WorldWideScience

Sample records for cellulolytic thermophile acidothermus

  1. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, Chris [Los Alamos National Laboratory; Bruce, David [Los Alamos National Laboratory; Challacome, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Philippe [CNRS, UNIV LYON; Necsula, Anamaria [CNRS, UNIV LYON; Daubin, Vincent [CNRS, UNIV LYON; Medigue, Claudine [CNRS/GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [DOE JOINT GENOME INST.; Pujic, Pierre [CNRS, UNIV LYON; Richardson, Paul [DOE JOINT GENOME INST; Berry, Alison M [UC DAVIS

    2008-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus lIB, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudogenes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  2. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Brettin, Thomas S [Los Alamos National Laboratory; Necsulea, Anamaria [UNIV LYON; Daubin, Vincent [UNIV LYON; Medigue, Claudine [GENOSCOPE; Adney, William S [NREL; Xu, Xin C [UC DAVIS; Lapidus, Alla [JGI; Pujic, Pierre [UNIV LYON; Berry, Alison M [UC DAVIS; Barabote, Ravi D [UC DAVIS; Leu, David [UC DAVIS; Normand, Phillipe [UNIV LYON

    2009-01-01

    We present here the complete 2.4 MB genome of the actinobacterial thermophile, Acidothermus cellulolyticus 11B, that surprisingly reveals thermophilic amino acid usage in only the cytosolic subproteome rather than its whole proteome. Thermophilic amino acid usage in the partial proteome implies a recent, ongoing evolution of the A. cellulolyticus genome since its divergence about 200-250 million years ago from its closest phylogenetic neighbor Frankia, a mesophilic plant symbiont. Differential amino acid usage in the predicted subproteomes of A. cellulolyticus likely reflects a stepwise evolutionary process of modern thermophiles in general. An unusual occurrence of higher G+C in the non-coding DNA than in the transcribed genome reinforces a late evolution from a higher G+C common ancestor. Comparative analyses of the A. cellulolyticus genome with those of Frankia and other closely-related actinobacteria revealed that A. cellulolyticus genes exhibit reciprocal purine preferences at the first and third codon positions, perhaps reflecting a subtle preference for the dinucleotide AG in its mRNAs, a possible adaptation to a thermophilic environment. Other interesting features in the genome of this cellulolytic, hot-springs dwelling prokaryote reveal streamlining for adaptation to its specialized ecological niche. These include a low occurrence of pseudo genes or mobile genetic elements, a flagellar gene complement previously unknown in this organism, and presence of laterally-acquired genomic islands of likely ecophysiological value. New glycoside hydrolases relevant for lignocellulosic biomass deconstruction were identified in the genome, indicating a diverse biomass-degrading enzyme repertoire several-fold greater than previously characterized, and significantly elevating the industrial value of this organism.

  3. Complete genome of the cellyloytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evloutionary adaptations

    Energy Technology Data Exchange (ETDEWEB)

    Barabote, Ravi D.; Xie, Gary; Leu, David H.; Normand, Philippe; Necsulea, Anamaria; Daubin, Vincent; Medigue, Claudine; Adney, William S.; Xu,Xin Clare; Lapidus, Alla; Detter, Chris; Pujic, Petar; Bruce, David; Lavire, Celine; Challacombe, Jean F.; Brettin, Thomas S.; Berry, Alison M.

    2009-01-01

    We present here the complete 2.4 Mb genome of the cellulolytic actinobacterial thermophile, Acidothermus cellulolyticus 11B. New secreted glycoside hydrolases and carbohydrate esterases were identified in the genome, revealing a diverse biomass-degrading enzyme repertoire far greater than previously characterized, and significantly elevating the industrial value of this organism. A sizable fraction of these hydrolytic enzymes break down plant cell walls and the remaining either degrade components in fungal cell walls or metabolize storage carbohydrates such as glycogen and trehalose, implicating the relative importance of these different carbon sources. A novel feature of the A. cellulolyticus secreted cellulolytic and xylanolytic enzymes is that they are fused to multiple tandemly arranged carbohydrate binding modules (CBM), from families 2 and 3. Interestingly, CBM3 was found to be always N-terminal to CBM2, suggesting a functional constraint driving this organization. While the catalytic domains of these modular enzymes are either diverse or unrelated, the CBMs were found to be highly conserved in sequence and may suggest selective substrate-binding interactions. For the most part, thermophilic patterns in the genome and proteome of A. cellulolyticus were weak, which may be reflective of the recent evolutionary history of A. cellulolyticus since its divergence from its closest phylogenetic neighbor Frankia, a mesophilic plant endosymbiont and soil dweller. However, ribosomal proteins and non-coding RNAs (rRNA and tRNAs) in A. cellulolyticus showed thermophilic traits suggesting the importance of adaptation of cellular translational machinery to environmental temperature. Elevated occurrence of IVYWREL amino acids in A. cellulolyticus orthologs compared to mesophiles, and inverse preferences for G and A at the first and third codon positions also point to its ongoing thermoadaptation. Additional interesting features in the genome of this cellulolytic, hot

  4. Comparison of Cellulolytic Activities in Clostridium thermocellum and Three Thermophilic, Cellulolytic Anaerobes.

    Science.gov (United States)

    Reynolds, P H; Sissons, C H; Daniel, R M; Morgan, H W

    1986-01-01

    Avicelase, carboxymethyl cellulase (CMCase), and beta-glucosidase activities have been compared between Clostridium thermocellum and three extremely thermophilic, cellulolytic anaerobes, isolates TP8, TP11, and KT8. The three isolates were all small, gram-negative staining, oval-ended rods which occurred singly and, at exponential phase, in long chains. They were nonflagellated and no spores were visible. The KT8 and TP11 isolates caused clumping of the cellulose during growth. In all four organisms the CMCase activity paralleled cell growth; however, in C. thermocellum and TP8 the avicelase activity did not increase until early stationary phase. Total CMCase activity in C. thermocellum was significantly higher than in the three isolates; however, avicelase activities were much more comparable among the four organisms. C. thermocellum produced higher levels of ethanol, and all four organisms produced similar concentrations of acetate. The amounts of free and bound CMCase and avicelase activities were investigated. In C. thermocellum and TP8 most of the CMCase and avicelase activities were bound to the cellulose in the medium. In contrast, most of the CMCase activity in TP11 and KT8 was free in the culture supernatant; a significant percentage of avicelase activity was also free. The TP8 isolate was also grown on a defined medium with urea as sole nitrogen source and cellulose serving as the carbon source. Under these conditions the pattern of enzyme production was the same as that in the enriched medium, although the level of that production was considerably reduced. PMID:16346961

  5. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B.

    Science.gov (United States)

    Wang, Junling; Gao, Gui; Li, Yuwei; Yang, Liangzhen; Liang, Yanli; Jin, Hanyong; Han, Weiwei; Feng, Yan; Zhang, Zuoming

    2015-01-01

    The gene ABK52392 from the thermophilic bacterium Acidothermus cellulolyticus 11B was predicted to be endoglucanase and classified into glycoside hydrolase family 12. ABK52392 encodes a protein containing a catalytic domain and a carbohydrate binding module. ABK52392 was cloned and functionally expressed in Escherichia coli. After purification by Ni-NTA agarose affinity chromatography and Q-Sepharose® Fast Flow chromatography, the properties of the recombinant protein (AcCel12B) were characterized. AcCel12B exhibited optimal activity at pH 4.5 and 75 °C. The half-lives of AcCel12B at 60 and 70 °C were about 90 and 2 h, respectively, under acidic conditions. The specific hydrolytic activities of AcCel12B at 70 °C and pH 4.5 for sodium carboxymethylcellulose (CMC) and regenerated amorphous cellulose (RAC) were 118.3 and 104.0 U·mg(-1), respectively. The Km and Vmax of AcCel12B for CMC were 25.47 mg·mL(-1) and 131.75 U·mg(-1), respectively. The time course of hydrolysis for RAC was investigated by measuring reducing ends in the soluble and insoluble phases. The total hydrolysis rate rapidly decreased after the early stage of incubation and the generation of insoluble reducing ends decreased earlier than that of soluble reducing ends. High thermostability of the cellulase indicates its potential commercial significance and it could be exploited for industrial application in the future. PMID:26506341

  6. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B

    Directory of Open Access Journals (Sweden)

    Junling Wang

    2015-10-01

    Full Text Available The gene ABK52392 from the thermophilic bacterium Acidothermus cellulolyticus 11B was predicted to be endoglucanase and classified into glycoside hydrolase family 12. ABK52392 encodes a protein containing a catalytic domain and a carbohydrate binding module. ABK52392 was cloned and functionally expressed in Escherichia coli. After purification by Ni-NTA agarose affinity chromatography and Q-Sepharose® Fast Flow chromatography, the properties of the recombinant protein (AcCel12B were characterized. AcCel12B exhibited optimal activity at pH 4.5 and 75 °C. The half-lives of AcCel12B at 60 and 70 °C were about 90 and 2 h, respectively, under acidic conditions. The specific hydrolytic activities of AcCel12B at 70 °C and pH 4.5 for sodium carboxymethylcellulose (CMC and regenerated amorphous cellulose (RAC were 118.3 and 104.0 U·mg−1, respectively. The Km and Vmax of AcCel12B for CMC were 25.47 mg·mL−1 and 131.75 U·mg−1, respectively. The time course of hydrolysis for RAC was investigated by measuring reducing ends in the soluble and insoluble phases. The total hydrolysis rate rapidly decreased after the early stage of incubation and the generation of insoluble reducing ends decreased earlier than that of soluble reducing ends. High thermostability of the cellulase indicates its potential commercial significance and it could be exploited for industrial application in the future.

  7. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...... temperature was between 50 and 78 degrees C with a temperature optimum near 68 degrees C. Growth occurred between pH 5.8 and 8.2 with an optimum mum near 7.0. The bacterium fermented microcrystalline cellulose (Avicel) and produced lactate, acetate and H-2 as the major fermentation products, and CO2...... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  8. Cloning, expression and characterization of glycoside hydrolases from the thermophilic cellulolytic anaerobic bacterium Caldicellulosiruptor kristjanssonii

    OpenAIRE

    Skalman, Lars Nygård

    2010-01-01

    Lignocellulosic biomass has great potential as a substrate for ethanol production as it is a renewable and rather abundant energy source. However, the rigid and complex structure of lignocellulose is a major bottleneck preventing the development of cost-effective production methods. By the use of thermostable cellulolytic enzymes, hydrolysis of cellulose and fermentation of glucose to ethanol could be performed at high temperatures and this would lower the production cost of ethanol significa...

  9. Caldicellulosiruptor obsidiansis sp. nov., an anaerobic, extremely thermophilic, cellulolytic bacterium isolated from Obsidian Pool, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton-Brehm, Scott [ORNL; Elkins, James G [ORNL; Phelps, Tommy Joe [ORNL; Keller, Martin [ORNL; Carroll, Sue L [ORNL; Allman, Steve L [ORNL; Podar, Mircea [ORNL; Mosher, Jennifer J [ORNL; Vishnivetskaya, Tatiana A [ORNL

    2010-01-01

    A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY, USA. The isolate was a non-motile, non-spore forming, Gram-positive rod approximately 2 m long by 0.2 m wide and grew at temperatures between 55-85oC with the optimum at 78oC. The pH range for growth was 6.0-8.0 with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rates at 0.75 hr-1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbital, carboxymethylcellulose and casein. Yeast extract stimulated growth and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2 although lactate and ethanol were produced in 5 l batch fermentations. The G+C content of the DNA was 35 mol% and sequence analysis of the small subunit ribosomal RNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47T is the type stain (ATCC = ____, JCM = ____).

  10. Functional diversity of family 3 β-glucosidases from thermophilic cellulolytic fungus Humicola insolens Y1.

    Science.gov (United States)

    Xia, Wei; Bai, Yingguo; Cui, Ying; Xu, Xinxin; Qian, Lichun; Shi, Pengjun; Zhang, Wei; Luo, Huiying; Zhan, Xiuan; Yao, Bin

    2016-01-01

    The fungus Humicola insolens is one of the most powerful decomposers of crystalline cellulose. However, studies on the β-glucosidases from this fungus remain insufficient, especially on glycosyl hydrolase family 3 enzymes. In the present study, we analyzed the functional diversity of three distant family 3 β-glucosidases from Humicola insolens strain Y1, which belonged to different evolutionary clades, by heterogeneous expression in Pichia pastoris strain GS115. The recombinant enzymes shared similar enzymatic properties including thermophilic and neutral optima (50-60 °C and pH 5.5-6.0) and high glucose tolerance, but differed in substrate specificities and kinetics. HiBgl3B was solely active towards aryl β-glucosides while HiBgl3A and HiBgl3C showed broad substrate specificities including both disaccharides and aryl β-glucosides. Of the three enzymes, HiBgl3C exhibited the highest specific activity (158.8 U/mg on pNPG and 56.4 U/mg on cellobiose) and catalytic efficiency and had the capacity to promote cellulose degradation. Substitutions of three key residues Ile48, Ile278 and Thr484 of HiBgl3B to the corresponding residues of HiBgl3A conferred the enzyme activity towards sophorose, and vice versa. This study reveals the functional diversity of GH3 β-glucosidases as well as the key residues in recognizing +1 subsite of different substrates. PMID:27271847

  11. Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Jesse; Gieler, Brandon; Heisler, Devon; Palisoc, Maryknoll; Williams, Amanda; Dohnalkova, Alice; Ming, Hong; Yu, Tian T.; Dodsworth, Jeremy A.; Li, Wen J.; Hedlund, Brian P.

    2013-08-15

    Several closely-related, thermophilic, and cellulolytic bacterial strains, designated JKG1T, JKG2, JKG3, JKG4, and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1T had cells of a diameter of 0.7 - 0.9 μm and length of ~2.0 μm that formed non-branched multicellular filaments reaching >300 μm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45-65 °C, with an optimum of 55 °C. The pH range for growth was 5.6-9.0, with an optimum of 7.5. JKG1T grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, carboxymethylcellulose, filter paper, microcrystalline cellulose, xylan, starch, casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate, and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia, but distant from other cultivated members, with the highest sequence identity of 82.5% to Roseiflexus castenholzii. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5%) were C18:0, anteiso-C17:0, iso-C18:0, and iso-C17:0. C16:0, iso-C16:0, and C17:0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine, and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose, and xylose. Morphological, phylogenetic, and chemotaxonomic results suggest that JKG1T is representative of a new lineage within the class Chloroflexia, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov.

