine soluble end-product synthesis patterns during fermentation of a cellulosic substrate under continuous culture conditions. A 5 L working volume fermentor was established and growth experiments were maintained for over 3,000 h. Substrate concentrations were varied from 1 to 4 g/L and the feed was introduced with continuous nitrogen gas sparging to prevent clogging of the feed-line. The pH and temperature of the reactor were maintained at 7.0 and 600 degrees C, respectively, throughout the study. At concentrations above 4 g/L, the delivery of alpha-cellulose was impaired due to feed-line clogging and it became difficult to maintain a homogenous suspension. The highest total gas (H2 plus CO2) production rate, 56.6 mL L(-1) h(-1), was observed at a dilution rate of 0.042 h(-1) and substrate concentration of 4 g/L. Under these conditions, the H2 production rate was 5.06 mmol h(-1). Acetate and ethanol were the major soluble end-products, while lactate and formate were greatly reduced compared to production in batch cultures. Concentrations of all metabolites increased with increasing substrate concentration, with the exception of lactate. Despite a number of short-term electrical and mechanical failures during the testing period, the system recovered quickly, exhibiting substantial robustness. A carbon balance was completed to ensure that all end-products were accounted for, with final results indicating near 100% carbon recovery. This study shows that long-term, stable H2 production can be achieved during direct fermentation of an insoluble cellulosic substrate under continuous culture conditions.

  12. Water Footprints of Cellulosic Bioenergy Crops: Implications for Production on Marginal Lands

    Science.gov (United States)

    Hamilton, S. K.; Hussain, M. Z.; Bhardwaj, A. K.; Basso, B.; Abraha, M. G.; Robertson, G. P.

    2014-12-01

    Water availability often limits crop production, even in relatively humid climates, and crops vary in their water demand and water use efficiency. Crop production for biofuel (ethanol or biodiesel) offers an alternative to fossil energy sources but requires large amounts of land, and is therefore a more viable option if such crops could be produced on marginal lands that often have soils of poor water-holding capacity. The selection of an appropriate crop requires information on its water demand, water use efficiency, and drought tolerance, but such information is incompletely available for the suite of cellulosic biofuel crops currently under consideration. This study analyzed soil moisture profiles (time-domain reflectometry) to estimate evapotranspiration and water use efficiency of three leading candidate crops for cellulosic bioenergy production (switchgrass, Miscanthus, and maize) grown in a relatively humid climate (Midwestern United States) over four years (2010-13). These field observations of water use by these annual and perennial crops reveal their water use efficiency for biomass and biofuel production. Total growing season water use was remarkably consistent among crops and across years of varying soil water availability, including very favorable precipitation years as well as a drought year (2012). Water use efficiency was more variable and, for maize, depends on whether the maize serves for both grain and cellulosic biofuel production.

  13. MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas

    Energy Technology Data Exchange (ETDEWEB)

    John Frey

    2009-02-22

    This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

  14. Influence of Culture Conditions and Medium Composition on the Production of Cellulose by Shiga Toxin-Producing Escherichia coli Cells ▿

    OpenAIRE

    Yoo, Byong Kwon; Chen, Jinru

    2009-01-01

    Culture conditions favoring cellulose production by Shiga toxin-producing Escherichia coli included a 28°C incubation temperature, an aerobic atmosphere, and the presence of 2% ethanol in Luria-Bertani no-salt agar with pH 6.0 and a water activity of 0.99. These findings will assist in formulating microbiological media useful for cellulose and biofilm research.

  15. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, March 1-August 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. I.C.

    1980-09-01

    Progress is reported in this coordinated research program to effect the microbiological degradation of cellulosic biomass by anaerobic microorganisms possessing cellulolytic enzymes. Three main areas of research are discussed: increasing enzyme levels through genetics, mutations, and genetic manipulation; the direct conversion of cellulosic biomass to liquid fuel (ethanol); and the production of chemical feedstocks from biomass (acrylic acid, acetone/butanol, and acetic acid). (DMC)

  16. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  17. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    .8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion......Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4...... achievable by intermittent product removal during cellulose hydrolysis....

  18. A lignocellulosic ethanol strategy via nonenzymatic sugar production: process synthesis and analysis.

    Science.gov (United States)

    Han, Jeehoon; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A; Maravelias, Christos T

    2015-04-01

    The work develops a strategy for the production of ethanol from lignocellulosic biomass. In this strategy, the cellulose and hemicellulose fractions are simultaneously converted to sugars using a γ-valerolactone (GVL) solvent containing a dilute acid catalyst. To effectively recover GVL for reuse as solvent and biomass-derived lignin for heat and power generation, separation subsystems, including a novel CO2-based extraction for the separation of sugars from GVL, lignin and humins have been designed. The sugars are co-fermented by yeast to produce ethanol. Furthermore, heat integration to reduce utility requirements is performed. It is shown that this strategy leads to high ethanol yields and the total energy requirements could be satisfied by burning the lignin. The integrated strategy using corn stover feedstock leads to a minimum selling price of $5 per gallon of gasoline equivalent, which suggests that it is a promising alternative to current biofuels production approaches.

  19. A framework for model-based optimization of bioprocesses under uncertainty: Lignocellulosic ethanol production case

    DEFF Research Database (Denmark)

    Morales Rodriguez, Ricardo; Meyer, Anne S.; Gernaey, Krist;

    2012-01-01

    This study presents the development and application of a systematic model-based framework for bioprocess optimization. The framework relies on the identification of sources of uncertainties via global sensitivity analysis, followed by the quantification of their impact on performance evaluation...... metrics via uncertainty analysis. Finally, stochastic programming is applied to drive the process development efforts forward subject to these uncertainties. The framework is evaluated on four different process configurations for cellulosic ethanol production including Simultaneous Saccharification and Co......, the framework evaluated here for uncertainties in the technical domain, can also be used to evaluate the impact of market uncertainties (feedstock prices, selling price of ethanol, etc) and political uncertainties (such as subsidies) on the economic feasibility of lignocellulosic ethanol production....

  20. Market for ethanol feed joint products

    Energy Technology Data Exchange (ETDEWEB)

    Hertzmark, D.; Gould, B.

    1979-10-01

    This report presents results of econometric estimations and mathematical simulations of markets for joint feed products of motor ethanol. The major issues considered are the nature of current market price relationships, effects on prices, including feed substitutes prices, and effects of demands for increased use of distillers' grains and gluten meal. The econometric section shows that soybean meal was by far the dominant force in the pricing of the two products. However, neither one could be adequately explained without the inclusion of corn in the estimating equations. Later research shows that this was due to the importance of both feeds for metabolizable energy as well as for protein in livestock diets. Current ration formulations would require some discounting of the value of the protein content of the two feeds. Careful siting of the ethanol facilities, and flexible design of the plants so that a maximum number of products may be extracted from the feedstock, seem necessary. Finally, the analysis indicates that substitution in animal diets of these joint products for the corn or milo used originally requires that additional energy be supplied to the animal by some type of forage crop. This implies that additional land may be required for energy production, for such marginal crops as hay and alfalfa, rather than for row crops.

  1. Structural differences of xylans affect their interaction with cellulose

    NARCIS (Netherlands)

    Kabel, M.A.; Borne, van den H.; Vincken, J.P.; Voragen, A.G.J.; Schols, H.A.

    2007-01-01

    The affinity of xylan to cellulose is an important aspect of many industrial processes, e.g. production of cellulose, paper making and bio-ethanol production. However, little is known about the adsorption of structurally different xylans to cellulose. Therefore, the adsorption of various xylans to b

  2. Sustainable Ethanol Production from Common Reed (Phragmites australis through Simultaneuos Saccharification and Fermentation

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2015-09-01

    Full Text Available Phragmites australis (common reed is a perennial grass that grows in wetlands or near inland waterways. Due to its fast-growing properties and low requirement in nutrients and water, this arboreal variety is recognized as a promising source of renewable energy although it is one of the least characterized energy crops. In this experiment, the optimization of the bioethanol production process from Phragmites australis was carried out. Raw material was first characterized according to the standard procedure (NREL to evaluate its composition in terms of cellulose, hemicellulose, and lignin content. Common reed was pretreated by steam explosion process at three different severity factor (R0 values. The pretreatment was performed in order to reduce biomass recalcitrance and to make cellulose more accessible to enzymatic attack. After the pretreatment, a water insoluble substrate (WIS rich in cellulose and lignin and a liquid fraction rich in pentose sugars (xylose and arabinose and inhibitors were collected and analyzed. The simultaneous saccharification and fermentation (SSF of the WIS was performed at three different solid loadings (SL 10%, 15%, 20% (w/w. The same enzyme dosage, equal to 20% (g enzyme/g cellulose, was used for all the WIS loadings. The efficiency of the whole process was evaluated in terms of ethanol overall yield (g ethanol/100 g raw material. The maximum ethanol overall yields achieved were 16.56 and 15.80 g ethanol/100 g RM dry basis for sample AP10 and sample AP4.4, respectively. The yields were reached working at lower solid loading (10% and at the intermediate LogR0 value for the former and at intermediate solid loading (15% and high LogR0 value for the latter, respectively.

  3. Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Photoperiod Sensitvie Sorghum for Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    F Xu; Y Shi; X Wu

    2011-12-31

    Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

  4. Application of Box-Behnken Design in Optimization of Glucose Production from Oil Palm Empty Fruit Bunch Cellulose

    Directory of Open Access Journals (Sweden)

    Satriani Aga Pasma

    2013-01-01

    Full Text Available Oil palm empty fruit bunch fiber (OPEFB is a lignocellulosic waste from palm oil mills. It contains mainly cellulose from which glucose can be derived to serve as raw materials for valuable chemicals such as succinic acid. A three-level Box-Behnken design combined with the canonical and ridge analysis was employed to optimize the process parameters for glucose production from OPEFB cellulose using enzymatic hydrolysis. Organosolv pretreatment was used to extract cellulose from OPEFB using ethanol and water as the solvents. The extracted cellulose was characterized by thermogravimetric analysis, FTIR spectroscopy, and field emission scanning electron microscopy. Hydrolysis parameters including amount of enzyme, amount of cellulose, and reaction time were investigated. The experimental results were fitted with a second-order polynomial equation by a multiple regression analysis and found that more than 97% of the variations could be predicted by the models. Using the ridge analysis, the optimal conditions reaction time found for the production of glucose was 76 hours and 30 min, whereas the optimum amount of enzyme and cellulose was 0.5 mL and 0.9 g, respectively. Under these optimal conditions, the corresponding response value predicted for glucose concentration was 169.34 g/L, which was confirmed by validation experiments.

  5. SACCHARIFICATION BY FUNGI AND ETHANOL PRODUCTION BY BACTERIA USING LIGNOCELLULOSIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Srivastava Ajeet Kumar

    2012-05-01

    Full Text Available Lignocellulosic material is one of the most abundant, renewable and inexpensive energy resources for bioethanol production. These materials are mainly composed of three groups of polymers namely cellulose, hemicellulose and lignin. Cellulose and hemicellulose are sugar rich fractions of interest for use in fermentation processes such as ethanol production. Cellulase production by the different fungi like Trichoderma reesei (MTCC-4876, Phanerochaete chrysosporium (MTCC-787 and Aspergillus awamori (MTCC-6652 were studied using different substrates (rice straw, wheat straw and rice husk by keeping the concentration constant at 5g/ 150 ml. The subculture medium was a salt solution consisting of KH2PO4, CaCl2, etc. Fungal cells were sub-cultured in an orbital shaker (180 rpm at 30°C for 1-2 generations (two days for each generation and were then used as inoculums. The maximum cellulase production and saccharification observed in the presence of combination of fungi with treated rice straw. Further Zymomonas mobilis bacteria was used for carrying out fermentation of sugars to ethanol production. Among the three raw materials studied the ethanol yield was observed to be the highest in rice straw ( 9.5 g/l .

  6. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  7. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-01-01

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae. Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  8. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology. PMID:27247386

  9. Irrigated Corn Cob Production and Quality: Potential Cellulosic Feedstock

    Science.gov (United States)

    Escalating fossil fuel cost and concern over global climate change have accelerated interest in cellulosic feedstocks, such as corn cobs, for liquid fuel production. Little information is available about corn cob yield and its N and C content. Available cob data was compiled and summarized from seve...

  10. Enzymatic degradation of plutonium-contaminated cellulose products

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M. [Texas Tech Univ., Lubbock, TX (United States); Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Worl, L.; Avens, L. [Los Alamos National Lab., NM (United States)

    1999-03-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas.

  11. Enzymatic degradation of plutonium-contaminated cellulose products

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, C.E.; Rainwater, K.A.; Swift, L.M. [Texas Tech Univ., Lubbock, TX (United States); Barnes, D.L. [Amarillo National Resource Center for Plutonium, TX (United States); Worl, L.A. [Los Alamos National Lab., NM (United States)

    1999-06-01

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown previously that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with uranium. This presentation describes the use of one such enzyme preparation (Rapidase{trademark}, manufactured by Genencor, Rochester, NY) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste destined for costly disposal options.

  12. Enzymatic degradation of plutonium-contaminated cellulose products

    International Nuclear Information System (INIS)

    Enzyme solutions produced for commercial purposes unrelated to waste management have the potential for reducing the volume of wastes in streams containing cellulose, lipid and protein materials. For example, the authors have shown that cellulases used in denim production and in detergent formulations are able to digest cellulose-containing sorbents and other cellulose-based wastes contaminated either with crude oil or with radionuclides. This presentation describes the use of one such enzyme preparation (Rapidase trademark) for the degradation of cotton sorbents intentionally contaminated with low levels of plutonium. This is part of a feasibility study to determine if such treatments have a role in reducing the volume of low level and transuranic wastes to minimize the amount of radionuclide-contaminated waste that must be disposed of in secured storage areas

  13. Cationization of Alpha-Cellulose to Develop New Sustainable Products

    Directory of Open Access Journals (Sweden)

    Ana Moral

    2015-01-01

    Full Text Available Papermaking has been using high quantities of retention agents, mainly cationic substances and organic compounds such as polyamines. The addition of these agents is related to economic and environmental issues, increasing contamination of the effluents. The aim of this work is to develop a cationic polymer for papermaking purposes based on the utilization of alpha-cellulose. The cationization of mercerized alpha-cellulose with 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTAC is governed by a pseudo-second-order reaction. The initial amorphous fraction of cellulose is reacted with CHPTAC until the equilibrium value of nitrogen substitution is reached. Nitrogen is incorporated as a quaternary ammonium group in the polymer. Also, the kinetic constant increased with decreasing crystallinity index, showing the importance of the previous alkalization stage. The use of modified natural polysaccharides is a sustainable alternative to synthetic, nonbiodegradable polyelectrolytes and thus is desirable with a view to developing new products and new processes.

  14. Biological conversion of pyrolytic products to ethanol and lipids

    Science.gov (United States)

    Lian, Jieni

    Pyrolysis is a promising technology that can convert up to 75 % of lignocellulosic biomass into crude bio-oil. However, due to the complex chemical compositions of bio-oil, its further refining into fuels and high value chemicals faces great challenges. This dissertation research proposed new technologies for biological conversion of pyrolytic products derived from cellulose and hemicellulose, such as anhydrosugars and carbolic acids to fuels and chemicals. First, the pyrolytic anhydrosugars (chiefly levoglucosan (LG)) were hydrolysed into glucose followed by neutralization, detoxification and fermentation to produce ethanol by ethanogenetic yeast and lipids by oleaginous yeasts. Second, a novel process for the conversion of C1-C4 pyrolytic products to lipid with oleaginous yeasts was investigated. Third, oleaginous yeasts that can directly convert LG to lipids were studied and a recombined yeast with LG kinase was constructed for the direct convertion of LG into lipids. This allowed a reduction of existing process for LG fermentation from four steps into two steps and eliminated the need for acids and bases as well as the disposal of chemicals. The development of genetic modified organisms with LG kinase opens a promising avenue for the direct LG fermentation to produce a wide range of fuels and chemicals. The simplification of LG utilization process would enhance the economic viability of this technology.

  15. Ethanol production with simultaneous utilization of raw materials containing starch and lignocellulose-containing; Ethanolproduktion mit simultanem Einsatz von staerke- und lignocellulosehaltigen Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Sven; Buck, Michael; Senn, Thomas [Hohenheim Univ., Stuttgart (Germany). Fachgebiet Gaerungstechnologie

    2010-07-01

    Ethanol production from cellulose-rich raw materials has again been the subject of much discussion during the past few years. Some new processes were developed during that time, all of which are more or less based on the acid hydrolysis process developed in the thirties of the past century. This technology is not suited for biogas plants because of the sulphuric acid involved. However, ethanol production combined with biogas production offers a chance in principle to make use of the cellulose and hemicellulose that are not converted in the ethanol process; these could be converted into biogas in the biogas plant. This would also ensure energetic utilization of pentoses from lignocellulose. The authors describe a process for utilization of cellulose-rich material which works without acid and requires very moderate hydrothermal process conditions (70 minutes at 150 degC). With straw, efficiencies up to 15 percent were achieved; with maize, efficiencies were up to 21.5 percent.

  16. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes

    International Nuclear Information System (INIS)

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam3 in 1980 to over 40.1 hm3 in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  17. Isolation and characterization of a ß-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials

    Science.gov (United States)

    We previously reported on a new yeast strain of Clavispora sp. NRRL Y-50464 that is capable of utilizing cellobiose as sole source of carbon and energy by producing sufficient native ß-glucosidase enzyme activity without further enzyme supplementation for cellulosic ethanol production using simultan...

  18. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    Science.gov (United States)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed

  19. Co-production of electricity and ethanol, process economics of value prior combustion

    International Nuclear Information System (INIS)

    Highlights: ► Economics of producing cellulosic ethanol and bio-power in the same facility using an autohydrolysis process. ► Feedstock considerably affect the economics of the biorefinery facility. ► Lower moisture content improves financial performance of the bio-power business. - Abstract: A process economic analysis of co-producing bioethanol and electricity (value prior to combustion) from mixed southern hardwood and southern yellow pine is presented. Bioethanol is produced by extracting carbohydrates from wood via autohydrolysis, membrane separation of byproducts, enzymatic hydrolysis of extracted oligomers and fermentation to ethanol. The residual solids after autohydrolysis are pressed and burned in a power boiler to generate steam and electricity. A base case scenario of biomass combustion to produce electricity is presented as a reference to understand the basics of bio-power generation economics. For the base case, minimum electricity revenue of $70–$96/MWh must be realized to achieve a 6–12% internal rate of return. In the alternative co-production cases, the ethanol facility is treated as a separate business entity that purchases power and steam from the biomass power plant. Minimum ethanol revenue required to achieve a 12% internal rate of return was estimated to be $0.84–$1.05/l for hardwood and $0.74–$0.85/l for softwood. Based on current market conditions and an assumed future ethanol selling price of $0.65/l, the co-production of cellulosic bioethanol and power does not produce financeable returns. A risk analysis indicates that there is a probability of 26.6% to achieve an internal rate of return equal or higher than 12%. It is suggested that focus be placed on improving yield and reducing CAPEX before this technology can be applied commercially. This modeling approach is a robust method to evaluate economic feasibility of integrated production of bio-power and other products based on extracted hemicellulose.

  20. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.

    Science.gov (United States)

    Turhan, Ozge; Isci, Asli; Mert, Behic; Sakiyan, Ozge; Donmez, Sedat

    2015-01-01

    In this study, wheat straw was pretreated with a microfluidizer to improve its enzymatic hydrolysis and ethanol yields. The pretreatment was performed at various pressures (500, 1000, and 1500 bar) and solid loadings (1, 2, and 3%). The microfluidized biomass was then subjected to hydrolysis and simultaneous saccharification and co-fermentation (SSCF) experiments at different enzyme loadings (5, 10, and 15 FPU/g dry wheat straw) using a mutant yeast. The results indicated that the microfluidization method alters the structure of biomass and leads to a reduction in lignin content. The samples pretreated at 1% solid loading contained the minimum lignin concentration and provided the maximum sugar and ethanol yields. These results signified that the microfluidization method is more effective on biomass at low solid loadings. The process conditions were optimized for higher ethanol and sugar yields using response surface methodology (RSM). The optimum pressure and solid and enzyme loadings were found as 1500 bar, 1%, and 15 FPU/g dry wheat straw, respectively. The yields obtained at this condition were 82%, 94%, and 65% for glucose, xylose, and ethanol, respectively. High sugar yields implied that microfluidization is an effective pretreatment method for cellulosic ethanol production. On the other hand, low ethanol yield may indicate that the microorganism was sensitive to inhibitory compounds present in the fermentation medium. PMID:25181638

  1. Recent trends in global production and utilization of bio-ethanol fuel

    International Nuclear Information System (INIS)

    Bio-fuels are important because they replace petroleum fuels. A number of environmental and economic benefits are claimed for bio-fuels. Bio-ethanol is by far the most widely used bio-fuel for transportation worldwide. Production of bio-ethanol from biomass is one way to reduce both consumption of crude oil and environmental pollution. Using bio-ethanol blended gasoline fuel for automobiles can significantly reduce petroleum use and exhaust greenhouse gas emission. Bio-ethanol can be produced from different kinds of raw materials. These raw materials are classified into three categories of agricultural raw materials: simple sugars, starch and lignocellulose. Bio-ethanol from sugar cane, produced under the proper conditions, is essentially a clean fuel and has several clear advantages over petroleum-derived gasoline in reducing greenhouse gas emissions and improving air quality in metropolitan areas. Conversion technologies for producing bio-ethanol from cellulosic biomass resources such as forest materials, agricultural residues and urban wastes are under development and have not yet been demonstrated commercially. (author)

  2. Thermophilic degradation of cellulosic biomass

    Science.gov (United States)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  3. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    DEFF Research Database (Denmark)

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S...... functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose....

  4. Environmental sustainability assessment of bio-ethanol production in Thailand

    International Nuclear Information System (INIS)

    Bio-ethanol is playing an important role in renewable energy for transport according to Thai government policy. This study aims to evaluate the energy efficiency and renewability of bio-ethanol system and identify the current significant environmental risks and availability of feedstocks in Thailand. Four of the seven existing ethanol plants contributing 53% of the total ethanol fuel production in Thailand have been assessed by the net energy balance method and Life Cycle Assessment (LCA). A renewability and net energy ratio portfolio has been used to indicate whether existing bio-ethanol production systems have net energy gain and could help reduce dependency on fossil energy. In addition, LCA has been conducted to identify and evaluate the environmental hotspots of 'cradle to gate' bio-ethanol production. The results show that there are significant differences of energy and environmental performance among the four existing production systems even for the same feedstock. The differences are dependent on many factors such as farming practices, feedstock transportion, fuel used in ethanol plants, operation practices and technology of ethanol conversion and waste management practices. Recommendations for improving the overall energy and environmental performance of the bio-ethanol system are suggested in order to direct the bio-ethanol industry in Thailand towards environmental sustainability.

  5. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60 °C.

    Science.gov (United States)

    Carver, Sarah M; Nelson, Michael C; Lepistö, Raghida; Yu, Zhongtang; Tuovinen, Olli H

    2012-01-01

    The purpose of this study was to characterize the effect of temperature and cellulosic substrates on fermentative metabolites, H(2) production, and community successions in an anaerobic, cellulolytic consortium, TC60. Pyrosequencing analysis indicated that the consortium was predominated by Thermoanaerobacter and Clostridium spp. Metabolite production was analyzed with four cellulosic substrates at 4 kg/m(3). Triplicate cultures of each substrate were incubated at 50 or 60 °C. The main fermentation products (H(2), CO(2), ethanol, and acetate) were monitored over time. The ANOVA model for production rates showed a significant temperature effect (Phydrogen-producing microorganisms.

  6. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Directory of Open Access Journals (Sweden)

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  7. Ethanol Manufacture through One-step Cellulose Liquefaction Developed by Zhongren Bioenergy Company

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The pilot scale tests of one-step direct liquefaction of cel-lulose biomass developed by a Sino-US joint venture, the Huaibei Zhongren Bioenergy Technical Development Company, Ltd. in Anhui province, have made great success. This method aiming to produce fuel and chemical feedstocks from cellulose biomass requires mild reaction conditions and all organic substances contained in the cellulose biom-ass can be completely converted without losses (without carbonization and gasification).

  8. Production of ethanol from pineapple wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ban, K.L.; Kouadio, K.G.; Kouadio, N' d.; Kamenan, A.

    1988-12-01

    Ethanol of pharmaceutical quality, is obtained by fermentation of juice extract produced from pineapple wastes and fruits left after sorting since they contain an important amount of glucides. The optimization of fermentation parameters proved the feasibility of such a process. The pH of fresh pineapple juice varies from 3.4 to 3.6. The fermentation can be achieved without sterilization by using saccharomyces cerevisiae from 8 g/l of juice over a period of 8 hours. The fermented juice has a density of 1.053 and an acidity level of 6 g of H/sub 2/SO/sub 4//l. The analysis of the produced alcohol using a gas chromatograph reveals a high content of this product.

  9. Recent updates on lignocellulosic biomass derived ethanol - A review

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-03-01

    Full Text Available Lignocellulosic (or cellulosic biomass derived ethanol is the most promising near/long term fuel candidate. In addition, cellulosic biomass derived ethanol may serve a precursor to other fuels and chemicals that are currently derived from unsustainable sources and/or are proposed to be derived from cellulosic biomass. However, the processing cost for second generation ethanol is still high to make the process commercially profitable and replicable. In this review, recent trends in cellulosic biomass ethanol derived via biochemical route are reviewed with main focus on current research efforts that are being undertaken to realize high product yields/titers and bring the overall cost down.

  10. Process Alternatives for Second Generation Ethanol Production from Sugarcane Bagasse

    DEFF Research Database (Denmark)

    F. Furlan, Felipe; Giordano, Roberto C.; Costa, Caliane B. B.;

    2015-01-01

    In ethanol production from sugarcane juice, sugarcane bagasse is used as fuel for the boiler, to meet the steam and electric energy demand of the process. However, a surplus of bagasse is common, which can be used either to increase electric energy or ethanol production. While the first option uses...... already established processes, there are still many uncertainties about the techno-economic feasibility of the second option. In this study, some key parameters of the second generation ethanol production process were analyzed and their influence in the process feasibility assessed. The simulated process...... on the economic feasibility of the process. For the economic scenario considered in this study, using bagasse to increase ethanol production yielded higher ethanol production costs compared to using bagasse for electric energy production, showing that further improvements in the process are still necessary....

  11. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Yao, Shuo; Mikkelsen, Marie Just

    2010-01-01

    Thermoanaerobacter mathranii can produce ethanol from lignocellulosic biomass at high temperatures, but its biotechnological exploitation will require metabolic engineering to increase its ethanol yield. With a cofactor-dependent ethanol production pathway in T. mathranii, it may become crucial...... to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol yield beyond that obtained with glucose and xylose. The ldh gene coding for lactate dehydrogenase was previously deleted from T. mathranii to eliminate...... an NADH oxidation pathway. To further facilitate NADH regeneration used for ethanol formation, a heterologous gene gldA encoding an NAD+-dependent glycerol dehydrogenase was expressed in T. mathranii. One of the resulting recombinant strains, T. mathranii BG1G1 (Δldh, P xyl GldA), showed increased ethanol...

