WorldWideScience

Sample records for cellulose triacetate membranes

  1. Cellulose triacetate doped with ionic liquids for membrane gas separation

    Science.gov (United States)

    Lam, Benjamin Fatt Soon

    The doping of cellulose triacetate (CTA) with imidazolium based ionic liquids (ILs) is investigated in order to reduce the polymer crystallinity and enhance the affinity with CO2, thus increasing CO2 permeability and CO2/light gas selectivity. CTA membranes doped with [emim] BF4 or [emim] DCA were prepared, and the effect of the ILs loading on properties, such as crystallinity, density, degradation temperature, glass transition temperature, and gas transport properties, has been determined. In general, doping with IL reduces the crystallinity in CTA, increasing gas solubility, diffusivity and permeability. The ILs doping also increases CO 2/CH4 solubility selectivity and CO2/N2 permeability selectivity, due to the affinity of these ILs with CO2, instead of light gases such as CH4 and N2. This study provides a mechanistic understanding of interaction of ILs and CTA, and demonstrates an effective route in manipulating the morphology and gas transport properties of semi crystalline polymers by doping with ILs.

  2. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos-Rodriguez, R. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Montero-Cabrera, M.E., E-mail: elena.montero@cimav.edu.mx [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Esparza-Ponce, H.E.; Herrera-Peraza, E.F. [Centro de Investigacion en Materiales Avanzados, Miguel de Cervantes 120, Compl. Ind. Chihuahua, CP 31109, Chihuahua, Chih. (Mexico); Ballinas-Casarrubias, M.L. [Facultad de Ciencias Quimicas, Universidad Autonoma de Chihuahua, Nuevo Campus s/n, Chihuahua, Chih. (Mexico)

    2012-05-15

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6-8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35{+-}7%. Chemical speciation indicates the presence of (UO{sub 2}){sub 2}CO{sub 3}(OH){sub 3}{sup -}, UO{sub 2}CO{sub 3}, UO{sub 2}(CO{sub 3}){sub 2}{sup 2-} and Fe{sub 2}O{sub 3}(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: Black-Right-Pointing-Pointer Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. Black-Right-Pointing-Pointer Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. Black-Right-Pointing-Pointer Rejection is performed by a hybrid mechanism regulated by AC adsorption. Black-Right-Pointing-Pointer Uranium and iron speciation and predominance determines the adsorption in the membrane.

  3. Uranium removal from water using cellulose triacetate membranes added with activated carbon

    International Nuclear Information System (INIS)

    Ultrafiltration removal of uranium from water, with composite activated carbon cellulose triacetate membranes (AC-CTA), was investigated. The filtrate was provided by uraninite dissolution with pH=6–8. Removal efficiencies were calculated measuring solutions' radioactivities. Membranes were mainly characterized by microscopy analysis, revealing iron after permeation. Uranyl removal was 35±7%. Chemical speciation indicates the presence of (UO2)2CO3(OH)3−, UO2CO3, UO2(CO3)22− and Fe2O3(s) as main compounds in the dissolution, suggesting co-adsorption of uranium and iron by the AC during filtration, as the leading rejection path. - Highlights: ► Cellulose triacetate (CTA) and activated carbon (AC) composite membranes were suitable for uranium removal. ► Up to 35% of uranium from low concentrated solutions was rejected by ultrafiltration. ► Rejection is performed by a hybrid mechanism regulated by AC adsorption. ► Uranium and iron speciation and predominance determines the adsorption in the membrane.

  4. Resolution of Dialyzer Membrane-Associated Thrombocytopenia with Use of Cellulose Triacetate Membrane: A Case Report

    OpenAIRE

    Feyisayo Olafiranye; Win Kyaw; Oladipupo Olafiranye

    2011-01-01

    Blood and dialyzer membrane interaction can cause significant thrombocytopenia through the activation of complement system. The extent of this interaction determines the biocompatibility of the membrane. Although the newer synthetic membranes have been shown to have better biocompatibility profile than the cellulose-based membranes, little is known about the difference in biocompatibility between synthetic membrane and modified cellulose membrane. Herein, we report a case of a patient on hemo...

  5. Ion Transport across a Polyelectrolyte-Adsorbed Cellulose Triacetate Membrane in the Multicomponent Ionic Systems.

    Science.gov (United States)

    Murata; Tanioka

    1999-01-15

    The effects of polyelectrolyte adsorption by cellulose triacetate (CTA) membrane on ionic transport are investigated in two systems: the three-ionic-component system and the multicomponent-ionic system. In the three-ionic-component system, the permeabilities of two anions are affected by the competitive ion. Especially in the case of the albumin-adsorbed CTA membrane, there exists much greater specificity for the permeability of SO2-4 than in the case of the lysozyme-adsorbed membrane. On the other hand, in the case of the PAS-H(10L)(polydiallyldimethylammonium chloride)-adsorbed membrane, the permeability coefficient of HPO2-4 increases, though there exists the effect of a competitive ion. In a multicomponent-ionic system, the logarithmic permeability coefficient ratios (rP) of each ion in an adsorbed membrane to that in a nonadsorbed membrane decreased by PAS-H(10L) adsorption for all cations. The rP of bivalent cations decreased more than those of univalent cations because of the rejection from the positively charged adsorbed layer. On the other hand, the permeabilities slightly increase because of the attraction from the PAS-H(10L)-adsorbed layer when competitive anions exist among them. Furthermore, the increase in the HPO2-4 permeability is confirmed by PAS-H(10L)-adsorption on a CTA membrane for a case very similar to the actual anion multicomponent system. These are the most important results in the application for an approach to phosphate extraction from blood across an artificial kidney membrane. Copyright 1999 Academic Press. PMID:9885263

  6. Transport of lanthanide ions through cellulose triacetate membranes containing hinokitiol and flavonol as carriers. [beta-isopropyltropolone and 3-hydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Sugiura, Masaaki (National Chemical Lab. for Industry, Ibaraki (Japan))

    Fluxes of trivalent lanthanide ions across cellulose triacetate membranes were determined by using hinokitiol (HIPT) and flavonol (HFL) as carriers. The transport of the lanthanides was coupled to flow of hydrogen ions. The effects added anion and the pH in the source phase, and the plasticizer incorporated in the membrane on the lanthanide flux, were examined. In the case of HIPT, the fluxes for the lanthanides from samarium to lutetium were much higher than those for lanthanum to neodymium. In the transport using HFL, the flux increased with decreasing ionic radius of the lanthanide species. The addition of perchlorate of thiocyanate ions to the source phase resulted in a rise in the lanthanide flux. With decreased in pH difference between the aqueous phases, the fluxes using HIPT decreased gradually while those using HFL decreased rapidly. The flux was affected by the type of plasticizer added to the membrane.

  7. Organic fouling of thin-film composite polyamide and cellulose triacetate forward osmosis membranes by oppositely charged macromolecules.

    Science.gov (United States)

    Gu, Yangshuo; Wang, Yi-Ning; Wei, Jing; Tang, Chuyang Y

    2013-04-01

    Fouling of cellulose triacetate (CTA) and thin-film composite (TFC) forward osmosis (FO) membranes by organic macromolecules were studied using oppositely charged lysozyme (LYS) and alginate (ALG) as model foulants. Flux performance and foulant deposition on membranes were systematically investigated for a submerged membrane system. When an initial flux of 25 L/m(2)h was applied, both flux reduction and foulant mass deposition were severe for feed water containing the mixture of LYS and ALG (e.g., 50% LYS and 50% ALG at a total foulant concentration of 100 mg/L). In comparison, fouling was much milder for feed water containing either LYS or ALG alone. Compared to the CTA FO membrane, the TFC FO membrane showed greater fouling propensity under mild FO fouling conditions due to its much rougher surface. Nevertheless, under severe FO fouling conditions, fouling was dominated by foulant-deposited-foulant interaction and membrane surface properties played a less important role. Furthermore, when the feed water contained both LYS and ALG in sufficient amount, the deposited cake layer foulant composition (i.e., the LYS/ALG mass ratio) was not strongly affected by membrane types (CTA versus TFC) nor testing modes (pressure-driven NF mode versus osmosis-driven FO mode). In contrast, solution chemistry such as pH and calcium concentration had remarkable effect on the cake layer composition due to their effects on foulant-foulant interaction. PMID:23384517

  8. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.

    Science.gov (United States)

    Wang, Xinhua; Zhao, Yanxiao; Yuan, Bo; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-02-01

    There are two types of popular forward osmosis (FO) membrane materials applied for researches on FO process, cellulose triacetate (CTA) and thin film composite (TFC) polyamide. However, performance and fouling mechanisms of commercial TFC FO membrane in osmotic membrane bioreactors (OMBRs) are still unknown. In current study, its biofouling behaviors in OMBRs were investigated and further compared to the CTA FO membrane. The results indicated that β-D-glucopyranose polysaccharides and microorganisms accounted for approximately 77% of total biovolume on the CTA FO membrane while β-D-glucopyranose polysaccharides (biovolume ratio of 81.1%) were the only dominant biofoulants on the TFC FO membrane. The analyses on the biofouling structure implied that a tighter biofouling layer with a larger biovolume was formed on the CTA FO membrane. The differences in biofouling behaviors including biofoulants composition and biofouling structure between CTA and TFC FO membranes were attributed to different membrane surface properties. PMID:26700758

  9. Effect of polyoxyethylene n-alkyl ethers on carrier-mediated transport of lanthanide ions through cellulose triacetate membranes

    International Nuclear Information System (INIS)

    Fluxes of 14 kinds of lanthanides across cellulose triacetate membranes were determined by using mixtures of o-nitrophenyl n-octyl ether and a series of polyoxythylene n-alkyl ethers (POE ethers) as plasticizers, and hinokitiol as carrier. Effects of alkyl and polyoxyethylene (POE) chains of POE ether on the flux were demonstrated. The transport of the lanthanides was coupled to a flow of hydrogen ions. The POE ethers used [CnH2n+1(OCH2CH2)xOH, referred to as CnEx] were C10E3, C12E3, C14E3, C16E3, C12E2, C12E4, C12E6 and C12E8, In all cases, high fluxes were observed for the lanthanides from samarium to lutetium. On the contrary, the fluxes for lanthanum to neodymium were extremely low. In experiments testing the effect of the alkyl chain, the order of the POE ethers in the lanthanide flux for samarium to lutetium was C12E3 > C10E3 > C14E3 >C16E3. In experiments testing the effect of the POE chain, the flux decreased with an increase in the chain length

  10. Preparation and properties of cellulose triacetate forward osmosis membrane%三乙酸纤维素正渗透膜的制备与性能

    Institute of Scientific and Technical Information of China (English)

    解利昕; 辛婧; 解奥

    2014-01-01

    Cellulose triacetate based membranes for forward osmosis were prepared by immersion precipitation. The polymer solution consisted of cellulose triacetate as the membrane material, 1,4-dioxane and acetone as solvent,methanol and lactic acid as additives. Casting composition and preparation conditions-1,4-dioxane/acetone ratio,lactic acid content,evaporation time,casting thickness and annealing temperature-were tested for their effects on membrane performance. The optimized membrane showed 14.10L/(m2·h) water flux and 0.031mol/(m2·h) reverse solute flux using a feed solution of pure water and draw solution of 0.56mol/L CaCl2. When 0.1mol/L NaCl was used as the feed solution and 4mol/L glucose was used as the draw solution,water flux was above 5L/(m2·h) and rejection for NaCl was above 99%. The optimized membrane had a more hydrophilic surface, higher water flux,higher salt resistance and better membrane performance than the HTI membrane.%以三乙酸纤维素(CTA)为膜材料,1,4-二氧六环、丙酮为溶剂,甲醇、乳酸为添加剂,采用相转换法制备了三乙酸纤维素正渗透膜。研究了不同1,4-二氧六环/丙酮配比、添加剂乳酸含量、挥发时间、膜厚度、热处理温度条件下正渗透膜性能的变化规律。研究表明,当采用纯水为原料液,0.56mol/L CaCl2为汲取液时,优化制备的CTA正渗透膜的水通量达到14.10L/(m2·h),溶质反扩散量为0.031mol/(m2·h);采用0.1mol/L NaCl为原料液,4mol/L葡萄糖为汲取液时,优化制备的CTA正渗透膜的水通量保持在5L/(m2·h)以上,对NaCl的截留率大于99%。CTA正渗透膜相比于HTI膜,具有较高的亲水性、水通量、截留率,稳定性更好。

  11. The study of using tinted cellulose triacetate as a routine dosimeter

    International Nuclear Information System (INIS)

    Full text: Tinted cellulose triacetate films are prepared by mixing cellulose triacetate with pH indicators to serve as a dosimeter to monitor the exposure to gamma irradiation. The response of cellulose triacetate films exposed to 1-70 kGy of gamma irradiation was analyzed by UV-VIS Spectrophotometer. Results demonstrated that cellulose triacetate films tinted with quinaldine red showed the best response to gamma irradiation as the color changed from dark to pale pink. Using UV-VIS Spectrophotometer, the absorbance of the cellulose triacetate film before gamma irradiation was relatively stable for two months. After irradiation, the stability decreased to 6 days when films were stored in darkroom and 3 hours in UV protection room. In conclusion, tinted cellulose triacetate films showed good response to gamma irradiation and can be used as a routine dosimeter

  12. Cellulose triacetate based novel optical sensor for uranium estimation

    International Nuclear Information System (INIS)

    A cellulose triacetate (CTA) based optode has been developed by immobilizing tricapryl-methyl ammonium chloride (Aliquat 336) as the extractant and 2-(5-bromo-2-pyridylazo)-5- diethyl-aminophenol (Br-PADAP) as the chromophore. The optode changes color (from yellow to magenta) due to uranium uptake in bicarbonate medium (∼10-4 M) at pH 7-8 in the presence of triethanolamine (TEA) buffer. The detection limit of the optode film (dimension: 3 cm x 1 cm) was determined to be ∼0.3 μg/mL for a 15 mL pure uranium sample at pH 7-8 (in TEA buffer). The effects of experimental parameters have been evaluated in terms of maximum uptake of U(VI), minimum response time, and reproducibility and stability of the Br-PADAP-U(VI ) complex formed in the optode matrix. The applicability of the optimized optode has been examined in the effluent samples obtained during magnesium diuranate precipitation step following the TBP purification cycle. (authors)

  13. Cellulose triacetate films obtained from sugarcane bagasse: Evaluation as coating and mucoadhesive material for drug delivery systems.

    Science.gov (United States)

    Ribeiro, Sabrina Dias; Guimes, Rodrigues Filho; Meneguin, Andréia Bagliotti; Prezotti, Fabíola Garavello; Boni, Fernanda Isadora; Cury, Beatriz Stringhetti Ferreira; Gremião, Maria Palmira Daflon

    2016-11-01

    Cellulose triacetate (CTA) films were produced from cellulose extracted from sugarcane bagasse. The films were characterized using scanning electron microscopy (SEM), water vapor permeability (WVP), mechanical properties (MP), enzymatic digestion (ED), and mucoadhesive properties evaluation (MPE). WVP showed that more concentrated films have higher values; asymmetric films had higher values than symmetric films. MP showed that symmetric membranes are more resistant than asymmetric ones. All films presented high mucoadhesiveness. From the WVP and MP results, a symmetric membrane with 6.5% CTA was selected for the coating of gellan gum (GG) particles incorporating ketoprofen (KET). Thermogravimetric analysis (TGA) showed that the CTA coating does not influence the thermal stability of the particles. Coated particles released 100% of the KET in 24h, while uncoated particles released the same amount in 4h. The results highlight the CTA potential in the development of new controlled oral delivery systems. PMID:27516328

  14. Mortality of workers exposed to methylene chloride employed at a plant producing cellulose triacetate film base.

    OpenAIRE

    Tomenson, J A; Bonner, S M; Heijne, C G; Farrar, D G; Cummings, T F

    1997-01-01

    OBJECTIVE: To study mortality among 1785 employees of a factory that produced cellulose triacetate film base at Brantham in the United Kingdom. Also, to investigate patterns of mortality after exposure to methylene chloride; in particular, mortality from liver and biliary tract cancer, lung cancer, pancreatic cancer, and cardiovascular disease. SUBJECTS AND METHODS: All male employees with a record of employment at the film factory in 1946-88. A total of 1473 subjects worked in jobs that enta...

  15. Spatial distribution of defects created along the trajectory of an ion in cellulose triacetate

    International Nuclear Information System (INIS)

    The study of the triacetate as a solid trace detector shows the importance of the morphology of the trace (latent and/or revealed). The spatial distribution of defects created along the trajectory of an ion is demonstrated by electron microscopy and by the proposition of a theoretical model based on the study of the cellulose radicals created. Then the structure of the zone perturbed by an ion is given

  16. The effect of UV radiation on the thermal degradation of cellulose triacetate

    International Nuclear Information System (INIS)

    The effect of UV radiation on the thermal degradation of cellulose triacetate (CTA) has been investigated. Simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been performed on CTA samples of 0.25 mm thickness. These samples were exposed to different energy fluences of UV in the range 2.3-113 kJ/cm2. The specific heat capacity, Cp, has been evaluated for unexposed and exposed CTA samples using DSC method. The results indicate that the transition temperatures, onset temperatures of evaporation, specific heat capacity and the thermal activation energy of decomposition, Ea are affected by the UV energy fluence owing to the simultaneous processes of degradation and crosslinking

  17. Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films

    Directory of Open Access Journals (Sweden)

    Laura Alicia Manjarrez Nevárez, Lourdes Ballinas Casarrubias, Alain Celzard, Vanessa Fierro, Vinicio Torres Muñoz, Alejandro Camacho Davila, José Román Torres Lubian and Guillermo González Sánchez

    2011-01-01

    Full Text Available We have prepared all-biopolymer nanocomposite films using lignin as a filler and cellulose triacetate (CTA as a polymer matrix, and characterized them by several analytical methods. Three types of lignin were tested: organosolv, hydrolytic and kraft, with or without acetylation. They were used in the form of nanoparticles incorporated at 1 wt% in CTA. Self-supported films were prepared by vapor-induced phase separation at controlled temperature (35–55 °C and relative humidity (10–70%. The efficiency of acetylation of each type of lignin was studied and discussed, as well as its effects on film structure, homogeneity and mechanical properties. The obtained results are explained in terms of intermolecular filler-matrix interaction at the nanometer scale, for which the highest mechanical resistance was reached using hydrolytic lignin in the nanocomposite.

  18. Determination of Calibration Factor of Cellulose Triacetate (CTA) as Film Dosimeter in ALURTRON

    International Nuclear Information System (INIS)

    Determination of calibration curve run for each new film to authorize the use of reaction factor in order to fulfill the specifications. This time, this determination was done using the old film coil( CTA200901) as well as a new film coil( CTA201101) made of cellulose triacetate with nominal thickness, 125μm. Approximately, 30 pieces of sample CTA200901 CTA film was cut shortly into 18 pieces same as CTA201101 as used as a comparison. These samples were tested under 1-3 MeV electron-powered and using as low as 1 mA that brings into 20-100 kGy. Distance from Irradiation Window to sample was set at 20 cm and 30 cm. Dose uptake obtained is analyzed using a UV spectrophotometer for optical density. Optical density value is obtained later and graph was plotted in order to get their gradient. This gradient finally compared with graph gradient, k factor, 0.0063. Adjustments will be made based on the acquisition of k factors is that the data is obtained in analyzes using the film of the same curve gives a more precise value. (author)

  19. Development of wet-dry reversible reverse osmosis membrane with high performance from cellulose acetate and cellulose triactate blend

    NARCIS (Netherlands)

    Vasarhelyi, K.; Ronner, J.A.; Mulder, M.H.V.; Smolders, C.A.

    1987-01-01

    Wet-dry reversible membrane were prepared bt a two-step coagulation procedure. A cast film containing a blend of cellulose triacetate as polymers, dioxane and acetone as solvents and maleic acid and methanol as additives was immersed consecutively in two aqueous coagulation baths, the first bath bei

  20. Reliable dn/dc Values of Cellulose, Chitin, and Cellulose Triacetate Dissolved in LiCl/N,N-Dimethylacetamide for Molecular Mass Analysis.

    Science.gov (United States)

    Ono, Yuko; Ishida, Takashi; Soeta, Hiroto; Saito, Tsuguyuki; Isogai, Akira

    2016-01-11

    Freeze-dried microfibrillated cellulose (MFC) was directly dissolved in 8.0% w/w lithium chloride/N,N-dimethylacetamide (LiCl/DMAc), and MFC/LiCl/DMAc solutions with accurate MFC concentrations were prepared. The different MFC solutions were diluted to 1.0% and 0.5% w/v LiCl/DMAc, and subjected to size-exclusion chromatography with multiangle laser-light scattering and refractive index analyses (SEC/MALLS/RI), and off-line RI analysis to determine their refractive index increments (dn/dc). Chitin, cellulose triacetate, a poly(styrene) standard, and cellobiose were used for comparison. Each of the two determination methods gave different dn/dc values for MFC and chitin but similar dn/dc values for cellulose triacetate and poly(styrene). The anomalously small dn/dc values of MFC and chitin were explainable in terms of stable cellulose-LiCl and chitin-LiCl structures (i.e., formation of apparent covalent bonds between hydroxyl groups and LiCl) in the solutions. Thus, the SEC/MALLS/RI method provides reliable molecular mass parameters for cellulose and chitin. PMID:26618937

  1. Study of the properties of cellulose triacetate foils used as solid-state track detectors for neutrons

    International Nuclear Information System (INIS)

    The properties of cellulose triacetate foils have been studied in connection with the use as solid-state track detectors for neutrons. For determining the sensitivity it is necessary to know the energy losses in the detector material, the track etching rate, and the angular dependence of the particle tracks. The critical energy loss for α particles was 160 KeV/μm, the mean etching rate of the α particle tracks was 12.5 μm/h, and the critical value of the angle between the detector surface and the α particle tracks was 32.20. The registration probability of neutron-induced α particles from the LiF radiator was 0.68

  2. Uridine Triacetate

    Science.gov (United States)

    ... much of chemotherapy medications such as fluorouracil or capecitabine (Xeloda) or who develop certain severe or life-threatening toxicities within 4 days of receiving fluorouracil or capecitabine. Uridine triacetate is in a class of medications ...

  3. High-energy-ion-irradiation effects on polymer materials: Pt. 3. The sensitivity of cellulose triacetate and poly(methyl methacrylate)

    International Nuclear Information System (INIS)

    The changes in sensitivity of a cellulose triacetate (CTA) film dosimeter is reported as a function of linear energy transfer (LET). The change in molecular weight of poly(methyl methacrylate) (PMMA) is also reported. For both materials, little or no LET effect was observed up to a threshold LET, but the sensitivity or radiation yield decreased with increasing LET above this threshold level. The threshold LET level was similar for both polymers, occurring at around a few hundreds of MeV cm2 g-1, with this level probably corresponding to the overlapping of spurs along the ion's path. (Author)

  4. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  5. Testing zinc chloride as a new catalyst for direct synthesis of cellulose di- and tri-acetate in a solvent free system under microwave irradiation.

    Science.gov (United States)

    El Nemr, Ahmed; Ragab, Safaa; El Sikaily, Amany

    2016-10-20

    This research demonstrates the effect of ZnCl2 as a catalyst on the esterification of commercial cotton cellulose using acetic anhydride in order to obtain di- and tri-cellulose acetates under microwave irradiation. It was discovered that microwave irradiation significantly increased the yield and reduced the reaction time. It was found that the maximum yield for cellulose triacetates was 95.83% under the reaction conditions that were as follows: 3min reaction time, 200mg of ZnCl2 catalyst and 20ml of Ac2O for 5g cellulose. However, the cellulose acetate obtained in this manner had the highest DS (2.87). The cellulose di-acetate was produced with the maximum yield of 89.97% and with the highest DS (2.69) using 25ml Ac2O, 200mg of ZnCl2 for 5g cellulose and in 3min reaction time. The effect of some factors such as the amount of used catalyst, the quantity of acetic acid anhydride and the reaction time of the esterification process have been investigated. The production of di- and tri-cellulose acetate and the degree of substitution were confirmed using Fourier-transform infrared (FTIR) and nuclear magnetic resonance (NMR). The thermal stability was investigated using thermo gravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The molecular weight and the degree of polymerization were obtained using Gel Permeation Chromatography (GPC). The analysis confirmed the successful synthesis of di- and tri-cellulose acetate without degradation during the reaction; these results were found to be in contrast to some recent studies. The present study reveals that ZnCl2 is a new catalyst; it is effective as well as inexpensive and is a low toxicity catalyst for usage in cellulose esterification. PMID:27474655

  6. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  7. Formation of asymmetric cellulose acetate membranes

    NARCIS (Netherlands)

    Bokhorst, H.; Altena, F.W.; Smolders, C.A.

    1981-01-01

    Cellulose acetate membranes were prepared from casting solutions containing dioxane as a solvent and varying concentrations (up to 6%) of maleic acid as an additive. Coagulation took place in water at different temperatures. The effect of these variables on membrane structure and membrane properties

  8. POLYETHERSULFONE COMPOSITE MEMBRANE BLENDED WITH CELLULOSE FIBRILS

    Directory of Open Access Journals (Sweden)

    Ping Qu

    2010-09-01

    Full Text Available Polyethersulfone (PES is a common material used for ultrafiltration (UF membranes, which has good chemical resistance, high mechanical properties, and wide temperature tolerances. The hydrophobic property of the PES membrane seriously limits its application. Cellulose fibrils are composed of micro-sized and nano-sized elements, which have high hydrophilicity, strength, and biodegradation. A composite membrane was prepared by the phase inversion induced by an immersion process. The characteristics of the composite membrane were investigated with Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA, and atomic force microscopy (AFM. The pure water flux of the composite membrane increased dramatically with the increase of cellulose firbils. Mean pore size and porosity were significantly increased. Both mechanical properties and hydrophilicity were enhanced due to the addition of the cellulose firbils.

  9. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, S.

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  10. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  11. Process of treating cellulosic membrane and alkaline with membrane separator

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The improvement of water-soluble cellulose ether membranes for use as separators in concentrated alkaline battery cells is discussed. The process of contacting membranes with an aqueous alkali solution of concentration less than that of the alkali solution to be used in the battery but above that at which the membrane is soluble is described.

  12. Preparation of membranes from cellulose obtained of sugarcane bagasse

    International Nuclear Information System (INIS)

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  13. Cellulose-Based Membranes for Solutes Fractionation

    Science.gov (United States)

    Anokhina, T. S.; Yushkin, A. A.; Volkov, V. V.; Antonov, S. V.; Volkov, A. V.

    This work was focused on investigation of industrial cellophane film as a membrane material for solvent nanofiltration. The effect of conditioning of cellophane membranes by stepwise changing of composition of ethanol-water binary mixtures (from ethanol to water and from water to ethanol) was studied. It was shown that such treatment leads to an increase of ethanol permeability more than two orders of magnitude over initial untreated film samples. Treated cellophane membranes possess the ethanol permeability coefficient comparable with the values for highly permeability glassy polymers. Investigation of cellophane swelling in water ethanol solutions allowed to conclude that during the treatment formation of porous in the film takes place due to increase of inter chain distances. Observed high ethanol permeability connected with the fact that formed porous structure remains after the replacement of water with ethanol. Also it was shown that rejection coefficients of a number of dyes (MW 350) were in good agreement with the degree of hydrophobicity/hydrophilicity and ability of the solvent to form hydrogen bonding with the solute molecules. It was demonstrated that cellulose-based membranes can be complimentary for other type of the membranes in fractionation of multi-components solutions.

  14. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  15. Cellulose microfibril deposition: coordinated activity at the plant plasma membrane

    NARCIS (Netherlands)

    Lindeboom, J.J.; Mulder, B.; Vos, J.W.; Ketelaar, M.J.; Emons, A.M.C.

    2008-01-01

    Plant cell wall production is a membrane-bound process. Cell walls are composed of cellulose microfibrils, embedded inside a matrix of other polysaccharides and glycoproteins. The cell wall matrix is extruded into the existing cell wall by exocytosis. This same process also inserts the cellulose syn

  16. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    Science.gov (United States)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  17. Preparation of succinylated cellulose membranes for functionalization purposes.

    Science.gov (United States)

    Ribeiro-Viana, Renato M; Faria-Tischer, Paula C S; Tischer, Cesar A

    2016-09-01

    The anhydroglucose chains of cellulose possess hydroxyls that facilitate different chemical modification strategies to expand on, or provide new applications for membranes produced by the bacteria Gluconacetobacter xylinus. Conjugation with biomolecules such as proteins, especially by the amine groups, is of great value and interest for the production of biomaterial derivatives from bacterial cellulose. To assist in these modifications, cellulose was succinylated in order to prevent steric hindrance and to create an attachment point for conjugation. Bacterial cellulose membranes were first treated in dichloromethane and reacted with succinic anhydride through a series of conditions. The membrane structure remained intact after these first processes and the product was confirmed by Infra-Red spectroscopy and solid state nuclear magnetic resonance and characterized by X-ray diffraction, thermogravimetry and atomic force microscopy. Hydrolyzed collagen was used as a model protein of interest to be conjugated to these membranes, which furnished a biomaterial functionalized over its surface. PMID:27185111

  18. Self-supported silver nanoparticles containing bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles

  19. Self-supported silver nanoparticles containing bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Barud, Hernane S.; Barrios, Celina; Regiani, Thais; Marques, Rodrigo F.C. [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil); Verelst, Marc; Dexpert-Ghys, Jeannette [Centre d' Elaboration de Materiaux et d' Etudes Structurales, CEMES, UPR No. 8011 - Universite Toulouse III, B.P. 94347, 29 rue Jeanne Marvig, 31055 Toulouse Cedex (France); Messaddeq, Younes [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil); Ribeiro, Sidney J.L. [Institute of Chemistry-UNESP, CP 355, Zip 14801-970, Araraquara, SP, 14801-970 (Brazil)], E-mail: sidney@iq.unesp.br

    2008-05-01

    Hydrated bacterial cellulose (BC) membranes obtained from cultures of Acetobacter xylinum were used in the preparation of silver nanoparticles containing cellulose membranes. In situ preparation of Ag nanoparticles was achieved from the hydrolytic decomposition of silver triethanolamine (TEA) complexes. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns both lead to the observation of spherical metallic silver particles with mean diameter of 8 nm well adsorbed onto the BC fibriles.

  20. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    Directory of Open Access Journals (Sweden)

    D. Darwis

    2012-08-01

    Full Text Available Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in–vitro degradation study in synthetic body fluid (SBF of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure

  1. In-vitro Degradation Behaviour of Irradiated Bacterial Cellulose Membrane

    International Nuclear Information System (INIS)

    Bacterial cellulose membrane synthesized by Acetobacter xylinum in coconut water medium has potential application for Guided bone Regeneration. However, this membrane may not meet some application requirements due to its low biodegradation properties. In this paper, incorporation of gamma irradiation into the membrane is a developed strategy to increase its biodegradability properties. The in-vitro degradation study in synthetic body fluid (SBF) of the irradiated membrane has been analyzed during periods of 6 months by means of weight loss, mechanical properties and scanning electron microscopy observation compared to that the un-irradiated one. The result showed that weight loss of irradiated membrane with 25 kGy and 50 kGy and immersed in SBF solution for 6 months reached 18% and 25% respectively. While un-irradiated membrane did not give significant weight loss. Tensile strength of membranes decreases with increasing of irradiation dose and further decreases in tensile strength is observed when irradiated membrane was followed by immersion in SBF solution. Microscope electron image of cellulose membranes shows that un-irradiated bacterial cellulose membrane consists of dense ultrafine fibril network structures, while irradiation result in cleavage of fibrils network of cellulose. The fibrils network become loosely after irradiated membrane immersed in SBF solution due to released of small molecular weight carbohydrates formed during by irradiation from the structure (author)

  2. Immobilization of Glucose Oxidase on Cellulose/Cellulose Acetate Membrane and its Detection by Scanning Electrochemical Microscope (SECM)

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yi He ZHANG; Zheng Yu YANG

    2004-01-01

    Cellulose/cellulose acetate membranes were prepared and functionalized by introducing amino group on it, and then immobilized the glucose oxidase (Gox) on the functionalizd membrane. SECM was applied for the detection of enzyme activity immobilized on the membrane. Immobilized biomolecules on such membranes was combined with analysis apparatus and can be used in bioassays.

  3. Optically transparent membrane based on bacterial cellulose/polycaprolactone

    Directory of Open Access Journals (Sweden)

    H. S. Barud

    2013-01-01

    Full Text Available Optically transparent membranes from bacterial cellulose (BC/polycaprolactone (PCL have been prepared by impregnation of PCL acetone solution into dried BC membranes. UV-Vis measurements showed an increase on transparency in BC/PCL membrane when compared with pristine BC. The good transparency of the BC/PCL can be related to the presence of BC nanofibers associated with deposit of PCL nano-sized spherulites which are smaller than the wavelength of visible light and practically free of light scattering. XRD results show that cellulose type I structure is preserved inside the BC/PCL membrane, while the mechanical properties suggested indicated that PCL acts as a plasticizer for the BC membrane. The novel BC/PCL membrane could be used for preparation of fully biocompatible flexible display and biodegradable food packaging.

  4. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    OpenAIRE

    NGUYEN HUYNH THAO THY; RAJESH NITHYANANDAM

    2016-01-01

    Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymati...

  5. Observing cellulose biosynthesis and membrane translocation in crystallo.

    Science.gov (United States)

    Morgan, Jacob L W; McNamara, Joshua T; Fischer, Michael; Rich, Jamie; Chen, Hong-Ming; Withers, Stephen G; Zimmer, Jochen

    2016-03-17

    Many biopolymers, including polysaccharides, must be translocated across at least one membrane to reach their site of biological function. Cellulose is a linear glucose polymer synthesized and secreted by a membrane-integrated cellulose synthase. Here, in crystallo enzymology with the catalytically active bacterial cellulose synthase BcsA-BcsB complex reveals structural snapshots of a complete cellulose biosynthesis cycle, from substrate binding to polymer translocation. Substrate- and product-bound structures of BcsA provide the basis for substrate recognition and demonstrate the stepwise elongation of cellulose. Furthermore, the structural snapshots show that BcsA translocates cellulose via a ratcheting mechanism involving a 'finger helix' that contacts the polymer's terminal glucose. Cooperating with BcsA's gating loop, the finger helix moves 'up' and 'down' in response to substrate binding and polymer elongation, respectively, thereby pushing the elongated polymer into BcsA's transmembrane channel. This mechanism is validated experimentally by tethering BcsA's finger helix, which inhibits polymer translocation but not elongation. PMID:26958837

  6. Microwave-assisted preparation of cellulose membranes and their properties

    Czech Academy of Sciences Publication Activity Database

    Lenfeld, Jiří; Beneš, Milan J.; Hradil, Jiří; Šlouf, Miroslav; Plichta, Zdeněk

    Loughborough : Loughborough University, 2003 - (Binner, J.), s. 445-448 [International Conference on Microwave and High Frequency Heating /9./. Loughborough (GB), 01.09.2003-05.09.2003] R&D Projects: GA ČR GA203/02/1244 Institutional research plan: CEZ:AV0Z4050913 Keywords : cellulose membranes * viscose Subject RIV: CD - Macromolecular Chemistry

  7. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-09-01

    Full Text Available Graphite nanoplatelets (GNPs were utilized to improve the electrical conductivity of pristine bacterial cellulose (BC membranes. By physical and chemical methods, flake-shaped GNPs, weaving through the surface layer of web-like cellulose nanofibrils, were indeed fixed or trapped by the adjacent nanofibrils in the BC surface network, for comparison, rod-shaped multi-walled carbon nanotubes (MWCNTs were homogeneously inserted into BC membrane through the pore structures and tunnels within the BC membrane. Strong physical and chemical interaction exists between the BC nanofibrils and the particles of GNP or MWCNT even after 15 h sonication. BC membrane with 8.7 wt% incorporated GNPs reached the maximum electrical conductivity of 4.5 S/cm, while 13.9 wt% MWCNT/BC composite membrane achieved the maximum electrical conductivity of 1.2 S/cm. Compared with one dimensional (1-D MWCNTs, as long as GNPs inserted into BC membranes, the 2-D reinforcement of GNPs was proven to be more effective in improving the electrical conductivity of BC membranes thus not only break the bottleneck of further improvement of the electrical conductivity of BC-based composite membranes but also broaden the applications of BC and GNPs.

  8. Outer Membrane Proteins of Fibrobacter succinogenes with Potential Roles in Adhesion to Cellulose and in Cellulose Digestion▿

    OpenAIRE

    Jun, Hyun-Sik; Qi, Meng; Gong, Joshua; Egbosimba, Emmanuel E.; Forsberg, Cecil W.

    2007-01-01

    Comparative analysis of binding of intact glucose-grown Fibrobacter succinogenes strain S85 cells and adhesion-defective mutants AD1 and AD4 to crystalline and acid-swollen (amorphous) cellulose showed that strain S85 bound efficiently to both forms of cellulose while mutant Ad1 bound to acid-swollen cellulose, but not to crystalline cellulose, and mutant Ad4 did not bind to either. One- and two-dimensional electrophoresis (2-DE) of outer membrane cellulose binding proteins and of outer membr...

  9. Bacterial cellulose and bacterial cellulose-vaccarin membranes for wound healing.

    Science.gov (United States)

    Qiu, Yuyu; Qiu, Liying; Cui, Jing; Wei, Qufu

    2016-02-01

    Bacterial cellulose (BC) and bacterial cellulose-vaccarin (BC-Vac) membranes were successfully produced in large scale. BC was synthesized by Gluconacetobacter xylinum. BC-Vac membranes were prepared by immersing BC in vaccarin solution. The surface morphologies of BC and BC-Vac membranes were examined by a scanning electron microscope (SEM) and an atomic force microscopy (AFM). The images showed that BC-Vac exhibited the characteristic 3D nanofibrillar network of BC matrix but there was adhesion between fibers. The mechanical properties of BC and BC-Vac membranes were evaluated and the results indicated that the adding of drug vaccarin into the BC membranes increased the malleability indicated by the increment in elongation at break compared with BC. Fourier transform infrared spectroscopy (FTIR) analysis was conducted to confirm the incorporation of vaccarin in BC-Vac and investigate the hydroxyl interactions between BC and drug vaccarin. Cell viability and cell attachment studies demonstrated that BC and BC-Vac membranes had no cytotoxicity and could be a good carrier for cell growth. The wound healing performance was examined in vivo by rat skin models. Histological observations revealed that wounds treated with BC-Vac epithelialized and regenerated faster than treated with BC. Therefore, BC-Vac was considered as a potential candidate for wound dressing materials. PMID:26652377

  10. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    Directory of Open Access Journals (Sweden)

    Hernane S. Barud

    2011-01-01

    Full Text Available Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and absorption in the UV-Visible (350 nm to 600 nm. Thermal and mechanical properties together with swelling behavior for water were considered. TEA concentration was observed to be important in order to obtain only Ag particles and not a mixture of silver oxides. It was also observed to control particle size and amount of silver contents in bacterial cellulose. The composite membranes exhibited strong antimicrobial activity against Gram-negative and Gram-positive bacteria.

  11. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes

    OpenAIRE

    Barud, Hernane S.; Thaís Regiani; Rodrigo F. C. Marques; Wilton R. Lustri; Younes Messaddeq; Ribeiro, Sidney J.L.

    2011-01-01

    Antimicrobial bacterial cellulose-silver nanoparticles composite membranes have been obtained by “in situ” preparation of Ag nanoparticles from hydrolytic decomposition of silver nitrate solution using triethanolamine as reducing and complexing agent. The formation of silver nanoparticles was evidenced by the X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and absorption in the UV-Visible (350 nm to 600 nm). Thermal and mechanical properties toge...

  12. Cellulose as Sustainable Materials for Separation Membranes

    Science.gov (United States)

    Chu, Benjamin

    2013-03-01

    Polysaccharides, while complex, form one of the most abundant sustainable resources on earth. We want to take advantage of fundamental advances in materials understanding across length and time scales to investigate the interrelationships between structure, morphology, processing, properties, performance, and cost to meet the specific challenges arising from separation membranes for water purification. Non-woven fiber mats have unique properties, such as interconnected pores, a very large surface-to-volume ratio, and a high capacity for surface modifications. The breakthrough concept of combining fibrous mats composed of different fiber diameters for fabricating scaffolds as a unique platform for water purification is presented. Further, we take advantage of recent advances in chemical modifications, structural studies using synchrotron X-rays, and physical scale-up transformations to drastically improve filtration membrane development. Support of this work by the NSF, ONR, NIH and Stony Brook Univ. is gratefully acknowledged. The Chu/Hsiao group on water purification includes Profs. B.S.Hsiao and C.Burger, Drs. H-Y.Ma, D-F.Fang, R.Wang, and grad students: X.Wang, Z. Wang, Y.Su, R. Yang

  13. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration

    Science.gov (United States)

    Lim, Youn-Mook; Jeong, Sung In; An, Sung-Jun; Kang, Seong-Soo

    2015-01-01

    PURPOSE This study was to evaluate the effects of bacterial cellulose (BC) membranes as a barrier membrane on guided bone regeneration (GBR) in comparison with those of the resorbable collagen membranes. MATERIALS AND METHODS BC membranes were fabricated using biomimetic technology. Surface properties were analyzed, Mechanical properties were measured, in vitro cell proliferation test were performed with NIH3T3 cells and in vivo study were performed with rat calvarial defect and histomorphometric analysis was done. The Mann-Whitney U test and the Wilcoxon signed rank test was used (α<.05). RESULTS BC membrane showed significantly higher mechanical properties such as wet tensile strength than collagen membrane and represented a three-dimensional multilayered structure cross-linked by nano-fibers with 60 % porosity. In vitro study, cell adhesion and proliferation were observed on BC membrane. However, morphology of the cells was found to be less differentiated, and the cell proliferation rate was lower than those of the cells on collagen membrane. In vivo study, the grafted BC membrane did not induce inflammatory response, and maintained adequate space for bone regeneration. An amount of new bone formation in defect region loaded with BC membrane was significantly similar to that of collagen membrane application. CONCLUSION BC membrane has potential to be used as a barrier membrane, and efficacy of the membrane on GBR is comparable to that of collagen membrane. PMID:26816579

  14. FRACTIONATION OF HYDROLYZED MICROCRYSTALLINE CELLULOSE BY ULTRAFILTRATION MEMBRANE

    Directory of Open Access Journals (Sweden)

    NGUYEN HUYNH THAO THY

    2016-01-01

    Full Text Available Bioethanol process using cellulosic materials have been emerging an interesting field with a high potential of replacing petroleum-based fuel, as a future alternative. This work emphasised on improvement of enzymatic hydrolysis of alkaline NaOH-pretreated cellulose by applying an ultrafiltration membrane 10 kDa cutoff in order to minimise sugar inhibition on enzymes, reuse enzyme in hydrolysis and recover sugar for the subsequent fermentation. An improvement in the methodology of the enzymatic hydrolysis with ultrafiltration was made that the membrane was installed at the end of a tube connecting with a peristaltic pump to continuously remove glucose from hydrolysis reaction hence sugar was unable to inhibit enzyme activity and enzyme was retained inside the reactor for the reusing purpose. The combination of NaOH 1M alkaline pretreatment, enzymatic hydrolysis of cellulose with the optimum 3% enzyme dosage, ultrafiltration 10 kDa cutoff was evaluated to obtain the highest sugar concentration at 9 mg/ml after 6 hour hydrolysis. In comparison between hydrolysis with ultrafiltration and hydrolysis without ultrafiltration, the sugar concentration in hydrolysis with ultrafiltration was very much higher than that in hydrolysis without ultrafiltration in all enzyme dosages (1.5%, 3%, 6%. The hydrolysis with filtration produced a time profile in six hours with continuously significant increase in the sugar concentration. Only a small reduction initially for 1.5% dosage and no reduction in sugar concentration in 3% and 6% dosages. Hence the effect of product inhibition in hydrolysis was minimised as a result. In addition, a direct relationship between sugar concentration inside hydrolysis reactor, enzyme dosage and rate of sugar removal was observed during the hydrolysis process. Higher enzyme dosage in hydrolysis required a higher rate of sugar removal sufficiently to avoid inhibition in hydrolysis reaction.

  15. Improved Fixation of Cellulose-Acetate Reverse-Osmosis Membrane for Scanning Electron Microscopy

    OpenAIRE

    Kutz, S. M.; Bentley, D L; Sinclair, N A

    1985-01-01

    Fixation of cellulose-acetate membranes with either glutaraldehyde-osmium tetroxide or glutaraldehyde-ruthenium tetroxide resulted in extensive electron beam damage. Beam damage was eliminated and the bacterial surface structure was preserved, however, when cellulose-acetate membranes were fixed with glutaraldehyderuthenium tetroxide and treated successively with thiocarbohydrazide and osmium tetroxide.

  16. Evaluation of the permeability of modified cellulose acetate propionate membranes for use in biosensors based on hydrogen peroxide detection

    OpenAIRE

    Guiomar, A. Jorge; Stephen D. Evans; Guthrie, James

    2001-01-01

    Phase inversion cellulose acetate propionate membranes showed lowpermeability to hydrogen peroxide aqueous solutions. Their permeability wasincreased by alkaline hydrolysis of the ester linking units. However, thepermeability remained lower than that of an unsubstituted cellulose membrane.The inclusion of hydroxypropyl cellulose in the membrane formulation, followedby an alkaline hydrolysis step, increased permeability to hydrogen peroxideaqueous solutions to 29% of that of an unsubstituted c...

  17. Crosslinked cellulose thin film composite nanofiltration membranes with zero salt rejection

    KAUST Repository

    Puspasari, Tiara

    2015-05-14

    We report a new synthetic route of fabricating regenerated cellulose nanofiltration membranes. The membranes are composite membranes with a thin selective layer of cellulose, which was prepared by regeneration of trimethylsilyl cellulose (a hydrophobic cellulose derivative) film followed by crosslinking. Filtration experiments using mixtures of sugar and sodium chloride showed that solutes above 300 Da were highly rejected whereas practically no rejection was observed for NaCl. This is a big advantage for a complete desalination as the existing commercial nanofiltration membranes typically exhibit NaCl rejection in the range of 30–60%. Membranes with zero NaCl rejection are required for recovery and purification applications in food, chemical and pharmaceutical industry.

  18. Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments.

    NARCIS (Netherlands)

    Gutierrez, R.; Lindeboom, J.J.; Paredez, A.R.; Emons, A.M.C.; Ehrhardt, D.W.

    2009-01-01

    Plant cell morphogenesis relies on the organization and function of two polymer arrays separated by the plasma membrane: the cortical microtubule cytoskeleton and cellulose microfibrils in the cell wall. Studies using in vivo markers confirmed that one function of the cortical microtubule array is t

  19. Primary study of ethyl cellulose nanofiber for oxygen-enrichment membrane

    Directory of Open Access Journals (Sweden)

    Shen Jing

    2016-01-01

    Full Text Available Ethyl cellulose is widely used for oxygen-enrichment membrane, however, its nanofiber membrane was rarely developed though it behaves more excellent performance. This paper gives a preliminary study to produce oxygen-enrichment membrane by bubbfil spinning.

  20. Chain scission and anti fungal effect of electron beam on cellulose membrane

    International Nuclear Information System (INIS)

    Two types of bacterial cellulose (BC) membranes were produced under a modified H and S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap. - Highlights: ► Electron beam irradiation increased membrane hydrophobicity and molecular weight cut off. ► The irradiation caused chain scissoring and anti fungal property of cellulose membrane. ► FT-IR studies revealed changes in functional groups causing a decrease in membrane moisture. ► Anti fungal test of cellulose membrane showed the same shelf life as polyethylene sheet.

  1. Ultrathin cellulose nanosheet membranes for superfast separation of oil-in-water nanoemulsions

    Science.gov (United States)

    Zhou, Ke; Zhang, Qiu Gen; Li, Hong Mei; Guo, Nan Nan; Zhu, Ai Mei; Liu, Qing Lin

    2014-08-01

    Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective separation of oil-in-water nanoemulsions. The newly developed ultrathin cellulose membranes have a wide application in oily wastewater treatment, separation and purification of nanomaterials.Oily wastewater is generated in diverse industrial processes, and its treatment has become crucial due to increasing environmental concerns. Herein, novel ultrathin nanoporous membranes of cellulose nanosheets have been fabricated for separation of oil-in-water nanoemulsions. The fabrication approach is facile and environmentally friendly, in which cellulose nanosheets are prepared by freeze-extraction of a very dilute cellulose solution. The as-prepared membranes have a cellulose nanosheet layer with a cut-off of 10-12 nm and a controllable thickness of 80-220 nm. They allow ultrafast water permeation and exhibit excellent size-selective separation properties. A 112 nm-thick membrane has a water flux of 1620 l m-2 h-1 bar-1 and a ferritin rejection of 92.5%. These membranes have been applied to remove oil from its aqueous nanoemulsions successfully, and they show an ultrafast and effective

  2. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial

    OpenAIRE

    Fábio Coelho Alves Silveira; Flávia Cristina Morone Pinto; Sílvio da Silva Caldas Neto; Mariana de Carvalho Leal; Jéssica Cesário; José Lamartine de Andrade Aguiar

    2016-01-01

    ABSTRACT INTRODUCTION: Promising treatments for tympanic membrane perforation closure have been studied. Therapies derived from tissue engineering probably eliminate the need for conventional surgery. Bacterial cellulose is presented as an alternative that is safe, biocompatible, and has low toxicity. OBJECTIVES: To investigate the effect on healing of direct application of a bacterial cellulose graft on the tympanic membrane compared to the conventional approach with autologous fascia. ME...

  3. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kusworo, T. D., E-mail: tdkusworo@che.undip.ac.id; Aryanti, N., E-mail: nita.aryanti@gmail.com; Firdaus, M. M. H.; Sukmawati, H. [Chemical Engineering, Faculty of Engineering, Diponegoro University Prof. Soedarto Street, Tembalang, Semarang, 50239, Phone/Fax : (024)7460058 (Indonesia)

    2015-12-29

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  4. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    Science.gov (United States)

    Kusworo, T. D.; Aryanti, N.; Firdaus, M. M. H.; Sukmawati, H.

    2015-12-01

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second.

  5. Surface modification of cellulose acetate membrane using thermal annealing to enhance produced water treatment

    International Nuclear Information System (INIS)

    This study is performed primarily to investigate the effect of surface modification of cellulose acetate using thermal annealing on the enhancement of membrane performance for produced water treatment. In this study, Cellulose Acetate membranes were casted using dry/wet phase inversion technique. The effect of additive and post-treatment using thermal annealing on the membrane surface were examined for produced water treatment. Therma annealing was subjected to membrane surface at 60 and 70 °C for 5, 10 and 15 second, respectively. Membrane characterizations were done using membrane flux and rejection with produced water as a feed, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FTIR) analysis. Experimental results showed that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion technique. The results from the Scanning Electron Microscopy (FESEM) analysis was also confirmed that polyethylene glycol as additivie in dope solution and thermal annealing was affected the morphology and membrane performance for produced water treatment, respectively. Scanning electron microscopy micrographs showed that the selective layer and the substructure of membrane became denser and more compact after the thermal annealing processes. Therefore, membrane rejection was significantly increased while the flux was slighty decreased, respectively. The best membrane performance is obtained on the composition of 18 wt % cellulose acetate, poly ethylene glycol 5 wt% with thermal annealing at 70° C for 15 second

  6. Preparation and characterization of regenerated cellulose membranes from natural cotton fiber

    Directory of Open Access Journals (Sweden)

    Yanjuan CAO

    2015-06-01

    Full Text Available A series of organic solutions with different cellulose concentrations are prepared by dissolving natural cotton fibers in lithium chloride/dimethyl acetamide (LiCl/DMAC solvent system after the activation of cotton fibers. Under different coagulating bath, the regenerated cellulose membranes are formed in two kinds of coagulation baths, and two coating methods including high-speed spin technique (KW-4A spin coating machine and low-speed scraping (AFA-Ⅱ Film Applicator are selected in this paper. The macromolecular structure, mechanical properties, crystallinity, thermal stability and wetting property of the regenerated cellulose membrane are characterized by Scanning Electron Microscope(SEM, Fourier Transform Infrared Spectroscopy (FT-IR,X-ray diffraction (XRD, Thermogravimetric analysis (TG and contacting angle tester. The effects of mass fraction, coagulation bath type, membrane forming process on the regenerated membrane properties are investigated. Experimental results show that the performance of regenerated cellulose membrane is relatively excellent under the condition of using the KW-4A high-speed spin method, water coagulation bath, and when mass fraction of cellulose is 3.5%. The crystallinity of the regenerated cellulose membrane changes a lot compared with natural cotton fibers. The variation trend of thermal stability is similar with that of cotton fiber. But thermal stability is reduced to some degree, while the wetting ability is improved obviously.