  12. Heterologous Expression of Family 10 Xylanases from Acidothermus cellulolyticus Enhances the Exoproteome of Caldicellulosiruptor bescii and Growth on Xylan Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Ki; Chung, Daehwan; Himmel, Michael E.; Bomble, Yannick J.; Westpheling, Janet

    2016-08-22

    The ability to deconstruct plant biomass without conventional pretreatment has made members of the genus Caldicellulosiruptor the target of investigation for the consolidated processing of lignocellulosic biomass to biofuels and bioproducts. These Gram-positive bacteria are hyperthermophilic anaerobes and the most thermophilic cellulolytic organisms so far described. They use both C5 and C6 sugars simultaneously and have the ability to grow well on xylan, a major component of plant cell walls. This is an important advantage for their use to efficiently convert biomass at yields sufficient for an industrial process. For commodity chemicals, yield from substrate is perhaps the most important economic factor. In an attempt to improve even further the ability of C. bescii to use xylan, we introduced two xylanases from Acidothermus cellulolyticus. Acel_0180 includes tandem carbohydrate-binding modules (CBM2 and CBM3) located at the C-terminus, one of which, CBM2, is not present in C. bescii. Also, the sequences of Xyn10A and Acel_0180 have very little homology with the GH10 domains present in C. bescii. For these reasons, we selected these xylanases as potential candidates for synergistic interaction with those in the C. bescii exoproteome. Heterologous expression of two xylanases from Acidothermus cellulolyticus in Caldicellulosiruptor bescii resulted in a modest, but significant increase in the activity of the exoproteome of C. bescii on xylan substrates. Even though the increase in extracellular activity was modest, the ability of C. bescii to grow on these substrates was dramatically improved suggesting that the xylan substrate/microbe interaction substantially increased deconstruction over the secreted free enzymes alone. We anticipate that the ability to efficiently use xylan, a major component of plant cell walls for conversion of plant biomass to products of interest, will allow the conversion of renewable, sustainable, and inexpensive plant feedstocks to

  13. Exploring thermophilic cellulolytic enzyme production potential of Aspergillus fumigatus by the solid-state fermentation of wheat straw.

    Science.gov (United States)

    Mehboob, Nazia; Asad, M Javaid; Asgher, M; Gulfraz, M; Mukhtar, Tariq; Mahmood, Raja Tahir

    2014-04-01

    Cellulases can be used for biofuel production to decrease the fuel crises in the world. Microorganisms cultured on lignocellulosic wastes can be used for the production of cellulolytic enzymes at large scale. In the current study, cellulolytic enzyme production potential of Aspergillus fumigatus was explored and optimized by employing various cultural and nutritional parameters. Maximum endoglucanase production was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. Addition of 0.3 % of fructose, peptone, and Tween-80 further enhanced the production of endoglucanase. Maximum purification was achieved with 40 % ammonium sulfate, and it was purified 2.63-fold by gel filtration chromatography. Endoglucanase has 55 °C optimum temperature, 4.8 optimum pH, 3.97 mM K m, and 8.53 μM/mL/min V max. Maximum exoglucanase production was observed at 55 °C after 72 h, at pH 5.5, and 70 % moisture level. Further addition of 0.3 % of each of fructose, peptone, and Tween-80 enhances the secretion of endoglucanase. It was purified 3.30-fold in the presence of 40 % ammonium sulfate followed by gel filtration chromatography. Its optimum temperature was 55 °C, optimum pH was 4.8, 4.34 mM K m, and 7.29 μM/mL/min V max. In the case of β-glucosidase, maximum activity was observed after 72 h at 55 °C, pH 5.5, and 70 % moisture level. The presence of 0.3 % of fructose, peptone, and Tween-80 in media has beneficial impact on β-glucosidase production. A 4.36-fold purification was achieved by 40 % ammonium sulfate precipitation and gel filtration chromatography. Optimum temperature of β-glucosidase was 55 °C, optimum pH was 4.8, K m was 4.92 mM, and V max 6.75 μM/mL/min. It was also observed that fructose is better than glucose, and peptone is better than urea for the growth of A. fumigatus. The K m and V max values indicated that endoglucanase, exoglucanase, and β-glucosidase have good affinity for their substrates. PMID:24562980

  14. Biodiversity characterization of cellulolytic bacteria present on native Chaco soil by comparison of ribosomal RNA genes.

    Science.gov (United States)

    Talia, Paola; Sede, Silvana M; Campos, Eleonora; Rorig, Marcela; Principi, Dario; Tosto, Daniela; Hopp, H Esteban; Grasso, Daniel; Cataldi, Angel

    2012-04-01

    Sequence analysis of the 16S ribosomal RNA gene was used to study bacterial diversity of a pristine forest soil and of two cultures of the same soil enriched with cellulolytic bacteria. Our analysis revealed high bacterial diversity in the native soil sample, evidencing at least 10 phyla, in which Actinobacteria, Proteobacteria and Acidobacteria accounted for more than 76% of all sequences. In both enriched samples, members of Proteobacteria were the most frequently represented. The majority of bacterial genera in both enriched samples were identified as Brevundimonas and Caulobacter, but members of Devosia, Sphingomonas, Variovorax, Acidovorax, Pseudomonas, Xanthomonas, Stenotrophomonas, Achromobacter and Delftia were also found. In addition, it was possible to identify cellulolytic taxa such as Acidothermus, Micromonospora, Streptomyces, Paenibacillus and Pseudomonas, which indicates that this ecosystem could be an attractive source for study of novel enzymes for cellulose degradation. PMID:22202170

  15. Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost ▿ †

    OpenAIRE

    Sizova, M. V.; Izquierdo, J. A.; Panikov, N. S.; Lynd, L. R.

    2011-01-01

    Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xy...

  16. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives

    DEFF Research Database (Denmark)

    Chang, Tinghong; Yao, Shuo

    2011-01-01

    Lignocellulosic biomass contains a variety of carbohydrates, and their conversion into ethanol by fermentation requires an efficient microbial platform to achieve high yield, productivity, and final titer of ethanol. In recent years, growing attention has been devoted to the development of...... cellulolytic and saccharolytic thermophilic bacteria for lignocellulosic ethanol production because of their unique properties. First of all, thermophilic bacteria possess unique cellulolytic and hemicellulolytic systems and are considered as potential sources of highly active and thermostable enzymes for...... efficient biomass hydrolysis. Secondly, thermophilic bacteria ferment a broad range of carbohydrates into ethanol, and some of them display potential for ethanologenic fermentation at high yield. Thirdly, the establishment of the genetic tools for thermophilic bacteria has allowed metabolic engineering, in...

  17. Expression and Characterization of Acidothermus celluloyticus E1 Endoglucanase in Transgenic Duckweed Lemna minor 8627

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Cheng, J. J.; Himmel, M. E.; Skory, C. D.; Adney, W. S.; Thomas, S. R.; Tisserat, B.; Nishimura, Y.; Yamamoto, Y. T.

    2007-01-01

    Endoglucanase E1 from Acidothermus cellulolyticus was expressed cytosolically under control of the cauliflower mosaic virus 35S promoter in transgenic duckweed, Lemna minor 8627 without any obvious observable phenotypic effects on morphology or rate of growth. The recombinant enzyme co-migrated with the purified catalytic domain fraction of the native E1 protein on western blot analysis, revealing that the cellulose-binding domain was cleaved near or in the linker region. The duckweed-expressed enzyme was biologically active and the expression level was up to 0.24% of total soluble protein. The endoglucanase activity with carboxymethylcellulose averaged 0.2 units mg protein{sup -1} extracted from fresh duckweed. The optimal temperature and pH for E1 enzyme activity were about 80 C and pH 5, respectively. While extraction with HEPES (N-[2-hydroxyethyl]piperazine-N{prime}-[2-ethanesulfonic acid]) buffer (pH 8) resulted in the highest recovery of total soluble proteins and E1 enzyme, extraction with citrate buffer (pH 4.8) at 65 C enriched relative amounts of E1 enzyme in the extract. This study demonstrates that duckweed may offer new options for the expression of cellulolytic enzymes in transgenic plants.

  18. Effect of Carbon and Nitrogen Sources on the Production of Reducing Sugars, Extra-cellular Protein and Cellulolytic Enzymes by Two Cellulolytic Bacterial Isolates

    OpenAIRE

    Kashem, M. A.; M.A. Manchur; M.S. Rahman; M.N. Anwar

    2004-01-01

    Two thermophilic cellulolytic bacterial isolates were tested to determine the effect of carbon and nitrogen sources on the production of extra-cellular proteins, reducing sugars and cellulolytic enzymes. Lactose was found to be the most potential carbon source for Avicelase (342.52 U mL-1) and ß-glucosidase (256.89 U mL-1) activity where as NH4Cl was found to be the potential nitrogen source for CMCase (144.68 U mL-1) activity.

  19. Isolation of Cellulolytic Actinomycetes from Marine Sediments

    OpenAIRE

    Veiga, Manuel; Esparis, Azucena; Fabregas, Jaime

    1983-01-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity.

  20. DECENTRALIZED THERMOPHILIC BIOHYDROGEN: A MORE EFFICIENT AND COST EFFECTIVE PROCESS

    OpenAIRE

    Sani, Rajesh K.; Rajesh V. Shende; Sudhir Kumar; Aditya Bhalla

    2011-01-01

    Nonfood lignocellulosic biomass is an ideal substrate for biohydrogen production. By avoiding pretreatment steps (acid, alkali, or enzymatic), there is potential to make the process economical. Utilization of regional untreated lignocellulosic biomass by cellulolytic and fermentative thermophiles in a consolidated mode using a single reactor is one of the ways to achieve economical and sustainable biohydrogen production. Employing these potential microorganisms along with decentralized biohyd...

  1. Polypeptide from a cellulolytic fungus having cellulolytic enhancing activity

    Science.gov (United States)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2008-04-22

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  2. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  3. Anaerobic thermophiles.

    Science.gov (United States)

    Canganella, Francesco; Wiegel, Juergen

    2014-01-01

    The term "extremophile" was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of "extreme" environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally "hot environments" on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong to the Archaea has definitely

  4. Anaerobic Thermophiles

    Directory of Open Access Journals (Sweden)

    Francesco Canganella

    2014-02-01

    Full Text Available The term “extremophile” was introduced to describe any organism capable of living and growing under extreme conditions. With the further development of studies on microbial ecology and taxonomy, a variety of “extreme” environments have been found and an increasing number of extremophiles are being described. Extremophiles have also been investigated as far as regarding the search for life on other planets and even evaluating the hypothesis that life on Earth originally came from space. The first extreme environments to be largely investigated were those characterized by elevated temperatures. The naturally “hot environments” on Earth range from solar heated surface soils and water with temperatures up to 65 °C, subterranean sites such as oil reserves and terrestrial geothermal with temperatures ranging from slightly above ambient to above 100 °C, to submarine hydrothermal systems with temperatures exceeding 300 °C. There are also human-made environments with elevated temperatures such as compost piles, slag heaps, industrial processes and water heaters. Thermophilic anaerobic microorganisms have been known for a long time, but scientists have often resisted the belief that some organisms do not only survive at high temperatures, but actually thrive under those hot conditions. They are perhaps one of the most interesting varieties of extremophilic organisms. These microorganisms can thrive at temperatures over 50 °C and, based on their optimal temperature, anaerobic thermophiles can be subdivided into three main groups: thermophiles with an optimal temperature between 50 °C and 64 °C and a maximum at 70 °C, extreme thermophiles with an optimal temperature between 65 °C and 80 °C, and finally hyperthermophiles with an optimal temperature above 80 °C and a maximum above 90 °C. The finding of novel extremely thermophilic and hyperthermophilic anaerobic bacteria in recent years, and the fact that a large fraction of them belong

  5. DECENTRALIZED THERMOPHILIC BIOHYDROGEN: A MORE EFFICIENT AND COST EFFECTIVE PROCESS

    Directory of Open Access Journals (Sweden)

    Rajesh K. Sani

    2011-11-01

    Full Text Available Nonfood lignocellulosic biomass is an ideal substrate for biohydrogen production. By avoiding pretreatment steps (acid, alkali, or enzymatic, there is potential to make the process economical. Utilization of regional untreated lignocellulosic biomass by cellulolytic and fermentative thermophiles in a consolidated mode using a single reactor is one of the ways to achieve economical and sustainable biohydrogen production. Employing these potential microorganisms along with decentralized biohydrogen energy production will lead us towards regional and national independence having a positive influence on the bioenergy sector.

  6. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    OpenAIRE

    Kengen, Servé W. M.; Verhaart, Marcel R. A.; John van der Oost; Abraham A. M. Bielen

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the resear...

  7. Factors influencing the production of cellulases by Sporotrichum thermophile.

    Science.gov (United States)

    Coutts, A D; Smith, R E

    1976-06-01

    Cellulase production and growth of a strain of Sporotrichum thermophile were studied by using a mineral salts medium supplemented with yeast extract and insoluble cellulose. The effects of cultural conditions, such as pH, nitrogen source, substrate concentration, and temperature, were examined. Maximum production of C1 and CX cellulases occurred at 45 C in 2 to 4 days, in the presence of 1% Solka/Floc as substrate, when NaNO3 or urea used as sources of nitrogen. Under these conditions, cellulolytic activity of culture filtrates appeared to be similar to that reported for Trichoderma viride grown in a favorable environment. However, comparable yields of cellulase were produced by S. thermophile in less than one-quarter the time required by mesophilic fungi. PMID:7194

  8. Properties of thermophilic microorganisms

    International Nuclear Information System (INIS)

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 470C and 700C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  9. EXTRACELLULAR CELLULOLYTIC COMPLEXES PRODUCTION BY MICROSCOPIC FUNGI

    Directory of Open Access Journals (Sweden)

    S. O. Syrchin

    2015-10-01

    Full Text Available The aim of this work was to screen and to study the effect of inducers on the synthesis of the cellulolytic enzyme complexes by microscopic fungi. Cellulolytic and xylanolytic activities were determined by reducing sugar with DNS reagent, and β-glucosidase activity by pNPG hydrolysis. The enzyme preparations were obtained by ammonium sulphate precipitation. Among 32 studied strains of microscopic fungi 14 produced cellulo- and xylanolytic enzyme complexes. Fusarium sp. 5 and Fennellia sp. 2806 demonstrated the highest levels of all studied enzyme activities. Enzyme preparations with high endo-, exoglucanase, xylanase and β-glucosidase activities were obtained from these strains. Fusarium sp. 5 and Fennellia sp. 2806 were active producers of cellulase enzyme complexes during growth on natural substrates. It was shown that inductors of cellulolytic enzymes in Fusarium sp. 5 and Fennellia sp. 2806 differed from the ones in Trichoderma reesei.

  10. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions such as...

  11. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  12. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian;

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...