  12. Composition and ethanol production potential of cotton gin residues.

    Science.gov (United States)

    Agblevor, Foster A; Batz, Sandra; Trumbo, Jessica

    2003-01-01

    Cotton gin residue (CGR) collected from five cotton gins was fractionated and characterized for summative composition. The major fractions of the CGR varied widely between cotton gins and consisted of clean lint (5-12%),hulls (16-48%), seeds (6-24%), motes (16-24%), and leaves (14-30%). The summative composition varied within and between cotton gins and consisted of ash (7.9-14.6%), acid-insoluble material (18-26%), xylan (4-15%),and cellulose (20-38%). Overlimed steam-exploded cotton gin waste was readily fermented to ethanol by Escherichia coli KO11. Ethanol yields were feedstock and severity dependent and ranged from 58 to 92.5% of the theoretical yields. The highest ethanol yield was 191 L (50 gal)/t, and the lowest was 120 L (32 gal)/t. PMID:12721487

  13. 亚临界乙醇条件下的纤维素热化学液化研究%THE INVESTIGATION OF CELLULOSE LIQUEFICATION IN SUBCRITICAL ETHANOL

    Institute of Scientific and Technical Information of China (English)

    戴伟娣; 许玉; 李静; 徐俊明

    2012-01-01

    Iiquefication of cellulose in subcritical ethanol using acid catalyst had been studied. It was found that sulfuric acid could provide efficient catalytic performance. Under the optimum conditions for Iiquefication of mass ratio of cellulose, sulfuric acid, glycerol and ethanol = 1:0. 025: 2. 5: 5 , reaction temperature of 250 °C , reaction time lh, the conversion of cellulose was up to 95. 7%. The physical-chemical properties had been studied. The viscosity of hydrolytic product was 509. 3mmVs, the acid number was 2. 51mgK0H/g and hydroxyl number was 784. 6mgK0H/g. The liquefied product was characterized by IR, GC-MS, !H NMR. The results show the liquefied product has abundant hydroxy radicals, which could be used to make rigid polyurethane foam. The mechanism for cellulose was also discussed.%以甘油为液化促进剂,在酸性催化剂条件下对微晶纤维素的亚临界液化工艺进行考察.实验结果表明:浓硫酸是较好的酸性催化剂,在微晶纤维素、浓硫酸、甘油和乙醇的质量比为1∶0.025∶2.5∶5,反应温度250℃,反应时间1h的条件下,转化率可达95.7%.对液化产物的理化性能进行分析,粘度509.3mm2/s、酸值2.51 mgKOH/g和羟值784.6mgKOH/g.通过红外光谱(IR)、GC-MS、1H NMR等技术手段对产物进行分析表征.结果表明,产物含有丰富的羟基基团,粘度适宜,适用于聚氨酯发泡体系.对液化机理进行探讨.

  14. The effect of cellulosic biofuel production on water resources at a regional scale

    Science.gov (United States)

    Christopher, S. F.; Scheonholtz, S. H.; Nettles, J. E.

    2012-12-01

    The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water resources impacts associated with annual crops. There are data sets and models that have been used to evaluate effects of agriculturally-based biofuel options on water quantity and quality, but the evaluation - from instrumentation through data analysis - is designed for these more disturbed systems and is not appropriate for the more subtle changes anticipated from a pine/switchgrass systems. Currently, there is no known hydrologic model that can explicitly assess the effect of intercropping on water resources. However, these models can evaluate the effects of growing switchgrass on water resources and would be useful in identifying the "worst case scenario". We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine effects of large scale conversion of pine plantations to switchgrass biofuel production on water resources in the ~ 5 mil ha Tombigbee Watershed in the southeastern U.S. Publically available datasets were used as input to the model and for calibration. To improve calibration statistics, five tree age classes were added to the model to more appropriately represent existing forested systems in the region, which are not included within the standard model set-up. Results suggest land use conversions result in 4 and

  15. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery. PMID:26551652

  16. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept.

    Science.gov (United States)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar; Angelidaki, Irini

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery (>95%) as well as significant hemicelluloses solubilization (49-59%) after acid-based method and lignin solubilization (35-41%) after alkaline H2O2 method were registered. Alkaline pretreatment showed to be superior over the acid-based method with respect to the rate of enzymatic hydrolysis and ethanol productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149kg of EtOH and 115kg of succinic acid can be obtained per 1ton of dry hemp. Results obtained in this study clearly document the potential of industrial hemp for a biorefinery.

  17. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, September 1-November 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.I.; Cooney, C.L.; Demain, A.L.; Gomez, R.F.; Sinskey, A.J.

    1978-11-01

    Studies on the accumulation of glucose during the fermentation of cellulose by Clostridium thermocellum are discussed. Production of ethanol and its relationship to growth rate in C. thermocellum is reported. Different biomasses were tested for ethanol yields. These included exploded poplar, sugar cane, bagasse, corn cobs, sweet gum, rice straw, and wheat straw. Thermophilic bacteria were tested to determine relationship of temperature to yield of ethanol. A preliminary report on isolating plaque forming emits derived from C. thermocellum is presented as well as the utilization of carbohydrates in nutrition. A cellulose enzyme is being purified from C. thermocellum. The production of chemical feedstocks by fermentation is reported. Acrylic acid, acetone/butanol, and acetic acid, produced by C. propionicum, C. acetobutylicum, and C. thermoaceticum, are discussed. (DC)

  18. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    Science.gov (United States)

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154

  19. Modifying yeast tolerance to inhibitory conditions of ethanol production processes

    Directory of Open Access Journals (Sweden)

    Luis eCaspeta

    2015-11-01

    Full Text Available Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated –omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.

  20. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  1. Hydrolysis of the fiber fraction from wheat based production of ethanol. Final report; Hydrolys av fiberfraktionen fraan vetebaserad etanolproduktion. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Guido [Lund Inst. of Technology (Sweden). Dept of Chemical Engineering

    2004-05-01

    This was a preliminary study to investigate the potential of using a larger fraction of the raw material in the production of bio-ethanol from wheat. The study comprised both the fibre fraction in the wheat kernel, i. e. the hemi cellulose and cellulose fraction that remain after the starch hydrolysis, and wheat straw which could contribute to an increase of the ethanol yield per hectare raised wheat. The project has been performed in co-operation with Agroetanol AB that provided samples from their ethanol production plant. Samples were taken at various locations in the process, i. e. the raw material, after starch hydrolysis, before and after fermentation and from the stillage after distillation. The materials were analysed for starch, hemicellulose, cellulose and lignin in the liquid and solids fractions to investigate how the hemicellulose and cellulose were affected in the process. The materials were also subjected to heat treatmen, enzymatic hydrolysis and a combination of the two to investigate how much sugars that could be released from the hemicellulose and the cellulose. In the existing process more than 80 % of the cellulose (glucan) was in the solid residue after the distillation step. The corresponding figures for the hemicellulose sugars were 60% for xylan, 70 % for arabinan and 40 % for galactan. The conclusions from the study are that the sugars in the hemicellulose fraction could be released by enzymatic hydrolysis resulting in an increase of the total sugar yield with up to 14% of the present yield. However, to utilise these sugars for ethanol production a pentose fermenting micro organism is required. To release the cellulose sugar in the solid material requires a combination of heat treatment with addition of about 0. 1 % H{sub 2}SO{sub 4} followed by enzymatic hydrolysis. On the other side this would yield sugars that directly fermentable by the baker's yeast used in the process today. Steam treatment of wheat straw has been performed after

  2. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis.

  3. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.

    Science.gov (United States)

    Schell, Daniel J; Dowe, Nancy; Chapeaux, Alexandre; Nelson, Robert S; Jennings, Edward W

    2016-04-01

    Accurate mass balance and conversion data from integrated operation is needed to fully elucidate the economics of biofuel production processes. This study explored integrated conversion of corn stover to ethanol and highlights techniques for accurate yield calculations. Acid pretreated corn stover (PCS) produced in a pilot-scale reactor was enzymatically hydrolyzed and the resulting sugars were fermented to ethanol by the glucose-xylose fermenting bacteria, Zymomonas mobilis 8b. The calculations presented here account for high solids operation and oligomeric sugars produced during pretreatment, enzymatic hydrolysis, and fermentation, which, if not accounted for, leads to overestimating ethanol yields. The calculations are illustrated for enzymatic hydrolysis and fermentation of PCS at 17.5% and 20.0% total solids achieving 80.1% and 77.9% conversion of cellulose and xylan to ethanol and ethanol titers of 63g/L and 69g/L, respectively. These procedures will be employed in the future and the resulting information used for techno-economic analysis. PMID:26826954

  4. Managing Multiple Mandates: A System of Systems Model to Analyze Strategies for Producing Cellulosic Ethanol and Reducing Riverine Nitrate Loads in the Upper Mississippi River Basin.

    Science.gov (United States)

    Housh, Mashor; Yaeger, Mary A; Cai, Ximing; McIsaac, Gregory F; Khanna, Madhu; Sivapalan, Murugesu; Ouyang, Yanfeng; Al-Qadi, Imad; Jain, Atul K

    2015-10-01

    Implementing public policies often involves navigating an array of choices that have economic and environmental consequences that are difficult to quantify due to the complexity of multiple system interactions. Implementing the mandate for cellulosic biofuel production in the Renewable Fuel Standard (RFS) and reducing hypoxia in the northern Gulf of Mexico by reducing riverine nitrate-N loads represent two such cases that overlap in the Mississippi River Basin. To quantify the consequences of these interactions, a system of systems (SoS) model was developed that incorporates interdependencies among the various subsystems, including biofuel refineries, transportation, agriculture, water resources and crop/ethanol markets. The model allows examination of the impact of imposing riverine nitrate-N load limits on the biofuel production system as a whole, including land use change and infrastructure needs. The synergies of crop choice (first versus second generation biofuel crops), infrastructure development, and environmental impacts (streamflow and nitrate-N load) were analyzed to determine the complementarities and trade-offs between environmental protection and biofuel development objectives. For example, the results show that meeting the cellulosic biofuel target in the RFS using Miscanthus x giganteus reduces system profits by 8% and reduces nitrate-N loads by 12% compared to the scenario without a mandate. However, greater water consumption by Miscanthus is likely to reduce streamflow with potentially adverse environmental consequences that need to be considered in future decision making. PMID:26348783

  5. Screening of the effective cellulose-degradable strain and its application in the production of cellulose bioethanol

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Gao; Dai-di Fan; Pei Ma; Yan-e Luo; Xiao-xuan Ma; Chen-hui Zhu; Jun-feng Hui

    2009-01-01

    Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulosc Congo red coltnre medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplished for each of the five. The strongest of the five in CMCA and FPA was applied to the production of cellulose bioethanol by separate hydrolysis and fermentation(SHF) and simultaneous saccharification and fermentation(SSF) respectively.

  6. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass.

    Science.gov (United States)

    Luque, Luis; Westerhof, Roel; Van Rossum, Guus; Oudenhoven, Stijn; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2014-06-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the products was used as the thermochemical process to obtain a pyrolysis-oil rich in anhydro-sugars (levoglucosan) and low in inhibitors. After hydrolysis of these anhydro-sugars, glucose was obtained which was successfully fermented, after detoxification, to obtain bioethanol. Ethanol yields comparable to traditional biochemical processing were achieved (41.3% of theoretical yield based on cellulose fraction). Additional benefits of the proposed biorefinery concept comprise valuable by-products of the thermochemical conversion like bio-char, mono-phenols (production of BTX) and pyrolytic lignin as a source of aromatic rich fuel additive. The inhibitory effect of thermochemically derived fermentation substrates was quantified numerically to compare the effects of different process configurations and upgrading steps within the biorefinery approach. PMID:24681340

  7. Production and properties of micro-cellulose reinforced thermoplastic starch

    Science.gov (United States)

    Kmetty, Á.; Karger-Kocsis, J.; Czigány, T.

    2015-02-01

    Thermoplastic starch (TPS)/micro-fibrillated cellulose (MFC) composites were prepared from maize starch with different amount of distilled water, glycerol and cellulose reinforcement. The components were homogenized by kneader and twin roll technique. The produced TPS and TPS-based polymer composites were qualified by static and dynamic mechanical tests and their morphology was analysed by microscopic techniques. The results showed that the amount of water and the order of the production steps control the properties of both the TPS and its MFC reinforced version. With increasing content of MFC the stiffness and strength of the TPS matrix increased, as expected. Microscopic inspection revealed that the TPS has a homogenous structure and the MFC is well dispersed therein when suitable preparation conditions were selected.

  8. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    for efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering...... of cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes......, in particular with emphasis on improving ethanol yield, and this facilitates their employment for ethanol production. Finally, different processes for second-generation ethanol production based on thermophilic bacteria have been proposed with the aim to achieve cost-competitive processes. However, thermophilic...

  9. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    OpenAIRE

    Erminda Tsouko; Constantina Kourmentza; Dimitrios Ladakis; Nikolaos Kopsahelis; Ioanna Mandala; Seraphim Papanikolaou; Fotis Paloukis; Vitor Alves; Apostolis Koutinas

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L)...

  10. Recombinant host cells and media for ethanol production

    Science.gov (United States)

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  11. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  12. Insights into engineering of cellulosic ethanol%纤维素乙醇工程化探讨

    Institute of Scientific and Technical Information of China (English)

    岳国君; 武国庆; 林鑫

    2014-01-01

    For energy security,air pollution concerns,coupled with the desire to sustain the agricultural sector and revitalize the rural economy,many countries have applied ethanol as oxygenate or fuel to supplement or replace gasoline in transportation sector.Because of abundant feedstock resources and effective reduction of green-house-gas emissions,the cellulosic ethanol has attracted great attention.With a couple of pioneers beginning to produce this biofuel from biomass in commercial quantities around the world,it is necessary to solve engineering problems and complete the economic assessment in 2015-2016,gradually enter the commercialization stage.To avoid "competing for food with humans and competing for land with food",the 1st generation fuel ethanol will gradually transit to the 2nd generation cellulosic ethanol.Based on the overview of cellulosic ethanol industrialization from domestic and abroad in recent years,the main engineering application problems encountered in pretreatment,enzymes and enzymatic hydrolysis,pentose/hexose co-fermentation strains and processes,equipment were discussed from chemical engineering and biotechnology perspective.The development direction of cellulosic ethanol technology in China was addressed.%出于对能源安全、大气污染的担忧以及促进农村经济发展的考虑,世界许多国家使用乙醇作为含氧添加剂或交通运输燃料来替代汽油.纤维素乙醇生产原料丰富,且具有明显的低碳排放特性而备受关注.随着全球范围内几套大型纤维素乙醇示范装置的相继试车,工程化问题将得到解决,并有望在2015-2016年完成装置的经济性考核,逐步进入商业化阶段.为避免原料“与人争粮,与粮争地”,1代燃料乙醇将逐步向2代纤维素乙醇过渡.本文在综述近期国内外纤维素乙醇产业化概况的基础上,从化学工程和生物工程的角度对预处理、酶制剂及酶解工艺、戊糖/己糖共发酵

  13. Non-traditional solutions of cellulose and it's derivatives and their processing products

    OpenAIRE

    Grinshpan, D. D.; Savitskaya, T. A.; Tsygankova, N. G.

    2003-01-01

    The main achievements of the Laboratory of cellulose solutions and their processing products in the field of the elaboration of new cellulose dissolving processes, the homogeneous synthesis of cellulose derivatives, the elaboration of the incompatible polymer solutions stabilization, the creation of new film - fabric materials and filtering equipments on their base, the preparation of hard quickly disintegrated drug forms (tablets, granules) using new water soluble cellulose derivative have b...

  14. GENETICALLY MODIFIED LIGNOCELLULOSIC BIOMASS FOR IMPROVEMENT OF ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2010-02-01

    Full Text Available Production of ethanol from lignocellulosic feed-stocks is of growing interest worldwide in recent years. However, we are currently still facing significant technical challenges to make it economically feasible on an industrial scale. Genetically modified lignocellulosic biomass has provided a potential alternative to address such challenges. Some studies have shown that genetically modified lignocellulosic biomass can increase its yield, decreasing its enzymatic hydrolysis cost and altering its composition and structure for ethanol production. Moreover, the modified lignocellulosic biomass also makes it possible to simplify the ethanol production procedures from lignocellulosic feed-stocks.

  15. Second Generation Ethanol Production from Brewers’ Spent Grain

    Directory of Open Access Journals (Sweden)

    Rossana Liguori

    2015-03-01

    Full Text Available Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency, was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

  16. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Science.gov (United States)

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  17. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    Directory of Open Access Journals (Sweden)

    Erminda Tsouko

    2015-07-01

    Full Text Available The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L and commercial sucrose (4.9 g/L were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients.

  18. Engineering Escherichia coli for improved ethanol production from gluconate.

    Science.gov (United States)

    Hildebrand, Amanda; Schlacta, Theresa; Warmack, Rebeccah; Kasuga, Takao; Fan, Zhiliang

    2013-10-10

    We report on engineering Escherichia coli to produce ethanol at high yield from gluconic acid (gluconate). Knocking out genes encoding for the competing pathways (l-lactate dehydrogenase and pyruvate formate lyase A) in E. coli KO11 eliminated lactate production, lowered the carbon flow toward acetate production, and improved the ethanol yield from 87.5% to 97.5% of the theoretical maximum, while the growth rate of the mutant strain was about 70% of the wild type. The corresponding genetic modifications led to a small improvement of ethanol yield from 101.5% to 106.0% on glucose. Deletion of the pyruvate dehydrogenase gene (pdh) alone improved the ethanol yield from 87.5% to 90.4% when gluconate was a substrate. The growth rate of the mutant strain was identical to that of the wild type. The corresponding genetic modification led to no improvements on ethanol yield on glucose.

  19. A biorefinery concept for simultaneous recovery of cellulosic ethanol and phenolic compounds from oil palm fronds: Process optimization

    International Nuclear Information System (INIS)

    Highlights: • Biorefinery concept for simultaneous recovery of cellulose and phenolic compounds. • Sono-assisted organosolv/H2O2 pretreatment was used to isolate palm fronds cellulose. • Optimum conditions for pretreatment: 60 °C, 40 min, 1:20 g/ml, 3% NaOH concentration. • Optimum conditions yielded 55.3% cellulose, 20.1 g/l glucose and 0.769 g/g ethanol. • Pretreatment liquor contained 4.691 mg GAE/g phenolics. - Abstract: In this study, process optimization of an ultrasonic-assisted organosolv/liquid oxidative pretreatment (SOP) of oil palm fronds (OPFs) for the simultaneous recovery of cellulose, bioethanol and biochemicals (i.e. phenolic compounds) in a biorefinery concept was carried out. The effects of time (30–60 min.), temperature (40–80 °C), NaOH concentration (1–5%) and sample:solvent ratio (1:10–1:50 g/ml) on cellulose content, bioethanol yield and total phenolics contents (TPC) after SOP were investigated. At optimum conditions of pretreatment (i.e. 60 °C, 40 min, 3% w/v aq. NaOH and 1:20 g/ml sample to solvent ratio), the recovered cellulose (55.30%) which served as substrate for enzymatic hydrolysis and subsequent fermentation yielded about 20.1 g/l glucose, 11.3 g/l xylose and 9.3 g/l bioethanol (yield of 0.769 g/g). The pretreatment liquor (mostly regarded as wastes) obtained at the optimum pretreatment conditions contained about 4.691 mg gallic acid equivalent (GAE)/g OPFs of TPC, 0.297 mg vanillic acid (VA)/g OPFs, 1.591 mg gallic acid (GA)/g OPFs and 0.331 mg quercetin (QU)/g OPFs. The pretreatment liquor was again analyzed to possess high antiradical scavenging activity (about 97.2%) compared to the synthetic antioxidant, 3,5-di-tert-butyl-4-hydroxytoluene (BHT) (80.7%) at 100 ppm. Thus one sustainable way of managing wastes in biorefinery is the recovery of multi-bioproducts (e.g. bioethanol and biochemicals) during the pretreatment process

  20. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    Science.gov (United States)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  1. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    International Nuclear Information System (INIS)

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  2. Method and apparatus for treating a cellulosic feedstock

    Science.gov (United States)

    Nguyen, Quang A.; Burke, Murray J.; Hillier, Sunalie N.

    2015-09-08

    Methods and apparatus for treating, pre-treating, preparing and conveying a cellulosic feedstock, such as for ethanol production, are disclosed. More specifically, the invention relates to methods and apparatus for treating a cellulosic feedstock by mixing and heating the cellulosic feedstock and/or by moistening and heating the cellulosic feedstock. The invention also relates to a holding tank, and a method of utilizing the holding tank whereby bridging may be reduced or eliminated and may result in a product stream from autohydrolysis or hydrolysis having an improved yield. The invention further relates to methods and apparatus for obtaining and conveying a cellulosic feedstock, which may be used for the subsequent production of a fermentable sugar stream from the cellulose and hemicellulose in the cellulosic feedstock wherein the fermentable sugar stream may be used for subsequent ethanol production. The invention also relates to a method and apparatus for withdrawing one or more feedstock stream from a holding tank.

  3. Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; Budhi, Sridhar; Thompson, Logan; Iisa, Kristiina; Nimlos, Mark R.; Donohoe, Bryon S.

    2016-09-06

    Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fast pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.

  4. Effects of ionic catalysis on hydrogen production by the steam gasification of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shen [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Wen; Bai, Zongqing; Bai, Jin [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Xiang, Hongwei [Graduate University of Chinese Academy of Sciences, Beijing 100039 (China)

    2010-05-15

    In this study, significant effects of ionic catalysis on the formation of H{sub 2} and CO during the steam gasification process of cellulose are revealed. The energy of the C-H bonds of cellulose can be remarkably reduced by Na{sup +} and OH{sup -} ions produced by the dissociation of NaOH, enabling dehydrogenation of cellulose at low temperature. Dehydrogenation of cellulose is evidently affected by the concentration of Na{sup +} and OH{sup -} ions that cellulose can come into contact with. Higher concentrations of Na{sup +} and OH{sup -} ions can reduce the initial dehydrogenation temperature of cellulose to lower than 403 K. The production of CO increases after this remarkable dehydrogenation of cellulose, which indicates that the C-O bonds of cellulose are prone to forming CO by pyrolysis. (author)

  5. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus.

    Science.gov (United States)

    Keshk, Sherif M A S

    2014-01-01

    Influence of vitamin C (ascorbic acid) on bacterial cellulose (BC) production and crystal structure was studied using four strains of Gluconacetobacter xylinus (ATCC 10245, IFO 13693, 13772 and 13773). BC productivity of all strains was increased in presence of vitamin C (0.5% w/w), the average BC production reached 0.47 g/30 ml compared with 0.25 g/30 ml without vitamin C. Enhanced productivity is associated with a decrease in gluconic acid concentration that is produced from Gluconacetobacter xylinus during BC production. X-ray results showed that the crystallinity index of BC produced in presence of ascorbic acid was the lowest with remarkable change in d-spacing. These results were confirmed by using solid state (13)CNMR. The increase in BC yield in presence of vitamin C is due to its antioxidant behavior and confirms our past work on lignosulfonate influence on BC.

  6. Comparative Ethanol Productivities of Two Different Recombinant Fermenting Strains on Source-Separated Organic Waste

    Directory of Open Access Journals (Sweden)

    Valeriy Bekmuradov

    2014-10-01

    Full Text Available Production of biofuel such as ethanol from lignocellulosic biomass is a beneficial way to meet sustainability and energy security in the future. The main challenge in bioethanol conversion is the high cost of processing, in which enzymatic hydrolysis and fermentation are the major steps. Among the strategies to lower processing costs are utilizing both glucose and xylose sugars present in biomass for conversion. An approach featuring enzymatic hydrolysis and fermentation steps, identified as separate hydrolysis and fermentation (SHF was used in this work. Proposed solution is to use "pre-processing" technologies, including the thermal screw press (TSP and cellulose-organic-solvent based lignocellulose fractionation (COSLIF pretreatments. Such treatments were conducted on a widely available feedstock such as source separated organic waste (SSO to liberate all sugars to be used in the fermentation process. Enzymatic hydrolysis was featured with addition of commercial available enzyme, Accellerase 1500, to mediate enzymatic hydrolysis process. On average, the sugar yield from the TSP and COSLIF pretreatments followed by enzymatic hydrolysis was remarkable at 90%. In this work, evaluation of the SSO hydrolysate obtained from COSLIF and enzymatic hydrolysis pretreaments on ethanol yields was compared by fermentation results with two different recombinant strains: Zymomonas mobilis 8b and Saccharomyces cerevisiae DA2416. At 48 hours of fermentation, ethanol yield was equivalent to 0.48g of ethanol produced per gram of SSO biomass by Z.mobilis 8b and 0.50g of ethanol produced per gram of SSO biomass by S. cerevisiae DA2416. This study provides important insights for investigation of the source-separated organic (SSO waste on ethanol production by different strains and becomes a useful tool to facilitate future process optimization for pilot scale facilities.

  7. Production of Ethanol Fuel from Organic and Food Wastes

    Directory of Open Access Journals (Sweden)

    Uduak George AKPAN, Adamu Ali ALHAKIM, and Udeme Joshua Josiah IJAH

    2008-12-01

    Full Text Available Production of ethanol fuel from organic and food waste has been carried out with the singular aim of converting the waste to useful material. To achieve this, the conversion of organic waste (Old newspapers and food waste (maize were respectively carried out via acid and microbial hydrolysis, which yielded 42% and 63% fermentable sugar wort. This was then converted into ethanol by fermentation process using Sacchromyces ceverisiae. 95% ethanol was obtained by fractional distillation of the fermentable wort and the total volume of ethanol produced from 2,500 grams of the organic and food wastes was 0.86 liters.Fermentation Kinetic parameters were evaluated. Considering the percentage fermentable sugar yield from the biomasses in study, it is more economical to produce ethanol from food waste (maize than old organic waste (old newspaper.

  8. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  9. Ethanol production from soybean molasses by Zymomonas mobilis

    International Nuclear Information System (INIS)

    This work deals with the utilization of soybean molasses (a low cost byproduct) to produce ethanol, an important biofuel, using the microorganism Zymomonas mobilis NRRL 806, a gram negative bacterium. At the first part of the work, laboratorial scale tests, using 125 mL flasks were performed to evaluate the effect of three variables on ethanol production: soybean molasses concentration (the sole carbon and nitrogen source), pH and period of previous aerobial phase. The optimal soybean concentration was around 200 g L-1 of soluble solids, pH between 6.0 and 7.0, and the period of previous aerobial phase did not provide significant effect. At the second part, kinetic tests were performed to compare the fermentation yields of Zymomonas mobilis NRRL 806 in flasks and in a bench scale batch reactor (it was obtained respectively 78.3% and 96.0% of the maximum theoretical yields, with productions of 24.2 and 29.3 g L-1 of ethanol). The process with a reactor fermentation using Saccharomyces cerevisiae LPB1 was also tested (it was reached 89.3% of the theoretical maximum value). A detailed kinetic behavior of the molasses sugars metabolism for Z. mobilis was also shown, either in reactor or in flasks. This work is a valuable tool for further works in the subject of ethanol production from agro-industrial by-products. -- Highlights: ► Zymomonas mobilis was able to grow and produce ethanol on diluted soybean molasses. ► Best conditions for ethanol production:200g L-1 of soluble solids; pH around 6,5. ► Z. mobilis had better ethanol production and yield when compared to S. cerevisiae. ► In reactor, Z. mobilis produced 29.3 g L-1of ethanol, 96.0% of the maximum yield.

  10. Metabolic engineering of Escherichia coli for ethanol production without foreign genes

    Science.gov (United States)

    Kim, Youngnyun

    Worldwide dependence on finite petroleum-based energy necessitates alternative energy sources that can be produced from renewable resources. A successful example of an alternative transportation fuel is bioethanol, produced by microorganisms, from corn starch that is blended with gasoline. However, corn, currently the main feedstock for bioethanol production, also occupies a significant role in human food and animal feed chains. As more corn is diverted to bioethanol, the cost of corn is expected to increase with an increase in the price of food, feed and ethanol. Using lignocellulosic biomass for ethanol production is considered to resolve this problem. However, this requires a microbial biocatalyst that can ferment hexoses and pentoses to ethanol. Escherichia coli is an efficient biocatalyst that can use all the monomeric sugars in lignocellulose, and recombinant derivatives of E. coli have been engineered to produce ethanol as the major fermentation product. In my study, ethanologenic E. coli strains were isolated from a ldhA-, pflB- derivative without introduction of foreign genes. These isolates grew anaerobically and produced ethanol as the main fermentation product. The mutation responsible for anaerobic growth and ethanol production was mapped in the lpdA gene and the mutation was identified as E354K in three of the isolates tested. Another three isolates carried an lpdA mutation, H352Y. Enzyme kinetic studies revealed that the mutated form of the dihydrolipoamide dehydrogenase (LPD) encoded by the lpdA was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity to NADH of the pyruvate dehydrogenase complex in strain SE2378. The net yield of 4 moles of NADH and 2 moles of acetyl-CoA per mole of glucose produced by a combination of glycolysis and PDH provided a logical basis to explain the production of 2 moles of ethanol per glucose. The development of E

  11. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Lin, Xiao-Qing; Chen, Xue-Fang; Chen, Xin-De

    2016-01-01

    Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources.