  7. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    International Nuclear Information System (INIS)

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  8. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD)

  9. The effect of acid hydrolysis pretreatment on crystallinity and solubility of kenaf cellulose membrane

    Science.gov (United States)

    Saidi, Anis Syuhada Mohd; Zakaria, Sarani; Chia, Chin Hua; Jaafar, Sharifah Nabihah Syed; Padzil, Farah Nadia Mohammad

    2015-09-01

    Cellulose was extracted from kenaf core pulp (KCP) by series of bleaching steps in the sequence (DEED) where D and E are referred as acid and alkali treatment. The bleached kenaf pulp (BKCP) is then pretreated with acid hydrolysis at room temperature for 1 and 3 h respectively. The pretreated cellulose is dissolved in lithium hydroxide/urea (LiOH/urea) and cellulose solution produced was immersed in distilled water bath. BKCP without treatment was also conducted for comparison purpose. The effects of acid hydrolysis pretreatment on solubility and crystallinity are investigated. Higher solubility of cellulose solution is achieved for treated samples. Cellulose II formation and crystallinity index of the cellulose membrane were determined by X-ray diffraction (XRD).

  10. Cellulose

    Science.gov (United States)

    Cellulose properties and structure are reviewed, with a primary focus on crystal structure and polymorphy. This focus highlights the conversion from cellulose I to cellulose II, which converts the molecules to being all parallel to each other in the crystal to being antiparallel. This has been co...

  11. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin

    OpenAIRE

    Chunjing Zhang; Shian Zhong; Zhengpeng Yang

    2008-01-01

    Cellulose acetate-based molecularly imprinted polymeric membranes were prepared using vanillin as template molecule. The microscopic structure of the resultant polymeric membranes was characterized by SEM and FTIR spectroscopy, and the selective binding properties and separation capacity of the membranes for vanillin and o-vanillin were tested with binding experiments and separate experiments, respectively. The results showed that the vanillin-imprinted polymeric membranes displayed higher bi...

  12. Treatment of tympanic membrane perforation using bacterial cellulose: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Fábio Coelho Alves Silveira

    2016-04-01

    Full Text Available ABSTRACT INTRODUCTION: Promising treatments for tympanic membrane perforation closure have been studied. Therapies derived from tissue engineering probably eliminate the need for conventional surgery. Bacterial cellulose is presented as an alternative that is safe, biocompatible, and has low toxicity. OBJECTIVES: To investigate the effect on healing of direct application of a bacterial cellulose graft on the tympanic membrane compared to the conventional approach with autologous fascia. METHODS: Randomized controlled trial. Forty patients with tympanic membrane perforations secondary to chronic otitis media were included, and were randomly assigned to an experimental group (20, treated with a bacterial cellulose graft (BC and control group (20, treated with autologous temporal fascia (fascia. We evaluated the surgical time, hospital stay, time of epithelialization and the rate of tympanic perforation closure. Hospital costs were compared. The statistical significance level accepted was established at p < 0.05. RESULTS: The closure of perforations was similar in both groups. The average operation time in the fascia group was 76.50 min versus 14.06 min bacterial cellulose in the group (p = 0.0001. The hospital cost by the Brazilian public health system was R$ 600.00 for the bacterial cellulose group, and R$ 7778.00 for the fascia group (p = 0.0001. CONCLUSION: Bacterial cellulose grafts promoted the closure of the tympanic membrane perforations, and were demonstrated to be innovative, effective, safe, minimally invasive, efficacious and to have a very low cost.

  13. Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal.

    Science.gov (United States)

    Huang, Weijuan; Wang, Yixiang; Chen, Chao; Law, John Lok Man; Houghton, Michael; Chen, Lingyun

    2016-06-01

    All-cellulose nanocomposite membranes with excellent performance were successfully fabricated as novel filtration system to remove nanoparticles and virus from aqueous medium. These membranes were composed of two combined layers: an electrospun cellulose nanofabric layer treated by hot-pressing to provide mechanical support and a coating of regenerated cellulose gel with tiny inter-connected pores as barrier. Hot-pressing did not affect the fiber shape of electrospun nanofabrics, but significantly improved their mechanical properties due to increased hydrogen bonds. The regenerated cellulose gel formed a porous coating that tightly attached to electrospun nanofabrics, and its pore size varied depending on cellulose source, solution concentration, and drying process. By assembling these two layers together, the nanocomposite membranes showed the notable retention of negatively charged 100nm latex beads (99.30%). Moreover, the electronegative nature of cellulose membranes imparted the rejection ratio of 100% and (98.68±0.71)% against positively charged 50nm latex beads and Hepatitis C Virus, respectively. PMID:27083338

  14. S-Acylation of the cellulose synthase complex is essential for its plasma membrane localization.

    Science.gov (United States)

    Kumar, Manoj; Wightman, Raymond; Atanassov, Ivan; Gupta, Anjali; Hurst, Charlotte H; Hemsley, Piers A; Turner, Simon

    2016-07-01

    Plant cellulose microfibrils are synthesized by a process that propels the cellulose synthase complex (CSC) through the plane of the plasma membrane. How interactions between membranes and the CSC are regulated is currently unknown. Here, we demonstrate that all catalytic subunits of the CSC, known as cellulose synthase A (CESA) proteins, are S-acylated. Analysis of Arabidopsis CESA7 reveals four cysteines in variable region 2 (VR2) and two cysteines at the carboxy terminus (CT) as S-acylation sites. Mutating both the VR2 and CT cysteines permits CSC assembly and trafficking to the Golgi but prevents localization to the plasma membrane. Estimates suggest that a single CSC contains more than 100 S-acyl groups, which greatly increase the hydrophobic nature of the CSC and likely influence its immediate membrane environment. PMID:27387950

  15. Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam.

    Science.gov (United States)

    Eo, Mi Young; Fan, Huan; Cho, Yun Ju; Kim, Soung Min; Lee, Suk Keun

    2016-01-01

    The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article. PMID:27418974

  16. Celluloses filled ENR/PVC membranes for palm oil mill effluent (POME) treatment

    Science.gov (United States)

    Shamsuddin, Mohd Razali; Abdullah, Ibrahim; Othaman, Rizafizah

    2013-11-01

    Membranes from composite materials have been used especially in water treatment applications. In this paper the composite membranes of celluloses filled ENR/PVC were successfully prepared for POME treatment application. The preparation of the membrane involves solution blending, casting, phase inversion and drying methods. Two types of fillers, cellulose (Cell) and cellulose grafting polymethyl methacrylate (Cell-g-PMMA) were added into ENR/PVC matrix in various compositions (1, 5, 10, 15 and 20 wt%) to determine the effect of the filler to the performance of the membrane. The membranes were characterized by using FTIR and SEM. Membrane properties in terms of porosity and water flux were examined using mathematical calculation. FTIR spectrum shows the existence of stretching vibration from the functional group of ester carbonyl, -C=O at peak 1725 cm-1 that belongs to Cell-g-PMMA filler in ENR/PVC/Cell-g-PMMA membrane which makes the membranes slightly hydrophobic. SEM micrographs exhibit that pores were formed on both ENR/PVC/Cell and ENR/PVC/Cell-g-PMMA membranes. Water flux test indicates that ENR/PVC/Cell-20% was the highest because the addition of Cell increases the hydrophilicity of the membrane. In POME treatment, ENR/PVC/Cell-20% and ENR/PVC/Cell-g-PMMA-10% showed the highest decolorization.

  17. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To control the morphology of cellulose membranes used for separation,they were prepared by the NMMO method using water,methanol,ethanol and their binary solution as coagulation baths.Morphologies of the surface and cross section of dry membranes were observed.The pore structure parameters of wet membranes were determined.By comparison,the process and mechanism of pore formation in dry membranes were suggested,and the relativity of cellulose crystal size to average pore diameter in wet membranes and their influences were discussed.The results show that the morphology of dry membranes is clearly varied with coagulation baths,while the porosity of wet membranes is almost constant.Porous structures can appear in the compact region of dry membranes due to swelling from water.These pores have a virtual effect on the average pore diameter of wet membranes.By changing the composition of coagulation baths,the microstructure of cellulose membranes in a dry or wet environment can be adjusted separately.

  18. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal.

    Science.gov (United States)

    Riaz, Tabinda; Ahmad, Adnan; Saleemi, Sidra; Adrees, Muhammad; Jamshed, Fahad; Hai, Abdul Moqeet; Jamil, Tahir

    2016-11-20

    Blended membranes of polyurethane and cellulose acetate were prepared, characterized and investigated for their performance. Various ratios of cellulose acetate were employed to prepare four different blend membranes. The characteristics of both pure and blend membranes were investigated and results were compared to distinguish their properties. Functional group analysis was carried out by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) of pure and blend samples. Contact angle measurement and water content were evaluated to determine the membrane hydrophilicity. Moreover, the membrane morphology was studied by scanning electron microscopy (SEM). The membrane permeation properties and ability to reject chromium (VI) ions were tested at various pH and pressure by utilizing different salt concentrations. PMID:27561531

  19. Cellulose Acetate 398-10 Asymmetric Membrane Capsules for Osmotically Regulated Delivery of Acyclovir

    OpenAIRE

    Alka Sonkar; Anil Kumar; Kamla Pathak

    2016-01-01

    The study was aimed at developing cellulose acetate asymmetric membrane capsules (AMCs) of acyclovir for its controlled delivery at the absorption site. The AMCs were prepared by phase inversion technique using wet process. A 23 full factorial design assessed the effect of independent variables (level(s) of polymer, pore former, and osmogen) on the cumulative drug release from AMCs. The buoyant optimized formulation F7 (low level of cellulose acetate; high levels of both glycerol and sodium l...

  20. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    OpenAIRE

    Chen Xu; Xia Ma; Shiwen Chen; Meifeng Tao; Lutao Yuan; Yao Jing

    2014-01-01

    To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC) was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering...

  1. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    International Nuclear Information System (INIS)

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell

  2. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Tache, Florin; Zaharescu, Traian; Grosu, Elena

    2007-12-01

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of γ-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  3. Effect of electron beam irradiation on bacterial cellulose membranes used as transdermal drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stoica-Guzun, Anicuta [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)], E-mail: astoica@mt.pub.ro; Stroescu, Marta; Tache, Florin [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)], E-mail: zaharescut@icpe-ca.ro; Grosu, Elena [Department of Chemical Engineering, ' Politehnica' University Bucharest, 313 Splaiul Independentei, 060042 Bucharest (Romania)

    2007-12-15

    Ionizing radiation is an effective energetic source for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. In this work, gamma rays have been applied to induce changes in bacterial cellulose membranes. Permeation of drug (tetracycline) was theoretically and experimentally investigated starting from the effect of {gamma}-irradiation on membranes permeability. Release and permeation of drug from irradiated and non-irradiated membranes have been performed using a diffusion cell.

  4. Effect of Gamma Irradiation on Microbial Cellulose Membrane For Application In Guided Bone Regeneration (GBR)

    International Nuclear Information System (INIS)

    The synthesis and effect of gamma irradiation on characteristics of microbial cellulose membrane have been evaluated. Microbial cellulose gel (nata de coco) was produce using bacteria Acetobacter xylinum incubated in bacterial growth medium containing coconut water as a micro nutrient source. Microbial cellulose membrane was prepared using mould compression at 120°C for 5 minutes. The membranes were irradiated using gamma rays with doses of 25 and 50 kGy respectively at dose rate of 10 kGy/h. Several parameters such as water absorption, surface morphology, thermal and mechanical properties of un-irradiated and irradiated membranes were analyzed. The results showed that optimum production of microbial cellulose by A. Xylinum is 10 to 12 days at incubation temperature of 30°C and pH 4. Chemically treatments of MC membrane by NaOH and NaOCl solution were effective to remove the bacteria contaminant, bacterial cells embedded in the polymer net and endotoxin which occurred during cellulose production as well as produced membrane with more white colour. Water absorption properties of MC membranes showed maximum value at immersion temperature of 25°C, 37°C and 50°C were 110, 137 and 140 %, respectively. Water absorption of MC membrane decreases by increasing irradiation dose. Microscopic photograph of MC membrane showed that the membrane was consisted of interconnected nano to micro porous structures with diameter ranging from 0.05 to 0.5 μm. Thermal properties of MC showed that decomposition temperature of un-irradiated and irradiated MC membrane at dose of 25 and 50 kGy were 328°C, 328°C and 295°C, respectively. Tensile strength of un-irradiated MC membrane in dry state was 102 MPa. Irradiation at 25 and 50 kGy reduced tensile strength to become 85 and 51 MPa respectively. The decrease of thermal property and mechanical strength of MC membrane by irradiation is due to decomposition of polymeric cellulose to the lower molecular weight. This degradation hopefully

  5. Preparation of membranes from cellulose obtained of sugarcane bagasse; Preparacao de membranas a partir de celulose obtida do bagaco de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Paulo Henrique Fernandes; Cioffi, Maria Odila Hilario; Voorwald, Herman Jacobus Cornelis, E-mail: fernandes_eng@yahoo.com.b [UNESP, Guaratingueta, SP (Brazil). Fac. de Engenharia; Pinho, Maria Noberta de [Instituto Superior Tecnico de Lisboa (IST) (Portugal), Dept. de Engenharia; Silva, Maria Lucia Caetano Pinto da [Universidade de Sao Paulo (EEL/USP), Lorena, SP (Brazil). Escola de Engenharia

    2010-07-01

    In this work, cellulose obtained from sugarcane bagasse to produce both cellulose and acetylated cellulose to prepare asymmetric membranes. Membranes was procedure used a mixture of materials of DMAc/ LiCl systemic in different conditions. Cellulose and acetylated cellulose were characterized by thermogravimetric (TG), Xray diffraction (XRD) and scanning Electron Microscopy (SEM). Observed less stability thermal of acetylated cellulose when compared of cellulose. All membranes procedure were asymmetric, characterized by presence of a dense skin and porous support can be observed. SEM showed that the morphology of the superficial of membranes depends on the method preparation. (author)

  6. Characterization of cellulose membranes modified with luminescent silicon quantum dots nanoparticles.

    Science.gov (United States)

    Campos, B B; Gelde, L; Algarra, M; Esteves da Silva, J C G; Vázquez, M I; Benavente, J

    2016-10-20

    A highly hydrophilic planar membrane fabricated with regenerated cellulose (RC-4 membrane), a biocompatible polymer, was modified by inclusion of water-soluble silicon quantum dot nanoparticles (SiQDs). Both bare SiQDs and SiQDs coated with a PAMAM-OH dendrimer were employed in order to obtain luminescent and thermally stable membrane systems (RC-4/SiQDs and RC-4/SiQDs-PAMAM-OH membranes). Original and SiQDs-modified membranes were characterized by fluorescence spectroscopy (steady and confocal), derivative thermogravimetric analysis and impedance spectroscopy measurements. According to these results, both SiQDs-regenerated cellulose composite membranes present luminescent character as well as higher thermal resistance and conductivity than the original sample, although the dendrimer coverage of the SiQDs might partially shield such effects. Moreover, the permanence of SiQDs nanoparticles in the structure of the cellulosic support in aqueous environments and their effect on diffusive transport were determined by water uptake as well as by membrane potential measurements at different concentrations of a model electrolyte (KCl). These results demonstrate the possible use of these stable nano-engineered membranes, which are based on SiQDs nanoparticles, in electrochemical devices under flow conditions. PMID:27474642

  7. Separation of isomeric xylenes by pervaporation through cellulose ester membranes

    NARCIS (Netherlands)

    Mulder, M.H.V.; Kruitz, F.; Smolders, C.A.

    1982-01-01

    The interaction between the isomeric xylenes and different cellulose esters was investigated using solubility parameter considerations and through measurements of swelling values. p]Hansen's three-dimensional solubility parameters δd, δp, δh of all the components have been calculated. These values h

  8. Functionalization of cellulose acetate fibers with engineered cutinases

    OpenAIRE

    Matamá, Maria Teresa; Araújo, Rita; Gübitz, Georg M.; Casal, Margarida; Paulo, Artur Cavaco

    2009-01-01

    In the present work, we describe for the first time the specific role of cutinase on surface modification of cellulose acetate fibers. Cutinase exhibits acetyl esterase activity on diacetate and triacetate of 0.010 U and 0.007 U, respectively. An increase on the hydroxyl groups at the fiber surface of 25% for diacetate and 317% for triacetate, after a 24 h treatment, is estimated by an indirect assay. Aiming at further improvement of cutinase affinity toward cellulose acetate, chimeric cutina...

  9. Separation Of Cadmium(II), Cobalt(II) And Nickel(II) By Transport Through Polymer Inclusion Membranes With Phosphonium Ionic Liquid As Ion Carrier / Separacja Jonów Kadmu(II), Kobaltu(II) I Niklu(II) W Procesie Transportu Przez Polimerowe Membrany Inkluzyjne Zawierające Fosfoniową Ciecz Jonową W Roli Przenośnika

    OpenAIRE

    Pospiech B.

    2015-01-01

    This paper presents study on the facilitated transport of cadmium(II), cobalt(II) and nickel(II) ions from aqueous chloride solutions through polymer inclusion membranes (PIMs) with phosphonium ionic liquid. Cyphos IL 101 (trihexyl(tetradecyl) phosphonium chloride) was used as a selective carrier for synthesis of cellulose triacetate membranes containing o-nitrophenyl pentyl ether (ONPPE) as a plasticizer. Effect of different parameters such as hydrochloric acid concentration in the source ph...

  10. Effect of Electron-Beam Irradiation on Bacterial Cellulose Membranes Used as Transdermal Drug Delivery Systems

    International Nuclear Information System (INIS)

    Multiple methods are used to modify material surfaces. Radiation is an effective tool for polymer surfaces modification in order to obtain transdermal systems with different controlled release properties. Bacterial cellulose is a promising biomaterial synthesized by Acetobacter xylinum. It has a distinctive ultrafine reticulated structure that may become a perfect matrix as an optimal wound healing environment. In this work, high energy irradiation (γ rays from 137Cs) was applied to modify bacterial cellulose membranes. The effect of varying irradiation doses on membranes permeability was studied. Tetracycline was involved in the study of diffusivity as model drug. Release and permeation of drug from irradiated and non-irradiated membranes were done using a diffusion cell. The membrane permeability was determined using a psudo-steady state analysis based on Fick's law

  11. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes.

    Science.gov (United States)

    Shao, Wei; Liu, Hui; Wang, Shuxia; Wu, Jimin; Huang, Min; Min, Huihua; Liu, Xiufeng

    2016-07-10

    Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials. PMID:27106158

  12. Performance of cellulose acetate butyrate membranes in hyperfiltration of sodium chloride and urea feed solution

    Science.gov (United States)

    Wydeven, T.; Leban, M.

    1973-01-01

    Cellulose acetate butyrate (CAB) membranes are shown to give high salt and urea rejection with water flux of about 3 gallons/sq ft per day at 600 psig. Membranes prepared from a formulation containing glyoxal show a significant increase in flux and decrease in salt and urea rejection with drying time. Zero drying time gives maximum urea and salt rejection and is therefore most suitable for hyperfiltration of sodium chloride and urea feed solution.

  13. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane

    Directory of Open Access Journals (Sweden)

    A. G. Gaikwad

    2012-06-01

    Full Text Available Transport of carbonate ions was explored through fiber supported solid membrane. A novel fiber supported solid membrane was prepared by chemical modification of cellulose fiber with citric acid, 2′2-bipyridine and magnesium carbonate. The factors affecting the permeability of carbonate ions such as immobilization of citric acid-magnesium metal ion -2′2-bipyridine complex (0 to 2.5 mmol/g range over cellulose fiber, carbon-ate ion concentration in source phase and NaOH concentration in receiving phase were investigated. Ki-netic of carbonate, sulfate, and nitrate ions was investigated through fiber supported solid membrane. Transport of carbonate ions with/without bubbling of CO2 (0 to 10 ml/min in source phase was explored from source to receiving phase. The novel idea is to explore the adsorptive transport of CO2 from source to receiving phase through cellulose fiber containing magnesium metal ion organic framework. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 25th November 2011; Revised: 17th December 2011; Accepted: 19th December 2011[How to Cite: A.G. Gaikwad. (2012. Transport of Carbonate Ions by Novel Cellulose Fiber Supported Solid Membrane. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 49– 57.  doi:10.9767/bcrec.7.1.1225.49-57][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1225.49-57 ] | View in 

  14. Novel carboxymethyl cellulose based nanocomposite membrane: Synthesis, characterization and application in water treatment.

    Science.gov (United States)

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Heydaripour, Samira; Abdouss, Majid

    2016-01-15

    Significant efforts have been made to develop composite membranes with high adsorption efficiencies for water treatment. In this study, a carboxymethyl cellulose-graft-poly(acrylic acid) membrane was synthesized in the presence of silica gel, which was used as an inorganic support. Then, different amounts of bentonite were introduced to the carboxymethyl cellulose (CMC) grafted networks as a multifunctional crosslinker, and nanocomposite membranes were prepared. The nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, and scanning electron microscopy, which revealed their compositions and surface morphologies. The novel synthesized nanocomposite membranes were utilized as adsorbents for the removal of crystal violet (CV) and cadmium (Cd (II)) ions, which were selected as representatives of a dye and a heavy metal, respectively. We explored the effects of various parameters, such as time, pH, temperature, initial concentration of adsorbate solution and amount of adsorbent, on membrane adsorption capacity. Furthermore, the kinetic, adsorption isotherm models and thermodynamic were employed for the description of adsorption processes. The maximum adsorption capacities of membranes for CV and Cd (II) ions were found to be 546 and 781 mg g(-1), respectively. The adsorption of adsorbate ions by all types of nanocomposite membranes followed pseudo-second-order kinetic model and was best fit with the Freundlich adsorption isotherm. The results indicated that the synthesized nanocomposite membrane is an efficient adsorbent for the removal of cationic dye and metal contaminants from aqueous solution during water treatment. PMID:26560638

  15. Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties

    International Nuclear Information System (INIS)

    Highlights: ► UV-cured methacrylic-based composite gel-polymer electrolyte membranes for rechargeable lithium batteries. ► Excellent mechanical stability by reinforcement with classical cellulose handsheets. ► Fast and environmentally friendly preparation process, green and low cost cellulose reinforcement. ► Good electrochemical behaviour, stable cyclability and long-term performances in real battery configuration. - Abstract: Methacrylic-based thermo-set gel-polymer electrolytes obtained by an easy and reliable free radical photo-polymerisation process demonstrate good behaviour in terms of ionic conductivity, interfacial stability with the Li-metal electrode and cyclability in lithium cells. Though the obtained membranes are flexible, self standing and easy to handle, there is room for improving mechanical strength. In this respect, a novel approach is adopted in this work, in which a cellulose hand-sheet (paper), specifically designed for the specific application, is used as a composite reinforcing agent. To enhance its compatibility with the polymer matrix, cellulose is modified by UV-grafting of poly(ethylene glycol) methyl ether methacrylate on it. Excellent mechanical properties are obtained and good overall electrochemical performances are maintained; highlighting that such specific approach would make these hybrid organic, green, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible Li-based power sources.

  16. Chain scission and anti fungal effect of electron beam on cellulose membrane

    Science.gov (United States)

    Wanichapichart, Pikul; Taweepreeda, Wirach; Nawae, Safitree; Choomgan, Pastraporn; Yasenchak, Dan

    2012-08-01

    Two types of bacterial cellulose (BC) membranes were produced under a modified H&S medium using sucrose as a carbon source, with (CCB) and without (SHB) coconut juice supplement. Both membranes showed similar crystallinity of 69.24 and 71.55%. After being irradiated with E-beams under oxygen limited and ambient condition, the results from water contact angle showed that only the irradiated membrane CCB was increased from 30 to 40 degrees, and irradiation under oxygen ambient condition provided the greatest value. Comparing with the control membranes, smaller water flux was the cases after electron beam irradiation which indicated a reduction of membrane pore area. However, the results from molecular weight cut off (MWCO) revealed that chain scission was greater for membrane SHB and its cut off was increased from 28,000 Da to more than 35,000 Da. FTIR analysis revealed some changes in membrane functional groups, corresponding with the above results. These changes initiated new property of cellulose membranes, an anti-fungal food wrap.

  17. Self-sterilized composite membranes of cellulose acetate/polyethylene glycol for water desalination.

    Science.gov (United States)

    Ahmad, Adnan; Jamshed, Fahad; Riaz, Tabinda; Gul, Sabad-E-; Waheed, Sidra; Sabir, Aneela; AlAnezi, Adnan Alhathal; Adrees, Muhammad; Jamil, Tahir

    2016-09-20

    Cellulose acetate/Polyethylene glycol-600 composite membranes were fabricated by two step phase inversion procedure and modified by in-situ reduction of silver nitrate. FTIR spectra demonstrated the existence of functional groups for bonding of silver with oxygen at 370cm(-1), 535cm(-1). The XRD diffractogram indicates characteristic peaks at 2θ values of 38.10°, 44.30°, 64.40°, and 77.30° which confirm the successful incorporation of silver within matrix of composite membranes. The morphology of composite membranes with appearances of spongy voids was exemplified from the scanning electron microscope. The atomic force microscopy was used to determine the increase in the surface roughness of the membranes. The increase in hydrophilicity, measured through contact angle, is rendered to the embedment of silver. The modification of membranes increased the flux from 0.80 to 0.95L/hr.m(2). The resulting membranes have outstanding ability to fight against gram negative Escherichia Coli and Bacillus Sabtilus. The novel cellulose acetate/polyethylene glycol membranes customized with silver have paved the path for evolution of axenic membranes. PMID:27261744

  18. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material

    International Nuclear Information System (INIS)

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe3O4 nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g−1 and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. - Highlights: • Bacterial cellulose/magnetite nanocomposites with high incorporation degree of nanoparticles. • Magnetite nanoparticles well adhered to the surface of bacterial cellulose nanofibers. • A saturation magnetization of the nanoparticles in the BC pellicles of about 60 emu g−1. • Flexible membranes with high super-paramagnetic characteristic

  19. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst.

    Science.gov (United States)

    Wang, Jianqiang; Lu, Xinkun; Ng, Pui Fai; Lee, Ka I; Fei, Bin; Xin, John H; Wu, Jian-yong

    2015-02-15

    Bacterial cellulose (BC) nanofiber membranes were simply aminalized by a flush-coating and post-crosslinking method. Firstly, wet BC membranes were flushed through by an aqueous solution of polyethylenimine (PEI) and glycerol diglycidyl ether (GDE) under vacuum suction, then further heated up to 70 °C to crosslink the resultant coating on the surface of the nanofibers. The PEI coated bacterial cellulose (BC@PEI) nanofiber membrane presented excellent adsorption performance for Cu(2+) and Pb(2+) ions from aqueous solutions. Desorption of these ions was achieved using ethylene diamine tetraacetic acid treatment. This cycle of adsorption and desorption was repeated for several times with good remain adsorption performance (over 90%). Furthermore, the adsorbed Cu(2+) ions can be reduced to copper nanoparticles, and showed excellent catalytic performance for methylene blue reduction in aqueous solution. The catalytic performance can remained after several times of usage. PMID:25460686

  20. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus.

    Science.gov (United States)

    Wu, Sheng-Chi; Li, Meng-Hsun

    2015-10-01

    In this study, a novel bioreactor for producing bacterial cellulose (BC) is proposed. Traditional BC production uses static culture conditions and produces a gelatinous membrane. The potential for using various types of bioreactor, including a stirred tank, conventional airlift, and modified airlift with a rectangular wire-mesh draft tube, in large-scale production has been investigated. The BC obtained from these bioreactors is fibrous or in pellet form. Our proposed airlift bioreactor produces a membrane-type BC from Gluconacetobacter xylinus, the water-holding capacity of which is greater than that of cellulose types produced using static cultivation methods. The Young's modulus of the product can be manipulated by varying the number of net plates in the modified airlift bioreactor. The BC membrane produced using the proposed bioreactor exhibits potential for practical application. PMID:25823854

  1. Characterization of cellulose acetate micropore membrane immobilized acylase I

    Institute of Scientific and Technical Information of China (English)

    郭永胜; 王杰; 宋锡谨

    2004-01-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was ob tained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 ℃C, which is higher than that of free acylase I (60 ℃). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  2. Characterization of cellulose acetate micropore membrane immobilized acylase I

    Institute of Scientific and Technical Information of China (English)

    郭永胜; 王杰; 宋锡谨

    2004-01-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was obtained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90℃, which is higher than that of free acylase I (60℃). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  3. Filtering absorption and visual detection of methylene blue by nitrated cellulose acetate membrane

    Energy Technology Data Exchange (ETDEWEB)

    He, Shengbin; Fang, He; Xu, Xiaoping [College of Chemistry, Fuzhou University, Fuzhou (China)

    2016-04-15

    Wastewater-containing industrial dyes are quite harmful since most dyes are stable and toxic to humans. Detection and removing of those dyes from wastewater is necessary to ensure water supply safety. In present work, a nitrated cellulose acetate (NCA) microfiltration membrane was developed for specific absorption and visible detection of methylene blue (MB). The NCA microfiltration membrane overcomes the defect of high driven pressure in nanofiltration or ultrafiltration process. By absorption effect, the NCA membrane also overcomes the defect of low retention rate of traditional microfiltration membrane to dyes. The residual MB can be removed quickly and thoroughly by microfiltration absorption. The microfiltration membrane can also be used for visual detection of MB by concentrating the MB on membrane. The limit of detection is as low as 0.001 mg/L. The detection method is simple and free of large-scale instrument, and can be used as a portable device for spot detection of dye-contaminated water.

  4. Surface hydrophobic modification of cellulose membranes by plasma-assisted deposition of hydrocarbon films

    Directory of Open Access Journals (Sweden)

    Mudtorlep Nisoa

    2010-03-01

    Full Text Available Surface modification by plasma polymerization is an efficient method to change the surface properties of a membrane. Desirable functionality such as hydrophobicity or hydrophilicity can be obtained, depending on plasma chemistry of gas precursors and discharge conditions. In this work, RF magnetron plasma is produced using acetylene and nitrogen as precursor gases. Variations of RF power, particle flux, deposited time and pressure of the precursor gases have been made to observe coating effects on the cellulose membranes. When appropriated conditions are used, a thin brownish film of hydrocarbon was formed on the membrane, and the water contact angle increased from 35 to 130 degrees.

  5. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane.

    Science.gov (United States)

    Konovalova, Viktoriia; Guzikevich, Kateryna; Burban, Anatoliy; Kujawski, Wojciech; Jarzynka, Karolina; Kujawa, Joanna

    2016-11-01

    In order to prepare ultrafiltration membranes possessing biocatalytic properties, α-amylase has been immobilized on cellulose membranes. Enzyme immobilization was based on a covalent bonding between chitosan and a surface of cellulose membrane, followed by an attachment of Cibacron Blue F3G-A dye as affinity ligand. Various factors affecting the immobilization process, such as enzyme concentration, pH of modifying solution, zeta-potential of membrane surface, and stability of immobilized enzyme were studied. The applicability of immobilized α-amylase has been investigated in ultrafiltration processes. The immobilization of α-amylase on membrane surface allows to increase the value of mass transfer coefficient and to decrease the concentration polarization effect during ultrafiltration of starch solutions. The enzyme layer on the membrane surface prevents a rapid increase of starch concentration due to the amylase hydrolysis of starch in the boundary layer. The presented affinity immobilization technique allows also for the regeneration of membranes from inactivated enzyme. PMID:27516322

  6. Effect of coagulant bath on the gas permeation properties of cellulose acetate asymmetric membrane

    Science.gov (United States)

    Mohamed, F.; Hasbullah, H.; Jami'an, W. N. R.; Salleh, W. N. H. W.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Membrane based gas separation process technology has been recognized as one of the most efficient and advanced unit operation for gas separation. One of the problems in membrane gas separation is membrane performance. This paper explores the application of cellulose acetate (CA) membrane for natural gas purification and separation by improving its permeability and selectivity. The main interest in this research is to study the effect of quench medium on the gas separation performance towards its physical characteristics and gas separation performance of CA membrane. Cellulose acetate polymer was dissolved in n- methyl-2-pyrrolidone solvent and casted onto a glass plate using a pneumatically controlled casting system with fixed shear rate and solvent evaporation times. The parameter varied was the non-solvent used as quench medium during membrane post treatment that were methanol and n-hexane. The different quench media as post treatment affected the O2 and N2 gas permeation and O2/N2 selectivity as well as the tensile strength of the flat sheet asymmetric membrane. Combination of methanol and n-hexane as quench media gave the best result than the other steps. This solvent exchange step influenced the morphology by producing thin skin layer and thus gives better gas separation performance than other steps

  7. Determination of sterilization dose of cellulose microbial membrane by electron beam irradiation using ISO 11137

    International Nuclear Information System (INIS)

    The calculation of sterilization dose of cellulose microbial by electron beam irradiation has been done based on International Organization for Standardization (ISO) 11137. Cellulose microbial pellicle was prepared by static fermentation of A. xylinum in a medium containing coconut water as a micro nutrient source. The pellicle was then hand pressed at ambient temperature in order to get membrane with thickness of 0.03 ± 0.01 mm. Sterilization dose of electron beam was determined based on ISO 11137 through three steps: calculation of bioburden, determination of verification dose and sterilization dose based on Table 2. The results showed that the average bioburden of batch 1, 2 and 3 were 67.4; 92.6; 91 cfu, respectively and overall average bioburden was 83.7 cfu. The batch average bioburden was smaller than twice of overall average bioburden, so overall average of bioburden was used to determine the verification dose. Based on ISO 11137, the verification dose was at 7.8 kGy. The results of sterility test on 100 pieces of membranes after irradiated at verification dose, showed that only one membrane had positive bacteria growth. From these results, it can be concluded that sterilization dose of cellulose microbial membrane irradiated by electron beam with the SAL of 10-6 was 21 kGy. (author)

  8. Electrospinning of silver nanoparticles loaded highly porous cellulose acetate nanofibrous membrane for treatment of dye wastewater

    Science.gov (United States)

    Wang, Ke; Ma, Qian; Wang, Shu-Dong; Liu, Hua; Zhang, Sheng-Zhong; Bao, Wei; Zhang, Ke-Qin; Ling, Liang-Zhong

    2016-01-01

    In this paper, silver nanoparticles (NPs) were reduced form silver nitrate. Morphology and distribution of the synthesized silver NPs were characterized. In order to obtain cellulose acetate (CA), nanofibrous membrane with high effective adsorption performance to carry silver NPs for treatment of dye wastewater, different solvent systems were used to fabricate CA nanofibrous membranes with different morphologies and porous structures via electrospinning. Morphologies and structures of the obtained CA nanofibrous membranes were compared by scanning electron microscopy (SEM), which showed that CA nanofibrous membrane obtained from acetone/dichloromethane (1/2, v/v) was with the highly porous structure. SEM, energy-dispersive spectrometry and Fourier transform infrared spectrometry showed that the silver NPs were effectively incorporated in the CA nanofibrous membrane and the addition of silver NPs did not damage the porous structure of the CA nanofibrous membrane. Adsorption of dye solution (rhodamine B aqueous solution) revealed that the highly porous CA nanofibrous membrane exhibited effective adsorption performance and the addition of silver NPs did not affect the adsorption of the dye. Antibacterial property of the CA nanofibrous membrane showed that the silver-loaded highly porous CA nanofibrous membrane had remarkable antibacterial property when compared to the CA nanofibrous membrane without silver NPs. The silver-loaded highly porous CA nanofibrous membrane could be considered as an ideal candidate for treatment of the dye wastewater.

  9. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. PMID:27089532

  10. Development of Cellulose/PVDF-HFP Composite Membranes for Advanced Battery Separators

    Science.gov (United States)

    Castillo, Alejandro; Agubra, Victor; Alcoutlabi, Mataz; Mao, Yuanbing

    Improvements in battery technology are necessary as Li-ion batteries transition from consumer electronic to vehicular and industrial uses. An important bottle-neck in battery efficiency and safety is the quality of the separators, which prevent electric short-circuits between cathode and anode, while allowing an easy flow of ions between them. In this study, cellulose acetate was dissolved in a mixed solvent with poly(vinylpyrrolidone) (PVP), and the mixture was forcespun in a peudo paper making process to yield nanofibrillated nonwoven mats. The mats were soaked in NaOH/Ethanol to strip PVP and regenerate cellulose from its acetate precursor. The cellulose mats were then dipped in poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) to yield the cellulose/PVDF-HFP composte membranes. These membranes were characterized chemically through FTIR spectroscopy and solvent-stability tests, thermally through DSC, physically by stress/strain measurements along with weight-based electrolyte uptake, and electrically by AC-impedance spectroscopy combined with capacitative cycling.

  11. Cellulose Acetate 398-10 Asymmetric Membrane Capsules for Osmotically Regulated Delivery of Acyclovir

    Directory of Open Access Journals (Sweden)

    Alka Sonkar

    2016-01-01

    Full Text Available The study was aimed at developing cellulose acetate asymmetric membrane capsules (AMCs of acyclovir for its controlled delivery at the absorption site. The AMCs were prepared by phase inversion technique using wet process. A 23 full factorial design assessed the effect of independent variables (level(s of polymer, pore former, and osmogen on the cumulative drug release from AMCs. The buoyant optimized formulation F7 (low level of cellulose acetate; high levels of both glycerol and sodium lauryl sulphate displayed maximum drug release of 97.88±0.77% in 8 h that was independent of variation in agitational intensity and intentional defect on the cellulose acetate AMC. The in vitro data best fitted zero-order kinetics (r2=0.9898. SEM micrograph of the transverse section confirmed the asymmetric nature of the cellulose acetate capsular membrane. Statistical analysis by Design Expert software indicated no interaction between the independent variables confirming the efficiency of the design in estimating the effects of variables on drug release. The optimized formulation F7 (desirability = 0.871 displayed sustenance of drug release over the drug packed in AMC in pure state proving the superiority of osmotically active formulation. Conclusively the AMCs have potential for controlled release of acyclovir at its absorption site.

  12. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10-4 Ohm cm, 8.08 cm2/V-s and - 1.5 x 1021 cm-3, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO2 thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m2 as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices

  13. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, C.; Vilani, C. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Calil, V.L. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil); Barud, H.S. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Quirino, W.G. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Achete, C.A. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); COPPE-Programa de Engenharia Metalurgica e de Materiais, UFRJ, Rio de Janeiro, RJ (Brazil); Ribeiro, S.J.L. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Cremona, M. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil)], E-mail: cremona@fis.puc-rio.br

    2008-12-01

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10{sup -4} Ohm cm, 8.08 cm{sup 2}/V-s and - 1.5 x 10{sup 21} cm{sup -3}, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO{sub 2} thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m{sup 2} as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices.

  14. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO{sub 4} for lithium ion battery application

    Energy Technology Data Exchange (ETDEWEB)

    Nurhadini,, E-mail: nur-chem@yahoo.co.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institiut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO{sub 4} membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10{sup −4} S/cm was observed in SA/PEO/LiClO{sub 4} membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  15. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    Science.gov (United States)

    Nurhadini, Arcana, I. Made

    2015-09-01

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10-4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application.

  16. Synthesis of polymer electrolyte membranes from cellulose acetate/poly(ethylene oxide)/LiClO4 for lithium ion battery application

    International Nuclear Information System (INIS)

    This study was conducted to determine the effect of cellulose acetate on poly(ethylene oxide)-LiClO4 membranes as the polymer electrolyte. Cellulose acetate is used as an additive to increase ionic conductivity and mechanical property of polymer electrolyte membranes. The increase the percentage of cellulose acetate in membranes do not directly effect on the ionic conductivity, and the highest ionic conductivity of membranes about 5,7 × 10−4 S/cm was observed in SA/PEO/LiClO4 membrane with cellulose ratio of 10-25% (w/w). Cellulose acetate in membranes increases mechanical strength of polymer electrolyte membranes. Based on TGA analysis, this polymer electrolyte thermally is stable until 270 °C. The polymer electrolyte membrane prepared by blending the cellulose acetate, poly(ethylene oxide), and lithium chlorate could be potentially used as a polymer electrolyte for lithium ion battery application

  17. In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair

    Directory of Open Access Journals (Sweden)

    de Lima-Neto João

    2009-03-01

    Full Text Available Abstract Background Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering. Methods Twenty-five Swiss Albino mice were used. A 10 × 10 mm cellulose membrane obtained through biosynthesis using Acetobacter xylinum bacteria was implanted into the lumbar subcutaneous tissue of each mouse. The mice were euthanatized at seven, 15, 30, 60, and 90 days, and the membrane and surrounding tissues were collected and examined by histology. Results A mild inflammatory response without foreign body reaction was observed until 30 days post-surgery around the implanted membrane. Polarized microscopy revealed that the membrane remained intact at all evaluation points. Scanning electron microscopy of the cellulose membrane surface showed absence of pores. The in vitro evaluation of the interaction between cells and biomaterial was performed through viability staining analysis of the cells over the biomaterial, which showed that 95% of the mesenchymal stem cells aggregating to the cellulose membrane were alive and that 5% were necrotic. Scanning electron microscopy showed mesenchymal stem cells with normal morphology and attached to the cellulose membrane surface. Conclusion The microbial cellulose membrane evaluated was found to be nonresorbable, induced a mild inflammatory response and may prove useful as a scaffold for mesenchymal stem cells.

  18. Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries

    Science.gov (United States)

    Jiang, Fengjing; Yin, Lei; Yu, Qingchun; Zhong, Chunyan; Zhang, Junliang

    2015-04-01

    Thermal shrinkage is a severe problem for the conventional polyolefin separators. In this work, we report the excellent performance of bacterial cellulose (BC) nanofibrous membranes as separators for lithium (Li) ion batteries. Properties of BC separator including morphology, ionic conductivity, electrochemical stability, thermal stability, mechanical strength and battery charge-discharge performance are characterized and compared to a commercial separator membrane (Celgard® 2325). Because of the unique fibrous and cross-linked three-dimensional network structure, BC separator shows excellent dimensional stability up to 180 °C, good ionic conductivity and competitive battery performance.

  19. Separation of macromolecular proteins and removal of humic acid by cellulose acetate modified UF membranes.

    Science.gov (United States)

    Kanagaraj, P; Nagendran, A; Rana, D; Matsuura, T

    2016-08-01

    Surface modifying macromolecules (SMMs) were synthesized with various polyurethane pre polymers end-capped with different groups and blended into the casting solution of cellulose acetate (CA) to prepare surface modified ultra-filtration (UF) membranes for water filtration applications. The surface modification of the CA membranes was confirmed by the FTIR and static contact angle (SCA) measurements. The membranes so prepared had the typical characteristics of UF membranes as confirmed by scanning electron microscopy (SEM). Membrane properties were studied in terms of membrane compaction, percentage water content (%WC), pure water flux (PWF), membrane hydraulic resistance (Rm), molecular weight cut-off (MWCO), average pore size and porosity. The result showed that PWF, %WC, MWCO and pore size increased whereas the Rm decreased by the addition of SMMs. The significant effect of SMMs on the fouling by humic acid (HA) was also observed. It was found that the cSMM-3 membrane, in which SMM was synthesized with diethylene glycol (DEG) and hydroxyl benzene sulfonate (HBS) was blended, had the highest flux recovery ratio FRR (84.6%), as well as the lowest irreversible fouling (15.4%), confirming their improved antifouling properties. Thus, the SMM modified CA membranes had proven, to play an important role in the water treatment by UF. PMID:27118046

  20. Fabrication and performance of PET mesh enhanced cellulose acetate membranes for forward osmosis.

    Science.gov (United States)

    Li, Guoliang; Wang, Jun; Hou, Deyin; Bai, Yu; Liu, Huijuan

    2016-07-01

    Polyethylene terephthalate mesh (PET) enhanced cellulose acetate membranes were fabricated via a phase inversion process. The membrane fabrication parameters that may affect the membrane performance were systematically evaluated including the concentration and temperature of the casting polymer solution and the temperature and time of the evaporation, coagulation and annealing processes. The water permeability and reverse salt flux were measured in forward osmosis (FO) mode for determination of the optimal membrane fabrication conditions. The optimal FO membrane shows a typical asymmetric sandwich structure with a mean thickness of about 148.2μm. The performance of the optimal FO membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.47L/(m(2)·hr) and salt rejection of 95.48% in FO mode. While in pressure retarded osmosis (PRO) mode, the water flux was 4.74L/(m(2)·hr) and salt rejection 96.03%. The high ratio of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization than comparable membranes. PMID:27372114

  1. Effect of evaporation time on cellulose acetate membrane for gas separation

    Science.gov (United States)

    Jami'an, W. N. R.; Hasbullah, H.; Mohamed, F.; Yusof, N.; Ibrahim, N.; Ali, R. R.

    2016-06-01

    Throughout this decades, membrane technology has been the desirable option among the others gas separation technologies. However, few issues have been raised regarding the membrane gas separation application including the trade-off between its permeability and selectivity and also its effects towards environment. Therefore, for this research, a biopolymer membrane for gas separation application will be developed with reasonably high on both permeability and selectivity. The main objective of this research is to study the effect of solvent evaporation time on the flat sheet asymmetric membrane morphology and gas separation performance. The membranes were produced by a simple dry/wet phase inversion technique using a pneumatically controlled casting system. The dope solution for the membrane casting was prepared by dissolving the cellulose acetate (CA) polymer in N-Methyl-2-pyrrolidone (NMP) and the solvent evaporation time was varied. Permeability and selectivity of the membrane was performed by using pure gases of carbon dioxide, CO2 and methane, CH4. The increase in solvent evaporation time had improved the membrane morphologies as the porosity of the membrane surface decrease and formation of a more mature skin layer. The gas permeation tests determined that increasing in solvent evaporation time had increased the selectivity of CO2/CH4 but reduce the permeability of both gases

  2. Effect of silica particle size in cellulose membrane for desalination process

    Science.gov (United States)

    Nurkhamidah, Siti; Rahmawati, Yeni; Taufany, Fadlilatul; Merta, I. Made Pendi Adi; Putra, Deffry Danius Dwi; Woo, Eamor M.

    2015-12-01

    Development of desalination technologies is very important for fulfilling future water demand. The objective of this research is to synthesis membrane for desalination process from cellulose acetate (CA) by blending with polyethylene glycol (PEG) and silica resulting CA/PEG/Silica composite membrane. In this study, the synthesis and characterization of composite membrane is attempt where membrane performance is investigated for reverse osmosis desalination of saline water. CA/PEG membrane with ratio 80/20 (wt%) was modified with three different particle sizes of silica: 0.007, 0.02, and 60 µm. Composite membranes were characterized for their hydrophilicity, functional groups and permeation properties. The experiment results show that hydrophilicity of CA/PEG membrane increases after the addition of silica as shown by the decreasing of contact angle and the increasing of silanol group. Hydrophilicity of composite membrane increases with the decreasing of particle size of silica. The best performance membrane is obtained by using silica with particle size of 0.02 µm.

  3. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Directory of Open Access Journals (Sweden)

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  4. Recent advances in cellulose and chitosan based membranes for water purification: A concise review.

    Science.gov (United States)

    Thakur, Vijay Kumar; Voicu, Stefan Ioan

    2016-08-01

    Recently membrane technology has emerged as a new promising and pervasive technology due to its innate advantages over traditional technologies such as adsorption, distillation and extraction. In this article, some of the recent advances in developing polymeric composite membrane materials for water purification from natural polysaccharide based polymers namely cellulose derivatives and chitosan are concisely reviewed. The impact of human social, demographic and industrial evolution along with expansion through environment has significantly affected the quality of water by pollution with large quantities of pesticides, minerals, drugs or other residues. At the forefront of decontamination and purification techniques, we found the membrane materials from polymers as a potential alternative. In an attempt to reduce the number of technical polymers widely used in the preparation of membranes, many researchers have reported new solutions for desalination or retention of organic yeasts, based on bio renewable polymers like cellulose derivatives and chitosan. These realizations are presented and discussed in terms of the most important parameters of membrane separation especially water flux and retention in this article. PMID:27112861

  5. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620 (China); Wang Huaping, E-mail: wanghp@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620 (China)

    2009-05-05

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  6. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  7. Flexible magnetic membranes based on bacterial cellulose and its evaluation as electromagnetic interference shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Marins, Jéssica A., E-mail: Jessica.amarins@gmail.com [Universidade Federal do Rio de Janeiro/ Instituto de Macromoléculas, Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Soares, Bluma G., E-mail: bluma@ima.ufrj.br [Universidade Federal do Rio de Janeiro/ Instituto de Macromoléculas, Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Barud, Hernane S.; Ribeiro, Sidney J.L. [Universidade Estadual Paulista, Instituto de Química, UNESP, Araraquara, SP (Brazil)

    2013-10-15

    Flexible magnetic membranes with high proportion of magnetite were successfully prepared by previous impregnation of the never dried bacterial cellulose pellicles with ferric chloride followed by reduction with sodium bisulfite and alkaline treatment for magnetite precipitation. Membranes were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating magnetometer, field emission scanning electron microscopy (FEG-SEM) and impedance spectroscopy. Microwave properties of these membranes were investigated in the X-band (8.2 to 12.4 GHz). FEG-SEM micrographs show an effective coverage of the BC nanofibers by Fe{sub 3}O{sub 4} nanoparticles. Membranes with up to 75% in weight of particles have been prepared after 60 min of reaction. Magnetite nanoparticles in the form of aggregates well adhered to the BC fibers were observed by SEM. The average crystal sizes of the magnetic particles were in the range of 10 ± 1 to 13 ± 1 nm (estimated by XRD). The magnetic particles in the BC pellicles presented superparamagnetic behavior with a saturation magnetization in the range of 60 emu g{sup −1} and coercive force around 15 Oe. These magnetic pellicles also displayed high electrical permittivity and a potential application as microwave absorber materials. - Highlights: • Bacterial cellulose/magnetite nanocomposites with high incorporation degree of nanoparticles. • Magnetite nanoparticles well adhered to the surface of bacterial cellulose nanofibers. • A saturation magnetization of the nanoparticles in the BC pellicles of about 60 emu g{sup −1}. • Flexible membranes with high super-paramagnetic characteristic.

  8. Cellulose Acetate Membrane with Improved Perm-selectivity through Modification Dope Composition and Solvent Evaporation for Water Softening

    OpenAIRE

    T. D. Kusworo; Budiyono, A.I. Wibowo; G.D. Harjanto; A.D. Yudisthira; F.B. Iswanto

    2014-01-01

    Membrane technology has been developed because applicated on several fields. Hence, in this study carried the production of cellulose acetate nano-filtration membranes for water softening. The main objective of this study was determined the effect of solvent evaporation time and the effect of adding PEG to the morphology and perm-selectivity of asymmetry membrane for water treatment. Membranes prepared by dry/wet phase inversion method with variation of solvent evaporation time of 10-15 sec a...