  13. The Activity of Cellulase from Thermophilic Fungi Isolated from CaneBagasses

    International Nuclear Information System (INIS)

    The activity of cellulase from thermophilic fungi isolated from canebagasses has been measured. This wild strain, named fungal strain PJ-2,secreted a large amount of cellulolytic enzyme components consisting of 0.46units of avicelase, 0.8 units of carboxymethyl cellulose hydrolizing enzyme(CMCase) and 0.5 units of β-glucosidase per ml of culture broth oncultivation in Mandels Reese medium for 7 days at 500 oC. These cellulasesproduction was lower than that of Trichoderma reesei NRRL 3653 producing 0.5units/ml avicelase, 1.6 units/ml CMCase and 0.4 units/ml ofβ-glucosidase cultivated in the same medium at 30 oC. However,thermophilic fungi may be potential to be exploited in lignocellulosedegradation at the tropical areas as the process usually needs temperature ofabove 50 oC. (author)

  14. Evaluation of cellulolytic activity in insect digestive fluids.

    Science.gov (United States)

    Su, L-J; Zhang, H-F; Yin, X-M; Chen, M; Wang, F-Q; Xie, H; Zhang, G-Z; Song, A-D

    2013-01-01

    Efficient and low-cost cellulolytic enzymes are urgently needed to degrade recalcitrant plant biomass during the industrial production of lignocellulosic biofuels. Here, the cellulolytic activities in the gut fluids of 54 insect species that belong to 7 different taxonomic orders were determined using 2 different substrates, carboxymethyl cellulose (CMC) (approximating endo-β-1,4-glucanase) and filter paper (FP) (total cellulolytic activities). The use of CMC as the substrate in the zymogram analysis resulted in the detection of distinct cellulolytic protein bands. The cellulolytic activities in the digestive system of all the collected samples were detected using cellulolytic activity analysis. The highest CMC gut fluid activities were found in Coleoptera and Orthoptera, while FP analysis indicated that higher gut fluid activities were found in several species of Coleoptera and Lepidoptera. In most cases, gut fluid activities were higher with CMC than with FP substrate, except for individual Lepidoptera species. Our data indicate that the origin of cellulolytic enzymes probably reflects the phylogenetic relationship and feeding strategies of different insects. PMID:23315870

  15. An Efficient and Improved Methodology for the Screening of Industrially Valuable Xylano-Pectino-Cellulolytic Microbes

    OpenAIRE

    Avtar Singh; Amanjot Kaur; Anita Dua; Ritu Mahajan

    2015-01-01

    Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic pot...

  16. Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes

    DEFF Research Database (Denmark)

    Krogh, Kristian Bertel Rømer; Mørkeberg, Astrid; Frisvad, Jens Christian; Olsson, Lisbeth

    2004-01-01

    For enzymatic hydrolysis of lignocellulosic material, cellulolytic enzymes from Trichoderma reesei are most commenly used, but, there is a need for more efficient enzyme cocktails. In this study, the production of cellulolytic and xylanolytic enzymes was investigated in 12 filamentous fungi from...... genus Penicillium and compared with that of T. reesei. Either Solka-Floc cellulose or oat spelt xylan was used as carbon source in shake flask cultivations. All the fungi investigated showed coinduction of cellulolytic and xylanolytic enzymes during growth on cellulose as well as on xylan. The highest...

  17. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  18. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  19. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Tang, Lan; Henriksen, Svend Hostgaard Bang

    2016-05-17

    The present invention provides isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also provides nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  20. High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid

    Directory of Open Access Journals (Sweden)

    Chou Hong

    2011-12-01

    Full Text Available Abstract Background Large-scale production of effective cellulose hydrolytic enzymes is the key to the bioconversion of agricultural residues to ethanol. The goal of this study was to develop a rice plant as a bioreactor for the large-scale production of cellulose hydrolytic enzymes via genetic transformation, and to simultaneously improve rice straw as an efficient biomass feedstock for conversion of cellulose to glucose. Results In this study, the cellulose hydrolytic enzyme β-1, 4-endoglucanase (E1 gene, from the thermophilic bacterium Acidothermus cellulolyticus, was overexpressed in rice through Agrobacterium-mediated transformation. The expression of the bacterial E1 gene in rice was driven by the constitutive Mac promoter, a hybrid promoter of Ti plasmid mannopine synthetase promoter and cauliflower mosaic virus 35S promoter enhancer, with the signal peptide of tobacco pathogenesis-related protein for targeting the E1 protein to the apoplastic compartment for storage. A total of 52 transgenic rice plants from six independent lines expressing the bacterial E1 enzyme were obtained that expressed the gene at high levels without severely impairing plant growth and development. However, some transgenic plants exhibited a shorter stature and flowered earlier than the wild type plants. The E1 specific activities in the leaves of the highest expressing transgenic rice lines were about 20-fold higher than those of various transgenic plants obtained in previous studies and the protein amounts accounted for up to 6.1% of the total leaf soluble protein. A zymogram and temperature-dependent activity analyses demonstrated the thermostability of the E1 enzyme and its substrate specificity against cellulose, and a simple heat treatment can be used to purify the protein. In addition, hydrolysis of transgenic rice straw with cultured cow gastric fluid for one hour at 39°C and another hour at 81°C yielded 43% more reducing sugars than wild type rice

  1. Thermophilic degradation of cellulosic biomass

    Science.gov (United States)

    Ng, T.; Zeikus, J. G.

    1982-12-01

    The conversion of cellulosic biomass to chemical feedstocks and fuel by microbial fermentation is an important objective of developing biotechnology. Direct fermentation of cellulosic derivatives to ethanol by thermophilic bacteria offers a promising approach to this goal. Fermentations at elevated temperatures lowers the energy demand for cooling and also facilitates the recovery of volatile products. In addition, thermophilic microorganisms possess enzymes with greater stability than those from mesophilic microorganisms. Three anaerobic thermophilic cocultures that ferment cellulosic substrate mainly to ethanol have been described: Clostridium thermocellum/Clostriidium thermohydrosulfuricum, C. thermocellum/Clostridium thermosaccharolyticum, and C. thermocellum/Thermoanaerobacter ethanolicus sp. nov. The growth characteristics and metabolic features of these cocultures are reviewed.

  2. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  3. Cellulolytic Enzymes Production by Solid State Culture

    Directory of Open Access Journals (Sweden)

    Miguel A. Medina-Morales

    2011-01-01

    Full Text Available Problem statement: Great interest in the use of lignocellulosic biomass is increasing in order to diminish the accumulation of residues, such as pecan nut shells. One of the alternatives is the fungal degradation of these residues. Approach: The capacity of Trichoderma (coded as T1, T2 and T3 strains to produce cellulase and xylonite was evaluated. Results: Pecan nut shell fibers were used as sole carbon source. The fiber characterization study showed that cellulose levels were of 0.1% while hemicellulose was up to 25 %. Three Trichoderma strains were used on solid fungal cultures using the fibers as sole carbon and inductor source for the production of cellulolytic enzymes. The behavior of the sugars liberated by the fungi showed that the strain T2 is able to accumulate more monomeric reducing sugars than the other two strains, this could be attributed at this strain has a higher sugar liberation rate and slower sugar consumption rate. This strain also expressed more cellulase and xylanase activity. The low quantity of cellulose registered in the fibers can still be used to induce cellulase activity. Conclusion: The T2 strain had the highest level of enzymatic activity both cellulase and xylanase.

  4. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Science.gov (United States)

    Schnorr, Kirk; Kramer, Randall

    2016-04-05

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  5. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu; Duan, Junxin; Tang, Lan; Wu, Wenping

    2016-06-14

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  6. Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Schnorr, Kirk; Kramer, Randall

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  7. Polypeptides having cellulolytic enhancing activity and nucleic acids encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kimberly; Harris, Paul; Zaretsky, Elizabeth; Re, Edward; Vlasenko, Elena; McFarland, Keith; Lopez de Leon, Alfredo

    2016-08-09

    The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods for producing and using the polypeptides.

  8. Malbranchea cinnamomea: A thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes.

    Science.gov (United States)

    Mahajan, Chhavi; Basotra, Neha; Singh, Surender; Di Falco, Marcos; Tsang, Adrian; Chadha, B S

    2016-01-01

    This study reports thermophilic fungus Malbranchea cinnamomea as an important source of lignocellulolytic enzymes. The secretome analysis using LC-MS/MS orbitrap showed that fungus produced a spectrum of glycosyl hydrolases (cellulase/hemicellulase), polysaccharide lyases (PL) and carbohydrate esterases (CE) in addition to cellobiose dehydrogenase (CDH) indicating the presence of functional classical and oxidative cellulolytic mechanisms. The protein fractions in the secretome resolved by ion exchange chromatography were analyzed for ability to hydrolyze alkali treated carrot grass (ATCG) in the presence of Mn(2+)/Cu(2+). This strategy in tandem with peptide mass fingerprinting led to identification of metal dependent protein hydrolases with no apparent hydrolytic activity, however, showed 5.7 folds higher saccharification in presence of Mn(2+). Furthermore, adding different protein fractions to commercial cellulase (Novozymes: Cellic CTec2) resulted in enhanced hydrolysis of ATCG ranging between 1.57 and 3.43 folds indicating the enzymes from M. cinnamomea as catalytically efficient. PMID:26476165

  9. Novel glycoside hydrolases from thermophilic fungi

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to isolated polypeptides having cellulolytic activity or hemicellulolytic activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of produ...

  10. Cost-effective production of biotechnologically important hydrolytic enzymes by Sporotrichum thermophile.

    Science.gov (United States)

    Bala, Anju; Singh, Bijender

    2016-01-01

    Economical production of xylanase and three cellulases, endo-β-1,4-glucanase (CMCase), exo-β-1,4-glucanase (FPase), β-glucosidase (BGL) was studied in submerged fermentation using cane molasses medium. A statistical optimization approach involving Plackett-Burman design and response surface methodology (RSM) resulted in the production of 72,410, 36,420, 32,420 and 5180 U/l of xylanase, CMCase, FPase and β-glucosidase, respectively. Optimization resulted in more than fourfold improvements in production of xylanolytic and cellulolytic enzymes. Scale up of enzymes production in shake flasks of varied volumes was sustainable, suggesting a good scope for large scale enzyme production. Addition of microparticles engineered fungal morphology and enhanced enzymes production. Xylanase of S. thermophile is a neutral xylanase displaying its optimal activity at 60 °C while all the cellulases are optimally active at pH 5.0 and 60 °C. The efficacy of enzyme cocktail in waste tea cup paper and rice straw hydrolysis showed that maximum sugar yield of 578.12 and 421.79 mg/g substrate for waste tea cup and rice straw, respectively, were achieved after 24 h. Therefore, concomitant production of cellulolytic and xylanolytic enzymes will be beneficial for the saccharification of lignocellulosics in generating both monomeric and oligomeric sugars for biofuels and other biotechnological applications. PMID:26581490

  11. BIOTECHNOLOGY OF TRICHODERMA-BASED FEED ADDITIVE WITH CELLULOLYTIC PROPERTIES

    Directory of Open Access Journals (Sweden)

    Koshchayev A. G.

    2013-11-01

    Full Text Available In the work, we have presented the information of elaboration of a manufacturing process of Mycocel feed additive with the cellulolytic activity for poul-try industry. Manufacturing process includes follow-ing steps: stock culture maintenance and storage of Trichoderma lignorum 81-17, growing fluid culture of microscopic fungus in sucrose yeast extract me-dium, feed additive with cellulolytic properties out-put and quality control, packaging, storage and disposal of waste. We have shown that the Mycocel is non-toxic feed additive for protozoa and warm-blooded animals (laboratory mice and quails. This study demonstrated total population livability in the experimental group with feed additive. Quail body-weight of experimental group was higher by 6% as compared to the control and feed consumption per 1 kg of live weight of bird was 3,58 kg, 7,5% lower than the control

  12. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria.

    OpenAIRE

    Russell, J B

    1985-01-01

    Water-soluble cellodextrins were prepared from microcrystalline cellulose by using fuming hydrochloric acid and acetone precipitation. This cellodextrin preparation contained only trace amounts of glucose and cellobiose and was primarily composed of cellotetraose and cellopentaose. When various species of cellulolytic and noncellulolytic bacteria were cultured with cellodextrins, their growth rates and maximal optical densities were in most cases similar to those observed with cellobiose. Tim...

  13. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Directory of Open Access Journals (Sweden)

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  14. Compositions comprising a polypeptide having cellulolytic enhancing activity and a dioxy compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, Matthew; Xu, Feng; Quinlan, Jason

    2016-07-19

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a dioxy compound. The present invention also relates to methods of using the compositions.

  15. Compositions comprising a polypeptide having cellulolytic enhancing activity and a heterocyclic compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2016-08-02

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a heterocyclic compound. The present invention also relates to methods of using the compositions.

  16. Compositions comprising a polypeptide having cellulolytic enhancing activity and a bicycle compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Feng; Sweeney, Matthew; Quinlan, Jason

    2015-06-16

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a bicyclic compound. The present invention also relates to methods of using the compositions.

  17. Compositions comprising a polypeptide having cellulolytic enhancing activity and a quinone compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-03-01

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a quinone compound. The present invention also relates to methods of using the compositions.

  18. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Directory of Open Access Journals (Sweden)

    Vasudeo Zambare, Archana Zambare, Kasiviswanath Muthukumarappan, Lew P. Christopher

    2011-01-01

    Full Text Available A thermophilic microbial consortium (TMC producing hydrolytic (cellulolytic and xylanolytic enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass at 600C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover than cellulase activity (up to 367 U/l on prairie cord grass. Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 600C and 700C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase, and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase. A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of

  19. Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Zambare, Vasudeo; Zambare, Archana; Christopher, Lew P. [Center for Bioprocessing Research & Development, South Dakota School of Mines and Technology, Rapid City 57701, SD (United States); Muthukumarappan, Kasiviswanath [Center for Bioprocessing Research & Development, South Dakota State University, Brookings 57007, SD (United States)

    2011-07-01

    A thermophilic microbial consortium (TMC) producing hydrolytic (cellulolytic and xylanolytic) enzymes was isolated from yard waste compost following enrichment with carboxymethyl cellulose and birchwood xylan. When grown on 5% lignocellulosic substrates (corn stover and prairie cord grass) at 60C, the thermophilic consortium produced more xylanase (up to 489 U/l on corn stover) than cellulase activity (up to 367 U/l on prairie cord grass). Except for the carboxymethyl cellulose-enriched consortium, thermo-mechanical extrusion pretreatment of these substrates had a positive effect on both activities with up to 13% and 21% increase in the xylanase and cellulase production, respectively. The optimum temperatures of the crude cellulase and xylanase were 60C and 70C with half-lives of 15 h and 18 h, respectively, suggesting higher thermostability for the TMC xylanase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the crude enzyme exhibited protein bands of 25-77 kDa with multiple enzyme activities containing 3 cellulases and 3 xylanases. The substrate specificity declined in the following descending order: avicel>birchwood xylan>microcrystalline cellulose>filter paper>pine wood saw dust>carboxymethyl cellulose. The crude enzyme was 77% more active on insoluble than soluble cellulose. The Km and Vmax values were 36.49 mg/ml and 2.98 U/mg protein on avicel (cellulase), and 22.25 mg/ml and 2.09 U/mg protein, on birchwood xylan (xylanase). A total of 50 TMC isolates were screened for cellulase and xylanase secretion on agar plates. All single isolates showed significantly lower enzyme activities when compared to the thermophilic consortia. This is indicative of the strong synergistic interactions that exist within the thermophilic microbial consortium and enhance its hydrolytic capabilities. It was further demonstrated that the thermostable enzyme-generated lignocellulosic hydrolyzates can be fermented to bioethanol by a recombinant strain of Escherichia coli

  20. Ultrasound-mediated DNA transformation in thermophilic gram-positive anaerobes.

    Directory of Open Access Journals (Sweden)

    Lu Lin

    Full Text Available BACKGROUND: Thermophilic, Gram-positive, anaerobic bacteria (TGPAs are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. METHODOLOGY/PRINCIPAL FINDINGS: Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6x10(2 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. CONCLUSIONS/SIGNIFICANCE: In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically.