  12. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit

    OpenAIRE

    Rangaswamy, B.E.; Vanitha, K. P.; Hungund, Basavaraj S.

    2015-01-01

    Microbial cellulose, an exopolysaccharide produced by bacteria, has unique structural and mechanical properties and is highly pure compared to plant cellulose. Present study represents isolation, identification, and screening of cellulose producing bacteria and further process optimization. Isolation of thirty cellulose producers was carried out from natural sources like rotten fruits and rotten vegetables. The bacterial isolates obtained from rotten pomegranate, rotten sweet potato, and rott...

  13. Evaluation of processing technology for Triarrhena sacchariflora (Maxim. Nakai for ethanol production.

    Directory of Open Access Journals (Sweden)

    Fengqin Gao

    Full Text Available The effects of dilute H2SO4 concentration, forage:sulfuric acid ratio, digestion time, and digestion temperature were evaluated to determine effects on ethanol yield of Triarrhena sacchariflora (Maxim. Nakai. Twenty single factor experiments were conducted to evaluate H2SO4 concentration (0.5, 1.0, 1.5, 2.0, and 2.5%, w/w, forage:sulfuric acid ratio (1:6, 1:8, 1:10, 1:12, and 1:14, g/ml, digestion time (15, 30, 45, 60, and 90, min, digestion temperature (80, 100, 110, 120, and 125 °C for 3 replicates of the 5 levels of each factor. Based on results of the single factor experiments, an incomplete factorial was designed to evaluate ethanol yield from the best combinations of single factors. Finally, the best combination was tested by enzymatic hydrolysis and fermentation experiment in selected combinations according to pretreatment results. Percentage cellulose, hemicellulose, and lignin contents of forage residue after pretreatment, and glucose and xylose concentrations of the filtrate were analyzed prior to enzymatic hydrolysis, and percentage crystallinity was observed in untreated grass and pretreated residue. In addition, the solid residues were then hydrolysed and fermented by cellulase and yeast, the concentrations of glucose and ethanol being monitored for 96 h. Results showed that the order of the effect of main effect factors was as follows: digestion temperature > dilute H2SO4 concentration > digestion time > forage:sulfuric acid ratio. The best process parameters evaluated were sulfuric acid concentration of 1.5%, forage:sulfuric acid ratio of 1:6, digestion time of 15 min, and digestion temperature of 120°C. With this combination of factors, 80% of the cellulose was hydrolysed in 96 h, and 78% converted to ethanol. The findings identified that hemicelluloses were the key deconstruction barrier for pretreatment of Triarrhena sacchariflora (Maxim. Nakai for ethanol production. The results of this research provide evidence of

  14. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  15. Ethanol Production from Traditional and Emerging Raw Materials

    Science.gov (United States)

    Rudolf, Andreas; Karhumaa, Kaisa; Hahn-Hägerdal, Bärbel

    The ethanol industry of today utilizes raw materials rich in saccharides, such as sugar cane or sugar beets, and raw materials rich in starch, such as corn and wheat. The concern about supply of liquid transportation fuels, which has brought the crude oil price above 100 /barrel during 2006, together with the concern about global warming, have turned the interest towards large-scale ethanol production from lignocellulosic materials, such as agriculture and forestry residues. Baker's yeast Saccharomyces cerevisiae is the preferred fermenting microorganism for ethanol production because of its superior and well-documented industrial performance. Extensive work has been made to genetically improve S. cerevisiae to enable fermentation of lignocellulosic raw materials. Ethanolic fermentation processes are conducted in batch, fed-batch, or continuous mode, with or without cell recycling, the relative merit of which will be discussed.

  16. Feasibility of Bioethanol Production From Lignocellulosic Biomass

    Science.gov (United States)

    Aunina, Zane; Bazbauers, Gatis; Valters, Karlis

    2010-01-01

    The objective of the paper is to discuss the potential of cellulosic ethanol production processes and compare them, to find the most appropriate production method for Latvia's situation, to perform theoretical calculations and to determine the potential ethanol price. In addition, price forecasts for future cellulosic and grain ethanol are compared. A feasibility estimate to determine the price of cellulosic ethanol in Latvia, if production were started in 2010, was made. The grain and cellulosic ethanol price comparison (future forecast) was made through to the year 2018.

  17. Progress on Pyrolysis of Cellulose and Its Conversion to Ethanol%纤维素热解及其产物转化乙醇的研究进展

    Institute of Scientific and Technical Information of China (English)

    常冬冬; 余志晟; 张洪勋

    2012-01-01

    为了研究纤维素物质热解产物的乙醇转化,综述了国内外近几年纤维素热解影响因素及其产物(主要为内醚糖)转化乙醇的研究现状,研究发现以往的研究并没有重视热解过程中各影响因素的综合作用、获得的产物,如内醚糖产率不够理想,同时对热解液主要采取水解后发酵的方式生产乙醇,也不经济可行.通过基因工程技术构建乙醇工程菌,从而实现纤维素热解液向乙醇的直接转化将成为未来发展趋势.%In order to explore the conversion of cellulose biomass to ethanol, the author reviewe the current research progress on the pyrolysis conditions of cellulose and converting its pyrolysate (mainly levoglucosan) to ethanol at home and abroad in recent years. It' s found that previous studies are short of caring combinations with different pyrolysis conditions, which may be responsible for the yield of the product such as levoglucosan in the process of the pyrolysis, and also the conventional way via fermenting the hydrolysate of pyrolysate to ethanol is not economical. It would be a trend that the direct conversion of cellulose via pyrolysis to ethanol could be realized by constructing ethanologenic microbial strains with genetic engineering technologies in the future.

  18. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  19. Ethanol Production from Waste Potato Mash by Using Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Gulten Izmirlioglu

    2012-10-01

    Full Text Available Bio-ethanol is one of the energy sources that can be produced by renewable sources. Waste potato mash was chosen as a renewable carbon source for ethanol fermentation because it is relatively inexpensive compared with other feedstock considered as food sources. However, a pretreatment process is needed: specifically, liquefaction and saccharification processes are needed to convert starch of potato into fermentable sugars before ethanol fermentation. In this study, hydrolysis of waste potato mash and growth parameters of the ethanol fermentation were optimized to obtain maximum ethanol production. In order to obtain maximum glucose conversions, the relationship among parameters of the liquefaction and saccharification process was investigated by a response surface method. The optimum combination of temperature, dose of enzyme (α-amylase and amount of waste potato mash was 95 °C, 1 mL of enzyme (18.8 mg protein/mL and 4.04 g dry-weight/100 mL DI water, with a 68.86% loss in dry weight for liquefaction. For saccharification, temperature, dose of enzyme and saccharification time were optimized and optimum condition was determined as 60 °C-72 h-0.8 mL (300 Unit/mL of amyloglucosidase combination, yielded 34.9 g/L glucose. After optimization of hydrolysis of the waste potato mash, ethanol fermentation was studied. Effects of pH and inoculum size were evaluated to obtain maximum ethanol. Results showed that pH of 5.5 and 3% inolculum size were optimum pH and inoculum size, respectively for maximum ethanol concentration and production rate. The maximum bio-ethanol production rate was obtained at the optimum conditions of 30.99 g/L ethanol. Since yeast extract is not the most economical nitrogen source, four animal-based substitutes (poultry meal, hull and fines mix, feather meal, and meat and bone meal were evaluated to determine an economical alternative nitrogen source to yeast extract. Poultry meal and feather meal were able to produce 35 g/L and

  20. Life cycle cost of ethanol production from cassava in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sorapipatana, Chumnong; Yoosin, Suthamma [Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Pracha-Uthit Rd., Tungkru, Bangmod, Bangkok 10140 (Thailand); Center for Energy Technology and Environment, Commission on Higher Education, Ministry of Education, Bangkok (Thailand)

    2011-02-15

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  1. Life cycle cost of ethanol production from cassava in Thailand

    International Nuclear Information System (INIS)

    To increase the security of energy supply, lessen dependence on crude oil import and buffer against the impacts of large change in crude oil prices, the Thai government initiated and officially announced the national ethanol fuel program in year 2000. Since then, domestic ethanol demand has grown rapidly. Presently, all commercial ethanol in Thailand is produced from molasses as Thai law prohibits producing it from sugar cane directly. This is likely to limit ethanol supply in the near future. One possible solution is to supply more ethanol from cassava which is widely cultivated in this country. However, its production cost has not yet been known for certain. The objective of this study is to estimate the life cycle cost of ethanol production from cassava and to assess its economic competitiveness with gasoline in the Thai fuel market. Based on the record of cassava prices during the years 2002-2005, it was found that using it as feedstock would share more than 50% of the ethanol from cassava total production cost. It was also found that a bio-ethanol plant, with a capacity of 150,000 l/day, can produce ethanol from cassava in a range of ex-factory costs from 16.42 to 20.83 baht/l of gasoline equivalent (excluding all taxes), with an average cost of 18.15 baht/l of gasoline equivalent (41, 52 and 45 US cents/l gasoline equivalent respectively, based on 2005 exchange rate). In the same years, the range of 95-octane gasoline prices in Thailand varied from 6.18 baht to 20.86 baht/l, with an average price of 11.50 baht/l (15, 52 and 29 US cents/l respectively, based on 2005 exchange rate) which were much cheaper than the costs of ethanol made from cassava. Thus, we conclude that under the scenario of low to normal crude oil price, ethanol from cassava is not competitive with gasoline. The gasoline price has to rise consistently above 18.15 baht (45 US cents)/l before ethanol made from cassava can be commercially competitive with gasoline. (author)

  2. Production d'éthanol a partir de biomasse lignocellulosique Ethanol Production from Lignocellulosic Biomass

    Directory of Open Access Journals (Sweden)

    Ogier J. C.

    2006-12-01

    the short or middle term. Lignocellulosic biomass is a complex substrate, and essentially made of cellulose, hemicellulose and lignin. The processes which have been considered, attempt to recover a maximum amount of sugars from the hydrolysis of cellulose and hemicellulose, and to ferment them into ethanol. The hydrolysis processes used in the past are essentially chemical processes, but the acid recovery costs and the formation of toxic products make them uncompetitive. They are now substituted by enzymatic processes, which are more specific and allow higher hydrolysis yields under less severe conditions. However, the cellulose that is the target of the enzymatic hydrolysis, is not directly accessible to the enzymes. It is the reason why a pretreatment step has to precede the enzymatic hydrolysis, in order to improve the enzymatic susceptibility of the cellulose, and to hydrolyse the hemicellulosic fraction. Different types of pretreatment have been studied, but three methods appear more efficient: dilute acid hydrolysis, steam explosion with catalyst addition and thermohydrolysis. These pretreatments could result in high hydrolysis yields of the cellulose fraction (close to 100%, and in a maximum recovery of the sugars from the hemicellulosic fraction. Enzymatic hydrolysis has yet to be improved in order to reduce the cost of consumption of the enzymes. Research works will have to focus upon the enzyme specific activity, in order to achieve higher efficiencies such as those obtained with amylases. The SSF (Saccharfication and Simultaneous Fermentation process improves the enzyme efficiency by reducing the feed-back inhibition from the hydrolysis products. The screening of efficient fermentative microorganisms under high temperature conditions (45°C has thus to be further implemented. The last technological barrier of the process concerns the ethanolic fermentation of the pentoses. Indeed, the pentoses, originating from the hemicellulosic fraction, can represent up

  3. Endogenous ethanol production in trauma victims associated with medical treatment.

    Science.gov (United States)

    Moriya, F; Hashimoto, Y

    1996-08-01

    Four cases of trauma, where endogenous ethanol production was suspected to have been occurred in association with medical treatment, are reported. To discriminate endogenous ethanol produced de novo by bacteria from exogenous ethanol by drinking, various tissues and body fluids, such as brain and cerebrospinal fluid, together with blood obtained from various locations, were subjected to analysis for both ethanol and n-propanol. The first individual was a 40-year-old man who had been stabbed in the abdomen with a knife and had died of bleeding about 12 h after peritoneotomy, and autopsied 12 h later. In the heart blood, 0.44 mg/g ethanol and 0.005 mg/g n-propanol were detected. Ethanol levels in the cerebrospinal fluid, vitreous humor and brain, reflecting exogenous ethanol levels, were 0.08-0.16 mg/g, and no n-propanol was detected in any of the specimens. The second individual was a 45-year-old man who had been punched hard in the head and face and had died of traumatic shock about 12 h after hospitalization, and autopsied 12 h later. The heart blood concentrations of ethanol and n-propanol were 0.15 and 0.008 mg/g respectively, and a subdural hematoma contained only 0.05 mg/g ethanol and non n-propanol. The third individual was a 34-year-old man who suffered incised wounds of the left arm and head with a sickle and had died of hemorrhagic shock. In the heart blood, 0.30 mg/g ethanol and 0.026 mg/g n-propanol were detected; there was 0.04 mg/g ethanol and no n-propanol in the brain. The fourth individual was a 76-year-old woman who had been hit by a motorcycle and had died of liver rupture about 1 h after admission to a hospital. The heart blood contained 0.22 mg/g ethanol and 0.002 mg/g n-propanol. Only a trace of ethanol and no n-propanol were detected in the pericardial sac fluid and cerebrospinal fluid.

  4. Bridging the logistics gap for sustainable ethanol production: the CentroSul ethanol pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Megiolaro, Moacir; Daud, Rodrigo; Pittelli, Fernanda [CentroSul Transportadora Dutoviaria, SP (Brazil); Singer, Eugenio [EMS Consultant, Sao Paulo, SP (Brazil)

    2009-07-01

    The continuous increase of ethanol production and growth in consumption in Brazil is a reality that poses significant logistics challenges both for producers and consumers. The Brazilian local market absorbs a great portion of the country's production of ethanol, but the export market is also experiencing significant expansion so that both local and external market consumption will require more adequate transportation solutions. The alternative routes for Brazilian ethanol exports within the South and Southeast regions of Brazil range from the port of Paranagua, in the state of Parana, to the port of Vitoria, in the state of Espirito Santo. Each of these routes is about 1,000 km distance from the main production areas in the Central South states of Brazil. Brazilian highways and railways systems are overly congested and do not present efficient logistics alternatives for the transportation of large ethanol flows over long distances (cross-country) from the central Midwest regions of the country to the consumer and export markets in the Southeast. In response to the challenge to overcome such logistic gaps, CentroSul Transportadora Dutoviaria 'CentroSul', a company recently founded by a Brazilian ethanol producer group, the Brenco Group, is developing a project for the first fully-dedicated ethanol pipeline to be constructed in Brazil. The ethanol pipeline will transport 3,3 million m{sup 3} of Brenco - Brazilian Renewable Energy Company's ethanol production and an additional 4,7 million cubic meters from other Brazilian producers. The pipeline, as currently projected, will, at its full capacity, displace a daily vehicle fleet equivalent to 500 trucks which would be required to transport the 8,0 million cubic meters from their production origins to the delivery regions. In addition, the project will reduce GHG (trucking) emissions minimizing the project's overall ecological footprint. Key steps including conceptual engineering, environmental

  5. The productive potentials of sweet sorghum ethanol in China

    International Nuclear Information System (INIS)

    As one of the important non-grain energy crops, sweet sorghum has attracted the attention of scientific community and decision makers of the world since decades. But insufficient study has been done about the spatial suitability distribution and ethanol potential of sweet sorghum in China. This paper attempts to probe into the spatial distribution and ethanol potential of sweet sorghum in China by ArcGIS methods. Data used for the analysis include the spatial data of climate, soil, topography and land use, and literatures relevant for sweet sorghum studies. The results show that although sweet sorghum can be planted in the majority of lands in China, the suitable unused lands for large-scale planting (unit area not less than 100 hm2) are only as much as 78.6 x 104 hm2; and the productive potentials of ethanol from these lands are 157.1 x 104-294.6 x 104 t/year, which can only meet 24.8-46.4% of current demand for E10 (gasoline mixed with 10% ethanol) in China (assumption of the energy efficiency of E10 is equivalent to that of pure petroleum). If all the common grain sorghum at present were replaced by sweet sorghum, the average ethanol yield of 244.0 x 104 t/year can be added, and thus the productive potentials of sweet sorghum ethanol can satisfy 63.2-84.9% of current demand for E10 of China. In general, Heilongjiang, Jilin, Inner Mongolia and Liaoning rank the highest in productive potentials of sweet sorghum ethanol, followed by Hebei, Shanxi, Sichuan, and some other provinces. It is suggested that these regions should be regarded as the priority development zones for sweet sorghum ethanol in China.

  6. Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse.

    Science.gov (United States)

    Sipos, Bálint; Réczey, Jutka; Somorai, Zsolt; Kádár, Zsófia; Dienes, Dóra; Réczey, Kati

    2009-05-01

    Sweet sorghum is an attractive feedstock for ethanol production. The juice extracted from the fresh stem is composed of sucrose, glucose, and fructose and can therefore be readily fermented to alcohol. The solid fraction left behind, the so-called bagasse, is a lignocellulosic residue which can also be processed to ethanol. The objective of our work was to test sweet sorghum, the whole crop, as a potential raw material of ethanol production, i.e., both the extracted sugar juice and the residual bagasse were tested. The juice was investigated at different harvesting dates for sugar content. Fermentability of juices extracted from the stem with and without leaves was compared. Sweet sorghum bagasse was steam-pretreated using various pretreatment conditions (temperatures and residence times). Efficiency of pretreatments was characterized by the degree of cellulose hydrolysis of the whole pretreated slurry and the separated fiber fraction. Two settings of the studied conditions (190 degrees C, 10 min and 200 degrees C, 5 min) were found to be efficient to reach conversion of 85-90%.

  7. Environmental aspects of eucalyptus based ethanol production and use

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, Sara, E-mail: sara.gez.garcia@gmail.com [Division of Biology, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College of London, South Kensington Campus, London SW7 2AZ (United Kingdom); Moreira, Ma. Teresa; Feijoo, Gumersindo [Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, 15782-Santiago de Compostela (Spain)

    2012-11-01

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic materials is considered the automotive fuel with the highest potential. In this paper, a life cycle assessment (LCA) study was developed to evaluate the environmental implications of the production of ethanol from a fast-growing short rotation crop (SRC): eucalyptus as well as its use in a flexi-fuel vehicle (FFV). The aim of the analysis was to assess the environmental performance of three ethanol based formulations: E10, E85 and E100, in comparison with conventional gasoline. The standard framework of LCA from International Standards Organization was followed and the system boundaries included the cultivation of the eucalyptus biomass, the processing to ethanol conversion, the blending with gasoline (when required) and the final use of fuels. The environmental results show reductions in all impact categories under assessment when shifting to ethanol based fuels, excluding photochemical oxidant formation, eutrophication as well as terrestrial and marine ecotoxicity which were considerably influenced by upstream activities related to ethanol manufacture. The LCA study remarked those stages where the researchers and technicians need to work to improve the environmental performance. Special attention must be paid on ethanol production related activities, such as on-site energy generation and distillation, as well as forest activities oriented to the biomass production. The use of forest machinery with higher efficiency levels, reduction of fertilizers dose and the control of diffuse emissions from the conversion plant would improve the environmental profile. -- Highlights: Black-Right-Pointing-Pointer The identification of the environmental implications of the production and use of eucalyptus based ethanol was carried out. Black-Right-Pointing-Pointer Eucalyptus is a

  8. Metabolic engineering of ethanol production in Thermoanaerobacter mathranii

    Energy Technology Data Exchange (ETDEWEB)

    Shou Yao

    2010-11-15

    Strain BG1 is a xylanolytic, thermophilic, anaerobic, Gram-positive bacterium originally isolated from an Icelandic hot spring. The strain belongs to the species Thermoanaerobacter mathranii. The strain ferments glucose, xylose, arabinose, galactose and mannose simultaneously and produces ethanol, acetate, lactate, CO{sub 2}, and H2 as fermentation end-products. As a potential ethanol producer from lignocellulosic biomass, tailor-made BG1 strain with the metabolism redirected to produce ethanol is needed. Metabolic engineering of T. mathranii BG1 is therefore necessary to improve ethanol production. Strain BG1 contains four alcohol dehydrogenase (ADH) encoding genes. They are adhA, adhB, bdhA and adhE encoding primary alcohol dehydrogenase, secondary alcohol dehydrogenase, butanol dehydrogenase and bifunctional alcohol/acetaldehyde dehydrogenase, respectively. The presence in an organism of multiple alcohol dehydrogenases with overlapping specificities makes the determination of the specific role of each ADH difficult. Deletion of each individual adh gene in the strain revealed that the adhE deficient mutant strain fails to produce ethanol as the fermentation product. The bifunctional alcohol/acetaldehyde dehydrogenase, AdhE, is therefore proposed responsible for ethanol production in T. mathranii BG1, by catalyzing sequential NADH-dependent reductions of acetyl-CoA to acetaldehyde and then to ethanol under fermentative conditions. Moreover, AdhE was conditionally expressed from a xylose-induced promoter in a recombinant strain (BG1E1) with a concomitant deletion of a lactate dehydrogenase. Over-expression of AdhE in strain BG1E1 with xylose as a substrate facilitates the production of ethanol at an increased yield. With a cofactor-dependent ethanol production pathway in T. mathranii BG1, it may become crucial to regenerate cofactor to increase the ethanol yield. Feeding the cells with a more reduced carbon source, such as mannitol, was shown to increase ethanol

  9. Improvement of enzymatic hydrolysis and ethanol production from corn stalk by alkali and N-methylmorpholine-N-oxide pretreatments.

    Science.gov (United States)

    Cai, Ling-Yan; Ma, Yu-Long; Ma, Xiao-Xia; Lv, Jun-Min

    2016-07-01

    A combinative technology of alkali and N-methylmorpholine-N-oxide (NMMO) was used to pretreat corn stalk (CS) for improving the efficiencies of subsequent enzymatic hydrolysis and ethanol fermentation. The results showed that this strategy could not only remove hemicellulose and lignin but also decrease the crystallinity of cellulose. About 98.0% of enzymatic hydrolysis yield was obtained from the pretreated CS as compared with 46.9% from the untreated sample. The yield for corresponding ethanol yield was 64.6% while untreated CS was only 18.8%. Besides, xylose yield obtained from the untreated CS was only 11.1%, while this value was 93.8% for alkali with NMMO pretreated sample. These results suggest that a combination of alkali with 50% (wt/wt) NMMO solution may be a promising alternative for pretreatment of lignocellulose, which can increase the productions of subsequent enzymatic hydrolysis and ethanol fermentation. PMID:27078206

  10. The economic prospects of cellulosic biomass for biofuel production

    Science.gov (United States)

    Kumarappan, Subbu

    Alternative fuels for transportation have become the focus of intense policy debate and legislative action due to volatile oil prices, an unstable political environment in many major oil producing regions, increasing global demand, dwindling reserves of low-cost oil, and concerns over global warming. A major potential source of alternative fuels is biofuels produced from cellulosic biomass, which have a number of potential benefits. Recognizing these potential advantages, the Energy Independence and Security Act of 2007 has mandated 21 billion gallons of cellulosic/advanced biofuels per year by 2022. The United States needs 220-300 million tons of cellulosic biomass per year from the major sources such as agricultural residues, forestry and mill residues, herbaceous resources, and waste materials (supported by Biomass Crop Assistance Program) to meet these biofuel targets. My research addresses three key major questions concerning cellulosic biomass supply. The first paper analyzes cellulosic biomass availability in the United States and Canada. The estimated supply curves show that, at a price of 100 per ton, about 568 million metric tons of biomass is available in the United States, while 123 million metric tons is available in Canada. In fact, the 300 million tons of biomass required to meet EISA mandates can be supplied at a price of 50 per metric ton or lower. The second paper evaluates the farmers' perspective in growing new energy crops, such as switchgrass and miscanthus, in prime cropland, in pasture areas, or on marginal lands. My analysis evaluates how the farmers' returns from energy crops compare with those from other field crops and other agricultural land uses. The results suggest that perennial energy crops yielding at least 10 tons per acre annually will be competitive with a traditional corn-soybean rotation if crude oil prices are high (ranging from 88-178 per barrel over 2010-2019). If crude oil prices are low, then energy crops will not be

  11. The state of autotrophic ethanol production in Cyanobacteria.

    Science.gov (United States)

    Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T

    2015-07-01

    Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed.

  12. Solving ethanol production problems with genetically modified yeast strains

    Directory of Open Access Journals (Sweden)

    A. Abreu-Cavalheiro

    2013-09-01

    Full Text Available The current world demand for bioethanol is increasing as a consequence of low fossil fuel availability and a growing number of ethanol/gasoline flex-fuel cars. In addition, countries in several parts of the world have agreed to reduce carbon dioxide emissions, and the use of ethanol as a fuel (which produces fewer pollutants than petroleum products has been considered to be a good alternative to petroleum products. The ethanol that is produced in Brazil from the first-generation process is optimized and can be accomplished at low cost. However, because of the large volume of ethanol that is produced and traded each year, any small improvement in the process could represent a savings of billions dollars. Several Brazilian research programs are investing in sugarcane improvement, but little attention has been given to the improvement of yeast strains that participate in the first-generation process at present. The Brazilian ethanol production process uses sugarcane as a carbon source for the yeast Saccharomyces cerevisiae. Yeast is then grown at a high cellular density and high temperatures in large-capacity open tanks with cells recycle. All of these culture conditions compel the yeast to cope with several types of stress. Among the main stressors are high temperatures and high ethanol concentrations inside the fermentation tanks during alcohol production. Moreover, the competition between the desired yeast strains, which are inoculated at the beginning of the process, with contaminants such as wild type yeasts and bacteria, requires acid treatment to successfully recycle the cells. This review is focused on describing the problems and stressors within the Brazilian ethanol production system. It also highlights some genetic modifications that can help to circumvent these difficulties in yeast.

  13. 75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent

    Science.gov (United States)

    2010-07-22

    ..., ``Production Incentives for Cellulosic Biofuels; Reverse Auction Procedures and Standards,'' (74 FR 52867... month period; and (v) Identify one or more proposed sources of financing for the construction or expansion of the filing party's eligible cellulosic biofuels production facility. DOE will provide...

  14. Hydrogen peroxide production from fibrous pectic cellulose analogs and effect on dermal fibroblasts

    Science.gov (United States)

    Naturally derived products with folklore remedies have in recent years been reconsidered for their benefit to wound healing i.e., honey’s application to chronic wound dressing products. Similarly, we have undertaken an evaluation of Fibrous pectin-cellulose (FPC) (cellulose blended with primary cel...

  15. Bacterial Cellulose Production by Gluconacetobacter sp. RKY5 in a Rotary Biofilm Contactor

    Science.gov (United States)

    Kim, Yong-Jun; Kim, Jin-Nam; Wee, Young-Jung; Park, Don-Hee; Ryu, Hwa-Won

    A rotary biofilm contactor (RBC) inoculated with Gluconacetobacter sp. RKY5 was used as a bioreactor for improved bacterial cellulose production. The optimal number of disk for bacterial cellulose production was found to be eight, at which bacterial cellulose and cell concentrations were 5.52 and 4.98 g/L. When the aeration rate was maintained at 1.25 vvm, bacterial cellulose and cell concentrations were maximized (5.67 and 5.25 g/L, respectively). The optimal rotation speed of impeller in RBC was 15 rpm. When the culture pH in RBC was not controlled during fermentation, the maximal amount of bacterial cellulose (5.53 g/L) and cells (4.91 g/L) was obtained. Under the optimized culture conditions, bacterial cellulose and cell concentrations in RBC reached to 6.17 and 5.58 g/L, respectively.