  9. High-speed water sterilization using silver-containing cellulose membranes

    International Nuclear Information System (INIS)

    The removal of bacteria and other pathogenic micro-organisms from drinking water is usually carried out by boiling; however, when this is not a feasible option, a combination of treatment based on filtration and disinfection is recommended. In this work, we produced cellulose filters grafted with silver nanoparticles (AgNPs) and silver nanowires (AgNWs) by covalent attachment of separately prepared Ag nanostructures on thiol- and amine-modified commercially available cellulosic filters. Results obtained from scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) all revealed that such modified cellulose membranes contained large amounts of homogeneously dispersed AgNPs, whereas X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the aforementioned nanostructures were immobilized on the membrane with a strong and stable covalent bond between the thiol or amine groups and the surface of the Ag nanofillers. This durable and robust covalent attachment facilitated outstanding suppression of the uncontrolled release of the nanostructures from the membranes, even under strong ultrasonication. Those membranes also demonstrated high permeance and antimicrobial activity in excess of 99.9% growth inhibition against Escherichia coli, which was used as a model of gram-negative coliform bacteria. Bacteria percolated throughout the tortuous silver-loaded filters, thus increasing the chances of contact between the Ag nanostructures (wires or nanoparticles) and the passing bacteria. Thus, we anticipate that these filters, with their high antibacterial activity and robustness, can be produced in a cost-effective manner and that they would be capable of producing affordable, clean, and safe drinking water in a short period of time without producing an uncontrolled silver release into the percolated water. (paper)

  10. High-speed water sterilization using silver-containing cellulose membranes

    Science.gov (United States)

    Sinclair, Terica; Zieba, Maciej; Irusta, Silvia; Sebastián, Víctor; Arruebo, Manuel

    2014-08-01

    The removal of bacteria and other pathogenic micro-organisms from drinking water is usually carried out by boiling; however, when this is not a feasible option, a combination of treatment based on filtration and disinfection is recommended. In this work, we produced cellulose filters grafted with silver nanoparticles (AgNPs) and silver nanowires (AgNWs) by covalent attachment of separately prepared Ag nanostructures on thiol- and amine-modified commercially available cellulosic filters. Results obtained from scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) all revealed that such modified cellulose membranes contained large amounts of homogeneously dispersed AgNPs, whereas X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the aforementioned nanostructures were immobilized on the membrane with a strong and stable covalent bond between the thiol or amine groups and the surface of the Ag nanofillers. This durable and robust covalent attachment facilitated outstanding suppression of the uncontrolled release of the nanostructures from the membranes, even under strong ultrasonication. Those membranes also demonstrated high permeance and antimicrobial activity in excess of 99.9% growth inhibition against Escherichia coli, which was used as a model of gram-negative coliform bacteria. Bacteria percolated throughout the tortuous silver-loaded filters, thus increasing the chances of contact between the Ag nanostructures (wires or nanoparticles) and the passing bacteria. Thus, we anticipate that these filters, with their high antibacterial activity and robustness, can be produced in a cost-effective manner and that they would be capable of producing affordable, clean, and safe drinking water in a short period of time without producing an uncontrolled silver release into the percolated water.

  11. UV-cured Al2O3-laden cellulose reinforced polymer electrolyte membranes for Li-based batteries

    International Nuclear Information System (INIS)

    A methacrylate based plasticised polymer electrolyte membrane is prepared via a rapid and facile UV curing process, the major concerns of mechanical integrity are overcome by simply using appropriately modified cellulose handsheet laden with nano-sized acidic alumina particles as a reinforcement. The use of the cellulose handsheets greatly enhances the flexibility and mechanical properties of the membrane while the addition of alumina particles helps to maintain satisfactory conductivity values. The reinforced composite electrolyte membrane is also tested in a real lithium cell, exhibiting excellent performance which account for its use in futuristic lithium batteries having low cost, environmentally friendly and easily scalable properties

  12. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes.

    Science.gov (United States)

    Quirós, Jennifer; Gonzalo, Soledad; Jalvo, Blanca; Boltes, Karina; Perdigón-Melón, José Antonio; Rosal, Roberto

    2016-09-01

    Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time

  13. Development of cellulose-polypyrrole microfiber membranes and assessment of their capability on water softening

    Science.gov (United States)

    Barrera, C.; Arrieta, A.; Escobar, N.; Gañan, P.; Castro, C.

    2013-11-01

    The application of conducting polymer composite for water softening is based on the use of pyrrole's electrochemical properties joined with the flexibility and relatively high surface areas associated with cellulose fibers, to develop a new hybrid material that exhibits the inherent proprieties of both components. This hybrid would allow to promote an ion exchange reaction between the composite membrane and the hard water. The cellulose membranes obtained from banana plant agricultural waste (raquis), were uniform with individual and well separated fibers. The fibers were encapsulated by a continuous coating of polypyrrole by an in situ oxidative chemical polymerization. The amount of polypyrrole deposited on the fiber increased by increasing the monomer concentration, behavior that was identified through the observation of differences on the intensity of the light to dark color shift that coated the fibers after the polymerization. The ion removal capability of the membrane coted with the conducting polymer was tested using an experimental device, finding reductions on the conductivity for hard water within 23 to 66 μs/cm after 6 hours of the assay.

  14. Bacterial Cellulose Membranes Used as Artificial Substitutes for Dural Defection in Rabbits

    Directory of Open Access Journals (Sweden)

    Chen Xu

    2014-06-01

    Full Text Available To improve the efficacy and safety of dural repair in neurosurgical procedures, a new dural material derived from bacterial cellulose (BC was evaluated in a rabbit model with dural defects. We prepared artificial dura mater using bacterial cellulose which was incubated and fermented from Acetobacter xylinum. The dural defects of the rabbit model were repaired with BC membranes. All surgeries were performed under sodium pentobarbital anesthesia, and all efforts were made to minimize suffering. All animals were humanely euthanized by intravenous injection of phenobarbitone, at each time point, after the operation. Then, the histocompatibility and inflammatory effects of BC were examined by histological examination, real-time fluorescent quantitative polymerase chain reaction (PCR and Western Blot. BC membranes evenly covered the surface of brain without adhesion. There were seldom inflammatory cells surrounding the membrane during the early postoperative period. The expression of inflammatory cytokines IL-1β, IL-6 and TNF-α as well as iNOS and COX-2 were lower in the BC group compared to the control group at 7, 14 and 21 days after implantation. BC can repair dural defects in rabbit and has a decreased inflammatory response compared to traditional materials. However, the long-term effects need to be validated in larger animals.

  15. The Use of Cellulose Membrane to Eliminate Burst Release from Intravaginal Rings.

    Science.gov (United States)

    Helbling, Ignacio M; Ibarra, Juan C D; Luna, Julio A

    2016-07-01

    Burst release was observed when ethylene vinyl acetate copolymer (EVA) intravaginal rings were tested for progesterone release in our previous work (Helbling et al. Pharm Res. 31(3):795-808, 2014). Burst release is undesirable in controlled delivery devices because release is uncontrollable and higher levels of active pharmaceutical ingredient could lead to the occurrence of adverse effect. The present contribution is about the use of membranes to coat EVA rings to eliminate burst release. Physicochemical state of progesterone in uncoated rings and the solubility and diffusion coefficient in membrane were studied. Hormone delivery from several rings of different sizes was compared. A mathematical model was used to analyze the effects of membrane properties on delivery rate. No chemical interactions were detected between hormone and polymer. Hormone was mainly forming amorphous aggregates inside rings, and migration to membrane was not observed during storage. Diffusion coefficient was smaller in membrane (∼10(-8) cm(2) s(-1)) than in matrix (∼10(-7) cm(2) s(-1)). Zero-order release kinetics were obtained for coated rings, and release rate decreases as the thickness of the coat increases. Cellulose membrane successfully eliminates burst release and controls the delivery from EVA rings. The equations developed can be used to determine the appropriate coat thickness to produce specific release rate. PMID:27097635

  16. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc. PMID:27211301

  17. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation.

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-01-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it's still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation. PMID:27615451

  18. Preparation of Cellulosic Membrane Containing Pyrrolidone Moiety Via Radiation Induced Grafting and its Application in Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    A. S. Aly

    2005-01-01

    Full Text Available Radiation induced grafting of vinyl pyrrolidone onto cellulose wood pulp was carried out in heterogeneous and homogenous media using gamma radiation. Cellulose wood pulp was used in different forms; a in a homogenous solution by dissolving the wood pulp in N,N- dimethylacetamide/Lithium chloride (DMAc/LiCl mixture , b in a membrane form, by precipitating the cellulose solution in water and c in a powder form. Factors affecting on the grafting such as radiation dose, monomer concentration, precipitator concentration and thickness of the membrane have been studied. The result showed that at the same dose, the grafting yield was higher with cellulose in soluble form than in the membrane form, whereas cellulose in powder exhibited the lowest graft yield. The grafted membrane was characterized by IR, TGA and SEM. The ability of the grafted membrane to remove dyes (acid and basic dye, heavy metal ions (Co 2+ , Ni 2+ and Cu 2+ and phenols from wastewater was also reported.

  19. Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization.

    Science.gov (United States)

    Qaiser, Asif A; Hyland, Margaret M; Patterson, Darrell A

    2009-11-12

    Polyaniline (PANI) can be deposited either on the surface or in the bulk of a microporous membrane by various chemical oxidative polymerization techniques. Each technique has distinctive effects on the PANI site and extent of deposition on the base membrane. In the present study, mixed cellulose ester (ME) membranes with tortuous pore morphology were used as base membranes. The chemical oxidative polymerization techniques employed, included polymerization using an in-house-built two-compartment permeation cell. The resultant composite membranes have been characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR-ATR), and electrical conductivity measurements. The results showed that PANI was layered on the pore walls of the membrane using two-compartment permeation cell. Vapor-phase polymerization yielded a surface layer of PANI with little deposition in the bulk. A distorted PANI surface layer was achieved by solution-phase (dip) polymerization. Moreover, asymmetric PANI deposition within the membrane bulk was evidenced using two-compartment permeation cell. Composite membranes synthesized using two-compartment cell showed highest levels of conductivity (approximately 10(-2) S/cm) as compared to the membranes modified by single-step solution-phase polymerization. FTIR-ATR results indicated the extent of PANI coating and its oxidation state which was identified as doped emeraldine PANI, from all the employed techniques. Asymmetric deposition and extent have been explained in terms of the physical and chemical reaction steps involved in the heterogeneous aniline polymerization reactions in the two-compartment cell technique. PMID:19888765

  20. Long-Term Stability of a Cellulose-Based Glucose Oxidase Membrane

    Directory of Open Access Journals (Sweden)

    Soichi Yabuki

    2014-01-01

    Full Text Available A cellulose-based glucose oxidase membrane was prepared on a glassy carbon (GC electrode. The current response of the electrode to glucose was measured by applying a potential of 1.0 V vs. Ag/AgCl on the base GC and was proportional to the concentration of glucose up to 1 mM. The long-term stability of the electrode was examined by measuring the daily glucose response. Over four months, the response magnitude was maintained and then gradually decreased. After 11 months, though the response magnitude decreased to 50% of the initial value, the linear response range did not change. Therefore, the electrode could be used as a glucose biosensor even after 11 months of use. The entrapment of the enzyme in the cellulose matrix promoted the stability of the enzyme, as revealed by data on the enzyme activity after the enzyme electrode was immersed in urea. Therefore, the cellulose matrix may be used to improve the performance of biosensors, bioreactors and bio-fuel cells.

  1. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations

    KAUST Repository

    Kim, Wun-gwi

    2013-08-01

    Nanoporous layered silicate/polymer composite membranes are of interest because they can exploit the high aspect ratio of exfoliated selective flakes/layers to enhance molecular sieving and create a highly tortuous transport path for the slower molecules. In this work, we combine membrane synthesis, detailed microstructural characterization, and mixed gas permeation measurements to demonstrate that nanoporous flake/polymer membranes allows significant improvement in gas permeability while maintaining selectivity. We begin with the primary-amine-intercalated porous layered silicate SAMH-3 and show that it can be exfoliated using a high shear rate generated by a high-speed mixer. The exfoliated SAMH-3 flakes were used to form SAMH-3/cellulose acetate (CA) membranes. Their microstructure was analyzed by small angle X-ray scattering (SAXS), revealing a high degree of exfoliation of AMH-3 layers in the CA membrane with a small number of layers (4-8) in the exfoliated flakes. TEM analysis visualized the thickness of the flakes as 15-30nm, and is consistent with the SAXS analysis. The CO2/CH4 gas separation performance of the CA membrane was significantly increased by incorporating only 2-6wt% of SAMH-3 flakes. There was a large increase in CO2 permeability with maintenance of selectivity. This cannot be explained by conventional models of transport in flake-containing membranes, and indicates complex transport paths in the membrane. It is also in contrast to the much higher loadings of isotropic particles required for similar enhancements. The present approach may allow avoidance of particle aggregation and poor interfacial adhesion associated with larger quantities of inorganic fillers. © 2013 Elsevier B.V.

  2. Porous thin film barrier layers from 2,3-dicarboxylic acid cellulose nanofibrils for membrane structures.

    Science.gov (United States)

    Visanko, Miikka; Liimatainen, Henrikki; Sirviö, Juho Antti; Haapala, Antti; Sliz, Rafal; Niinimäki, Jouko; Hormi, Osmo

    2014-02-15

    To fabricate a strong hydrophilic barrier layer for ultrafiltration (UF) membranes, 2,3-dicarboxylic acid cellulose nanofibrils with high anionic surface charge density (1.2 mekv/g at pH 7) and a width of 22 ± 4 nm were used. A simple vacuum filtration method combined with a solvent exchange procedure resulted in a porous layer with a thickness of ∼ 0.85 μm. The fabricated membranes reached high rejection efficiencies (74-80%) when aqueous dextrans up to 35-45 kDa were filtrated to evaluate the molecular weight cut-offs (MWCO). A linear correlation between the barrier layer thickness and the flux rate was observed in all tested cases. Further optimization of the barrier layer thickness can lead to an even more effective structure. PMID:24507322

  3. Evaluation of a polymer inclusion membrane containing a C-pivot tripodal diglycolamide for Am(III) extraction

    International Nuclear Information System (INIS)

    The instability of supported liquid membrane (SLM), being used for laboratory scale metal ion separation, can be avoided using Polymer inclusion membranes (PIM). We have been carrying out studies on diglycolamide based extractants including a C-pivot tripodal diglycolamide (T-DGA) for actinide ion separation from acidic feed solution. It was thought of interest to study the properties of T-DGA based PIM containing cellulose triacetate (CTA) as polymer and 2-nitrophenyl octyl ether (NPOE) as the plasticizer for Am(III) uptake and transport

  4. Cellulose acetate electrospun nanofibrous membrane: fabrication, characterization, drug loading and antibacterial properties

    Indian Academy of Sciences (India)

    NAZNIN SULTANA; ANISAH ZAINAL

    2016-04-01

    Cellulose-based materials are one of the most commonly used materials for biomedical applications, which normally applied as carriers for pharmaceuticals and drug-releasing scaffolds. In this study, cellulose acetate (CA) was used to fabricate the nanofibrous membrane using the electrospinning technique. CA solutions at different concentrations were prepared by dissolving the polymer in a mixture of acetic acid/acetone solvents with the ratio of 3:1. The field emission scanning electron microscope results showed that electrospinning of 10% (w/v) CA produced nanofibres with many beads. When the CA concentration was increased to 14% (w/v), bead-free nanofibres were produced. The contact angle measurement results confirmed the hydrophilic properties of nanofibres. In order to prevent common bacterial infections, a model drug, Tetracycline · HCL was incorporated into the CA nanofibres. The drug-loaded CA nanofibres showed antibacterial activity against Gram-positive and Gram-negative bacteria.CA nanofibres had high water uptake properties. The CA nanofibrous membrane was non-toxic to human skin fibroblast cells. Thus the CA nanofibres with 14% (w/v) concentration exerted suitable properties for wound healingapplication.

  5. Electromotive force and impedance studies of cellulose acetate membranes: Evidence for two binding sites for divalent cations and for an alveolar structure of the skin layer

    DEFF Research Database (Denmark)

    Smith Sørensen, T.; Jensen, J.B.; Malmgren-Hansen, B.

    1991-01-01

    The electromotive force (EMF) has been measured for a great number of concentration cells of the type: Ag \\ AgCl \\ >>variableCellulose Acetate Membrane \\ >>fixed...Cellulose Acetate (CA) membranes were mostly dense membranes cast by ourselves. A few were...... asymmetic membranes. The skin layer in asymmetric membranes is assumed to have properties similar to dense membranes. The EMF measurements were interpreted by means of a Donnan-Nernst-Planck (Teorell-Meyer-Sievers) model, which functions quite well due to the low fixed charge in the membrane. The membrane...

  6. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    International Nuclear Information System (INIS)

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute

  7. Adsorptive removal of phenolic compounds using cellulose acetate phthalate–alumina nanoparticle mixed matrix membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Raka; De, Sirshendu, E-mail: sde@che.iitkgp.ernet.in

    2014-01-30

    Highlights: • Composite membrane of cellulose–acetate–phthalate and alumina nanoparticle is cast. • Surface charge of the membrane changes with nanoparticle concentration and pH. • Separation of phenolic compounds occurs due to adsorption. • The removal efficiency is maximum for 20% nanoparticle with 91% removal of catechol. • Transmembrane pressure drop has negligible effect on solute separation. -- Abstract: Mixed matrix membranes (MMMs) were prepared using alumina nanoparticles and cellulose acetate phthalate (CAP) by varying concentration of nanoparticles in the range of 10 to 25 wt%. The membranes were characterized by scanning electron micrograph, porosity, permeability, molecular weight cut off, contact angle, surface zeta potential, mechanical strength. Addition of nanoparticles increased the porosity, permeability of the membrane up to 20 wt% of alumina. pH at point of zero charge of the membrane was 5.4. Zeta potential of the membrane became more negative up to 20 wt% of nanoparticles. Adsorption of phenolic derivatives, catechol, paranitrophenol, phenol, orthochloro phenol, metanitrophenol, by MMMs were investigated. Variation of rejection and permeate flux profiles were studied for different solutes as a function of various operating conditions, namely, solution pH, solute concentration in feed and transmembrane pressure drop. Difference in rejection of phenolic derivatives is consequence of interplay of surface charge and adsorption by alumina. Adsorption isotherm was fitted for different solutes and effects of pH were investigated. Catechol showed the maximum rejection 91% at solution pH 9. Addition of electrolyte reduced the rejection of solutes. Transmembrane pressure drop has insignificant effects on solute rejection. Competitive adsorption reduced the rejection of individual solute.

  8. An Outer Membrane Protein Involved in the Uptake of Glucose Is Essential for Cytophaga hutchinsonii Cellulose Utilization.

    Science.gov (United States)

    Zhou, Hong; Wang, Xia; Yang, Tengteng; Zhang, Weixin; Chen, Guanjun; Liu, Weifeng

    2016-03-01

    Cytophaga hutchinsonii specializes in cellulose digestion by employing a collection of novel cell-associated proteins. Here, we identified a novel gene locus, CHU_1276, that is essential for C. hutchinsonii cellulose utilization. Disruption of CHU_1276 in C. hutchinsonii resulted in complete deficiency in cellulose degradation, as well as compromised assimilation of cellobiose or glucose at a low concentration. Further analysis showed that CHU_1276 was an outer membrane protein that could be induced by cellulose and low concentrations of glucose. Transcriptional profiling revealed that CHU_1276 exerted a profound effect on the genome-wide response to both glucose and Avicel and that the mutant lacking CHU_1276 displayed expression profiles very different from those of the wild-type strain under different culture conditions. Specifically, comparison of their transcriptional responses to cellulose led to the identification of a gene set potentially regulated by CHU_1276. These results suggest that CHU_1276 plays an essential role in cellulose utilization, probably by coordinating the extracellular hydrolysis of cellulose substrate with the intracellular uptake of the hydrolysis product in C. hutchinsonii. PMID:26773084

  9. Electrochemical Characterization of Cellulose Acetate Butyrate-Prmutit Composite Membrane in Aqueous Uni-Uni Valent Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    A.K. Tiwari

    2015-06-01

    Full Text Available Co-mixed cellulose acetate butyrate and permutit in a definite composition was prepared and coded as MRS-2. The membrane potential was measured with uni-uni valent electrolyte, NaCl solutions using saturated calomel electrodes (SCEs.The effective fixed charge density of the membrane was determined by TMS method and it showed dependence on the porosity, charge on the membrane matrix, charge and size of permeating ions. Other important electrochemical parameters were calculated. Conductance-time data were generated for the kinetic study of the permeating ions in terms of membrane permeability, flow and flux parameters. Donnan membrane equilibrium condition was examined. Membrane adsorbability showed concave dependence with external electrolyte solution and convex type dependence was showed by swelling and conductance parameters. This membrane had no characteristic of anomalous osmosis, indicates that there is no water flooding will take place during membrane operation.

  10. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes

    KAUST Repository

    Ong, Rui Chin

    2015-01-01

    A novel hydrophilic cellulose ester with a high intrinsic water permeability and a water partition coefficient was discovered to construct membrane supports for flat-sheet thin film composite (TFC) forward osmosis (FO) membranes for water reuse and seawater desalination with high performance. The performance of TFC-FO membranes prepared from the hydrophilic cellulose ester containing a high degree of OH and a moderate degree of Pr substitutions clearly surpasses those prepared from cellulose esters and other polymers with moderate hydrophilicity. Post-treatments of TFC-FO membranes using sodium dodecyl sulfate (SDS) and glycerol followed by heat treatment further enhance the water flux without compromising the selectivity. Positron annihilation lifetime analyses have confirmed that the SDS/glycerol post-treatment increases the free volume size and fractional free volume of the polyamide selective layer. The newly developed post-treated TFC-FO membranes exhibit a remarkably high water flux up to 90 LMH when the selective layer is oriented towards the draw solution (i.e., PRO mode) using 1. M NaCl as the draw solution and DI water as the feed. For seawater desalination, the membranes display a high water flux up to 35 LMH using a 2. M NaCl draw solution. These water fluxes exceeded the water fluxes achieved by other types of FO membranes reported in literatures. © 2014 Elsevier B.V.

  11. Evaluation of polymer inclusion membranes containing crown ethers for selective cesium separation from nuclear waste solution

    International Nuclear Information System (INIS)

    Transport behaviour of 137Cs from nitric acid feed was investigated using cellulose triacetate plasticized polymer inclusion membrane (PIM) containing several crown ether carriers viz. di-benzo-18-crown-6 (DB18C6), di-benzo-21-crown-7 (DB21C7) and di-tert-butylbenzo-18-crown-6 (DTBB18C6). The PIM was prepared from cellulose triacetate (CTA) with various crown ethers and plasticizers. DTBB18C6 and tri-n-butyl phosphate (TBP) were found to give higher transport rate for 137Cs as compared to other carriers and plasticizers. Effect of crown ether concentration, nitric acid concentration, plasticizer and CTA concentration on the transport rate of Cs was also studied. The Cs selectivity with respect to various fission products obtained from an irradiated natural uranium target was found to be heavily dependent on the nature of the plasticizer. The present work shows that by choosing a proper plasticizer, one can get either good transport efficiency or selectivity. Though TBP plasticized membranes showed good transport efficiency, it displayed poor selectivities. On the other hand, an entirely opposite separation behaviour was observed with 2-nitrophenyloctylether (NPOE) plasticized membranes suggesting the possible application of the later membranes for the removal of bulk 137Cs from the nuclear waste. The stability of the membrane was tested by carrying out transport runs for nearly 25 days.

  12. Production of Cellulosic Polymers from Agricultural Wastes

    OpenAIRE

    Israel, A. U.; I. B. Obot; Umoren, S. A.; Mkpenie, V.; Asuquo, J. E.

    2008-01-01

    Cellulosic polymers namely cellulose, di-and triacetate were produced from fourteen agricultural wastes; Branch and fiber after oil extraction from oil palm (Elais guineensis), raffia, piassava, bamboo pulp, bamboo bark from raphia palm (Raphia hookeri), stem and cob of maize plant (Zea mays), fruit fiber from coconut fruit (Cocos nucifera), sawdusts from cotton tree (Cossypium hirsutum), pear wood (Manilkara obovata), stem of Southern gamba green (Andropogon tectorus), sugarcane baggase (Sac...

  13. Cellulose nanofibers decorated with magnetic nanoparticles : synthesis, structure and use in magnetized high toughness membranes for a prototype loudspeaker

    OpenAIRE

    Galland, Sylvain; Andersson, Richard; Salajkova, Michaela; Ström, Valter; Olsson, Richard; Berglund, Lars

    2013-01-01

    Magnetic nanoparticles are the functional component for magnetic membranes, but they are difficult to disperse and process into tough membranes. Here, cellulose nanofibers are decorated with magnetic ferrite nanoparticles formed in situ which ensures a uniform particle distribution, thereby avoiding the traditional mixing stage with the potential risk of particle agglomeration. The attachment of the particles to the nanofibrils is achieved via aqueous in situ hydrolysis of metal precursors on...

  14. Cellulose Acetate Membrane with Improved Perm-selectivity through Modification Dope Composition and Solvent Evaporation for Water Softening

    Directory of Open Access Journals (Sweden)

    T.D. Kusworo

    2014-05-01

    Full Text Available Membrane technology has been developed because applicated on several fields. Hence, in this study carried the production of cellulose acetate nano-filtration membranes for water softening. The main objective of this study was determined the effect of solvent evaporation time and the effect of adding PEG to the morphology and perm-selectivity of asymmetry membrane for water treatment. Membranes prepared by dry/wet phase inversion method with variation of solvent evaporation time of 10-15 sec and addition of 2.5-5 wt% PEG in the dope solution. Membrane characterization consists of calculation of membrane flux and rejection with brackish water as a feed, SEM and FTIR analysis. The research concluded that asymmetric cellulose acetate membrane can be made by dry/wet phase inversion method. The results of FTIR analysis showed the larger absorption peaks indicates that the increasing concentrations of PEG addition make the PEG molecular weight and the unit re-CH2-CH2 O-greater. The results of SEM analysis exhibited that all the membranes are formed has an asymmetric structure consisting of a thin fine porous structure selective barrier and sub-structure of the porous layer is thicker. Moreover, the addition of PEG, the larger pore of membrane will be formed. Performance optimum membrane was obtained on the composition of 23 wt% cellulose acetate, polyethylene-glycol 5 wt%, 72 wt% acetone and 1 wt% of distilled water in the solvent evaporation time of 25 sec and temperature coagulant at room temperature. Characterization of the optimum membrane were flux 22.33 L/m2/h/bar, 92% rejection for turbidity, rejection for dissolved solids 85 and 81% rejection for ions Ca2+, with modulus young around 12433 N/cm2, respectively.

  15. Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose with amphiphobicity.

    Science.gov (United States)

    Tang, Lian; Han, Jinlu; Jiang, Zhenlin; Chen, Shiyan; Wang, Huaping

    2015-03-01

    Flexible conductive polypyrrole nanocomposite membranes based on bacterial cellulose (BC) with amphiphobicity have been successfully prepared through in situ chemical synthesis and then infiltrated with polysiloxane solution. The results suggested that polypyrrole (PPy) nanoparticles deposited on the surface of BC formed a continuous core-shell structure by taking along the BC template. After modification with polysiloxane, the surface characteristics of the conductive BC membranes changed from highly hydrophilic to hydrophobic. The AFM images revealed that the roughness of samples after polysiloxane treatment increased along with the increase of pyrrole concentration. The contact angles (CAs) data revealed that the highest water contact angle and highest oil contact angle are 160.3° and 136.7°, respectively. The conductivity of the amphiphobic membranes with excellent flexibility reached 0.32 S/cm and demonstrated a good electromagnetic shielding effectiveness with an SE of 15 dB which could be applied in electromagnetic shielding materials with self-cleaning properties. It opened a new field of potential applications of BC materials. PMID:25498630

  16. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    Science.gov (United States)

    Lu, Ping; Hsieh, You-Lo

    2009-10-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  17. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    International Nuclear Information System (INIS)

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  18. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology

  19. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Taisa R.; Pértile, Renata A.N. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil); Rambo, Carlos R., E-mail: rambo@intelab.ufsc.br [Department of Electrical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900 (Brazil); Porto, Luismar M. [Integrated Technologies Laboratory, Department of Chemical and Food Engineering (Brazil)

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications. - Highlights: • Glucose and dextrin were used to modify culture media for BC production. • Microarchitecture of BC was different depending on the enriching agent. • Fibroblasts adhered on the surface of BC modified microarchitectures. • Fibroblasts adhered on glucose modified BC exhibited healthy cell morphology.

  20. Preconcentration and determination of U(VI) concentration in effluent sample using a membrane optode

    International Nuclear Information System (INIS)

    A method for simultaneous preconcentration and determination of uranium(VI) anions from aqueous samples was developed using a membrane optode formed by physical inclusion of a chromophore 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) and tricaprylylmethyl ammonium chloride into a plasticized cellulose triacetate matrix. This method offers lower detection limit for U(VI) than the conventional spectrophotometry, ± 5 % reproducibility, minimum sample manipulation, and visual colorimetric determination. The optode developed in the present work was tested in alkaline Mg(NO3)2 effluent stream generated during MDU precipitation following TBP purification cycle. (author)

  1. A 99Tcm labeled HYNIC peptide 'tracer' libraries on continuous cellulose membrane supports

    International Nuclear Information System (INIS)

    Objective: The interference of bifunctional ligands with activities of small peptides has long been recognized. To solve the problem, the hydrazine-nicotinamide (HYNIC) conjugated peptide 'tracer' libraries were synthesized on a continuous cellulose membrane support and the 99Tcm labeled heat shock protein 70 (HSP70) binding peptides were identified by screening libraries with HSP70. Methods: Octapeptide libraries were prepared by manual spot synthesis. HYNIC peptides were C terminally attached to cellulose via a (β-Ala)2 spacer. For screening, the cellulose membranes were incubated with human HSP70 (or biotin labeled HSP70) after nonspecific blocking. Alkaline phosphatase labeled streptavidin and Ab against HSP70 were used for the detection of HSP70 binding. Human lung cancer cell lines (A549 and H460) were cultured in RPMI1640 medium supplemented with 10% fetal calf serum and antibiotics. For in vivo test, 2 x l05 cells were subcutaneously transplanted into the chest of female nude mice. Results: Quality control of HYNIC peptide libraries was good as carried out by 99Tcm labeling. Because peptide NLLRLTG had high affinity for HSP70 family members, 99Tcm-HYNIC-NLLRLTG was used as the control. Fifteen HYNIC peptides were found with HSP70 binding property. Among them, eight peptides had higher uptake (percentage activity of injection dose pergram of tissue, %ID/g) values than 99Tcm-HYNIC-NLLRLTG in tumor. 99Tcm-HYNIC-QGVLTGTR had the best distribution in tumors. Six hours after injection, the %ID/g values of 99Tcm HYNIC-QGVLTGTR and 99Tcm-HYNIC-NLLRLTG in tumor were (1.15±0.32)% ID/g and (0.75±0.24)% ID/g respectively. In vivo replace studies and heat shock stress of tumors demonstrated that 99Tcm-HYNIC-QGVLTGTR was the HSP70 binding peptide compound, but not 99Tcm-HYNIC-NLLRLTG. Conclusions: The identification of 99Tcm labeled HSP70 binding peptides from HYNIC conjugated octapeptide libraries facilitated the hypothesis of the 'tracer' libraries. The design and

  2. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry.

    Science.gov (United States)

    Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane

    2016-07-01

    In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h. PMID:26596497

  3. Preparation and properties of PEC nanocomposite membranes with carboxymethyl cellulose and modified silica.

    Science.gov (United States)

    Liu, Tao; An, Quan-Fu; Wang, Xue-San; Zhao, Qiang; Zhu, Bao-Ku; Gao, Cong-Jie

    2014-06-15

    Carboxymethyl cellulose (CMC)-modified silica nanocomposites were prepared via in situ incorporation of modified silica during the ionic complexation between CMC and poly(2-methacryloyloxy ethyl trimethylammonium chloride) (PDMC). Ionic bonds were introduced between the poly(2-acrylamido-2-methylproanesulfonic acid) modified silica (SiO2-PAMPS) and the polyelectrolyte complex (PEC) matrix. The PEC nanocomposites (PECNs) and their membranes (PECNMs) were characterized with Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and tensile testing. PECNM containing 5 wt.% SiO2-PAMPS showed a tensile strength of 68 MPa and elongation at break of 7.1%, which were 1.9 and 2.6 times as high as those of pristine PEC membranes, respectively. Moreover, the pervaporation performance of as-prepared PECNMs was evaluated with dehydration of 10 wt.% aqueous isopropanol mixtures, and the PECNMs exhibited a flux of 2,400 gm(-2)h(-1) with a high separation factor of 4491 at 70°C. PMID:24721095

  4. Permeation of water as a tool for characterizing the effect of solvent, film thickness and water solubility in cellulose acetate membranes

    OpenAIRE

    Valente, Artur J. M.; Polishchuk, Alexandre Ya.; Burrows, Hugh D.; Lobo, Victor M. M.

    2005-01-01

    Cellulose acetate membranes have been used in many applications; of particular interest are reverse osmosis systems, and as a neutral matrix for incorporation of different polymers (e.g., conducting polymers), inorganic ions (e.g., lanthanides) and organic (e.g., pharmaceutical) compounds. The properties of the new polymers derived from cellulose acetate or blends depend on those of cellulose acetate. This work presents an attempt to find links between thermodynamic and kinetic properties of ...

  5. Preparation and evaluation of water-in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using cellulose acetate membrane.

    Science.gov (United States)

    Muhamad, Ida Idayu; Quin, Chang Hui; Selvakumaran, Suguna

    2016-04-01

    The purpose of this study was to investigate the preparation of formulated water- in-soybean oil-in-water emulsions by repeated premix membrane emulsification method using a cellulose acetate membrane. The effect of selective membrane emulsification process parameters (concentration of the emulsifiers, number of passes of the emulsions through the membrane and storage temperature) on the properties and stability of the developed emulsions were also investigated. 1, 3, 6, 8-pyrenetetrasulfonic acid tetrasodium salt (PTSA) was used as a hydrophilic model ingredient for the encapsulation of bioactive substances. W/O emulsions with 7 wt% (weight percentage) PGPR displays homogeneous and very fine dispersions, with the median diameter at 0.640 μm. Meanwhile, emulsions prepared by membrane emulsification (fine W/O/W) showed the highest stability at Tween 80 concentrations of 0.5 wt.% (weight percentage). It concluded that at 7 wt.% (weight percentage) PGPR concentration and 0.5 wt.% (weight percentage) Tween 80 concentrations, the most uniform particles with minimum mean size of oil drops (9.926 μm) were obtained after four passes through the membrane. Thus, cellulose acetate membrane can be used for preparing a stable W/O/W emulsions by repeated premix ME due to low cost and relatively easy to handle. PMID:27413211

  6. NMMO prepared cellulose membrane of luffa fiber%NMMO法制备丝瓜络再生纤维膜

    Institute of Scientific and Technical Information of China (English)

    袁波; 王迎; 张剑

    2013-01-01

    NMMO was used to prepare cellulose membrane of luffa fiber and its characters and structure were investigated by SEM,FTIR,XRD and TG.SEM result showed that the luffa membrane has an asymmetrical thin skin layer.The characteristic peak shape of the cellulose membrane was observed by FTIR.X ray diffraction analysis showed that the crystalline modification of cellulose membrane made by NMMO process was cellulose Ⅱ.TG analysis shows that the luffa membrane has good thermal stability and satisfied with application requirement.%采用NMMO工艺制取丝瓜络纤维素膜,并对纤维素膜进行表征.利用扫描电子显微镜(SEM)、红外光谱分析仪(FTIR)、X射线衍射仪(XRD)、热力学分析仪(TG)对丝瓜络纤维膜进行表征.SEM结果显示丝瓜络纤维素膜的厚度非常薄,并且膜的表面非常致密;FTIR光谱图显示丝瓜络纤维素膜的特征峰的形状与丝瓜络纤维的特征峰相似,显示出纤维素特征;XRD曲线图显示丝瓜络纤维素膜的纤维素结晶由纤维素Ⅰ变为纤维素Ⅱ;TG曲线图表明丝瓜络纤维素膜具有良好的热稳定性能,符合应用要求.

  7. Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix[4]resorcinarenes as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Benosmane, Nadjib [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria); Guedioura, Bouzid [Division reacteur/Centre de Recherche Nucleaire de Draria, CRND, BP 43 Draria, Alger (Algeria); Hamdi, Safouane Mohammed [Laboratoire de Biochimie-Purpan, Institut Federatif de Biologie, CHU Toulouse 330, avenue de Grande-Bretagne - F-31059 Toulouse Cedex 9 (France); Hamdi, Maamar [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria); Boutemeur, Baya, E-mail: bayakheddis@hotmail.com [Laboratoire de Chimie Organique Appliquee (Groupe Heterocycles Associe CRAPC), Faculte de Chimie, Universite des Sciences et de la Technologie Houari Boumediene, BP 32, El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2010-07-20

    A polymer inclusion membrane (PIM) system with cellulose acetate polymer as support and calix[4]resorcinarenes as carriers has been developed. Special attention was paid to PIM characterization using scanning electron microscopy, Fourier-transform infra-red study, X-ray scattering and thermogravimetric analyses. The efficiency of the membrane transport was optimized as a function of pH, stirring speed, aqueous phases and membrane composition. The results suggested that the transport mechanism is a counter-transport of protons, the mechanism was mainly controlled by the diffusion of the complex formed in the membrane core. Analysis of lead(II) transport through these PIMs was performed. It was found that calix[4]resorcinarenes containing membranes were flexible, resistant and heterogeneous without plasticizer addition.

  8. Preparation, characterization and thermal studies of polymer inclusion cellulose acetate membrane with calix[4]resorcinarenes as carriers

    International Nuclear Information System (INIS)

    A polymer inclusion membrane (PIM) system with cellulose acetate polymer as support and calix[4]resorcinarenes as carriers has been developed. Special attention was paid to PIM characterization using scanning electron microscopy, Fourier-transform infra-red study, X-ray scattering and thermogravimetric analyses. The efficiency of the membrane transport was optimized as a function of pH, stirring speed, aqueous phases and membrane composition. The results suggested that the transport mechanism is a counter-transport of protons, the mechanism was mainly controlled by the diffusion of the complex formed in the membrane core. Analysis of lead(II) transport through these PIMs was performed. It was found that calix[4]resorcinarenes containing membranes were flexible, resistant and heterogeneous without plasticizer addition.

  9. Ultrafiltration performance of PVDF, PES, and cellulose membranes for the treatment of coconut water (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Isabel Cristina do Nascimento Debien

    2013-12-01

    Full Text Available Ultrafiltration (UF inhibits the enzymatic activity which is responsible for color changes of coconut water without the need for heat treatment. In the present study, UF performance in terms of the permeate flux and enzymatic retention of the coconut water was evaluated at laboratory unit (LU and pilot unit (PU. The membranes studied were polyethersulfone 150 kDa (UP150, polyvinylidene fluoride 150 kDa (UV150 and cellulose 30 kDa (UC030. The UP150 membrane showed the best permeate flux. The UC030 membrane showed the lowest flux, but it resulted in 100% enzymatic retention, while the other membranes showed enzymatic retentions between 71 and 85%. The application of the UC030 in the pilot unit (PU resulted in a flux value higher than that obtained in the LU due to the tangential velocity effect. The UC030 membrane has proved adequate for industrial applications.

  10. Predicting bioavailability of PAHs in field-contaminated soils by passive sampling with triolein embedded cellulose acetate membranes

    International Nuclear Information System (INIS)

    Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p TECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils. - Triolein embedded cellulose acetate membranes can be a useful tool to predict bioavailability of PAHs in field-contaminated soils

  11. Eggshell and Bacterial Cellulose Composite Membrane as Absorbent Material in Active Packaging

    OpenAIRE

    Ummartyotin, S.; Pisitsak, P.; Pechyen, C.

    2016-01-01

    Bacterial cellulose and eggshell composite was successfully developed. Eggshell was mixed with bacterial cellulose suspension and it was casted as a composite film. CaCO3 derived from eggshell was compared with its commercial availability. It can be noted that good dispersion of eggshell particle was prepared. Eggshell particle was irregular in shape with a variation in size. It existed in bacterial cellulose network. Characterization on composite was focused on thermal and mechanical propert...

  12. Synthesis and properties of N-hexadecyl ethylenediamine triacetic acid.

    Science.gov (United States)

    Wang, Xixin; Zhao, Jianling; Yao, Xingzhi; Chen, Wentao

    2004-11-15

    A new kind of surfactant named N-hexadecyl ethylenediamine triacetic acid (HED3A) was synthesized from anhydrous ethylenediamine, 1-bromohexadecane, and chloroacetic acid. Testing showed stability of HED3A in hard water, wetting power, dispersing power, and surface tension increased along with pH value. Stability in hard water of trisodium N-hexadecyl ethylenediamine triacetate (3NaHED3A) was at level 4, which was better than that of sodium dodecylsulfate (SDS) and sodium dodecylbenzene sulfonate (LAS). Other properties of 3NaHED3A including wetting power, dispersing power, emulsifying power, and surface tension had intermediate value between SDS, LAS, AES, peregal-O, and cetyltrimethylammonium chloride (CTAC). The ethylenediamine triacetic acid (ED3A) group in 3NaHED3A can chelate many kinds of metal ions, which indicates a promising application prospect in many fields including metal anticorrosion, corrosion control agent, additives in electroplating solution, and ore selection and solid surface treatment. PMID:15464823

  13. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose {gamma}-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Heredia-Guerrero, J.A., E-mail: jose.alejandro@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Galan, P. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain); Benitez, J.J. [Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla, Avda, Americo Vespuccio 49, 41092 Sevilla (Spain); Benavente, J. [Grupo de Caracterizacion Electrocinetica en Membranas e Interfases, Departamento de Fisica Aplicada I, Facultad de Ciencias, Universidad de Malaga, E-29071 Malaga (Spain)

    2011-04-15

    Research highlights: {yields} Low dose {gamma}-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. {yields} Induced structural changes increase the fragility of irradiated films. {yields} Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose {gamma}-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  14. Structural, chemical surface and transport modifications of regenerated cellulose dense membranes due to low-dose γ-radiation

    International Nuclear Information System (INIS)

    Research highlights: → Low dose γ-radiation causes slight structural, chemical and morphological changes on regenerated cellulose films. → Induced structural changes increase the fragility of irradiated films. → Structural modifications reduce ion permeability of films. - Abstract: Modifications caused in commercial dense regenerated cellulose (RC) flat membranes by low-dose γ-irradiation (average photons energy of 1.23 MeV) are studied. Slight structural, chemical and morphological surface changes due to irradiation in three films with different RC content were determined by ATR-FTIR, XRD, XPS and AFM. Also, the alteration of their mechanical elasticity has been studied. Modification of membrane performance was determined from solute diffusion coefficient and effective membrane fixed charge concentration obtained from NaCl diffusion measurements. Induced structural changes defining new and effective fracture propagation directions are considered to be responsible for the increase of fragility of irradiated RC membranes. The same structural changes are proposed to explain the reduction of the membrane ion permeability through a mechanism involving either ion pathways elongation and/or blocking.

  15. A composite membrane based on a biocompatible cellulose as a host of gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Xiao, S. Y.; Yang, Y. Q.; Li, M. X.; Wang, F. X.; Chang, Z.; Wu, Y. P.; Liu, X.

    2014-12-01

    A composite polymer membrane is prepared by coating poly(vinylidene fluoride) (PVDF) on the surface of a membrane based on methyl cellulose (MC) which is environmentally friendly and cheap. Its characteristics are investigated by scanning electron microscopy, FT-IR, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The outer PVDF layers are porous which results in high electrolyte uptake and the lithium ion transference number is much larger than that of the pure MC. Moreover, the cell based on Li//LiFePO4 delivers high discharge capacity and good rate behavior in the range of 4.2-2.5 V when the composite membrane is used as the separator and the host of a gel polymer electrolyte, lithium as the counter and reference electrode, and LiFePO4 as cathode. The obtained results suggest that this unique composite membrane shows great attraction in the lithium ion batteries with high safety and low cost.

  16. Cellulose synthase interacting protein: A new factor in cellulose synthesis

    OpenAIRE

    Gu, Ying; Somerville, Chris

    2010-01-01

    Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only known components of cellulose synthase complexes are cellulose synthase (CESA) proteins until the re...

  17. Comparison of polycarbonate and cellulose acetate membrane filters for isolation of Campylobacter concisus from stool samples

    DEFF Research Database (Denmark)

    Linde Nielsen, Hans; Engberg, Jørgen; Ejlertsen, Tove;

    2013-01-01

    One thousand seven hundred ninety-one diarrheic stool samples were cultivated for Campylobacter spp. We found a high prevalence of Campylobacter concisus with use of a polycarbonate filter (n = 114) compared to a cellulose acetate filter (n = 79) (P ... to the commonly used cellulose acetate filter for detection of C. concisus....

  18. Selective transport of Ag(Ⅰ)ion across a bulk liquid and polymer membranes incorporated with di-N-benzylated O3N2 donor macrocycles

    Institute of Scientific and Technical Information of China (English)

    A.Nezhadali

    2010-01-01

    The selective bulk liquid membrane and polymer membrane transports of Ag(Ⅰ)from an aqueous solution containing seven metal cations,Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),Zn(Ⅱ),Ag(Ⅰ),Cd(Ⅱ)and Pb(Ⅱ),was studied.The source phases contained equimolar concentrations of the above-mentioned cations,with the source and receiving phases being buffered at pH 5.0 and 3.0,respectively.Ag(Ⅰ)ion transport occurred with a good efficiency from the aqueous source phases across the bulk liquid membrane and polymer membrane(derived from cellulose triacetate)containing ligand 1 as the ionophores,into the aqueous receiving phases.Clear transport selectivity for Ag(Ⅰ)was observed using ligand 1.There was no selectivity for the cations using ligand 2 in the both bulk liquid membrane and polymer membrane transports.

  19. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer

    KAUST Repository

    Zhang, Sui

    2010-09-01

    The design and engineering of membrane structure that produces low salt leakage and minimized internal concentration polarization (ICP) in forward osmosis (FO) processes have been explored in this work. The fundamentals of phase inversion of cellulose acetate (CA) regarding the formation of an ultra-thin selective layer at the bottom interface of polymer and casting substrate were investigated by using substrates with different hydrophilicity. An in-depth understanding of membrane structure and pore size distribution has been elucidated with field emission scanning electronic microscopy (FESEM) and positron annihilation spectroscopy (PAS). A double dense-layer structure is formed when glass plate is used as the casting substrate and water as the coagulant. The thickness of the ultra-thin bottom layer resulted from hydrophilic-hydrophilic interaction is identified to be around 95nm, while a fully porous, open-cell structure is formed in the middle support layer due to spinodal decomposition. Consequently, the membrane shows low salt leakage with mitigated ICP in the FO process for seawater desalination. The structural parameter (St) of the membrane is analyzed by modeling water flux using the theory that considers both external concentration polarization (ECP) and ICP, and the St value of the double dense-layer membrane is much smaller than those reported in literatures. Furthermore, the effects of an intermediate immersion into a solvent/water mixed bath prior to complete immersion in water on membrane formation have been studied. The resultant membranes may have a single dense layer with an even lower St value. A comparison of fouling behavior in a simple FO-membrane bioreactor (MBR) system is evaluated for these two types of membranes. The double dense-layer membrane shows a less fouling propensity. This study may help pave the way to improve the membrane design for new-generation FO membranes. © 2010 Elsevier B.V.

  20. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with Carbon Nanotubes and Its Applicability for Chromium Removal

    Directory of Open Access Journals (Sweden)

    J. A. Sánchez-Márquez

    2015-01-01

    Full Text Available Membranes made of carbon nanotubes and cellulose acetate with polyacrylic acid were designed in order to study their properties and their applicability for chromium removal. The membranes were prepared by phase inversion method using cellulose acetate and polyacrylic acid. Carbon nanotubes were added to the membrane during their process of synthesis in proportions of 1% by weight. The pores in the material are formed in layers, giving the effect of depth and forming a network. Both the carbon nanotubes and membranes were characterized by IR, Raman, and SEM spectroscopy. In addition, the concentration of acidic and basic sites and the surface charge in the materials were determined. The concentration of acid sites for oxidized nanotubes was 4.0 meq/g. The removal of Cr(VI was studied as a function of contact time and of initial concentration of Cr(VI. The removal of Cr(VI (~90% mainly occurs in a contact time from 32 to 64 h when the initial concentration of Cr(VI is 1 mg/L.

  1. Rejection of pharmaceuticals by forward osmosis membranes.

    Science.gov (United States)

    Jin, Xue; Shan, Junhong; Wang, Can; Wei, Jing; Tang, Chuyang Y

    2012-08-15

    Rejection of four pharmaceutical compounds, carbamazepine, diclofenac, ibuprofen and naproxen, by forward osmosis (FO) membranes was investigated in this study. For the first time, the rejection efficiency of the pharmaceutical compounds was compared between commercial cellulose triacetate (CTA) based membranes and thin film composite (TFC) polyamide based membranes. The rejection behavior was related to membrane interfacial properties, physicochemical characteristics of the pharmaceutical molecules and feed solution pH. TFC polyamide membranes exhibited excellent overall performance, with high water flux, excellent pH stability and great rejection of all pharmaceuticals investigated (>94%). For commercial CTA based FO membranes, hydrophobic interaction between the compounds and membranes exhibited strong influence on their rejection under acidic conditions. The pharmaceuticals rejection was well correlated to their hydrophobicity (log D). Under alkaline conditions, both electrostatic repulsion and size exclusion contributed to the removal of deprotonated molecules. The pharmaceuticals rejection by CTA-HW membrane at pH 8 followed the order: diclofenac (99%)>carbamazepine (95%)>ibuprofen (93%) ≈ naproxen (93%). These results can be important for FO membrane synthesis, modification and their application in water purification. PMID:22640821

  2. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications.

    Science.gov (United States)

    Kwak, Moon Hwa; Kim, Ji Eun; Go, Jun; Koh, Eun Kyoung; Song, Sung Hwa; Son, Hong Joo; Kim, Hye Sung; Yun, Young Hyun; Jung, Young Jin; Hwang, Dae Youn

    2015-05-20

    Bacteria cellulose membranes (BCM) are used for wound dressings, bone grafts, tissue engineering, artificial vessels, and dental implants because of their high tensile strength, crystallinity and water holding ability. In this study, the effects of BCM application for 15 days on healing of burn wounds were investigated based on evaluation of skin regeneration and angiogenesis in burn injury skin of Sprague-Dawley (SD) rats. BCM showed a randomly organized fibrils network, 12.13 MPa tensile strength, 12.53% strain, 17.63% crystallinity, 90.2% gel fraction and 112.14 g × m(2)/h highest water vapor transmission rate (WVTR) although their swelling ratio was enhanced to 350% within 24h. In SD rats with burned skin, the skin severity score was lower in the BCM treated group than the gauze (GZ) group at all time points, while the epidermis and dermis thickness and number of blood vessels was greater in the BCM treated group. Furthermore, a significant decrease in the number of infiltrated mast cells and in vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) expression was observed in the BCM treated group at day 10 and 15. Moreover, a significant high level in collagen expression was observed in the BCM treated group at day 5 compared with GZ treated group, while low level was detected in the same group at day 10 and 15. However, the level of metabolic enzymes representing liver and kidney toxicity in the serum of BCM treated rats was maintained at levels consistent with GZ treated rats. Overall, BCM may accelerate the process of wound healing in burn injury skin of SD rats through regulation of angiogenesis and connective tissue formation as well as not induce any specific toxicity against the liver and kidney. PMID:25817683

  3. Development of Low Cost Membranes (Ta, Nb & Cellulose Acetate) for H2/CO2 Separation in WGS Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seetala, Naidu [Grambling State Univ., LA (United States); Siriwardane, Upali [Louisiana Tech Univ., Ruston, LA (United States)

    2011-12-15

    The main aim of this work is to synthesize low temperature bimetallic nanocatalysts for Water Gas Shift reaction (WGS) for hydrogen production from CO and steam mixture; and develop low-cost metal (Nb/Ta)/ceramic membranes for H2 separation and Cellulose Acetate membranes for CO2 separation. .