  1. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...... for thermophilic digestion along with the implications for the methanogenic bacteria active at these temperatures....

  2. An Efficient and Improved Methodology for the Screening of Industrially Valuable Xylano-Pectino-Cellulolytic Microbes

    Directory of Open Access Journals (Sweden)

    Avtar Singh

    2015-01-01

    Full Text Available Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time.

  3. An efficient and improved methodology for the screening of industrially valuable xylano-pectino-cellulolytic microbes.

    Science.gov (United States)

    Singh, Avtar; Kaur, Amanjot; Dua, Anita; Mahajan, Ritu

    2015-01-01

    Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time. PMID:25692034

  4. Compositions for enhancing hydroysis of cellulosic material by cellulolytic enzyme compositions

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew; Johansen, Katja Salomon

    2014-09-30

    The present invention relates to compositions comprising a GH61 polypeptide having cellulolytic enhancing activity and an organic compound comprising a carboxylic acid moiety, a lactone moiety, a phenolic moiety, a flavonoid moiety, or a combination thereof, wherein the combination of the GH61 polypeptide having cellulolytic enhancing activity and the organic compound enhances hydrolysis of a cellulosic material by a cellulolytic enzyme compared to the GH61 polypeptide alone or the organic compound alone. The present invention also relates to methods of using the compositions.

  5. Determination of the cellulolytic activities of microorganisms isolated from poultry litter for sawdust degradation

    OpenAIRE

    Akpomie O.OF; Ubogun M.

    2013-01-01

    Cellulolytic activities of bacterial and fungal isolates obtained from poultry droppings were determined using the ability of each isolate to produce clear zones on Carboxyl Methyl Cellulose Agar plates. The bacterial isolates were Klebsiella, Streptococcus, Celulomonas, Escherichia coli and Micrococus species. The cellulolytic counts ranged from 5.02 x 104 + 3.42 to 7.20 x 109 + 6.12 cfu/g. The cellulolytic activities of the bacterial isolates ranged from 0.04 to 0.26 iu/m with Cellulomonas...

  6. Thermophilic biohydrogen production: how far are we?

    OpenAIRE

    Pawar, Sudhanshu S; van Niel, Ed W. J.

    2013-01-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen producti...

  7. Consolidated bioprocessing method using thermophilic microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  8. Thermophilic Fungi: Their Physiology and Enzymes†

    OpenAIRE

    Maheshwari, Ramesh; Bharadwaj, Girish; Bhat, Mahalingeshwara K.

    2000-01-01

    Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending Itp to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although wides...

  9. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The discovery of a new mode of action by C. thermocellum to convert biomass to biofuels is significant because the bacterium is already recognized as one of the most effective in the biosphere. Researchers found that, in addition to using common cellulase degradation mechanisms attached to cells, C. thermocellum also uses a new category of cell-free scaffolded enzymes. The new discovery will influence the strategies used to improve the cellulolytic activity of biomass degrading microbes going forward. Better understanding of this bacterium could lead to cheaper production of ethanol and drop-in fuels. Also, this discovery demonstrates that nature's biomass conversion behaviors are not fully understood and remain as opportunities for future microbial/enzyme engineering efforts.

  10. SACCHARIFICATION OF CORNCOB USING CELLULOLYTIC BACTERIA FOR BIOETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    TITI CANDRA SUNARTI

    2010-08-01

    Full Text Available The use of cellulose degrading enzyme (cellulases for hydrolysis of lignocellulosic material is a part of bioethanol production process. In this experiment, delignified corncob, its cellulose fraction and alpha cellulose were used as substrates to produce fermentable sugar by using three local isolates of celluloytic bacteria (C5-1, C4-4, C11-1 and Cmix ; mixed cultures of three isolates, and Saccharomyces cereviseae to produce ethanol. The results showed that all isolates of cellulolytic bacteria can grow on cellulose fraction better than on delignified corncob, and alpha cellulose. The highest hydrolytic activity produced from cellulose fraction was by isolate C4-4, which liberated 3.50 g/l of total sugar. Ethanol can be produced by mixed culture of bacteria and yeast, but because of competitive growth, the fermentation only produced 0.39-0.47 g/l of ethanol.

  11. Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest.

    Science.gov (United States)

    Romano, Nelson; Gioffré, Andrea; Sede, Silvana M; Campos, Eleonora; Cataldi, Angel; Talia, Paola

    2013-08-01

    Cellulolytic activities of three bacterial consortia derived from a forest soil sample from Chaco region, Argentina, were characterized. The phylogenetic analysis of consortia revealed two main highly supported groups including Achromobacter and Pseudomonas genera. All three consortia presented cellulolytic activity. The carboxymethylcellulase (CMCase) and total cellulase activities were studied both quantitatively and qualitatively and optimal enzymatic conditions were characterized and compared among the three consortia. Thermal and pH stability were analyzed. Based on its cellulolytic activity, one consortium was selected for further characterization by zymography. We detected a specific protein of 55 kDa with CMCase activity. In this study, we have shown that these consortia encode for cellulolytic enzymes. These enzymes could be useful for lignocellulosic biomass degradation into simple components and for different industrial applications. PMID:23471693

  12. Variations of culturable thermophilic microbe numbers and bacterial communities during the thermophilic phase of composting.

    Science.gov (United States)

    Li, Rong; Li, Linzhi; Huang, Rong; Sun, Yifei; Mei, Xinlan; Shen, Biao; Shen, Qirong

    2014-06-01

    Composting is a process of stabilizing organic wastes through the degradation of biodegradable components by microbial communities under controlled conditions. In the present study, genera and species diversities, amylohydrolysis, protein and cellulose degradation abilities of culturable bacteria in the thermophilic phase of composting of cattle manure with plant ash and rice bran were investigated. The number of culturable thermophilic bacteria and actinomyces decreased with the increasing temperature. At the initiation and end of the thermophilic phase, genera and specie diversities and number of bacteria possessing degradation abilities were higher than during the middle phase. During the thermophilic composting phase, Bacillus, Geobacillus and Ureibacillus were the dominant genera, and Geobacillus thermodenitrificans was the dominant species. In later thermophilic phases, Geobacillus toebii and Ureibacillus terrenus were dominant. Bacillus, at the initiation, and Ureibacillus and Geobacillus, at the later phase, contributed the multiple degradation abilities. These data will facilitate the control of composting in the future. PMID:24415499

  13. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes

    OpenAIRE

    Yongjun Wei; Haokui Zhou; Jun Zhang; Lei Zhang; Alei Geng; Fanghua Liu; Guoping Zhao; Shengyue Wang; Zhihua Zhou; Xing Yan

    2015-01-01

    Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate t...

  14. Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae)

    OpenAIRE

    Hongyu Zhang; Ping Sheng; Shengwei Huang

    2012-01-01

    In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA). A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteoba...

  15. Cellulolytic Bacteria Associated with the Gut of Dendroctonus armandi Larvae (Coleoptera: Curculionidae: Scolytinae)

    OpenAIRE

    Xia Hu; Jiamin Yu; Chunyan Wang; Hui Chen

    2014-01-01

    The object of this study was to investigate the cellulolytic bacterial community in the intestine of the Chinese white pine beetle (Dendroctonus armandi) larvae. A total of 91 cellulolytic bacteria were isolated and assigned to 11 genotypes using amplified ribosomal DNA restriction analysis (ARDRA). Partial 16S rDNA sequence analysis and morphological tests were used to assign the 11 representative isolates. The results showed that the isolates belonged to α-Proteobacteria, γ-Proteobacteria a...

  16. Bioleaching of marmatite using moderately thermophilic bacteria

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; LIU Fei-fei; ZOU Ying-qin; ZENG Xiao-xi; QIU Guan-zhou

    2008-01-01

    The process of bioleaching marmatite using moderately thermophilic bacteria was studied by comparing marmatite leaching performance of mesophiles and moderate thermophiles and valuating the effect of venting capacity as well as pulp density on marmatite leaching performance of moderate thermophiles. The results show that moderate thermophiles have more advantages over mesophilies in bioleaching marmatite at 45℃ and the pulp density of 50g/L, and the zinc extraction efficiency reaches 93.1% in 20d. Aeration agitation can improve the transfer of O2 and CO2 in solution and promote the growth of bacteria and therefore, enhance the leaching efficiency. Under the venting levels of 50, 200 and 800mL/min, the zinc extraction efficiencies by moderate thermophiles are 57.8%, 92.5% and 96.0%, respectively. With the increase of pulp density, the total leaching amount of valuable metals increases, however, the extraction efficiency decreases due to many reasons, such as increasing shear force leading to poorly growth condition for bacteria, etc. The zinc extraction decreases remarkably to 58.9% while the pulp density mounts up 20%.

  17. Status on Science and Application of Thermophilic Anaerobic Digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1994-01-01

    Thermophilic anaerobic processes are often regarded as less stable than mesophilic processes. In the paper this postulate is examined and disproved based on real operational data from of full-scale mesophilic and thermophilic biogas plants. The start-up produce for the thermophilic plants was...

  18. Bioprospecting thermophiles for cellulase production: a review

    Directory of Open Access Journals (Sweden)

    Somen Acharya

    2012-09-01

    Full Text Available Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

  19. Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes.

    Directory of Open Access Journals (Sweden)

    Yongjun Wei

    Full Text Available Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg. Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.

  20. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  1. Mycobiota variation in stored rice straw and its cellulolytic profile.

    Science.gov (United States)

    El-Metwally, Mohammad Magdy; Ghoneem, Khalid Mohammad; Saber, Wesam El-Din Ismail Ali

    2014-09-01

    Rice Straw (RS) one of most important agrowaste worldwide. Variation in mycobiota inhabiting long stored RS and its cellulolytic profile were studied. The highest number of fungi (23 species) was recovered from 1st storage period (1-3 year). Alternaria alternata, Aspergillus sp., Cladosporium herbarum, Fusarium incarnatum, Geotrichum candidum, Penicillium sp., Stemphylium lycopersici and Ulocladium atrum are the most frequent genera. Among 21 fungal species recovered in the 2nd period (3-5 year), Cladosporium herbarum, Fusarium incarnatum, Stemphylium lycopersici and Ulocladium atrum recorded 100% frequency, whereas Ulocladium atrum, Veticillium lecanii, Stemphylium lycopersici and Penicillium sp., were the most frequent species in the 3rd period (> 5 years). Regarding the pathogenic fungal isolates, Nigrospora oryzae was the most frequent with high intensity in all samples of the three storage periods, whereas Alternaria padwikii reached the highest frequency and intensity in the 1st period and absent the 2nd and 3rd ones. The isolated fungal species showed a high production of cellulases comparing to previous studies with positive and significant correlation between FPase from one side and CMCase (r = 0.634, p ≤ 0.05) and β-glucosidase (r = 0.775, p ≤ 0.05) from the other side. PMID:26031023

  2. Isolation and Identification of Cellulolytic Bacteria from the Gut of Holotrichia parallela Larvae (Coleoptera: Scarabaeidae

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2012-02-01

    Full Text Available In this study, 207 strains of aerobic and facultatively anaerobic cellulolytic bacteria were isolated from the gut of Holotrichia parallela larvae. These bacterial isolates were assigned to 21 genotypes by amplified ribosomal DNA restriction analysis (ARDRA. A partial 16S rDNA sequence analysis and standard biochemical and physiological tests were used for the assignment of the 21 representative isolates. Our results show that the cellulolytic bacterial community is dominated by the Proteobacteria (70.05%, followed by the Actinobacteria (24.15%, the Firmicutes (4.35%, and the Bacteroidetes (1.45%. At the genus level, Gram-negative bacteria including Pseudomonas, Ochrobactrum, Rhizobium, Cellulosimicrobium, and Microbacterium were the predominant groups, but members of Bacillus, Dyadobacter, Siphonobacter, Paracoccus, Kaistia, Devosia, Labrys, Ensifer, Variovorax, Shinella, Citrobacter, and Stenotrophomonas were also found. Furthermore, our results suggest that a significant amount of bacterial diversity exists among the cellulolytic bacteria, and that Siphonobacter aquaeclarae, Cellulosimicrobium funkei, Paracoccus sulfuroxidans, Ochrobactrum cytisi, Ochrobactrum haematophilum, Kaistia adipata, Devosia riboflavina, Labrys neptuniae, Ensifer adhaerens, Shinella zoogloeoides, Citrobacter freundii, and Pseudomonas nitroreducens are reported to be cellulolytic for the first time in this study. Our results indicate that the scarab gut is an attractive source for the study of novel cellulolytic microorganisms and enzymes useful for cellulose degradation.

  3. Cellulolytic Bacteria Associated with the Gut of Dendroctonus armandi Larvae (Coleoptera: Curculionidae: Scolytinae

    Directory of Open Access Journals (Sweden)

    Xia Hu

    2014-03-01

    Full Text Available The object of this study was to investigate the cellulolytic bacterial community in the intestine of the Chinese white pine beetle (Dendroctonus armandi larvae. A total of 91 cellulolytic bacteria were isolated and assigned to 11 genotypes using amplified ribosomal DNA restriction analysis (ARDRA. Partial 16S rDNA sequence analysis and morphological tests were used to assign the 11 representative isolates. The results showed that the isolates belonged to α-Proteobacteria, γ-Proteobacteria and Firmicutes. Members of γ-Proteobacteria were the most frequently represented species and accounted for 73.6% of all the cellulolytic bacteria. The majority of cellulolytic bacteria in D. armandi larva gut were identified as Serratia and accounted for 49.5%, followed by Pseudomonas, which accounted for 22%. In addition, members of Bacillus, Brevundimonas, Paenibacillus, Pseudoxanthomonas, Methylobacterium and Sphingomonas were found in the D. armandi larva gut. Brevundimonas kwangchunensis, Brevundimonas vesicularis, Methylobacterium populi and Pseudoxanthomonas mexicana were reported to be cellulolytic for the first time in this study. Information generated from the present study might contribute towards understanding the relationship between bark beetle and its gut flora.

  4. Thermophilic starter cultures: another set of problems

    OpenAIRE

    Oberg, C. J.; Broadbent, Jeffery R.

    1993-01-01

    Increased consumer demand for yogurt and Italian cheeses, particularly Mozzarella, over the past decade has intensified production demands on thermophilic starter cultures. Dramatically elevated production rates within existing facilities have created problems analogous to those experienced years ago by the dairy industry for mesophilic lactococci when Cheddar cheese production increased dramatically. In contrast to mesophilic lactococci, however, diversity among lactic genera that contain th...