  16. Bacterial Cellulose Production by Acetobacter xylinum Strains from Agricultural Waste Products

    Science.gov (United States)

    Kongruang, Sasithorn

    Bacterial cellulose is a biopolysaccharide produced from the bacteria, Acetobacter xylinum. Static batch fermentations for bacterial cellulose production were studied in coconut and pineapple juices under 30 °C in 5-1 fermenters by using three Acetobacter strains: A. xylinum TISTR 998, A. xylinum TISTR 975, and A. xylinum TISTR 893. Experiments were carried out to compare bacterial cellulose yields along with growth kinetic analysis. Results showed that A. xylinum TISTR 998 produced a bacterial cellulose yield of 553.33 g/l, while A. xylinum TISTR 893 produced 453.33 g/l and A. xylinum TISTR 975 produced 243.33 g/l. In pineapple juice, the yields for A. xylinum TISTR 893, 975, and 998 were 576.66, 546.66, and 520 g/l, respectively. The strain TISTR 998 showed the highest productivity when using coconut juice. Morphological properties of cellulose pellicles, in terms of texture and color, were also measured, and the textures were not significantly different among treatments.

  17. Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Xu, Ji-Fei; Gao, Ling-Fang; Xin, Liang; Qiu, Jie; Su, Dong-Xia [State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-04-15

    The performance of hydrogen production from cellulose by the cow dung compost enriched continuously in defined medium containing cellulose was investigated. In the initial experiments, batch-fermentation was carried out to observe the effects of different substrate concentration conditions on the rate of cellulose-degrading, growth of bacteria and the capability of hydrogen-producing from cellulose. The result showed that the cellulose degradation decreased from 55% at 5 g/l to 22% at 30 g/l. The maximum cumulative hydrogen production and the rate of hydrogen production first increased from 828 ml/l at 5 g/l to 1251 ml/l at 10 g/l then remained constant beyond 10 g/l. The maximum hydrogen production potential, the rate of hydrogen production and the yield of hydrogen was 1525 ml/l, 33 ml/l.h, and 272 ml/g-cellulose (2.09 mol/mol-hexose) was obtained at substrate concentration 10 g/l, the hydrogen concentration in biogas was 47-50%(v/v) and there was no methane observed. During the conversion of cellulose into hydrogen, acetate and butyrate were main liquid end-products in the metabolism of hydrogen fermentation. These results proposed that cow dung compost enriched cultures were ideal microflora for hydrogen production from cellulose. (author)

  18. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate

  19. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Parish, Esther S [ORNL; Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; McBride, Allen [ORNL; Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Hilliard, Michael R [ORNL; Bielicki, Dr Jeffrey M [University of Minnesota

    2013-01-01

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  20. Comparing Scales of Environmental Effects from Gasoline and Ethanol Production

    Science.gov (United States)

    Parish, Esther S.; Kline, Keith L.; Dale, Virginia H.; Efroymson, Rebecca A.; McBride, Allen C.; Johnson, Timothy L.; Hilliard, Michael R.; Bielicki, Jeffrey M.

    2013-02-01

    Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol-supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

  1. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    Science.gov (United States)

    Cannella, David; Jørgensen, Henning

    2014-01-01

    Production of ethanol from lignocellulosic materials has a promising market potential, but the process is still only at pilot/demonstration scale due to the technical and economical difficulties of the process. Operating the process at very high solids concentrations (above 20% dry matter-DM) has proven essential for economic feasibility at industrial scale. Historically, simultaneous saccharification and fermentation (SSF) was found to give better ethanol yields compared to separate hydrolysis and fermentation (SHF), but data in literature are typically based on operating the process at low dry matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation-PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM. The experiments revealed that an SSF strategy was indeed better than SHF when applying an older generation enzyme cocktail (Celluclast-Novozym 188). In case of the newer product Cellic CTec 2, SHF resulted in 20% higher final ethanol yield compared to SSF. It was possible to close the mass balance around cellulose to around 94%, revealing that the most relevant products could be accounted for. One observation was the presence of oxidized sugar (gluconic acid) upon enzymatic hydrolysis with the latest enzyme preparation. Experiments showed gluconic acid formation by recently discovered enzymatic class of lytic polysaccharides monoxygenases (LPMO's) to be depending on the processing strategy. The lowest concentration was achieved in SSF, which could be correlated with less available oxygen due to simultaneous oxygen consumption by the yeast. Quantity of glycerol and cell mass was also depending on the selected processing strategy.

  2. Environmental aspects of eucalyptus based ethanol production and use.

    Science.gov (United States)

    González-García, Sara; Moreira, Ma Teresa; Feijoo, Gumersindo

    2012-11-01

    A renewable biofuel economy is projected as a pathway to decrease dependence on fossil fuels as well as to reduce greenhouse gases (GHG) emissions. Ethanol produced on large-scale from lignocellulosic materials is considered the automotive fuel with the highest potential. In this paper, a life cycle assessment (LCA) study was developed to evaluate the environmental implications of the production of ethanol from a fast-growing short rotation crop (SRC): eucalyptus as well as its use in a flexi-fuel vehicle (FFV). The aim of the analysis was to assess the environmental performance of three ethanol based formulations: E10, E85 and E100, in comparison with conventional gasoline. The standard framework of LCA from International Standards Organization was followed and the system boundaries included the cultivation of the eucalyptus biomass, the processing to ethanol conversion, the blending with gasoline (when required) and the final use of fuels. The environmental results show reductions in all impact categories under assessment when shifting to ethanol based fuels, excluding photochemical oxidant formation, eutrophication as well as terrestrial and marine ecotoxicity which were considerably influenced by upstream activities related to ethanol manufacture. The LCA study remarked those stages where the researchers and technicians need to work to improve the environmental performance. Special attention must be paid on ethanol production related activities, such as on-site energy generation and distillation, as well as forest activities oriented to the biomass production. The use of forest machinery with higher efficiency levels, reduction of fertilizers dose and the control of diffuse emissions from the conversion plant would improve the environmental profile.

  3. Improved Cellulose and Organic-Solvents based Lignocellulosic Fractionation Pre-treatment of Organic Waste for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Valeriy Bekmuradov

    2014-06-01

    Full Text Available This study investigates the performance of the Cellulose and Organic-Solvents based Lignocellulosic Fractionation (COSLIF method for the pretreatment of Source-Separated Organic (SSO waste. An improvement on the standard method of COSLIF pre-treatment was developed based on lower enzyme loading and using an ethanol washing instead of acetone. It was demonstrated that a much higher glucose yield (90% after 72 hours was possible with this improvement, as compared to the original method, which yielded 70% in the same time frame. Evaluation of the enzymatic hydrolysate obtained from the modified COSLIF pretreatment was further examined by anaerobic fermentation with Zymomonas mobilis 8b strain. At 48 hours, ethanol concentration reached to 140 g/L, which is equivalent to 0.48 g of ethanol produced per gram of SSO biomass. This study demonstrated that the modified COSLIF pretreatment provides a substantial improvement over the standard method in terms of enzyme savings, glucose formation, and ethanol production.

  4. Water-resistant cellulosic filter for aerosol entrapment and water purification, Part I: production of water-resistant cellulosic filter.

    Science.gov (United States)

    Heydarifard, Solmaz; Nazhad, Mousa M; Xiao, Huining; Shipin, Oleg; Olson, James

    2016-07-01

    Synthetic filters are neither biodegradable nor produced from renewable sources. Thus, their disposal has serious environmental impacts. There is a growing desire to produce filters from cellulosic fibers that are renewable, biodegradable, cheap and most importantly recyclable if the contamination is removed. Foam-laid process in papermaking is a promising process for the production of specialty papers. Filters produced using this process are capable of providing products with high specific surface area and tortuous structure favorable for entrapping particulate matters, while providing excellent permeability for incoming gas or liquid. Although the end product fulfills completely the requirement of a filter in a dry environment, it fails completely if it is exposed to a moist environment. This work reports on converting the hydrophilic cellulosic filter into a hydrophobic product without disturbing its original structure. PMID:26683534

  5. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  6. Production of fuel ethanol from molasses by thermotolerant yeast

    International Nuclear Information System (INIS)

    A thermotolerant strain of the yeast Kluyveromyces marxians, isolated from Kenana sugar factory in the Sudan, was used for the production of ethanol from molasses. Fermentations were carried out in a bioreactor with 10-litre working volume at three temperatures and three sugar concentrations in batch and at one temperature and three feeding rates in fed-batch processes. In the batch fermentations, the best results were obtained at 40 oC and 20% sugar, where a maximum of 9.2% (w/v) ethanol concentration was produced in 30 hours with a yield of 90% of the theoretical and a maximum ethanol specific productivity of 0.65 g per gramme yeast and hour. In the fed-batch process at 40 oC, the best results were obtained at 0.5 1/h feeding rate of a substrate with 400 g/1 sugar. Under such conditions, the yeast produced up to 9.34% (w/v) ethanol with 91.6% of the theoretical yield in 14 hours of fermentation and a maximum specific ethanol productivity of 0.9 g per gramme yeast and hour. (Author)

  7. Transportation impacts of increased ethanol production: A kansas case study

    OpenAIRE

    Babcock, Michael S.

    2010-01-01

    The rapid expansion of the U.S. biofuel industry has driven the Kansas agricultural transportation market into a new era. Nationally, fuel alcohol production rose from 1,630 million gallons in 2000 to 9,239 million in 2008, a 467% increase. The number of ethanol production plants increased from 54 in January 2000 to 170 in January 2009, a 215% increase. Many factors have contributed to the growth of the U.S. ethanol industry. Energy security and energy independence from unstable foreign count...

  8. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production.

    Science.gov (United States)

    Zhong, Cheng; Zhang, Gui-Cai; Liu, Miao; Zheng, Xin-Tong; Han, Pei-Pei; Jia, Shi-Ru

    2013-07-01

    Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.

  9. Fuel From Farms: A Guide to Small-Scale Ethanol Production.

    Science.gov (United States)

    Solar Energy Research Inst., Golden, CO.

    Ethanol and blends of ethanol and gasoline (such as gasohol) offer a near-term fuel alternative to oil. The focus of this handbook is upon the small-scale production of ethanol using farm crops as the source of raw materials. Provided are chapters on ethanol production procedures, feedstocks, plant design, and financial planning. Also presented…

  10. Applicability of unconventional energy raw materials in ethanol production

    Directory of Open Access Journals (Sweden)

    Małgorzata Gumienna

    2009-12-01

    Full Text Available Background. The difficult position of Polish agriculture, including one of its branches, i.e. sugar industry, is conducive of search for solutions aiming at an improvement of the condition of industry. One of the potential solutions in this respect may be to focus on alternative raw materials and search for ways to overcome recession in renewable energy sources. The aim of this work was to evaluate the possibilities of using non-starchy materials – sugar materials, without enzymatic treatment for ethanol production using selected yeast strains. Material and methods. Sugar beet pulp and thick juice, as a semi product from sugar beet, were fermented. The efficiency of the process was assessed using two Saccharomyces cerevisiae preparations – Ethanol Red, Fermiol. Fermentation was run for 72 h at 30°C. Quality of produced raw distillates was evaluated using the GC method. Results. The research on fermentation processes showed that sugar beet pulp let obtain higher ethanol yield – 87% of theoretical than sugar beet thick juice – 84% of theoretical, both for Ethanol Red and Fermiol yeast preparations. Moreover, it was exhibited that the increase of sugar concentration in the fermentation medium obtained from thick juice, statistically importantly influenced ethanol yield decrease, for both yeast preparations. The distillates’ quality analysis showed the influence of raw materials and microorganism used for fermentation on pollution degree. Distillate obtained from thick juice was characterised with the lowest by-products content after fermentation with Ethanol Red. Conclusions. The results make additional possibilities for sugar beet utilization in distillery industry and new markets using production surpluses both for sugar beet and its semi-product – thick juice.

  11. Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation.

    Science.gov (United States)

    Loaces, Inés; Amarelle, Vanesa; Muñoz-Gutierrez, Iván; Fabiano, Elena; Martinez, Alfredo; Noya, Francisco

    2015-11-01

    With the aim of improving current ethanologenic Escherichia coli strains, we screened a metagenomic library from bovine ruminal fluid for cellulolytic enzymes. We isolated one fosmid, termed Csd4, which was able to confer to E. coli the ability to grow on complex cellulosic material as the sole carbon source such as avicel, carboxymethyl cellulose, filter paper, pretreated sugarcane bagasse, and xylan. Glucanolytic activity obtained from E. coli transformed with Csd4 was maximal at 24 h of incubation and was inhibited when glucose or xylose were present in the media. The 34,406-bp DNA fragment of Csd4 was completely sequenced, and a putative endoglucanase, a xylosidase/arabinosidase, and a laccase gene were identified. Comparison analysis revealed that Csd4 derived from an organism closely related to Prevotella ruminicola, but no homologies were found with any of the genomes already sequenced. Csd4 was introduced into the ethanologenic E. coli MS04 strain and ethanol production from CMC, avicel, sugarcane bagasse, or filter paper was observed. Exogenously expressed β-glucosidase had a positie effect on cell growth in agreement with the fact that no putative β-glucosidase was found in Csd4. Ethanol production from sugarcane bagasse was improved threefold by Csd4 after saccharification by commercial Trichoderma reesei cellulases underlining the ability of Csd4 to act as a saccharification enhancer to reduce the enzymatic load and time required for cellulose deconstruction. PMID:26175105

  12. Performance Evaluation of Sweet Sorghum Juice and Sugarcane Molasses for Ethanol Production

    OpenAIRE

    Hatamipour Mohammad Sadegh; Almodares Abbas; Ahi Mohsen; Gorji Mohammad Ali; Jahanshah Qazaleh

    2015-01-01

    Sweet sorghum juice and traditional ethanol substrate i.e. sugarcane molasses were used for ethanol production in this work. At the end of the fermentation process, the sweet sorghum juice yielded more ethanol with higher ethanol concentration compared to sugarcane molasses in all experiments. The sweet sorghum juice had higher cell viability at high ethanol concentrations and minimum sugar concentration at the end of the fermentation process. The ethanol concentration and yield were 8.9% w/v...

  13. Research on the Ethanol Produced from the Simultaneous Glycation and Fermentation of Cellulose%纤维素同步糖化发酵生产乙醇

    Institute of Scientific and Technical Information of China (English)

    孙武举; 翁海波; 李萍萍; 晋果果

    2011-01-01

    [目的]利用微生物方法生产乙醇,从而替代化石能源.[方法]土曲霉M11利用纤维素为原料产酶并糖化纤维素成还原糖,利用酿酒酵母发酵生成乙醇.[结果]通过对土曲霉M11生长条件的研究,确定了土曲霉M11的最佳培养时间是3d,最佳接种量为200μl,最适培养湿度为80%,最适培养温度为45℃,最适培养pH为3.0,此条件下可获得最大的产酶量.通过对糖化过程的研究,确定了纤维素酶的最适糖化温度为55℃,最适pH为5.0,此条件下可获得较高的还原糖量,且在酸性条件下酶活力较高,具有很好的热稳定性.通过发酵.还原糖量占原材料干重的62.42%,产生的乙醇占原材料干重的21.36%.[结论]此方法可以应用于工业发酵生产乙醇,有利于保护环境、降低成本、提高社会效益,有很好的应用价值.%[Objective] The ethanol was produced by means of microbiological processes for the replacing approach of energy source. [ Method] The reducing sugar was produced from the cellulose, which was saccharified by the enzyme that was from the cellulose as raw material was acted by Aspergillus teneus-Mll,,and the ethanol was produced based on the fermentation of yeast. [ Result] The experimental result indicated that the optimal culture condition of Aspergillus terreus-Mll growth was that the best time was 3 days,the best inoculation was 200 μl,the optimal culture humidity was 80% ,the optimum temperature was 45℃ and the optimal culture pH was 3.0,under which condition,the largest amount of enzyme-producing was available. And the experiment in the glycation process of cellulase showed the optimal temperature was 55 ℃ and the optimum pH was 5.0,under which condition the production of reducing sugar,which enzyme activity under acidic condition was higher and had good thermal stability,was relevantly high. By fermentation,the reduced sugar accounted for 62.42% of the dry weight of raw material and the produced ethanol

  14. A pilot plant scale reactor/separator for ethanol from cellulosics. Quarterly report No. 1 & 2, October 1, 1997--March 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1998-06-01

    The basic objective of this project is to develop and demonstrate a continuous, low energy process for the conversion of cellulosics to ethanol. This process involves a pretreatment step followed by enzymatic release of sugars and the consecutive saccharification/fermentation of cellulose (glucans) followed by hemi-cellulose (glucans) in a multi-stage continuous stirred reactor separator (CSRS). During year 1, pretreatment and bench scale fermentation trials will be performed to demonstrate and develop the process, and during year 2, a 130 L or larger process scale unit will be operated to demonstrate the process using straw or cornstalks. Co-sponsors of this project include the Indiana Biomass Grants Program, Bio-Process Innovation, Xylan Inc as a possible provider of pretreated biomass.

  15. SO{sub 2}-Ethanol-Water fractionation of lignocellulose and pilot scale production of Isopropanol-Butanol-Ethanol solvent mixture with an advanced column technology - SEWIBE

    Energy Technology Data Exchange (ETDEWEB)

    Heiningen, A. van (Aalto Univ., Espoo (Finland), Dept. of Forest Products Technology), e-mail: adriaan.vanheiningen@aalto.fi; Granstroem, T. (Aalto Univ., Espoo (Finland), Dept.of Biotechnology and Chemical Technology), e-mail: tom.granstrom@aalto.fi

    2011-11-15

    The overall objective is to demonstrate at the pilot scale level the production of biofuels from lignocellulose biomass using the omnivorous SO{sub 2}-ethanol-water (SEW) fractionation process and an advanced column fermentation technology. A monomeric hemicellulose sugar solution will be produced by conditioning the spent fractionation liquor and a glucose solution by subsequent hydrolysis of the liberated cellulosic fibers. The combined monomeric sugars streams containing hexoses and pentoses will be fermented to a mixture of isopropanol, n-butanol and ethanol (IBE solvents) using genetically modified Clostridium bacteria. The recovery yields of the cooking chemicals, i.e. ethanol and unreacted SO{sub 2} from the spent fractionation liquor by evaporation and steam stripping will be established. Soluble and precipitated lignin fractions of the spent liquor combined with the organic residue remaining after solvent-solvent extraction of the IBE solvents will be studied experimentally with the objective to establish their potential as commercial products and biofuels, and the total sulphur recovery yield of these biomass fractions. (orig.)

  16. Environmental benefits of the integrated production of ethanol and biodiesel

    International Nuclear Information System (INIS)

    Highlights: ► Integrated bioenergy systems can favor the sustainability of biofuels. ► We analyzed the integrated production of ethanol and biodiesel in Brazil. ► GHG emissions and fossil energy use in the ethanol life cycle would be reduced. ► Socio-economic and other environmental aspects must be analyzed in future works. -- Abstract: The biorefinery of the future will be an integrated complex that makes a variety of products (e.g., biofuels, chemicals, power and protein) from a variety of feedstocks. The objective of this work was to evaluate the environmental benefits, compared to the traditional sugarcane ethanol system, of the integrated production of ethanol and biodiesel through a sugarcane–soybean biorefinery concept in Brazil. The environmental aspects considered here were the fossil energy use and the greenhouse gases (GHGs) emissions associated with ethanol production. In the Integrated System, soybean would be cultivated in part of the sugarcane reforming areas, which represents ∼17% of the total sugarcane area. Sugarcane and soybean oil would be processed in a combined ethanol–biodiesel plant, which would use only bagasse as fuel. All the demand for utilities of the biodiesel plant would be provided by the distillery. The output products of the combined plant would comprise sugarcane ethanol, soybean biodiesel (which would be used as diesel (B5) substitute in the sugarcane cultivation), bioelectricity and glycerin. The results indicate that the Integrated System can reduce the fossil energy consumption from 75 to 37 kJ/MJ of ethanol, when compared to the traditional system. For GHG emissions, the value would drop from 22.5 to 19.7 g CO2eq/MJ of ethanol. This analysis shows that the Integrated System is an important option to contribute to ethanol’s life cycle independence from fossil resources. This is an attractive environmental aspect, but socio-economic (as well as other environmental) aspects should also be analyzed in order to

  17. Analysis on chemical components changes in preparation process of cellulosic ethanol from poplar wood%杨木制备纤维乙醇过程中化学成分变化的分析

    Institute of Scientific and Technical Information of China (English)

    闫兴伟; 崔琳; 张林; 王芳; 陈茜文

    2015-01-01

    杨树是我国重要的速生树种。以杨木为原料制备生物乙醇是解决当今能源问题的一项新的尝试。对杨木原料蒸汽爆破预处理后以及菌处理后的化学成分及化学性质进行了测定分析。通过对比其化学成分(纤维素、木素、半纤维素、抽出物、灰分及蛋白质)的变化,研究了以杨木为原料制备生物乙醇生产过程中化学成分变化机理,旨在为指导杨木制备木质纤维乙醇的生产,并为发酵后副产物的回收再利用提供理论依据。%Poplar is an important fast-growing species in China. The preparation of bio-ethanol with poplar wood as the raw material is a new attempt to solve today’s energy problems. After steam-exploded pretreatment and then bacteria treatment to the poplar wood raw materials, the materials’ chemical composition and properties were measured and analyzed. Through contrasting the changes of the materials’ chemical composition(cellulose, lignin, hemicelluloses, extracts, ash and protein), the mechanism of chemical change of the tested materials in the bioethanol production process prepared from poplar wood was studied, the surplus product contained 64.07%lignin, 6.78% cellulose and 6.88% hemicellulose. The results provide a theoretical basis for guiding the preparation of poplar wood cellulosic ethanol production, and the subsequent recycling of fermentation by-products.

  18. Ethanol production in fermentation of mixed sugars containing xylose

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Paul V. (West Chester, PA); Mc Cutchen, Carol M. (Wilmington, DE); Li; Xu (Newark, DE); Emptage, Mark (Wilmington, DE); Caimi, Perry G. (Kennett Square, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

    2009-12-08

    Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

  19. Ethanol production from crop residues and soil organic carbon

    NARCIS (Netherlands)

    L. Reijnders

    2008-01-01

    In decision making about the use of residues from annual crops for ethanol production, alternative applications of these residues should be considered. Especially important is the use of such residues for stabilizing and increasing levels of soil organic carbon. Such alternative use leads to a limit

  20. Production of ethanol from blackstrap molasses by saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Blackstrap molasses was analyzed for its composition and its fermentation was brought about by the yeast S. cerevisiae at predetermined optimal environmental conditions such as pH, temperature, Sugar concentration, and incubation period. The results revealed that sugar concentration 17%, pH 4.5, temperature 30 C and incubation period of 72 hours were the optimal conditions for producing maximum (73 g/l) ethanol. Clearance of molasses by 20% single superphosphate enhanced ethanol production by only 0.2%. (author)

  1. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    Science.gov (United States)

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield.

  2. Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol.

    Science.gov (United States)

    Keshav, Praveen K; Naseeruddin, Shaik; Rao, L Venkateswar

    2016-08-01

    Cotton stalk, a widely available and cheap agricultural residue lacking economic alternatives, was subjected to steam explosion in the range 170-200°C for 5min. Steam explosion at 200°C and 5min led to significant hemicellulose solubilization (71.90±0.10%). Alkaline extraction of steam exploded cotton stalk (SECOH) using 3% NaOH at room temperature for 6h led to 85.07±1.43% lignin removal with complete hemicellulose solubilization. Besides, this combined pretreatment allowed a high recovery of the cellulosic fraction from the biomass. Enzymatic saccharification was studied between steam exploded cotton stalk (SECS) and SECOH using different cellulase loadings. SECOH gave a maximum of 785.30±8.28mg/g reducing sugars with saccharification efficiency of 82.13±0.72%. Subsequently, fermentation of SECOH hydrolysate containing sugars (68.20±1.16g/L) with Saccharomyces cerevisiae produced 23.17±0.84g/L ethanol with 0.44g/g yield. PMID:27155264

  3. Enhancement of anaerobic biohydrogen/methane production from cellulose using heat-treated activated sludge.

    Science.gov (United States)

    Lay, C H; Chang, F Y; Chu, C Y; Chen, C C; Chi, Y C; Hsieh, T T; Huang, H H; Lin, C Y

    2011-01-01

    Anaerobic digestion is an effective technology to convert cellulosic wastes to methane and hydrogen. Heat-treatment is a well known method to inhibit hydrogen-consuming bacteria in using anaerobic mixed cultures for seeding. This study aims to investigate the effects of heat-treatment temperature and time on activated sludge for fermentative hydrogen production from alpha-cellulose by response surface methodology. Hydrogen and methane production was evaluated based on the production rate and yield (the ability of converting cellulose into hydrogen and methane) with heat-treated sludge as the seed at various temperatures (60-97 degrees C) and times (20-60 min). Batch experiments were conducted at 55 degrees C and initial pH of 8.0. The results indicate that hydrogen and methane production yields peaked at 4.3 mmol H2/g cellulose and 11.6 mmol CH4/g cellulose using the seed activated sludge that was thermally treated at 60 degrees C for 40 min. These parameter values are higher than those of no-treatment seed (HY 3.6 mmol H2/g cellulose and MY 10.4 mmol CH4/g cellulose). The maximum hydrogen production rate of 26.0 mmol H2/L/d and methane production rate of 23.2 mmol CH4/L/d were obtained for the seed activated sludge that was thermally treated at 70 degrees C for 50 min and 60 degrees C for 40 min, respectively.

  4. The Disulfide Bonding System Suppresses CsgD-Independent Cellulose Production in Escherichia coli

    OpenAIRE

    Hufnagel, David A.; DePas, William H.; Chapman, Matthew R.

    2014-01-01

    The bacterial extracellular matrix encases cells and protects them from host-related and environmental insults. The Escherichia coli master biofilm regulator CsgD is required for the production of the matrix components curli and cellulose. CsgD activates the diguanylate cyclase AdrA, which in turn stimulates cellulose production through cyclic di-GMP (c-di-GMP). Here, we identified and characterized a CsgD- and AdrA-independent cellulose production pathway that was maximally active when cultu...

  5. Potential of sweet potato mutant lines for bio ethanol production

    International Nuclear Information System (INIS)

    Shoots of sweet potato Sari variety were irradiated at the doses of 0, 10, 20, 30 and 40 Gy. Irradiated shoots were planted and selected to obtain better mutant lines than that of the parent plant. Ten mutant lines were from the fourth generation which better morphology and productivity than that of the parent plant. The best productivity was found at mutant line number 40-2 which was 717.50 g/plant compared to parent plant with 622.50 g/plant. The highest glucose and starch content obtained were at the dose of 20 Gy which were 8.85 and 28.56 % respectively. The mutant line of Sari sweet potato has a potential to produce bio ethanol. The bio-ethanol production from those of mutant lines at a range of 15.02 to 19.46 % compared to 13.67 % in the parent plant. The mutant line number 20 was the best line to produce bio-ethanol. The aim of this experiment was to find mutant lines having potential to produce bio-ethanol. (author)

  6. Enhanced ethanol production from brewer's spent grain by a Fusarium oxysporum consolidated system

    Directory of Open Access Journals (Sweden)

    Christakopoulos Paul

    2009-02-01

    Full Text Available Abstract Background Brewer's spent grain (BG, a by-product of the brewing process, is attracting increasing scientific interest as a low-cost feedstock for many biotechnological applications. BG in the present study is evaluated as a substrate for lignocellulolytic enzyme production and for the production of ethanol by the mesophilic fungus Fusarium oxysporum under submerged conditions, implementing a consolidated bioconversion process. Fermentation experiments were performed with sugar mixtures simulating the carbohydrate content of BG in order to determine the utilization pattern that could be expected during the fermentation of the cellulose and hemicellulose hydrolysate of BG. The sugar mixture fermentation study focused on the effect of the initial total sugar concentration and on the effect of the aeration rate on fermenting performance of F. oxysporum. The alkali pretreatment of BG and different aeration levels during the ethanol production stage were studied for the optimization of the ethanol production by F. oxysporum. Results Enzyme yields as high as 550, 22.5, 6.5, 3225, 0.3, 1.25 and 3 U per g of carbon source of endoglucanase, cellobiohydrolase, β-D-glucosidase, xylanase, feruloyl esterase, β-D-xylosidase and α-L-arabinofuranosidase respectively, were obtained during the growth stage under optimized submerged conditions. An ethanol yield of 109 g ethanol per kg of dry BG was obtained with alkali-pretreated BG under microaerobic conditions (0.01 vvm, corresponding to 60% of the theoretical yield based on total glucose and xylose content of BG. Conclusion The enzymatic profile of the extracellular extract from F. oxysporum submerged cultures using BG and corn cob as the carbon source was proved efficient for a successful hydrolysis of BG. The fermentation study carried out using sugar mixtures simulating BG's carbohydrates content and consecutively alkali-pretreated and untreated BG, indicates that BG hydrolysis is the bottleneck

  7. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  8. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  9. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Okos, M.; Burgos, N. [and others

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  10. Production of bacterial cellulose and enzyme from waste fiber sludge

    OpenAIRE

    Cavka, Adnan; Guo, Xiang; Tang, Shui-Jia; Winestrand, Sandra; Jönsson, Leif J.; Hong, Feng

    2013-01-01

    Background: Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermoc...