  4. Cellulose reinforced nylon-6 nanofibrous membrane: Fabrication strategies, physicochemical characterizations, wicking properties and biomimetic mineralization.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Tiwari, Arjun Prasad; Maharjan, Bikendra; Won, Ko Sung; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-08-20

    The aim of the present study is to develop a facile, efficient approach to reinforce nylon 6 (N6) nanofibers with cellulose chains as well as to study the effect that cellulose regeneration has on the physicochemical properties of the composite fibers. Here, a cellulose acetate (CA) solution (17wt%) was prepared in formic acid and was blended with N6 solution (20%, prepared in formic acid and acetic acid) in various proportions, and the blended solutions were then electrospun to produce hybrid N6/CA nanofibers. Cellulose was regenerated in-situ in the fiber via alkaline saponification of the CA content of the hybrid fiber, leading to cellulose-reinforced N6 (N6/CL) nanofibers. Electron microscopy studies suggest that the fiber diameter and hence pore size gradually decreases as the mass composition of CA increases in the electrospinning solution. Cellulose regeneration showed noticeable change in the polymorphic behavior of N6, as observed in the XRD and IR spectra. The strong interaction of the hydroxyl group of cellulose with amide group of N6, mainly via hydrogen bonding, has a pronounced effect on the polymorphic behavior of N6. The γ-phase was dominant in pristine N6 and N6/CA fibers while α- phase was dominant in the N6/CL fibers. The surface wettability, wicking properties, and the tensile stress were greatly improved for N6/CL fibers compared to the corresponding N6/CA hybrid fibers. Results of DSC/TGA revealed that N6/CL fibers were more thermally stable than pristine N6 and N6/CA nanofibers. Furthermore, regeneration of cellulose chain improved the ability to nucleate bioactive calcium phosphate crystals in a simulated body fluid solution. PMID:27178914

  5. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance

    International Nuclear Information System (INIS)

    In situ deposition of platinum (Pt) nanoparticles on bacterial cellulose membranes (BC) for a fuel cell application was studied. The platinum/bacterial cellulose (Pt/BC) membranes under different experimental conditions were characterized by using SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectroscopy), XRD (X-ray diffractometry) and TG (thermo-gravimetric analysis) techniques. TEM images and XRD patterns both lead to the observation of spherical metallic platinum nanoparticles with mean diameter of 3-4 nm well impregnated into the BC fibrils. TG curves revealed these Pt/BC composite materials had the high thermal stability. The electrosorption of hydrogen was investigated by CV (cyclic voltammetry). It was found that Pt/BC catalysts have high electrocatalytic activity in the hydrogen oxidation reaction. The single cell performance of Pt/BC was tested at 20 deg. C, 30 deg. C, and 40 deg. C under non-humidified conditions. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as membrane in fuel cell field [B.R. Evans, H.M. O'Neill, V.P. Malyvanh, I. Lee, J. Woodward, Biosens. Bioelectron. 18 (2003) 917].

  6. In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jiazhi [School of Chemistry and Chemical Engineering, Nan Jing University of Science and Technology, Nanjing 210094 (China); Sun Dongping [School of Chemistry and Chemical Engineering, Nan Jing University of Science and Technology, Nanjing 210094 (China)], E-mail: dongpingsun@163.com; Li Jun; Yang Xujie; Yu Junwei; Hao Qingli [School of Chemistry and Chemical Engineering, Nan Jing University of Science and Technology, Nanjing 210094 (China); Liu Wenming [Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Liu Jianguo [Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)], E-mail: jianguoliu@nju.edu.cn; Zou Zhigang; Gu Jun [Eco-materials and Renewable Energy Research Center, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2009-11-01

    In situ deposition of platinum (Pt) nanoparticles on bacterial cellulose membranes (BC) for a fuel cell application was studied. The platinum/bacterial cellulose (Pt/BC) membranes under different experimental conditions were characterized by using SEM (scanning electron microscopy), TEM (transmission electron microscopy), EDS (energy dispersive spectroscopy), XRD (X-ray diffractometry) and TG (thermo-gravimetric analysis) techniques. TEM images and XRD patterns both lead to the observation of spherical metallic platinum nanoparticles with mean diameter of 3-4 nm well impregnated into the BC fibrils. TG curves revealed these Pt/BC composite materials had the high thermal stability. The electrosorption of hydrogen was investigated by CV (cyclic voltammetry). It was found that Pt/BC catalysts have high electrocatalytic activity in the hydrogen oxidation reaction. The single cell performance of Pt/BC was tested at 20 deg. C, 30 deg. C, and 40 deg. C under non-humidified conditions. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as membrane in fuel cell field [B.R. Evans, H.M. O'Neill, V.P. Malyvanh, I. Lee, J. Woodward, Biosens. Bioelectron. 18 (2003) 917].

  7. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    Energy Technology Data Exchange (ETDEWEB)

    Prakrajang, K., E-mail: k.prakrajang@gmail.com [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90110 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  8. Gypsum (CaSO42H2O) scaling on polybenzimidazole and cellulose acetate hollow fiber membranes under forward osmosis

    KAUST Repository

    Chen, Si Cong

    2013-11-08

    We have examined the gypsum (CaSO42H2O) scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO) processes. Three hollow fiber membranes made of (1) cellulose acetate (CA), (2) polybenzimidazole (PBI)/polyethersulfone (PES) and (3) PBI-polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM) force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42 14.85 after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  9. Higher boron rejection with a new TFC forward osmosis membrane

    KAUST Repository

    Valladares Linares, Rodrigo

    2014-07-17

    Due to the stringent limits for boron in drinking and irrigation water, water treatment facilities have to incur additional treatment to remove boron down to a safe concentration. Forward osmosis (FO) is a membrane technology that may reduce the energy required to remove boron present in seawater. In direct FO desalination hybrid systems, fresh water is recovered from seawater using a recoverable draw solution, FO membranes are expected to show high boron rejection. This study focuses on determining the boron rejection capabilities of a new generation thin-film composite (TFC) FO membrane compared to a first generation cellulose triacetate (CTA) FO membrane. The effects of water permeate flux, membrane structure, draw solute charge, and reverse solute flux on boron rejection were determined. For TFC and CTA FO membranes, experiments showed that when similar operating conditions are applied (e.g. membrane type and draw solute type) boron rejection decreases with increase in permeate flux. Reverse draw solute flux and membrane fouling have no significant impact on boron rejection. Compared to the first generation CTA FO membrane operated at the same conditions, the TFC FO membrane showed a 40% higher boron rejection capability and a 20% higher water flux. This demonstrates the potential for boron removal for new generation TFC FO membranes. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.

  10. Does Chlorination of Seawater Reverse Osmosis Membranes Control Biofouling?

    KAUST Repository

    Khan, Muhammad Tariq

    2015-04-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full–scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations.

  11. Does chlorination of seawater reverse osmosis membranes control biofouling?

    Science.gov (United States)

    Khan, Muhammad Tariq; Hong, Pei-Ying; Nada, Nabil; Croue, Jean Philippe

    2015-07-01

    Biofouling is the major problem of reverse osmosis (RO) membranes used for desalting seawater (SW). The use of chlorine is a conventional and common practice to control/prevent biofouling. Unlike polyamide RO membranes, cellulose triacetate (CTA) RO membranes display a high chlorine tolerance. Due to this characteristic, CTA membranes are used in most of the RO plants located in the Middle East region where the elevated seawater temperature and water quality promote the risk of membrane biofouling. However, there is no detailed study on the investigation/characterization of CTA-RO membrane fouling. In this investigation, the fouling profile of a full-scale SWRO desalination plant operating with not only continuous chlorination of raw seawater but also intermittent chlorination of CTA-RO membranes was studied. Detailed water quality and membrane fouling analyses were conducted. Profiles of microbiological, inorganic, and organic constituents of analysed fouling layers were extensively discussed. Our results clearly identified biofilm development on these membranes. The incapability of chlorination on preventing biofilm formation on SWRO membranes could be assigned to its failure in effectively reaching throughout the different regions of the permeators. This failure could have occurred due to three main factors: plugging of membrane fibers, chlorine consumption by organics accumulated on the front side fibers, or chlorine adaptation of certain bacterial populations. PMID:25917390

  12. STUDY OF COMPOSITE MEMBRANE OF CELLULOSE ACETATE OR POLYVINYL ALCOHOL BLENDED WITH METHYLMETHACRYLATE-ACRYLIC ACID COPOLYMER FOR PERVAPORATION SEPARATION

    Institute of Scientific and Technical Information of China (English)

    Huan-lin Chen; Jun Tan; Mo-e Liu; Chang-luo Zhu

    1999-01-01

    In this paper, methylmethacrylate-acrylic acid MMA-AA hydrophilic and hydrophobic copolymers were prepared by copolymerization for preparing membrane materials. The composite membrane of cellulose acetate (CA) blended with MMA-AA hydrophobic copolymer was used for the separation of methanol from pentane-methanol mixture. When the methanol concentration was only 1 wt%, the permeate flux still maintained at 350 g/m2h and separation factor was as big as 800. The composite membrane of PVA (polyvinyl alcohol) blended with MMA-AA hydrophilic copolymer was used for the separation of ethanolwater mixture. The permeate flux was increased to 975 g/m2h at 74℃ and the separation factor reached 3000at 25℃. The PVA/MMA-AA blended membrane surface modified by ammonia plasma was also investigated for separating ethanol-water mixture. Both permeate flux and separation factor of the membrane was improved. However, there was no obvious difference of plasma treatment time in the interval of 20~40 min.

  13. Predicting bioavailability of PAHs in field-contaminated soils by passive sampling with triolein embedded cellulose acetate membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tao Yuqiang [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)], E-mail: szzhang@rcees.ac.cn; Wang Zijian [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Christie, Peter [Queen' s University Belfast, Agricultural and Environmental Science Department, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2009-02-15

    Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (C{sub TECAM}) correlated well with the concentrations in soils (r{sup 2} = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by C{sub TECAM} and the partition coefficient between TECAM and water (K{sub TECAM-w}). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r{sup 2} = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils. - Triolein embedded cellulose acetate membranes can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.

  14. Colorimetric elastase sensor with peptide conjugated cellulose nanocrystals is interfaced to dialysis membranes

    Science.gov (United States)

    Clinical detection of human neutrophil elastase (HNE) as point of care biomarker or in situ colorimetric adjuvant to chronic wound dressings presents potential advantages in the management of chronic wounds. A colorimetric approach to the detection of HNE using cotton cellulose nanocrystals (CCN) i...

  15. A Hemoperfusion Column Based on Activated Carbon Granules Coated with an Ultrathin Membrane of Cellulose Acetate

    NARCIS (Netherlands)

    Tijssen, Johan; Bantjes, Adriaan; Doorn , van Albert W.J.; Feijen, Jan; Dijk, van Boudewijn; Vonk, Carel R.; Dijkhuis, Ido C.

    1979-01-01

    A hemoperfusion system has been developed which makes use of activated carbon encapsulated with cellulose acetate. Studies have revealed that there are no stagnant flow regions in the column, there i? minimal particle release and the coating is 30 Å thick. The relationships between pore size, pore v

  16. 纤维素/丝素复合膜的制备与性能%Preparation and Properties of Cellulose-Silk Compound Membrane

    Institute of Scientific and Technical Information of China (English)

    李娟; 何建新

    2011-01-01

    cellulose-silk compound membrane was prepared by solvent -casting method with cellulose and silk. The optimization ratio of compound membrane is 90% of cellulose and 10% of silk in blend membrane. The mechanical properties and aqueous stability and water vapor permeability coefficient of the compound membrane were obviously improved contrary to a single component membrane because of the strong hydrogen bonding interaction and good compatibility between cellulose and silk. X-ray diffraction was verified crystallization properties further.%通过共混法制备了纤维素/丝素复合膜,复合膜的最佳配比为纤维素占共混膜的90%,丝素占10%。在此条件下形成的复合膜的力学性能、水溶液稳定性、水蒸汽透过系数较单一成分的膜有明显改善,纤维素与丝素之间存在着氢键等强烈的相互作用和良好的相容性。X射线衍射分析进一步验证了复合膜的结晶性能。

  17. The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane

    International Nuclear Information System (INIS)

    The biosynthesis of Acetobacter xylinum ATCC 10821 cellulose has been studied with resting cells and a membrane preparation using 14C-pulse and chase reactions, with d-glucose and UDPGlc, respectively. Cellulose was biosynthesized from UDPGlc, and it was found to be tightly associated with both the cells and the membrane. The cellulose chains could be released from the cells and the membrane preparation by treating at pH 2, 100 C for 20 min. The cellulose chains that were released from the pulse and pulse-chase reactions were purified and separated from any low molecular weight substances by gel chromatography on Bio-Gel P4. They were then reduced with sodium borohydride and hydrolyzed with 4 M trifluoroacetic acid at 121 C for 2 h. Labeled products from the acid hydrolyzates were separated by paper chromatography and found to be d-glucose and d-glucitol. The amount of radioactivity in the products was determined by liquid scintillation counting. It was found that the pulsed products from the resting cells gave a ratio of d-[14C]glucitol to d-[14C]glucose of 1:11, and after chasing, the ratio decreased to 1:36. The pulsed products from the membrane gave a ratio of d-[14C]glucitol to d-[14C]glucose of 1:12, and after chasing for 5 min the ratio decreased to 1:43, and after 10 min, the ratio decreased to 1:66. These results show that the labeled d-glucitol obtained from the reducing end of the cellulose chain is chased into the interior of the cellulose chain during synthesis, showing that the cellulose chain is elongated from the reducing end. An insertion mechanism for the synthesis of cellulose from UDPGlc is proposed that involves lipid pyrophosphate glycosyl intermediates and three membrane enzymes: lipid phosphate:UDPGlc phosphotransferase, cellulose synthase, and lipid pyrophosphate phosphohydrolase. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. The CELLULOSE-SYNTHASE LIKE C (CSLC) Family of Barley Includes Members that Are Integral Membrane Proteins Targeted to the Plasma Membrane

    Institute of Scientific and Technical Information of China (English)

    Fenny M. Dwivany; Dina Yuli; Rachel A. Burton; Neil J. Shirley; Sarah M. Wilson; Geoffrey B. Fincher; Antony Bacic; Ed Newbigin; Monika S. Doblin

    2009-01-01

    The CELLULOSESYNTHASE-LIKE C(CSLC) family is an ancient lineage within the CELLULOSE SYNTHASE/CEL-LULOSE SYNTHASE-LIKE (CESA/CSL) polysaccharide synthase superfamily that is thought to have arisen before the diver-gence of mosses and vascular plants. As studies in the flowering plant Arabidopsis have suggested synthesis of the (1,4)-β-glucan backbone of xyloglucan (XyG), a wall polysaccharide that tethers adjacent cellulose microfibrils to each other, as a probable function for the CSLCs, CSLC function was investigated in barley (Hordeum vulgare L.), a species with low amounts of XyG in its walls. Four barley CSLC genes were identified (designated HvCSLC1-4). Phylogenetic analysis reveals three well supported clades of CSLCs in flowering plants, with barley having representatives in two of these clades. The four barley CSLCs were expressed in various tissues, with in situ PCR detecting transcripts in all cell types of the coleoptile and root, including cells with primary and secondary cell walls. Co-expression analysis showed that HvCSLC3 was coor-dinately expressed with putative XyG xylosyltransferase genes. Both immuno-EM and membrane fractionation showed that HvCSLC2 was located in the plasma membrane of barley suspension-cultured cells and was not in internal membranes such as endoplasmic reticulum or Golgi apparatus. Based on our current knowledge of the sub-cellular locations of poly-saccharide synthesis, we conclude that the CSLC family probably contains more than one type of polysaccharide synthase.

  19. A novel electro-driven membrane for removal of chromium ions using polymer inclusion membrane under constant D.C. electric current.

    Science.gov (United States)

    Kaya, Ahmet; Onac, Canan; Alpoguz, H Korkmaz

    2016-11-01

    In this study, the use of polymer inclusion membrane under constant electric current for the removal of Cr(VI) from water has investigated for the first time. Transport of Cr(VI) is performed by an electric current from the donor phase to the acceptor phase with a constant electric current of 0.5A. The optimized membrane includes of 12.1% 2-nitrophenyl octyl ether (2-NPOE), 77.6% cellulose triacetate (CTA), 10.3% tricapryl-methylammonium chloride (Aliquat 336) as a carrier. We tested the applicability of the selected membrane for Cr(VI) removal in real environmental water samples and evaluated its reusability. Electro membrane experiments were carried out under various parameters, such as the effect of electro membrane voltage at constant DC electric current; electro membrane current at constant voltage, acceptor phase pH, and stable electro membrane; and a comparison of polymer inclusion membrane and electro membrane transport studies. The Cr(VI) transport was achieved 98.33% after 40min under optimized conditions. An alternative method has been employed that eliminates the changing of electrical current by the application of constant electric current for higher reproducibility of electro membrane extraction experiments by combining the excellent selective and long-term use features of polymer inclusion membrane. PMID:27239722

  20. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets

    Science.gov (United States)

    Yuan, Bingbing; Sun, Haixiang; Wang, Tao; Xu, Yanyan; Li, Peng; Kong, Ying; Niu, Q. Jason

    2016-06-01

    Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation.

  1. Grafting of cellulose acetate with ionic liquids for biofuel purification by a membrane process: Influence of the cation.

    Science.gov (United States)

    Hassan Hassan Abdellatif, Faten; Babin, Jérôme; Arnal-Herault, Carole; David, Laurent; Jonquieres, Anne

    2016-08-20

    A new strategy was developed for grafting ionic liquids (ILs) onto cellulose acetate in order to avoid IL extraction and improve its performance for ethyl tert-butyl ether (ETBE) biofuel purification by the pervaporation membrane process. This work extended the scope of IL-containing membranes to the challenging separation of organic liquid mixtures, in which these ILs were soluble. The ILs contained the same bromide anion and different cations with increasing polar feature. The membrane properties were strongly improved by IL grafting. Their analysis in terms of structure-property relationships revealed the influence of the IL content, chemical structure and chemical physical parameters α, β, π* in the Kamlet-Taft polarity scale. The ammonium IL led to the best normalized flux of 0.182kg/m(2)h for a reference thickness of 5μm, a permeate ethanol content of 100% and an outstanding infinite separation factor for the azeotropic mixture EtOH/ETBE at 50°C. PMID:27178937

  2. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets

    Science.gov (United States)

    Yuan, Bingbing; Sun, Haixiang; Wang, Tao; Xu, Yanyan; Li, Peng; Kong, Ying; Niu, Q. Jason

    2016-01-01

    Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation. PMID:27352851

  3. Diffusion mechanism during the swelling hidroxy-methyl cellulose membrane formation

    Science.gov (United States)

    Espinoza-Gomez, Heriberto; Ramos-Olmos, Raudel; Garcia-Rios, Cesar; Lin, Shui Wai; Rogel-Hernandez, Eduardo; Ames-Lopez, Ana

    2007-08-01

    The conduction properties of HMC polymer gel prepared by the phase inversion method were investigated through the diffusion coefficient in order to confirm the conduction mechanism. The solution introduced in the polymer is stored in the pores and then penetrates into the polymer chains. For swelling the polymer network. A model describing the swelling hidroxy-methyl cellulose is presented. The model is used to predict the type liquid liquid phase separation (instantaneous or delayed) that occurs when HMC-PVPD-Solvent-Water casting solutions are immersed in a gelation bath. The model includes the thermodynamic interactions parameters and the transport parameters. The predictions of the model agree with the experimental observations.

  4. Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance.

    Science.gov (United States)

    Li, Dan; Zhang, Xinyi; Simon, George P; Wang, Huanting

    2013-01-01

    We have previously reported the use of hydrogel particles as the draw agent for forward osmosis desalination. In the present work, the effects of draw agent, feed concentration and membrane on the process performance were systematically examined. Our results showed that the incorporation of carbon filler particles in polymer hydrogels led to enhanced swelling ratios of the draw agents and thus higher water fluxes in the FO process. The composite polymer hydrogel particles of sizes ranging from 100 μm to 200 μm as draw agents induced greater water fluxes in FO desalination as compared with those with larger particle sizes (500-700 μm). Similar to other types of draw solutes, as the salt concentration in the feed increased, the water flux created by the polymer hydrogel draw agent decreased; the use of a cellulose triacetate forward osmosis membrane resulted in higher water flux compared with the use of a polyamide composite reverse osmosis membrane. PMID:23103058

  5. Cellulose Synthesis and Its Regulation

    OpenAIRE

    Li, Shundai; Bashline, Logan; Lei, Lei; Gu, Ying

    2014-01-01

    Cellulose, the most abundant biopolymer synthesized on land, is made of linear chains of ß (1–4) linked D-glucose. As a major structural component of the cell wall, cellulose is important not only for industrial use but also for plant growth and development. Cellulose microfibrils are tethered by other cell wall polysaccharides such as hemicellulose, pectin, and lignin. In higher plants, cellulose is synthesized by plasma membrane-localized rosette cellulose synthase complexes. Despite the re...

  6. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  7. Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myeong-Jin; Nam, Suk-Tae [Kyungil University, Gyeongsan (Korea, Republic of); Lee, Keun-Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was 1.8081x10{sup -7} m/s·atm for draw solution on active layer (DS-AL) mode and 1.0957-10{sup -7} m/s·atm for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was 5.5306x10{sup 6} and 9.1266x10{sup 6} s·atm/m, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33-1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (π) would be expressed as J=-0.0177+0.4506π-0.0032π{sup 2} for the forward and J=0.0948+0.3292π-0.0037π{sup 2} for the latter.

  8. Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes.

    Science.gov (United States)

    Bansal, Monica; Chauhan, Ghanshyam S; Kaushik, Anupama; Sharma, Avantika

    2016-10-01

    The work reported in this paper involves synthesis of a nanocellulose/chitosan composite and its further modification to antimicrobial films. Bagasse, an easily available biowaste, was used as source to extract nanocellulose fibres (CNFs) by subjecting it to mechanical and chemical treatments including alkaline steam explosion and high shear homogenization. The CNFs were subjected to periodate oxidation to obtain nanocellulose dialdehyde (CDA). The aldehyde groups of CDA were reacted with amino groups of chitosan to form Schiff-base. The resulting CDA/chitosan composite fibres were characterized at various steps. The fibres were then cast into films using cellulose acetate as a binder. The films have good physical strength. The composite films show excellent antimicrobial properties when tested against Staphylococcus aureus and Escherichia coli. Such antimicrobial films have potential applications in the formation of antimicrobial packaging material. PMID:27316771

  9. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance

    KAUST Repository

    Wong, Mavis C.Y.

    2012-02-01

    Herein, we report on changes in the performance of a commercial cellulose triacetate (CTA) membrane, imparted by varied operating conditions and solution chemistries. Changes to feed and draw solution flow rate did not significantly alter the CTA membrane\\'s water permeability, salt permeability, or membrane structural parameter when operated with the membrane skin layer facing the draw solution (PRO-mode). However, water and salt permeability increased with increasing feed or draw solution temperature, while the membrane structural parameter decreased with increasing draw solution, possibly due to changes in polymer intermolecular interactions. High ionic strength draw solutions may de-swell the CTA membrane via charge neutralization, which resulted in lower water permeability, higher salt permeability, and lower structural parameter. This observed trend was further exacerbated by the presence of divalent cations which tends to swell the polymer to a greater extent. Finally, the calculated CTA membrane\\'s structural parameter was lower and less sensitive to external factors when operated in PRO-mode, but highly sensitive to the same factors when the skin layer faced the feed solution (FO-mode), presumably due to swelling/de-swelling of the saturated porous substructure by the draw solution. This is a first attempt aimed at systematically evaluating the changes in performance of the CTA membrane due to operating conditions and solution chemistry, shedding new insight into the possible advantages and disadvantages of this material in certain applications. © 2011 Elsevier B.V.

  10. Relating rejection of trace organic contaminants to membrane properties in forward osmosis: measurements, modelling and implications.

    Science.gov (United States)

    Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem

    2014-02-01

    This study elucidates the relationship between membrane properties and the rejection of trace organic contaminants (TrOCs) in forward osmosis (FO). An asymmetric cellulose triacetate (CTA) and a thin-film composite (TFC) polyamide FO membrane were used for this investigation. The effective average pore radius (rp), selective barrier thickness over porosity parameter (l/ε), surface charge, support layer structural parameter (S), pure water permeability coefficient (A) and salt (NaCl) permeability coefficient (B) of the two membranes were systematically characterised. Results show that measured rejection of TrOCs as a function of permeate water flux can be well described by the pore hindrance transport model. This observation represents the first successful application of this model, which was developed for pressure-driven nanofiltration, to an osmotically-driven membrane process. The rejection of charged TrOCs by the CTA and TFC membranes was high and was governed by both electrostatic repulsion and steric hindrance. The TFC membrane exhibited higher rejection of neutral TrOCs with low molecular weight than the CTA membrane, although the estimated pore size of the TFC membrane (0.42 nm) was slightly larger than that of the CTA membrane (0.37 nm). This higher rejection of neutral TrOCs by the TFC membrane is likely attributed to its active layer properties, namely a more effective active layer structure, as indicated by a larger l/ε parameter, and pore hydration induced by the negative surface charge. PMID:24345822

  11. Microfibrillated cellulose sheets coating oxygen-permeable PDMS membranes induce rat hepatocytes 3D aggregation into stably-attached 3D hemispheroids.

    Science.gov (United States)

    Evenou, Fanny; Couderc, Sandrine; Kim, Beomjoon; Fujii, Teruo; Sakai, Yasuyuki

    2011-01-01

    Here we report the use of natural, chemically-unmodified, microfibrillated cellulose (MFC) as a matrix for hepatocyte culture. We developed an original cell-culture design composed of a thin 3D-microstructured fibrous substrate consisting of a MFC sheet coating a highly O(2)-permeable polydimethylsiloxane (PDMS) membrane. The MFC-coated PDMS membranes were obtained according to a simple process where cellulose fibres were deposited from an aqueous suspension on the PDMS surfaces and the films were dried under mild conditions. To enable oxygen diffusion through the membranes, they were assembled on bottomless frames ('O(2)+' condition). Rat hepatocytes primary-cultured on such MFC-PDMS membranes quickly organized themselves into large hemispherical 3D aggregates which were tightly anchored to the MFC sheets. In contrast, hepatocytes cultured on smooth PDMS membranes in the O(2)+ system (O(2)+, PDMS) organized into unstable 2D monolayers which easily detached from the surfaces. Hepatocyte 3D cultures obtained on MFC-PDMS membranes exhibited higher liver-specific functions over a 2-week culture period, as assessed by both the higher albumin secretion and urea synthesis rate. The MFC-PDMS membranes appear suitable for obtaining stably-attached and functional hepatocyte 3D cultures and appear interesting for drug/chemical screenings in a microplate format, but also for microfluidic applications. PMID:20626957

  12. Effects of membrane orientation on fouling characteristics of forward osmosis membrane in concentration of microalgae culture.

    Science.gov (United States)

    Honda, Ryo; Rukapan, Weerapong; Komura, Hitomi; Teraoka, Yuta; Noguchi, Mana; Hoek, Eric M V

    2015-12-01

    Application of forward osmosis (FO) membrane to microalgae cultivation processes enables concentration of microalgae and nutrients with low energy consumption. To understand fouling characteristics of FO membrane in concentration of microalgae culture, we studied flux decline, flux recovery by cleaning, and foulants characteristics, in different membrane orientation of active-layer-facing-feed-solution (AL-FS) and active-layer-facing-draw-solution (AL-DS) modes. Batch concentration of Chlorella vulgaris was conducted with a cellulose-triacetate FO membrane. Rapid flux decline and lower flux recovery was observed in AL-DS mode because of inner-membrane fouling including internal pore clogging, adsorption and internal concentration polarization in the support layer. A proportion of polysaccharides in extracellular polymeric substances to soluble microbial products were larger in chemical cleaning effluent than physical one in AL-DS mode, although those were not significantly different in AL-FS mode. Excitation-emission matrix analysis revealed that proteins and humic-like substances were also possible irreversible foulants both in AL-DS and AL-FS modes. PMID:26356114

  13. Cation transport across plasticized polymeric membranes containing N,N,N',N'-tetraoctyl-3 oxapentanediamide as the carrier ligand

    International Nuclear Information System (INIS)

    Polymer inclusion membranes (PIMs) consisting of cellulose triacetate (CTA) as a polymer matrix, 2-nitrophenyl n-octyl ether (NPOE) as a solvent and N,N,N',N'-tetraoctyl-3 oxapentanediamide (TODGA) as a carrier were developed. The facilitated transport of lanthanides (La, Eu, Ho, Yb and Lu), actinides (Am, Cm) and fission product (Sr) ions was experimentally investigated using the TODGA-PIMs. It was observed that the present PIMs were very effective to transport Ln(III) and Am(III) ions from the feed phase to the strip phase. The experimental results indicated that the transport was controlled by the diffusion of the ion-carrier complex in the membrane strippant. (author)

  14. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    Science.gov (United States)

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation. PMID:27235975

  15. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution

    KAUST Repository

    Sairam, M.

    2011-06-01

    A lab scale method for the preparation of defect free flat sheet composite membranes for forward osmosis (FO) has been developed. Membranes containing a thin layer of cellulose acetate (CA) cast on a nylon fabric of 50μm thick were prepared by phase inversion in water. Cellulose acetate (CA) membranes with an overall thickness of 70-80μm have been prepared with lactic acid, maleic acid and zinc chloride as pore forming agents, at different annealing temperatures, for forward osmosis. These membranes have been tested in the desalination of saline feeds (35g·L-1 of NaCl) using magnesium sulphate solution (150g·L-1) as the draw solution. The water flux, and rejection of NaCl, were compared with those of commercially available membranes tested under the same FO conditions. The commercially available FO membrane from Hydration Technologies Inc, OR (M1) has a permeability of 0.13L·h-1·m-2·bar-1 with a NaCl rejection of 97% when tested with 150g·L-1 of MgSO4 in the draw solution. Another commercially available membrane for FO from Hydration Technologies Inc, OR, M2 has a water permeability of 0.014L·h-1·m-2·bar-1 with NaCl rejection of 100%. The flux and rejection of the CA membranes prepared in this work are found to be dependent on the nature of the pore forming agent, and annealing temperature. Impregnation of an inorganic filler, sodium montmorrillonite in CA membranes and coating of CA membranes with hydrophilic PVA did not enhance the flux of base CA membranes. Cellulose acetate membranes cast from dope solutions containing acetone/isopropanol and lactic acid, maleic acid and zinc chloride as pore forming agents have water permeabilities of 0.13, 0.09 and 0.68L·h-1·m-2·bar-1 respectively, with NaCl rejections of 97.7, 99.3 and 88% when annealed at 50°C. CA membranes prepared with zinc chloride as a pore forming agent have good permeability of 0.27L·h-1·m-2·bar-1 with a NaCl rejection of 95% when annealed at 70°C. © 2011.

  16. Application and Mechanism Study of NMMO Technology-based Natural Cellulose Membrane%NMMO工艺天然纤维素膜的应用及机理研究

    Institute of Scientific and Technical Information of China (English)

    李冬娜; 马晓军

    2013-01-01

    The preparation method and research progress of NMMO technology-based cellulose membrane at home and abroad are discussed, the application of NMMO technology-based cellulose membrane in different fields is introduced, the dissolution mechanism and film-forming mechanism of cellulose membrane are analyzed, and the application prospect of NMMO technology-based cellulose membrane is pointed out.%  论述了NMMO工艺纤维素膜的制备方法及在国内外的研究进展,介绍了NMMO工艺纤维素膜在不同领域的应用现状,分析了纤维素膜的溶解机理及成膜机理,指出了NMMO工艺纤维素膜的应用前景。

  17. 壳聚糖/二醋酸纤维素酯复合薄膜的制备%Synthesis of Composite Membrane of Chitosan/Cellulose Diacetate

    Institute of Scientific and Technical Information of China (English)

    朱超; 姚铭; 张远方; 石红

    2011-01-01

    以香烟嘴棒制备过程废弃的二醋酸纤维素酯丝束和壳聚糖丝束为原料,制备了具有良好稳定性、环境友好、易降解的复合薄膜.探讨了溶解方法、溶剂浓度、干燥条件等对成膜质量的影响.对复合薄膜拉伸强度、断裂伸长率、吸水性进行了表征.结果表明:共混液配制以壳聚糖和二醋酸纤维素酯交替溶入醋酸溶液,并辅以超声混合助溶为佳;共混液流延成膜,用沉淀剂处理并在10~30℃下干燥成膜效果较好.与纯壳聚糖膜相比,随着二醋酸纤维素酯含量的增加,复合薄膜的断裂伸长率逐渐增大,在二醋酸纤维素酯和壳聚糖质量比为3∶1时,最大断裂伸长率比纯壳聚糖膜高7.85%.%Used the cellulose diacetate and chitosan as material,to make the composite mem-brane which had the features of good stability,environmental friendliness,easy degradation.Ex-plored the influence of dissolving method,solvent concentration,drying conditions on membrane quality.Described the tensile-strength,breaking elongation,water imbibition of the composite membrane.The results showed that preparation was good with chitosan and cellulose diacetate in turns dissolved into acetic acid,as well as supersonic assisting;the blending liquid flowed to be membrane,and the quality of membrane was good with 10~30℃ drying and precipitator treatment.Compared with chitosan membrane,as the increase of cellulose diacetate,the breaking elongation of composite membrane gradually increased.When the mass ratio of cellulose diacetate to chitosan was 3∶1,the biggest breaking elongation of composite membrane was 7.85% higher than that of chitosan membrane.

  18. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls

    OpenAIRE

    1980-01-01

    Highly ordered arrays of intramembrane particles are observed in freeze- fractured plasma membranes of the green alga Micrasterias denticulata during the synthesis of the secondary cell wall. The observable architecture of the complex consists primarily of a precise hexagonal array of from 3 to 175 rosettes, consisting of 6 particles each, which fracture with the P-face. The complexes are observed at the ends of impressions of cellulose fibrils. The distance between rows of rosettes is equal ...

  19. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls.

    Science.gov (United States)

    Giddings, T H; Brower, D L; Staehelin, L A

    1980-02-01

    Highly ordered arrays of intramembrane particles are observed in freeze-fractured plasma membranes of the green alga Micrasterias denticulata during the synthesis of the secondary cell wall. The observable architecture of the complex consists primarily of a precise hexagonal array of from 3 to 175 rosettes, consisting of 6 particles each, which fracture with the P-face. The complexes are observed at the ends of impressions of cellulose fibrils. The distance between rows of rosettes is equal to the center-to-center distance between parallel cellulose fibrils of the secondary wall. Correlation of the structure of the complex with the pattern of deposition indicates that the size of a given fibril is proportional to the number of rosettes engaged in its formation. Vesicles containing hexagonal arrays of rosettes are found in the cytoplasm and can be observed in the process of fusing with the plasma membrane, suggesting that the complexes are first assembled in the cytoplasm and then incorporated into the plasma membrane, where they become active in fibril formation. Single rosettes appear to be responsible for the synthesis of microfibrils during primary wall growth. Similar rosettes have now been detected in a green alga, in fern protonemata, and in higher plant cells. This structure, therefore, probably represents a significant component of the cellulose synthesizing mechanism in a large variety of plant cells. PMID:7189756

  20. Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique

    International Nuclear Information System (INIS)

    Coupling with triolein-embedded cellulose acetate membrane (TECAM) technique, hydroxypropyl β-cyclodextrins (HPCD) extraction method, and the greenhouse pot experiments, the influences of biochars on polychlorinated biphenyls (PCBs) bioavailability in soil to plant (Brassica chinensis L. and Daucus carota) were investigated. Addition of 2% biochars to soils significantly reduced the uptake of PCBs in plant, especially for di-, tri- and tetra-chlorobiphenyls. PCBs concentrations in the roots of B. chinensis and D. carota were reduced for 61.5–93.7%, and 12.7–62.4%, respectively in the presence of biochars. The kinetic study showed that in the soils amended with/without biochars, PCBs concentrations accumulated in TECAM, as well as in the HPCD extraction solution, followed significant linear relationships with those in plant roots. Application of biochars to soil is a potentially promising method to reduce PCBs bioavailability whereas TECAM technique can be a useful tool to predict the bioavailability of PCBs in soil. -- Highlights: ► Application of biochars significantly reduced the uptake of PCBs in plant. ► TECAM was a new and effective method to predict the PCBs bioavailability in soil. ► PCBs accumulated in TECAM followed significant linear relationships with plant. ► PCBs in TECAM were more similar with the plant uptake than HPCD solution. -- The reduced PCBs concentrations in plant roots by biochars show good linear relationship with those in TECAM

  1. Dosimetric characterisation of a low energy electron beam machine using cellulose triacetate (CTA) film

    International Nuclear Information System (INIS)

    Every new electron beam accelerator has to be dosimetrically characterised. This paper reports the dosimetric characterizations of newly installed low every electron beam machine using two types of CTA film thickness i.e. 125μ and 38μ . Data on dose rate, lateral and depth dose distribution, and the relationship between energy, current, conveyor speed and dose per pass are established

  2. Studies on electrochemical characterization and performance prediction of cellulose acetate and Zeocarb-225 composite membranes in aqueous NaCl solutions.

    Science.gov (United States)

    Tiwari, A K; Ahmad, Suhail

    2006-06-01

    We have mixed cellulose acetate and Zeocarb-225 in different ratios, leading to the preparations of Membrane-1 and Membrane-2. Membrane potential, water content, and conductance measurements have been carried out to estimate and analyze the data in terms of equilibria and important electrochemical parameters. The Donnan equilibrium has been incorporated to estimate the activity coefficient of counterions, y(p)M, and solute, y(+/-)M in the membrane phase along with the parameter, so called varphi expressing non-ideality. Dependence of the extent of hydrophilicity of both membranes on mean electrolyte concentrations has been examined. Selectivity in membranes is discussed in terms of dissociation equilibria, K(d)s and K(d)f. It has been found that membrane surface charge density sigma(s) increases with increasing of external NaCl concentration. Dependence of water transport number and cationic transport number on electrolyte concentration shows a similar trend of variation. At higher mean concentration of electrolyte, water transport number in Membrane-2 has a negative value. Membrane-2 has a higher value of water transport number than Membrane-1. The entropy production due to solute and water transport has been quantified for both the membranes in the light of nonequilibrium thermodynamics. The various type of interactions such as solute-membrane, solute-water, and water-membrane are analyzed in terms of friction coefficients (f(ij)) of Spiegler's frictional pore model. In our case, an f(wm) diffusion-control criteria, i.e., (D(+/-) . C. d/D(+/-)M C(M) . delta) > 2. A slightly higher value of solute rejection is found in Membrane-2. PMID:16499917

  3. Separations of actinide ions by polymer inclusion membranes containing several substituted diglycolamides

    International Nuclear Information System (INIS)

    Cellulose triacetate based polymer inclusion membranes (PIM) containing several substituted diglycolamides (DGAs) as the extractant and 2-nitrophenyloctyl ether (NPOE) as the plasticizer were evaluated for the uptake and transport of actinide ions such as Am3+, Pu4+ and Th4+ from nitric acid feeds. The DGAs studied were N,N,N'N'-tetrapentyl diglycolamide (TPDGA), N,N,N'N'-tetrahexyl diglycolamide (THDGA) and N,N,N'N'-tetradecyl diglycolamide (TDDGA). The trend of Am3+ ion uptake was TPDGA∼THDGA > TDDGA at 1 M HNO3 in 2 h. Am(III) transport using the same PIM followed the trend: TPDGA >> THDGA in 2 h. Transport parameters were also determined. (author)

  4. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes.

    Science.gov (United States)

    Coday, Bryan D; Heil, Dean M; Xu, Pei; Cath, Tzahi Y

    2013-03-01

    Forward osmosis (FO) is an emerging membrane separation process that continues to be tested and implemented in various industrial water and wastewater treatment applications. The growing interests in the technology have prompted laboratories and manufacturers to adopt standard testing methods to ensure accurate comparison of membrane performance under laboratory-controlled conditions; however, standardized methods might not capture specific operating conditions unique to industrial applications. Experiments with cellulose triacetate (CTA) and polyamide thin-film composite (TFC) FO membranes demonstrated that hydraulic transmembrane pressure (TMP), common in industrial operation of FO membrane elements, could affect membrane performance. Experiments were conducted with three FO membranes and with increasing TMP up to a maximum of 50 psi (3.45 bar). The feed solution was a mixture of salts and the draw solution was either a NaCl solution or concentrated seawater at similar osmotic pressure. Results revealed that TMP minimally affected water flux, reverse salt flux (RSF), and solute rejection of the CTA membrane. However, water flux through TFC membranes might slightly increase with increasing TMP, and RSF substantially declines with increasing TMP. It was observed that rejection of feed constituents was influenced by TMP and RSF. PMID:23363015

  5. 纤维素/NMMO溶液及其薄膜的制备与性能研究%Preparation and properties of cellulose/NMMO solution and membrane

    Institute of Scientific and Technical Information of China (English)

    张伟; 陈朝见; 傅师申

    2011-01-01

    以水质量分数为13.35%~11%的纤维素/NMMO溶液.将所得溶液制备纤维素薄膜,考察了纤维素/NMMO溶液的稳定性,研究了凝固浴温度和组成对纤维索薄膜的成膜性、断面形态及力学性能的影响.结果表明:纤维素/NMMO溶液随着浓度增大,其牯度先增大后减小,再急剧上升;纤维素/NMMO溶液在玻璃介质中稳定性较好,微量Cu2+,Fe3+等杂质存在时,其稳定性显著下降;纤维素薄膜随凝固浴温度升高,其透明性、拉伸强度和断裂伸长率均下降;相对于水,含有乙醇和NMMO的凝固浴能减缓双扩散的速度,使纤维素薄膜的拉伸强度略有提高,断裂伸长率出现不同程度下降.%A cellulose/N-methyl morpholine-N-oxide (NMMO) solution with the mass fraction of 5% -11% was prepared by dissoloving cotton pulp with NMMO containing 13.3% water by mass fraction as a solvent. The obtained solution was used to prepare cellulose membrane. The stability of cellulose/NMMO solution was investigated. The effects of coagulation bath temperature and composition on the formation, fracture morphology and mechanical properties of the cellulose membrane were studied. The results showed that the viscosity of the cellulose/NMMO solution increased, then decreased and finally appeared a steep rise while increasing the solution concentration. The cellulose/NMMO solution exhibited fairly good stability in glass medium. The exitence of trace Cu2 + and Fe3 + caused the stability to decline obviously. The transparency, tensile strength and elongation at break of the ycellulose membrane were decreased while elevating the coagulation bath temperature. As compared with water, the coagulation bath containing ethanol and NMMO can depress the double diffusion speed , slightly increase the tensile strength and decrease the elongation at break in different degree.

  6. Transport Selectivity of a Diethylene Glycol Dimethacrylate-Based Thymine-imprinted Polymeric Membrane over a Cellulose Support for Nucleic Acid Bases

    Institute of Scientific and Technical Information of China (English)

    QU Xiang-Jin; CHEN Chang-Bao; ZHOU Jie; WU Chun-Hui

    2007-01-01

    The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support.Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane,recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.

  7. Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning.

    Science.gov (United States)

    Sehaqui, Houssine; Morimune, Seira; Nishino, Takashi; Berglund, Lars A

    2012-11-12

    Nonwoven membranes based on electrospun fibers are of great interest in applications such as biomedical, filtering, and protective clothing. The poor mechanical performance is a limitation, as is some of the electrospinning solvents. To address these problems, porous nonwoven membranes based on nanofibrillated cellulose (NFC) modified by a hydroxyethyl cellulose (HEC) polymer coating are prepared. NFC/HEC aqueous suspensions are subjected to simple vacuum filtration in a paper-making fashion, followed by supercritical CO(2) drying. These nonwoven nanocomposite membranes are truly nanostructured and exhibit a nanoporous network structure with high specific surface area, as analyzed by nitrogen adsorption and FE-SEM. Mechanical properties evaluated by tensile tests show high strength combined with remarkably high strain to failure of up to 55%. XRD analysis revealed significant fibril realignment during tensile stretching. After postdrawing of the random mats, the modulus and strength are strongly increased. The present preparation route uses components from renewable resources, is environmentally friendly, and results in permeable membranes of exceptional mechanical performance. PMID:23046114

  8. Preparation and Performance of Cellulose/Poly(Hydroxybutyrate) Electroactive Composite Membrane%纤维素/聚羟基丁酸酯电活性复合膜的制备及性能

    Institute of Scientific and Technical Information of China (English)

    蔡志江; 史杏娟; 樊亚男

    2013-01-01

    以三氟乙酸为溶剂,采用溶液共混旋转浇注法制备了纤维素/聚羟基丁酸酯电活性复合膜材料.通过扫描电子显微镜、红外光谱、差示扫描量热分析、X射线衍射对复合膜材料进行了表征,并测试了复合膜材料的力学性能与电活性性能.结果表明,复合膜材料中纤维素的结晶规整度下降,结晶度指数下降了29%;复合膜材料的断裂强度、断裂伸长率及杨氏模量分别为74MPa、7.2%和2.5GPa,较PHB有较大的提高;电活性复合膜材料最高可产生1.35cm的弯曲应变响应,较纯纤维素膜电活性材料性能提高了约50%,这种材料有望应用于制动器、感应器等领域.%The cellulose/poly (hydroxybutyrate)(PHB) electroactive composite membranes were prepared by dissolving cotton cellulose and PHB powder in trifluoroacetic acid (TFA),followed by solution casting.The characteristics of the cellulose/PHB electroactive composite membrane were investigated by SEM,FT-IR,DSC and XRD.The mechanical and electroactive performance of the cellulose/PHB electroactive composite membrane were tested.The results indicate that the crystallinity index of cellulose in the composite membrane calculated based on XRD pattern decreases about 29 % compared with that of pure cellulose membrane.The tensile strength,elongation at break and Young's modulus of the cellulose/PHB electroactive composite membrane are 74MPa,7.2% and 2.5GPa,respectively,which increase greatly compared with of pure PHB.The bending displacement of the cellulose/PHB electroactive composite membrane can achieve 1.35 cm,increases by 50 % compared with that of pure cellulose membrane.These cellulose/PHB electroactive composite membranes might have potential applications in the field of actuator,sensor etc.

  9. Direct quantification of negatively charged functional groups on membrane surfaces

    KAUST Repository

    Tiraferri, Alberto

    2012-02-01

    Surface charge plays an important role in membrane-based separations of particulates, macromolecules, and dissolved ionic species. In this study, we present two experimental methods to determine the concentration of negatively charged functional groups at the surface of dense polymeric membranes. Both techniques consist of associating the membrane surface moieties with chemical probes, followed by quantification of the bound probes. Uranyl acetate and toluidine blue O dye, which interact with the membrane functional groups via complexation and electrostatic interaction, respectively, were used as probes. The amount of associated probes was quantified using liquid scintillation counting for uranium atoms and visible light spectroscopy for the toluidine blue dye. The techniques were validated using self-assembled monolayers of alkanethiols with known amounts of charged moieties. The surface density of negatively charged functional groups of hand-cast thin-film composite polyamide membranes, as well as commercial cellulose triacetate and polyamide membranes, was quantified under various conditions. Using both techniques, we measured a negatively charged functional group density of 20-30nm -2 for the hand-cast thin-film composite membranes. The ionization behavior of the membrane functional groups, determined from measurements with toluidine blue at varying pH, was consistent with published data for thin-film composite polyamide membranes. Similarly, the measured charge densities on commercial membranes were in general agreement with previous investigations. The relative simplicity of the two methods makes them a useful tool for quantifying the surface charge concentration of a variety of surfaces, including separation membranes. © 2011 Elsevier B.V.

  10. 均质纤维素膜的制备及其正渗透性能研究%Preparation and performance of homogeneous cellulose forward osmosis membrane

    Institute of Scientific and Technical Information of China (English)

    张兵涛; 张林; 黄和; 侯立安

    2014-01-01

    以纤维素(cellulose)为膜材料,离子液体1-乙基-3甲基咪唑醋酸盐(EMIMAc)为溶剂,水为非溶剂,无纺布作为支撑层,通过相转化法制备了纤维素均质膜。采用红外、X-射线衍射和扫描电子显微镜表征了膜的结构及形貌,考察了该膜的正渗透性能。结果表明:纤维素溶解再生过程中没有发生化学变化,但晶型发生了转变;当原料液为0.6 mol/L的氯化钠水溶液,汲取液为特制的营养液时,所制备的正渗透膜的水通量为3.534 L/(m2· h),截盐率达到99%以上。%The-nonporous-homogeneous-cellulose-membrane-for-forward-osmosis-was-pre-pared-via-phase-inversion-method-using-ionic-liquid-1-ethyl-3-methyl-imidazolium-acetate-(EMI-MAc)-as-solvent,water-as-nonsolvent-on-a-non-woven-fabric-substrate.-The-characterizations-of-Fourier-transform-infrared-(FTIR)-and-X-ray-diffraction-(XRD)-spectroscopies-showed-that-no-obvious-change-occurred-in-the-chemical-structure-of-cellulose-after-membrane-formation,but-the-crystallinity-had-a-certain-degree-of-decline.-The-cross-section-and-the-surface-morphologies-of-the-cellulose-forward-osmosis-membrane-were-analyzed-by-scanning-electron-microscopy-(SEM).-The-membrane-performance-were-investigated-by-measuring-water-flux-and-rejection-of-simulated-seawater.-The-water-flux-of-the-cellulose-forward-osmosis-membrane,which-the-cellu-lose-concentration-is-8%(wt)-in-casting-solution,was-3.534-L/m2-·-h-and-the-rejection-for-NaCl-was-more-than-99%,using-0.6-mol/L-NaCl-solution-as-the-feed-solution-and-lab-made-nutrient-solution-as-the-draw-solution.

  11. In vitro phonophoresis: effect of ultrasound intensity and mode at high frequency on NSAIDs transport across cellulose and rabbit skin membranes.

    Science.gov (United States)

    Meshali, M M; Abdel-Aleem, H M; Sakr, F M; Nazzal, S; El-Malah, Y

    2008-01-01

    The objective of this study was to evaluate the effect of intensity, mode, and duration of ultrasound application on the transport of three nonsteroidal anti-inflammatory drugs (NSAIDs) across cellulose membrane and rabbit-skin. Ibuprofen, piroxicam and diclofenac sodium were used as the model drugs. Studies were performed in vitro using a modified Franz diffusion assembly adapted to a therapeutic ultrasound transducer. Ultrasound had a significant and positive effect on the transport of the model NSAIDs across cellulose and rabbit skin membranes. Increasing ultrasound intensity from 0.5 to 3.0 W/cm2 led to a proportional increase in drug transport. Continuous ultrasound mode was more effective in enhancing drug transport than the pulsed mode. Diclofenac sodium had the least flux and permeability coefficient. This was attributed to its comparatively lower pKa value that renders the drug more ionizable in the buffer solution, consequently reducing its selective penetration through the membranes. This study demonstrated the therapeutic potential of ultrasound in transdermal delivery of NSAIDs and the synergistic effect of temperature and ultrasound operational parameters on drug transport. PMID:18271303

  12. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Fenglin Huang

    2016-01-01

    Full Text Available A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene (PVDF-HFP was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–shell composite nanofibrous membrane showed good wettability (16.5°, contact angle, high porosity (69.77%, and super electrolyte compatibility (497%, electrolyte uptake. It had a higher ionic conductivity (13.897 mS·cm−1 than those of pure polymer fibrous membrane and commercial separator. In addition, the rate capability (155.56 mAh·g−1 was also superior to the compared separator. These excellent performances endowed LLTO composite nanofibrous membrane as a promising separator for high-performance lithium-ion batteries.