  5. A thermophilic microbial fuel cell design

    Science.gov (United States)

    Carver, Sarah M.; Vuoriranta, Pertti; Tuovinen, Olli H.

    Microbial fuel cells (MFCs) are reactors able to generate electricity by capturing electrons from the anaerobic respiratory processes of microorganisms. While the majority of MFCs have been tested at ambient or mesophilic temperatures, thermophilic systems warrant evaluation because of the potential for increased microbial activity rates on the anode. MFC studies at elevated temperatures have been scattered, using designs that are already established, specifically air-cathode single chambers and two-chamber designs. This study was prompted by our previous attempts that showed an increased amount of evaporation in thermophilic MFCs, adding unnecessary technical difficulties and causing excessive maintenance. In this paper, we describe a thermophilic MFC design that prevents evaporation. The design was tested at 57 °C with an anaerobic, thermophilic consortium that respired with glucose to generate a power density of 375 mW m -2 after 590 h. Polarization and voltage data showed that the design works in the batch mode but the design allows for adoption to continuous operation.

  6. Cellulolytic Actinomycetes isolated from soil in Bukit Duabelas National Park, Jambi

    Directory of Open Access Journals (Sweden)

    ATIT KANTI

    2005-04-01

    Full Text Available The objective of study was to investigate the enzymatic activities of cellulolytic Actinomycetes. The soil sample was collected from Bukit Duabelas National Park, Jambi. Actinomycetes was isolated by Casein Agar Medium, and its cellulolytic capacity was determined by measuring the activity of CMC-ase. Two isolates of cellulolytic Actinomycetes belonged to genus Streptomyces were isolated. The CMC-ase activity was 7.7 unit and 13.4 unit for isolate I and isolate II respectively. The Km of isolate I and isolate II were 1.356x 10-3 and 1.595x 10-3 (% b/v respectively. Vmaks of isolate I and II was 1.658 x10-4 and 6.166x 10-4 µg glukosa/mL enzyme /minute, respectively.

  7. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.;

    2002-01-01

    The objective was to investigate the relationship between soil suppression of seedling blight of barley caused by Fusarium culmorum (W.G. Smith) Sacc. and the soil cellulolytic activity of beta-glucosidase, cellobiohydrolase and endocellulase. Disease suppression was investigated in bioassays with...... test soils mixed with sand, and barley seeds inoculated with F. culmorum. After 19 days, disease severity was evaluated on the barley seedlings. Soil cellulolytic activities were measured using 4-methylumbelliferyl-labelled fluorogenic substrates, and were expressed as V-max values obtained by using...... content of total C and N. From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B...

  8. Technique for preparation of anaerobic microbes: Rodshaped cellulolytic bacteria

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2001-10-01

    Full Text Available Preparation of anaerobic-rod cellulolytic bacteria with coating technique has been conducted. Steps of the processes involved were cultivation, coating, evaporation, and drying. Coating agent used was Gum Arabic, and drying techniquesconducted were freeze drying and sun drying. pH of culture media was firstly optimized to obtain the maximal population ofbacteria. Both coated and uncoated preparates were subjected to drying. Morphological and Gram type identifications showed that uncoated preparate dried with freeze drying is not contaminated (ie. all bacteria are rod shape with Gram-negative type while the one dried with sun drying is not morphologically pure (ie. containing of both rod and coccus shapes with Gram negative and positive. The coated preparates dried by both freeze and sun drying, were not contaminated (ie. all are rods with Gram-negative. The coating and drying processes decreased viability of preparates significantly. However, the decreasing of viability of coated preparate are lower than uncoated preparate (ie. 89 vs. 97%. Total count of bacteria in sun-drying coated preparate are higher (P<0.05 than the uncoated preparate (ie. 3.38 x 1010 vs. 1.97 x 1010 colony/g DM. Activity of sun-drying coated preparate to digest elephant grass and rice straw was higher (P<0.01 than the sun-drying uncoated preparate with the in vitro DMD values were 42.7 vs. 35.5% for elephant grass substrate and 29.3 vs. 24.6% for rice straw substrate. Therefore, it is concluded that coating technique has a positive effects on the preparation of rumen bacteria.

  9. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  10. Discrimination of thermophilic and mesophilic proteins

    Directory of Open Access Journals (Sweden)

    Vaisman Iosif I

    2010-05-01

    Full Text Available Abstract Background There is a considerable literature on the source of the thermostability of proteins from thermophilic organisms. Understanding the mechanisms for this thermostability would provide insights into proteins generally and permit the design of synthetic hyperstable biocatalysts. Results We have systematically tested a large number of sequence and structure derived quantities for their ability to discriminate thermostable proteins from their non-thermostable orthologs using sets of mesophile-thermophile ortholog pairs. Most of the quantities tested correspond to properties previously reported to be associated with thermostability. Many of the structure related properties were derived from the Delaunay tessellation of protein structures. Conclusions Carefully selected sequence based indices discriminate better than purely structure based indices. Combined sequence and structure based indices improve performance somewhat further. Based on our analysis, the strongest contributors to thermostability are an increase in ion pairs on the protein surface and a more strongly hydrophobic interior.

  11. [Progress in the thermophilic and alkalophilic xylanases].

    Science.gov (United States)

    Bai, Wenqin; Wang, Qinhong; Ma, Yanhe

    2014-06-01

    Xylanase is the key enzyme to degrade xylan that is a major component of hemicellulose. The enzyme has potential industrial applications in the food, feed, paper and flax degumming industries. The use of xylanases becomes more and more important in the paper industry for bleaching purposes. Xylanases used in the pulp bleaching process should be stable and active at high temperature and alkaline pH. Thermophilic and alkalophilic xylanases could be obtained by screening the wild type xylanases or engineering the mesophilic and neutral enzymes. In this paper, we reviewed recent progress of screening of the thermophilic and alkalophilic xylanases, molecular mechanism of thermal and alkaline adaptation and molecular engineering. Future research prospective was also discussed. PMID:25212001

  12. Evolution of Acetoclastic Methanogenesis in Methanosarcina via Horizontal Gene Transfer from Cellulolytic Clostridia▿ †

    OpenAIRE

    Fournier, Gregory P.; Gogarten, J. Peter

    2007-01-01

    Phylogenetic analysis confirmed that two genes required for acetoclastic methanogenesis, ackA and pta, were horizontally transferred to the ancestor of Methanosarcina from a derived cellulolytic organism in the class Clostridia. This event likely occurred within the last 475 million years, causing profound changes in planetary methane biogeochemistry.

  13. Determination of the cellulolytic activities of microorganisms isolated from poultry litter for sawdust degradation

    Directory of Open Access Journals (Sweden)

    Akpomie O.OF

    2013-03-01

    Full Text Available Cellulolytic activities of bacterial and fungal isolates obtained from poultry droppings were determined using the ability of each isolate to produce clear zones on Carboxyl Methyl Cellulose Agar plates. The bacterial isolates were Klebsiella, Streptococcus, Celulomonas, Escherichia coli and Micrococus species. The cellulolytic counts ranged from 5.02 x 104 + 3.42 to 7.20 x 109 + 6.12 cfu/g. The cellulolytic activities of the bacterial isolates ranged from 0.04 to 0.26 iu/m with Cellulomonas having the highest cellulose activity. The fungal isolates were Aspergillus niger, Mucor mucedo, Trichoderma sp. and Penicllium chrysogenum with cellulose activities of 0.24 + 0.021 0.19 + 0.031, 0.23 + 0.05 and 0.23 + 0.028iu/ml respectively. All the isolates were able to degrade the sawdust to varying extent. The percentage degradation was highest with Micrococcus sp. (78.20% and least with Trichoderma sp. (65.83%. The study shows that is a potential source of cellulolytic microorganisms which could be employed in the degradation of sawdust.

  14. Sample handling factors affecting the enumeration of lactobacilli and cellulolytic bacteria in equine feces

    Science.gov (United States)

    The objectives were to compare media types and evaluate the effects of fecal storage time and temperature on the enumeration of cellulolytic bacteria and lactobacilli from horses. Fecal samples were collected from horses (n = 3) and transported to the lab (CO2, 37 ºC, 0.5 h). The samples were assign...

  15. Cellulolytic and proteolytic ability of bacteria isolated from gastrointestinal tract and composting of a hippopotamus.

    Science.gov (United States)

    da Cruz Ramos, Geomárcia Feitosa; Ramos, Patricia Locosque; Passarini, Michel Rodrigo Zambrano; Vieira Silveira, Marghuel A; Okamoto, Débora Noma; de Oliveira, Lilian Caroline Gonçalves; Zezzo, Larissa Vieira; Marem, Alyne; Santos Rocha, Rafael Costa; da Cruz, João Batista; Juliano, Luiz; de Vasconcellos, Suzan Pantaroto

    2016-03-01

    The bioprospection for cellulase and protease producers is a promise strategy for the discovery of potential biocatalysts for use in hydrolysis of lignocellulosic materials as well as proteic residues. These enzymes can increment and turn viable the production of second generation ethanol from different and alternative sources. In this context, the goal of this study was the investigation of cellulolytic and proteolytic abilities of bacteria isolated from the gastrointestinal tract of a hippopotamus as well as from its composting process. It is important to highlight that hippopotamus gastrointestinal samples were a non-typical sources of efficient hydrolytic bacteria with potential for application in biotechnological industries, like biofuel production. Looking for this, a total of 159 bacteria were isolated, which were submitted to qualitative and quantitative enzymatic assays. Proteolytic analyzes were conducted through the evaluation of fluorescent probes. Qualitative assays for cellulolytic abilities revealed 70 positive hits. After quantitative analyzes, 44 % of these positive hits were selected, but five (5) strains showed cellulolytic activity up to 11,8 FPU/mL. Regarding to proteolytic activities, six (6) strains showed activity above 10 %, which overpassed results described in the literature. Molecular analyzes based on the identification of 16S rDNA, revealed that all the selected bacterial isolates were affiliated to Bacillus genus. In summary, these results strongly indicate that the isolated bacteria from a hippopotamus can be a potential source of interesting biocatalysts with cellulolytic and proteolytic activities, with relevance for industrial applications. PMID:26931430

  16. Thermophilic biohydrogen production: how far are we?

    Science.gov (United States)

    Pawar, Sudhanshu S; van Niel, Ed W J

    2013-09-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production. PMID:23948723

  17. The occurrence and distribution of cellulolytic fungi and Fusarium in seven Montagu’s Harrier (Circus pygargus

    Directory of Open Access Journals (Sweden)

    Teresa Korniłłowicz-Kowalska

    2013-12-01

    Full Text Available A total of 45 species of cellulolytic fungi and ten Fusarium species were identified. Three genera (Chaetomium, Trichoderma, Fusarium represented 80% of the frequency of cellulolytic fungi. Of them, Chaetomium globosum, Trichoderma viride and T. koningii were some of the most frequent species. A high differentiation of the richness and frequency of species of cellulolytic fungi depending on the nest and its individual layers was observed. Reasons for the differences in the frequency and species composition of the fungi were discussed.

  18. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor

    International Nuclear Information System (INIS)

    Thermophilic hydrogen fermentation of cellulose was evaluated by a long term continuous experiment and batch experiments. The continuous experiment was conducted under 55 °C using a continuously stirred tank reactor (CSTR) at a hydraulic retention time (HRT) of 10 day. A stable hydrogen yield of 15.4 ± 0.23 mol kg−1 of cellulose consumed was maintained for 190 days with acetate and butyrate as the main soluble byproducts. An analysis of the 16S rRNA sequences showed that the hydrogen-producing thermophilic cellulolytic microorganisms (HPTCM) were close to Thermoanaerobacterium thermosaccharolyticum, Clostridium sp. and Enterobacter cloacae. Batch experiment demonstrated that the highest H2 producing activity was obtained at 55 °C and the ultimate hydrogen yield and the metabolic by-products were influenced greatly by temperatures. The effect of temperature variation showed that the activation energy for cellulose and glucose were estimated at 103 and 98.8 kJ mol−1, respectively. - Highlights: • Continuous cellulosic-hydrogen fermentation was conducted at 55 °C. • Hydrogen yield was improved to 15.4 mol kg−1 of consumed-cellulose. • The cellulosic hydrogen bacteria were close to Clostridia and Enterobacter genus. • The mixed microflora produced H2 within a wide range of temperatures (35 °C–65 °C). • Activation energy of cellulose and glucose were 103 and 98.8 kJ mol−1, respectively

  19. Thermophilic anaerobic waste water treatment, temperature aspects and process stability.

    NARCIS (Netherlands)

    Lier, van J.B.

    1995-01-01

    The main objective of this thesis was to assess the thermostability of thermophilic anaerobic wastewater treatment processes and the possibility to optimize the performance of thermophilic high-rate systems.Experiments were conducted to study the suitability of two types of seed material to start a

  20. Compositions comprising a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Quinlan, Jason; Xu, Feng; Sweeney, Matthew

    2016-05-31

    The present invention relates to compositions comprising: a polypeptide having cellulolytic enhancing activity and a nitrogen-containing compound. The present invention also relates to methods of using the compositions.

  1. Bio-hydrogen production in an EGSB reactor under mesophilic, thermophilic and hyperthermophilic conditions

    OpenAIRE

    Abreu, A. A.; Danko, Anthony S.; Alves, M. M.

    2007-01-01

    Mesophilic, thermophilic and hyperthermophilic bio-hydrogen production with an expanded granular sludge blanket (EGSB) fed with glucose and arabinose, without methane production, was demonstrated. Homoacetogenesis was observed on reactor when operated under mesophilic (37ºC) conditions but not under thermophilic (55ºC) and hyper-thermophilic conditions (70ºC). It was also found that under thermophilic and hyper-thermophilic conditions glucose is preferentially consumed than ara...

  2. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.

    Science.gov (United States)

    Shida, Yosuke; Furukawa, Takanori; Ogasawara, Wataru

    2016-09-01

    The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus. PMID:27075508

  3. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  4. Diversity of Thermophilic Microorganisms within Hawaiian Fumaroles

    Science.gov (United States)

    Ackerman, C. A.; Anderson, S.; Anderson, C.

    2007-12-01

    Fumaroles provide heat and moisture characteristic of an environment suitable for thermophilic microorganisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent. We used metagenomics to detect 16S rDNA from archaeal and bacterial thermophilic microorganisms indicating their presence in Hawaiian fumaroles. The fumaroles sampled exist along elevation and precipitation gradients; varying from sea level to 4,012ft and annual rainfall from less than 20in to greater than 80in. To determine the effects of environmental gradients (including temperature, pH, elevation, and precipitation) on microbial diversity within and among fumaroles, we obtained 22 samples from 7 fumaroles over a three-day period in February of 2007. Temperature variations within individual fumaroles vary from 2.3oC to 35oC and the pH variances that range from 0.4 to 2.0. Temperatures of the different fumaroles range from 29.9oC to greater than 105oC, with pH values that vary from 2.55 to 6.93. Further data on the microbial diversity within fumaroles and among fumaroles will be determined once the sequencing of the microbial 16S rDNA regions is completed. We are currently assembling and sequencing clone libraries of bacterial and archaeal 16S rDNA fragments from fumaroles.