  11. Ethanol production process from banana fruit and its lignocellulosic residues: Energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Arredondo, H.I. [Grupo de Investigacion Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia, Sede Medellin, Calle 59 A N 63-20 (Colombia); Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Avenida Professor Mello Moraes 2231 (Brazil); Ruiz-Colorado, A.A. [Grupo de Investigacion Bioprocesos y Flujos Reactivos, Universidad Nacional de Colombia, Sede Medellin, Calle 59 A N 63-20 (Colombia); De Oliveira, S. Jr. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Avenida Professor Mello Moraes 2231 (Brazil)

    2010-07-15

    Tropical countries, such as Brazil and Colombia, have the possibility of using agricultural lands for growing biomass to produce bio-fuels such as biodiesel and ethanol. This study applies an energy analysis to the production process of anhydrous ethanol obtained from the hydrolysis of starch and cellulosic and hemicellulosic material present in the banana fruit and its residual biomass. Four different production routes were analyzed: acid hydrolysis of amylaceous material (banana pulp and banana fruit) and enzymatic hydrolysis of lignocellulosic material (flower stalk and banana skin). The analysis considered banana plant cultivation, feedstock transport, hydrolysis, fermentation, distillation, dehydration, residue treatment and utility plant. The best indexes were obtained for amylaceous material for which mass performance varied from 346.5 L/t to 388.7 L/t, Net Energy Value (NEV) ranged from 9.86 MJ/L to 9.94 MJ/L and the energy ratio was 1.9 MJ/MJ. For lignocellulosic materials, the figures were less favorable; mass performance varied from 86.1 to 123.5 L/t, NEV from 5.24 to 8.79 MJ/L and energy ratio from 1.3 to 1.6 MJ/MJ. The analysis showed, however, that both processes can be considered energetically feasible. (author)

  12. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit

    Directory of Open Access Journals (Sweden)

    B. E. Rangaswamy

    2015-01-01

    Full Text Available Microbial cellulose, an exopolysaccharide produced by bacteria, has unique structural and mechanical properties and is highly pure compared to plant cellulose. Present study represents isolation, identification, and screening of cellulose producing bacteria and further process optimization. Isolation of thirty cellulose producers was carried out from natural sources like rotten fruits and rotten vegetables. The bacterial isolates obtained from rotten pomegranate, rotten sweet potato, and rotten potato were identified as Gluconacetobacter sp. RV28, Enterobacter sp. RV11, and Pseudomonas sp. RV14 through morphological and biochemical analysis. Optimization studies were conducted for process parameters like inoculum density, temperature, pH, agitation, and carbon and nitrogen sources using Gluconacetobacter sp. RV28. The strain produced 4.7 g/L of cellulose at optimum growth conditions of temperature (30°C, pH (6.0, sucrose (2%, peptone (0.5%, and inoculum density (5%. Characterization of microbial cellulose was done by scanning electron microscopy (SEM.

  13. Postmortem degradation of administered ethanol-d6 and production of endogenous ethanol: experimental studies using rats and rabbits.

    Science.gov (United States)

    Takayasu, T; Ohshima, T; Tanaka, N; Maeda, H; Kondo, T; Nishigami, J; Nagano, T

    1995-12-18

    Deuterium-labeled ethanol-d6 was employed to study the metabolism and postmortem change of ethanol in putrefied organ tissues. First, 4 ml/kg body weight of 25% (w/v) solution of ethanol-d6 was administered orally to each of 15 rats. The heart blood and organs were collected 15-90 min after the administration and the ethanol-d6 was analyzed by head space gas chromatography/mass spectrometry. The ethanol-d6 concentration in the organ tissues reached its maximum at 15 min after the administration and then gradually declined, showing the same pattern as human ethanol metabolism. Ethanol-d6 (3 ml of the same solution/kg body weight) was injected into the vein of a rabbit's ear (total of 12 rabbits). The rabbit was killed with carbon monoxide 30 min after the administration and the carcass was allowed to stand for 1-4 days at 30 degrees C in a moist chamber. The concentration of ethanol-d6 decreased moderately. Postmortem ethanol and 1-propanol concentrations, in contrast, showed marked increases 2.5 days and more after sacrifice in line with the degree of putrefaction of each organ tissue including skeletal muscle. This suggests the postmortem activation of micro-organism activity. These results indicate that ethanol concentrations in cadaver tissues must be carefully assessed with due consideration of postmortem degradation and production.

  14. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation. PMID:18752628

  15. An Update on Ethanol Production and Utilization in Thailand, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Bloyd, Cary N.; Foster, Nikolas A.F.

    2014-09-01

    In spite of the recent political turmoil, Thailand has continued to develop its ethanol based alternative fuel supply and demand infrastructure. Its support of production and sales of ethanol contributed to more than doubling the production over the past five years alone. In April 2014, average consumption stood at 3.18 million liter per day- more than a third on its way to its domestic consumption goal of 9 million liters per day by 2021. Strong government incentives and the phasing out of non-blended gasoline contributed substantially. Concurrently, exports dropped significantly to their lowest level since 2011, increasing the pressure on Thai policy makers to best balance energy independency goals with other priorities, such as Thailand’s trade balance and environmental aspirations. Utilization of second generation biofuels might have the potential to further expand Thailand’s growing ethanol market. Thailand has also dramatically increased its higher ethanol blend vehicle fleet, with all new vehicles sold in the Thai market now being E20 capable and the number of E85 vehicles increasing three fold in the last year from 100,000 in 2013 to 300,000 in 2014.

  16. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  17. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin;

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  18. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  19. Accelerated hydrolysis of substituted cellulose for potential biofuel production: kinetic study and modeling.

    Science.gov (United States)

    Mu, Bingnan; Xu, Helan; Yang, Yiqi

    2015-11-01

    In this work, kinetics of substitution accelerated cellulose hydrolysis with multiple reaction stages was investigated to lay foundation for mechanism study and molecular design of substituting compounds. High-efficiency hydrolysis of cellulose is critical for cellulose-based bioethanol production. It is known that, substitution could substantially decrease activation energy and increase reaction rate of acidic hydrolysis of glycosidic bonds in cellulose. However, reaction kinetics and mechanism of the accelerated hydrolysis were not fully revealed. In this research, it was proved that substitution therefore accelerated hydrolysis only occurred in amorphous regions of cellulose fibers, and was a process with multiple reaction stages. With molar ratio of substitution less than 1%, the overall hydrolysis rate could be increased for around 10 times. We also quantified the relationship between the hydrolysis rate of individual reaction stage and its major influences, including molar ratio of substitution, activation energy of acidic hydrolysis, pH and temperature. PMID:26253917

  20. Novel technologies for enhanced production of ethanol: impact of high productivity on process economics

    Science.gov (United States)

    In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...

  1. A CsgD-Independent Pathway for Cellulose Production and Biofilm Formation in Escherichia coli†

    OpenAIRE

    Da Re, Sandra; Ghigo, Jean-Marc

    2006-01-01

    Bacterial growth on a surface often involves the production of a polysaccharide-rich extracellular matrix that provides structural support for the formation of biofilm communities. In Salmonella, cellulose is one of the major constituents of the biofilm matrix. Its production is regulated by CsgD and the diguanylate cyclase AdrA that activates cellulose synthesis at a posttranscriptional level. Here, we studied a collection of Escherichia coli isolates, and we found that the ability to produc...

  2. Production of bacterial cellulose with controlled deuterium-hydrogen substitution for neutron scattering studies.

    Science.gov (United States)

    O'Neill, Hugh; Shah, Riddhi; Evans, Barbara R; He, Junhong; Pingali, Sai Venkatesh; Chundawat, Shishir P S; Jones, A Daniel; Langan, Paul; Davison, Brian H; Urban, Volker

    2015-01-01

    Isotopic enrichment of biomacromolecules is a widely used technique that enables the investigation of the structural and dynamic properties to provide information not accessible with natural abundance isotopic composition. This study reports an approach for deuterium incorporation into bacterial cellulose. A media formulation for growth of Acetobacter xylinus subsp. sucrofermentans and Gluconacetobacter hansenii was formulated that supports cellulose production in deuterium (D) oxide. The level of D incorporation can be varied by altering the ratio of deuterated and protiated glycerol used during cell growth in the D2O-based growth medium. Spectroscopic analysis and mass spectrometry show that the level of deuterium incorporation is high (>90%) for the perdeuterated form of bacterial cellulose. The small-angle neutron scattering profiles of the cellulose with different amounts of D incorporation are all similar indicating that there are no structural changes in the cellulose due to substitution of deuterium for hydrogen. In addition, by varying the amount of deuterated glycerol in the media it was possible to vary the scattering length density of the deuterated cellulose. The ability to control deuterium content of cellulose extends the range of experiments using techniques such as neutron scattering to reveal information about the structure and dynamics of cellulose, and its interactions with other biomacromolecules as well as synthetic polymers used for development of composite materials. PMID:26577730

  3. Exploring Potential U.S. Switchgrass Production for Lignocellulosic Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, Carla A [ORNL; Davis, Ethan [ORNL; Jager, Yetta [ORNL; West, Tristram O. [ORNL; Perlack, Robert D [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Baskaran, Latha Malar [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

    2008-08-01

    In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database. Data available from the literature included cultivar and crop management information, and location of the field trial. For each location we determined latitude and longitude, and used this information to add temperature and precipitation records from the nearest weather station. Within this broad database we were able to identify the major sources of variation in biomass yield, and to characterize yield as a function of some of the more influential factors, e.g., stand age, ecotype, precipitation and temperature in the year of harvest, site latitude, and fertilization regime. We then used a modeling approach, based chiefly on climatic factors and ecotype, to predict potential yields for a given temperature and weather pattern (based on 95th percentile response curves), assuming the choice of optimal cultivars and harvest schedules. For upland ecotype varieties, potential yields were as high as 18 to 20 Mg/ha, given ideal growing conditions, whereas yields in lowland ecotype varieties could reach 23 to 27 Mg/ha. The predictive equations were used to produce maps of potential yield across the continental United States, based on precipitation and temperature in the long term climate record, using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) in a Geographic Information System (GIS). Potential yields calculated via this characterization were subsequently compared to the Oak Ridge

  4. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung Chung [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Huang, Chi-Yu.; Fu, Tzu-Ning [Department of Environmental Engineering and Science, Tunghai University, Taichung 407 (China); Chen, Chun-Yen; Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-08-15

    Hydrogen gas was produced via dark fermentation from natural cellulosic materials and {alpha}-cellulose via a two-step process, in which the cellulosic substrates were first hydrolyzed by an isolated cellulolytic bacterium Clostridium strain TCW1, and the resulting hydrolysates were then used as substrate for fermentative H{sub 2} production. The TCW1 strain was able to hydrolyze all the cellulosic materials examined to produce reducing sugars (RS), attaining the best reducing sugar production yield of 0.65 g reducing sugar/g substrate from hydrolysis of {alpha}-cellulose. The hydrolysates of those cellulosic materials were successfully converted to H{sub 2} via dark fermentation using seven H{sub 2}-producing bacterial isolates. The bioH{sub 2} production performance was highly dependent on the type of cellulosic feedstock used, the initial reducing sugar concentration (C{sub RS,o}) (ranging from 0.7 to 4.5 mg/l), as well as the composition of sugar and soluble metabolites present in the cellulosic hydrolysates. It was found that Clostridium butyricum CGS5 displayed the highest H{sub 2}-producing efficiency with a cumulative H{sub 2} production of 270 ml/l from {alpha}-cellulose hydrolysate (C{sub RS,o} = 4.52 mg/l) and a H{sub 2} yield of 7.40 mmol/g RS (or 6.66 mmol/g substrate) from napier grass hydrolysate (C{sub RS,o} = 1.22 g/l). (author)

  5. Ethanol production from cotton-based waste textiles.

    Science.gov (United States)

    Jeihanipour, Azam; Taherzadeh, Mohammad J

    2009-01-01

    Ethanol production from cotton linter and waste of blue jeans textiles was investigated. In the best case, alkali pretreatment followed by enzymatic hydrolysis resulted in almost complete conversion of the cotton and jeans to glucose, which was then fermented by Saccharomyces cerevisiae to ethanol. If no pretreatment applied, hydrolyses of the textiles by cellulase and beta-glucosidase for 24 h followed by simultaneous saccharification and fermentation (SSF) in 4 days, resulted in 0.140-0.145 g ethanol/g textiles, which was 25-26% of the corresponding theoretical yield. A pretreatment with concentrated phosphoric acid prior to the hydrolysis improved ethanol production from the textiles up to 66% of the theoretical yield. However, the best results obtained from alkali pretreatment of the materials by NaOH. The alkaline pretreatment of cotton fibers were carried out with 0-20% NaOH at 0 degrees C, 23 degrees C and 100 degrees C, followed by enzymatic hydrolysis up to 4 days. In general, higher concentration of NaOH resulted in a better yield of the hydrolysis, whereas temperature had a reverse effect and better results were obtained at lower temperature. The best conditions for the alkali pretreatment of the cotton were obtained in this study at 12% NaOH and 0 degrees C and 3 h. In this condition, the materials with 3% solid content were enzymatically hydrolyzed at 85.1% of the theoretical yield in 24 h and 99.1% in 4 days. The alkali pretreatment of the waste textiles at these conditions and subsequent SSF resulted in 0.48 g ethanol/g pretreated textiles used.

  6. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan [State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda-nan Road, Jinan 250100 (China); College of Life Science, Qufu Normal University, Qufu 273165 (China); Yu, Peng; Song, Xin; Qu, Yinbo [State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda-nan Road, Jinan 250100 (China)

    2008-06-15

    Two thermophilic, anaerobic bacteria named JN4 and GD17 were isolated from rotten wheat straw. The cellulolytic bacterium JN4 was identified as Clostridium thermocellum and its companion bacterium GD17 was shown to be Thermoanaerobacterium thermosaccharolyticum by 16S rDNA analysis and morphological observation. The production of hydrogen by both strains was investigated. C. thermocellum JN4 can degrade microcrystalline cellulose to produce hydrogen, ethanol, acetic acid and lactic acid, but cannot completely utilize the cellobiose and glucose produced by the cellulose degradation. Its hydrogen yield was about 0.8 mol H{sub 2} (mol glucose){sup -1}, with lactate as the main product. When C. thermocellum JN4 was co-cultured with T. thermosaccharolyticum GD17, hydrogen production increased about 2-fold and H{sub 2} yield increased to a high level of 1.8 mol H{sub 2} (mol glucose){sup -1}. Butyrate was the most abundant byproduct and lactate was not detected at the end of the co-culture process. In co-cultures, JN4 and GD17 could utilize several kinds of natural substrates such as corn cob powder and corn stalk powder as carbon sources for producing hydrogen. (author)

  7. Production of syngas by ethanol reforming on Ni catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Catapan, Rafael C.; Oliveira, Amir A.M.; Donadel, Karina; Oliveira, Antonio Pedro N.; Rambo, Carlos R. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Mechanical Engineering. Lab. of Combustion and Thermal Systems Engineering], Emails: catapan@labcet.ufsc.br, donadel@emc.ufsc.br, pedronovaes@emc.ufsc.br, rambo@enq.ufsc.br; Oliveira, Therezinha Maria N.; Wagner, Theodoro M. [Universidade da Regiao de Joinville, SC (Brazil). Campus Universitario Bom Retiro], E-mails: tnovais@univille.br, theowag@terra.com.br

    2010-07-01

    In the recent literature, attention has been directed to the development of noble metals based catalysts for the ethanol reforming. However, the high costs and low availability of noble metals, e.g. platinum, as a resource justify the development of alternatives technologically, economically and environmentally viable such as Ni-based catalysts. Here, the thermal decomposition, partial oxidation and steam reforming of ethanol over SiO{sub 2} supported Ni was studied in a packed bed reactor in the 673 - 973 K temperature range at 1 atm. The catalyst was produced from 10% NiO, 5% of bentonite and 85% (wt.) of natural amorphous silica fibers (NASF). Scanning Electron Microscopy (SEM) evaluation revealed that particles of Ni were homogeneously distributed over the NASF. The X-ray diffraction (XRD) patterns did not show peaks related to silicates in all spectra, which indicates that there is no, apparently, interaction between the nickel catalysts and SiO{sub 2} or devitrification The reactions of ethanol on this catalyst occurs mainly by the dehydrogenation reaction generating acetaldehyde. Further, CH{sub 3}CHO is decomposed to CH{sub 4} and CO. In parallel to this route, ethanol is dehydrated producing ethylene, which is successively dehydrogenated in Ni sites generating carbon on the surface. Also, carbon can be produced by consecutive dehydrogenation of CH{sub 4}. Both reactions contribute to increase the production of H{sub 2} to values higher than those predicted by the thermodynamic equilibrium. (author)

  8. Hydrogen production by catalytic gasification of cellulose in supercritical water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cellulose,one of the important components of biomass,was gasified in supercritical water to produce hydrogen-rich gas in an autoclave which was operated batch-wise under high-pressure.K2CO3 and Ca(OH)2 were selected as the catalysts (or promoters).The temperature was kept between 450℃ and 500℃ while pressure was maintained at 24-26 MPa.The reaction time was 20 min.Experimental results showed that the two catalysts had good catalytic effect and optimum amounts were observed for each catalyst.When 0.2 g K2CO3 was added,the hydrogen yield could reach 9.456 mol.kg-1 which was two times of the H2 amount produced without catalyst.When 1.6 g Ca(OH)2 was added,the H2 yield was K2CO3 as catalyst but is still 1.7 times that achieved without catalyst.Comparing with the results obtained using KaCO3 or Ca(OH)2 alone,the use of a combination of K2CO3 and Ca(OH)2 could increase the H2 yield by up to 2.5 times that without catalyst and 25% and 45% more than that obtained using K2CO3 and Ca(OH)2 alone,respectively.It was found that methane was the dominant product at relatively low temperature.When the temperature was increased,the methane reacts with water and is converted to hydrogen and carbon dioxide.

  9. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  10. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production.

    Science.gov (United States)

    Wan, Caixia; Li, Yebo

    2010-08-01

    The feasibility of concurrent wet storage and microbial pretreatment of corn stover with Ceriporiopsis subvermispora for ethanol production was investigated in this study. The effects of particle size (5-15 mm), moisture content (45-85%), pretreatment time (18-35 d), and temperature (4-37 degrees C) on lignin degradation and enzymatic hydrolysis yield were studied. The results showed that C. subvermispora selectively degraded lignin up to 31.59% with a limited cellulose loss of less than 6% during an 18-d pretreatment. When 5mm corn stover was pretreated at 28 degrees C with 75% moisture content, overall glucose yields of 57.67%, 62.21%, and 66.61% were obtained with 18-, 28-, and 35-d microbial pretreated corn stover, respectively. For the above conditions, the highest overall ethanol yield of 57.80% was obtained with 35-d-pretreated corn stover. Enzymatic hydrolysis yield was highly related to the lignin removal during microbial pretreatment.

  11. Improvement production of bacterial cellulose by semi-continuous process in molasses medium.

    Science.gov (United States)

    Cakar, Fatih; Ozer, Işılay; Aytekin, A Özhan; Sahin, Fikrettin

    2014-06-15

    Bacterial cellulose (BC) has unique properties such as structural, functional, physical and chemical. The mass production of BC for industrial application has recently become attractive to produce more economical and high productive cellulose. In this study, to improve the productivity of bacterial cellulose (BC), BC production by Gluconacetobacter xylinus FC01 was investigated in molasses medium with static semi-continuous operation mode. Cell dry weight, polysaccharide, sugar and cellulose concentrations were monitored and cellulose was characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The highest cellulose yield (1.637 g/L) was obtained in SCP50-7d, which molasses of 1/2 ratio for 7 days by static semi-continuous operation mode. The results show that BC can be highly produced by G. xylinus in molasses with static semi-continuous process than batch process. We claimed that low-cost medium with semi-continuous operation mode in static culture is a good candidate for industrial scale BC productions.

  12. Fuel ethanol production from sweet sorghum bagasse using microwave irradiation

    International Nuclear Information System (INIS)

    Sweet sorghum is a hardy crop that can be grown on marginal land and can provide both food and energy in an integrated food and energy system. Lignocellulose rich sweet sorghum bagasse (solid left over after starch and juice extraction) can be converted to bioethanol using a variety of technologies. The largest barrier to commercial production of fuel ethanol from lignocellulosic material remains the high processing costs associated with enzymatic hydrolysis and the use of acids and bases in the pretreatment step. In this paper, sweet sorghum bagasse was pretreated and hydrolysed in a single step using microwave irradiation. A total sugar yield of 820 g kg−1 was obtained in a 50 g kg−1 sulphuric acid solution in water, with a power input of 43.2 kJ g−1 of dry biomass (i.e. 20 min at 180 W power setting). An ethanol yield based on total sugar of 480 g kg−1 was obtained after 24 h of fermentation using a mixed culture of organisms. These results show the potential for producing as much as 0.252 m3 tonne−1 or 33 m3 ha−1 ethanol using only the lignocellulose part of the stalks, which is high enough to make the process economically attractive. - Highlights: • Different sweet sorghum cultivars were harvested at 3 and 6 months. • Sweet sorghum bagasse was converted to ethanol. • Microwave pretreatment and hydrolysis was done in a single step. • Sugar rich hydrolysates were converted to ethanol using co-fermentation

  13. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  14. Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.

    2000-08-01

    The Energy Policy Act of 1992 (the Act) outlined a national energy strategy that called for reducing the nation's dependency on petroleum imports. The Act directed the Secretary of Energy to establish a program to promote and expand the use of renewable fuels. The Office of Transportation Technologies (OTT) within the U.S. Department of Energy (DOE) has evaluated a wide range of potential fuels and has concluded that cellulosic ethanol is one of the most promising near-term prospects. Ethanol is widely recognized as a clean fuel that helps reduce emissions of toxic air pollutants. Furthermore, cellulosic ethanol produces less greenhouse gas emissions than gasoline or any of the other alternative transportation fuels being considered by DOE.

  15. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth

    DEFF Research Database (Denmark)

    Lübbehüsen, Tina Louise; Nielsen, Jens; Mcintyre, Mhairi

    2004-01-01

    to the minimisation or elimination of the by-product ethanol for future process design. Large amounts of ethanol were produced during aerobic growth on glucose under non-oxygen limiting conditions, which is indicative of M. circinelloides being a Crabtree-positive organism. Ethanol production on...

  16. Furfural and ethanol production from corn stover by dilute phosphoric acid pretreatment

    Science.gov (United States)

    Lignocellulosic biomass is the most abundant carbohydrate source in the world and has potential for economical production of biofuels, especially ethanol. However, its composition is an obstacle for the production of ethanol by the conventional ethanol producing yeast Saccharomyces cerevisiae as it...

  17. Production of succinic acid from oil palm empty fruit bunch cellulose using Actinobacillus succinogenes

    Science.gov (United States)

    Pasma, Satriani Aga; Daik, Rusli; Maskat, Mohamad Yusof

    2013-11-01

    Succinic acid is a common metabolite in plants, animals and microorganisms. It has been used widely in agricultural, food and pharmaceutical industries. Enzymatic hydrolysate glucose from oil palm empty fruit bunch (OPEFB) cellulose was used as a substrate for succinic acid production using Actinobacillus succinogenes. Using cellulose extraction from OPEFB can enhance the production of glucose as a main substrate for succinic acid production. The highest concentration of glucose produced from enzymatic hydrolysis is 167 mg/mL and the sugar recovery is 0.73 g/g of OPEFB. By optimizing the culture medium for succinic acid fermentation with enzymatic hydrolysate of OPEFB cellulose, the nitrogen sources could be reduced to just only 2.5 g yeast extract and 2.5 g corn step liquor. Batch fermentation was carried out using enzymatic hydrolysate of OPEFB cellulose with yeast extract, corn steep liquor and the salts mixture, 23.5 g/L succinic acid was obtained with consumption of 72 g/L glucose in enzymatic hydrolysate of OPEFB cellulose at 38 hours and 37°C. This study suggests that enzymatic hydrolysate of OPEFB cellulose maybe an alternative substrate for the efficient production of succinic acid by Actinobacillus succinogenes.

  18. Performances comparison between three technologies for continuous ethanol production from molasses

    International Nuclear Information System (INIS)

    Molasses are a potential feedstock for ethanol production. The successful application of anaerobic fermentation for ethanol production from molasses is critically dependent to the development and the use of high rate bioreactors. In this study the fermentation of sugar cane molasses by Saccharomyces cerevisiae for the ethanol production in a continuously stirred tank reactor (CSTR), an immobilised cell reactor (ICR) and a membrane reactor (MBR) was investigated. Ethanol production and reactor productivities were compared under different dilution rates (D). When using the CSTR, a decent ethanol productivity (Qp) of 6.8 g L−1 h−1 was obtained at a dilution rate of 0.5 h−1. The Qp was improved by 48% and the residual sugar concentration was reduced by using the ICR. Intensifying the production of ethanol was investigated in the MBR to achieve a maximum ethanol concentration and a Qp of 46.5 g L−1 and 19.2 g L−1 h−1, respectively. The achieved results in the MBR worked with high substrate concentration are promising for the scale up operation. -- Highlights: ► We compare three reactors for ethanol production from sugar cane molasses. ► The ethanol productivity of 6.8 g L-1 h-1 was obtained using the CSTR. ► The ethanol productivity was improved by 48% by using the ICR. ► Intensifying ethanol productivity (19.2 g L-1 h-1) was investigated in the MBR

  19. Cellulose hydrolysis by fungi. 2. Cellulase production by Trichoderma harzianum in liquid medium fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Roussos, S.; Raimbault, M. (Laboratoire de Microbiologie ORSTOM, Centre de Recherche IRCHA, 91 - Vert-le-Petit (France))

    Microcrystalline cellulose (cellulose Avicel, Merck) supported growth of Trichoderma harzianum and induced production of cellulases in liquid cultures. After 50 h growth, the total cellulasic activities present in both the supernatant and the mycelium were 3,000 IU/l of carboxymethyl cellulose, 400 IU/l of filter paper activity, and 4 IU/l of cotton activity corresponding to 1.7 g/l of proteins. Cellulase production could be increased by a preliminary treatment of cellulose, and pH regulation during growth. The influence of inoculum concentration was studied and an optimum of 3 X 10/sup 7/ conidia/g dry weight of substrate was demonstrated. Using a synthetic culture medium, a soluble factor of germination was demonstrated which could be leached out by 3 successive washings of conidia.