  13. Competitive transport of toxic metal ions by polymer inclusion membranes

    International Nuclear Information System (INIS)

    A short overview of application of polymer inclusion membranes (PIMs) for separation and removal of metal ions is given. Investigation of the selective removal of toxic metal ions, i.e. Cr(VI), Cd(II), Zn(II) from acidic chloride aqueous solutions, as well as trace radionuclides, i.e., 137Cs, 90Sr and 60Co from wastewaters using transport across polymer inclusion membranes was studied. The carriers, i.e., tri-n-octylamine for anionic metal species, as well as dibenzo-21-crown-7, tertbutyl-dibenzo-21-crown-7, and dinonylnaphtalenesulfonic acid for metal cations were incorporated into polymer inclusion membranes composed of cellulose triacetate as a support and o-nitrophenyl pentyl ether as a plasticizer. Selective transport of chromium(VI) over zinc(II) and cadmium(II) chloride complexes through PIMs was observed. Competitive transport of trace radionuclide ions, i.e., 137Cs, 90Sr, and 60Co from NaNo3 aqueous solutions across polymer inclusion membranes containing a mixture of dinonylnaphtalenesulfonic acid, and dibenzo-21-crown-7 as the carrier provide the selectivity order Cs(I)>Sr(II)>Co(II). (author)

  14. PHOTOCATALYTIC ACTIVITY OF TiO2 NANO SUPPORTED ON MEMBRANE CELLULOSE ACETATE/NATA DE COCO (CA/NDC IN PHOTODEGRADATION OF METHYLENE BLUE

    Directory of Open Access Journals (Sweden)

    Roro Ernia Prawithasari

    2015-12-01

    Full Text Available Study of synthesis and effectiveness of membrane catalyst of cellulose acetate/nata de coco-TiO2 nano (CA/NDC-TiO2 nano in photodegradation of methylene blue in batch system has been investigated. TiO2nanoparticles were synthesized by hydrothermal method followed by calcination at 450oC. Scanning Electron Microscopy (SEM images indicate nano TiO2 has been successfully synthesized with average particle diameter as 88,63±4,37 nm. X-ray diffraction pattern (XRD of nano TiO2 shows some characteristic peaks of anatase TiO2 were still existed. Membrane photocatalyst of CA/NDC- nano TiO2 was prepared via phase inversion method by mixing TiO2 nanoparticles with CA casting solution. Thermogravimetric analysis shows three decomposition steps of CA/NDC-nano membrane as well as CA/NDC membrane. Photodegradation of methylene blue was conducted with nano-TiO2 particles and CA/NDC-TiO2 membrane for 50 minutes in batch system. The absorbance changes were measured by spectrophotometer at wavelength of 664.6 nm. The result shows the photodegradation rections tended to follow second order reaction. According to the rate constant value, k, the photocatalytic effectivity using CA-NDC/nano TiO2 membrane and nano TiO2photocatalysts in metilen blue photodegradation, statistically were not significantly different.

  15. Gypsum (CaSO4·2H2O Scaling on Polybenzimidazole and Cellulose Acetate Hollow Fiber Membranes under Forward Osmosis

    Directory of Open Access Journals (Sweden)

    Tai-Shung Chung

    2013-11-01

    Full Text Available We have examined the gypsum (CaSO4·2H2O scaling phenomena on membranes with different physicochemical properties in forward osmosis (FO processes. Three hollow fiber membranes made of (1 cellulose acetate (CA, (2 polybenzimidazole (PBI/polyethersulfone (PES and (3 PBI-polyhedral oligomeric silsesquioxane (POSS/polyacrylonitrile (PAN were studied. For the first time in FO processes, we have found that surface ionic interactions dominate gypsum scaling on the membrane surface. A 70% flux reduction was observed on negatively charged CA and PBI membrane surfaces, due to strong attractive forces. The PBI membrane surface also showed a slightly positive charge at a low pH value of 3 and exhibited a 30% flux reduction. The atomic force microscopy (AFM force measurements confirmed a strong repulsive force between gypsum and PBI at a pH value of 3. The newly developed PBI-POSS/PAN membrane had ridge morphology and a contact angle of 51.42° ± 14.85° after the addition of hydrophilic POSS nanoparticles and 3 min thermal treatment at 95 °C. Minimal scaling and an only 1.3% flux reduction were observed at a pH value of 3. Such a ridge structure may reduce scaling by not providing a locally flat surface to the crystallite at a pH value of 3; thus, gypsum would be easily washed away from the surface.

  16. A probabilistic approach for estimating water permeability in pressure-driven membranes.

    Science.gov (United States)

    Boateng, Linkel K; Madarshahian, Ramin; Yoon, Yeomin; Caicedo, Juan M; Flora, Joseph R V

    2016-08-01

    A probabilistic approach is proposed to estimate water permeability in a cellulose triacetate (CTA) membrane. Water transport across the membrane is simulated in reverse osmosis mode by means of non-equilibrium molecular dynamics (MD) simulations. Different membrane configurations obtained by an annealing MD simulation are considered and simulation results are analyzed by using a hierarchical Bayesian model to obtain the permeability of the different membranes. The estimated membrane permeability is used to predict full-scale water flux by means of a process-level Monte Carlo simulation. Based on the results, the parameters of the model are observed to converge within 5-ns total simulation time. The results also indicate that the use of unique structural configurations in MD simulations is essential to capture realistic membrane properties at the molecular scale. Furthermore, the predicted full-scale water flux based on the estimated permeability is within the same order of magnitude of bench-scale experimental measurement of 1.72×10(-5) m/s. PMID:27444876

  17. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    International Nuclear Information System (INIS)

    Highlights: ► Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. ► Photoelectrodeposition of “Cd” has been carried out using WO3 and CuFeO2 as electrode. ► Using both photo-polarized electrodes enhances transference of cadmium compared to one. ► Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd2+ using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO2/membrane/n-WO3 enhances considerably the electrons transfer toward the delafossite CuFeO2. The position of the conduction band of CuFeO2 is looked to be the key issue for the photo electrochemical Cd2+ reduction.

  18. Characterization of Cellulose Synthesis in Plant Cells

    OpenAIRE

    Samaneh Sadat Maleki; Kourosh Mohammadi; Kong-shu Ji

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the...

  19. Quantitative structure-activity relationship (QSAR) analysis of surfactants influencing attachment of a Mycobacterium sp. to cellulose acetate and aromatic polyamide reverse osmosis membranes.

    Science.gov (United States)

    Campbell, P; Srinivasan, R; Knoell, T; Phipps, D; Ishida, K; Safarik, J; Cormack, T; Ridgway, H

    1999-09-01

    A series of 23 neutral, anionic, and zwitterionic surfactants were tested at a concentration of 0.1% wt/vol for their influence on attachment of a Mycobacterium sp. to cellulose acetate (CA) and polyamide (PA) reverse osmosis (RO) membranes. Four cell attachment bioassays were used: (1) semiconcurrent addition of surfactant and bacteria to RO coupons (standard assay); (2) surfactant pretreatment of RO membranes (membrane pretreatment assay); (3) surfactant treatment of adsorbed cells (detachment assay); and (4) surfactant pretreatment of mycobacteria (cell pretreatment assay). Seventeen surfactants inhibited attachment to PA membranes, whereas 15 inhibited attachment to CA in standard assays and, in 13 cases, the same surfactant inhibited attachment to both PA and CA. Despite greater cell attachment to PA than CA, surfactants were typically more effective in the former membrane system. More surfactants were effective in impairing cell attachment than in promoting detachment and a number enhanced attachment in membrane pretreatment assays, suggesting surface modification of RO membranes. Cell pretreatment inhibited attachment to CA membranes, suggesting the bacterial surface was also a target for detergent activity. Multivariate regression and cluster analyses indicated that critical micellar concentration (CMC) was positively correlated with Mycobacterium attachment in CA and PA standard assays. Surfactant dipole moment and octanol/water partitioning (LogP) also contributed to detergent activity in the PA system, whereas dipole moment, molecular topology (i.e., connectivity indices), and charge properties influenced activity in the CA system. Influential variables in membrane pretreatment assays included the LogP, topology indices, and charge properties, whereas CMC played a diminished role. Surfactant dipole moment was most influential in CA membrane detachment assays. Increasing system ionic strength by LiBr addition strengthened inhibition of cell attachment to

  20. Analysis of diazinon pesticide using potentiometric biosensor based on enzyme immobilized cellulose acetate membrane in gold electrode

    Science.gov (United States)

    Mashuni; Ramadhan, L. O. A. N.; Jahiding, M.; Herniati

    2016-02-01

    Biosensor for analysis of diazinon pesticide using Potentiometric transducer has been developed. The basic element of this biosensor was a gold electrode modified with an immobilized acetylcholinesterase enzyme layer formed by entrapment with glutaraldehyde crosslinked-cellulose acetate. The aim of the research is to determine the composition of glutaraldehyde crosslinked-cellulose acetate in the gold electrode which provide optimum performance of biosensors of diazinon pesticide analysis on characterization include a range of working concentration, sensitivity, and detection limit. The results showed the composition of the cellulose acetate 15% and glutaraldehyde 25% that obtain optimum performance in the measurement of diazinon pesticide with a range of working concentration of 10-6 ppm to 1 ppm, the value of sensitivity 20.275 mV/decade and detection limit 10-6 ppm. The use of cellulose acetate provides highly sensitive devices allowing the efficient analysis of pesticides. The response time of electrode is on the measurement of pesticide diazinon with concentration variation of 10-6 ppm to 1 ppm with response time is about 5 minutes.

  1. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing. PMID:27120634

  2. Cyclic AMP--dependent aggregation of Swiss 3T3 cells on a cellulose substratum (Cuprophan) and decreased cell membrane Rho A.

    Science.gov (United States)

    Faucheux, N; Nagel, M D

    2002-06-01

    Cell surface integrin receptors and Rho family GTPases function together to mediate adhesion-dependent events in cells. We have shown that the attachment of Swiss 3T3 cells to a cellulose substratum (Cuprophan, CU) activates adenylyl cyclase, which catalyses cyclic AMP (cAMP) production. CU adsorbs vitronectin poorly, prevents cell spreading and causes cells to aggregate. By contrast, spread cells on polystyrene (PS) contain low cAMP concentrations. We have now investigated the shift between integrin signalling-Rho A and the cAMP pathway. CU did not support the formation of focal contacts and stress fibres. The plasma membranes of cells on CU had less Rho A than those of cells on PS. Also, blocking vitronectin (VN) or fibronectin (FN)-integrin receptors with echistatin, which activates cAMP production, decreased Rho A in the plasma membrane of cells attached to PS. But adsorption of VN or FN onto CU, which limits the production of the cAMP, increased the cell membrane Rho A. Adding an inhibitor of cAMP-dependent protein kinase PKA to the medium also increased the plasma membrane Rho A in aggregated cells attached to CU. These results highlight the importance of cAMP, generated by cell attachment to substratum, as a gating element in integrin-Rho A signalling. PMID:12013176

  3. Cadmium (II) and lead (II) transport in a polymer inclusion membrane using tributyl phosphate as mobile carrier and CuFeO2 as a polarized photo electrode

    International Nuclear Information System (INIS)

    In this work, a development of polymeric inclusion membranes for the cations separation is reported. The membrane was made up of cellulose triacetate (CTA) with a tributyl phosphate (TBP) incorporated into the polymer as metal ions carrier. The transport of lead (II) and cadmium (II) ions in two membrane systems polymer inclusion membrane (PIM), PIM coupled with photo-chemical electrode using TBP as carrier and 2-nitro phenyl octyl ether (NPOE) or tris ethylhexyl phosphate (TEHP) as plasticizer have been investigated. The membranes: polymer + plasticizer + carrier were synthesized and characterized by FTIR, X-ray diffraction and scanning electron microscopy (SEM). Transports of lead and cadmium have been studied using these systems and the results were compared to commercial cation exchange membrane (CRA). The obtained results showed that for Pb2+ ion, the concentrations of the strip phase increases using synthesized membranes. The conduction band of the delafossite CuFeO2 (-1.25 VSCE) yields a thermodynamically M2+ (=Pb2+, Cd2+) photo electrodeposition and speeds up the diffusion process. In all the cases, the potential of the electrode M/M2+ in the feed compartment increases until a maximum value, reached at ∼100 min above which it undergoes a diminution.

  4. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases. PMID:26799780

  5. Para-aminobenzamidine linked regenerated cellulose membranes for plasminogen activator purification: Effect of spacer arm length and ligand density

    Science.gov (United States)

    Fasoli, Ezio; Reyes, Yiaslin Ruiz; Guzman, Osiris Martinez; Rosado, Alexandra; Cruz, Vivian Rodriguez; Borges, Amaris; Martinez, Edmarie; Bansal, Vibha

    2013-01-01

    Despite membrane-based separations offering superior alternative to packed bed chromatographic processes, there has been a substantial lacuna in their actual application to separation processes. One of the major reasons behind this is the lack of availability of appropriately modified or end-group modifiable membranes. In this paper, an affinity membrane was developed using a commercially available serine protease inhibitor, para-aminobenzamidine (pABA). The membrane modification was optimized for protein binding capacity by varying: i) the length of the spacer arm (SA; 5-atoms, 7-atoms, and 14-atoms) linking the ligand to membrane surface; ii) the affinity ligand (pABA) density on membrane surface (5–25 nmoles per cm2). Resulting membranes were tested for their ability to bind plasminogen activators (PAs) from mono- and multi- component systems in batch mode. The membrane containing pABA linked through 7-atoms SA but similar ligand density as in the case of 5- or 14- atoms long SA was found to bind up to 1.6-times higher amounts of PA per nmole of immobilized ligand from conditioned HeLa cell culture media. However, membranes with similar ligand densities but different lengths of SA, showed comparable binding capacities in monocomponent system. In addition, the length of SA did not affect the selectivity of the ligand for PA. A clear inverse linear correlation was observed between ligand density and binding capacity until the point of PA binding optima was reached (11±1.0 nmoles per cm2) in mono- and multi- component systems for 7- as well as 14- atoms SA. Up to 200-fold purification was achieved in a single step separation of PA from HeLa conditioned media using these affinity membranes. The issues of ligand leaching and reuse of the membranes were also investigated. An extensive regeneration procedure allowed the preservation of approximately 95% of the PA binding capacity of the membranes even after five cycles of use. PMID:23703544

  6. Enzymatic hydrolysis of cellulose: Study of the process of recovery of cellulose glucides by the technique of hyperfiltration on polysulphonic membranes. Idrolisi enzimatica della cellulosa. Studio del processo di recupero dei glucidi da cellulasi con tecniche di ultrafiltrazione su membrane polisolfoniche

    Energy Technology Data Exchange (ETDEWEB)

    Pizzichini, M.; Fabiani, C.; Sperandei, M.

    1986-07-01

    Membrane separation technology can optimize some steps of cellulose enzymatic hydrolysis process. In order to continuously remove glucose and cellobiose in the permeate solution and recover the enzymes in the recycling stream, the separation by ultrafiltration of glucides from enzymes was studied. Celluclast enzyme supplied by Novo,in aqueous buffer solution at pH5 and concentration of 0.2-4% w/v range, was used as a feed. Glucides concentration was in the 0.02-0,95% w/v$range. A DDS UF System (Lab Unit-20) was employed with 16 flat membranes type GS81PP with cut off at 6000 dalton. During the separation test, a reduction in the permeate flux caused by protein deposition on the membrane surface was observed. Water washing of the membranes cleans all the membranes package and the original membranes permeability (80 1/sq. m/h at 4 bars) is recovered. Glucides can be quantitatively recovered by the UF process. However the high cellulase concentration may produce a slight enzyme inactivation (2-9%).

  7. Collagen-graft mixed cellulose esters membrane maintains undifferentiated morphology and markers of potential pluripotency in feeder-free culture of induced pluripotent stem cells.

    Science.gov (United States)

    Lotfalah Moradi, Sadegh; Hajishafieeha, Zahra; Nojedehi, Shahrzad; Dinarvand, Vida; Hesami Tackallou, Saeed; Roy, Ram V; Ardeshirylajimi, Abdolreza; Soleimani, Masoud

    2016-09-01

    Induced pluripotent stem cells (iPSCs) are unique and unlimited clinical sources of stem cell therapy for the regenerative medicine. Feeder layer preparation is an important step for iPSCs production, which is expensive, time-consuming and requires conversance. In the present study, we investigated the maintenance of pluripotency, and stemness of the iPSCs through feeder-free culture on a collagen-grafted Mixed Cellulose Esters membrane (MCE-COL) after three passages during twelve days. Results have demonstrated that the iPSCs cultured on MCE-COL membrane had a fine, typical undifferentiated morphology, increased proliferation rate and significant multi-lineage differentiation potential. Alkaline phosphatase (ALP) staining and pluripotency associated gene markers expression further confirmed that iPSCs cultured on the surface of MCE-COL had more ALP positive colonies and enhanced expression of Oct-4, Nanog, Sox-2 and ALP in comparison with MCE and control groups. Since MCE-COL membrane has three dimensional structure and bioactivity, it has the potential for usage in the feeder-free culture of iPSCs, and could be a suitable candidate to use as a feeder layer in stem cells preparation. PMID:27449919

  8. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  9. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  10. 甲基纤维素对SiO2薄膜性能的影响%Effect of methyl cellulose on the properties of silica membrane

    Institute of Scientific and Technical Information of China (English)

    同帜; 韩丹丹; 李大川; 崔双科

    2013-01-01

    以正硅酸乙酯为主要原料,采用溶胶凝胶法和浸渍提拉技术在氧化铝支撑体上进行涂膜,研究了在制备过程中引入甲基纤维素(MC)对SiO2薄膜性能的影响.采用FT-IR和AFM、BET等测试技术对膜的热稳定性、凝胶膜热处理前后的结构变化和薄膜的表面微观形貌进行表征.实验结果表明,甲基纤维素对SiO2溶胶体系起到增稠剂的作用,本次实验确定的最佳加入量为每100 mL溶胶中加入0.35g甲基纤维素;SiO2薄膜表面光滑平整,内部结构均匀,具有良好的热稳定性;但与未加入甲基纤维素的薄膜相比较,薄膜的孔隙率和平均孔径均有一定的减少;SiO2薄膜的孔径分布呈单峰且较窄,其最可几孔径为1.14 nm;添加甲基纤维素后的薄膜在0.18 MPa下,纯水通量为880 L/(m2·h);孔隙率约为31%,体积密度为2.4%.%A silica gel was prepared on the supporting body of alumina by sol-gel process and dip-coating technique using tetraethoxy silicone(TEOS) as main raw material, then a SiO2membrane was introducted by methyl cellulose. The structures and properties were effected by adding methyl cellulose. The thermal stability, phase transformation, structure and morphology of composite membranes were characterized by FT-IR、AFM、 BET, etc. respectively. The results showed that the methyl cellulose played a role of thickening agent on SiO2 sol system. When the SiO2 sol was 100 mL, the optimum adding amount of methyl cellulose was 0.35 g. The films surface was smooth, uniform internal structure and had good thermal stability. The porosity and average pore size of the thin film can be reduced compared with that there is no adding methyl cellulose film; The pore size distribution of SiO2films were unimodal, narrow and the most probable pore diameters were about 1. 14 nm; The pure water flux of the film added was 880 L/ (m2 · h); porosity was about 31%, and volume density was 2. 4% under 0. 18 MPa.

  11. The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

    OpenAIRE

    Endler, Anne; Schneider, Rene; Kesten, Christopher; Edwin R Lampugnani; Persson, Staffan

    2016-01-01

    ABSTRACT Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (CSI1). In a recent study we identified another family of proteins that also are associated ...

  12. SURFACE MODIFICATION OF SILICA- AND CELLULOSE-BASED MICROFILTRATION MEMBRANES WITH FUNCTIONAL POLYAMINO ACIDS FOR HEAVY METAL SORPTION

    Science.gov (United States)

    Functionalized membranes represent a field with multiple applications. Examination of specific metal-macromolecule interactions on these surfaces presents an excellent method for characterizion of these materials. These interactions may also be exploited for heavy metal sorptio...

  13. Study of preparation and gas separation property of ethyl cellulose/C60 composite membranes%乙基纤维素/C60复合膜制备及气体分离性能研究

    Institute of Scientific and Technical Information of China (English)

    马诚; 孔瑛; 杨金荣

    2012-01-01

    Ethyl cellulose/C60 composite membranes with different C60 content were prepared in this paper. The structure and gas permeation properties of the obtained membranes were investigated by UV-visible specmma,atomic force microscopy, X-ray diffraction and gas permeation tests. The results show that for the ethyl cellulose/Qo composite membranes with the C0content of 1. 6%,the permeation coefficients of CO2,H2 are 61. 29 Barrer and 78. 88 Barrer, respectively; the separation factors of H2/N2,CO2/N2 are 9.979 and 12. 84, respectively. Both gas permeation coefficient and separation factor of the above ethyl cellulose/C60composite membrane are higher than that of ethyl cellulose membrane. The effect of UV irradiation on the structure and gas permeation properties of the ethyl cellulose/C60 composite membranes was also studied. The results showed that the morphology of C60 on the surface of ethyl cellulose/C60 composite membranes changes from a discrete cluster structure to a continuous gentle hill-like structure during UV irradiation process. UV irradiation process has no noticeable effect on the d-spacing of ethyl cellulose molecular chain. The gas permeation properties of ethyl cellulose/C50 composite membranes, however,are significantly influenced by UV irradiation. By UV irradiation for ten minutes,the H2 and CO2 permeation coefficients of the ethyl cellulose/C60 composite membranes with C60 content of 1. 6% nearly reduces by 30%,and the separation factors of H2/N2 and CO2/N2 increase about 2 times.%为制备C60含量不同的乙基纤维素(EC)/C60复合膜,采用UV-可见光谱、AFM和XRD等手段对紫外光辐照前后复合膜结构进行表征,并考察其对气体分离及渗透性能的影响.结果表明,复合膜经紫外光辐照后,C60在膜表面的分布由独立的簇状结构转变为连续平缓的丘陵状结构,膜表面更加致密光滑;复合膜分子链间距未发生明显变化,但对N2、CO2、H2的渗透性能和H2/N2、CO2/N2分离

  14. 功能性再生纤维素复合膜的制备及性能研究进展%Research progress on preparation and properties of functional regenerated cellulose composite membranes

    Institute of Scientific and Technical Information of China (English)

    王晶晶; 王钱钱; 张超群; 孙建中

    2016-01-01

    纤维素是自然界中储量最大的天然高分子化合物,被认为是未来能源和化工的主要原料。然而,天然纤维素聚合度高、结晶度高的特性,使其难以溶于常规溶剂,极大限制了纤维素的应用。近年来,人们发现了多种新型纤维素溶剂体系,本文简要介绍了基于新型纤维素溶剂体系制备而来的再生纤维素膜以及一系列功能性再生纤维素基有机/无机复合膜材料。通过新型纤维素溶剂体系溶解再生得到的再生纤维素基复合膜在多孔性、热稳定性、强度等性能方面得到一定程度的改善,有望应用于包装、污水处理、传感器、生物医学等领域。本文基于再生纤维素膜及其复合膜材料的最新研究进展,对今后发展的热点方向进行了展望,旨在为纤维素溶解和功能性再生纤维素新材料的开发提供参考。%Cellulose, the most abundant natural renewable resources on the earth, has been considered as the main raw material for future energy and chemical industry. However, due to its high degree of polymerization and crystalline index, cellulose is extremely difficult to dissolve in conventional solvents, which greatly limits its application. More recently, many new cellulose solvents have been developed to overcome this problem. This paper briefly introduces a series of regenerated cellulose membranes and functional organic/inorganic regenerated cellulose composite membranes with these new cellulose solvents. It has been found that the properties of those cellulose composites, such as the porosity, thermal stability and mechanical properties are significantly improved, giving them promising applications in packaging, wastewater treatment, sensors, biological medicine, etc. The latest research progress of regenerated cellulose membranes and functional regenerated cellulose composites is summarized in this paper. Finally, the trends on developing cellulose solvents and

  15. Silver nanoparticle/bacterial cellulose gel membranes for antibacterial wound dressing: investigation in vitro and in vivo

    International Nuclear Information System (INIS)

    Bacterial cellulose (BC) has attracted increasing attention as a novel wound dressing material, but its antimicrobial activity, which is one of the critical skin-barrier functions in wound healing, is not sufficient for use in practical applications. To overcome such a deficiency, silver nanoparticles were generated and self-assembled on the surface of BC nanofibers, forming a stable and evenly distributed Ag nanoparticle coated BC nanofiber (AgNP-BC). The performance of AgNP-BC was systematically studied in terms of antibacterial activities, cytocompatibility and effects on wound healing. The results showed that AgNP-BC exhibited significant antibacterial activity against Staphylococcus aureus. Moreover, AgNP-BC allowed attachment, and growth of rat fibroblasts with low cytotoxicity emerged. Based on these advantages, AgNP-BC samples were applied in a second-degree rat wound model. Wound flora showed a significant reduction during the healing. The fresh epidermal and dermis thicknesses with AgNP-BC samples were 111 and 855 µm respectively, higher than 74 and 619 µm for BC groups and 57 and 473 µm for untreated control wounds. The results demonstrated that AgNP-BC could reduce inflammation and promote scald wound healing. (paper)

  16. Metallization of bacterial cellulose for electrical and electronic device manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Barbara R.; O' Neill, Hugh M.; Jansen, Valerie Malyvanh; Woodward, Jonathan

    2006-01-17

    The employment of metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The fuel cell includes an electrolyte membrane comprising a membrane support structure comprising bacterial cellulose, an anode disposed on one side of the electrolyte membrane, and a cathode disposed on an opposite side of the electrolyte membrane. At least one of the anode and the cathode comprises an electrode support structure comprising bacterial cellulose, and a catalyst disposed in or on the electrode support structure.

  17. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  18. Characterization of Cellulose Synthesis in Plant Cells.

    Science.gov (United States)

    Maleki, Samaneh Sadat; Mohammadi, Kourosh; Ji, Kong-Shu

    2016-01-01

    Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4) D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC) from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA) proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family. PMID:27314060

  19. 离子液体法制备再生纤维素/角蛋白共混膜的研究%Research of Regenerated Cellulose/Keratin Blend Membranes Prepared from Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    张猛; 马博谋; 何春菊

    2013-01-01

    合成了离子液体1-丁基-3-甲基咪唑氯盐([BMIM]Cl),以其为溶剂溶解羊毛角蛋白和纤维素,并制得再生纤维素/角蛋白共混膜.通过扫描电子显微镜(SEM)、傅里叶红外光谱仪(FT-IR)、热失重分析仪(TGA)及强度测试仪等对共混膜的性能进行表征.测试结果表明:与单一原料组分相比,共混膜具有较高的热稳定性,但力学性能有所降低,此外,羊毛角蛋白再生前后的结构并未发生显著变化.%l-butyl-3-methylimidazolium chloride ([BMIM] CD was synthesized to dissolve wool keratin and cellulose, and the keratin/cellulose blend membranes were prepared. The properties of the membrane were evaluated through scanning electron microscope (SEM), Fourier transforms infrared (FT-IR), thermogravimetric analyzer (TGA) and tension strength tester. All the results showed that the blend membranes presented better thermal stability than that of raw cellulose and keratin, but inferior mechanical property. The structure of wool keratin didn't have remarkable change after regeneration.

  20. Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Mohd Hir, Zul Adlan; Rosmi, Mohamad Saufi; Abd Mutalib, Muhazri; Ismail, Ahmad Fauzi; Tanemura, Masaki

    2016-08-01

    Visible light driven C-doped mesoporous TiO2 (C-MTiO2) nanorods have been successfully synthesized through green, low cost, and facile approach by sol-gel bio-templating method using regenerated cellulose membrane (RCM) as nanoreactor. In this study, RCM was also responsible to provide in-situ carbon sources for resultant C-MTiO2 nanorods in acidified sol at low temperatures. The composition, crystallinity, surface area, morphological structure, and optical properties of C-MTiO2 nanorods, respectively, had been characterized using FTIR, XRD, N2 adsorption/desorption, TEM, UV-vis-NIR, and XPS spectroscopy. The results suggested that the growth of C-MTiO2 nanorods was promoted by the strong interaction between the hydroxyl groups of RCMs and titanium ion. Optical and XPS analysis confirmed that carbon presence in TiO2 nanorods were responsible for band-gap narrowing, which improved the visible light absorption capability. Photocatalytic activity measurements exhibited the capability of C-MTiO2 nanorods in degradation of methyl orange in aqueous solution, with 96.6% degradation percentage under visible light irradiation. PMID:27112862

  1. Effect of Coagulation Bath and CastingSolution on Cellulose UF Membranes%凝固浴和铸膜液对新型纤维素超滤膜的影响

    Institute of Scientific and Technical Information of China (English)

    张耀鹏; 邵惠丽; 沈新元; 胡学超

    2000-01-01

    Cellulose and N - methylmorpholine - N - oxide (NMMO) system is selected to cast membrane with phase -inversion method. Several factors (concentration of casting solution, temperature and concentration of coagulation bath,different precipitation agents) on membrane performance are also studied.%以纤维素为原料,NMMO为溶剂,用相转化法制备超滤膜,并研究了凝固浴浓度、温度、有机醇作凝固剂及铸膜液浓度对膜性能的影响。

  2. Semi-interpenetrating hybrid membranes containing ADOGEN® 364 for Cd(II) transport from HCl media

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm−3 HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN® 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10−2 mol dm−3 ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H3PO4 was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN® 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g−1. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs

  3. Formation of radical cations and dose response of alpha-terthiophene-cellulose triacetate films irradiated by electrons and gamma rays

    CERN Document Server

    Emmi, S S; Ceroni, P; D'Angelantonio, M; Lavalle, M; Fuochi, P G; Kovács, A

    2002-01-01

    The radiation-induced UV-vis spectrum of alpha-terthiophene radical cation in solid is reported. The radical cation initiates an oligomerization in the CTA matrix producing permanently coloured conjugated polarons. The specific net absorbance at 465 nm is linearly related with dose up to 2x10 sup sup 6 sup sup G y, for electrons and gamma irradiation. The decrease of the UV typical absorption (355 nm) and of four IR bands of alpha-terthiophene is linear with dose, as well. Although sensitivity is influenced by dose rate, it turned out that a linear relationship holds between sensitivity and log dose rate, in the range from 2 to 10 sup sup 5 Gy, min. These findings suggest a potential application of the system for dosimetric purposes over a wide range of dose and dose rate.

  4. Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples.

    Science.gov (United States)

    Mukhtar, Nurul Hazirah; See, Hong Heng

    2016-08-10

    In this study, the potential for carbonaceous nanomaterials to be used as adsorbents for the mixed matrix membrane (MMM) microextraction and preconcentration of organic pollutants was demonstrated. For this method, multiwall carbon nanotubes (MWCNT) and single layer graphene (SLG) nanoparticles were individually incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a MWCNT-MMM and SLG-MMM, respectively. The prepared membranes were evaluated for the extraction of selected polycyclic aromatic hydrocarbons (PAHs) present in sewage pond water samples. The extraction was performed by dipping a small piece of membrane (7 mm × 7 mm) in a stirred 7.5 mL sample solution to initiate the analyte adsorption. This step was followed by an analyte desorption into 60 μL of methanol prior to high performance liquid chromatography (HPLC) analysis. When the optimum SLG-MMM microextraction technique was applied to spiked sewage pond water samples, the detection limit of the method for the PAHs were in the range of 0.02-0.09 ng/mL, with relative standard deviations of between 1.4% and 7.8%. Enrichment factors of 54-100 were achieved with relative recoveries of 99%-101%. A comparison was also made between the proposed approach and standard solid phase extraction using polymeric bonded octadecyl (C18) cartridges. PMID:27282751

  5. Enantiomeric separation of (R,S)-mandelic acid using cellulose acetate membrane%醋酸纤维素手性固膜对R,S-扁桃酸的拆分研究

    Institute of Scientific and Technical Information of China (English)

    徐晓林

    2014-01-01

    Since cellulose acetate has been widely used for membrane separations and chiral stationary phase in HPLC, It showed favorable film-forming performance and enantiomeric recognition potency. an enantioselective membrane was prepared using cellulose acetate as the membrane material. The flux and permselective properties of a membrane were studied using mandelic acid racemate as the feed solution. The top surface and cross-section morphology of the resulting membrane were examined using scanning electron microscopy. An optical resolution of at 3.9 enantiomeric separation factor was achieved when the enantioselective membrane was prepared with 30wt.%cellulose acetate, 15wt.%N, N-dimethylformamide in the casting solution of acetone, the evaporation time of 5 minutes and operating pressure of 0.2 MPa. This work indicates that the enantioselective cellulose acetate membrane could soon become very attractive for industrial uses.%醋酸纤维素已经被广泛用于膜分离技术及用作高效液相色谱手性固定相,显示了它具有优良的成膜性能和手性识别能力。因此以醋酸纤维素为膜材料,制备醋酸纤维素手性固膜,使用R,S-扁桃酸作为原料液检测膜的通量及其手性拆分能力,并使用扫描电子显微镜对膜表面及截面的形态结构进行了表征。研究显示:当CA浓度为30%,DMF浓度为15%,铸膜液挥发5min,操作压力为0.2 MPa,样品浓度为0.5 mg/mL时,膜具有良好的拆分效果,R,S-扁桃酸对映体的分离因子可以达到3.9,说明膜分离技术是进行大规模手性拆分非常有潜力的方法之一,具有良好的工业应用前景。

  6. Dissolution and regeneration membrane of cellulose in ionic liquid%两种离子液体中制备再生棉浆纤维素膜及其性能研究

    Institute of Scientific and Technical Information of China (English)

    刘洋; 王兆梅; 肖凯军

    2013-01-01

    Cotton pulp was dissolved in ionic liquids [Bmim]CI and [Emim]Ac and regenerated membrane was successfully prepared. Its dissolution process was observed by polarizing microscope. The structural differences between cotton pulp and regenerated cellulose membrane were investigated using Fourier transform infrared (FT-IR) spectroscopy.X-ray diffraction and thermogravimetry(TG) measurements. The results showed that cotton pulp was directly dissolved by ionic liquids and its crystalline form transformed from cellulose Ⅰ to cellulose Ⅱ . The regenerated cellulose membranes obtained showed a dense and smooth structure and displayed a slight thermal stability loss. The tensile strength could be up to 94.55MPa and 39.15MPa from [Bmim]CI and [Emim]Ac. respectively.%以1-丁基-3-甲基咪唑氯盐([Bmim]Cl)和1-乙基-3-甲基咪唑醋酸盐([Emim]Ac)两种离子液体作为棉浆粕的溶解体系,并制备了再生棉浆粕纤维素膜,采用红外光谱、X射线衍射、热重分析、扫描电镜和质构仪对棉浆再生前后纤维素膜进行结构表征 结果表明,将棉浆直接溶解在离子液体中,再生后纤维素晶型由Ⅰ型向Ⅱ型的晶型转变,热稳定性略有下降 再生纤维素膜结构致密均匀,力学性能优异,在[Bmim]Cl和[Emim]Ac中拉伸强度分别可达94.55MPa和39.15MPa.

  7. Polymer Inclusion Membranes (PIM for the Recovery of Potassium in the Presence of Competitive Cations

    Directory of Open Access Journals (Sweden)

    Anna Casadellà

    2016-03-01

    Full Text Available Potassium is an important nutrient used in fertilizers but is not always naturally available  We investigated the properties of polymer inclusion membranes (PIM regarding their selective recovery of K+ over competitive ions typically present in urine (Na+ and NH4+. The greatest flux was observed when the ratio of mass 2-nitrophenyl octyl ether (2-NPOE used as plasticizer to cellulose triacetate (CTA used as polymer was 0.25. The highest flux was achieved with a content of 24.8 wt % of dicyclohexan-18-crown-6 (DCH18C6 used as carrier, although the highest selectivity was observed with a content of 14.0 wt % of DCH18C6. We also studied whether the transport mechanism occurring in our system was based on co-transport of a counter-ion or ion exchange. Two different receiving phases (ultrapure water and 100 mM HCl were tested. Results on transport mechanisms suggest that co-transport of cations and anions is taking place across our PIMs. The membrane deteriorated and lost its properties when the receiving phase was acidic; we suggested that this was due to hydrolysis of CTA. The greatest flux and selectivity were observed in ultrapure water as receiving phase.

  8. 纤维素/海藻酸钠共混膜的制备及力学性能%Preparation and mechanical properties of cellulose/sodium alginate blend membranes

    Institute of Scientific and Technical Information of China (English)

    李娜; 刘文洁; 罗虎

    2013-01-01

    Cellulose and sodium alginate were separately dissolved in the blend system of sodium hydroxide,urea and thiourea to prepare cellulose and cellulose/sodium alginate blend membranes.The optimal process conditions of cellulose membrane were decided by orthogonal experiment and single factor experiment.The preparation technology of cellulose/sodium alginate blend membrane was also studied.The results showed that the membrane prepared from 4.5% cellulose solution by mass fraction had the optimal tensile strength of 5.2 MPa while coagulating in 5% sulfuric acid solution at 25 ℃ for 15 min and plasticizing in 20% glycerin solution for 30 min; and the obtained cellulose/sodium alginate blend membrane had the optimal tensile strength of 3.50 MPa when the process conditions were optimized as followed:the blend solution containing 4.5% cellulose and 3% sodium alginate by mass fraction at the mass ratio of 100/5,soaking in 5% sulfuric acid solution and reacting for 15 min,coagulating in 10% calcium chloride solution for 10 min,and plasticizing in 15% glycerin solution for 15 min.%将纤维素和海藻酸钠分别溶于氢氧化钠/尿素/硫脲体系,制得纤维素膜和纤维素/海藻酸钠共混膜,通过正交实验和单因素实验法分析,确定制备纤维素膜的最佳工艺条件,在此基础上研究了纤维素/海藻酸钠共混膜的制备工艺.结果表明:质量分数为4.5%的纤维素溶液所制得的膜在25℃的5%的硫酸溶液中凝固15 min,20%的甘油溶液中塑化30 min,其膜的拉伸强度较佳为5.2 MPa;纤维素/海藻酸钠共混膜的较佳工艺:质量分数分别为4.5%的纤维素溶液和3%的海藻酸钠溶液按质量比100/5共混后先浸入5%硫酸溶液中反应15 min,再放入10%氯化钙溶液中凝固10 min,用15%甘油溶液塑化15 min后,共混膜的拉伸强度达到3.50 MPa.

  9. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yahia Cherif, Asma [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Arous, Omar, E-mail: omararous@yahoo.fr [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Amara, Mourad [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Omeiri, Said [Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Kerdjoudj, Hacene [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Trari, Mohamed [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. Black-Right-Pointing-Pointer Photoelectrodeposition of 'Cd' has been carried out using WO{sub 3} and CuFeO{sub 2} as electrode. Black-Right-Pointing-Pointer Using both photo-polarized electrodes enhances transference of cadmium compared to one. Black-Right-Pointing-Pointer Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd{sup 2+} using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO{sub 2}/membrane/n-WO{sub 3} enhances considerably the electrons transfer toward the delafossite CuFeO{sub 2}. The position of the conduction band of CuFeO{sub 2} is looked to be the key issue for the photo electrochemical Cd{sup 2+} reduction.

  10. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  11. Cellulose biosynthesis and function in bacteria.

    OpenAIRE

    Ross, P; Mayer, R; Benziman, M

    1991-01-01

    The current model of cellulose biogenesis in plants, as well as bacteria, holds that the membranous cellulose synthase complex polymerizes glucose moieties from UDP-Glc into beta-1,4-glucan chains which give rise to rigid crystalline fibrils upon extrusion at the outer surface of the cell. The distinct arrangement and degree of association of the polymerizing enzyme units presumably govern extracellular chain assembly in addition to the pattern and width of cellulose fibril deposition. Most e...

  12. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja S.;

    2012-01-01

    Most secondary plant cell walls contain irregular regions known as dislocations or slip planes. Under industrial biorefining conditions dislocations have recently been shown to play a key role during the initial phase of the enzymatic hydrolysis of cellulose in plant cell walls. In this review we...... not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...

  13. Novel polymer inclusion membranes containing T2EHDGA as carrier extractant for actinide ion uptake from acidic feeds

    International Nuclear Information System (INIS)

    Polymer inclusion membranes (PIM) containing N,N,N',N'-tetra(2-ethylhexyl) diglycolamide (T2EHDGA) were evaluated for the separation of actinide ions such as Am3+, Pu4+, UO22+ and Th4+ from acidic feeds. The PIMs were prepared using cellulose triacetate (CTA) as the polymer matrix, 2-nitrophenyloctyl ether (NPOE) as the plasticizer and T2EHDGA as the carrier extractant and the optimized membrane composition was found to be 68.4% T2EHDGA, 17.9% NPOE and 13.7% CTA which resulted in 74% Am3+ uptake at 1 M HNO3 in 2 h. The uptake studies were carried out using feed solutions containing varying concentrations of nitric acid (0.5-3.0 M) and showed the trend: Pu4+ > Am3+ > Th4+ > UO22+. Quantitative stripping (> 99%) of the sorbed Am3+ was possible using a solution containing 0.01 M EDTA at pH 3.0. Reusability studies indicated deterioration of the PIM on continuous use.

  14. Novel polymer inclusion membranes containing T2EHDGA as carrier extractant for actinide ion uptake from acidic feeds

    Energy Technology Data Exchange (ETDEWEB)

    Mahanty, Bholanath; Das, Dillip Kumar; Behere, Praveen Gajanan; Afzal, Mohammad [Bhabha Atomic Research Centre, Tarapur, Maharashtra (India). Advanced Fuel Fabrication Facility; Mohapatra, Prasanta Kumar; Raut, Dhaval Ramakant [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiochemistry Div.

    2015-06-01

    Polymer inclusion membranes (PIM) containing N,N,N',N'-tetra(2-ethylhexyl) diglycolamide (T2EHDGA) were evaluated for the separation of actinide ions such as Am{sup 3+}, Pu{sup 4+}, UO{sub 2}{sup 2+} and Th{sup 4+} from acidic feeds. The PIMs were prepared using cellulose triacetate (CTA) as the polymer matrix, 2-nitrophenyloctyl ether (NPOE) as the plasticizer and T2EHDGA as the carrier extractant and the optimized membrane composition was found to be 68.4% T2EHDGA, 17.9% NPOE and 13.7% CTA which resulted in 74% Am{sup 3+} uptake at 1 M HNO{sub 3} in 2 h. The uptake studies were carried out using feed solutions containing varying concentrations of nitric acid (0.5-3.0 M) and showed the trend: Pu{sup 4+} > Am{sup 3+} > Th{sup 4+} > UO{sub 2}{sup 2+}. Quantitative stripping (> 99%) of the sorbed Am{sup 3+} was possible using a solution containing 0.01 M EDTA at pH 3.0. Reusability studies indicated deterioration of the PIM on continuous use.

  15. Novel polymer inclusion membrane containing a macrocyclic ionophore for selective removal of strontium from nuclear waste solution

    International Nuclear Information System (INIS)

    A new polymer inclusion membrane (PIM) containing cellulose tri-acetate (CTA) as the monomer, di-tert-butyl-cyclohexane-18-crown-6 (DtBuCH18C6) as the carrier and 2-nitrophenyl octyl ether (NPOE) as the plasticizer was developed for the selective transport of Sr2+ from aqueous nitrate medium. Studies with crown ether concentration variation have indicated a linear dependence on the permeability coefficient (P) suggesting a diffusion mechanism for ion transport. Effects of membrane thickness, nature of plasticizer and plasticizer concentration on the transport of Sr2+ were studied. The effect of feed acidity was also investigated for a possible application in the nuclear waste solution. Selective Sr2+ transport was observed in a synthetic waste solution containing metal ions such as UO22+, MoO22+, Zr4+, Ce3+, Nd3+, Ru3+, Pd2+, Ba2+ and Cs+, etc., in 1 M HNO3 and 2 M NaNO3. Greater than 70% transport of Sr2+ was observed in 24 h while most of the other metal ions were negligibly transported (<0.01%). (authors)

  16. Performance of hydrate cellulose membrane for zinc-silver battery after remodeling%锌银电池用水化纤维素膜改性后的性能

    Institute of Scientific and Technical Information of China (English)

    张红平; 郑艳丽; 赵力群

    2011-01-01

    讨论了在不同组成的反应液中,反应温度和时间对锌银电池用水化纤维素膜进行改性的影响.对面积电阻、耐电解液的腐蚀能力、吸碱率及保液能力等测试以及实验电池电性能分析,总结了水化纤维素膜的性能.当甲醛浓度为30%,温度为20℃、反应时间为10 min时,改性后水化纤维素膜的各项物理性能比改性前提高近5%,制备的8 Ah XYZ8型锌银电池的循环寿命增加9次,放电容量、放电电压分别提高约20%和8%.%The remolding of hydrate cellulose membrane for zino-silver battery in the solution with different composition, temperature and reaction time was discussed. The performance of hydrate cellulose membrane was summarized by the tests of area resistance, electrolyte corrosion resistance ability, alkali uptake and liquid preserving ability, the electrical performance analysis of experimental battery. When the formaldehyde content was 30% , the temperature was 20 ℃, the reaction time was 10 min, the physical properties of hydrate cellulose membrane after remolding increased nearly 5% than before remolding, the life of prepared 8 Ah XYZ8 zinc-silver battery increased 9 cycles, the discharge capacity and discharge voltage increased about 20% and 8%, respectively.

  17. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  18. Analysis of amino acid substitutions in AraC variants that respond to triacetic acid lactone.

    Science.gov (United States)

    Frei, Christopher S; Wang, Zhiqing; Qian, Shuai; Deutsch, Samuel; Sutter, Markus; Cirino, Patrick C

    2016-04-01

    The Escherichia coli regulatory protein AraC regulates expression of ara genes in response to l-arabinose. In efforts to develop genetically encoded molecular reporters, we previously engineered an AraC variant that responds to the compound triacetic acid lactone (TAL). This variant (named "AraC-TAL1") was isolated by screening a library of AraC variants, in which five amino acid positions in the ligand-binding pocket were simultaneously randomized. Screening was carried out through multiple rounds of alternating positive and negative fluorescence-activated cell sorting. Here we show that changing the screening protocol results in the identification of different TAL-responsive variants (nine new variants). Individual substituted residues within these variants were found to primarily act cooperatively toward the gene expression response. Finally, X-ray diffraction was used to solve the crystal structure of the apo AraC-TAL1 ligand-binding domain. The resolved crystal structure confirms that this variant takes on a structure nearly identical to the apo wild-type AraC ligand-binding domain (root-mean-square deviation 0.93 Å), suggesting that AraC-TAL1 behaves similar to wild-type with regard to ligand recognition and gene regulation. Our results provide amino acid sequence-function data sets for training and validating AraC modeling studies, and contribute to our understanding of how to design new biosensors based on AraC. PMID:26749125

  19. Adsorption of papain with Cibacron Blue F3GA carrying cellulose affinity membranes%木瓜蛋白酶在染料Cibacron Blue F3GA纤维素亲和膜上的吸附研究

    Institute of Scientific and Technical Information of China (English)

    张海涛; 聂华丽; 陈天翔; 苏赛男; 朱利民

    2009-01-01

    以纤维素滤纸膜为载体,染料Cibacron Blue F3GA为配基,制备了一种新型亲和膜色谱介质.采用扫描电镜、红外光谱、元素分析等方法对亲和膜介质进行鉴定与表征,该膜具有良好的色谱性能.亲和膜对F3GA的键合质量摩尔浓度达93.7 μmol/g.研究了木瓜蛋白酶在亲和膜上的吸附行为,实验表明:在30℃下、酶质量浓度为2 mg/mL、pH=8.0时,吸附质量比可达57.9 mg/g,改变pH值及离子强度等条件对吸附质量比有明显的影响.在最适条件下吸附遵循Langmuir型吸附.可以初步推断,纤维素滤纸膜可以制成性能优良的亲和膜色谱介质,成本低廉,适合工业化分离纯化生物大分子.%Cibacron Blue F3GA (CB F3GA) as a hgand was immobilized onto cellulose membranes to produce a novel affinity membrane. The physical properties and its apphcations of affinity membrane chromatography were examined by means of scanning electron microscope (SEM), infra-red spectrum and elementary analysis, etc. The bonding content of CB F3GA attached on membranes was 93.7 μmol/g. The adsorption behavior of papain on affinity membranes was studied. The result shows that higher papain adsorption capacity (up to 57.9 mg/g membrane) can be achieved under the condition of 2.0 mg/mL papain solution, 30℃, pH=8.0. Changing pH and ionic strength has obvious effects on the adsorption of papain. The adsorption of papain on affinity membranes can be described by the Langmuir isotherm. Therefore, it can prehminarily foresee that the cellulose membrane can become the low-cost but high-efficiency affinity membranes base for papain separation, which is applicable for commercial separating the biological macromolecular.

  20. Outline of Preparation and Fire- retardant Properties Detection of Nanocrystalline Cellulose Fire- retardant Membranes%纳米纤维素阻燃膜的制备及阻燃性检测概述

    Institute of Scientific and Technical Information of China (English)

    徐睿; 王海英; 孙睿; 雷舒

    2012-01-01

    Methods of fire -retardant properties evaluation, fire -retardant cellulose fibers preparation, and nano- crystalline cellulose preparation were introduced, respectively. The national standards of fire - retardant properties evalua- tion for fire - retardant protective clothing and forest fire - proof clothing were compared. National standards GB/T5454 - 1997, textiles - burning properties test oxygen index method, was used in forest fire - proof clothing. Preparation method and application prospects of nanocrystalline cellulose fire - retardant membranes were explored.%分别介绍了阻燃性能指标评价、阻燃纤维素纤维的制备、纳米纤维素的制备等方法,比较了阻燃防护服和森林防火服的阻燃性能指标评价国家标准,森林防火服的阻燃性能指标评价还另外采用了GB/T5454—1997纺织品燃烧性能试验氧指数法国家标准,探讨了纳米纤维素复合阻燃膜的制备方法及其应用前景。

  1. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  2. Electrochemical Properties of LLTO/Fluoropolymer-Shell Cellulose-Core Fibrous Membrane for Separator of High Performance Lithium-Ion Battery

    OpenAIRE

    Fenglin Huang; Wenting Liu; Peiying Li; Jinxia Ning; Qufu Wei

    2016-01-01

    A superfine Li0.33La0.557TiO3 (LLTO, 69.4 nm) was successfully synthesized by a facile solvent-thermal method to enhance the electrochemical properties of the lithium-ion battery separator. Co-axial nanofiber of cellulose and Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was prepared by a co-axial electrospinning technique, in which the shell material was PVDF-HFP and the core was cellulose. LLTO superfine nanoparticles were incorporated into the shell of the PVDF-HFP. The core–...