  5. Aerobic Thermophilic Composting of Municipal Solid Waste

    Directory of Open Access Journals (Sweden)

    D V Wadkar

    2013-03-01

    Full Text Available Composting is a natural process that turns organic material into a dark rich substance called compost. Aerobic Composting is the creation of compost that depends on bacteria that thrive in an oxygen rich environment. Aerobic bacteria manage the chemical process by converting the inputs (i.e. air, water and carbon and nitrogen rich materials into heat, carbon dioxide and ammonium. The ammonium is further converted by bacteria into plant nourishing nitrites and nitrates through the process of nitrification. Thermophilic Composting is breaking down biological waste with thermophilic (heat loving bacteria. A cylindrical reactor was made. Organic wasteincluded dry vegetable waste collected from MSW ramp, Koregaon park, Pune. The characteristics of compost like pH, moisture content, temperature, C/N ratio and volume reduction were studied for the period of maturation (42days. It can be concluded that the values are within the desired limits and compost is suitable for ornamental plants. The setup of reactor is affordable and thus the compost obtained is effective and economical.

  6. RESEARCH OF INFLUENCE OF GLYCEROL ON HYDROLYSIS AND FERMENTATION OF MEADOW GRASS BY CELLULOLYTIC ACTINOMYCETES

    OpenAIRE

    Sultanova, L.; Zorin, V.; Petukhova, N.; Sharaeva, A.; Mikhailova, T.; Fedorova, V.

    2011-01-01

    It has been shown that pre-treatment of meadow grass with saline water solutions containing 220 % of glycerol (temperature 120 oC, pressure 98 kPa, time 1 hour) and further washing of lignocelluloses substrate by water lead to significant increase of microorganisms growth, yield of reducing substances and KMC-cellulase activity of extracellular enzymes during the period of cellulolytic actinomycetes cultivation.

  7. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil.

    Science.gov (United States)

    Gao, Zhao-Ming; Xu, Xun; Ruan, Ling-Wei

    2014-01-01

    Enrichment of microbial consortia provides an approach to simulate and investigate microbial communities in natural environments. In this study, a cellulolytic microbial consortium SQD-1.1 was enriched from mangrove soil of Qinglan port (Hainan, China) by 27 times continuous subcultivation under anaerobic static conditions. The consortium could completely degrade 0.2% (w/v) filter paper within 3 days and utilized it as the sole carbon source. PCR-denaturing gradient gel electrophoresis analysis revealed a stable microbial community structure in the incubation process of 10 days and in the procedure of subcultivation. Twenty-four operational taxonomic units belonging to seven phyla were obtained from the full-length 16S rRNA gene library. Five clones, closest related to the genera Alkaliflexus, Clostridium, Alistipes, Spirochaeta, and Trichococcus, were the predominant ones. Among them, M117, phylogeneticly showing high similarity (16S rRNA gene identity, 95.3%) with the cellulolytic anaerobic bacterium Clostridium straminisolvens CSK1(T), was the potential key cellulolytic bacterium. Using the plate cultivation method, 12 strains, including one potential new species and four potential new species of new genera, were isolated. The strain P2, corresponding to the most frequently detected clone (M05) in the 16S rRNA gene library, showed both CMCase and xylanase activity and may be another important cellulolytic bacterium. The findings of cellulase activity in cell pellet and cohesion and dockerin domains in metagenome data further suggested the potential of utilization of cellulosomes by the consortium to degrade cellulose. Consortium SQD-1.1 provides a candidate for investigating the mechanism of cellulose degradation under anoxic conditions in natural environments. PMID:23529681

  8. Paenibacillus curdlanolyticus Strain B-6 Xylanolytic-Cellulolytic Enzyme System That Degrades Insoluble Polysaccharides

    OpenAIRE

    Pason, Patthra; Kyu, Khin Lay; Ratanakhanokchai, Khanok

    2006-01-01

    A facultatively anaerobic bacterium, Paenibacillus curdlanolyticus B-6, isolated from an anaerobic digester produces an extracellular xylanolytic-cellulolytic enzyme system containing xylanase, β-xylosidase, arabinofuranosidase, acetyl esterase, mannanase, carboxymethyl cellulase (CMCase), avicelase, cellobiohydrolase, β-glucosidase, amylase, and chitinase when grown on xylan under aerobic conditions. During growth on xylan, the bacterial cells were found to adhere to xylan from the early exp...

  9. Cellulolytic ability of Penicillium strains isolated from soil of the Brazilian Atlantic forest

    OpenAIRE

    Cruz, R.; Lima, J. S.; Fonseca, J. C.; Ferreira, M. J. S.; Moreira, K. A.; Santos, C; de Souza-Motta, Cristina Maria

    2012-01-01

    Penicillium spp. are capable of degrading plant wastes by producing large amounts of enzymes such as cellulases. These form a complex capable of acting on cellulosic materials and producing sugars with industrial interest (e.g., ethanol production). Cellulases are also used for (a) pulp and paper industry (b) in the textile industry. The aim of this study was to evaluate the cellulolytic capability of 17 strains of Penicillium isolated from soil of the Brazilian Atlantic Forest...

  10. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    OpenAIRE

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied b...

  11. Cellulolytic enzymes on lignocellulosic substrates in solid state fermentation by Aspergillus niger

    OpenAIRE

    Chandra, M. Subhosh; Viswanath, Buddolla; Reddy, B. Rajasekhar

    2007-01-01

    The production of cellulolytic enzymes by Aspergillus niger on lignocellulosic substrates groundnut fodder, wheat bran, rice bran and sawdust in solid state fermentation in a laboratory scale was compared. Czapek Dox liquid broth amended with cellulose (0.5%) was used to moisten lignocellulosic solid supports for cultivation of Aspergillus niger. The production of filter paperase, carboxymethyl cellulase and -glucosidase were monitored at daily intervals for 5 days. The peak production of the...

  12. Activity of Cellulolytic Enzymes Immobilized on Some Organic and Inorganic Matter of Soil

    OpenAIRE

    H. Shariatmadari; G. Emtiazi; A. A. Safari Sinejani

    2002-01-01

    Soil organic matter and clay minerals adsorb and immobilize extracellular enzymes of microorganisms and increase soil enzymes stability. This study aims to clarify the relative importance of soil organic matter and clay minerals on the cellulolytic activities of soils. Fluca prepared cellulase was immobilized on some agricultural residues and clay minerals, avicel and a sample of soil. Immobilized exoglucanase and endoglucanase were assayed at different times. Activities of the immobilized en...

  13. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production

    OpenAIRE

    Zhuo Liu; Shih-Hsin Ho; Kengo Sasaki; Riaan den Haan; Kentaro Inokuma; Chiaki Ogino; van Zyl, Willem H; Tomohisa Hasunuma; Akihiko Kondo

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell ...

  14. Cellulolytic and proteolytic ability of bacteria isolated from gastrointestinal tract and composting of a hippopotamus

    OpenAIRE

    da Cruz Ramos, Geomárcia Feitosa; Ramos, Patricia Locosque; Passarini, Michel Rodrigo Zambrano; Vieira Silveira, Marghuel A.; Okamoto, Débora Noma; de Oliveira, Lilian Caroline Gonçalves; Zezzo, Larissa Vieira; Marem, Alyne; Santos Rocha, Rafael Costa; da Cruz, João Batista; Juliano, Luiz; de Vasconcellos, Suzan Pantaroto

    2016-01-01

    The bioprospection for cellulase and protease producers is a promise strategy for the discovery of potential biocatalysts for use in hydrolysis of lignocellulosic materials as well as proteic residues. These enzymes can increment and turn viable the production of second generation ethanol from different and alternative sources. In this context, the goal of this study was the investigation of cellulolytic and proteolytic abilities of bacteria isolated from the gastrointestinal tract of a hippo...

  15. Hydrophobic nature and effects of culture conditions on biofilm formation by the cellulolytic actinomycete Thermobifida fusca

    Directory of Open Access Journals (Sweden)

    Almaris N. Alonso

    2015-09-01

    Full Text Available Thermobifida fusca produces a firmly attached biofilm on nutritive and non-nutritive surfaces, such as cellulose, glass, plastic, metal and Teflon®. The ability to bind to surfaces has been suggested as a competitive advantage for microbes in soil environments. Results of previous investigations indicated that a Gram-positive cellulolytic soil bacteria, Cellulomonas uda, a facultative aerobe, specifically adhered to nutritive surfaces forming biofilms, but cells did not colonize non-nutritive surfaces. Cell surface hydrophobicity has been implicated in the interactions between bacteria and the adhesion to surfaces. It was recently described that the cellulolytic actinomycete T. fusca cells hydrophobicity was measured and compared to the cellulolytic soil bacteria C. uda. Also, T. fusca biofilm formation on non-nutritive surface, such as polyvinyl chloride, was examined by testing various culture ingredients to determine a possible trigger mechanism for biofilm formation. Experimental results showed that partitioning of bacterial cells to various hydrocarbons was higher in T. fusca cells than in C. uda. The results of this study suggest that the attachment to multiple surfaces by T. fusca could depend on nutrient availability, pH, salt concentrations, and the higher hydrophobic nature of bacterial cells. Possibly, these characteristics may confer T. fusca a selective advantage to compete and survive among the many environments it thrives.

  16. Evaluation in Cellulolytic Activity of Stenotrophomonas sp. in Cellulose Nitrogen Free Mineral Medium

    International Nuclear Information System (INIS)

    Three bacterial strains were isolated from rice rhizospheric soil and their nitrogen fixing activity was determined in nitrogen free mineral medium and broth with glucose and cellulose as carbon sources and they produced ammonium concentration (above 3ppm) in G-NFFMM and (2-3ppm) in C-NFMM. Moreover, their cellulolytic activity was determined by DNS mothod and strain H3 having the cellulolytic activity was selected. Then, cellulose, carboxymethyl cellulose, baggasse, pea haulm, corn stem, rice straw were used as substrates and determined its reducing sugar concentration. After detection of the cellulolytic activity, the bacteria produced the highest concentration of reducing sugar on cellulose substrate at 12 day incubation period with the reducing sugar amount of 0.12mg/ml and 0.298mg/ml on CMC substrates. In the study of argicultral wastes as substrates, the selected strain, H3, produced in the reducing sugar concentration with 0.12, 0.116,0.103 and 0.098mg/ml respectively. The selected strain was identified by biochemical characterists and 16s ribosomal DNA analysis and it was Stenotrophomonas sp.

  17. Thermophilic fermentation of hydrolysates: the effect of inhibitors on growth of thermophilic bacteria.

    Science.gov (United States)

    Thomasser, Christiane; Danner, Herbert; Neureiter, Markus; Saidi, Bamusi; Braun, Rudolf

    2002-01-01

    Lignocellulosic biomass has great potential as a cheap feedstock in biological processes to produce biofuels or chemicals; however, dilute acid pretreatment at high temperatures produces undesirable compounds. Toxicity tests were done with inhibitors in standard media, to predict the growth-limiting effects on thermophilic strains. The 22 inhibitors included furfural, levulinic acid, acetic acid, and cinnamaldehyde. Neutralizing reagents and additional treatment steps have been tested. PMID:12018300

  18. Thermophilic Sulfate-Reducing Bacteria in Cold Marine Sediment

    DEFF Research Database (Denmark)

    ISAKSEN, MF; BAK, F.; JØRGENSEN, BB

    1994-01-01

    P60, were isolated and characterized as Desulfotomaculum kuznetsovii. The temperature response of growth and respiration of strain P60 agreed well with the measured sulfate reduction at 50 degrees-70 degrees C. Bacteria similar to strain P60 could thus be responsible for the measured thermophilic...... C to search for presence of psychrophilic, mesophilic and thermophilic sulfate-reducing bacteria. Detectable activity was initially only in the mesophilic range, but after a lag phase sulfate reduction by thermophilic sulfate-reducing bacteria were observed. No distinct activity of psychrophilic...... sulfate-reducing bacteria was detected. Time course experiments showed constant sulfate reduction rates at 4 degrees C and 30 degrees C, whereas the activity at 60 degrees C increased exponentially after a lag period of one day. Thermophilic, endospore-forming sulfate-reducing bacteria, designated strain...

  19. Global Association between Thermophilicity and Vancomycin Susceptibility in Bacteria.

    Science.gov (United States)

    Roy, Chayan; Alam, Masrure; Mandal, Subhrangshu; Haldar, Prabir K; Bhattacharya, Sabyasachi; Mukherjee, Trinetra; Roy, Rimi; Rameez, Moidu J; Misra, Anup K; Chakraborty, Ranadhir; Nanda, Ashish K; Mukhopadhyay, Subhra K; Ghosh, Wriddhiman

    2016-01-01

    Exploration of the aquatic microbiota of several circum-neutral (6.0-8.5 pH) mid-temperature (55-85°C) springs revealed rich diversities of phylogenetic relatives of mesophilic bacteria, which surpassed the diversity of the truly-thermophilic taxa. To gain insight into the potentially-thermophilic adaptations of the phylogenetic relatives of Gram-negative mesophilic bacteria detected in culture-independent investigations we attempted pure-culture isolation by supplementing the enrichment media with 50 μg ml(-1) vancomycin. Surprisingly, this Gram-positive-specific antibiotic eliminated the entire culturable-diversity of chemoorganotrophic and sulfur-chemolithotrophic bacteria present in the tested hot water inocula. Moreover, it also killed all the Gram-negative hot-spring isolates that were obtained in vancomycin-free media. Concurrent literature search for the description of Gram-negative thermophilic bacteria revealed that at least 16 of them were reportedly vancomycin-susceptible. While these data suggested that vancomycin-susceptibility could be a global trait of thermophilic bacteria (irrespective of their taxonomy, biogeography and Gram-character), MALDI Mass Spectroscopy of the peptidoglycans of a few Gram-negative thermophilic bacteria revealed that tandem alanines were present in the fourth and fifth positions of their muropeptide precursors (MPPs). Subsequent phylogenetic analyses revealed a close affinity between the D-alanine-D-alanine ligases (Ddl) of taxonomically-diverse Gram-negative thermophiles and the thermostable Ddl protein of Thermotoga maritima, which is well-known for its high specificity for alanine over other amino acids. The Ddl tree further illustrated a divergence between the homologs of Gram-negative thermophiles and mesophiles, which broadly coincided with vancomycin-susceptibility and vancomycin-resistance respectively. It was thus hypothesized that thermophilic Ddls have been evolutionarily selected to favor a D-ala-D-ala bonding

  20. Structural differences between thermophilic and mesophilic membrane proteins

    OpenAIRE

    Meruelo, Alejandro D.; Han, Seong Kyu; Kim, Sanguk; Bowie, James U.