  20. Arrowroot as a novel substrate for ethanol production by solid state simultaneous saccharification and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tian-xiang; Tang, Qing-li; Zhu, Zuo-hua [School of Chemical Engineering, Guizhou University, Guizhou, Guiyang 550003 (China); Wang, Feng [National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15

    Ethanol production from Canna edulis Ker was successfully carried out by solid state simultaneous saccharification and fermentation. The enzymatic hydrolysis conditions of C. edulis were optimized by Plackett-Burman design. The effect of inert carrier (corncob and rice bran) on ethanol fermentation and the kinetics of solid state simultaneous saccharification and fermentation was investigated. It was found that C. edulis was an alternative substrate for ethanol production, 10.1% (v/v) of ethanol concentration can attained when 40 g corncob and 10 g rice bran per 100 g C. edulis powder were added for ethanol fermentation. No shortage of fermentable sugars was observed during solid state simultaneous saccharification and fermentation. There was no wastewater produced in the process of ethanol production from C. edulis with solid state simultaneous saccharification and fermentation and the ethanol yield of more than 0.28 tonne per one tonne feedstock was achieved. This is first report for ethanol production from C. edulis powder. (author)

  1. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB). Users' Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois at Chicago, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Institute (IFPRI), Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass. This document discusses the version of CCLUB released September 30, 2014 which includes corn and three cellulosic feedstocks: corn stover, Miscanthus, and switchgrass.

  2. Soil Carbon and Nitrogen Dynamics Across the Hillslope-Riparian Interface in Adjacent Watersheds with Contrasting Cellulosic Biofuel Systems

    OpenAIRE

    Neal, Andrew Wilson

    2014-01-01

    Climate change resulting from emissions of fossil fuel combustion has sparked considerable interest in renewable energy and fuel production research, particularly energy derived from cellulosic ethanol, which is derived from biomass such as wood and grass. Cellulosic ethanol demonstrates a more promising future as a global energy source than corn-derived ethanol because it does not displace food crops, irrigation is not required, and chemical application rates are much lower than for annual c...

  3. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  4. BIOETHANOL PRODUCTION BY MISCANTHUS AS A LIGNOCELLULOSIC BIOMASS: FOCUS ON HIGH EFFICIENCY CONVERSION TO GLUCOSE AND ETHANOL

    Directory of Open Access Journals (Sweden)

    Minhee Han Mail

    2011-04-01

    Full Text Available Current ethanol production processes using crops such as corn and sugar cane have been well established. However, the utilization of cheaper lignocellulosic biomass could make bioethanol more competitive with fossil fuels while avoiding the ethical concerns associated with using potential food resources. In this study, Miscanthus, a lignocellulosic biomass, was pretreated using NaOH to produce bioethanol. The pretreatment and enzymatic hydrolysis conditions were evaluated by response surface methodology (RSM. The optimal conditions were found to be 145.29 °C, 28.97 min, and 1.49 M for temperature, reaction time, and NaOH concentration, respectively. Enzymatic digestibility of pretreated Miscanthus was examined at various enzyme loadings (10 to 70 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase. Regarding enzymatic digestibility, 50 FPU/g cellulose of cellulase and 30 CbU/g of β-glucosidase were selected as the test concentrations, resulting in a total glucose conversion rate of 83.92%. Fermentation of hydrolyzed Miscanthus using Saccharomyces cerevisiae resulted in an ethanol concentration of 59.20 g/L at 20% pretreated biomass loading. The results presented here constitute a significant contribution to the production of bioethanol from Miscanthus.

  5. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol

    Directory of Open Access Journals (Sweden)

    Carla Eliana Todero Ritter

    2013-01-01

    Full Text Available The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v soy bran; 0.1% (w/v wheat bran; and a solution of salts. The highest filter paper activity (FPA ( IU·mL−1 was obtained on the seventh day in the medium containing 0.5% (w/v sorbitol and 0.5% (w/v cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day ( IU·mL−1 in the medium containing 0.75% (w/v sorbitol and 0.75% (w/v cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v sorbitol and 0.25% (w/v cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  6. Microbiology and physiology of anaerobic fermentations of cellulose. Progress report, September 1, 1979-May 15, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Peck, H.D. Jr.; Ljungdahl, L.G.

    1980-01-01

    Reseach progress is reported for the period September, 1979 to May, 1980. Studies on the mesophilic and thermophilic microorganisms fermenting cellulose to various products (ethanol, acetate, CO/sub 2/, H/sub 2/, and methane) are summarized. (ACR)

  7. Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method

    International Nuclear Information System (INIS)

    Biomass pretreatment aims at separating and providing easier access to the main biomass components (cellulose, hemicellulose and lignin), eventually removing lignin, preserving the hemicellulose, reducing the cellulose crystallinity and increasing the porosity of the material. Pretreatment is an essential step towards the development and industrialization of efficient 2nd generation lignocellulosic ethanol processes. The present work reviewed the main options available in pretreatment. Autohydrolysis and steam explosion were then selected for further investigation. Experimental work was carried out on batch scale reactors, using Miscanthus as biomass feedstock: the effects on sugar solubilization and degradation products generation have been examined for each of these two pretreatment systems. A new process using only water and steam as reacting media was then developed, experimentally tested, and results compared to those achieved by the autohydrolysis and steam explosion processes. Products obtained with the new pretreatment contained a lower amount of usual fermentation inhibitor compounds compared to that typically obtained in steam explosion. This result was achieved under operating conditions that at the same time allowed a good xylan yield, preventing degradation of hemicelluloses. The new pretreatment process was also able to act as an equalization step, as the solid material from the pretreatment phase had a similar composition even under different operating conditions. As regards the effect of pretreatment on enzymatic hydrolysis, the new process achieved yields similar to steam explosion on glucans: however, this was obtained reducing the formation of degradation products from sugars, mainly from C5 sugars. These results made the proposed pretreatment system suitable for further development and industrialization on pilot and industrial scale.

  8. Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept

    DEFF Research Database (Denmark)

    Kuglarz, Mariusz; Alvarado-Morales, Merlin; Karakashev, Dimitar Borisov;

    2016-01-01

    The aim of this study was to develop integrated biofuel (cellulosic bioethanol) and biochemical (succinic acid) production from industrial hemp (Cannabis sativa L.) in a biorefinery concept. Two types of pretreatments were studied (dilute-acid and alkaline oxidative method). High cellulose recovery...... productivity. With respect to succinic acid production, the highest productivity was obtained after liquid fraction fermentation originated from steam treatment with 1.5% of acid. The mass balance calculations clearly showed that 149 kg of EtOH and 115 kg of succinic acid can be obtained per 1 ton of dry hemp...

  9. Utilization of makgeolli sludge filtrate (MSF) as low-cost substrate for bacterial cellulose production by Gluconacetobacter xylinus.

    Science.gov (United States)

    Hyun, Jo Yi; Mahanty, Biswanath; Kim, Chang Gyun

    2014-04-01

    Search for efficient low-cost substrate/additives are gaining significant impetus in bacterial cellulose (BC) production. Makgeolli sludge (a traditional Korean wine distillery waste) is enriched with organic acid, alcohol, and sugar. Using makgeolli sludge filtrate (MSF) and Hestrin-Schramm (HS) medium (g/l of distilled water: glucose, 10.0; peptone, 5.0; yeast extract, 5.0; disodium phosphate, 2.7; citric acid, 1.15; pH 5.0), two different media-namely the modified HS media (ingredients of HS media except glucose dissolved in MSF) and mixed modified HS media (equal volume mixture of original and modified HS media)-were formulated. BC production with Gluconacetobacter xylinus was studied using the two above referred medium. Keeping HS medium as reference, effect of initial pH, glucose, ethanol, and organic acid concentration on BC production was also studied. It suggests that increasing initial glucose (up to 25 g/l) though improves BC production but results in poor BC yield above 15 g/l of glucose. However, addition of alcohol (up to 1%v/v) or citric acid (up to 20 mM) escalate productivity up to four and two times, respectively. In both modified HS media and mixed modified HS medium, BC production was four to five times higher than that of original HS medium. Even MSF alone surpassed HS medium in BC production. Scanning electron microscopy showed that BC microfibrils from MSF based media were several micrometers long and about 25-60 nm widths. X-ray diffraction patterns suggested the produced BC were of cellulose I polymorph.

  10. Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives

    Science.gov (United States)

    Iller, Edward; Kukiełka, Aleksandra; Stupińska, Halina; Mikołajczyk, Włodzimierz

    2002-03-01

    New alternative technologies for manufacture of cellulose fibers are currently under development. The effect of electron beam irradiation on various types of cellulose pulps have been studied in order to improve the reactivity of raw material for production of cellulose derivatives. Three different types of textile pulps, Alicell (Canada), Borregaard (Norwegian), Ketchikan (USA) and Kraft softwood as well as Kraft hardwood pulps, have been irradiated with 10 MeV electron beam from LAE 13/g linear accelerator with dose 10, 15, 20, 25 and 50 kGy. Electron paramagnetic resonance spectroscopy (ESR) and gel permeation chromatography (GPC) were applied for determination of structural changes in irradiated pulps. Such parameters as viscosity, average degree of polymerization and α-cellulose contents were determinated by means of analytical methods. Results of there investigations are presented and discussed.

  11. Ultrasound enhanced ethanol production from Parthenium hysterophorus: A mechanistic investigation.

    Science.gov (United States)

    Singh, Shuchi; Sarma, Shyamali; Agarwal, Mayank; Goyal, Arun; Moholkar, Vijayanand S

    2015-01-01

    This study presents mechanistic investigations in ultrasound-assisted bioethanol fermentation using Parthenium hysterophorus biomass. Ultrasound (35 kHz, 10% duty cycle) has been used for sonication. Experimental results were fitted to mathematical model; the kinetic and physiological parameters in the model were obtained using Genetic Algorithm (GA) based optimization. In control experiments (mechanical shaking), maximum ethanol titer of 10.93 g/L and cell mass concentration of 5.26 g/L was obtained after 18 h. In test experiments (mechanical shaking and intermittent sonication), ethanol titer of 12.14 g/L and cell mass concentration of 5.7 g/L was obtained in 10h. This indicated ∼ 2 × enhanced productivity of ethanol and cell mass with sonication. Trends in model parameters obtained after fitting of model to experimental data essentially revealed that beneficial influence of ultrasound on fermentation is a manifestation of enhanced trans-membrane transportation and dilution of toxic substances due to strong micro-convection induced by ultrasound. PMID:25555927

  12. Bacterial production of free fatty acids from freshwater macroalgal cellulose

    OpenAIRE

    Hoovers, Spencer W.; Marner, Wesley D.; Brownson, Amy K.; Lennen, Rebecca M; Wittkopp, Tyler M.; Yoshitani, Jun; Zulkifly, Shahrizim; Linda E Graham; Chaston, Sheena D.; McMahon, Katherine D.; Pfleger, Brian F.

    2011-01-01

    The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae i...

  13. Mechanistic insight into ultrasound induced enhancement of simultaneous saccharification and fermentation of Parthenium hysterophorus for ethanol production.

    Science.gov (United States)

    Singh, Shuchi; Agarwal, Mayank; Sarma, Shyamali; Goyal, Arun; Moholkar, Vijayanand S

    2015-09-01

    This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b. PMID:25813894

  14. Altered Lignin Biosynthesis Improves Cellulosic Bioethanol Production in Transgenic Maize Plants Down-Regulated for Cinnamyl Alcohol Dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    Silvia Fornalé; Pere Puigdomènech; Joan Rigau; David Caparrós-Ruiz; Montserrat Capellades; Antonio Encina; Kan Wang; Sami Irar; Catherine Lapierre; Katia Ruel; Jean-Paul Joseleau; Jordi Berenguer

    2012-01-01

    Cinnamyl alcohol dehydrogenase(CAD)is a key enzyme involved in the last step of monolignol biosynthesis.The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize.Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition.Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content.In addition,these cell walls accumulate higher levels of cellulose and arabinoxylans.In contrast,cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides.In vitro degradability assays showed that,although to a different extent,the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants.CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass.Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type,making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.

  15. Production of Biodiesel Using Ethanol Way and Alkaline Catalyst

    Directory of Open Access Journals (Sweden)

    Cesar Aparecido da Silva

    2010-06-01

    Full Text Available The potential inputs to promote the supply of the demand for power generation has become the aim of several scientific researches to mitigate environmental impacts. The biodiesel is the highlight solution that can be obtained through the transesterification process. The aim this present work was the biodiesel production using ethanol and crude oil sunflower as inputs and potassium ethoxide such as catalyst for the rection. Were produced seven samples using different parameters. The product with high rate of ethyl ester was the one with catalyst and reaction time optimized. However, it has showed the presence of glycerol, suggesting the use of other unit operations such as cooling and centrifugation to improve the purity of the biodiesel formed is necessary. The parameters used in this experiment (oil, catalyst and water washing contents, reaction time, temperature and agitation speed showed critical endpoints to be monitored during the production of biodiesel due interfering the quality and yield to the final product. In addition, the inappropriate speed of agitation in the reactor for ethanol way in the presence of an alkaline catalyst can gelatinize the mixture of reactants due the emulsion formed.

  16. Enhanced saccharification of biologically pretreated wheat straw for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Lu-Chau, T A; Lema, J M

    2013-02-01

    The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin-this latter is with a composition lower than that found in the initial substrate-is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied. PMID:23306886

  17. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Final report, February 1, 1978-January 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    This is a coordinated program to effect the microbiological degradation of cellulosic biomasses and will focus on the use of anaerobic microorganisms which possess cellulolytic enzyme. The studies will attempt to increase the enzyme levels through genetics, mutation and strain selection. In addition, the direct conversion from cellulosic biomasses to liquid fuel (ethanol) and/or soluble sugars by the cellulolytic, anaerobic organism is also within the scope of this program. Process and engineering scale-up, along with economic analyses, will be performed throughout the course of the program. The second area of our major effort is devoted to the production of chemical feedstocks. In particular, three fermentations have been identified for exploration. These are: acrylic acid, acetone/butanol and acetic acid. The main efforts in these fermentations will address means for the reduction of the cost of manufacturing for these large volume chemicals.

  18. Fate of virginiamycin through the fuel ethanol production process.

    Science.gov (United States)

    Bischoff, Kenneth M; Zhang, Yanhong; Rich, Joseph O

    2016-05-01

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research Center, Edwardsville, IL. Three 15,000-liter fermentor runs were performed: one with no antibiotic (F1), one dosed with 2 parts per million (ppm) of a commercial virginiamycin product (F2), and one dosed at 20 ppm of virginiamycin product (F3). Fermentor samples, distillers dried grains with solubles (DDGS), and process intermediates (whole stillage, thin stillage, syrup, and wet cake) were collected from each run and analyzed for virginiamycin M and virginiamycin S using a liquid chromatography-mass spectrometry method. Virginiamycin M was detected in all process intermediates of the F3 run. On a dry-weight basis, virginiamycin M concentrations decreased approximately 97 %, from 41 μg/g in the fermentor to 1.4 μg/g in the DDGS. Using a disc plate bioassay, antibiotic activity was detected in DDGS from both the F2 and F3 runs, with values of 0.69 μg virginiamycin equivalent/g sample and 8.9 μg/g, respectively. No antibiotic activity (process intermediate samples from the F2 run. These results demonstrate that low concentrations of biologically active antibiotic may persist in distillers grains coproducts produced from fermentations treated with virginiamycin.

  19. Determining the fate of virginiamycin in the fuel ethanol production process

    Science.gov (United States)

    Antibiotics are frequently used to prevent and treat bacterial contamination at commercial fuel ethanol facilities. A study to evaluate the fate of the antibiotic virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research...

  20. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood

    OpenAIRE

    Herring, Christopher D; Kenealy, William R.; Joe Shaw, A.; Covalla, Sean F.; Olson, Daniel G; Zhang, Jiayi; Ryan Sillers, W.; Tsakraklides, Vasiliki; Bardsley, John S.; Rogers, Stephen R.; Thorne, Philip G.; Johnson, Jessica P.; Foster, Abigail; Shikhare, Indraneel D.; Klingeman, Dawn M

    2016-01-01

    Background The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. Results Here, we describe the highest ethanol titers achieved from T. saccharolyticum...

  1. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Mangmeechai, Aweewan, E-mail: aweewan.m@nida.ac.th [National Institute of Development Administration, International College (Major in Public Policy and Management) (Thailand); Pavasant, Prasert [Chulalongkorn University, Department of Chemical Engineering, Faculty of Engineering (Thailand)

    2013-12-15

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510-1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300-2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs.

  2. Water Footprints of Cassava- and Molasses-Based Ethanol Production in Thailand

    International Nuclear Information System (INIS)

    The Thai government has been promoting renewable energy as well as stimulating the consumption of its products. Replacing transport fuels with bioethanol will require substantial amounts of water and enhance water competition locally. This study shows that the water footprint (WF) of molasses-based ethanol is less than that of cassava-based ethanol. The WF of molasses-based ethanol is estimated to be in the range of 1,510–1,990 L water/L ethanol, while that of cassava-based ethanol is estimated at 2,300–2,820 L water/L ethanol. Approximately 99% of the water in each of these WFs is used to cultivate crops. Ethanol production requires not only substantial amounts of water but also government interventions because it is not cost competitive. In Thailand, the government has exploited several strategies to lower ethanol prices such as oil tax exemptions for consumers, cost compensation for ethanol producers, and crop price assurances for farmers. For the renewable energy policy to succeed in the long run, the government may want to consider promoting molasses-based ethanol production as well as irrigation system improvements and sugarcane yield-enhancing practices, since molasses-based ethanol is more favorable than cassava-based ethanol in terms of its water consumption, chemical fertilizer use, and production costs

  3. Enzymatic hydrolysis of potato starch and ethanol production

    OpenAIRE

    Lazić Miodrag L.; Rašković Suzana; Stanković Mihajlo Z.; Veljković Vlada B.

    2004-01-01

    The hydrolysis of potato starch using one (Termamyl or Fungamyl) and two combined (Termamyl and Supersan) commercial enzyme preparations and ethanol production from the hydrolysates obtained using the yeast Saccharomyces cerevisiae were studied. Potato tubers were previously prepared as mash or flour. The study dealt with the effects of the hydromodulus (1:1 and 1:0.5), particle size (0.1, 0.2 and 0.4 mm) as well as the type and concentration of enzyme on the enzymatic hydrolysis of potato st...

  4. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); McAloon, Andrew [U.S. Department of Agriculture, Washington, D.C. (United States); Yee, Winnie [U.S. Department of Agriculture, Washington, D.C. (United States)

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  5. Recent trends in acetone, butanol, and ethanol (ABE production

    Directory of Open Access Journals (Sweden)

    Keikhosro Karim

    2015-12-01

    Full Text Available Among the renewable fuels considered as a suitable substitute to petroleum-based gasoline, butanol has attracted a great deal of attention due to its unique properties. Acetone, butanol, and ethanol (ABE can be produced biologically from different substrates, including sugars, starch, lignocelluloses, and algae. This process was among the very first biofuel production processes which was commercialized during the First World War. The present review paper discusses the different aspects of the ABE process and the recent progresses made. Moreover, the microorganisms and the biochemistry of the ABE fermentation as well as the feedstocks used are reviewed. Finally, the challenges faced such as low products concentration and products` inhibitory effects on the fermentation are explained and different possible solutions are presented and reviewed.

  6. Glucose, stem dry weight variation, principal component and cluster analysis for some agronomic traits among 16 regenerated Crotalaria juncea accessions for potential cellulosic ethanol.

    Science.gov (United States)

    Morris, J Bradley; Antonious, George F

    2013-01-01

    The objectives of this research were to identify candidate sunn hemp accessions having high concentrations of cellulose for use as parents in breeding for cellulose and to determine variability for glucose content and some important agronomic traits among sunn hemp accessions. Since sunn hemp is an under-utilized species, glucose content and agronomic trait variation is essential for the identification of superior sunn hemp accessions for use as potential ethanol for biofuel. Sixteen sunn hemp accessions including the following plant introductions (expressed as glucose concentration) and stem dry weights were studied. "Sixteen sunn hemp accessions including the following plant introductions (expressed as glucose concentration) and stem dry weights were studied." In addition, to verify variability, these traits plus morphological, phenological, and seed reproductive traits were analyzed using multivariate and cluster analysis. The accessions, PI 250487, PI 337080, and PI 219717 produced the highest glucose concentrations (859, 809, and 770 mg g(-1) stem dry weight, respectively), however PI 468956 produced the highest stem dry weight (258 g). Branching significantly correlated with foliage (r(2) = 0.67**) and relative maturity (r(2) = 0.60*), while maturity had a significantly negative correlation with seed number (r(2) = -0.67**) and plant width (r(2) = -0.53*) as well. Seed number significantly correlated with plant width (r(2) = 0.57*). Average linkage cluster analysis grouped the 16 sunn hemp accessions into well-defined phenotypes with four distinct seed-producing groups and one outlier. Based on multivariate and cluster analysis, sufficient variation among these16 sunn hemp accessions exists to support the development of cellulosic ethanol producing cultivars with improved architecture, early maturity, seed yield, glucose concentrations, and stem dry weights. PMID:23356343

  7. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  8. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  9. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing. PMID:25926011

  10. Modification of Cellulose Products by the Use of Chitosan and Chitosan-Alginate Nano-Particles

    Directory of Open Access Journals (Sweden)

    Brzoza-Malczewska Kinga

    2016-03-01

    Full Text Available Aim of the presented research was the improvement of fibrous cellulosic products for uses in hygiene and medical sectors. Nano-particles of bioactive polysaccharides were imparted to cellulosic fibrous products to modify their properties: physical–chemical like absorption, biological like antibacterial and antifungal activity, and mechanical. Fibrous materials like dressing gauze, wood-wool, and hygiene tissues were modified by the addition of chitosan and chitosan-alginate nano-particles. Padding and freeze-drying was applied in the coating of the fibrous materials with the nano-sized polymers.

  11. The Effect of Ethanol Production on the U.S. National Corn Price

    OpenAIRE

    Park, Hwanil; Fortenbery, T. Randall

    2007-01-01

    A system of equations representing corn supply, feed demand, export demand, food, alcohol and industrial (FAI) demand, and corn price is estimated by three-stage least squares. A price dependent reduced form equation is then formed to investigate the effect of ethanol production on the national average corn price. The elasticity of corn price with respect to ethanol production is then obtained. Results suggest that ethanol production has a positive impact on the national corn price and that t...

  12. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    Science.gov (United States)

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP. PMID:26964336

  13. Simultaneous saccharification and cofermentation of lignocellulosic residues from commercial furfural production and corn kernels using different nutrient media

    Directory of Open Access Journals (Sweden)

    Cristhian Carrasco

    2011-07-01

    Full Text Available Abstract Background As the supply of starch grain and sugar cane, currently the main feedstocks for bioethanol production, become limited, lignocelluloses will be sought as alternative materials for bioethanol production. Production of cellulosic ethanol is still cost-inefficient because of the low final ethanol concentration and the addition of nutrients. We report the use of simultaneous saccharification and cofermentation (SSCF of lignocellulosic residues from commercial furfural production (furfural residue, FR and corn kernels to compare different nutritional media. The final ethanol concentration, yield, number of live yeast cells, and yeast-cell death ratio were investigated to evaluate the effectiveness of integrating cellulosic and starch ethanol. Results Both the ethanol yield and number of live yeast cells increased with increasing corn-kernel concentration, whereas the yeast-cell death ratio decreased in SSCF of FR and corn kernels. An ethanol concentration of 73.1 g/L at 120 h, which corresponded to a 101.1% ethanol yield based on FR cellulose and corn starch, was obtained in SSCF of 7.5% FR and 14.5% corn kernels with mineral-salt medium. SSCF could simultaneously convert cellulose into ethanol from both corn kernels and FR, and SSCF ethanol yield was similar between the organic and mineral-salt media. Conclusions Starch ethanol promotes cellulosic ethanol by providing important nutrients for fermentative organisms, and in turn cellulosic ethanol promotes starch ethanol by providing cellulosic enzymes that convert the cellulosic polysaccharides in starch materials into additional ethanol. It is feasible to produce ethanol in SSCF of FR and corn kernels with mineral-salt medium. It would be cost-efficient to produce ethanol in SSCF of high concentrations of water-insoluble solids of lignocellulosic materials and corn kernels. Compared with prehydrolysis and fed-batch strategy using lignocellulosic materials, addition of starch

  14. Simulation of Fuel Ethanol Production from Lignocellulosic Biomass

    Institute of Scientific and Technical Information of China (English)

    张素平; Francois Maréchal; Martin Gassner; 任铮伟; 颜涌捷; Daniel Favrat

    2009-01-01

    Models for hydrolysis, fermentation and concentration process, production and utilization of biogas as well as lignin gasification are developed to calculate the heat demand of ethanol production process and the amounts of heat and power generated from residues and wastewater of the process. For the energy analysis, all relevant information about the process streams, physical properties, and mass and energy balances are considered. Energy integration is investigated for establishing a network of facilities for heat and power generation from wastewater and residues treatment aiming at the increase of energy efficiency. Feeding the lignin to an IGCC process, the electric efficiency is increased by 4.4% compared with combustion, which leads to an overall energy efficiency of 53.8%. A detailed sensitivity analysis on energy efficiency is also carried out.

  15. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  16. Optimized Monitoring of Production of Cellulose Nanowhiskers from Opuntia ficus-indica (Nopal Cactus

    Directory of Open Access Journals (Sweden)

    Horacio Vieyra

    2015-01-01

    Full Text Available Preparation of cellulose nanowhiskers (CNWs has grown significantly because they are useful for a wide range of applications. Additional advantage in their design requires that they meet the following characteristics: nontoxicity, abundance, sustainability, renewability, and low cost. To address these requirements, nanowhiskers were prepared from Opuntia ficus-indica (nopal cellulose by acid hydrolysis. Monitoring the process of CNWs preparation is necessary to ensure maximum yield and purity of the end product. In this study, the cellulose preparation was monitored by analyzing microscopic morphology by SEM; the purity degree was determined by fluorescence microscopy as a novel and rapid technique, and FTIR spectroscopy was used for confirmation. The additional parameters that monitored the process were the crystallinity index by X-ray diffraction and the size of the particle by dynamic light scattering (DLS. Nopal cellulose was found to be comparable to commercial microcrystalline cellulose. The use of Opuntia ficus-indica is a viable alternative for the production of highly pure CNWs and the strategy to supervise the preparation process was rapid.

  17. Tolerant yeast in situ detoxifies major class of toxic chemicals while producing ethanol

    Science.gov (United States)

    Renewable lignocellulosic materials contain abundant sugar source and biofuels conversion including cellulosic ethanol production from lignocellulosic biomass provides a sustainable alternative energy resource for a cleaner environment. In order to release the biomass sugars from the complex cellulo...

  18. Ethanol Production from Biomass: Large Scale Facility Design Project

    Energy Technology Data Exchange (ETDEWEB)

    Berson, R. Eric [Univ. of Louisville, KY (United States)

    2009-10-29

    High solids processing of biomass slurries provides the following benefits: maximized product concentration in the fermentable sugar stream, reduced water usage, and reduced reactor size. However, high solids processing poses mixing and heat transfer problems above about 15% for pretreated corn stover solids due to their high viscosities. Also, highly viscous slurries require high power consumption in conventional stirred tanks since they must be run at high rotational speeds to maintain proper mixing. An 8 liter scraped surface bio-reactor (SSBR) is employed here that is designed to efficiently handle high solids loadings for enzymatic saccharification of pretreated corn stover (PCS) while maintaining power requirements on the order of low viscous liquids in conventional stirred tanks. Saccharification of biomass exhibit slow reaction rates and incomplete conversion, which may be attributed to enzyme deactivation and loss of activity due to a variety of mechanisms. Enzyme deactivation is classified into two categories here: one, deactivation due to enzyme-substrate interactions and two, deactivation due to all other factors that are grouped together and termed “non-specific” deactivation. A study was conducted to investigate the relative extents of “non-specific” deactivation and deactivation due to “enzyme-substrate interactions” and a model was developed that describes the kinetics of cellulose hydrolysis by considering the observed deactivation effects. Enzyme substrate interactions had a much more significant effect on overall deactivation with a deactivation rate constant about 20X higher than the non-specific deactivation rate constant (0.35 h-1 vs 0.018 h-1). The model is well validated by the experimental data and predicts complete conversion of cellulose within 30 hours in the absence of enzyme substrate interactions.

  19. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G.; Smith, Ryan G.