  3. Early observation of bacterial cellulose membrane for repair of dural defects in rabbits%细菌纤维素膜修复兔硬脑膜缺损的早期观察

    Institute of Scientific and Technical Information of China (English)

    徐晨; 陈世文; 田恒力; 王敢; 郭衍; 袁陆涛

    2013-01-01

    目的 应用细菌纤维素膜修补兔硬脑膜缺损,观察植入后早期局部组织学改变以及炎症因子表达情况.方法 24只新西兰兔随机分为A、B两组,每组12只.所有动物经切除双侧硬脑膜制备2 cm×1 cm的缺损.A组动物的右侧硬脑膜缺损采用细菌纤维素膜修补,左侧硬脑膜缺损则不予修补,于术后第30、90、180天采集标本,行组织学检查.B组动物的右侧硬脑膜缺损采用细菌纤维素膜修补,左侧硬脑膜缺损以人工硬膜修补,于术后第7、14、21天采集修补部位组织,采用RT-PCR技术检测促炎症细胞因子白介素1β(IL-1β)、白介素6(IL-6)和肿瘤坏死因子α(TNF-α) mRNA的表达.结果 所有实验动物均存活,切口无感染.在A组的细菌纤维素膜修补侧,细菌纤维素膜均匀覆盖脑表面,与脑组织无粘连;外侧面纤维结缔组织增生,内侧面成纤维细胞排列均匀,新生血管形成,炎症反应轻微;在A组的未修补侧,大脑与皮下组织直接粘连.RT-PCR检测结果显示:术后各时间点,B组细菌纤维素膜修补侧IL-1 β和IL-6 mRNA表达水平均显著低于人工硬膜修补侧,两侧TNF-α mRNA表达水平相近.结论 采用细菌纤维素膜修复硬脑膜缺损,不易与脑组织形成粘连且早期炎症反应轻微.细菌纤维素膜可能成为理想的硬脑膜替代材料.%Objective To patch up the dural defects of rabbits with bacteria cellulose membrane, and observe the early pathological change and inflammatory response after implantation. Methods Twenty-four New Zealand rabbits were randomly divided into group A and group B, with 12 rabbits in each group. The bilateral dura matter of rabbits were removed, and defects of 2 cm x 1 cm were prepared. In group A, the right dural defects were repaired with bacteria cellulose membrane, no repair was made on the left dural defects, and samples were taken 30 d, 90 d and 180 d after operation for pathological examinations. In group B, the

  4. Cellulose biosynthesis in Acetobacter xylinum

    International Nuclear Information System (INIS)

    Time-lapse video microscopy has shown periodic reversals during the synthesis of cellulose. In the presence of Congo Red, Acetobacter produces a band of fine fibrils. The direction of cell movement is perpendicular to the longitudinal axis of cell, and the rate of movement was decreased. A linear row of particles, presumably the cellulose synthesizing complexes, was found on the outer membrane by freeze-fracture technique. During the cell cycle, the increase of particles in linear row, the differentiation to four linear rows and the separation of the linear rows have been observed. A digitonin-solubilized cellulose synthase was prepared from A. xylinum, and incubated under conditions known to lead to active in vitro synthesis of 1,4-β-D-glucan polymer. Electron microscopy revealed that clusters of fibrils were assembled within minutes. Individual fibrils are 17 ± 2 angstroms in diameter. Evidence for the cellulosic composition of newly synthesized fibrils was based on incorporation of tritium from UDP-[3H] glucose binding of gold-labeled cellobiohydrolase, and an electron diffraction pattern identified as cellulose II polymorph instead of cellulose I

  5. Separation Of Cadmium(II, Cobalt(II And Nickel(II By Transport Through Polymer Inclusion Membranes With Phosphonium Ionic Liquid As Ion Carrier / Separacja Jonów Kadmu(II, Kobaltu(II I Niklu(II W Procesie Transportu Przez Polimerowe Membrany Inkluzyjne Zawierające Fosfoniową Ciecz Jonową W Roli Przenośnika

    Directory of Open Access Journals (Sweden)

    Pospiech B.

    2015-12-01

    Full Text Available This paper presents study on the facilitated transport of cadmium(II, cobalt(II and nickel(II ions from aqueous chloride solutions through polymer inclusion membranes (PIMs with phosphonium ionic liquid. Cyphos IL 101 (trihexyl(tetradecyl phosphonium chloride was used as a selective carrier for synthesis of cellulose triacetate membranes containing o-nitrophenyl pentyl ether (ONPPE as a plasticizer. Effect of different parameters such as hydrochloric acid concentration in the source phase as well as ion carrier concentration in the polymer membrane on metal ions transport has been investigated. Cd(II was transported preferably from hydrochloric acid solutions containing Co(II and Ni(II through PIM containing 18.8 wt.% CTA and 26.0 wt.% Cyphos 101 and 55.1 wt.% ONPPE into 0.5 M HNO3 as the receiving phase. The obtained results suggest that there is a possibility of application of this membrane with Cyphos IL 101 as ion carrier for separation of Cd(II over Co(II and Ni(II from hydrochloric acid solutions.

  6. Panthenyl triacetate transformation, stimulation of metabolic pathways, and wound-healing properties in the human skin.

    Science.gov (United States)

    Dell'Acqua, Giorgio; Schweikert, Kuno

    2012-01-01

    Vitamin B5 and its derivatives are well known in personal care applications and are often used in wound healing and soothing compositions. However, little is known about the biochemical pathways involved. A better knowledge of these pathways would help to understand some of the mechanisms of action and suggest further applications. We have investigated the transformation of D-panthenyl triacetate (PTA) into D-panthenol (PAN) and its skin diffusion on human volunteers by Raman spectroscopy. Additionally, we have utilized human skin biopsies and quantitative RT-PCR to demonstrate the effect of PTA compared to PAN on 27 metabolic markers when introduced at 2% in a cosmetic emulsion. Then we conducted a double-blind clinical study to measure the effect of PTA compared to PAN on wound healing, measured by transepidermal water loss (TEWL), when incorporated at 3% in a cosmetic emulsion. Results show de-acetylation of PTA into PAN and an increased activity of PTA compared to PNA over time in the skin. Metabolic marker analysis demonstrates stimulation of energetic pathways such as glycolysis and the citric acid cycle, but also of synthesis pathways such as isoprenoids and lipid synthesis, by PTA and PAN. Finally, the clinical study demonstrates a statistically significant effect by PTA on wound healing after 72 hours when compared to a saline treatment. Statistical significance was not achieved by PAN or a placebo treatment. Due to the differences between PTA and PAN action, different applications in personal care products can be suggested. Moreover, PTA seems more effective than PAN for a long-lasting wound healing action. PMID:22487447

  7. Proteomic profiling of cellulase-aid-extracted membrane proteins for functional identification of cellulose synthase complexes and their potential associated- components in cotton fibers.

    Science.gov (United States)

    Li, Ao; Wang, Ruyi; Li, Xianliang; Liu, Mingyong; Fan, Jian; Guo, Kai; Luo, Bing; Chen, Tingting; Feng, Shengqiu; Wang, Yanting; Wang, Bingrui; Peng, Liangcai; Xia, Tao

    2016-01-01

    Cotton fibers are an excellent model for understanding of cellulose biosynthesis in higher plants. In this study, we determined a high cellulose biosynthesis activity in vitro by optimizing biochemical reaction conditions in cotton fibers. By adding a commercial cellulase enzyme into fibers extraction process, we extracted markedly higher levels of GhCESA1 and GhCESA8 proteins and observed an increase in β-1,4-glucan and β-1,3-glucan products in vitro. LC-MS/MS analysis of anti-GhCESA8-immunoprecipitated proteins showed that 19 proteins could be found in three independent experiments including four CESAs (GhCESA1,2,7,8), five well-known non-CESA proteins, one callose synthase (CALS) and nine novel proteins. Notably, upon the cellulase treatment, four CESAs, one CALS and four novel proteins were measured at relatively higher levels by calculating total peptide counts and distinct peptide numbers, indicating that the cellulase-aid-extracted proteins most likely contribute to the increase in β-glucan products in vitro. These results suggest that the cellulase treatment may aid to release active cellulose synthases complexes from growing glucan chains and make them more amenable to extraction. To our knowledge, it is the first time report about the functional identification of the potential proteins that were associated with plant cellulose and callose synthases complexes by using the cellulase-aided protein extraction. PMID:27192945

  8. 纤维素-丝素复合膜的制备与表征%Preparation and characterization of cellulose/silk composite membrane

    Institute of Scientific and Technical Information of China (English)

    李娟; 何建新; 余燕平

    2011-01-01

    The cellulose-silk fibroin composite film is prepared by mixing cellulose solution dissolved primary wood pulp in solution containing of NaOH/urea/thiourea/water and silk fibroin solution. The composite film is characterized by scanning electron microscope (SEM) , Fourier transform infrared spectrometer (FT-IR) , X-ray diffraction (XRD). SEM shows the surface of the composite is uniform and rough. The as-prepared composite film may be a potential biomedical material. The results of IR and XRD show that composite film is composed of cellulose and silk fibroin molecules and exists an interaction including hydrogen bond between the molecular of cellulose and silk fibroin.%通过NaOH/尿素/硫脲/水新型溶剂溶解原生木浆纤维素得到纤维素溶液,并与丝素溶液混合制备纤维素-丝素复合膜.利用扫描电镜、红外光谱、X-射线衍射对复合材料的结构进行表征.SEM结果表明复合材料表面粗糙,比表面积较大,可以作为潜在的生物医用材料.IR和X-衍射结果表明再生纤维素与丝素分子之间存在着强烈的氢键作用,且二者相容性较好.

  9. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid

    International Nuclear Information System (INIS)

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs

  10. Kinetic study of photo-grafting and photo-cross-linking of a cis-poly butadiene onto cellulose from asymmetric membranes

    International Nuclear Information System (INIS)

    Photochemical grafting onto cellulose and successive photo cross-linking of 2,00-12,00 mg.cm-2 of a cys-poly butadiene, containing 80% cis groups, were investigated kinetically at 30 0 C in the presence of 1,2-diphenyl-2,2-dimethoxy ethanone as a photo initiator to polymer varied between 0,070 and 1,115. Irradiations were carried out poly chromatically, in air or under a stream of nitrogen, with incident radiation of flux I of 2,1.10-8 einstein.s-1.cm-2. In light of this information, the mechanism of photo-grafting and photo-cross linking of cis-poly-butadiene on cellulose surface is discussed. (author)

  11. Method of forming an electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2011-11-22

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  12. Development of Carriers for Polymer Inclusion Membranes (PIMs) Applied to Radioactive Wastewater Treatment. Improvement in Durability

    International Nuclear Information System (INIS)

    Polymer inclusion membrane (PIM), which is prepared with cellulose triacetate (CTA) as a polymer matrix, 2-nitrophenyl n-octyl ether (NPOE) as a liquid plasticizer, and an adequate carrier, is the most promising method to apply a liquid membrane system to a practical process. Here, NPOE simultaneously acts as an organic solvent similar to that used in the liquid membrane. One of possible applications of PIMs is the treatment of low level radioactive wastewater. For the environmental safety, the large volume of the wastes must be concentrated into the smallest possible volume before the storage. We have presented that the up-hill transport of cerium ion, which is used as a model substance for actinoids, is feasible using PIM prepared with octyl(phenyl)-N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) or N,N,N',N'-tetraoctyl-3-oxapentane diamide (TODGA), which are the well known extractants for actinoids, as a carrier. In this study, we systematically designed and synthesized new carriers for cerium ion and evaluated the cerium transport performance and durability of the PIMs made with the carriers comparing with those with CMPO and TODGA. The cerium transport performance of one of the PIMs was nearly equal to that of the PIM with TODGA, and the durabilities of some of the PIMs were superior to that of the PIM with CMPO. The durabilities of the PIMs were different between the carries used for the PIMs. The cause was discussed relating to the microstructures of the PIMs with the effects of the carriers and NPOE. (author)

  13. 聚乙烯醇/纳米纤维素复合膜的渗透汽化性能及结构表征%Pervaporation Properties and Characterization of Poly( vinyl alcohol ) /Cellulose Nanocrystal Composite Membranes

    Institute of Scientific and Technical Information of China (English)

    白露; 张力平; 曲萍; 高源; 秦竹; 孙素琴

    2011-01-01

    将聚乙烯醇/纳米纤维素(PVA/NCC)复合膜应用于乙醇-水混合溶液的渗透汽化脱水过程,探讨了纳米纤维素对膜的溶胀性能、机械性能和渗透汽化性能的影响; 利用原子力显微镜(AFM)探测了纳米纤维素的形貌特征; 采用傅里叶变换红外光谱仪(FTIR)、扫描电镜(SEM)、差示扫描量热仪(DSC)和热重分析仪(TGA)对膜结构和热性能进行了表征.研究结果表明,棒状的纳米纤维素与PVA基体间形成了强烈的氢键作用且均匀分散在PVA基质中; 纳米纤维素的加入提高了膜的熔融温度,增加了膜的热稳定性,有效地抑制了膜的溶胀,并提高了膜的机械性能; 在PVA中添加纳米纤维素可以提高膜的渗透汽化分离性能,用纳米纤维素含量为2%的复合膜在80 ℃时分离体积分数为90%的乙醇水溶液,膜的分离因子达到347,比未加入纳米纤维素时提高24%; 而渗透通量为288 g/(m2·h),比未加入纳米纤维素时下降11%.%Poly ( vinyl alcohol ) ( PVA )/cellulose nanocrystal ( NCC ) composite membranes were used in the pervaporation separation of water-ethanol feed mixtures, and characterized by Fourier transform infrared spectroscopy( lTIR), scanning electron microscopy( SEM), differential scanning calorimetric(DSC) and thermogravimetry(TG). Atomic force microscope (AFM) was used to characterize the cellulose nanocrystal. The characterization results demonstrated that NCC displayed slender rods and dispersed homogeneously within the PVA matrix, which could be assigned to the hydrogen bonds formed between PVA and NCC. The DSC and TG analysis demonstrated that the nanocomposite membranes exhibited an increase in melting temperature and higher thermal resistance. With the addition of NCC, the mechanical properties of the nanocomposite membranes were improved. Moreover, the nanocomposite membranes had good pervaporation properties. Among all the prepared membranes, PVA/NCC nanocomposite membrane containing 2

  14. Cellulose based conductive polymers

    OpenAIRE

    Lin, Haishu

    2015-01-01

    Conductive fibers show potential applications in different areas. In this thesis, cellulose and its derivatives, including carboxymethyl cellulose, cellulose acetate as well as methyl cellulose were used to produce fibers via wet spinning. Different conductive materials were also introduced in an attempt to obtain cellulose-derived conductive fibers. Different conductive fillers (Zelec, carbon black, conductive polymers) were evaluated. Among them, PEDOT and PPy conductive polymers showed...

  15. Characterization of cellulose extracted from oil palm empty fruit bunch

    Science.gov (United States)

    Sisak, Muhammad Asri Abdul; Daik, Rusli; Ramli, Suria

    2015-09-01

    Recently, cellulose has been studied by many researchers due to its promising properties such as biodegradability, biocompatibility, hydrophilicity and robustness. Due to that it is applied in many fields such as paper, film, drug delivery, membranes, etc. Cellulose can be extracted from various plants while oil palm empty fruit bunch (OPEFB) is the one of its sources. In this study, cellulose was extracted by chemical treatments which involved the use of formic acid and hydrogen peroxide to remove hemicellulose and lignin components. Maximum yield was 43.22%. Based on the FT-IR spectra, the peak of wax (1735 cm-1), hemicellulose (1375 cm-1) and lignin (1248 cm-1 and 1037 cm-1) were not observed in extracted cellulose. TGA analysis showed that the extracted cellulose starts to thermally degrade at 340 °C. The SEM analysis suggested that the cellulose extracted from OPEFB was not much different from commercial cellulose.

  16. Comparative evaluation of actinide ion uptake by polymer inclusion membranes containing TODGA as the carrier extractant

    International Nuclear Information System (INIS)

    Highlights: • PIMs containing TODGA were used for actinide ion uptake and transport. • The trend of uptake was: Am3+ > Pu4+ > Th4+ > UO22+. • The transport trend was similar though significant amount was held in the PIM. • The diffusion coefficients were lower than those obtained with SLM. - Abstract: Polymer inclusion membranes (PIM) containing TODGA (N,N,N′,N′-tetra-n-octyl diglycolamide) were evaluated for the separation of actinide ions such as Am3+, Pu4+, UO22+ and Th4+ from acidic feeds. The PIMs were prepared using cellulose triacetate (CTA) as the polymer matrix and 2-nitrophenyloctyl ether (NPOE) as the plasticizer along with the diglycolamide carrier extractants and were characterized by conventional techniques such as XRD, thermal analysis and AFM. The PIM composition was optimized by a series of studies which involved variation in the CTA, NPOE and carrier concentration which suggested 58% TODGA, 30% NPOE and 12% CTA to be optimum. The uptake studies were carried out using feed solutions containing varying concentrations of nitric acid and showed the trend: Am3+ > Pu4+ > Th4+ > UO22+. Transport studies were carried out in a two-compartment cell where nitric acid concentration the feed was varied (1–3 M) while the receiver compartment contained alpha-hydroxy-iso-butyric acid (AHIBA). The actinide ion transport efficiencies with TODGA containing PIMs followed the same trend as seen in the uptake studies. The AFM patterns of the PIMs changed when loaded with Eu3+ carrier (used as a surrogate for Am3+) while the regenerated membranes have displayed comparable morphologies. Diffusion coefficient values were experimentally obtained from the transport studies and were found to be 8.89 × 10−8 cm2/s for Am3+ transport

  17. Characterization of cellulose acetate obtained from sugarcane bagasse by {sup 1}H-NMR; Caracterizacao de acetato de celulose obtido a partir do bagaco de cana-de-acucar por {sup 1}H-RMN

    Energy Technology Data Exchange (ETDEWEB)

    Cerqueira, Daniel A.; Rodrigues Filho, Guimes, E-mail: d.a.cerqueira@gmail.co [Universidade Federal de Uberlendia (IQ/UFU), MG (Brazil). Inst. de Quimica; Carvalho, Rui A. [Universidade de Coimbra (UC) (Portugal). Dept. de Bioquimica; Valente, Artur J.M. [Universidade de Coimbra (UC) (Portugal). Dept. de Quimica

    2009-07-01

    Cellulose from sugarcane bagasse was used for synthesizing cellulose acetate with different degrees of substitution, which were characterized by {sup 1}H-NMR through the relationship between the peak areas of the hydrogen atoms present at the acetate groups (-(C=O)OCH{sub 3} ) and the peaks of the hydrogen bonded to the carbon atoms of the glycosidic rings. Suppression was carried out in order to remove the peak of residual water in the materials and the peak related to impurities in cellulose triacetate. Degree of substitution values obtained through the resonance deconvolution were compared to those obtained by chemical determination through an acid-base titration. The determined degrees of substitution of the cellulose samples were 2.94 and 2.60. (author)

  18. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    International Nuclear Information System (INIS)

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  19. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Lihua [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Center of Molecular Medicine, School of Medicine, Hubei University of Arts and Sciences, Xiangyang 441053 (China); Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Wang, Xiong; Huselstein, Celine [Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54500 Vandoeuvre-lès-Nancy (France); Chen, Yun, E-mail: yunchen@whu.edu.cn [Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  20. Simulations of Cellulose Translocation in the Bacterial Cellulose Synthase Suggest a Regulatory Mechanism for the Dimeric Structure of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Brandon C.; Crowley, Michael F.; Himmel, Michael E.; Zimmer, Jochen; Beckham, Gregg T.

    2016-05-01

    The processive cycle of the bacterial cellulose synthase (Bcs) includes the addition of a single glucose moiety to the end of a growing cellulose chain followed by the translocation of the nascent chain across the plasma membrane. The mechanism of this translocation and its precise location within the processive cycle are not well understood. In particular, the molecular details of how a polymer (cellulose) whose basic structural unit is a dimer (cellobiose) can be constructed by adding one monomer (glucose) at a time are yet to be elucidated. Here, we have utilized molecular dynamics simulations and free energy calculations to the shed light on these questions. We find that translocation forward by one glucose unit is quite favorable energetically, giving a free energy stabilization of greater than 10 kcal mol-1. In addition, there is only a small barrier to translocation, implying that translocation is not rate limiting within the Bcs processive cycle (given experimental rates for cellulose synthesis in vitro). Perhaps most significantly, our results also indicate that steric constraints at the transmembrane tunnel entrance regulate the dimeric structure of cellulose. Namely, when a glucose molecule is added to the cellulose chain in the same orientation as the acceptor glucose, the terminal glucose freely rotates upon forward motion, thus suggesting a regulatory mechanism for the dimeric structure of cellulose. We characterize both the conserved and non-conserved enzyme-polysaccharide interactions that drive translocation, and find that 20 of the 25 residues that strongly interact with the translocating cellulose chain in the simulations are well conserved, mostly with polar or aromatic side chains. Our results also allow for a dynamical analysis of the role of the so-called 'finger helix' in cellulose translocation that has been observed structurally. Taken together, these findings aid in the elucidation of the translocation steps of the Bcs

  1. Experimental lamellar keratoplasty in rabbits using microfibrilar cellulose membrane: clinical, morphological and immunohistochemical findings Ceratoplastia lamelar experimental em coelhos usando membrana microfibrilar de celulose: achados clínicos, morfológicos e imunoistoquímicos

    Directory of Open Access Journals (Sweden)

    Luciana Riacciardi Macedo

    2010-02-01

    Full Text Available The clinical, histopathological and immunohistochemical features of the cornea were investigated in adult male New Zealand rabbits submitted to lamellar keratoplasty with microfibrillar cellulose membrane. Thirty animals were divided into five groups (n=6 and evaluated up to 60 days after surgery. Clinical examination revealed moderate manifestations of edema, blepharospasm and photophobia on the second day, which became mild or disappeared after the seventh day. This period was characterized clinically by repair of the corneal defect. Histopathological analysis showed the presence of a thin layer of squamous cells covering the damaged area as early as 7th day, accompanied by a mild infiltrate of polymorphonuclear cells. Blood vessels were observed in the epithelium after the 15th day, which had regressed by day 48. Ki67 antibody labeling showed an increase of proliferating cells in the epithelium by the 15th day and in the stroma by day 30. Remodeling and epithelial adhesion were observed during this period. Microfibrillar cellulose membrane (Bionext® used for lamellar keratoplasty was found to yield good results considering the good integration of the implant.Avaliaram-se aspectos clínicos, histopatógicos e imunoistoquímicos da córnes de coelhos da raça Nova Zelândia adultos e machos em ceratoplastias lamelares com membrana de celulose microfibrilar. Trinta animais distribuídos em cinco grupos (n=6 foram estudados por até 60 dias de pós-operatório. A avaliação clínica revelou manifestações moderadas de edema, blefaroespasmo e fotofobia ao segundo dia, evoluindo para formas discretas ou ausentes a partir do sétimo dia, período em que se observou, clinicamente, reparo do defeito corneal. A histopatologia revelou uma fina camada de células escamosas, recobrindo a área lesada já aos sete dias, com discreto infiltrado de células polimorfonucleares. Observaram-se vasos no epitélio a partir do 15o dia, com regressão ao 48o dia

  2. Investigation of Bacterial Cellulose Biosynthesis Mechanism in Gluconoacetobacter hansenii

    OpenAIRE

    Mohite, Bhavna V.; Patil, Satish V

    2014-01-01

    The present study explores the mechanism of cellulose biosynthesis in Gluconoacetobacter hansenii. The cellulose synthase enzyme was purified as membrane fraction and solubilized by treatment with 0.1% digitonin. The enzyme was separated by native-gel electrophoresis and β -D-glucan analysis was carried out using in vitro gel assay. The cellulose synthase has glycoprotein nature and composed two polypeptide subunits of 93 KDa and 85 KDa. The confirmation of β -1,4-glucan (cellulose) was perfo...

  3. Evaluation of Several Procedures for Immobilizing Cholesterol Oxidase Based on Cellulose Acetate Membrane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Immobilized cholesterol oxidase (COD) membrane with higher catalytic activity is important for biosensor. In this paper, several procedures for immobilizing COD based on cellulose acetate (CA) membrane are studied. Reasons causing different catalytic activities are also discussed.

  4. Development of a novel pH sensor based upon Janus Green B immobilized on triacetyl cellulose membrane: Experimental design and optimization

    Science.gov (United States)

    Chamkouri, Narges; Niazi, Ali; Zare-Shahabadi, Vali

    2016-03-01

    A novel pH optical sensor was prepared by immobilizing an azo dye called Janus Green B on the triacetylcellulose membrane. Condition of the dye solution used in the immobilization step, including concentration of the dye, pH, and duration were considered and optimized using the Box-Behnken design. The proposed sensor showed good behavior and precision (RSD < 5%) in the pH range of 2.0-10.0. Advantages of this optical sensor include on-line applicability, no leakage, long-term stability (more than 6 months), fast response time (less than 1 min), high selectivity and sensitivity as well as good reversibility and reproducibility.

  5. PROPERTIES OF BACTERIAL CELLULOSE AND ITS INFLUENCE ON THE PHYSICAL PROPERTIES OF PAPER

    OpenAIRE

    Wen-Hua Gao; Ke-Fu Chen; Ren-Dang Yang; Fei Yang; Wen-Jia Han

    2011-01-01

    Bacterial cellulose is a promising source of biodegradable polymers having high purity. The time required to disperse bacterial cellulose wet membranes was studied, along with evaluation by infrared spectroscopy and thermal analysis of the dispersed bacterial fiber and tests of the physical properties of the sheet. The results showed that bacterial cellulose wet membrane can be dispersed well, forming fibers when the dispersing time was 3 minutes at a suitable concentration. FT-IR results sho...

  6. Cellulose-Microtubule Uncoupling Proteins Prevent Lateral Displacement of Microtubules during Cellulose Synthesis in Arabidopsis.

    Science.gov (United States)

    Liu, Zengyu; Schneider, Rene; Kesten, Christopher; Zhang, Yi; Somssich, Marc; Zhang, Youjun; Fernie, Alisdair R; Persson, Staffan

    2016-08-01

    Cellulose is the most abundant biopolymer on Earth and is the major contributor to plant morphogenesis. Cellulose is synthesized by plasma membrane-localized cellulose synthase complexes (CSCs). Nascent cellulose microfibrils become entangled in the cell wall, and further catalysis therefore drives the CSC forward through the membrane: a process guided by cortical microtubules via the protein CSI1/POM2. Still, it is unclear how the microtubules can withstand the forces generated by the motile CSCs to effectively direct CSC movement. Here, we identified a family of microtubule-associated proteins, the cellulose synthase-microtubule uncouplings (CMUs), that located as static puncta along cortical microtubules. Functional disruption of the CMUs caused lateral microtubule displacement and compromised microtubule-based guidance of CSC movement. CSCs that traversed the microtubules interacted with the microtubules via CSI1/POM2, which prompted the lateral microtubule displacement. Hence, we have revealed how microtubules can withstand the propulsion of the CSCs during cellulose biosynthesis and thus sustain anisotropic plant cell growth. PMID:27477947

  7. Sepiolite functionalized with N-[3-(trimethoxysilylpropyl]-ethylenediamine triacetic acid trisodium salt. Part I: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    Lazarević Slavica S.

    2015-01-01

    Full Text Available Natural sepiolite from Andrici (Serbia was functionalized by covalent grafting of N-[3-(trimethoxysilylpropyl]ethylenediamine triacetic acid trisodium salt to the Si-OH sepiolite groups. The functionalized material, MSEAS, was characterized by determination of phase composition by X-ray diffraction (XRD analysis, analysis of morphological characteristics by scanning electron microscopy (SEM, using Fourier transform infrared (FTIR spectroscopy, differential thermal analyses (DTA, determination of specific surface areas and pore size distribution using B.E.T. method and point of zero charge (pHpzc determination. The crystal structure of sepiolite does not change significantly upon surface modification. FT-IR and DTA analysis confirmed that the modified sample maintained the basic structure of sepiolite and also the presence of organic groups in functionalized sepiolite sample. The point of zero charge of MSEAS in KNO3 solutions of different concentrations determination by the batch technique from was at pH 7.0 ± 0.1. [Projekat Ministarstva nauke Republike Srbije, br. III 45019, and FP7 NANOTECH FTM No. 245916

  8. Scintillating polymer inclusion membrane for preconcentration and determination of radionuclides. Effect of plasticizer

    International Nuclear Information System (INIS)

    Extractive scintillators enable the preconcentration of a radionuclide of interest from an aqueous sample directly into the scintillator organic phase and its detection by scintillation counting. Many schemes for selective preconcentration and measurement of α and β emitting nuclides have been developed using extractive scintillator liquids and resins. The extractive scintillating resins are prepared by impregnating polymer beads with an organic phase containing extractant, primary scintillator and a wavelength shifter. The extractive scintillating resins have the advantage over the extractive scintillating liquids, as they are amenable for on-line use with a high preconcentration factor. However, the stability of the organic phase held inside the resin matrix is a key issue for their application. As an alternative to extractive scintillating resins, we have developed a scintillating polymer inclusion membrane (S-PIM) for the preconcentration and determination of α - emitting radionuclides. The S-PIM was prepared by physical immobilization of an extractant bis(2-ethylhexyl)phosphoric acid (HDEHP) and, 2,5-diphenyloxazole (PPO) and 1,4-bis(2-methylstyryl)benzene (MSB) as primary and secondary fluors respectively in a dioctly phthalate (DOP) plasticized cellulose triacetate (CTA) matrix. The S-PIM has been found to be effective for quantitative sorption of trivalent lanthanides and actinides. The α emitting radionuclides held in the sample of S-PIM could be directly measured by scintillation counting. It was observed that β-scintillation pulses could be discriminated from α pulses based on their pulse height, thereby achieving α/β discrimination. In this work we have tested different plasticizers for preparing the S-PIM, in terms of maximum extraction and scintillation efficiency. (orig.)

  9. Polyvinyl alcohol–cellulose composite: a taste sensing material

    Indian Academy of Sciences (India)

    Sarmishtha Majumdar; Basudam Adhikari

    2005-12-01

    There are reports of fabrication of taste sensor by adsorbing lipids into Millipore filter paper. With this lipid based sensor, it has been found that the taste sensing efficiency of membrane can be remarkably improved. We have made an attempt to prepare taste sensor material by using functionalized polymer without any lipid. PVA–cellulose composite has been modified to use as the sensor material. The research work covers polymer membrane preparation, morphology study and structural characterization of the membrane and study of the taste sensing characteristics of this membrane for five different taste substances. PVA–cellulose composite membrane was modified by phosphorylation with POCl3. FTIR spectroscopic analysis, XRD analysis and SEM were done to get an idea about the structure and morphology of the prepared phosphorylated PVA–cellulose composite membrane. The sensor characteristics like temporal stability, response stability, response to different taste substances, and reproducibility of sensing performance were studied using phosphorylated PVA–cellulose composite membrane. Sensor device prepared with this membrane has shown distinct response patterns for different taste substances in terms of membrane potential. Threshold concentrations of phosphorylated PVA–cellulose composite membrane for HCl, NaCl, Q-HCl, sucrose and MSG are 0.001 mM, 0.001 mM, 0.001 mM, 0.001 mM and 0.009 mM, respectively. The threshold concentrations are below human threshold concentrations. Membranes also showed characteristic response patterns for organic acids like acetic acid, citric acid, formic acid etc, mineral acids like HCl, H2SO4 and HNO3 salts, bitter substances, sweet substances and umami substances. Sensor device prepared with this membrane has excellent shelf life.

  10. CELLULOSIC NANOCOMPOSITES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Martin A. Hubbe

    2008-08-01

    Full Text Available Because of their wide abundance, their renewable and environmentally benign nature, and their outstanding mechanical properties, a great deal of attention has been paid recently to cellulosic nanofibrillar structures as components in nanocomposites. A first major challenge has been to find efficient ways to liberate cellulosic fibrils from different source materials, including wood, agricultural residues, or bacterial cellulose. A second major challenge has involved the lack of compatibility of cellulosic surfaces with a variety of plastic materials. The water-swellable nature of cellulose, especially in its non-crystalline regions, also can be a concern in various composite materials. This review of recent work shows that considerable progress has been achieved in addressing these issues and that there is potential to use cellulosic nano-components in a wide range of high-tech applications.

  11. Cellulose-silica aerogels.

    Science.gov (United States)

    Demilecamps, Arnaud; Beauger, Christian; Hildenbrand, Claudia; Rigacci, Arnaud; Budtova, Tatiana

    2015-05-20

    Aerogels based on interpenetrated cellulose-silica networks were prepared and characterised. Wet coagulated cellulose was impregnated with silica phase, polyethoxydisiloxane, using two methods: (i) molecular diffusion and (ii) forced flow induced by pressure difference. The latter allowed an enormous decrease in the impregnation times, by almost three orders of magnitude, for a sample with the same geometry. In both cases, nanostructured silica gel was in situ formed inside cellulose matrix. Nitrogen adsorption analysis revealed an almost threefold increase in pores specific surface area, from cellulose aerogel alone to organic-inorganic composite. Morphology, thermal conductivity and mechanical properties under uniaxial compression were investigated. Thermal conductivity of composite aerogels was lower than that of cellulose aerogel due to the formation of superinsulating mesoporous silica inside cellulose pores. Furthermore, composite aerogels were stiffer than each of reference aerogels. PMID:25817671

  12. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    OpenAIRE

    Saska, S.; H.S. Barud; Gaspar, A. M. M.; Marchetto, R.; Ribeiro, S. J. L.; Y. Messaddeq

    2011-01-01

    The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total wei...

  13. A comparison of the performance of aromatic polyamide and cellulose acetate reverse osmosis membrane on the regeneration of secondary effluents; Comparacion del funcionamiento de membranas de osmosis inversa de poliamida aromatica y acetato de celulosa en la regeneracion de efluentes secundarios

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Ramirez, J. A.; Carrasco Vega, M.; Sales Marquez, D.; Quiroga Alonso, J. M.

    2002-07-01

    The application of reverse osmosis in regenerating waste waters has aroused a great deal of interest, although relatively few experiments using this technique have so far been carried out in Spain. In 1994, an experimental pilot plant was built at the La Barrosa waste water treatment plant in Chiclana de la Frontera in the province of Cadiz. This pilot plant with a capacity of 100 m''3/day, was equipped with various advanced treatments, most notably reverse osmosis, for treating urban waste waters for re-use. Since this pilot plant was built, various experiments have been carried out employing cellulose acetate (Hydranautics) and different types of Spanish-made aromatic polyamide membranes (Pridesa). Each type of membrane proposed different operating characteristics and feed-water requirements making each one suitable for a particular purpose. In this study, the secondary effluents was subjected to different kinds of treatment-called intense treatment, moderate treatment and minimum treatment-before reaching the reverse osmosis unit, which influenced the conditions in which the membranes operated. Following each type of treatment, the waters entering and leaving the installation were analysed to evaluate the quality of the final effluent and the effectiveness of the treatment carried out. The quality was extremely good in all the permeate samples analysed, almost irrespective of the type of treatment applied. It was also found that the cellulose acetate membranes tended to become less dirty than the aromatic polyamide membranes,due to their surface morphology. Nevertheless, the polyamide membranes have various advantages allowing them to be used in a wide range of applications at a lower energy cost. (Author) 8 refs.

  14. Use of biosynthetic cellulose membrane in the guided tissue regeneration/ Uso de membrana biossintética a base de celulose na regeneração tecidual guiada

    Directory of Open Access Journals (Sweden)

    Cláudia Valéria Seullner Brandão

    2007-08-01

    Full Text Available Guided Tissue Regeneration (GTR is a regenerative treatment modality that requires the placement of a physical barrier over a bone defect in such a way that the proliferation of the surrounding soft tissues into the barrier-protected area is prevented. Thereby in the guided osseous regeneration allowing boneforming cells from the existent bone edges to invade the space and produce bone. The physical barriers should be biocompatible, allow cellular occlusion, maintain adequate space, tissue integration and facility in the application. They can be occlusive or permeable, absorbable or non-absorbable. Among various types of physical barriers in the market, the cellulose biosynthetic membrane is emphasizing by the necessary characteristics for GTR and to be a national product developed in low cost.A Regeneração Tecidual Guiada (RTG consiste numa modalidade de tratamento regenerativo que requer a colocação de uma barreira física sobre o defeito ósseo, de modo que a proliferação de tecidos moles adjacentes para dentro da área protegida seja evitada. Assim, a regeneração óssea guiada permite que células com potencial osteogênico das margens ósseas existentes invadam o espaço criado e produzam osso. As barreiras físicas devem ser biocompatíveis, permitir a oclusão celular, manutenção do espaço, integração tecidual e facilidade de uso. Podem ser oclusivas ou permeáveis, absorvíveis ou nãoabsorvíveis. Dentre os vários tipos de barreiras físicas existentes no mercado, a membrana biossintética a base de celulose vem se destacando, pois, além de possuir as características necessárias para a RTG, trata-se de um produto nacional desenvolvido a baixos custos.

  15. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  16. 细菌纤维素膜作为生物支架构建组织工程角膜上皮的可行性研究%Feasibility of bacterial cellulose membrane as biological scaffold for construction of tissue engineering corneal epithelium

    Institute of Scientific and Technical Information of China (English)

    曹静洁; 张琛; 赵少贞; 万怡灶; 胡达

    2016-01-01

    Background Corneal transplantation is a primary method for the treatment of serious corneal diseases, but its application is limited because of the shortage of corneal donor.The study on tissue engineering corneal epithelium provides a new approach to corneal transplantation, and the biological scaffold materials for tissue engineering corneal epithelium is an issue of increasing concern.Bacterial cellulose membrane has been used in medical field,but its application in tissue engineering corneal epithelium deserves more researching.Objective This study was to evaluate the biocompatibility of bacterial cellulose membrane as a biological scaffold of tissue engineering corneal epithelium.Methods Corneal epithelium was isolated from 1 month-old New Zealand White rabbit.Corneal epithelial cells were cultured using explant method and identified by detecting the CK-3 expression using immunofluorescence technique.The second generation ceils were inoculated on bacterial cellulose membrane and culture plate, respectively, and the growth status of the cells were examined and compared under the optical microscope.The cell activity/toxicity test was performed by LIVE/DEAD cell staining kit at the third day after inoculation to evaluate the survival rate.The ultrastructure of the cell surface was examined under the scanning electron microscope.The study was performed in accordance with the ARVO Statement.Results Rabbit corneal epithelial cells grew well 1 week after primarily cultured with a cobblestone-like appearance and positive response for CK3 antibody.The cells on the bacterial cellulose membrane presented a round shape and regular arrangement and showed the green fluorescence for LIVE/DEAD test,with the survival rate 100%.Abundant leafy protrusion, microvilli and intercellular junction were seen under the scanning electron microscope.In addition, mitosis phase of cells and many filopodia between the cells and bacterial cellulose membrane were also exhibited

  17. Mechanics of Cellulose Synthase Complexes in Living Plant Cells

    Science.gov (United States)

    Zehfroosh, Nina; Liu, Derui; Ramos, Kieran P.; Yang, Xiaoli; Goldner, Lori S.; Baskin, Tobias I.

    The polymer cellulose is one of the major components of the world's biomass with unique and fascinating characteristics such as its high tensile strength, renewability, biodegradability, and biocompatibility. Because of these distinctive aspects, cellulose has been the subject of enormous scientific and industrial interest, yet there are still fundamental open questions about cellulose biosynthesis. Cellulose is synthesized by a complex of transmembrane proteins called ``Cellulose Synthase A'' (CESA) in the plasma membrane. Studying the dynamics and kinematics of the CESA complex will help reveal the mechanism of cellulose synthesis and permit the development and validation of models of CESA motility. To understand what drives these complexes through the cell membrane, we used total internal reflection fluorescence microscopy (TIRFM) and variable angle epi-fluorescence microscopy to track individual, fluorescently-labeled CESA complexes as they move in the hypocotyl and root of living plants. A mean square displacement analysis will be applied to distinguish ballistic, diffusional, and other forms of motion. We report on the results of these tracking experiments. This work was funded by NSF/PHY-1205989.

  18. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos

    2011-07-01

    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  19. Synthesis of cellulose acetate and carboxymethylcellulose from sugarcane straw.

    Science.gov (United States)

    Candido, R G; Gonçalves, A R

    2016-11-01

    Sugarcane straw (SCS) is a raw material with high potential for production of cellulose derivatives due to its morphology and structure. The proposal of this work was to synthesize cellulose acetate (CA) and carboxymethylcellulose (CMC) from sugarcane straw cellulose, and applied the CA in the preparation of a membrane. The cellulose extraction was carried out in four steps. Firstly, SCS was treated with H2SO4 (10% v/v) followed by NaOH (5% w/v) treatment. Subsequently, a chelating process was performed before ending the extraction process with chemical bleaching using H2O2 (5% v/v). The extracted cellulose was employed in the obtainment of CA and CMC. The CA presented a degree of substitution (DS) of 2.72. Its FTIR spectrum showed that practically all hydroxyl groups were replaced by acetate groups. The membrane synthesized from CA was dense and homogeneous. The presence of small particles on the top and bottom surfaces decreased the mechanical resistance of the membrane. The CMC presented a low DS (0.4) demonstrating the carboxymethylation reaction was not very effective due to the presence of lignin. These results proved that SCS can be utilized in the synthesis of CA and CMC. PMID:27516319

  20. Membranes and Films from Polymers.

    Science.gov (United States)

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  1. Membrane humidity control investigation

    Science.gov (United States)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The basic performance data on a hollow fiber membrane unit that removes water from a breathing gas loop by diffusion is presented. Using available permeability data for cellulose acetate, a preliminary design was made of a dehumidifier unit that would meet the problem statement.

  2. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  3. Electrochemical synthesis of cellulose mesylate

    Science.gov (United States)

    Khidirov, Sh Sh; Akhmedov, M. A.; Khibiev, H. S.

    2016-04-01

    The article deal with the possibility anode modification of cellulose to form its ester - mesylate by voltametric measurement method and preparative electrosynthesis on a platinum electrode in the system cellulose - dimethyl sulfoxide - methanesulfonic

  4. Structure of cellulose acetobacter xylinum

    International Nuclear Information System (INIS)

    The data are presented on optimization of cellulose synthesis by Acetobacter xylinum (strain VKM V-880) and the structural characteristics of A. xylinum cellulose gel film synthesized during static cultivation. The structural changes caused by the removal of water from gel films are established and the structural organization of macromolecular chains in cellulose A. xylinum is studied

  5. Pattern formation of cortical microtubules and cellulose microfibrils

    NARCIS (Netherlands)

    Lindeboom, J.J.

    2012-01-01

    In this thesis we study the roles of microtubules at the plasma membrane and the cellulose microfibrils in the cell wall and how they are organized. This topic is introduces in chapter 1. In chapter 2 we study the formation of the transverse cortical microtubule array that is characteristic for elon

  6. Degradation of cellulose in irradiated wood and purified celluloses

    International Nuclear Information System (INIS)

    The degradation of cellulose chains in Pinus radiata and Eucalyptus regnans given small gamma-radiation doses has been studied. Scission yields showed marked dose-dependency effects, of which some appear to be due to an inherent dose-dependency exhibited by cellulose itself, and others indicate a protective action of some natural wood constituents. A uniform treatment of viscometry data reported by various workers who have studied radiation-induced degradation of purified cellulose materials, has been used to enable their scission results to be compared with each other and with those for natural wood cellulose of various dose levels. Generally, cellulose in wood is less degraded by radiation than is purified cellulose. However, with Eucalyptus regnans remarkably high scission yields, significantly higher than expected for purified cellulose, were observed at dose levels of 0.5-1.0 x 104Gy. The relevance of these results to changes in pulp yield following irradiation of wood chips, is briefly discussed. (author)

  7. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  8. Cysticercosis cellulose cutis

    Directory of Open Access Journals (Sweden)

    Inamadar Arun

    2001-01-01

    Full Text Available A woman aged 30 years with solitary lesion of cysticercosis cellulose cutis is reported. Cutaneous cysticerci are often a pointer to the involvement of internal organs. Our patient was a pure vegetarian so, probable mode of infection may be ingestion of contaminated vegetables, where the practice of using pig feces as manure is prevalent.

  9. Derivatives of Oxidized Cellulose

    Czech Academy of Sciences Publication Activity Database

    Taubner, T.; Sobek, Jiří; Havelka, P.; Kvasnička, F.; Synytsya, A.; Čopíková, J.

    Praha : Česká společnost chemická, 2009, s. 777. ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience 2009 /5./. Praha (CZ), 11.11.2009-13.11.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : cellulose * reaction progress * chromatography Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  10. Caracterização de membranas assimétricas de acetato de celulose produzidas a partir do aproveitamento do resíduo da palha de milho para uso em ultrafiltração

    Directory of Open Access Journals (Sweden)

    Elaine Angélica Mundim Ribeiro

    2014-06-01

    Full Text Available Cellulose acetates (CA with different degrees of acetylation were synthesized from cellulose extracted from corn stover. Membranes were prepared for the ultrafiltration process with pure polymers and blend form of CA utilizing a dioxane/acetone system. The membranes were characterized according to their transport properties. The blend form materials presented the best results for application in ultrafiltration experiments. M-TAC/DAC (corn stover triacetate and diacetate and M-TAC/DAC-Rho (corn stover triacetate and Rhodia diacetate presented rejection to egg albumin protein of 87.39% and 80.50%, respectively. Thus, MWCO of 45 kDa was determined for these materials.

  11. Pembuatan Membran Selulosa Bakteri Coating Kitosan - Kolagen Untuk Aplikasi Gtr ( Guide Tissue Regeneration ) Sebagai Pembalut Luka Pada Mencit (Mus Musculus)Secara In Vivo

    OpenAIRE

    Humaira, Nadia Maulida

    2015-01-01

    Bacterial cellulose produced from the fermentation process used in the development of Acetobacter xylinum to increase efficiency of bacterial cellulose one of them in the biomedical field , is membrane . This study aimed to determine the effect concentration of chitosan-collagen, see optimum characterization of bacterial cellulose membrane coating of chitosan-collagen that can be used in the application as wound dressings in mice by In Vivo. Preparation of the bacterial cellulose membrane usi...

  12. Cyclic diguanylic acid and cellulose synthesis in Agrobacterium tumefaciens

    International Nuclear Information System (INIS)

    The occurrence of the novel regulatory nucleotide bis(3',5')-cyclic diguanylic acid (c-di-GMP) and its relation to cellulose biogenesis in the plant pathogen Agrobacterium tumefaciens was studied. c-di-GMP was detected in acid extracts of 32P-labeled cells grown in various media, and an enzyme responsible for its formation from GTP was found to be present in cell-free preparations. Cellulose synthesis in vivo was quantitatively assessed with [14C]glucose as a tracer. The organism produced cellulose during growth in the absence of plant cells, and this capacity was retained in resting cells. Synthesis of a cellulosic product from UDP-glucose in vitro with membrane preparations was markedly stimulated by c-di-GMP and its precursor GTP and was further enhanced by Ca2+. The calcium effect was attributed to inhibition of a c-di-GMP-degrading enzyme shown to be present in the cellulose synthase-containing membranes

  13. Water-repellent cellulose fiber networks with multifunctional properties.

    Science.gov (United States)

    Bayer, Ilker S; Fragouli, Despina; Attanasio, Agnese; Sorce, Barbara; Bertoni, Giovanni; Brescia, Rosaria; Di Corato, Riccardo; Pellegrino, Teresa; Kalyva, Maria; Sabella, Stefania; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2011-10-01

    We demonstrate a simple but highly efficient technique to introduce multifunctional properties to cellulose fiber networks by wetting them with ethyl-cyanoacrylate monomer solutions containing various suspended organic submicrometer particles or inorganic nanoparticles. Solutions can be applied on cellulosic surfaces by simple solution casting techniques or by dip coating, both being suitable for large area applications. Immediately after solvent evaporation, ethyl-cyanoacrylate starts cross-linking around cellulose fibers under ambient conditions because of naturally occurring surface hydroxyl groups and adsorbed moisture, encapsulating them with a hydrophobic polymer shell. Furthermore, by dispersing various functional particles in the monomer solutions, hydrophobic ethyl-cyanoacrylate nanocomposites with desired functionalities can be formed around the cellulose fibers. To exhibit the versatility of the method, cellulose sheets were functionalized with different ethyl-cyanoacrylate nanocomposite shells comprising submicrometer wax or polytetrafluoroethylene particles for superhydophobicity, MnFe(2)O(4) nanoparticles for magnetic activity, CdSe/ZnS quantum dots for light emission, and silver nanoparticles for antimicrobial activity. Morphological and functional properties of each system have been studied by scanning and transmission electron microscopy, detailed contact angle measurements, light emission spectra and E. coli bacterial growth measurements. A plethora of potential applications can be envisioned for this technique, such as food and industrial packaging, document protection, catalytic cellulosic membranes, textronic (electrofunctional textiles), electromagnetic devices, authentication of valuable documents, and antimicrobial wound healing products to name a few. PMID:21902239

  14. High-yield production of extracellular type-I cellulose by the cyanobacterium Synechococcus sp. PCC 7002.

    Science.gov (United States)

    Zhao, Chi; Li, Zhongkui; Li, Tao; Zhang, Yingjiao; Bryant, Donald A; Zhao, Jindong

    2015-01-01

    Cellulose synthase, encoded by the cesA gene, is responsible for the synthesis of cellulose in nature. We show that the cell wall of the cyanobacterium Synechococcus sp. PCC 7002 naturally contains cellulose. Cellulose occurs as a possibly laminated layer between the inner and outer membrane, as well as being an important component of the extracellular glycocalyx in this cyanobacterium. Overexpression of six genes, cmc-ccp-cesAB-cesC-cesD-bgl, from Gluconacetobacter xylinus in Synechococcus sp. PCC 7002 resulted in very high-yield production of extracellular type-I cellulose. High-level cellulose production only occurred when the native cesA gene was inactivated and when cells were grown at low salinity. This system provides a method for the production of lignin-free cellulose from sunlight and CO2 for biofuel production and other biotechnological applications. PMID:27462405

  15. Synthesis and characterization of cellulose derivatives obtained from bacterial cellulose

    International Nuclear Information System (INIS)

    The chemical modification of cellulose leads to production of derivatives with different properties from those observed for the original cellulose, for example, increased solubility in more traditional solvents. In this work we synthesized four derivatives of cellulose: microcrystalline cellulose, cellulose acetate, methylcellulose and carboxymethylcellulose using bacterial cellulose as a source. These were characterized in terms of chemical and structural changes by examining the degree of substitution (DS), infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy - NMR 13C. The molecular weight and degree of polymerization were evaluated by viscometry. The characterization of the morphology of materials and thermal properties were performed with the techniques of X-ray diffraction, electron microscopy images, differential scanning calorimetry (DSC) and thermogravimetric analysis. (author)

  16. Comparative Structural and Computational Analysis Supports Eighteen Cellulose Synthases in the Plant Cellulose Synthesis Complex.

    Science.gov (United States)

    Nixon, B Tracy; Mansouri, Katayoun; Singh, Abhishek; Du, Juan; Davis, Jonathan K; Lee, Jung-Goo; Slabaugh, Erin; Vandavasi, Venu Gopal; O'Neill, Hugh; Roberts, Eric M; Roberts, Alison W; Yingling, Yaroslava G; Haigler, Candace H

    2016-01-01

    A six-lobed membrane spanning cellulose synthesis complex (CSC) containing multiple cellulose synthase (CESA) glycosyltransferases mediates cellulose microfibril formation. The number of CESAs in the CSC has been debated for decades in light of changing estimates of the diameter of the smallest microfibril formed from the β-1,4 glucan chains synthesized by one CSC. We obtained more direct evidence through generating improved transmission electron microscopy (TEM) images and image averages of the rosette-type CSC, revealing the frequent triangularity and average cross-sectional area in the plasma membrane of its individual lobes. Trimeric oligomers of two alternative CESA computational models corresponded well with individual lobe geometry. A six-fold assembly of the trimeric computational oligomer had the lowest potential energy per monomer and was consistent with rosette CSC morphology. Negative stain TEM and image averaging showed the triangularity of a recombinant CESA cytosolic domain, consistent with previous modeling of its trimeric nature from small angle scattering (SAXS) data. Six trimeric SAXS models nearly filled the space below an average FF-TEM image of the rosette CSC. In summary, the multifaceted data support a rosette CSC with 18 CESAs that mediates the synthesis of a fundamental microfibril composed of 18 glucan chains. PMID:27345599

  17. Arabidopsis thaliana KORRIGAN1 protein: N-glycan modification, localization, and function in cellulose biosynthesis and osmotic stress responses

    OpenAIRE

    von Schaewen, Antje; Rips, Stephan; Jeong, In Sil; Koiwa, Hisashi

    2015-01-01

    Plant cellulose biosynthesis is a complex process involving cellulose-synthase complexes (CSCs) and various auxiliary factors essential for proper orientation and crystallinity of cellulose microfibrils in the apoplast. Among them is KORRIGAN1 (KOR1), a type-II membrane protein with multiple N-glycans within its C-terminal cellulase domain. N-glycosylation of the cellulase domain was important for KOR1 targeting to and retention within the trans-Golgi network (TGN), and prevented accumulation...