    2012-01-01

    The evolutionary adaptations of thermophilic water-soluble proteins required for maintaining stability at high temperature have been extensively investigated. Little is known about the adaptations in membrane proteins, however. Here, we compare many properties of mesophilic and thermophilic membrane protein structures, including side-chain burial, packing, hydrogen bonding, transmembrane kinks, loop lengths, hydrophobicity, and other sequence features. Most of these properties are quite simil...

  1. How Do Thermophilic Proteins and Proteomes Withstand High Temperature?

    OpenAIRE

    Sawle, Lucas; Ghosh, Kingshuk

    2011-01-01

    We attempt to understand the origin of enhanced stability in thermophilic proteins by analyzing thermodynamic data for 116 proteins, the largest data set achieved to date. We compute changes in entropy and enthalpy at the convergence temperature where different driving forces are maximally decoupled, in contrast to the majority of previous studies that were performed at the melting temperature. We find, on average, that the gain in enthalpy upon folding is lower in thermophiles than in mesoph...

  2. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    Science.gov (United States)

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions. PMID:26101964

  3. Optimization of Acidothermus Celluloyticus Endoglucanase (E1) Production in Transgenic Tobacco Plants by Transcriptional, Post-transcription and Post-Translational Modification

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Hooker, Brian S.; Quesenberry, Ryan D.; Thomas, S. R.

    2005-10-01

    Biochemical characteristics of Acidothermus cellulolyticus endoglucanase (E1) and its physiological effects in transgenic tobacco (Nicotiana tabacum) has been studied previously. In an attempt to obtain a high level of production of intact E1 in transgenic plants, the E1 gene was expressed under the control of strong Mac promoter (a hybrid promoter of manopine synthase promoter and cauliflower mosaic virus 35S promoter enhancer region) or tomato Rubisco small subunit (RbcS-3C) promoter with different 5’ untranslated leader (UTL) sequence and targeted to different subcellular comartmentations with various transit peptides. The expression of E1 protein in transgenic tobacco plants was determined via E1 activity, protein immunobloting, and RNA gel-blotting analyses. Effects of different transit peptides on E1 protein production and its stability were examined in transgenic tobacco plants carrying one of six transgene expression vectors with the same (Mac) promoter and transcription terminator (Tmas). Transgenic tobacco plants with apoplast transit peptide (Mm-apo) had the highest average E1 activity and protein accumulation , while E1 protein was more stable in transgenic plants with no transit peptide (Mm) than others. The E1 expression under tomato RbcS-3C promoter was higher than that under Mac promoter based on the average E1 activity, E1 protein accumulation, and RNA gel-blotting. The E1 expression was increased more than two fold when the 5’-UTL of alfalfa mosaic virus RNA4 gene replaced the UTL of RbcS-3C promoter, while the UTL of alfalfa mosaic virus RNA4 gene was less effective than the UTL of Mac promoter. The optimal combination of promoter, 5’-UTL, and subcellular compartmentation (transit peptide) for E1 protein production in transgenic tobacco plants are discussed.

  4. Development of Detection Methods for Cellulolytic Activity of Auricularia auricula-judae

    OpenAIRE

    Jo, Woo-Sik; Bae, Soon-Hwa; Choi, Seung-Yong; Park, So-Deuk; Yoo, Young-Bok; Park, Seung-Chun

    2010-01-01

    To obtain basic information on the detection of cellulolytic activity in Auricularia auricula-judae, the influences of dye reagent, pH, and temperature were assessed. Chromogenic dye (congo red, phenol red, remazol brilliant blue, and trypan blue) was individually incorporated into a medium containing either carboxymethyl-cellulose, Avicel, or D-cellobiose as a polysaccharide carbon substrate. The other assessments utilized pHs ranging from 4.5 to 8.0 and temperatures from 15~35℃. Overall, wh...

  5. Enzymatic activity of the cellulolytic complex produced by trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reese QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass from Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars productions, have been selected. Previous studies on enzymatic hydrolysis of O. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (author). 10 figs.; 10 refs

  6. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs

  7. Relationship between soil cellulolytic activity and suppression of seedling blight of barley in arable soils

    DEFF Research Database (Denmark)

    Rasmussen, Peter Have; Knudsen, I.; Elmholt, S.; Jensen, D. F.

    2002-01-01

    the Hanes-Wolf transformation of the Michaelis-Menten equation. Soil samples from 6 to 13 cm depth were collected in the early spring as undisturbed blocks from 10 arable soils with different physico-chemical properties and cultivation history. Significant correlations were found between soil...... content of total C and N. From the preliminary results obtained, it is proposed that the cellulolytic activity can be used as an enzymatic approach to study the microbial turnover of organic matter in soils and as indicator of seedling blight of barley caused by F. culmorum. (C) 2002 Elsevier Science B...

  8. Comparison of methods for isolation and enumeration of thermophilic actinomycetes from dust.

    OpenAIRE

    Treuhaft, M W; Arden Jones, M P

    1982-01-01

    Thermophilic actinomycetes are the primary sensitizing agents in farmer's lung disease. We compared dilution pour-plate and spread-plate methods for their usefulness in enumerating thermophilic actinomycetes in moldy silage dust and evaluated the ability of a nonquantitative gravity settling technique to recover thermophilic actinomycetes from moldy silage. Spread plates and pour plates yielded similar estimates of total thermophiles. Higher counts were observed on spread plates (P less than ...

  9. An Immunological Assay for Detection and Enumeration of Thermophilic Biomining Microorganisms

    OpenAIRE

    Amaro, Ana M.; Hallberg, Kevin B.; Lindström, E. Börje; Jerez, Carlos A.

    1994-01-01

    A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes.

  10. An immunological assay for detection and enumeration of thermophilic biomining microorganisms.

    Science.gov (United States)

    Amaro, A M; Hallberg, K B; Lindström, E B; Jerez, C A

    1994-09-01

    A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes. PMID:16349398

  11. Microbial influenced corrosion by thermophilic bacteria

    Science.gov (United States)

    Lata, Suman; Sharma, Chhaya; Singh, Ajay

    2012-03-01

    The present study was undertaken to investigate microbial influenced corrosion (MIC) on stainless steels due to thermophilic bacteria Desulfotomaculum nigrificans. The objective of the study was to measure the extent of corrosion and correlate it with the growth of the biofilm by monitoring the composition of its extracellular polymeric substances (EPS). The toxic effect of heavy metals on MIC was also observed. For this purpose, stainless steels 304L, 316L and 2205 were subjected to electrochemical polarization and immersion tests in the modified Baar's media, control and inoculated, in anaerobic conditions at room temperature. Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) were used to identify the chemicals present in/outside the pit. The results show maximum corrosive conditions when bacterial activity is highest, which in turn minimizes the amount of carbohydrate and protein along with the increase in the fraction of uronic acid in carbohydrate in EPS of the biofilm. However, although bacterial activity and corrosion rate decreases, the amount of biofilm components continue to increase. It is also observed that the toxicity of metals ions affect the bacterial activity and EPS production. It was observed that Desulfotomaculum sp. has the ability to biodegrade its own EPS.

  12. Studies on cellulolytic bacteria isolated from a steer and a buffalo

    International Nuclear Information System (INIS)

    A simple method using medium enriched with Whatman No. 1 filter paper as the sole selective substrate proved to be very effective in the isolation of cellulolytic bacteria from the rumen of a steer and a buffalo. Both animals were fed a high fibre ration. Most of the cellulolytic bacteria isolated were identified as Bacteriodes succinogenes; Ruminococcus flaveflaciens was detected less frequently. However, no R. albus was isolated. The colonies were contaminated with Butyrivibrio sp. but not with Borrelia sp. The method described is effective, requires less time than the conventional cellulose agar method of isolation and is superior to the latter because pure colonies of B. succinogenes, which usually escape detection because of their failure to produce clear zones, can be detected. In clear zone experiments with cellulose (Whatman No. 1 filter paper) agar (1.3% wt/vol.) roll tubes, B. succinogenes and Butyrivibrio sp. were unable to produce clear zones, whereas mixed cultures were. However, R. flaveflaciens in its pure form was able to produce clearings which had centre colonies. (author)

  13. Flow cytometry community fingerprinting and amplicon sequencing for the assessment of landfill leachate cellulolytic bioaugmentation.

    Science.gov (United States)

    Kinet, R; Dzaomuho, P; Baert, J; Taminiau, B; Daube, G; Nezer, C; Brostaux, Y; Nguyen, F; Dumont, G; Thonart, P; Delvigne, F

    2016-08-01

    Flow cytometry (FCM) is a high throughput single cell technology that is actually becoming widely used for studying phenotypic and genotypic diversity among microbial communities. This technology is considered in this work for the assessment of a bioaugmentation treatment in order to enhance cellulolytic potential of landfill leachate. The experimental results reveal the relevant increase of leachate cellulolytic potential due to bioaugmentation. Cytometric monitoring of microbial dynamics along these assays is then realized. The flow FP package is used to establish microbial samples fingerprint from initial 2D cytometry histograms. This procedure allows highlighting microbial communities' variation along the assays. Cytometric and 16S rRNA gene sequencing fingerprinting methods are then compared. The two approaches give same evidence about microbial dynamics throughout digestion assay. There are however a lack of significant correlation between cytometric and amplicon sequencing fingerprint at genus or species level. Same phenotypical profiles of microbiota during assays matched to several 16S rRNA gene sequencing ones. Flow cytometry fingerprinting can thus be considered as a promising routine on-site method suitable for the detection of stability/variation/disturbance of complex microbial communities involved in bioprocesses. PMID:27160955

  14. In vitro Cellulose Rich Organic Material Degradation by Cellulolytic Streptomyces albospinus (MTCC 8768

    Directory of Open Access Journals (Sweden)

    Pinky Prasad

    2012-09-01

    Full Text Available Aims: Cellulosic biomass is the only foreseeable sustainable source of fuels and is also one of the dominating waste materials in nature resulting from human activities. Keeping in view the environmental problems like disposal of large volumes of cellulosic wastes and shortage of fossil fuel in the world, the main aim of the present investigation was to characterize and study the cellulolytic activity of Streptomyces albospinus (MTCC 8768, isolated from municipal wastes, on natural cellulosic substrates viz. straw powder, wood powder and finely grated vegetable peels.Methodology and Result: Stanier’s Basal broth with 100 mg of each of the substrates was inoculated separately with S. albospinus (MTCC No. 8768 and incubated at 37 °C for 8 days. The cellulosic substrates were re-weighed at an interval of 2 days and the difference between the initial weight and the final weight gave the amount of substratesdegraded by the isolate. It was observed that maximum degradation was observed in the grated vegetable peels (64 mg followed by straw powder (38 mg and wood powder (28 mg over a period of 8 days.Conclusion, significance and impact of study: By the selection of efficient cellulolytic microorganisms and cost-effective operational techniques, the production of useful end products from the biodegradation of the low cost enormous stock of cellulose in nature can be very beneficial.

  15. Cellulolytic enzymes, nucleic acids encoding them and methods for making and using them

    Science.gov (United States)

    Gray, Kevin A.; Zhao, Lishan; Cayouette, Michelle H.

    2012-01-24

    The invention provides polypeptides having any cellulolytic activity, e.g., a cellulase activity, a endoglucanase, a cellobiohydrolase, a beta-glucosidase, a xylanase, a mannanse, a .beta.-xylosidase, an arabinofuranosidase, and/or an oligomerase activity, polynucleotides encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides. In one aspect, the invention is directed to polypeptides having any cellulolytic activity, e.g., a cellulase activity, e.g., endoglucanase, cellobiohydrolase, beta-glucosidase, xylanase, mannanse, .beta.-xylosidase, arabinofuranosidase, and/or oligomerase activity, including thermostable and thermotolerant activity, and polynucleotides encoding these enzymes, and making and using these polynucleotides and polypeptides. In one aspect, the invention provides polypeptides having an oligomerase activity, e.g., enzymes that convert recalcitrant soluble oligomers to fermentable sugars in the saccharification of biomass. The polypeptides of the invention can be used in a variety of pharmaceutical, agricultural, food and feed processing and industrial contexts. The invention also provides compositions or products of manufacture comprising mixtures of enzymes comprising at least one enzyme of this invention.

  16. Biodegradation of Palm Kernel Cake by Cellulolytic and Hemicellulolytic Bacterial Cultures through Solid State Fermentation

    Directory of Open Access Journals (Sweden)

    Mohamed Idris Alshelmani

    2014-01-01

    Full Text Available Four cellulolytic and hemicellulolytic bacterial cultures were purchased from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Culture (DSMZ and the American Type Culture Collection (ATCC. Two experiments were conducted; the objective of the first experiment was to determine the optimum time period required for solid state fermentation (SSF of palm kernel cake (PKC, whereas the objective of the second experiment was to investigate the effect of combinations of these cellulolytic and hemicellulolytic bacteria on the nutritive quality of the PKC. In the first experiment, the SSF was lasted for 12 days with inoculum size of 10% (v/w on different PKC to moisture ratios. In the second experiment, fifteen combinations were created among the four microbes with one untreated PKC as a control. The SSF lasted for 9 days, and the samples were autoclaved, dried, and analyzed for proximate analysis. Results showed that bacterial cultures produced high enzymes activities at the 4th day of SSF, whereas their abilities to produce enzymes tended to be decreased to reach zero at the 8th day of SSF. Findings in the second experiment showed that hemicellulose and cellulose was significantly P<0.05 decreased, whereas the amount of reducing sugars were significantly P<0.05 increased in the fermented PKC (FPKC compared with untreated PKC.

  17. Multiple horizontally acquired genes from fungal and prokaryotic donors encode cellulolytic enzymes in the bdelloid rotifer Adineta ricciae.

    Science.gov (United States)

    Szydlowski, L; Boschetti, C; Crisp, A; Barbosa, E G G; Tunnacliffe, A

    2015-07-25

    The bdelloid rotifer, Adineta ricciae, an anhydrobiotic microinvertebrate, exhibits a high rate of horizontal gene transfer (HGT), with as much as 10% of its transcriptome being of foreign origin. Approximately 80% of these foreign transcripts are involved in metabolic processes, and therefore bdelloids represent a useful model for assessing the contribution of HGT to biochemical diversity. To validate this concept, we focused on cellulose digestion, an unusual activity in animals, which is represented by at least 16 genes encoding cellulolytic enzymes in A. ricciae. These genes have been acquired from a variety of different donor organisms among the bacteria and fungi, demonstrating that bdelloids use diverse genetic resources to construct a novel biochemical pathway. A variable complement of the cellulolytic gene set was found in five other bdelloid species, indicating a dynamic process of gene acquisition, duplication and loss during bdelloid evolution. For example, in A. ricciae, gene duplications have led to the formation of three copies of a gene encoding a GH45 family glycoside hydrolase, at least one of which encodes a functional enzyme; all three of these gene copies are present in a close relative, Adineta vaga, but only one copy was found in each of four Rotaria species. Furthermore, analysis of expression levels of the cellulolytic genes suggests that a bacterial-origin cellobiase is upregulated upon desiccation. In summary, bdelloid rotifers have apparently developed cellulolytic functions by the acquisition and domestication of multiple foreign genes. PMID:25863176

  18. THERMOPHILE ENDOSPORES HAVE RESPONSIVE EXOSPORIUM FOR ATTACHMENT

    Energy Technology Data Exchange (ETDEWEB)

    PANESSA-WARREN,B.; TORTORA,G.T.; WARREN,J.; SABATINI,R.