    2016-07-05

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid foundation for the future production of

  20. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  1. Possibilities of utilization of co-products from corn grain ethanol and starch production

    OpenAIRE

    Semenčenko Valentina V.; Mojović Ljiljana V.; Radosavljević Milica M.; Terzić Dušanka R.; Milašinović-Šeremešić Marija S.; Janković Marijana Z.

    2013-01-01

    In recent decades, the expansion of alternative fuels production from crops traditionally used for food and animal feed has led to significant changes in the field of energy production, agriculture and food industry. Starch and sugar feedstocks for ethanol production (corn, wheat, sugar beet, sugar cane, etc.) require increasing arable land to meet market demands for the biofuel production. Although intensive studies are being carried out in order to identify improved and more cost-effe...

  2. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain

    OpenAIRE

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N.; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S.; Kitney, Richard; Reeve, Benjamin

    2016-01-01

    Bacterial cellulose is a remarkable material that is malleable, biocompatible, and over 10-times stronger than plant-based cellulose. It is currently used to create materials for tissue engineering, medicine, defense, electronics, acoustics, and fabrics. We describe here a bacterial strain that is readily amenable to genetic engineering and produces high quantities of bacterial cellulose in low-cost media. To reprogram this organism for biotechnology applications, we created a set of genetic ...

  3. Estimation of Economic Impacts of Cellulosic Biofuel Production: A Comparative Analysis of Three Biofuel Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan Aye

    2016-05-01

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: (i) cellulosic ethanol via biochemical conversion in Iowa, (ii) renewable diesel blendstock via biological conversion in Georgia, and (iii) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect (revenue- and supply-chain-related), and induced effects, capital investment associated with the construction of a biorefinery processing 2000 dry metric tons of biomass per day (DMT/day) could yield between 5960 and 8470 full-time equivalent (FTE) jobs during the construction period, depending on the biofuel pathways. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized on the scale of $1 million of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter higher numbers of jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. Unlike construction jobs, these operation-related jobs are necessary over the entire life of the biorefineries. Our results show that indirect effects stimulated by the operation of biorefineries are the primary contributor to job growth. The agriculture/forest, services, and

  4. Estimation of Economic Impacts of Cellulosic Biofuel Production: A Comparative Analysis of Three Biofuel Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan A.

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: 1) cellulosic ethanol via biochemical conversion in Iowa, 2) renewable diesel blendstock via biological conversion in Georgia, and 3) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect, and induced effects, capital investment associated with the construction of a biorefinery processing 2,000 dry metric tons of biomass per day (DMT/day) could yield between 5,960 and 8,470 full-time equivalent (FTE) jobs during the construction period. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized for one million dollars of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter more jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2,000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.

  5. Performance Evaluation of Sweet Sorghum Juice and Sugarcane Molasses for Ethanol Production

    Directory of Open Access Journals (Sweden)

    Hatamipour Mohammad Sadegh

    2015-09-01

    Full Text Available Sweet sorghum juice and traditional ethanol substrate i.e. sugarcane molasses were used for ethanol production in this work. At the end of the fermentation process, the sweet sorghum juice yielded more ethanol with higher ethanol concentration compared to sugarcane molasses in all experiments. The sweet sorghum juice had higher cell viability at high ethanol concentrations and minimum sugar concentration at the end of the fermentation process. The ethanol concentration and yield were 8.9% w/v and 0.45 g/g for sweet sorghum in 80 h and 6.5% w/v and 0.37 g/g for sugarcane molasses in 60 h, respectively. The findings on the physical properties of sweet sorghum juice revealed that it has better physical properties compared to sugarcane molasses, resulting to enhanced performance of sweet sorghum juice for ethanol production

  6. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    and xylose, but not cellulose, Avicel®, mannitol, inositol, glycerol, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol of ethanol per mol xylose was achieved when sulphite was added to the cultivation medium. Thiosulphite...

  7. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.

    Science.gov (United States)

    Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S

    2016-11-01

    A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications.

  8. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.

    Science.gov (United States)

    Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S

    2016-11-01

    A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications. PMID:27516336

  9. Ethanol production from agricultural wastes using Saccharomyces cerevisiae.

    Science.gov (United States)

    Irfan, Muhammad; Nadeem, Muhammad; Syed, Quratualain

    2014-01-01

    The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.

  10. Ethanol production from agricultural wastes using Sacchromyces cervisae

    Directory of Open Access Journals (Sweden)

    Muhammad Irfan

    2014-06-01

    Full Text Available The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64% followed by rice straw (40% and wheat straw (34%. Among all these tested substrates, sugarcane bagasse (77 g/L produced more ethanol as compared to rice straw (62 g/L and wheat straw (44 g/L using medium composition of (% 0.25 (NH42SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.

  11. Cellulase and Xylanase Production by Penicillium echinulatum in Submerged Media Containing Cellulose Amended with Sorbitol.

    Science.gov (United States)

    Todero Ritter, Carla Eliana; Camassola, Marli; Zampieri, Denise; Silveira, Mauricio Moura; Dillon, Aldo José Pinheiro

    2013-01-01

    The present work investigated the use of sorbitol as a soluble carbon source, in association with cellulose, to produce cellulases and xylanases in submerged cultures of Penicillium echinulatum 9A02S1. Because cellulose is an insoluble carbon source, in cellulase production, there are some problems with rheology and oxygen transfer. The submerged fermentations containing media composed of 0, 0.25, 0.5, 0.75, and 1% (w/v) sorbitol and cellulose that were added at different times during the cultivation; 0.2% (w/v) soy bran; 0.1% (w/v) wheat bran; and a solution of salts. The highest filter paper activity (FPA) (1.95  ±  0.04 IU·mL(-1)) was obtained on the seventh day in the medium containing 0.5% (w/v) sorbitol and 0.5% (w/v) cellulose added 24 h after the start of cultivation. However, the CMCases showed an activity peak on the sixth day (9.99 ± 0.75 IU·mL(-1)) in the medium containing 0.75% (w/v) sorbitol and 0.75% (w/v) cellulose added after 12 h of cultivation. The xylanases showed the highest activity in the medium with 0.75% (w/v) sorbitol and 0.25% (w/v) cellulose added 36 h after the start of cultivation. This strategy enables the reduction of the cellulose concentration, which in high concentrations can cause rheological and oxygen transfer problems.

  12. Application of Box-Behnken Design in Optimization of Glucose Production from Oil Palm Empty Fruit Bunch Cellulose

    OpenAIRE

    Satriani Aga Pasma; Rusli Daik; Mohamad Yusof Maskat; Osman Hassan

    2013-01-01

    Oil palm empty fruit bunch fiber (OPEFB) is a lignocellulosic waste from palm oil mills. It contains mainly cellulose from which glucose can be derived to serve as raw materials for valuable chemicals such as succinic acid. A three-level Box-Behnken design combined with the canonical and ridge analysis was employed to optimize the process parameters for glucose production from OPEFB cellulose using enzymatic hydrolysis. Organosolv pretreatment was used to extract cellulose from OPEFB using et...

  13. Study on genotypic variation for ethanol production from sweet sorghum juice

    Energy Technology Data Exchange (ETDEWEB)

    Ratnavathi, C.V.; Suresh, K.; Kumar, B.S. Vijay; Pallavi, M.; Komala, V.V.; Seetharama, N. [Directorate of Sorghum Research, Rajendranagar, Hyderabad 500030, Andhra Pradesh (India)

    2010-07-15

    Sugarcane molasses is the main source for ethanol production in India. Sweet sorghum with its juicy stem containing sugars equivalent to that of sugarcane is a very good alternative for bio-ethanol production to meet the energy needs of the country. Sweet sorghum is drought resistant, water logging resistant and saline-alkaline tolerant. Growing sweet sorghum for ethanol production is relatively easy and economical and ethanol produced from sweet sorghum is eco-friendly. In view of this, it is important to identify superior genotypes for ethanol production in terms of percent juice brix, juice extractability, total fermentable sugars, ethanol yield and fermentation efficiency. This paper presents the study on the variability observed for the production of ethanol by various sweet sorghum genotypes in a laboratory fermentor. Five Sweet Sorghum (Sorghum bicolor L. Moench) genotypes were evaluated for ethanol production from stalk juice (Keller, SSV 84, Wray, NSSH 104 and BJ 248). Sweet sorghum juice differs from cane juice mainly in its higher content of starch and aconitic acid. Data were collected for biomass yield; stalk sugar yield and ethanol production in five genotypes. Maximum ethanol production of 9.0%w/v ethanol was obtained with Keller variety (20% sugar concentration was used), and decreased for other genotypes. A distiller's strain of Saccharomyces cerevisiae (gifted by Seagram Distilleries Ltd.) was employed for fermentation. The fermentation efficiency (FE) was 94.7% for this strain. High biomass of yeast was obtained with BJ 248 variety. When the similar experiments were conducted with unsterile sweet sorghum juice (15% sugar concentration) 6.47%w/v ethanol was produced. (author)

  14. Determination of the products coming from the cellulose hydrolysis by a cement water

    International Nuclear Information System (INIS)

    Capillary electrophoresis is a useful method to separate the degradation products of cellulose in cement water medium and to quantify their acid-base and complexing properties. The perfected method can be applied to all the cations having relatively soluble hydroxides. (O.M.)

  15. Optimisation of the composition and production of mannitol/microcrystalline cellulose tablets

    NARCIS (Netherlands)

    Westerhuis, J.A; de Haan, P; Zwinkels, J; Jansen, W.T; Coenegracht, P.M J; Lerk, C.F

    1996-01-01

    Mixtures of mannitol and microcrystalline cellulose (MCC) were investigated on a small-production scale by granulation in a high-shear mixer and compression into tablets. For both excipients only a few cases of incompatibilities with active ingredients are known. Tablets with only MCC as the filler

  16. The identification and degradation of isosaccharinic acid, a cellulose degradation product

    International Nuclear Information System (INIS)

    Nirex is seeking to develop a deep underground repository for the disposal of solid intermediate-level and low-level radioactive wastes (ILW and LLW) in the UK. One possible influence on the behavior of radionuclides is the formation of water-soluble complexants by the degradation of the solid organic polymers that will be present in the wastes. The degradation products of cellulose have been shown to increase the solubility of plutonium and other radionuclides and to reduce sorption onto near-field and far-field materials. Degradation of cellulose under anaerobic alkaline conditions produces a range of organic acids. In this paper 2-C-(hydroxymethyl)-3-deoxy-D-pentonic acid (isosaccharinic acid, ISA) is identified by High Performance Liquid Chromatography as a significant component of cellulose leachates. A combination of fractionation of cellulose leachates and plutonium solubility determinations shows that ISA is responsible for the majority of the enhancement of plutonium solubility observed in such leachates. Further degradation of ISA by chemical or microbial action may lessen the effect of degraded cellulose leachates. Experiment studies on the chemical degradation of this compound under alkaline conditions suggest that the presence of oxygen is required. Microbial degradation studies show that the plutonium solubility in solutions of ISA is reduced by their exposure to microbial action

  17. A preliminary study on production of fuel ethanol from kelp residue%利用海带渣生产燃料乙醇的初步研究

    Institute of Scientific and Technical Information of China (English)

    明凯利; 张梅; 王树春; 臧家业; 金滨滨; 吴佐浩; 王能飞

    2013-01-01

    对海带渣中的纤维成分进行了测定,并以海带渣为原料进行了发酵产纤维素乙醇的研究.通过实验初步建立了海带渣生产乙醇的预处理方法并确立了发酵方式,同时对南极低温纤维素酶QP7复配降解海带渣生产乙醇的效果进行了研究.实验结果表明,海带渣中纤维素含量达28.3%;稀酸预处理后,海带渣经分步糖化发酵得到的乙醇浓度高于相同条件下的秸秆乙醇浓度;在海带渣同步糖化发酵中以低温纤维素酶作为复配酶进行酶解,乙醇产量提高21%以上.海带渣作为生产纤维素乙醇的原料,具有良好的应用前景;既能为海带产业的综合利用提供新方向,而且能够为其它海藻的生物质能源开发提供数据和方法参考.%In this paper, we determined the cellulose content of kelp residue and took it as raw material for production of cellulosic ethanol. The methods of pretreatment and fermentation was preliminarily established by experiments. The degradation of kelp residue by low temperature cellulose enzyme QP7 was investigated. Cellulose content of kelp residue was 28.3%. After pretreatment with dilute acid, ethanol productivity by saccharification and fermentation was higher than that of cornstalk under the same conditions. For simultaneous saccharification and fermentation with kelp residue as raw material, by adding some low temperature cellulose enzyme as component of mixed enzyme, ethanol production increased by more than 21%. Experiments showed good prospect of application of using kelp residue as raw material to produce ethanol and a new direction for comprehensive utilization of kelp industry. The data could provide reference for development of other algal biomass energy.

  18. On the determination of crystallinity and cellulose content in plant fibres

    DEFF Research Database (Denmark)

    Thygesen, Anders; Oddershede, Jette; Lilholt, Hans;

    2005-01-01

    A comparative study of cellulose crystallinity based on the sample crystallinity and the cellulose content in plant fibres was performed for samples of different origin. Strong acid hydrolysis was found superior to agricultural fibre analysis and comprehensive plant fibre analysis for a consistent......-based fibres and 60 - 70 g/ 100 g cellulose in wood based fibres. These findings are significant in relation to strong fibre composites and bio-ethanol production....

  19. Cellulose Nanocrystals Obtained from Rice By-Products and Their Binding Potential to Metallic Ions

    Directory of Open Access Journals (Sweden)

    Vanessa L. Albernaz

    2015-01-01

    Full Text Available The present study aimed to develop and optimize a method to obtain cellulose nanocrystals from the agricultural by-products rice husk and straw and to evaluate their electrostructural modifications in the presence of metallic ions. First, different particle formation conditions and routes were tested and analyzed by spectrophotometry, dynamic light scattering (DLS, and Zeta potential measurements. Then, electrostructural effects of ions Na(I, Cd(II, and Al(III on the optimized nanoparticles were analyzed by atomic force microscopy (AFM, scanning electron microscopy (SEM, and electrical conductivity (EC assessments. The produced cellulose nanocrystals adopted a rod-like shape. AFM height distribution and EC data indicated that the nanocrystals have more affinity in binding with Na(I > Al(III > Cd(II. These data suggest that the use of these cellulose nanocrystals in the bioremediation field is promising, both in metal sorption from wastewater and as an alternative for water desalination.

  20. Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process.

    Science.gov (United States)

    Gubicza, Krisztina; Nieves, Ismael U; Sagues, William J; Barta, Zsolt; Shanmugam, K T; Ingram, Lonnie O

    2016-05-01

    A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72 US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield.

  1. Techno-economic analysis of ethanol production from sugarcane bagasse using a Liquefaction plus Simultaneous Saccharification and co-Fermentation process.

    Science.gov (United States)

    Gubicza, Krisztina; Nieves, Ismael U; Sagues, William J; Barta, Zsolt; Shanmugam, K T; Ingram, Lonnie O

    2016-05-01

    A techno-economic analysis was conducted for a simplified lignocellulosic ethanol production process developed and proven by the University of Florida at laboratory, pilot, and demonstration scales. Data obtained from all three scales of development were used with Aspen Plus to create models for an experimentally-proven base-case and 5 hypothetical scenarios. The model input parameters that differed among the hypothetical scenarios were fermentation time, enzyme loading, enzymatic conversion, solids loading, and overall process yield. The minimum ethanol selling price (MESP) varied between 50.38 and 62.72 US cents/L. The feedstock and the capital cost were the main contributors to the production cost, comprising between 23-28% and 40-49% of the MESP, respectively. A sensitivity analysis showed that overall ethanol yield had the greatest effect on the MESP. These findings suggest that future efforts to increase the economic feasibility of a cellulosic ethanol process should focus on optimization for highest ethanol yield. PMID:26918837

  2. Comparison of ethanol production performance in 10 varieties of sweet potato at different growth stages

    Science.gov (United States)

    Jin, Yanling; Fang, Yang; Zhang, Guohua; Zhou, Lingling; Zhao, Hai

    2012-10-01

    The performance in the ethanol production of 10 varieties of sweet potato was evaluated, and the consumption in raw materials, land occupation and fermentation waste residue in producing 1 ton of anhydrous ethanol were investigated. The comparative results between 10 varieties of sweet potato at 3 growth stages indicated that NS 007 and SS 19 were better feedstocks for ethanol production, exhibiting less feedstock consumption (6.19 and 7.59 tons/ton ethanol, respectively), the least land occupation (0.24 and 0.24 ha/ton ethanol, respectively), less fermentation waste residue (0.56 and 0.55 tons/ton ethanol, respectively), the highest level of ethanol output per unit area (4.17 and 4.17 ton/ha, respectively), and a lower viscosity of the fermentation culture (591 and 612 mPa S, respectively). The data above are average data. In most varieties, the ethanol output speed at day 130 was the highest. Therefore, NS 007 and SS 19 could be used for ethanol production and harvested after 130 days of growth from an economic point of view. In addition, the high content of fermentable sugars and low content of fiber in sweet potatoes are criteria for achieving low viscosity in ethanol fermentation cultures.

  3. Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Lauren; Islam, Rumana; Levin, David; Cicek, Nazim [Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB (Canada); Sparling, Richard [Department of Microbiology, University of Manitoba, Winnipeg, MB (Canada)

    2008-10-15

    Biohydrogen production from cellulosic waste materials using dark fermentation is a promising technology for producing renewable energy. The purpose of this study was to evaluate residual cellulosic materials generated from local sources for their H{sub 2} production potential without any pretreatment. Clostridium thermocellum ATCC 27405, a cellulolytic, thermophilic bacterium that has been shown to be capable of H{sub 2} production on both cellobiose and {alpha}-cellulose substrates, was used in simultaneous batch fermentation experiments with dried distillers grain (DDGs), barley hulls (BH) and fusarium head blight contaminated barley hulls (CBH) as the carbon source. Overall, the dried distillers grain produced the highest concentration of hydrogen gas at 1.27 mmol H{sub 2}/glucose equivalent utilized. CBH and BH produced 1.18 and 1.24 mmol H{sub 2}/glucose equivalent utilized, respectively. Overall, this study indicates that hydrogen derived from a variety of cellulosic waste biomass sources is a possible candidate for the development of sustainable energy. (author)

  4. Biochemical conversions of lignocellulosic biomass for sustainable fuel-ethanol production in the upper Midwest

    Science.gov (United States)

    Brodeur-Campbell, Michael J.

    Biofuels are an increasingly important component of worldwide energy supply. This research aims to understand the pathways and impacts of biofuels production, and to improve these processes to make them more efficient. In Chapter 2, a life cycle assessment (LCA) is presented for cellulosic ethanol production from five potential feedstocks of regional importance to the upper Midwest — hybrid poplar, hybrid willow, switchgrass, diverse prairie grasses, and logging residues — according to the requirements of Renewable Fuel Standard (RFS). Direct land use change emissions are included for the conversion of abandoned agricultural land to feedstock production, and computer models of the conversion process are used in order to determine the effect of varying biomass composition on overall life cycle impacts. All scenarios analyzed here result in greater than 60% reduction in greenhouse gas emissions relative to petroleum gasoline. Land use change effects were found to contribute significantly to the overall emissions for the first 20 years after plantation establishment. Chapter 3 is an investigation of the effects of biomass mixtures on overall sugar recovery from the combined processes of dilute acid pretreatment and enzymatic hydrolysis. Biomass mixtures studied were aspen, a hardwood species well suited to biochemical processing; balsam, a high-lignin softwood species, and switchgrass, an herbaceous energy crop with high ash content. A matrix of three different dilute acid pretreatment severities and three different enzyme loading levels was used to characterize interactions between pretreatment and enzymatic hydrolysis. Maximum glucose yield for any species was 70% of theoretical for switchgrass, and maximum xylose yield was 99.7% of theoretical for aspen. Supplemental β-glucosidase increased glucose yield from enzymatic hydrolysis by an average of 15%, and total sugar recoveries for mixtures could be predicted to within 4% by linear interpolation of the pure

  5. Sweet sorghum biorefinery for production of fuel ethanol and value-added co-products

    Science.gov (United States)

    An integrated process has been developed for a sweet-sorghum biorefinery in which all carbohydrate components of the feedstock were used for production of fuel ethanol and industrial chemicals. In the first step, the juice was extracted from the stalks. The resulted straw (bagasse) then was pretreat...

  6. Utilizing Protein-lean Co-products from Corn Containing Recombinant Pharmaceutical Proteins for Ethanol Production

    Science.gov (United States)

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were used to produce fuel ethanol and residual r-proteins in the co-product, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein ...

  7. The sustainability of Brazilian ethanol - an assessment of the possibilities of certified production

    NARCIS (Netherlands)

    Smeets, E.M.W.; Junginger, H.M.; Faaij, A.P.C.; Walter, A.; Dolzan, P.; Turkenburg, W.C.

    2008-01-01

    In this article the environmental and socio-economical impacts of the production of ethanol from sugarcane in the state of São Paulo (Brazil) are evaluated. Subsequently, an attempt is made to determine to what extent these impacts are a bottleneck for a sustainable and certified ethanol production.

  8. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  9. Optimization of Ethanol Production from NaOH-Pretreated Solid State Fermented Sweet Sorghum Bagasse

    Directory of Open Access Journals (Sweden)

    Menghui Yu

    2014-06-01

    Full Text Available Ethanol production from NaOH-Pretreated solid state fermented sweet sorghum bagasse with an engineered strain of Z. mobilis TSH-ZM-01 was optimized. Results showed that: (1 residual solid removal during ethanol fermentation was unnecessary and 24 h fermentation duration was optimal for ethanol production; (2 ethanol yield of 179.20 g/kg of solid state fermented sweet sorghum bagasse achieved under the optimized process conditions of cellulase loading of 0.04 g/g-glucan, xylanase loading of 0.01 g/g-xylan, liquid to solid ratio of 9:1 and pre-hydrolysis duration for 72 h.

  10. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...... product under most of the conditions tested, including in media lacking vitamins, peptone and yeast extract. The results indicate that this new organism is a promising candidate for the development of a second generation bio-ethanol production process. © IWA Publishing 2011....

  11. Plasma reforming of bio-ethanol for hydrogen rich gas production

    International Nuclear Information System (INIS)

    Highlights: • The steam-oxidative reforming of ethanol was performed in a novel miniaturized plasma reactor. • The discharge combines the advantages of the 3-D cylindrical tornado and the supersonic/subsonic discharge. • The influence of V–I characteristic on ethanol reforming was discussed. • High conversion of ethanol was experimentally confirmed. - Abstract: Hydrogen production from ethanol by non-thermal arc discharge was investigated in a novel miniaturized plasma reactor. It is observed that ethanol–water mixture was converted into hydrogen, carbon monoxide and other products. The V–I characteristic was recorded by an oscilloscope to study the effect of discharge on the ethanol reforming. In the experiments, ethanol–water mixture entered the reaction chamber through a special gas–liquid spray nozzle for a quick evaporation and a rapid mixing with air at room temperature. Assisted by a Laval nozzle electrode, non-thermal arc plasma can improve the performance of ethanol reforming. It is found that the maximum conversion rate of ethanol was 90.9% at O/C = 1.4, S/C = 1.2 and ethanol flow rate = 0.05 g/s, and the maximum hydrogen yield was 40.9% at O/C = 1.4, S/C = 1.2 and ethanol flow rate = 0.10 g/s. The ethanol reforming process produced little coke and nitrogen oxide which was less than 10 ppm in the supersonic/subsonic plasma working condition

  12. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.

    Science.gov (United States)

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V

    2013-03-01

    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

  13. Technology and economics of conversion of cellulose (wood) and corn starch to sugars, alcohol and yeast. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wolnak, B.

    1978-08-01

    The present status of the technology and economics for the production of glucose, alcohol, and yeast from cellulose (wood), corn starch, and molasses is analyzed. The basic processes for producing glucose and the factors affecting the economics of its production are reviewed. The costs of producing ethanol and yeast from the glucose are derived. Market availability of glucose, ethanol, and yeast is surveyed. (JSR)

  14. A Shortcut to the Production of High Ethanol Concentration from Jerusalem Artichoke Tubers

    OpenAIRE

    Ge, Xiang-Yang; Zhang, Wei-Guo

    2005-01-01

    Aspergillus niger SL-09, a newly isolated exoinulinase-hyperproducing strain, and Saccharomyces cerevisiae Z-06, with high ethanol tolerance, were used in a fed-batch process for simultaneous saccharification and fermentation of Jerusalem artichoke tuber mash and flour. S. cerevisiae Z-06 utilized 98 % of the total sugar and produced 19.6 % of ethanol in 48 h. In this process the conversion efficiency of the fermentation of Jerusalem artichoke and the production of ethanol were 90 % of the th...

  15. Ethanol Production from Sago Waste Using Saccharomyces cerevisiae Vits-M1

    Directory of Open Access Journals (Sweden)

    D. Subashini

    2011-01-01

    Full Text Available The present study deals with the biotechnological production of ethanol from sago waste materials. As petroleum has become depleted, renewable energy production has started to gain attention all over the world, including the production of ethanol from sago wastes. In our research we have standardized the production of ethanol from sago wastes using Saccharomyces cerevisiae strain isolated from molasses. The production of ethanol was carried out by means of simultaneous saccharification with acids, followed by fermentation. The yeast strains were isolated from either batter or molasses and the taxonomy was studied by phenotypic characters in comparison with the standard strain Saccharomyces cerevisiae MTCC 173. Among the two isolated strains, S. cerevisiae VITS-M1 isolated from molasses showed better survival rate in different sugars such as glucose, sucrose, maltose and galactose except lactose; it also showed better survival rate at high ethanol concentration and at acidic pH. The saccharification process of sago liquid waste and solid waste was standardized using hydrochloric acid and sulphuric acid under different treatments. The fermented product, ethanol was distilled using laboratory model distillation unit and measured qualitatively using gas chromatography in comparison with the standard analytical grade ethanol. The overall experimental data indicates that the sago liquid waste yielded more ethanol by simultaneous saccharification with 0.3N HCl and 0.3N H2SO4 and fermentation with the S. cerevisiae VITS-M1 isolated from molasses.

  16. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process.

    Science.gov (United States)

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    Microbial lipid and bio-ethanol were co-generated by an integrated process using corn cob bagasse as raw material. After pretreatment, the acid hydrolysate was used as substrate for microbial lipid fermentation, while the solid residue was further enzymatic hydrolysis for bio-ethanol production. The effect of acid loading and pretreatment time on microbial lipid and ethanol production were evaluated. Under the optimized condition for ethanol production, ∼131.3g of ethanol and ∼11.5g of microbial lipid were co-generated from 1kg raw material. On this condition, ∼71.6% of the overall fermentable sugars in corn cob bagasse could be converted into valuable products. At the same time, at least 33% of the initial COD in the acid hydrolysate was depredated.

  17. Biorefinery of corn cob for microbial lipid and bio-ethanol production: An environmental friendly process.

    Science.gov (United States)

    Cai, Di; Dong, Zhongshi; Wang, Yong; Chen, Changjing; Li, Ping; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    Microbial lipid and bio-ethanol were co-generated by an integrated process using corn cob bagasse as raw material. After pretreatment, the acid hydrolysate was used as substrate for microbial lipid fermentation, while the solid residue was further enzymatic hydrolysis for bio-ethanol production. The effect of acid loading and pretreatment time on microbial lipid and ethanol production were evaluated. Under the optimized condition for ethanol production, ∼131.3g of ethanol and ∼11.5g of microbial lipid were co-generated from 1kg raw material. On this condition, ∼71.6% of the overall fermentable sugars in corn cob bagasse could be converted into valuable products. At the same time, at least 33% of the initial COD in the acid hydrolysate was depredated. PMID:27060242

  18. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application.