  18. Interactions of microfibrillated cellulose and cellulosic fines with cationic polyelectrolytes

    OpenAIRE

    Taipale, Tero

    2010-01-01

    The overall aim of this work was to produce and characterize different types of cellulosic fines and microfibrillated cellulose; to study their interactions with high molar mass cationic polyelectrolytes; and to demonstrate novel examples of their utilization. The work was performed, and its results discussed mainly from papermaking point of view, but the results are also well applicable in other fields of industry. Cellulosic fines are an essential component of papermaking fiber suspens...

  19. Three-dimensional cellulose sponge: Fabrication, characterization, biomimetic mineralization, and in vitro cell infiltration.

    Science.gov (United States)

    Joshi, Mahesh Kumar; Pant, Hem Raj; Tiwari, Arjun Prasad; Maharjan, Bikendra; Liao, Nina; Kim, Han Joo; Park, Chan Hee; Kim, Cheol Sang

    2016-01-20

    In this study, cellulose based scaffolds were produced by electrospinning of cellulose acetate (CA) solution followed by its saponification with NaOH/ethanol system for 24h. The resulting nonwoven cellulose mat was treated with sodium borohydride (SB) solution. In situ hydrolysis of SB solution into the pores of the membrane produced hydrogen gas resulting a three-dimensional (3D) cellulose sponge. SEM images demonstrated an open porous and loosely packed fibrous mesh compared to the tightly packed single-layered structure of the conventional electrospun membrane. 3D cellulose sponge showed admirable ability to nucleate bioactive calcium phosphate (Ca-P) crystals in simulated body fluid (SBF) solution. SEM-EDX and X-ray diffraction studies revealed that the minerals deposited on the nanofibers have the nonstoichiometric composition similar to that of hydroxyapatite, the mineralized component of the bone. 3D cellulose sponge exhibited the better cell infiltration, spreading and proliferation compared to 2D cellulose mat. Therefore, a facile fabrication of 3D cellulose sponge with improved mineralization represents an innovative strategy for the bone tissue engineering applications. PMID:26572341

  20. Interfacial Properties of Ethyl Cellulose/Cellulose Acetate Blends by HPLC

    Institute of Scientific and Technical Information of China (English)

    GAO Su-lian; ZHOU Ning-guo; ZHANG Xiu-zhen; ZHANG Wei

    2007-01-01

    The high performance liquid chromatography method (HPLC) with ethyl cellulose/cellulose acetate (EC/CA)blends and EC as column packing material, and small molecular weight compound as probe molecules was employed to measure the retention volume (VR) and equilibrium distribution coefficient (K) of both inorganic and organic solutes. The interfacial separation properties of EC/CA blends were characterized by the HPLC data. The effects of the blends on the inteffacial adsorption properties, hydrophilicity, affinity, polar and non-polar parameters of EC membrane materials were studied subsequently. The research results indicate that the interfacial adsorption properties and hydrophilicity of EC have been improved by solution blending with CA. The alloys are superior to EC in the separation efficiency for non-dissociable polar organic solute. The EC/CA alloy (80:20, ω) is suitable for desalting and desaccharifying.

  1. Novel oil resistant cellulosic materials

    OpenAIRE

    Aulin, Christian

    2009-01-01

    The aim of this study has been to prepare and characterise oil resistant cellulosic materials, ranging from model surfaces to papers and aerogels. The cellulosic materials were made oil resistant by chemical and topographic modifications, based on surface energy, surface roughness and barrier approaches. Detailed wetting studies of the prepared cellulosic materials were made using contact angle measurements and standardised penetration tests with different alkanes and oil mixtures. A signific...

  2. Cellulose biogenesis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  3. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  4. Enhancing biocompatibility of some cation selective electrodes using heparin modified bacterial cellulose.

    Science.gov (United States)

    Badr, Ibrahim H A; Abdel-Sattar, R; Keshk, Sherif M A S

    2015-12-10

    Bacterial cellulose (BC) and heparin-modified bacterial cellulose (HBC) were utilized to enhance the biocompatibility of highly thrombogenic PVC-based potassium and calcium membrane electrodes. Three types of membrane electrodes were prepared: (1) conventional PVC electrode (control), (2) PVC-based electrode sandwiched with bacterial cellulose membrane (BC-PVC), and (3) PVC-based electrode sandwiched with heparin-modified bacterial cellulose membrane (HBC-PVC). The potentiometric response characteristics of the modified potassium and calcium membrane electrodes (BC-PVC and HBC-PVC) were compared with those of the control PVC-based potassium and calcium selective electrode, respectively. Response characteristics of the modified membrane electrodes were comparable to the control PVC membrane electrode. The platelet adhesion investigations indicated that (BC) and (HBC) layers are less thrombogenic compared to PVC. Therefore, use of BC or HBC would enable the enhancement of the biocompatibility of PVC-based membrane electrodes for potassium and calcium while practically maintaining the overall electrochemical performance of the PVC sensing film. PMID:26428173

  5. Enhanced enzymatic cellulose degradation by cellobiohydrolases via product removal

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Mikkelsen, Jørn Dalgaard

    2013-01-01

    .8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion......Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4...... achievable by intermittent product removal during cellulose hydrolysis....

  6. Cellulose acetate as solid phase in ELISA for plague

    Directory of Open Access Journals (Sweden)

    Barbosa AD

    2000-01-01

    Full Text Available Antigen from Yersinia pestis was adsorbed on cellulose acetate discs (0.5 cm of diameter which were obtained from dialysis membrane by using a paper punch. ELISA for human plague diagnosis was carried out employing this matrix and was capable to detect amount of 1.3 µg of antigen, 3,200 times diluted positive serum using human anti-IgG conjugate diluted 1:4,000. No relevant antigen lixiviation from the cellulose acetate was observed even after washing the discs 15 times. The discs were impregnated by the coloured products from the ELISA development allowing its use in dot-ELISA. Furthermore, cellulose acetate showed a better performance than the conventional PVC plates.

  7. PVA、PVP和β- CD改性再生纤维素膜的制备及渗透汽化分离己内酰胺水溶液%Preparation of PVA,PVP andβ- CD Modified Regenerated Cellulose Membrane and Pervaporation Separation of Caprolactam- Water Mixtures

    Institute of Scientific and Technical Information of China (English)

    朱天容; 李忠铭; 刘继延; 王亮; 胡思前; 唐开

    2014-01-01

    己内酰胺(CPL)是重要的有机化工原料,对CPL脱水是除杂工艺中最后一步。然而,CPL是热敏性物质,为防止CPL高温分解,重点研究了渗透汽化膜分离技术对CPL脱水。以棉短绒为制膜原料,采用碱溶解方法,通过相转变制备了再生纤维素(RC)膜。研究了铸膜液浓度对膜结构的影响。铸膜液的最佳浓度为4 wt %,RC膜表面平滑、无孔,可作为渗透汽化膜,但纯RC膜的通量较小。因此,选取了聚乙烯醇(PVA)、聚乙烯吡咯烷酮(PVP)和β-环糊精(β-CD)分别对RC膜共混改性,考察了改性膜的溶胀度、接触角和渗透汽化膜分离性能。RC-PVA膜的机械强度、通量和分离因子均优于纯RC膜。β-CD提高了膜的分离因子,对通量影响较小。%Caprolactam(C6H11NO)is one of the most important material in the polymer industry, de⁃hydration is the most important edulcoration technology in the final caprolactam purification. Howev⁃er,caprolactam is heat-sensitive substance, for prevention of degradation under high temperature, the dehydration of caprolactam with pervaporation (PVP) is studied. Cotton as membrane material and is firstly dessloved in the alkaline solution, then the regenerated cellulose(RC)is prepared by phase inversion method. The influence of concentration of casting solution on the membrane struc⁃ture is investigated. The results show that the 4 wt % cellulose concentration is suitable to prepare the PV membrane. But the flux and separation factor of pure RC membrane are not ideal. Therefore, polyvinyl alcohol(PVA),Polyvinyl-Py-rrolidone(PVP)and β-cyclodextrin(β-CD)are selected to modify the RC membrane. The degree of swelling,contact angle and PV performance of the modi⁃fied membranes are tested. RC-PVA has better properties and the strength,the flux and the separa⁃tion factor are improved. With the addition ofβ-CD,the separation factor of membrane is enhanced, and it

  8. Manufacture and study of osmotic metallic membranes

    International Nuclear Information System (INIS)

    The manufacture of metallic membranes, which are semi-permeable to salt water, was investigated. The best results were obtained with nickel which had been deposited 'in situ' on sintered nickel, whose pore spectrum was sharp. The investigation showed that in the case of metallic membranes reverse osmosis is only a filtration. The large quantities of water produced and the low salt rejection rate compared to that with cellulose acetate membranes demonstrated that metallic membranes are better suited to depollution than desalination. (author)

  9. Use of biomimetic forward osmosis membrane for trace organics removal

    DEFF Research Database (Denmark)

    Madsen, Henrik T.; Bajraktari, Niada; Helix Nielsen, Claus;

    2015-01-01

    pollutants in aqueous solution. The performance of this membrane was compared with a standard cellulose acetate forward osmosis membrane. The aquaporin membrane was found to have rejection values above 97% for all three trace organics, which was significantly higher than the cellulose acetate membrane....... This difference is caused by differences in the transport mechanisms. For the cellulose acetate membrane rejection is controlled by steric hindrance, which results in a size dependent rejection of the trace organics, whereas rejection by the aquaporin membrane is controlled by diffusion of the trace organics......The use of forward osmosis for the removal of trace organics from water has recently attracted considerable attention as an alternative to traditional pressure driven membrane filtration. However, the existing forward osmosis membranes have been found to be ineffective at rejecting small neutral...

  10. Preparation of High Quality Indium Tin Oxide Film on a Microbial Cellulose Membrane Using Radio Frequency Magnetron Sputtering%采用磁控溅射法在细菌纤维素膜上制备高性能的铟锡氧化物薄膜

    Institute of Scientific and Technical Information of China (English)

    杨加志; 赵成刚; 刘晓丽; 于俊伟; 孙东平; 唐卫华

    2011-01-01

    Microbial cellulose (MC) membranes produced by Acetobacterxylinumn NUST4.1, were used as flexible substrates for the fabrication of transparent indium tin oxide (ITO) electrodes. Transparent and conductive ITO thin films were deposited on MC membrane at room temperature using radio frequency (RF) magnetron sputtering. The optimum ITO deposition conditions were achieved by examining crystalline structure, surface morphology and optoelectrical characteristics with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV spectroscopy. The sheet resistance of the samples was measured with a four-point probe and the resistivity of the film was calculated. The results reveal that the preferred orientation of the deposited ITO crystals is strongly dependent upon with oxygen content (O2/Ar, volume ratio) in the sputtering chamber. And the ITO crystalline structure directly determines the conductivity of ITO-deposited films. High conductive [sheet resistance -120 Ω·square-1 (Ω·sq-1)] and transparent (above 76%) ITO thin films (240 nm thick) were obtained with a moderate sputtering power (about 60 W) and with an oxygen flow rate of 0.25 ml.min-1(sccm) during the deposition. These results show that the ITO-MC electrodes can find their potential application in optoelectrical devices.

  11. ACCESSIBILITY AND CRYSTALLINITY OF CELLULOSE

    Directory of Open Access Journals (Sweden)

    Michael Ioelovich

    2009-08-01

    Full Text Available The accessibility of cellulose samples having various degrees of crystallinity was studied with respect to molecules of water, lower primary alcohols, and lower organic acids. It was found that small water molecules have full access to non-crystalline domains of cellulose (accessibility coefficient α = 1. Molecules of the lowest polar organic liquids (methanol, ethanol, and formic acid have partial access into the non-crystalline domains (α<1, and with increasing diameter of the organic molecules their accessibility to cellulose structure decreases. Accessibility of cellulose samples to molecules of various substances is a linear function of the coefficient α and the content of non-crystalline domains. The relationship between crystallinity (X and accessibility (A of cellulose to molecules of some liquids has been established as A = α (1-X. The water molecules were found to have greater access to cellulose samples than the molecules of the investigated organic liquids. The obtained results permit use of accessibility data to estimate the crystallinity of cellulose, to examine the structural state of non-crystalline domains, and to predict the reactivity of cellulose samples toward some reagents.

  12. TEMPO-oxidized cellulose nanofibers

    Science.gov (United States)

    Isogai, Akira; Saito, Tsuguyuki; Fukuzumi, Hayaka

    2011-01-01

    Native wood celluloses can be converted to individual nanofibers 3-4 nm wide that are at least several microns in length, i.e. with aspect ratios >100, by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation and successive mild disintegration in water. Preparation methods and fundamental characteristics of TEMPO-oxidized cellulose nanofibers (TOCN) are reviewed in this paper. Significant amounts of C6 carboxylate groups are selectively formed on each cellulose microfibril surface by TEMPO-mediated oxidation without any changes to the original crystallinity (~74%) or crystal width of wood celluloses. Electrostatic repulsion and/or osmotic effects working between anionically-charged cellulose microfibrils, the ζ-potentials of which are approximately -75 mV in water, cause the formation of completely individualized TOCN dispersed in water by gentle mechanical disintegration treatment of TEMPO-oxidized wood cellulose fibers. Self-standing TOCN films are transparent and flexible, with high tensile strengths of 200-300 MPa and elastic moduli of 6-7 GPa. Moreover, TOCN-coated poly(lactic acid) films have extremely low oxygen permeability. The new cellulose-based nanofibers formed by size reduction process of native cellulose fibers by TEMPO-mediated oxidation have potential application as environmentally friendly and new bio-based nanomaterials in high-tech fields.

  13. WATER RETENTION VALUE MEASUREMENTS OF CELLULOSIC MATERIALS USING A CENTRIFUGE TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Jinxin Wang

    2010-07-01

    Full Text Available A centrifugal method has been modified and applied to the assessment of water retention value (WRV in cellulosic materials. Microcrystalline cellulose (MCC, small particles/fibrils isolated from MCC using high-pressure homogenizer, and pulp fibers saturated in water were centrifuged at different speeds and times with filter paper and/or a membrane acting as the filter in the WRV measurement setup. As centrifugal speed, time, and filter pore-size increased, lower WRVs were obtained. Smaller MCC particles/fibrils retained more water than the as-received MCC and pulp fibers. The results are useful for WRV measurements of cellulosic materials, especially for microfibrillated cellulose and small cellulosic fibrils.

  14. Product inhibition of enzymatic hydrolysis of cellulose: are we running the reactions all wrong?

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2012-01-01

    Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification i....... Based on cellulose inhibition kinetics the talk will illustrate the suitability of membrane reactor technology for improving cellulose substrate conversion efficiency.......Enzyme catalyzed deconstruction of cellulose to glucose is an important technology step in lignocellulose-to-ethanol processing as well as in the future biorefinery based production of novel products to replace fossil oil based chemistry. The main goals of the enzymatic biomass saccharification...... include high substrate conversion (maximal yields), maximal enzyme efficiency, maximal volumetric reactor productivity, minimal equipment investment, minimal size, and short reaction time. The classic batch type STR reactions used for enzymatic cellulose hydrolysis prevent these goals to be fulfilled...

  15. Extraction and Characterization of Nano cellulose from Coconut Fiber

    International Nuclear Information System (INIS)

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  16. Effect of dietary cellulose on site of lipid absorption

    International Nuclear Information System (INIS)

    The effect of dietary cellulose on the localization within the small intestine of isotopically labeled triglyceride (TG) and cholesterol (CH) from a test meal was investigated. Feeding a 20% cellulose meal resulted in greater quantities of 14C-TG present in both the contents and mucosa of the distal intestine compared with a fiber-free control meal. In contrast, cellulose had no effect on the localization of CH within either the intestinal contents or the mucosa. Accumulation of TG within the intestine was not due to differences in stomach emptying, as the emptying rate was similar for both TG and CH. Within the bulk phase TG must be hydrolyzed by pancreatic lipase before it is available for cellular uptake at the microvillus membrane, whereas CH requires no hydrolysis. The greater amount of TG, but not of CH, within the intestine suggests that cellulose can interfere with lipase activity in vivo. Consequently, cellulose can delay TG hydrolysis and increase the amount of lipid absorbed in the ileum

  17. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  18. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis.

    Science.gov (United States)

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S; Mortimer, Jenny C; Brown, Steven P; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  19. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis

    Science.gov (United States)

    Zhang, Yi; Nikolovski, Nino; Sorieul, Mathias; Vellosillo, Tamara; McFarlane, Heather E.; Dupree, Ray; Kesten, Christopher; Schneider, René; Driemeier, Carlos; Lathe, Rahul; Lampugnani, Edwin; Yu, Xiaolan; Ivakov, Alexander; Doblin, Monika S.; Mortimer, Jenny C.; Brown, Steven P.; Persson, Staffan; Dupree, Paul

    2016-01-01

    As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus. PMID:27277162

  20. Ultrasonic dyeing of cellulose nanofibers.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing. PMID:26964959

  1. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-11-01

    This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states. The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions. The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions

  2. WATER RETENTION VALUE MEASUREMENTS OF CELLULOSIC MATERIALS USING A CENTRIFUGE TECHNIQUE

    OpenAIRE

    Jinxin Wang; Qingzheng Cheng; Joseph McNeel; Peter Jacobson

    2010-01-01

    A centrifugal method has been modified and applied to the assessment of water retention value (WRV) in cellulosic materials. Microcrystalline cellulose (MCC), small particles/fibrils isolated from MCC using high-pressure homogenizer, and pulp fibers saturated in water were centrifuged at different speeds and times with filter paper and/or a membrane acting as the filter in the WRV measurement setup. As centrifugal speed, time, and filter pore-size increased, lower WRVs were obtained. Smaller ...

  3. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose

    OpenAIRE

    Chakavak Esmaeili; Mahnaz M Abdi; Mathew, Aji P.; Mehdi Jonoobi; Kristiina Oksman,; Majid Rezayi

    2015-01-01

    Integrating polypyrrole-cellulose nanocrystal-based composites with glucose oxidase (GOx) as a new sensing regime was investigated. Polypyrrole-cellulose nanocrystal (PPy-CNC)-based composite as a novel immobilization membrane with unique physicochemical properties was found to enhance biosensor performance. Field emission scanning electron microscopy (FESEM) images showed that fibers were nanosized and porous, which is appropriate for accommodating enzymes and increasing electron transfer ki...

  4. The Potential of Cellulose Extracted from Acacia mangium as Solid Polymer Electrolyte (SPE)

    International Nuclear Information System (INIS)

    Cellulosic materials derived from Acacia mangium was extracted at atmospheric pressure using peroxyacetate acid delignification method at 95 to 100 degree Celsius for three hours,to remove lignin. In second stage, the cellulose was divided into two parts. Each part was bleached in acidified 4 % hydrogen peroxide solution and in 0.8 % NaOH solution containing 4 % of hydrogen peroxide. Both bleaching procedures were treated at 60 to 70 degree Celsius for 45 minutes, with solution to solid ratio maintained at 20 mg/l. In final stage, bleached cellulose was treated with 17.5 % solution of NaOH at 25 degree Celsius for 15 minutes. From X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) data's, it is proven that cellulose bleached in either acidic and alkaline media has shown cellulose I structure. However, this structure was transformed to cellulose II when treated with strong alkali solution. The preparation of solid polymer electrolyte (SPE) membrane was obtained by dissolving the cellulosic material in molten 1-butyl-3- methylimidazolium chloride (BMIMCL) in the presence of lithium perchlorate (LiClO4). All SPE membranes obtained exhibit conductivity in the range of 4.49 x 10-5 to 5.7 x 10-5 Scm-1 at 25 degree Celsius. Importantly, it was also observed that the conductivity of the SPE is affected by type of extraction. (author)

  5. A Strategy to Develop Bioactive Nanoarchitecture Cellulose: Sustained Release and Multifarious Applications.

    Science.gov (United States)

    Karuppusamy, Sembanadar; Pratheepkumar, Annamalai; Dhandapani, Perumal; Maruthamuthu, Sundaram; Kulandainathan, Manickam Anbu

    2015-09-01

    Cellulose membranes were engineered to produce hydrophobic surfaces via a simple and soft chemical process to introduce multifunctional properties of an otherwise hydrophilic cellulose surface with polymer-grafted nanosilver to form a core-shell nanostructure. A superhydrophobic domain of the polymer on cellulose was created through the amide bond formation between the anhydride units of the polymer and the aminosiloxane-functionalized cellulose through layer-over-layer formulation. This formulation was confirmed through XPS, XRD, 29Si-NMR, and FTIR studies. Further, SEM and TEM analysis revealed that short linear silver nanowires were uniformly obtained with an average diameter of 60 nm and length of 288 nm, using a mild reducing agent at 60 degrees C, which resulted in a hierarchical cellulose surface. The nanosilver colloids released from the hierarchical cellulose surface were stabilized by the polymer matrix in solution, which led to a decrease in the rate of formation of Ag+ enhancing the material's killing efficacy against microbes. This biodegradable nanocomposite-based cellulose hierarchical surface development has potential for application as superhydrophobic membranes for oil-water separation, antimicrobial activity, and pH-triggered sustained release of colloidal silver for wound healing, which could possibly be applied for use as smart bandages. PMID:26485925

  6. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Badino, Silke Flindt; Tokin, Radina Naytchova;

    2014-01-01

    A novel electrochemical enzyme biosensor was developed for real-time detection of cellulase activity when acting on their natural insoluble substrate, cellulose. The enzyme biosensor was constructed with pyranose dehydrongease (PDH) from Agaricus meleagris that was immobilized on the surface...... jecorina (HjCel6A) on cellulosic substrates with different morphology (bacterial microcrystalline cellulose (BMCC) and Avicel). The steady-state rate of hydrolysis increased towards a saturation plateau with increasing loads of substrate. The experimental results were rationalized using a steady-state rate....... Biosensors covered with a polycarbonate membrane showed high operational stability of several weeks with daily use....

  7. Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP

    OpenAIRE

    Morgan, Jacob L.W.; McNamara, Joshua T.; Zimmer, Jochen

    2014-01-01

    The bacterial signaling molecule cyclic-di-GMP stimulates the synthesis of bacterial cellulose, frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of the cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the cyclic-di-GMP-activated BcsA–B complex. The structures reveal that cyclic-di-GMP releases an auto-inhibited state of the enzyme by breaking a salt bridge which otherwise tethers a conserve...

  8. Preparation of Electrically Conductive Polymeric Membranes

    Science.gov (United States)

    Encinas, J. C.; Castillo-Ortega, M. M.; Rodríguez, F.; Castaño, V. M.

    2015-10-01

    Cellulose acetate porous membranes, coated with polyaniline, were chemically modified with polyelectrolytes to produce films of varying and controlled porosity and electrical conductivity. The highest electrical conductivity was obtained in membranes prepared with poly(styrene sulfonate) with large pore sizes. The electrical properties as well as scanning electron microscopy (SEM) images are discussed.

  9. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution.

    Science.gov (United States)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the

  10. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 A Resolution.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and

  11. Preparation and Characterization of New Nano-cellulose Polysulfone Composite Membrane%新型纳米纤维素聚砜复合膜的制备及表征

    Institute of Scientific and Technical Information of China (English)

    赵恒; 吴桐; 周益同; 张力平

    2013-01-01

    L-S immersion precipitation phase inversion method was used to prepare nanocellulose (NCC)/polysulfone (PSF) composite membrane materials.The influence of NCC contents and concentrations (10%,30%,50%)of isopropanol coagulation bath on the membrane structure was characterized.The pore structure of the composite membrane was observed by scanning electron microscope (SEM).With the isopropanol concentration increased,the finger pores in the composite membrane gradually develop from elongated into stubby and loose.At the same time,it can be found that the concentrations of NCC and isopropanol coagulation bath play a significant role on the mechanical properties,pure water flux,porosity and rejection rate of the composite membrane.%采用L-S浸没沉淀相转化法制备纳米纤维素(NCC)/聚砜(PSF)复合膜材料.考察了NCC添加量及异丙醇凝胶浴浓度(10%、30%、50%,体积分数,下同)对膜结构和性能的影响.通过扫描电子显微镜(SEM)观察了复合膜材料断面和皮层的孔结构,发现随着异丙醇浓度的增加,复合膜中的指状孔由细长贯通、连接紧密逐渐变得短粗、疏松.同时,NCC添加量和异丙醇凝胶浴浓度对复合膜的力学性能、渗透性能、膜孔结构有很大的调控作用.

  12. HEMODIALYSIS MEMBRANES: PAST, PRESENT AND FUTURE TRENDS

    Directory of Open Access Journals (Sweden)

    Gautham A

    2013-06-01

    Full Text Available Renal failure is one of the major health problems faced by many people all over the world. These patients choose either transplantation procedure or undergo hemodialysis. Approximately 28% people suffer from renal failures worldwide, among which a quarter are very critical. Patients who opt for hemodialysis have to undergo it regularly. The membranes used in hemodialysis are very vital. The first ever polymer used asan artificial hemodialysis membrane was collodion, which is a derivative of cellulose- trinitrate. This was the leading element for further research and applications in this field. Later collodion was replaced by cellophane and cuprophane since they had better performance and mechanical stability than the collodion. The major disadvantage of this was their less hemocompatiblity as they were made from unmodified cellulose. Nowadays the modified cellulose membrane comes with high-flux modification and thus very effective in many therapy like the hemodiafiltration and the hemofiltration. The success of hemodialysis is highly dependent on the membrane used.

  13. Cellulose Derivatives for Water Repellent Properties

    Science.gov (United States)

    In this poster presentation, we will discuss the synthesis and structural characterizations of nitro-benzyl cellulose (1), amino-benzyl cellulose (2) and pentafluoro –benzyl cellulose (3). All cellulose derivatives are synthesized by etherification process in lithium chloride/N,N-dimethylacetamide h...

  14. Cellulose nanocrystals: synthesis, functional properties, and applications

    OpenAIRE

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  15. Cellulose synthase complexes: structure and regulation

    Directory of Open Access Journals (Sweden)

    Lei eLei

    2012-04-01

    Full Text Available This review is to update the most recent progress on characterization of the composition, regulation, and trafficking of cellulose synthase complexes. We will highlight proteins that interact with cellulose synthases, e.g. cellulose synthase-interactive protein 1 (CSI1. The potential regulation mechanisms by which cellulose synthase interact with cortical microtubules in primary cell walls will be discussed.

  16. Pharmaceutical significance of cellulose: A review

    Directory of Open Access Journals (Sweden)

    2008-11-01

    Full Text Available The amalgamation of polymer and pharmaceutical sciences led to the introduction of polymer in the design and development of drug delivery systems. Polymeric delivery systems are mainly intended to achieve controlled or sustained drug delivery. Polysaccharides fabricated into hydrophilic matrices remain popular biomaterials for controlled-release dosage forms and the most abundant naturally occurring biopolymer is cellulose; so hdroxypropylmethyl cellulose, hydroxypropyl cellulose, microcrystalline cellulose and hydroxyethyl cellulose can be used for production of time controlled delivery systems. Additionally microcrystalline cellulose, sodium carboxymethyl cellulose, hydroxypropylmethyl cellulose, hydroxyethyl cellulose as well as hydroxypropyl cellulose are used to coat tablets. Cellulose acetate phthalate and hydroxymethyl cellulose phthalate are also used for enteric coating of tablets. Targeting of drugs to the colon following oral administration has also been accomplished by using polysaccharides such as hdroxypropylmethyl cellulose and hydroxypropyl cellulose in hydrated form; also they act as binders that swell when hydrated by gastric media and delay absorption. This paper assembles the current knowledge on the structure and chemistry of cellulose, and in the development of innovative cellulose esters and ethers for pharmaceuticals.

  17. Radiation degradation of cellulose

    International Nuclear Information System (INIS)

    The application of straw and other cellulose polymers as feedstuff for ruminants is limited by its low digestibility. During recent decades it was attempted to increase the digestibility of straw by several chemical and physical methods. In this work some results of the degradation of gamma and electron treated wheat straw are reported. Complex methods of treatment (e.g. radiation influence and influence of lyes) are taken into consideration. In vitro-experiments with radiation treated straw show that the digestibility can be increased from 20% up to about 80%. A high pressure liquid chromatography method was used to analyze the hydrolysates. The contents of certain species of carbohydrates in the hydrolysates in dependence on the applied dose are given

  18. Mineralization of cellulose in frozen boreal soils

    Science.gov (United States)

    Oquist, Mats G.; Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jurgen

    2015-04-01

    Soils of high-latitude ecosystems store a large fraction of the global soil carbon. In boreal forests, the microbial mineralization of soil organic matter (SOM) during winter can affect the ecosystems net carbon balance. Recent research has shown that microorganisms in the organic surface layer of boreal forest soil can mineralize and grow on simple, soluble monomeric substrates under frozen conditions. However, any substantial impacts of microbial activity in frozen soils on long-term soil carbon balances ultimately depends on whether soil microorganisms can utilize and grow the more complex, polymeric constituents of SOM. In order to evaluate the potential for soil microorganisms to metabolize carbon polymers at low temperatures, we incubated boreal forest soil samples amended with [13C]-cellulose and studied the microbial catabolic and anabolic utilization of the substrate under frozen and unfrozen conditions (-4 and +4°C). Freezing of the soil markedly reduced microbial utilization of the cellulose. The [13C]-CO2 production rate in the samples at +4°C were 0.52 mg CO2 SOM -1 day-1 while rates in the frozen samples (-4°C) were 0.01 mg CO2 SOM -1 day-1. However, newly synthetized [13C]-enriched cell membrane lipids, PLFAs, were detected in soil samples incubated both above and below freezing, confirming that cellulose can sustain also anabolic activity of the microbial populations under frozen conditions. The reduced metabolic rates induced by freezing indicate constraints on exoenzymatic activity, as well as substrate diffusion rates that we can attribute to reduced liquid water content of the frozen soil. We conclude that the microbial population in boreal forest soil has the capacity to metabolize, and grow, on polymeric substrates at temperatures below zero, which involves maintaining exoenzymatic activity in frozen soils. This capacity manifests the importance of SOM mineralization during the winter season and its importance for the net carbon balance of

  19. Thermophilic degradation of cellulosic biomass

    Science.gov (United States)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  20. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    Directory of Open Access Journals (Sweden)

    Maria Assunta Navarra

    2015-11-01

    Full Text Available Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity.

  1. The elution of erbium from a cation exchanger bed by means of the N-hydroxyethyl-ethylene-diamine triacetic acid; Mecanismo de la elucion del erbio en un cambiador cationico con el acido n-hidroxietil-etilen-diamono-triacetico

    Energy Technology Data Exchange (ETDEWEB)

    Amer Amezaga, S.

    1963-07-01

    A physicochemical study of the phenomena resulting when erbium is eluted from a cation-exchanger bed at a steady by means of the N-hydroxyethyl-ethylene-diamine-triacetic acid (HEDTA) is made. Two different retaining beds are used, a hydrogen bed, in which no ammonium passes through, and a zinc bed, which leaks ammonium ion. Good agreement between experimental and calculated values by using the equations deduced for the concentrations of the main species has been achieved, with errors around 1-2% in most of the experiments. (Author) 69 refs.

  2. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII

    Science.gov (United States)

    The CRI (chromophore release and identification) method isolates well-defined chromophoric substances from different cellulosic matrices, such as highly bleached pulps, cotton linters, bacterial cellulose, viscose or lyocell fibers, and cellulose acetates. The chromophores are present only in extrem...

  3. Asymmetric Membrane Osmotic Capsules for Terbutaline Sulphate

    OpenAIRE

    Gobade, N. G.; Marina Koland; K H Harish

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist...

  4. Development of carboxymethyl cellulose acrylate for various biomedical applications

    Science.gov (United States)

    Pal, Kunal; Banthia, A. K.; Majumdar, D. K.

    2006-06-01

    The purpose of this work is to prepare a pH-sensitive hydrogel membrane of sodium carboxymethyl cellulose acrylate for drug delivery and other biomedical applications. The hydrogel was made by esterification of sodium carboxymethyl cellulose (SCMC) and acryloyl chloride (ACl). The esterified product was characterized by FTIR spectroscopy and XRD. Swelling, hemocompatibility, water vapor transmission rate, contact angle and diffusional studies were also done. Biocompatibility of the membrane was established by quantification of cell growth of L929 cells and mice splenocytes. The FTIR spectrum of the hydrogel suggested the formation of ester bonds between the hydroxyl groups of sodium carboxymethyl cellulose and the carbonyl group of acryloyl chloride. Water vapor transmission rate, hemocompatibility, contact angle and swelling studies indicated that the hydrogel can be tried as a wound dressing material. The hydrogel showed pH-dependent swelling behavior arising from the acidic pendant group in the polymer network. The permeability of the hydrogel membrane produced, as shown by salicylic acid diffusion, increased in response to an increase in pH of the external medium. The hydrogel membrane was permeable to salicylic acid at pH 7.2 but not at pH 2.0 (0.01N HCl). The effect of changes of pH on the hydrogel's permeability was found to be reversible. The hydrogel membrane was found to be compatible with the L929 mice fibroblast cell line and mice splenocytes. The esterified product of SCMC and ACl swells on increase of pH indicating its possible use in a pH-sensitive drug delivery system and as a wound dressing material.

  5. Development of carboxymethyl cellulose acrylate for various biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kunal [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Banthia, A K [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Majumdar, D K [Delhi Institute of Pharmaceutical Sciences and Research, Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi 110017 (India)

    2006-06-15

    The purpose of this work is to prepare a pH-sensitive hydrogel membrane of sodium carboxymethyl cellulose acrylate for drug delivery and other biomedical applications. The hydrogel was made by esterification of sodium carboxymethyl cellulose (SCMC) and acryloyl chloride (ACl). The esterified product was characterized by FTIR spectroscopy and XRD. Swelling, hemocompatibility, water vapor transmission rate, contact angle and diffusional studies were also done. Biocompatibility of the membrane was established by quantification of cell growth of L929 cells and mice splenocytes. The FTIR spectrum of the hydrogel suggested the formation of ester bonds between the hydroxyl groups of sodium carboxymethyl cellulose and the carbonyl group of acryloyl chloride. Water vapor transmission rate, hemocompatibility, contact angle and swelling studies indicated that the hydrogel can be tried as a wound dressing material. The hydrogel showed pH-dependent swelling behavior arising from the acidic pendant group in the polymer network. The permeability of the hydrogel membrane produced, as shown by salicylic acid diffusion, increased in response to an increase in pH of the external medium. The hydrogel membrane was permeable to salicylic acid at pH 7.2 but not at pH 2.0 (0.01N HCl). The effect of changes of pH on the hydrogel's permeability was found to be reversible. The hydrogel membrane was found to be compatible with the L929 mice fibroblast cell line and mice splenocytes. The esterified product of SCMC and ACl swells on increase of pH indicating its possible use in a pH-sensitive drug delivery system and as a wound dressing material.

  6. Development of carboxymethyl cellulose acrylate for various biomedical applications

    International Nuclear Information System (INIS)

    The purpose of this work is to prepare a pH-sensitive hydrogel membrane of sodium carboxymethyl cellulose acrylate for drug delivery and other biomedical applications. The hydrogel was made by esterification of sodium carboxymethyl cellulose (SCMC) and acryloyl chloride (ACl). The esterified product was characterized by FTIR spectroscopy and XRD. Swelling, hemocompatibility, water vapor transmission rate, contact angle and diffusional studies were also done. Biocompatibility of the membrane was established by quantification of cell growth of L929 cells and mice splenocytes. The FTIR spectrum of the hydrogel suggested the formation of ester bonds between the hydroxyl groups of sodium carboxymethyl cellulose and the carbonyl group of acryloyl chloride. Water vapor transmission rate, hemocompatibility, contact angle and swelling studies indicated that the hydrogel can be tried as a wound dressing material. The hydrogel showed pH-dependent swelling behavior arising from the acidic pendant group in the polymer network. The permeability of the hydrogel membrane produced, as shown by salicylic acid diffusion, increased in response to an increase in pH of the external medium. The hydrogel membrane was permeable to salicylic acid at pH 7.2 but not at pH 2.0 (0.01N HCl). The effect of changes of pH on the hydrogel's permeability was found to be reversible. The hydrogel membrane was found to be compatible with the L929 mice fibroblast cell line and mice splenocytes. The esterified product of SCMC and ACl swells on increase of pH indicating its possible use in a pH-sensitive drug delivery system and as a wound dressing material

  7. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. - Research highlights: → The likelihood of a significant cellulosic ethanol industry in the US looks dim. → Drop-in biofuels made from cellulosic feedstocks have a more promising future. → The spatial dimension of markets for cellulosic feedstocks will be limited. → Corn ethanol will be a tough competitor for cellulosic ethanol.

  8. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt;

    2010-01-01

    ideal reactor types, i.e. batch, continuous stirred, and plug-flow, is illustrated quantitatively by modeling different extents of cellulose conversion at different reaction conditions. The main operational challenges of membrane reactors for lignocellulose conversion are highlighted. Key membrane...... of the available literature data for glucose removal by membranes and for cellulose enzyme stability in membrane reactors are given. The treatise clearly shows that membrane reactors allowing continuous, complete, glucose removal during enzymatic cellulose hydrolysis, can provide for both higher cellulose...... hydrolysis rates and higher enzyme usage efficiency (kg(product/)kg(enzyme)). Current membrane reactor designs are however not feasible for large scale operations. The report emphasizes that the industrial realization of cellulosic ethanol requires more focus on the operational feasibility within...

  9. Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for a disordered intermediate stage.

    Directory of Open Access Journals (Sweden)

    Candace H Haigler

    Full Text Available The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall.

  10. Molecular modeling and imaging of initial stages of cellulose fibril assembly: evidence for a disordered intermediate stage.

    Science.gov (United States)

    Haigler, Candace H; Grimson, Mark J; Gervais, Julien; Le Moigne, Nicolas; Höfte, Herman; Monasse, Bernard; Navard, Patrick

    2014-01-01

    The remarkable mechanical strength of cellulose reflects the arrangement of multiple β-1,4-linked glucan chains in a para-crystalline fibril. During plant cellulose biosynthesis, a multimeric cellulose synthesis complex (CSC) moves within the plane of the plasma membrane as many glucan chains are synthesized from the same end and in close proximity. Many questions remain about the mechanism of cellulose fibril assembly, for example must multiple catalytic subunits within one CSC polymerize cellulose at the same rate? How does the cellulose fibril bend to align horizontally with the cell wall? Here we used mathematical modeling to investigate the interactions between glucan chains immediately after extrusion on the plasma membrane surface. Molecular dynamics simulations on groups of six glucans, each originating from a position approximating its extrusion site, revealed initial formation of an uncrystallized aggregate of chains from which a protofibril arose spontaneously through a ratchet mechanism involving hydrogen bonds and van der Waals interactions between glucose monomers. Consistent with the predictions from the model, freeze-fracture transmission electron microscopy using improved methods revealed a hemispherical accumulation of material at points of origination of apparent cellulose fibrils on the external surface of the plasma membrane where rosette-type CSCs were also observed. Together the data support the possibility that a zone of uncrystallized chains on the plasma membrane surface buffers the predicted variable rates of cellulose polymerization from multiple catalytic subunits within the CSC and acts as a flexible hinge allowing the horizontal alignment of the crystalline cellulose fibrils relative to the cell wall. PMID:24722535

  11. A thermodynamic investigation of the cellulose allomorphs: Cellulose(am), cellulose Iβ(cr), cellulose II(cr), and cellulose III(cr)

    International Nuclear Information System (INIS)

    Highlights: • Cellulose allomorphs were prepared and carefully characterized. • Measurements by oxygen bomb calorimetry, solution calorimetry, and by PPMS. • Thermodynamic properties for interconversion reactions of the cellulose allomorphs. • Review of the earlier literature with recalculation of property values. • Standard thermodynamic formation properties. - Abstract: The thermochemistry of samples of amorphous cellulose, cellulose I, cellulose II, and cellulose III was studied by using oxygen bomb calorimetry, solution calorimetry in which the solvent was cadoxen (a cadmium ethylenediamine solvent), and with a Physical Property Measurement System (PPMS) in zero magnetic field to measure standard massic heat capacities Cp,w∘ over the temperature range T = (2 to 302) K. The samples used in this study were prepared so as to have different values of crystallinity indexes CI and were characterized by X-ray diffraction, by Karl Fischer moisture determination, and by using gel permeation chromatography to determine the weight average degree of polymerization DPw. NMR measurements on solutions containing the samples dissolved in cadoxen were also performed in an attempt to resolve the issue of the equivalency or non-equivalency of the nuclei in the different forms of cellulose that were dissolved in cadoxen. While large differences in the NMR spectra for the various cellulose samples in cadoxen were not observed, one cannot be absolutely certain that these cellulose samples are chemically equivalent in cadoxen. Equations were derived which allow one to adjust measured property values of cellulose samples having a mass fraction of water wH2O to a reference value of the mass fraction of water wref. The measured thermodynamic properties (standard massic enthalpy of combustion ΔcHw∘, standard massic enthalpy of solution ΔsolHw∘, and Cp,w∘) were used in conjunction with the measured CI values to calculate values of the changes in the standard massic

  12. Cellulose microfibril formation within a coarse grained molecular dynamics

    Science.gov (United States)

    Nili, Abdolmadjid; Shklyaev, Oleg; Crespi, Vincent; Zhao, Zhen; Zhong, Linghao; CLSF Collaboration

    2014-03-01

    Cellulose in biomass is mostly in the form of crystalline microfibrils composed of 18 to 36 parallel chains of polymerized glucose monomers. A single chain is produced by cellular machinery (CesA) located on the preliminary cell wall membrane. Information about the nucleation stage can address important questions about intermediate region between cell wall and the fully formed crystalline microfibrils. Very little is known about the transition from isolated chains to protofibrils up to a full microfibril, in contrast to a large body of studies on both CesA and the final crystalline microfibril. In addition to major experimental challenges in studying this transient regime, the length and time scales of microfibril nucleation are inaccessible to atomistic molecular dynamics. We have developed a novel coarse grained model for cellulose microfibrils which accounts for anisotropic interchain interactions. The model allows us to study nucleation, kinetics, and growth of cellulose chains/protofibrils/microfibrils. This work is supported by the US Department of Energy, Office of Basic Energy Sciences as part of The Center for LignoCellulose Structure and Formation, an Energy Frontier Research Center.

  13. Cellulose Deficiency Is Enhanced on Hyper Accumulation of Sucrose by a H+-Coupled Sucrose Symporter1[OPEN

    Science.gov (United States)

    Yeats, Trevor H.; Sorek, Hagit

    2016-01-01

    In order to understand factors controlling the synthesis and deposition of cellulose, we have studied the Arabidopsis (Arabidopsis thaliana) double mutant shaven3 shaven3-like1 (shv3svl1), which was shown previously to exhibit a marked cellulose deficiency. We discovered that exogenous sucrose (Suc) in growth medium greatly enhances the reduction in hypocotyl elongation and cellulose content of shv3svl1. This effect was specific to Suc and was not observed with other sugars or osmoticum. Live-cell imaging of fluorescently labeled cellulose synthase complexes revealed a slowing of cellulose synthase complexes in shv3svl1 compared with the wild type that is enhanced in a Suc-conditional manner. Solid-state nuclear magnetic resonance confirmed a cellulose deficiency of shv3svl1 but indicated that cellulose crystallinity was unaffected in the mutant. A genetic suppressor screen identified mutants of the plasma membrane Suc/H+ symporter SUC1, indicating that the accumulation of Suc underlies the Suc-dependent enhancement of shv3svl1 phenotypes. While other cellulose-deficient mutants were not specifically sensitive to exogenous Suc, the feronia (fer) receptor kinase mutant partially phenocopied shv3svl1 and exhibited a similar Suc-conditional cellulose defect. We demonstrate that shv3svl1, like fer, exhibits a hyperpolarized plasma membrane H+ gradient that likely underlies the enhanced accumulation of Suc via Suc/H+ symporters. Enhanced intracellular Suc abundance appears to favor the partitioning of carbon to starch rather than cellulose in both mutants. We conclude that SHV3-like proteins may be involved in signaling during cell expansion that coordinates proton pumping and cellulose synthesis. PMID:27013021

  14. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingliang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Zhang, Zhicheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; Endrizzi, Francesco [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Shunzhong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Rao, Linfeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An3+) from trivalent lanthanides (Ln3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na+, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found to exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln3+ and An3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the

  15. Selective permeation of hydrogen gas using cellulose nanofibril film.

    Science.gov (United States)

    Fukuzumi, Hayaka; Fujisawa, Shuji; Saito, Tsuguyuki; Isogai, Akira

    2013-05-13

    Biobased membranes that can selectively permeate hydrogen gas have been developed from aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCN) prepared from wood cellulose: TOCN-coated plastic films and self-standing TOCN films. Compared with TOCNs with sodium, lithium, potassium, and cesium carboxylate groups, TOCN with free carboxyl groups (TOCN-COOH) had much high and selective H2 gas permeation performance. Because permeabilities of H2, N2, O2, and CO2 gases through the membranes primarily depended on their kinetic diameters, the gas permeation behavior of the various TOCNs can be explained in terms of a diffusion mechanism. Thus, the selective H2 gas permeability for TOCN-COOH was probably due to a larger average size in free volume holes present between nanofibrils in the layer and film than those of other TOCNs with metal carboxylate groups. The obtained results indicate that TOCN-COOH membranes are applicable as biobased H2 gas separation membranes in fuel cell electric power generation systems. PMID:23594396

  16. Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    S. Saska

    2011-01-01

    Full Text Available The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA, similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.

  17. Direct Interfacial Modification of Nanocellulose Films for Thermoresponsive Membrane Templates.

    Science.gov (United States)

    Hakalahti, Minna; Mautner, Andreas; Johansson, Leena-Sisko; Hänninen, Tuomas; Setälä, Harri; Kontturi, Eero; Bismarck, Alexander; Tammelin, Tekla

    2016-02-10

    This letter proposes a strategy to construct tunable films combining the physical characteristics of cellulose nanofibrils and smart polymers for membrane applications. A functional membrane template was obtained by first fabricating a water stable film from cellulose nanofibrils and subsequently surface grafting it with a thermoresponsive polymer, poly(N-isopropylacrylamide). The behavior of the membrane template was dependent on temperature. The increment in slope of relative water permeance around the lower critical solution temperature of poly(N-isopropylacrylamide) increased from 18 to 100% upon polymer attachment. Although the membrane template essentially consisted of wood-based materials, the benefits of smart synthetic polymers were achieved. PMID:26812620

  18. Microfibrillated cellulose: morphology and accessibility

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, F.W.; Casebier, R.L.; Hamilton, J.K.; Sandberg, K.R.

    1983-01-01

    Microfibrillated cellulose (MFC) is prepared by subjecting dilute slurries of cellulose fibers to repeated high-pressure homogenizing action. A highly microfibrillated product will have a gel-like appearance at 2% concentration in water. Such gels have pseudoplastic viscosity properties and are very fluid when stirred at high shear rate. The relative viscosity of 2% MFC dispersions may be used as a measure of the degree of homogenization or microfibrillation of a given wood cellulose pulp. The water retention value of an MFC product can also be used as an indicator for degree of homogenization. Structurally, MFC appears to be a web of interconnected fibrils and microfibrils, the latter having diameters in the range 10-100 nm as observed in scanning and transmission electron micrographs. Chemical studies have revealed that MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC is only moderately degraded, while being greatly expanded in surface area. The accessibility of cellulose in MFC toward chemical reagents is greatly increased. Higher reactivity was demonstrated in dilute cupriethylenediamine solubility, triphenylmethylation, acetylation, periodate oxidation, and mineral acid and cellulase enzyme hydrolysis rates. 16 references, 8 figures, 7 tables.

  19. A dual mechanism of cellulose deficiency in shv3svl1.

    Science.gov (United States)

    Yeats, Trevor H; Somerville, Chris R

    2016-09-01

    SHAVEN3 (SHV3) and its homolog SHAVEN3-like 1 (SVL1) encode glycosylphosphatidylinositol (GPI)-anchored proteins (GAPs) that are involved in cellulose biosynthesis and hypocotyl elongation in Arabidopsis thaliana. In a recent report, we showed that the cellulose and hypocotyl elongation defects of the shv3svl1 double mutant are greatly enhanced by exogenous sucrose in the growth medium. Further investigation of this phenomenon showed that shv3svl1 exhibits a hyperpolarized plasma membrane (PM) proton gradient that is coupled with enhanced accumulation of sucrose via the PM sucrose/proton symporter SUC1. The resulting high intracellular sucrose concentration appears to favor starch synthesis at the expense of cellulose synthesis. Here, we describe our interpretation of these results in terms of 2 potential regulators of cellulose synthesis: intracellular sucrose concentration and a putative signaling pathway that involves SHV3-like proteins. PMID:27494413

  20. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis.

    Science.gov (United States)

    Jones, Danielle M; Murray, Christian M; Ketelaar, KassaDee J; Thomas, Joseph J; Villalobos, Jose A; Wallace, Ian S

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  1. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    Science.gov (United States)

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  2. Synchrotron SAXS and WAXD Studies of Cellulose Nascent Crystals: Experiment and Structure Analysis

    Science.gov (United States)

    Su, Ying; Burger, Christian; Hsiao, Benjamin S.; Chu, Benjamin

    2012-02-01

    Cellulose nascent crystals extracted from biomass (wood pulp, jute and cotton)by combined chemical and mechanical treatments are low cost, environmentally friendly and high performance materials to form the barrier layer in ultrafiltration membranes. This research project is aimed at using the synchrotron X-ray scattering methods to characterize the nascent crystalline nanofibers in different formats. The SAXS (Small Angle X-ray Scattering) data of cellulose nanofiber suspensions was analyzed and the polydisperse ribbon model with rectangular cross section fit the data well. The 2D and 3D simulations of WAXD (Wide Angle X-ray Diffraction) pattern of jute cellulose fibers solved the contents ratio of cellulose I-alpha and I-beta and Hermans' orientation parameter P2.

  3. Asymmetric membrane osmotic capsules for terbutaline sulphate

    Directory of Open Access Journals (Sweden)

    N G Gobade

    2012-01-01

    Full Text Available The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate.

  4. Asymmetric membrane osmotic capsules for terbutaline sulphate.

    Science.gov (United States)

    Gobade, N G; Koland, Marina; Harish, K H

    2012-01-01

    The aim of the present study was to design an asymmetric membrane capsule, an osmotic pump-based drug delivery system of ethyl cellulose for controlled release of terbutaline sulphate. asymmetric membrane capsules contains pore-forming water soluble additive, sorbitol in different concentrations in the capsule shell membrane, which after coming in contact with water, dissolves, resulting in an in situ formation of a microporous structure. The terbutaline sulphate is a β-adrenoreceptor agonist widely used in the treatment of asthma. The oral dosage regimen of terbutaline sulphate is 5 mg twice or thrice daily, the plasma half-life is approximate 3-4 h and it produces GI irritation with extensive first pass metabolism. Hence, terbutaline sulphate was chosen as a model drug with an aim to develop controlled release system. Different formulations of ethyl cellulose were prepared by phase inversion technique using different concentrations of sorbitol as pore forming agent. It was found that the thickness of the prepared asymmetric membrane capsules was increased with increase in concentration of ethyl cellulose and pore forming agent, i.e. sorbitol. The dye release study in water and 10% sodium chloride solution indicates that, the asymmetric membrane capsules follow osmotic principle to release content. The pores formed due to sorbitol were confirmed by microscopic observation of transverse section of capsule membrane. Data of in vitro release study of terbutaline sulphate from asymmetric membrane capsules indicated that, the capsules prepared with 10% and 12.5% of ethyl cellulose and 25% of sorbitol released as much as 97.44% and 76.27% in 12 h, respectively with zero order release rate. Hence asymmetric membrane capsule of 10% ethyl cellulose and 25% of sorbitol is considered as optimum for controlled oral delivery of terbutaline sulphate. PMID:23204625

  5. Microbial Cellulose Assembly in Microgravity

    Science.gov (United States)

    Brown, R. Malcolm, Jr.

    1998-01-01

    Based on evidence indicating a possible correlation between hypo-gravity conditions and alteration of cellulose production by the gram negative bacterium, Acetobacter xylinum, a ground-based study for a possible long term Space Shuttle flight has been conducted. The proposed experiment for A. xylinum aboard the Shuttle is the BRIC (Biological Research in a Canister), a metal container containing spaces for nine Petri plates. Using a common experimental design, the cellulose production capability as well as the survivability of the A. xylinum strains NQ5 and AY201 have been described. It should now be possible to use the BRIC for the first long term microgravity experiments involving the biosynthesis of cellulose.

  6. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    Science.gov (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  7. All natural cellulose acetate-Lemongrass essential oil antimicrobial nanocapsules.

    Science.gov (United States)

    Liakos, Ioannis L; D'autilia, Francesca; Garzoni, Alice; Bonferoni, Cristina; Scarpellini, Alice; Brunetti, Virgilio; Carzino, Riccardo; Bianchini, Paolo; Pompa, Pier Paolo; Athanassiou, Athanassia

    2016-08-30

    Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus. PMID:26827919

  8. Synthesis of flexible magnetic nanohybrid based on bacterial cellulose under ultrasonic irradiation

    International Nuclear Information System (INIS)

    Flexible magnetic membrane based on bacterial cellulose (BC) was successfully prepared by in-situ synthesis of the Fe3O4 nanoparticles under different conditions and its properties were characterized. The results demonstrated that the Fe3O4 nanoparticles coated with PEG were well homogeneously dispersed in the BC matrix under ultrasonic irradiation with the saturation magnetization of 40.58 emu/g. Besides that, the membranes exhibited the striking flexibility and mechanical properties. This study provided a green and facile method to inhibit magnetic nanoparticle aggregation without compromising the mechanical properties of the nanocomposites. Magnetically responsive BC membrane would have potential applications in electronic actuators, information storage, electromagnetic shielding coating and anti-counterfeit. - Highlights: ► Flexible magnetic film is prepared by in situ synthesis on bacterial cellulose. ► Ultrasound and PEG are used together to inhibit the nanoparticle aggregation. ► The magnetic membrane demonstrates the great superparamagnetic behavior

  9. PROPERTIES OF BACTERIAL CELLULOSE AND ITS INFLUENCE ON THE PHYSICAL PROPERTIES OF PAPER

    Directory of Open Access Journals (Sweden)

    Wen-Hua Gao

    2011-02-01

    Full Text Available Bacterial cellulose is a promising source of biodegradable polymers having high purity. The time required to disperse bacterial cellulose wet membranes was studied, along with evaluation by infrared spectroscopy and thermal analysis of the dispersed bacterial fiber and tests of the physical properties of the sheet. The results showed that bacterial cellulose wet membrane can be dispersed well, forming fibers when the dispersing time was 3 minutes at a suitable concentration. FT-IR results showed that the composition of bacterial fiber is similar to that of bleached softwood fibers. Thus, the morphology, thermal performance, and the length of bacterial fibers are significantly different. The sheets’ physical properties show that with the increasing dosage of bacterial fibers (relative to softwood fiber, the properties of tensile index, tear index, burst index, and stiffness greatly improve, while the porosity and the relative water absorption decrease.

  10. Chemical modification of cellulose for electrospinning applications

    OpenAIRE

    Martín Ferrer, Elena

    2013-01-01

    The aim of the thesis is to develop technology for producing cellulose fatty acid esters that later will be used to produce fibrous materials by means of electrospinning. Main material of the study is cellulose-stearate which is a polymer synthesised by reaction between stearoyl chloride and cellulose. The experimental part consists of synthesis of it by chemical modification of cellulose using ionic liquid as a reaction media. In addition, ionic liquid is also synthesised from the beginning....

  11. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    Omar P. Troncoso; Solene Commeaux; Torres, Fernando G.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  12. A Molecular Description of Cellulose Biosynthesis

    OpenAIRE

    McNamara, Joshua T.; Morgan, Jacob L.W.; Zimmer, Jochen

    2015-01-01

    Cellulose is the most abundant biopolymer on Earth, and certain organisms from bacteria to plants and animals synthesize cellulose as an extracellular polymer for various biological functions. Humans have used cellulose for millennia as a material and an energy source, and the advent of a lignocellulosic fuel industry will elevate it to the primary carbon source for the burgeoning renewable energy sector. Despite the biological and societal importance of cellulose, the molecular mechanism by ...

  13. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

    Institute of Scientific and Technical Information of China (English)

    Logan BASHLINE; Juan DU; Ying GU

    2011-01-01

    Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls,but also due to the potential of using cellulose,a natural carbon source,in the production ot biofuels.Characterization of the composition,regulation,and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms.In this review,a highlight of a few proteins that appear to affect cellulose biosynthesis,which includes:KORRIGAN (KOR),Cellulose Synthase-Interactive Protein 1 (CSI1),and the poplar microtubule-associated protein,PttMAP20,will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

  14. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.

    Science.gov (United States)

    Machado, Rachel T A; Gutierrez, Junkal; Tercjak, Agnieszka; Trovatti, Eliane; Uahib, Fernanda G M; Moreno, Gabriela de Padua; Nascimento, Andresa P; Berreta, Andresa A; Ribeiro, Sidney J L; Barud, Hernane S

    2016-11-01

    A strain isolated from Kombucha tea was isolated and used as an alternative bacterium for the biosynthesis of bacterial cellulose (BC). In this study, BC generated by this novel bacterium was compared to Gluconacetobacter xylinus biosynthesized BC. Kinetic studies reveal that Komagataeibacter rhaeticus was a viable bacterium to produce BC according to yield, thickness and water holding capacity data. Physicochemical properties of BC membranes were investigated by UV-vis and Fourier transform infrared spectroscopies (FTIR), thermogravimetrical analysis (TGA) and X-ray diffraction (XRD). Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were also used for morphological characterization. Mechanical properties at nano and macroscale were studied employing PeakForce quantitative nanomechanical property mapping (QNM) and dynamic mechanical analyzer (DMA), respectively. Results confirmed that BC membrane biosynthesized by Komagataeibacter rhaeticus had similar physicochemical, morphological and mechanical properties than BC membrane produced by Gluconacetobacter xylinus and can be widely used for the same applications. PMID:27516336

  15. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  16. Iodine catalyzed acetylation of starch and cellulose

    Science.gov (United States)

    Starch and cellulose, earth's most abundant biopolymers, are of tremendous economic importance. Over 90% of cotton and 50% of wood are made of cellulose. Wood and cotton are the major resources for all cellulose products such as paper, textiles, construction materials, cardboard, as well as such c...

  17. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  18. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  19. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did...

  20. Kinetic of Adsorption of Urea Nitrogen onto Chitosan Coated Dialdehyde Cellulose under Catalysis of Immobilized Urease

    Institute of Scientific and Technical Information of China (English)

    Zu Pei LIANG; Ya Qing FENG; Zhi Yan LIANG; Shu Xian MENG

    2005-01-01

    The adsorption of urea nitrogen onto chitosan coated dialdehyde cellulose (CDAC)under catalysis of immobilized urease in gelatin membrane (IE) was studied in batch system. The pseudo first-order and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model.

  1. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose

    OpenAIRE

    Lee, K. Y.; Tammelin, T.; Schulfter, K.; Kiiskinen, H.; Samela, J.; Bismarck, A.

    2012-01-01

    This work investigates the surface and bulk properties of nanofibrillated cellulose (NFC) and bacterial cellulose (BC), as well as their reinforcing ability in polymer nanocomposites. BC possesses higher critical surface tension of 57 mN m(-1) compared to NFC (41 mN m(-1)). The thermal degradation temperature in both nitrogen and air atmosphere of BC was also found to be higher than that of NFC. These results are in good agreement with the higher crystallinity of BC as determined by XRD, meas...

  2. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  3. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  4. Bacterial cellulose production from the litchi extract by Gluconacetobacter xylinus.

    Science.gov (United States)

    Yang, Xiao-Yan; Huang, Chao; Guo, Hai-Jun; Xiong, Lian; Luo, Jun; Wang, Bo; Lin, Xiao-Qing; Chen, Xue-Fang; Chen, Xin-De

    2016-01-01

    Although litchi has both nutrient and edible value, the extremely short preservation time limited its further market promotion. To explore processed litchi products with longer preservation time, litchi extract was selected as an alternative feedstock for production of bacterial cellulose (BC). After 2 weeks of static fermentation, 2.53 g/L of the BC membrane was obtained. The trace elements including magnesium (Mg) and sodium (Na) in the litchi extract were partly absorbed in the BC membrane, but no potassium (K) element was detected in it, curiously. Scanning electron microscope (SEM) photographs exhibited an ultrafine network nanostructure for the BC produced in the litchi extract. Analysis of the fourier-transform infrared spectroscopy (FTIR) confirmed the pellicles to be a cellulosic material. Interestingly, X-ray diffraction (XRD) results showed the BC membrane obtained from litchi extract had higher crystallinity of 94.0% than that from HS medium. Overall, the work showed the potential of producing high value-added polymer from litchi resources. PMID:25181328

  5. Polymorphy in native cellulose: recent developments

    International Nuclear Information System (INIS)

    In a number of earlier studies, the authors developed a model of cellulose structure based on the existence of two stable, linearly ordered conformations of the cellulose chain that are dominant in celluloses I and II, respectively. The model rests on extensive Raman spectral observations together with conformational considerations and solid-state 13C-NMR studies. More recently, they have proposed, on the basis of high resolution solid-state 13C-NMR observations, that native celluloses are composites of two distinct crystalline forms that coexist in different proportions in all native celluloses. In the present work, they examine the Raman spectra of the native celluloses, and reconcile their view of conformational differences with the new level of crystalline polymorphy of native celluloses revealed in the solid-state 13C-NMR investigations

  6. Investigation of a Submerged Membrane Reactor for Continuous Biomass Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi [Univ. of Arkansas, Fayetteville, AR (United States); Stickel, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wickramasinghe, S. Ranil [Univ. of Arkansas, Fayetteville, AR (United States)

    2015-07-10

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  7. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2016-04-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  8. From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

    Directory of Open Access Journals (Sweden)

    Maria Helena Godinho

    2014-06-01

    Full Text Available Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR, Rheology coupled with NMR (Rheo-NMR, rheology, optical methods, Magnetic Resonance Imaging (MRI, Wide Angle X-rays Scattering (WAXS, were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

  9. Development of carbon membranes for hydrogen recovery

    OpenAIRE

    Grainger, David

    2007-01-01

    The recovery of hydrogen from gas mixtures with hydrocarbons may provide a commercial niche for carbon molecular sieve membranes (CMSMs). Previous work has shown that carbon membranes achieve excellent performance, with respect to hydrogen permeability and selectivity, in the separation of hydrogen from light hydrocarbons, such as CH4, and CO2. The intent of this work was to screen CMSMs derived from cellulose-hemicellulose for H2 recovery and to generate performance data so that commercial a...

  10. Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive.

    Science.gov (United States)

    Gustafsson, Emil; Pelton, Robert; Wågberg, Lars

    2016-09-14

    The surface of regenerated cellulose membranes was modified by irreversible adsorption of carboxymethylcellulose (CMC). Pairs of wet CMC-modified membranes were laminated with polyvinylamine (PVAm) at room temperature, and the delamination force for wet membranes was measured for both dried and never-dried laminates. The wet adhesion was studied as a function of PVAm molecular weight, amine content, and deposition pH of the polyelectrolyte. Surprisingly the PVAm-CMC system gave substantial wet adhesion that exceeded that of TEMPO-oxidized membranes with PVAm for both dried and never-dried laminates. The greatest wet adhesion was achieved for fully hydrolyzed high molecular weight PVAm. Bulk carboxymethylation of cellulose membranes gave inferior wet adhesion combined with PVAm as compared to CMC adsorption which indicates that a CMC layer of the order of 10 nm was necessary. There are no obvious covalent cross-linking reactions between CMC and PVAm at room temperature, and on the basis of our results, we are instead attributing the wet adhesion to complex formation between the PVAm and the irreversibly adsorbed CMC at the cellulose surface. We propose that interdigitation of PVAm chains into the CMC layer is responsible for the high wet adhesion values. PMID:27552256

  11. Surface modification of cellulose fibres

    Directory of Open Access Journals (Sweden)

    Mohamed Naceur Belgacem

    2005-06-01

    Full Text Available Several approaches to the modification of cellulose fibres are described, namely: (i physical treatments such as corona or plasma treatments under different atmospheres; (ii grafting with hydrophobic molecules using well-known sizing compounds; (iii grafting with bi-functional molecules, leaving one of the functions available for further exploitation; and (iv grafting with organometallic compounds. The modified surfaces were characterized by elemental analysis, contact angle measurements, inverse gas chromatography, X-ray photoelectron and infrared spectroscopy, wettability, etc. These different tools provided clear-cut evidence of the occurrence of chemical reactions between the grafting agent used and the hydroxy functions of the cellulose surface, as well as of the existence of covalent bonding in the ensuing composite materials between the matrix and the fibres through the use of doubly reactive coupling agents.

  12. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  13. Cell adhesion on cellulose nanofibrils

    OpenAIRE

    Liljeström, Anna

    2016-01-01

    Cellulose nanofibrils (CNF) is an emerging biomaterial suitable for medical research. CNF hydrogel has been used as a three dimensional platforms for cell culture. This thesis aims to understand how human liver carcinoma (HepG2) cells interact with CNF. Measurements were performed with Quartz crystal microbalance with dissipation in order to quantify cell adsorption on CNF. Furthermore, the effect of the cell medium on the viscoelastic properties of CNF and on cell-CNF interactions were ...

  14. Lowering costs of microbial cellulose

    OpenAIRE

    Pajuelo, María González; Bungay, Henry; Hogg, Tim; Vasconcelos, Isabel

    1997-01-01

    We have been conducting research with Acetobacter xylinium for microbial conversion of sugars to cellulose. A rotating disk biological contactor should lower costs considerably because its production rates are greater than for the usual method of surface culture. Another major cost saving comes from replacing expensive sugars in the medium with sugars derived from wastes. Extracts of spent grapes from wastes of Portuguese wine factories supply suitable sugars for good production of micr...

  15. The Cellulase KORRIGAN Is Part of the Cellulose Synthase Complex

    NARCIS (Netherlands)

    Vain, T.; Crowell, E.F.; Timpano, H.; Biot, E.; Desprez, T.; Mansoori Zangir, N.; Trindade, L.M.; Pagant, S.; Robert, S.; Hofte, H.; Gonneau, M.; Vernhettes, S.

    2014-01-01

    Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by a large relative molecular weight cellulose synthase complex (CSC), which comprises at least three distinct cellulose synthases. Cellulose synthesis

  16. Search for selective ion diffusion through membranes

    Science.gov (United States)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The diffusion rates of several ions through some membranes developed as battery separators were measured. The ions investigated were Li(+), Rb(+), Cl(-), and So4. The members were crosslinked polyvinyl alcohol, crosslinked polyacrylic acid, a copolymer of the two, crosslinked calcium polyacrylate, cellulose, and several microporous polyphenylene oxide based films. No true specificity for diffusion of any of these ions was found for any of the membranes. But the calcium polyacrylate membrane was found to exhibit ion exchange with the diffusing ions giving rise to the leaching of the calcium ion and low reproducibility. These findings contrast earlier work where the calcium polyacrylate membrane did show specificity to the diffusion of the copper ion. In general, Fick's law appeared to be obeyed. Except for the microporous membranes, the coefficients for ion diffusion through the membranes were comparable with their values in water. For the microporous membranes, the values found for the coefficients were much less, due to the tortuosity of the micropores.

  17. Enzyme immobilization by fouling in ultrafiltration membranes: Impact of membrane configuration and type on flux behavior and biocatalytic conversion efficacy

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil;

    2014-01-01

    and PLGC regenerated cellulose membranes. With these two highly hydrophilic membranes, the ADH enzyme activity was fully retained even after 24h of storage of the membrane. Filtration blocking and resistance models were used to analyze the fouling/immobilization mechanisms and give explanations......Enzyme-immobilization in membranes accomplished by fostering membrane fouling was evaluated. Four different membrane configurations and five membranes were compared for immobilization of alcohol dehydrogenase (ADH) in terms of enzyme loading, permeate flux and final biocatalytic conversion....... The membrane configuration impacted the efficiency of the enzyme-immobilization as well as the biocatalytic-membrane reaction, and the “sandwich mode”, with an extra polypropylene support above the membrane skin layer, worked best due to its high flux and stable conversion. Among the membranes, a GR51PP...

  18. Cellulose-binding domains: tools for innovation in cellulosic fibre production and modification

    NARCIS (Netherlands)

    Quentin, M.G.E.; Valk, van der H.C.P.M.; Dam, van J.E.G.; Jong, de E.

    2003-01-01

    Plant cell walls are composed of cellulose, nature's most abundant macromolecule, and therefore represent a renewable resource of special technical importance. Cellulose degrading enzymes involved in plant cell wall loosening (expansins), or produced by plant pathogenic microorganisms (cellulases),

  19. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a "tearing" cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  20. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose. PMID:26572398

  1. Micromechanics and poroelasticity of hydrated cellulose networks.

    Science.gov (United States)

    Lopez-Sanchez, P; Rincon, Mauricio; Wang, D; Brulhart, S; Stokes, J R; Gidley, M J

    2014-06-01

    The micromechanics of cellulose hydrogels have been investigated using a new rheological experimental approach, combined with simulation using a poroelastic constitutive model. A series of mechanical compression steps at different strain rates were performed as a function of cellulose hydrogel thickness, combined with small amplitude oscillatory shear after each step to monitor the viscoelasticity of the sample. During compression, bacterial cellulose hydrogels behaved as anisotropic materials with near zero Poisson's ratio. The micromechanics of the hydrogels altered with each compression as water was squeezed out of the structure, and microstructural changes were strain rate-dependent, with increased densification of the cellulose network and increased cellulose fiber aggregation observed for slower compressive strain rates. A transversely isotropic poroelastic model was used to explain the observed micromechanical behavior, showing that the mechanical properties of cellulose networks in aqueous environments are mainly controlled by the rate of water movement within the structure. PMID:24784575

  2. CELLULOSE POWDER FROM OLIVE INDUSTRY SOLID WASTE

    Directory of Open Access Journals (Sweden)

    Othman A. Hamed,

    2012-07-01

    Full Text Available In the present work, a method for extracting cellulose from olive industry solid waste has been developed. The method involves subjecting solid olive waste to kraft pulping, followed by multistep bleaching processes. The totally free chlorine chemical bleaching sequence APEP was the most effective and gave an average cellulose yield of about 35%. The extracted cellulose was extensively characterized using FTIR, EMS, HPLC, and viscometry. Our key finding in this study is that the extracted cellulose was found to have physio-chemical properties that are similar to those of conventional microcrystalline cellulose (MCC. This is important, as our results show how lignocellulosic agricultural wastes can be utilized to produce high value cellulose powder.

  3. Size Effects of Nano-crystalline Cellulose

    Institute of Scientific and Technical Information of China (English)

    Guo Kang LI; Xiao Fang LI; Yong JIANG; Mei Zhen ZENG; En Yong DING

    2003-01-01

    Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye(e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystallinecellulose(NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperatureand even can dissolve into slightly concentrated lye (e.g. 4%NaOH).

  4. Bulk and interfacial properties of cellulose ethers

    OpenAIRE

    Bodvik, Rasmus

    2012-01-01

    This work summarizes several studies that all concern cellulose ethers of the types methylcellulose (MC) hydroxypropylmethylcellulose (HPMC) and ethyl(hydroxyethyl)cellulose (EHEC). They share the feature of negative temperature response, as they are soluble in water at room temperature but phase separate and sometimes form gels at high temperatures. The different types of viscosity transitions occurring in these three cellulose ethers are well-known. However, earlier studies have not solved ...

  5. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya

    2010-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  6. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo

    2011-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  7. Liquid crystalline cellulose derivatives for mirrorless lasing

    OpenAIRE

    Wenzlik, Daniel

    2013-01-01

    In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned subs...

  8. Lyocell, The New Generation of Regenerated Cellulose

    OpenAIRE

    Éva Borbély

    2008-01-01

    For the majority of the last century, commercial routes to regenerated cellulosefibres have coped with the difficulties of making a good cellulose solution by using an easyto dissolve derivative (e.g. xanthane in the case of viscose rayon) or complex (e.g.cuprammonium rayon). For the purposes of this paper, advanced cellulosic fibres aredefined as those made from a process involving direct dissolution of cellulose. The firstexamples of such fibres have now been generically designaed as lyocel...

  9. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  10. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    OpenAIRE

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  11. A centrifugal method for the evaluation of polymer membranes for reverse osmosis

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.; Mccullough, R. P.

    1973-01-01

    A rapid and simple method employing the laboratory centrifuge shows promise for evaluation of membrane performance during reverse osmosis. Results are presented for cellulose acetate membranes for rejection of salt and urea dissolved solids. Implications of the study are to rapid screening of membrane performance, use in laboratories with limited facilities, and possible space waste water purification.

  12. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. PMID:27127053

  13. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.

  14. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  15. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis

    OpenAIRE

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A.; Robertson, Peter K. J.; Irvine, John T. S.

    2016-01-01

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  16. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    Science.gov (United States)

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels. PMID:26661296

  17. Cellulose microfibril assembly and orientation in higher plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, S.C. (Syracuse Univ., NY); Maclachlan, G.A.; Brown, R.M. Jr.

    1983-01-01

    Freeze-fractured plasma membranes of seedlings of Zea mays L., Burpee's Snowcross, and Pisum sativum L., variety Alsaka, contain terminal complex structures and the impressions of microfibrils from the newest cell wall layer.Terminal complex subunits are on the exoplasmic fracture (EF) face, and rosette subunits are on the protoplasmic fracture (PF) face of the membrane. The association of terminal complexes and rosettes with microfibril tips and their association with newly deposited groups of microfibrils is indirect evidence for their role in microfibril assembly. Microtubules may be responsible for certain orientations of microfibrils, particularly the formation of bands of microfibrils in newly deposited wall layers. However, microfibril orienting mechanisms are more complex, involving factors still present during colchicine treatment. Since UDP-glucose is thought to be a precursor of cellulose microfibrils in higher plant cells, EM radioautography was used to determine the site of incorporation of glucose. However, under the conditions used, glucose was only incorporated from UDP-glucose at the surface of cut or damaged pea stem cells, i.e., in vitro. Thus, incorporation of glucose from UDP-glucose was not useful for probing the patterns of cellulose microfibril synthesis in vivo. 18 references, 8 figures.

  18. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  19. Effect of γ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials

    Science.gov (United States)

    Stoica-Guzun, Anicuta; Stroescu, Marta; Jipa, Iuliana; Dobre, Loredana; Zaharescu, Traian

    2013-03-01

    The aim of this paper is to present the influence of bacterial cellulose microfibrils and γ-radiation dose on poly(vinyl alcohol) (PVA)-bacterial cellulose (BC) composites. Two composite materials were obtained: the first one from PVA aqueous solution 4% and 5% wet bacterial cellulose and the second from the same PVA solution and 10% wet bacterial cellulose. In terms of PVA/dry BC ratios (w/w) for these films the ratios are 1/0.025 and 1/0.050. The obtained composite materials were characterized by infrared spectroscopy with Fourier transform (FT-IR) and UV-vis spectroscopy in order to evaluate the irradiation effect on their stability. The swelling behavior of the polymeric composites was also studied. The composite materials were compared with a film of pure PVA and a dry BC membrane.

  20. Pressure Retarded Osmosis and Forward Osmosis Membranes: Materials and Methods

    Directory of Open Access Journals (Sweden)

    May-Britt Hägg

    2013-03-01

    Full Text Available In the past four decades, membrane development has occurred based on the demand in pressure driven processes. However, in the last decade, the interest in osmotically driven processes, such as forward osmosis (FO and pressure retarded osmosis (PRO, has increased. The preparation of customized membranes is essential for the development of these technologies. Recently, several very promising membrane preparation methods for FO/PRO applications have emerged. Preparation of thin film composite (TFC membranes with a customized polysulfone (PSf support, electorspun support, TFC membranes on hydrophilic support and hollow fiber membranes have been reported for FO/PRO applications. These novel methods allow the use of other materials than the traditional asymmetric cellulose acetate (CA membranes and TFC polyamide/polysulfone membranes. This review provides an outline of the membrane requirements for FO/PRO and the new methods and materials in membrane preparation.

  1. Sintesis dan Karakterisasi Membran untuk Proses Ultrafiltrasi

    Directory of Open Access Journals (Sweden)

    Sri Aprilia

    2011-12-01

    Full Text Available Asymmetric ultrafiltration (UF membranes were prepared from three kinds of polymer namely polyacrilonitryle (PAN, polysufone (PS, and cellulose acetate (CA by phase inversion method. Water was used as non-solvent. These membranes were charachterized for ultrafiltration membranes i.e measurement of solvent permeability (Lp, Molecular Weight Cut Off membranes (MWCO with various molecular weight of solute dekstran, and morphology of the membrane by Scanning Electron Microscopy (SEM. SEM analysis includes surface area and cross section area. Membranes with polymer low concentration 10% as PAN-1, PS-1 and CA-1 have the larger Lp from PAN-2, PS-2, and CA-2 that have concentration 15%  for the same type of polymer. These occur because of the larger pore membrane than high concentration of polymer. SEM analysis showed a homogeneous distribution in the surface membrane and pore of membran like sponge structure from cross section area. Membranes CA-1, CA-2, FS-1 and FS-2 have Molecular Weight Cut off (MWCO for the solute dextran 40000 Da. For PS-2 and PS-2 membranes have MWCO of dextran above 20000 Da. Keywords: ultrafiltration membrane, solvent permeability coeficient, MWCO, membrane morphology

  2. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  3. [Audiometry in the cellulose industry].

    Science.gov (United States)

    Corrao, C R; Milano, L; Pedulla, P; Carlesi, G; Bacaloni, A; Monaco, E

    1993-01-01

    A noise level dosimetry and audiometric testing were conducted in a cellulose factory to determine the hazardous noise level and the prevalence of noise induced hearing loss among the exposed workers. The noise level was recorded up to 90 db (A) in several working areas. 18 workers, potentially exposed to noise injury, evidenced a significant hearing loss. While no evidence of noise injury was recorded in a control group of 100 subjects. This finding suggest a strict relationship between audiometric tests, the noise level recorded in the working place and the working seniority of exposed employers. PMID:7720969

  4. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes.

    Science.gov (United States)

    Yüksel, Suna; Kabay, Nalan; Yüksel, Mithat

    2013-12-15

    The removal of an endocrine disrupting compound, bisphenol A (BPA), from model solutions by selected nanofiltration (NF) and reverse osmosis (RO) membranes was studied. The commercially available membranes NF 90, NF 270, XLE BWRO, BW 30 (Dow FilmTech), CE BWRO and AD SWRO (GE Osmonics) were used to compare their performances for BPA removal. The water permeability coefficients, rejection of BPA and permeate flux values were calculated for all membranes used. No significant changes in their BPA removal were observed for all tight polyamide based NF and RO membranes tested except for loose NF 270 membrane. The polyamide based membranes exhibited much better performance than cellulose acetate membrane for BPA removal. Almost a complete rejection (≥ 98%) for BPA was obtained with three polyamide based RO membranes (BW 30, XLE BWRO and AD SWRO). But cellulose acetate based CE BWRO membrane offered a low and variable (10-40%) rejection for BPA. PMID:23731784

  5. Rheological characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a mixer torque rheometer.

    Science.gov (United States)

    Luukkonen, P; Schaefer, T; Hellén, L; Juppo, A M; Yliruusi, J

    1999-10-25

    The rheological properties of silicified microcrystalline cellulose (Prosolv 50) were compared with those of standard grades of microcrystalline cellulose (Emcocel 50 and Avicel PH 101). Cellulose samples were analyzed using nitrogen adsorption together with particle size, flowability, density and swelling volume studies. The rheological behaviour of the wet powder masses was studied as a function of mixing time using a mixer torque rheometer (MTR). Silicified microcrystalline cellulose exhibited improved flow characteristics and increased specific surface area compared to standard microcrystalline cellulose grades. Although the silicification process affected the swelling properties and, furthermore, the mixing kinetics of microcrystalline cellulose, the source of the microcrystalline cellulose had a stronger influence than silicification on the liquid requirement at peak torque. PMID:10518674

  6. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.

    Science.gov (United States)

    Saarikoski, Eve; Rissanen, Marja; Seppälä, Jukka

    2015-03-30

    Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with microfibrillated cellulose (MFC) in order to find the threshold in which MFC fibers form a percolation network within the dissolved cellulose solution and in order to improve the properties of regenerated cellulose films. In the aqueous state, correlations between the rheological properties of dissolved cellulose/MFC blend suspensions and MFC fiber concentrations were investigated and rationalized. In addition, rheological properties of diluted MFC suspensions were characterized and a correlation with NaOH concentration was found, thus partly explaining the flow properties of dissolved cellulose/MFC blend suspensions. Finally, based on results from Dynamic Mechanical Analysis (DMA), MFC addition had strengthening/plasticizing effect on regenerated cellulose films if low concentrations of MFC, below the percolation threshold (5.5-6 wt%, corresponding to 0.16-0.18 wt% of MFC in the blend suspensions), were used. PMID:25563945

  7. Cellulose nanocrystals: synthesis, functional properties, and applications

    Directory of Open Access Journals (Sweden)

    George J

    2015-11-01

    Full Text Available Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. Keywords: sources of cellulose, mechanical properties, liquid crystalline nature, surface modification, nanocomposites 

  8. Radiation pretreatment of cellulose for energy production

    Science.gov (United States)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  9. Radiation pretreatment of cellulose for energy production

    International Nuclear Information System (INIS)

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulose material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism. (author)

  10. Single-cell protein from waste cellulose

    Science.gov (United States)

    Dunlap, C. E.; Callihan, C. D.

    1973-01-01

    The recycle, reuse, or reclamation of single cell protein from liquid and solid agricultural waste fibers by a fermentation process is reported. It is shown that cellulose comprises the bulk of the fibers at 50% to 55% of the dry weight of the refuse and that its biodegradability is of prime importance in the choice of a substrate. The application of sodium hydroxide followed by heat and pressure serves to de-polymerize and disrupt lignin structure while swelling the cellulose to increase water uptake and pore volume. Some of the lignin, hemi-celluloses, ash, and cellulose of the material is hydrolized and solubilized. Introduction of microorganisms to the substrate fibers mixed with nutrients produces continuous fermentation of cellulose for further protein extraction and purification.

  11. Photophysics of alloxazines on cellulose.

    Science.gov (United States)

    Sikorski, Marek; Sikorska, Ewa; Khmelinskii, Igor V; Gonzalez-Moreno, Rafael; Bourdelande, José L; Siemiarczuk, Aleksander

    2002-09-01

    We report the UV-Vis absorption, fluorescence and transient absorption spectra of selected methylalloxazines adsorbed on cellulose from a polar solvent. The ground-state properties of these probe molecules in the cellulose matrix are similar to those in polar protic solvents. Fluorescence decay data allowed identification of three emitting species for every molecule studied, excluding 1-methyllumichrome which lacks the capacity to rearrange into an isoalloxazinic form. The short-lived emission component was attributed to the neutral form of the molecule, and the two longer-lived components were assigned to the two distinct deprotonated monoanionic forms resulting from dissociation at the respective N(3) and N(1) nitrogen atoms. The two monoanions coexist due to their very similar pKa, values. Transient absorption experiments detected two species created by the laser pulse in these systems. The short-lived species was identified as the triplet excited state, and the long-lived species as the semireduced radical, formed by hydrogen atom or proton transfer from the glycosidic unit to the alloxazine carbonyl group. PMID:12665311

  12. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  13. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  14. Pharmacopoeial and physicochemical properties of α-cellulose and microcrystalline cellulose powders derived from cornstalks

    Directory of Open Access Journals (Sweden)

    Chukwuemeka P Azubuike

    2012-01-01

    Full Text Available Background: Suitable α-cellulose and microcrystalline cellulose powders for use in the pharmaceutical industry can be derived from agricultural wastes. Aims: The pharmacopoeial and physicochemical properties of cornstalk α-cellulose (CCC and cornstalk microcrystalline cellulose powders (MCCC were compared to a commercial brand of microcrystalline cellulose (Avicel PH101 to evaluate their usefulness as pharmaceutical excipients. Settings and Design: Physicochemical properties of an excipient play a very crucial role in the functions of the excipient; hence, these properties were evaluated and compared with a commercial brand. Materials and Methods: α-cellulose was extracted from cornstalks. Modification of this α-cellulose powder was carried out by its partial hydrolysis with hydrochloric acid (HCl to obtain a microcrystalline cellulose powder. Their pharmacopoeial, physicochemical and microbiological properties were evaluated using standard methods. Statistical Analysis: OriginPro 8 SR2 v. 0891 (B891 software (OriginLab Corporation USA was used for statistical evaluation. One-way analysis of variance was used to differentiate between samples and decide where significant differences were established. Results: The yield of α-cellulose from the cornstalks was 32.5%w/w and that of microcrystalline cellulose 26%w/w. All the cellulose samples met all the pharmacopoeial parameters that were carried out. The comparison of physicochemical properties of the CCC, MCCC and Avicel PH101 suggests that the microcrystalline celluloses might have better flow and compression properties than the CCC sample. The three cellulose powders were of high microbial excipient quality. For almost all parameters evaluated, it was generally observed that the MCCC has similar characteristics to Avicel PH101. Conclusions: MCCC can be a suitable alternative to the expensive Avicel PH101as pharmaceutical excipients.

  15. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  16. Production and Characterization of a New Bacterial Cellulose/Poly(Vinyl Alcohol) Nanocomposite

    OpenAIRE

    Miguel Gama; Fernando Dourado; João Pedro Silva; Alexandre F. Leitão

    2013-01-01

    Bacterial cellulose (BC) is characterized for its high water holding capacity, high crystallinity, an ultrafine fiber network and high tensile strength. This work demonstrates the production of a new interpenetrated polymer network nanocomposite obtained through the incorporation of poly(vinyl alcohol) (PVA) on the BC matrix and evaluates the effect of oven drying on the morphological, mechanical and mass transfer properties of the composite membranes. Both the addition of PVA and oven drying...

  17. Degradation of cellulose by basidiomycetous fungi.

    Science.gov (United States)

    Baldrian, Petr; Valásková, Vendula

    2008-05-01

    Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups. PMID:18371173

  18. Recycling of cellulosic fibers by enzymatic process.

    Science.gov (United States)

    Shojaei, K M; Dadashian, F; Montazer, M

    2012-02-01

    In this research, enzymatic treatment as an environmental friendly process has been used for recycling process of old cellulosic wastes such as cotton, viscose, and lyocell. Cellulase hydrolyses cellulosic chains and shortens cellulosic fibers. This study investigates to detect the optimum enzyme concentration and time of treatments for suitable changes of length and weight loss. The main purposes of this article are shortening of cellulosic fibers and evaluating of enzymatic treatment in different kind of cellulosic fibers. According to the data of experiments, with the increase of enzyme concentration and the treatment time, the length and weight loss percentage of the cellulosic fibers has been decreased. The length and weight loss percentage of treated viscose is more than that of lyocell and cotton fibers. Optimized condition, reaction time, and enzyme concentration have been determined by mean length of treated cellulosic samples. Suitable longitudinal distribution of fiber for papermaking industries is in the range of 0 to 4 mm. Optimum enzyme concentration and treatment time for recycling cotton, lyocell, and viscose fibers are 2% and 48 h for cotton and lyocell and 0.5% and 48 h for viscose, respectively. According to the data of experiment, the length of treated fibers is appropriate for its usage as a raw material in papermaking industries. PMID:22161212

  19. Construction of a multilayer planar membrane applicable to ion-transport measurement.

    Science.gov (United States)

    Setaka, M; Yano, M; Kwan, T; Shimizu, H

    1979-08-01

    Multilayer planar membranes applicable to ion-transport measurements were constructed from egg yolk lecithin, egg yolk lecithin-cholesterol mixture, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine between two tightly stretched cellulose sheets. While most of the phospholipids in the membranes were found by a spin label technique to be uniformly oriented with their long hydrocarbon chains perpendicular to the surfaces of the cellulose sheets, a small fraction of phospholipids were isotropically oriented in multilayer membranes. The amount of phospholipids with isotropic orientations decreased with increasing content of cholesterol in membranes and became zero in membranes of egg yolk lecithin-cholesterol mixture (molar ratio of 1: 0.67). The degree of orientation, S, of uniformly oriented phospholipids in membranes was also increased by adding cholesterol to the membranes. The orientation of phospholipids in membranes was rather stable in distilled water and in aqueous calcium chloride (1, 10, 100 mM), while a marked disordering of oriented phospholipids was induced in a aqueous solutions containing thymol, isopropanol, or butanol beyond certain specific concentrations. The membranes can be used for measurements of calcium permeation. An appreciable barrier function to calcium permeation was detected with these multilayer planar membranes as compared with control experiments using only cellulose sheets as membranes. A preliminary investigation suggested that changes in the orientational structure of phospholipids in the multilayer planar membranes are correlated with permeability properties of the membranes. PMID:225307

  20. A novel cellulose hydrogel prepared from its ionic liquid solution

    Institute of Scientific and Technical Information of China (English)

    LI Lu; LIN ZhangBi; YANG Xiao; WAN ZhenZhen; CUI ShuXun

    2009-01-01

    A novel cellulose hydrogel is prepared by regenerating cellulose from its ionic liquid solution. The transparency cellulose hydrogel presents a good chemical stability and an acceptable mechanical property. This non-toxic cellulose hydrogel should be biocompatibie and may be useful in the future as a biomaterial.

  1. Colonization of Crystalline Cellulose by Clostridium cellulolyticum ATCC 35319

    OpenAIRE

    Gelhaye, E.; Gehin, A; Petitdemange, H.

    1993-01-01

    Cellulose colonization by Clostridium cellulolyticum was studied by using [methyl-3H]thymidine incorporation. The colonization process indicated that a part of the bacterial population was released from cellulose to the liquid phase before binding and colonizing another adhesion site of the cellulose. We postulate that cellulose colonization occurs according to the following process: adhesion, colonization, release, and readhesion.

  2. Surface modification of cellulose nanocrystals

    Institute of Scientific and Technical Information of China (English)

    WANG Neng; DING Enyong; CHENG Rongshi

    2007-01-01

    In order to improve the dispersibility of cellulose nanocrystal(CNC) particles,three difierent grafted reactions of acetylation,hydroxyethylation and hydroxypropylation were introduced to modify the CNC surface.The main advantages of these methods were the simple and easily controlled reaction conditions,and the dispersibility of the resulting products was distinctly improved.The properties of the modified CNC were characterized by means of Fourier transform infrared spectroscopy(FT-IR),13 C nuclear magnetic resonance(NMR),transmission electron microscopy(TEM)and thermogravimetric analyses(TGA).The results indicated mat after desiccation,the modification products could be dispersed again in the proper solvents by ultrasonic treatments,and the diameter of their particles had no obvious changes.However,their thermal degradation behaviors were quite different.The initial decomposition temperature of the modified products via hydroxyethylation or hydroxypropylation was lower than that of modified products via acetylation.

  3. Potentiometric studies on stepwise mixed ligand chelate formation of La(III), Pr(III) or Nd(III)-N-hydroxy ethylenediamine-N,N',N'-triacetic acid-mercapto acids

    International Nuclear Information System (INIS)

    Solution equilibrium studies on the interaction between 1 : 1, Ln(III)-HEDTA binary chelate (where Ln(III) =La(III), Pr(III) or Nd(III); HEDTA = N-hydroxyl-ethyl-ethylenediamine-N,N',N'-triacetic acid) with certain mercapto acids such as thioglycollic(TGA) and thiomalic (TMEA) have been carried out potentiometrically. Formation constants of the resulting mixed ligand chelates, MAL (where M =La(III), Pr(III) or Nd(III); A = HEDTA and L = TGA or TMEA) have been determined at 30 +- 10 and μ=0.1(KNO3). The values of the formation constant Ksub(MAL) have been interpreted in terms of electrostatic repulsion indicating that the contribution due to π-interaction in M-S bond is not significant. The order of stability in terms of metals ions has been found to be La(III)< Pr(III)< Nd(III) and in terms of secondary ligand as TGA< TMEA. (auth.)

  4. Lyocell, The New Generation of Regenerated Cellulose

    Directory of Open Access Journals (Sweden)

    Éva Borbély

    2008-06-01

    Full Text Available For the majority of the last century, commercial routes to regenerated cellulosefibres have coped with the difficulties of making a good cellulose solution by using an easyto dissolve derivative (e.g. xanthane in the case of viscose rayon or complex (e.g.cuprammonium rayon. For the purposes of this paper, advanced cellulosic fibres aredefined as those made from a process involving direct dissolution of cellulose. The firstexamples of such fibres have now been generically designaed as lyocell fibres todistinguish them from rayons, and the first commercial lyocell fibre is Courtaulds’ Tencel.

  5. Hydrolyzability of xylan after adsorption on cellulose: Exploration of xylan limitation on enzymatic hydrolysis of cellulose.

    Science.gov (United States)

    Wang, Xiao; Li, Kena; Yang, Ming; Zhang, Junhua

    2016-09-01

    During pretreatment of lignocellulosic materials, the dissolved xylan would re-adsorb on cellulose, and then inhibits the cellulose hydrolysis by cellulases. However, the hydrolyzability of xylan adsorbed on cellulose is not clear. In this work, the adsorption behavior of xylans on celluloses and the hydrolysis of adsorbed xylan by xylanase (XYL) were investigated. The results indicated that the adsorption of beechwood xylan (BWX) and oat spelt xylan (OSX) on Avicel was conformed to Langmuir-type adsorption isotherm. Higher ion strength increased the adsorption of BWX on Avicel, but not that of OSX. Both BWX and OSX adsorbed on Avicel and corn stover after dilute acid pretreatment (CS-DA) could be hydrolyzed by XYL. Compared to OSX, BWX adsorbed on cellulosic materials could be more easily hydrolyzed by XYL. Thus, supplementation of XYL could hydrolyze the xylan adsorbed on cellulose and potentially improved hydrolysis efficiency of lignocelluloses. PMID:27185150

  6. Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid.

    Science.gov (United States)

    Huang, Kelin; Wang, Ben; Cao, Yan; Li, Huiquan; Wang, Jinshu; Lin, Weijiang; Mu, Chaoshi; Liao, Dankui

    2011-05-25

    Cellulose acetate butyrate (CAB) and cellulose acetate propionate (CAP) were prepared homogeneously in a 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid system from sugarcane bagasse (SB). The reaction temperature, reaction time, and molar ratio of butyric (propionic) anhydride/anhydroglucose units in the cellulose affect the butyryl (B) or propionyl (P) content of CAB or CAP samples. The (13)C NMR data revealed the distribution of the substituents of CAB and CAP. The thermal stability of sugar cane bagasse cellulose was found by thermogravimetric analysis to have decreased after chemical modification. After reaction, the ionic liquid was effectively recycled and reused. This study provides a new way for high-value-added utilization of SB and realizing the objective of turning waste into wealth. PMID:21452895

  7. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  8. Effect of shear rate on the performance of nanofiltration membrane for water desalination

    OpenAIRE

    Ahmad Fausi Ismail; Abdul Rahman Hassan; Ng Be Cheer

    2002-01-01

    Asymmetric nanofiltration membranes were fabricated from a ternary dope composition consisting of cellulose acetate (CA), formamide and acetone using a simple dry/wet phase inversion process. In order to fabricate a high performance nanofiltration membrane, the effects of rheological factor of dope solutions, that is shear rate on the performance of nanofiltration membranes for water desalination has been studied. The membranes performances that are based on percentage of rejection of sodium ...

  9. Reaction mechanisms in cellulose pyrolysis: a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  10. Preparation, characterisation and wetting of fluorinated cellulose surfaces

    OpenAIRE

    Aulin, Christian

    2007-01-01

    This thesis deals with the wetting by oil mixtures of two different model cellulose surfaces. The surfaces studied were a regenerated cellulose (RG) surface prepared by spin-coating, and a film consisting of polyelectrolyte multilayers (PEM) of Poly(ethyleneimine) (PEI) and a carboxymethylated Microfibrillated Cellulose (MFC). After coating or covalently modifying the cellulose surfaces with various amounts of fluorosurfactants, the fluorinated cellulose films were used to follow the spreadin...

  11. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications

    OpenAIRE

    Alain Dufresne; Gilberto Siqueira; Julien Bras

    2010-01-01

    Cellulose is the most abundant biomass material in nature. Extracted from natural fibers, its hierarchical and multi-level organization allows different kinds of nanoscaled cellulosic fillers—called cellulose nanocrystals or microfibrillated cellulose (MFC)—to be obtained. Recently, such cellulose nanoparticles have been the focus of an exponentially increasing number of works or reviews devoted to understanding such materials and their applications. Major studies over the last decades have s...

  12. Spray-Dried Cellulose Nanofibers as Novel Tablet Excipient

    OpenAIRE

    Kolakovic, Ruzica; Peltonen, Leena; Laaksonen, Timo; Putkisto, Kaisa; Laukkanen, Antti; Hirvonen, Jouni

    2011-01-01

    The purpose of this study was to evaluate the potential of cellulose nanofibers (also referred as microfibrillated cellulose, nanocellulose, nanofibrillated, or nanofibrillar cellulose) as novel tabletting material. For this purpose, physical and mechanical properties of spray-dried cellulose nanofibers (CNF) were examined, and results were compared to those of two commercial grades of microcrystalline cellulose (MCC), Avicel PH101 and Avicel PH102, which are the most commonly and widely used...

  13. Hydrolytic and Oxidative Mechanisms Involved in Cellulose Degradation

    OpenAIRE

    Nutt, Anu

    2006-01-01

    The enzymatic degradation of cellulose is an important process in nature. This thesis has focused on the degradation of cellulose by enzymes from two cellulose-degrading fungi, Hypocrea jecorina and Phanerochaete chrysosporium, including both the action of the individual enzymes and their synergistic interplay. The end-preference of cellobiohydrolases on crystalline cellulose was studied. Cellobiohydrolases belonging to glycosyl hydrolase (GH) family 7 were found to hydrolyse cellulose proce...

  14. Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection.

    OpenAIRE

    Matthysse, A G

    1983-01-01

    During the attachment of Agrobacterium tumefaciens to carrot tissue culture cells, the bacteria synthesize cellulose fibrils. We examined the role of these cellulose fibrils in the attachment process by determining the properties of bacterial mutants unable to synthesize cellulose. Such cellulose-minus bacteria attached to the carrot cell surface, but, in contrast to the parent strain, with which larger clusters of bacteria were seen on the plant cell, cellulose-minus mutant bacteria were att...

  15. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors

  16. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jiapeng, E-mail: firgexiao@sina.cn; Pang, Zengyuan, E-mail: pangzengyuan1212@163.com; Yang, Jie, E-mail: young1993@126.com; Huang, Fenglin, E-mail: flhuang@jiangnan.edu.cn; Cai, Yibing, E-mail: yibingcai@jiangnan.edu.cn; Wei, Qufu, E-mail: qfwei@jiangnan.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • PANI nanorods have been grown onto the surface of CMC/cellulose nanofibers for the fabrication of biosensor substrate material. • The proposed laccase biosensor exhibited a low detection limit and high sensitivity in the detection of catechol. • Hierarchical PANI/CMC/cellulose nanofibers are the promising material in the design of high-efficient biosensors. - Abstract: We report a facile approach to synthesizing and immobilizing polyaniline nanorods onto carboxymethyl cellulose (CMC)-modified cellulose nanofibers for their biosensing application. Firstly, the hierarchical PANI/CMC/cellulose nanofibers were fabricated by in situ polymerization of aniline on the CMC-modified cellulose nanofiber. Subsequently, the PANI/CMC/cellulose nanofibrous mat modified with laccase (Lac) was used as biosensor substrate material for the detection of catechol. PANI/CMC/cellulose nanofibers with highly conductive and three dimensional nanostructure were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under optimum conditions, the Lac/PANI/CMC/cellulose/glassy carbon electrode (GCE) exhibited a fast response time (within 8 s), a linear response range from 0.497 μM to 2.27 mM with a high sensitivity and low detection limit of 0.374 μM (3σ). The developed biosensor also displayed good repeatability, reproducibility as well as selectivity. The results indicated that the composite mat has potential application in enzyme biosensors.

  17. Apo- and Cellopentaose-bound Structures of the Bacterial Cellulose Synthase Subunit BcsZ

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, Olga; Zimmer, Jochen (UV)

    2012-10-25

    Cellulose, a very abundant extracellular polysaccharide, is synthesized in a finely tuned process that involves the activity of glycosyl-transferases and hydrolases. The cellulose microfibril consists of bundles of linear {beta}-1,4-glucan chains that are synthesized inside the cell; however, the mechanism by which these polymers traverse the cell membrane is currently unknown. In Gram-negative bacteria, the cellulose synthase complex forms a trans-envelope complex consisting of at least four subunits. Although three of these subunits account for the synthesis and translocation of the polysaccharide, the fourth subunit, BcsZ, is a periplasmic protein with endo-{beta}-1,4-glucanase activity. BcsZ belongs to family eight of glycosyl-hydrolases, and its activity is required for optimal synthesis and membrane translocation of cellulose. In this study we report two crystal structures of BcsZ from Escherichia coli. One structure shows the wild-type enzyme in its apo form, and the second structure is for a catalytically inactive mutant of BcsZ in complex with the substrate cellopentaose. The structures demonstrate that BcsZ adopts an ({alpha}/{alpha}){sub 6}-barrel fold and that it binds four glucan moieties of cellopentaose via highly conserved residues exclusively on the nonreducing side of its catalytic center. Thus, the BcsZ-cellopentaose structure most likely represents a posthydrolysis state in which the newly formed nonreducing end has already left the substrate binding pocket while the enzyme remains attached to the truncated polysaccharide chain. We further show that BcsZ efficiently degrades {beta}-1,4-glucans in in vitro cellulase assays with carboxymethyl-cellulose as substrate.

  18. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. PMID:24607460

  19. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    YE; Jun

    2001-01-01

    Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.……

  20. Cellulosic ethanol is ready to go

    Energy Technology Data Exchange (ETDEWEB)

    Burke, M. [SunOpta BioProcess Group, Brampton, ON (Canada)

    2006-07-01

    A corporate overview of the SunOpta organization was presented. The organization includes three divisions, notably organic food, industrial minerals, and a bioprocess group. It is a Canadian organization that has experienced over 60 per cent growth per year since 1999. The presentation provided a history of the bioprocess group from 1973 to 2003. The presentation also illustrated the biomass process from wood, straw or corn stover to cellulosic ethanol and acetone and butanol. Several images were presented. The production of xylitol from oat hulls and birch and from ryegrass straw to linerboard was also illustrated. Last, the presentation illustrated the biomass production of cellulose, hemicellulose and lignin extraction as well as the ammonia pretreatment of cellulosics. The presentation also listed several current and future developments such as an expansion plan and implementation of cellulosic ethanol. Economic success was defined as requiring proximity to market; high percentage concentration to distillation; and co-located within existing infrastructure. figs.