  19. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application. PMID:25823854

  20. Biohydrogen, bioelectricity and bioalcohols from cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.

    2013-03-01

    The demand for renewable energy is increasing due to increasing energy demand and global warming associated with increasing use of fossil fuels. Renewable energy can be derived from biological production of energy carriers from cellulosic biomass. These biochemical processes include biomass fermentation to hydrogen, methane and alcohols, and bioelectricity production in microbial fuel cells (MFCs). The objective of this study was to investigate the production of different energy carriers (hydrogen, methane, ethanol, butanol, bioelectricity) through biochemical processes. Hydrogen production potential of a hot spring enrichment culture from different sugars was determined, and hydrogen was produced continuously from xylose. Cellulolytic and hydrogenic cultures were enriched on cellulose, cellulosic pulp materials, and on silage at different process conditions. The enrichment cultures were further characterized. The effect of acid pretreatment on hydrogen production from pulp materials was studied and compared to direct pulp fermentation to hydrogen. Electricity and alcohol(s) were simultaneously produced from xylose in MFCs and the exoelectrogenic and alcohologenic enrichment cultures were characterized. In the end, the energy yields obtained from different biochemical processes were determined and compared. In this study, cultures carrying out simultaneous cellulose hydrolysis and hydrogen fermentation were enriched from different sources at different operational conditions. These cultures were successfully utilized for cellulose to hydrogen fermentation in batch systems. Based on these results further research should be conducted on continuous hydrogen production from cellulosic materials.

  1. Endogenous ethanol production and hepatic disease following jejunoileal bypass for morbid obesity.

    Science.gov (United States)

    Mezey, E; Imbembo, A L; Potter, J J; Rent, K C; Lombardo, R; Holt, P R

    1975-11-01

    In this study, we sought to determine whether or not elevated levels of ethanol were present in the systemic circulation, resulting from endogenous ethanol production, which might contribute to the hepatic damage following jejunoileal bypass for morbid obesity. Venous serum samples for assay of ethanol by gas-liquid chromatography were obtained in 8 normal subjects, 9 obese patients prior to surgery, 20 obese patients 2 weeks to 40 months after jejunoileal bypass, and in 2 dogs before and after jejunoileal bypass. Ethanol was detected after jejunoileal bypass in only 7 of the 20 patients and in the 2 dogs. Serum ethanol concentrations ranged from 0.15 to 4.12 mg/100 ml with a mean of 1.18 +/- 1.59 (SD)( mg/100 ml in the 7 patients and ranged from 0.20 to 2.23 mg/100 ml in the dogs. Incubation of the contents of the bypassed intestine of a dog with dextrose resulted in the production of significant amounts of ethanol. However, there was no correlation between the presence of ethanol in the serum and liver histology, when liver biopsy was obtained, postoperatively. Since ethanol was detected in the serum in only small concentrations and in only one-third of the patients, it is unlikely that ethanol production by bacteria in the intestine is of significance in the pathogenesis of liver disease following jejunoileal bypass.

  2. Screening of the effective cellulose-degradable strain and its application in the production of cellulose bioethanol

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Strains from the cellulose-containing environment were collected. Primary screening(by filter-paper Hutchison solid culture medium and sodium carboxymethylcellulose solid culture medium) and reelection(by filter-paper inorganic salt culture medium and sodium carboxymethylcellulose Congo red culture medium) indicated that five strains obtained were best suited for high performance cellulose degradation. Determination of sodium carboxymethylcellulose activity(CMCA) and filter paper activity(FPA) was accomplis...

  3. A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

    1995-10-01

    An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

  4. A critical analyses of the Grey Water Footprint in the production of cellulose

    Directory of Open Access Journals (Sweden)

    Vanessa Lucena Empinotti

    2014-09-01

    Full Text Available While the Water Footprint (WF is used as a management tool by the private sector, few published studies simultaneously consider all three of its constituent components in its estimation. The components are the Blue Water Footprint (WFblue, the Green Water Footprint (WFgreen, and the Grey Water Footprint (WFgrey. In the case of cellulose production, the only paper published to date did not consider the WFgrey because of the difficulty in finding data relative to natural water quality or to the effluents’ composition. In this context, this article seeks to analyze the WFgrey contribution to the WF of cellulose as well as its consequences for actions to mitigate the negative impact of production processes on water bodies. The study took place in a hypothetical industry located at the Paraíba do Sul River watershed, Brazil. The analyses considered pollutants, such as total chloride, total phosphorous, and phenol—all present in pulp production effluent and regulated by legislation in the three main producer countries in the world. The results showed that the industrial WFgrey can account for up to 55% of the total WF for cellulose production. Additionally, the results indicated considerable variations in environmental standards as well as in the chosen pollutants. Finally, the reduction of the WFgrey values should not be considered an end in itself, without considering the environmental and political context in which the production process takes place.

  5. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    OpenAIRE

    Gulten Izmirlioglu; Ali Demirci

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium componen...

  6. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  7. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  8. Improved Cellulose and Organic-Solvents based Lignocellulosic Fractionation Pre-treatment of Organic Waste for Bioethanol Production

    OpenAIRE

    Valeriy Bekmuradov; Grace Luk; Robin Luong

    2014-01-01

    This study investigates the performance of the Cellulose and Organic-Solvents based Lignocellulosic Fractionation (COSLIF) method for the pretreatment of Source-Separated Organic (SSO) waste. An improvement on the standard method of COSLIF pre-treatment was developed based on lower enzyme loading and using an ethanol washing instead of acetone. It was demonstrated that a much higher glucose yield (90% after 72 hours) was possible with this improvement, as compared to the original method, w...

  9. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    Science.gov (United States)

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  10. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol.

    Science.gov (United States)

    Silva, Luiziana Ferreira; Taciro, Marilda Keico; Raicher, Gil; Piccoli, Rosane Aparecida Moniz; Mendonça, Thatiane Teixeira; Lopes, Mateus Schreiner Garcez; Gomez, José Gregório Cabrera

    2014-11-01

    Polyhydroxyalkanoates (PHA) are biodegradable and biocompatible bacterial thermoplastic polymers that can be obtained from renewable resources. The high impact of the carbon source in the final cost of this polymer has been one of the major limiting factors for PHA production and agricultural residues, mainly lignocellulosic materials, have gained attention to overcome this problem. In Brazil, production of 2nd generation ethanol from the glucose fraction, derived from sugarcane bagasse hydrolysate has been studied. The huge amounts of remaining xylose will create an opportunity for the development of other bioprocesses, generating new products to be introduced into a biorefinery model. Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of 2G ethanol in the context of a biorefinery will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a second-generation of PHA production process. Those aspects and perspectives are presented in this article.

  11. Production of gluten and germ by ethanol fermentation of raw corn

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The Illinois ethanol fuel industry has grown to be an important part of our state's economy over the past 10 years. It provides an additional market for Illinois' abundant corn production, provides many industrial jobs, and substitutes a home-grown renewable energy resource for imported oil. More than 30 percent of all gasoline sold in Illinois contains 10 percent ethanol. The economics of producing ethanol from corn is strongly affected by the byproduct value and by the energy required in the production process. This document reports on efforts to research a new microbial process that would improve the ethanol fermentation process in both these areas. The new process allows direct fermentation of corn starch to ethanol without the usual requirement of cooking the corn. This reduces the amount of energy needed for production and recovers the protein-containing gluten and oil-containing germ with all of the original food value intact.

  12. Evaluation of Cashew Apple Juice for the Production of Fuel Ethanol

    Science.gov (United States)

    Pinheiro, Álvaro Daniel Teles; Rocha, Maria Valderez Ponte; Macedo, Gorete R.; Gonçalves, Luciana R. B.

    A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L-1 of initial sugar concentration was used. Cell yield (Yx/s) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L-1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.

  13. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  14. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Shoubao [Huainan Normal Univ., Anhui (China). School of Life Science; Chen, Xiangsong; Wu, Jingyong; Wang, Pingchao [Chinese Academy of Sciences, Hefei (China). Key Lab. of Ion Beam Bio-engineering of Inst. of Plasma Physics

    2012-05-15

    The aim of the present study was to examine ethanol production from concentrated food waste hydrolysates using whole cells of S. cerevisiae immobilized on corn stalks. In order to improve cell immobilization efficiency, biological modification of the carrier was carried out by cellulase hydrolysis. The results show that proper modification of the carrier with cellulase hydrolysis was suitable for cell immobilization. The mechanism proposed, cellulase hydrolysis, not only increased the immobilized cell concentration, but also disrupted the sleek surface to become rough and porous, which enhanced ethanol production. In batch fermentation with an initial reducing sugar concentration of 202.64 {+-} 1.86 g/l, an optimal ethanol concentration of 87.91 {+-} 1.98 g/l was obtained using a modified corn stalk-immobilized cell system. The ethanol concentration produced by the immobilized cells was 6.9% higher than that produced by the free cells. Ethanol production in the 14th cycle repeated batch fermentation demonstrated the enhanced stability of the immobilized yeast cells. Under continuous fermentation in an immobilized cell reactor, the maximum ethanol concentration of 84.85 g/l, and the highest ethanol yield of 0.43 g/g (of reducing sugar) were achieved at hydraulic retention time (HRT) of 3.10 h, whereas the maximum volumetric ethanol productivity of 43.54 g/l/h was observed at a HRT of 1.55 h. (orig.)

  15. Ethanol production from food waste at high solid contents with vacuum recovery technology

    Science.gov (United States)

    Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...

  16. Fuel ethanol production from wet oxidised corn stover by S. cerevisiae

    DEFF Research Database (Denmark)

    Qiang, zhang; Thomsen, Anne Belinda

    2012-01-01

    as liquid fraction. After 142 h of SSF with substrate concentration of 8% (W/V), ethanol yield of 73.1 % of the theoretical based on glucose in the raw material was obtained by S. cerevisiae(ordinary baker' yeast). The corresponding ethanol concentration and volumetric productivity were 17.2g/L and 0.121g...

  17. Economic and policy implications of public support for ethanol production in California's San Joaquin Valley

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency requires that only oxygenated gasoline may be sold in regions that are not in compliance with national air quality standards. Several non-attainment regions are located in California, and most of the gasoline sold there is oxygenated with methyl tertiary butyl ether (MTBE). California is planning to discontinue the use of MTBE in gasoline by January 2004. This policy will generate greater demand for ethanol, which is the leading substitute for MTBE. Most of the ethanol required in California will be imported from other states, unless California develops an ethanol production industry. The costs of producing ethanol in California may exceed the benefits, unless substantial value is attributed to non-market, public goods, such as maintaining agriculture and reducing unemployment in rural areas. We examine the firm-level economics of using corn and other agricultural products to produce ethanol in California, and the potential regional economic impacts of building and operating an ethanol plant. The cost of production is greater than the current price of ethanol for all of the feedstocks we consider. Production generates economic activity, but at current prices for inputs and outputs, substantial subsidies will be required to encourage firms to produce ethanol in California

  18. Culture conditions supporting inhibitor tolerance and rapid production of ethanol by P. stipitis NRRL Y-7124

    Science.gov (United States)

    To expand the biomass to fuel ethanol industry, process strategies are needed to foster the production and utilization of microorganisms which can survive and ferment hexose and pentose sugars while exposed to inhibitors (such as ethanol, furfural, and hydroxymethylfurfural (HMF)). Furfural and HMF...

  19. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  20. CHARACTERIZATION OF FAST GROWING TREES SPECIES FOR ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    P. V. ANBU*, K. T. PARTHIBAN1, I. SEKAR U. SIVAKUMAR3,S.UMESHKANNA1 ,V. SARAVANA P. DURAIRASU1

    2014-09-01

    Full Text Available The fast growing trees were had the acceptable growth, chemical composition and morphological properties that make it suitable for ethanol recovery. The growth attained average level from 1.57m to 3.73m at the end of ninth month. The chemical composition such as higher proportion of holocellulose and lower content of lignin of the fast growing trees expected the more ethanol recovery with minimum recalcitrant. Due to long fiber length, wider fiber width, and wide lumen diameter with thin cell wall thickness of the fast growing trees were preferable for ethanol conversion.

  1. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  2. High yield simultaneous hydrogen and ethanol production under extreme-thermophilic (70 C) mixed culture environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chenxi [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand); Karakashev, Dimitar; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DK-2800, Kgs Lyngby (Denmark); Lu, Wenjing; Wang, Hongtao [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-07-15

    The effect of pH and medium composition on extreme-thermophilic (70 C) dark fermentative simultaneous hydrogen and ethanol production (process performance and microbial ecology) was investigated. Hydrogen and ethanol yields were optimized with respect to glucose, peptone, FeSO{sub 4}, NaHCO{sub 3}, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations as well as initial pH as independent variables. A combination of low levels of both glucose ({<=}2 g/L) and vitamin solutions ({<=}1 mL/L) and high levels of initial pH ({>=}7), mineral salts solution ({>=}5 mL/L) and FeSO{sub 4} ({>=}100 mg/L) stimulated the hydrogen production, while high level of glucose ({>=}5 g/L) and low levels of both initial pH ({<=}5.5) and mineral salts solution ({<=}1 mL/L) enhanced the ethanol production. High yield of simultaneous hydrogen and ethanol production (1.58 mol H{sub 2}/mol glucose combined with an ethanol yield of 0.90 mol ethanol/mol glucose) was achieved under extreme-thermophilic mixed culture environment. Results obtained showed that the shift of the metabolic pathways favouring either hydrogen or ethanol production was affected by the change in cultivation conditions (pH and medium composition). The mixed culture in this study demonstrated flexible ability for simultaneous hydrogen and ethanol production, depending on pH and nutrients formulation. The microorganisms involved could be regarded as simultaneous hydrogen/ethanol producers, as hydrogen and ethanol fermentation under all conditions was carried out by a group of extreme-thermophilic bacterial species related to Thermoanaerobacter, Thermoanaerobacterium and Caldanaerobacter. (author)

  3. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    Science.gov (United States)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    The recently expanded Renewable Fuel Standard, which now requires 36 billion gallons of renewable fuels by 2022, has increased demand for biofuel refinery feedstocks. Currently, biofuel production consists mainly of corn-based ethanol, but concern over increasing nitrate levels resulting from increased corn crop fertilization has prompted research into alternative biofuel feedstocks. Of these, high-yielding biomass crops such as Miscanthus have been suggested for cellulose-based ethanol production. Because these perennial crops require less fertilization and do not need tilling, increasing land area in the Midwest planted with Miscanthus would result in less nitrate pollution to the Gulf of Mexico. There is a tradeoff, however, as Miscanthus also has higher water requirements than conventional crops in the region. This could pose a serious problem for riparian ecosystems and other streamflow users such as municipalities and biofuel refineries themselves, as the lowest natural flows in this region coincide with the peak of the growing season. Moreover, low flow reduction may eventually cut off the water quality benefit that planting Miscanthus provides. Therefore, for large-scale cellulosic ethanol production to be sustainable, it is important to understand how the watershed will respond to this change in land and water use. To this end a detailed data analysis of current watershed conditions has been combined with hydrologic modeling to gain deeper insights into how catchments in the highly agricultural central IL watershed of the Sangamon River respond to current and future land and water usage, with the focus on the summer low-flow season. In addition, an integrated systems optimization model has been developed that combines hydrologic, agro-biologic, engineering infrastructural, and economic inputs to provide optimal scenarios of crop type and area and corresponding refinery locations and capacities. Through this integrated modeling framework, we address the key

  4. Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles

    NARCIS (Netherlands)

    Verschuren, P.G.; Cardona, T.D.; Nout, M.J.R.; Gooijer, de K.D.; Heuvel, van den J.C.

    2000-01-01

    The static fermentation of coconut water sucrose by Acetobacter xylinum was carried out at initial pH's of 3.0, 4.0, 5.0 or 6.0. Cellulose was produced at the surface, and its production was most favourable at pH's 4.0 and 5.0. These pH values also allowed for optimal bacterial growth. Oxygen concen

  5. PRODUCTION OF NANOCELLULOSE FROM NATIVE CELLULOSE – VARIOUS OPTIONS UTILIZING ULTRASOUND

    OpenAIRE

    Shree Prakash Mishra,; Anne-Sophie Manent,; Bruno Chabot; Claude Daneault

    2011-01-01

    In this study three different ways of applying ultrasound for the production of nanocellulose from native cellulose were explored. In the first option bleached hardwood kraft pulp was oxidized with the ultrasound (US) assisted TEMPO/NaBr/NaOCl-system (US-TEMPO-system) followed by mechanical separation of nanocellulose. The pulp oxidized by the US-TEMPO-system had higher carboxyls content and ca. 10% increase in nanocellulose yield when compared to the TEMPO-system without sono catalysis. In t...

  6. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite

    OpenAIRE

    Miguel Gama; Fernando Dourado; João Pedro Silva; Alexandre F. Leitão

    2013-01-01

    Bacterial cellulose (BC) is characterized for its high water holding capacity, high crystallinity, an ultrafine fiber network and high tensile strength. This work demonstrates the production of a new interpenetrated polymer network nanocomposite obtained through the incorporation of poly(vinyl alcohol) (PVA) on the BC matrix and evaluates the effect of oven drying on the morphological, mechanical and mass transfer properties of the composite membranes. Both the addition of PVA and oven drying...

  7. Ethanol production from molasses by immobilized cells of zymomonas mobilis EMCC 1546

    International Nuclear Information System (INIS)

    Ethanol production from beet molasses by zymomonas mobilis EMCC 1546 was studied using continuous processes in which immobilized bacterial cells of Z.mobilis EMCC 1546 was grown on both sodium alginate and polyvinyl alcohol(PVA). The fermentation was performed in a shaking incubation and 1-liter ferment or with final working 750 ml. The initial sugar concentration studied was 50, 100,150, 200 and 250 g/l. The results showed that optimum initial sugar for ethanol production was 200 g/l. In batch fermentation, the highest ethanol concentration was 28.50 g/. Also effect of gamma irradiation was studied to enhance ethanol production. The highest ethanol production at dose dose 0.25 kGy was 34.82 g/l. The results showed that continuous fermentation, at dilution rate 1.36 (I/h), helped to increase the ethanol production significantly and continuous fermentation with immobilized cells in alginate gave higher ethanol production, 35.8 (g/I), as compared with those immobilized in hydrogel (PVA)

  8. Ethanol Production from Hydrothermally-Treated Biomass from West Africa

    DEFF Research Database (Denmark)

    Bensah, Edem C.; Kádár, Zsófia; Mensah, Moses Y.

    2015-01-01

    Despite the abundance of diverse biomass resources in Africa, they have received little research and development focus. This study presents compositional analysis, sugar, and ethanol yields of hydrothermal pretreated (195 degrees C, 10 min) biomass from West Africa, including bamboo wood, rubber...... wood, elephant grass, Siam weed, and coconut husk, benchmarked against those of wheat straw. The elephant grass exhibited the highest glucose and ethanol yields at 57.8% and 65.1% of the theoretical maximums, respectively. The results show that the glucose yield of pretreated elephant grass was 3.......5 times that of the untreated material, while the ethanol yield was nearly 2 times higher. Moreover, the sugar released by the elephant grass (30.8 g/100 g TS) was only slightly lower than by the wheat straw (33.1 g/100 g TS), while the ethanol yield (16.1 g/100 g TS) was higher than that of the straw (15...

  9. Bacteria engineered for fuel ethanol production: current status

    Energy Technology Data Exchange (ETDEWEB)

    Dien, B.S.; Cotta, M.A. [National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL (United States); Jeffries, T.W. [Inst. for Microbial and Biochemical Technology, Forest Service, Forest Products Lab., USDA, Madison, WI (United States)

    2004-07-01

    The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing microorganisms capable of fermenting sugars not fermentable by brewers' yeast. The most significant of these is xylose. The greatest successes have been in the engineering of gram-negative bacteria: Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis. E. coli and K. oxytoca are naturally able to use a wide spectrum of sugars, and work has concentrated on engineering these strains to selectively produce ethanol. Z. mobilis produces ethanol at high yields, but ferments only glucose and fructose. Work on this organism has concentrated on introducing pathways for the fermentation of arabinose and xylose. The history of constructing these strains and current progress in refining them are detailed in this review. (orig.)

  10. Economic Impact of NMMO Pretreatment on Ethanol and Biogas Production from Pinewood

    OpenAIRE

    Marzieh Shafiei; Keikhosro Karimi; Hamid Zilouei; Taherzadeh, Mohammad J.

    2014-01-01

    Processes for ethanol and biogas (scenario 1) and biomethane (scenario 2) production from pinewood improved by N-methylmorpholine-N-oxide (NMMO) pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3) and biomethane (scenario 4) production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products inclu...

  11. The Development of Materials for the Production of Hydrogen from Bio-ethanol

    Institute of Scientific and Technical Information of China (English)

    Pilar; Ramírez; de; la; Piscina; Narcís; Homs

    2007-01-01

    1 Results There is an increased interest in the hydrogen production from renewable sources. In this context, recently, numerous studies which use ethanol for hydrogen production have appeared. Ethanol is easily handled, non-toxic, and it can be obtained from biomass. The steam-reforming of bioethanol has been shown to beeffective for hydrogen production:C2H5OH + 3 H2O  6 H2 + 2 CO2. Six moles of hydrogen can be yielded for each mole of ethanol reacted. However, depending on the catalyst used, other und...

  12. Cauliflower waste incorporation into cane molasses improves ethanol production using Saccharomyces cerevisiae MTCC 178

    OpenAIRE

    Dhillon, Gurpreet Singh; Bansal, Sunil; Oberoi, Harinder Singh

    2007-01-01

    Diluted cane molasses having total sugar and reducing sugar content of 9.60 and 3.80% (w/v) respectively was subjected to ethanol production by Saccharomyces cerevisiae MTCC 178. Incorporation of dried Cauliflower Waste (CW) in molasses at the level of 15 % increased ethanol production by nearly 36 % compared to molasses alone. Addition of 0.2 % yeast extract improved ethanol production by nearly 49 % as compared to molasses alone. When the medium containing diluted molasses and 0.2 % yeast e...

  13. The potential of C4 grasses for cellulosic biofuel production

    NARCIS (Netherlands)

    Weijde, van der R.T.; Alvim Kamei, C.L.; Torres Salvador, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M.

    2013-01-01

    With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potent

  14. Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass

    NARCIS (Netherlands)

    Luque, Moreno L.; Westerhof, R.J.M.; Rossum, van G.; Oudenhoven, S.R.G; Kersten, S.R.A.; Berruti, F.; Rehmann, L.

    2014-01-01

    This paper evaluates a novel biorefinery approach for the conversion of lignocellulosic biomass from pinewood. A combination of thermochemical and biochemical conversion was chosen with the main product being ethanol. Fast pyrolysis of lignocellulosic biomasss with fractional condensation of the pro

  15. The composition and impact of stakeholders' agendas on US ethanol production

    International Nuclear Information System (INIS)

    This paper aims to identify the macro-environmental dimensions under which journalists, scientists and policy-makers have framed the liquid biofuels in the US over time. The number of publications concerning liquid biofuels from mass media, scientific community and government with ethanol production are correlated, seeking for causality between ethanol production and those stakeholders' agendas. Text-mining techniques were used to explore 2016 mass-media news sources, 455 scientific papers and 854 government documents published between 1997 and 2006. Granger-causality tests were performed to analyse the causality concerning stakeholders' agendas. The results indicate that scientists emphasise environmental, agronomic and technological matters, while journalists are more interested in covering economic, environmental, geopolitical and political issues. Although policies on this subject appear to be more in line with science, the trend analysis indicates that the mass media are gaining prominence amongst policy-makers. The causation analysis suggests that ethanol production and public policy present a bi-directional causality at t-2 time lag. At t-1 time lag, ethanol production precedes the publication of scientific documents, which present a bi-directional causality with public policy on ethanol and precedes the mass-media news. In conclusion, ethanol production precedes the presence of liquid biofuels on the agendas of scientists, journalists and policy-makers. - Highlights: ► Composition and impact of stakeholders' agendas on ethanol production were analysed. ► 3325 documents published between 1997 and 2006 were text mined. ► Government agenda and ethanol production present a bi-directional causality. ► Science has played an advisory role in policy-making. ► Ethanol production precedes the stakeholders' agendas.

  16. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon [College of Pharmacy, Yeungnam University, Gyeongsanbuk-do 712-749 (Korea, Republic of); Kim, Sang-Hyun [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Park, Pil-Hoon, E-mail: parkp@yu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsanbuk-do 712-749 (Korea, Republic of)

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  17. Mapping grasslands suitable for cellulosic biofuels in the Greater Platte River Basin, United States

    Science.gov (United States)

    Wylie, Bruce K.; Gu, Yingxin

    2012-01-01

    Biofuels are an important component in the development of alternative energy supplies, which is needed to achieve national energy independence and security in the United States. The most common biofuel product today in the United States is corn-based ethanol; however, its development is limited because of concerns about global food shortages, livestock and food price increases, and water demand increases for irrigation and ethanol production. Corn-based ethanol also potentially contributes to soil erosion, and pesticides and fertilizers affect water quality. Studies indicate that future potential production of cellulosic ethanol is likely to be much greater than grain- or starch-based ethanol. As a result, economics and policy incentives could, in the near future, encourage expansion of cellulosic biofuels production from grasses, forest woody biomass, and agricultural and municipal wastes. If production expands, cultivation of cellulosic feedstock crops, such as switchgrass (Panicum virgatum L.) and miscanthus (Miscanthus species), is expected to increase dramatically. The main objective of this study is to identify grasslands in the Great Plains that are potentially suitable for cellulosic feedstock (such as switchgrass) production. Producing ethanol from noncropland holdings (such as grassland) will minimize the effects of biofuel developments on global food supplies. Our pilot study area is the Greater Platte River Basin, which includes a broad range of plant productivity from semiarid grasslands in the west to the fertile corn belt in the east. The Greater Platte River Basin was the subject of related U.S. Geological Survey (USGS) integrated research projects.

  18. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  19. PRODUCTION OF ANTIBACTERIAL FILTER PAPER FROM WOOD CELLULOSE

    Directory of Open Access Journals (Sweden)

    Reza Imani

    2011-02-01

    Full Text Available Paper has a visible market-share in hygiene products either in the form of personal hygiene or as food packaging. The designation “hygiene”, though it suggests cleanliness, does not imply antibacterial properties; rather it can be stated that hygiene products do not initiate microorganism growth. Antibacterial products could restrict propagation of pathogenic bacteria either by holding bacteria or by trapping and neutralizing them. Most research in this field has been conducted using textile fibers as a substrate, but the present work uses paper instead. The objective was to produce an antibacterial filter paper capable of trapping and neutralizing pathogenic microorganisms using wood fibers. To produce antibacterial paper, chitosan and nanosilver capped with PAA (polyacrylic acid were deposited on the fiber surface using a layer-by-layer technique. Samples for the tests were prepared from refined bleached softwood (RBSW kraft pulp. The deposition of antibacterial agents on fiber as well as paper were monitored using a zeta potential analyzer (ZPA, scanning electron microscopy (SEM, and Fourier transform infrared spectroscopy (FTIRS. The minimum requirement for deposition of the agents was a multilayer comprised of eight alternating layers. The deposition onto fiber or paper had no effect on tensile strength or the pore structure of the substrate.

  20. Cauliflower waste incorporation into cane molasses improves ethanol production using Saccharomyces cerevisiae MTCC 178.

    Science.gov (United States)

    Dhillon, Gurpreet Singh; Bansal, Sunil; Oberoi, Harinder Singh

    2007-12-01

    Diluted cane molasses having total sugar and reducing sugar content of 9.60 and 3.80% (w/v) respectively was subjected to ethanol production by Saccharomyces cerevisiae MTCC 178. Incorporation of dried Cauliflower Waste (CW) in molasses at the level of 15 % increased ethanol production by nearly 36 % compared to molasses alone. Addition of 0.2 % yeast extract improved ethanol production by nearly 49 % as compared to molasses alone. When the medium containing diluted molasses and 0.2 % yeast extract was supplemented with 15 % CW, 29 % more ethanol was produced compared to molasses with 0.2 % yeast extract. Cell biomass, ethanol production, final ethanol concentration and fermentation efficiency of 2.65 mg mL(-1), 41.2 gL(-1), 0.358 gg(-1) and 70.11 % respectively were found to be best at 15% CW supplementation level besides reduction in fermentation time but further increase in CW level resulted in decline on account of all the above parameters. This is probably the first report to our knowledge, in which CW was used in enhancing ethanol production significantly using a small quantity of yeast extract. PMID:23100689