    1999-08-01

    Recently studies examining the colonization of Clostridial pathogens on agar and human tissue culture cells, demonstrated that (C. sporogenes ATCC 3584, C. difficile ATCC 43594 [patient isolate], C. difficile ATCC 9689 [non-clinical], C. clostridioforme [patient isolate]) bacterial spores (endospores) of the genus Clostridia have an outer membrane that becomes responsive at activation and exhibits extensions of the exosporial membrane that facilitate and maintain spore attachment to a nutritive substrate during germination and initial outgrowth of the newly developed bacterial cell. Therefore this attachment phenomenon plays an important role in insuring bacterial colonization of a surface and the initial stages of the infective process. To see if other non-clinical members of this genus also have this ability to attach to a substrate or food-source during spore germination, and how this attachment process in environmental thermophiles compares to the clinical paradigm (in relation to time sequence, exosporial membrane structure, type of attachment structures, composition of the membrane etc...), sediment samples were collected in sterile transport containers at 4 geothermal sites at Yellowstone National Park in Wyoming. Because spore forming bacteria will produce spores when conditions are unfavorable for growth, the samples were sealed and stored at 4 C. After 8 months the samples were screened for the presence of spores by light microscope examination using malachite green/safranin, and traditional endospores were identified in significant quantities from the Terrace Spring site (a 46 C lake with bacterial mats and a rapidly moving run-off channel leading to a traditional hot spring). The highest spore population was found in the top sediment and benthic water of the run-off channel, pH 8.1.

  19. Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification.

    Science.gov (United States)

    Dai, Ziyu; Hooker, Brian S; Quesenberry, Ryan D; Thomas, Steven R

    2005-10-01

    An attempt was made to obtain a high-level production of intact Acidothermus cellulolyticus endoglucanase (E1) in transgenic tobacco plants. The E1 expression was examined under the control of the constitutive and strong Mac promoter or light-inducible tomato Rubisco small sub-unit (RbcS-3C) promoter with its original or Alfalfa Mosaic Virus (AMV) RNA4 5'-untranslated leader (UTL) and targeted to different sub-cellular compartments via transit peptides. The transit peptides included native E1, endoplasmic reticulum, vacuole, apoplast, and chloroplast. E1 expression and its stability in transgenic plants were determined via E1 activity, protein immunoblotting, and RNA gel-blotting analyses. Effects of sub-cellular compartments on E1 production and its stability were determined in transgenic tobacco plants carrying one of six transgene expression vectors, where the E1 was under the control of Mac promoter, mannopine synthase transcription terminator, and one of the five transit peptides. Transgenic tobacco plants with an apoplastic transit peptide had the highest average E1 activity and protein accumulation, which was about 0.25% of total leaf soluble proteins estimated via E1 specific activity and protein gel blots. Intercellular fluid analyses confirmed that E1 signal peptide functioned properly in tobacco cells to secret E1 protein into the apoplast. By replacing RbcS-3C UTL with AMV RNA4 UTL E1 production was enhanced more than twofold, while it was less effective than the mannopine synthase UTL. It was observed that RbcS-3C promoter was more favorable for E1 expression in transgenic plants than the Mac promoter. E1 activity in dried tobacco seeds stored one year at room temperature was 45% higher than that observed immediately after harvesting, suggesting that E1 protein can be stored at room temperature for a long period. E1 stability in different sub-cellular compartments and the optimal combination of promoter, 5'-UTL, and sub-cellular compartmentation for

  20. [Biodegradation of organic pollutants by thermophiles and their applications: a review].

    Science.gov (United States)

    Cui, Jing-Lan; Chen, Chen; Qin, Zhi-Hui; Yu, Chun-Na; Shen, Hui; Shen, Chao-Feng; Chen, Ying-Xu

    2012-11-01

    Persistent organic pollutants have increasingly become a critical environmental concern, while thermophiles have the high potential of degrading various kinds of environmental organic pollutants. At high temperatures, thermophiles have higher metabolic activity, and the competition by mesophiles is reduced, meanwhile, the solubility and bioavailability of some persistent organic pollutants are greatly increased, and thus, the degradation of the pollutants by thermophiles is more rapid and complete. Therefore, thermophils are of great significance for the bio-treatment of organic wastewater and the bioremediation of organic pollutants-contaminated sites. This paper introduced the research progress on the degradation of organic pollutants by thermophiles in terms of the characteristics of thermophiles in degrading organic pollutants, the effects of temperature on the degradation, the degradation pathways, the degradation enzymes, their coding genes, and practical engineering applications. The future research directions including the degradation mechanisms of thermophiles, their resources reserve, related technology strategies and their applications were also prospected. PMID:23431811

  1. Production of cellulolytic enzymes by Pleurotus species on lignocellulosic wastes using novel pretreatments.

    Science.gov (United States)

    Singh, M P; Pandey, A K; Vishwakarma, S K; Srivastava, A K; Pandey, V K; Singh, V K

    2014-01-01

    In the present investigation three species of Pleurotus i.e. P. sajor—caju (P1), P. florida (P2) and P. flabellatus (P3) along with two lignocellulosic substrates namely paddy straw and wheat straw were selected for evaluation of production of extracellular cellulolytic enzymes. During the cultivation of three species of Pleurotus under in vivo condition, the two lignocellulosic substrates were treated with plants extracts (aqueous extracts of ashoka leaves (A) and neem oil (B)), hot water (H) and chemicals (C).Among all treatments, neem oil treated substrates supported better enzyme production followed by aqueous extract of ashoka leaves, hot water and chemical treatment. Between the two substrates paddy straw supported better enzyme production than wheat straw. P. flabellatus showed maximum activity of exoglucanase, endoglucanase and β—glucosidase followed by P. florida and P. sajor—caju. PMID:25535714

  2. Biological pre-treatment: Enhancing biogas production using the highly cellulolytic fungus Trichoderma viride.

    Science.gov (United States)

    Mutschlechner, Mira; Illmer, Paul; Wagner, Andreas Otto

    2015-09-01

    With regard to renewable sources of energy, bioconversion of lignocellulosic biomass has long been recognized as a desirable endeavor. However, the highly heterogeneous structure of lignocellulose restricts the exploitation of its promising potential in biogas plants. Hence, effective pre-treatment methods are decisive prerequisites to overcome these challenges in order to improve the utilization ratio of (ligno) cellulosic substrates during fermentation. In the present study, the application of Trichoderma viride in an aerobic upstream process prior to anaerobic digestion led up to a threefold increase in the yield of methane and total gas in a lab-scale investigation. Due to its highly efficient cellulolytic activities, T. viride seemed to be responsible for an improved nutrient availability that positively influenced the anaerobic microbiocenosis. Aerobic pre-treatment of organic matter with T. viride is therefore a promising solution to achieve higher methane yields and degradation performances without any additional energy demand, nor undesired by-product inhibition. PMID:26013693

  3. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a "tearing" cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  4. Quantifying Synergy, Thermostability, and Targeting of Cellulolytic Enzymes and Cellulosomes with Polymerization-Based Amplification.

    Science.gov (United States)

    Malinowska, Klara H; Rind, Thomas; Verdorfer, Tobias; Gaub, Hermann E; Nash, Michael A

    2015-07-21

    We present a polymerization-based assay for determining the potency of cellulolytic enzyme formulations on pretreated biomass substrates. Our system relies on monitoring the autofluorescence of cellulose and measuring the attenuation of this fluorescent signal as a hydrogel consisting of poly(ethylene glycol) (PEG) polymerizes on top of the cellulose in response to glucose produced during saccharification. The one-pot method we present is label-free, rapid, highly sensitive, and requires only a single pipetting step. Using model enzyme formulations derived from Trichoderma reesei, Trichoderma longibrachiatum, Talaromyces emersonii and recombinant bacterial minicellulosomes from Clostridium thermocellum, we demonstrate the ability to differentiate enzyme performance based on differences in thermostability, cellulose-binding domain targeting, and endo/exoglucanase synergy. On the basis of its ease of use, we expect this cellulase assay platform to be applicable to enzyme screening for improved bioconversion of lignocellulosic biomass. PMID:26114625

  5. Diversity and ecophysiological features of thermophilic carboxydotrophic anaerobes

    NARCIS (Netherlands)

    Sokolova, T.G.; Henstra, A.M.; Sipma, J.; Parshina, S.N.; Stams, A.J.M.; Lebedinsky, A.V.

    2009-01-01

    Both natural and anthropogenic hot environments contain appreciable levels of carbon monoxide (CO). Anaerobic microbial communities play an important role in CO conversion in such environments. CO is involved in a number of redox reactions. It is biotransformed by thermophilic methanogens, acetogens

  6. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.M.; Metselaar, K.I.; Boer, de P.; Roeselers, G.; Moezelaar, R.; Nierop Groot, M.N.; Montijn, R.C.; Abee, T.; Kort, R.

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon seque

  7. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    NARCIS (Netherlands)

    Zhao, Y.; Caspers, M.P.M.; Metselaar, K.I.; Boer, P. de; Roeselers, G.; Moezelaar, R.; Groot, M.N.; Montijn, R.C.; Abee, T.; Korta, R.

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon seque

  8. Kinetic comparisons of mesophilic and thermophilic aerobic biomass

    NARCIS (Netherlands)

    Vogelaar, J.C.T.; Klapwijk, A.; Temmink, H.; Lier, van J.B.

    2003-01-01

    Kinetic parameters describing growth and decay of mesophilic (30degreesC) and thermophilic (55degreesC) aerobic biomass were determined in continuous and batch experiments by using oxygen uptake rate measurements
    Kinetic parameters describing growth and decay of mesophilic (30degreesC) and therm

  9. Effect of cobalt on the Anaerobic Thermophilic Conversion of Methanol

    NARCIS (Netherlands)

    Paulo, P.L.; Jiang, B.; Cysneiros, D.; Stams, A.J.M.

    2004-01-01

    The importance of cobalt on the anaerobic conversion of methanol under thermophilic conditions was studied in three parallel lab-scale UASB-reactors and in cobalt-limited enriched cultures. Reactors R1, R2, and R3 were fed with methanol in a bicarbonate-buffered medium, supplied with iron and macron

  10. Metabolic responses of novel cellulolytic and saccharolytic agricultural soil Bacteria to oxygen.

    Science.gov (United States)

    Schellenberger, Stefanie; Kolb, Steffen; Drake, Harold L

    2010-04-01

    Cellulose is the most abundant biopolymer in terrestrial ecosystems and is degraded by microbial communities in soils. However, relatively little is known about the diversity and function of soil prokaryotes that might participate in the overall degradation of this biopolymer. The active cellulolytic and saccharolytic Bacteria in an agricultural soil were evaluated by 16S rRNA (13)C-based stable isotope probing. Cellulose, cellobiose and glucose were mineralized under oxic conditions in soil slurries to carbon dioxide. Under anoxic conditions, these substrates were converted primarily to acetate, butyrate, carbon dioxide, hydrogen and traces of propionate and iso-butyrate; the production of these fermentation end-products was concomitant with the apparent reduction of iron(III). [(13)C]-cellulose was mainly degraded under oxic conditions by novel family-level taxa of the Bacteroidetes and Chloroflexi, and a known family-level taxon of Planctomycetes, whereas degradation under anoxic conditions was facilitated by the Kineosporiaceae (Actinobacteria) and cluster III Clostridiaceae and novel clusters within Bacteroidetes. Active aerobic sub-communities in oxic [(13)C]-cellobiose and [(13)C]-glucose treatments were dominated by Intrasporangiaceae and Micrococcaceae (Actinobacteria) whereas active cluster I Clostridiaceae (Firmicutes) were prevalent in anoxic treatments. A very large number (i.e. 28) of the detected taxa did not closely affiliate with known families, and active Archaea were not detected in any of the treatments. These collective findings suggest that: (i) a large uncultured diversity of soil Bacteria was involved in the utilization of cellulose and products of its hydrolysis, (ii) the active saccharolytic community differed phylogenetically from the active cellulolytic community, (iii) oxygen availability impacted differentially on the activity of taxa and (iv) different redox guilds (e.g. fermenters and iron reducers) compete or interact during

  11. Isolation of microbial native Stumps with cellulolytic activity of a compost process

    International Nuclear Information System (INIS)

    The isolation, selection adaptation and handling of native microorganisms coming from organic waste are an alternative to avoid the accumulation and the lack of the proper use of these undesirable materials. This organic waste is a source for obtaining microbial strains, which are potentially producers of Industrial enzymes and, at the same time, it works as substrate so that these organisms can transform it into compost or organic manure. In this work, 39 native strains of microorganisms with potential cellulolytic activity coming from the organic waste of the urban and rural sector, from the Compost Plant of Marinilla Antioquia) municipality, were isolated, evaluated and purified. The waste was previously selected and then submitted to an aerobic degradation or compost. The microbial strains were isolated in a selective medium with carboxymethyl cellulose (CMC), of the phases mesophile, termophile, cooling and maturation of the compost process. Eighty-two percent (82%)of the obtained colonies were identified, in principle as Bacillus, because of their morphology and their reaction to the Gram coloration. The fungi population was seen only during the cooling phase. Then, the potential cellulolytic activity was evaluated qualitatively in a solid medium with the Congo Red coloration, with which the Beta-endoglucanase activity was evaluated through the formation of clarified zones. Such staining was applied in two mediums with CMC with and without glucose It was observed that 33.3% of the isolated organisms produced the enzyme In both mediums; however, 25.6% of microorganisms did not show the production of this enzyme, and only 15.8% did not require the inducers to produce it

  12. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  13. Survival of thermophilic and hyper-thermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation

    International Nuclear Information System (INIS)

    In this study, we investigated the ability of several (hyper-) thermophilic Archaea and phylo-genetically deep-branching thermophilic Bacteria to survive high fluences of monochromatic UV-C (254 nm) and high doses of ionizing radiation, respectively. Nine out of fourteen tested microorganisms showed a surprisingly high tolerance against ionizing radiation, and two species (Aquifex pyrophilus and Ignicoccus hospitalis) were even able to survive 20 kGy. Therefore, these species had a comparable survivability after exposure to ionizing radiation such as Deinococcus radiodurans. In contrast, there was nearly no difference in survival of the tested strains after exposure to UV-C under anoxic conditions. If the cells had been dried in advance of UV-C irradiation, they were more sensitive to UV-C radiation compared with cells irradiated in liquid suspension; this effect could be reversed by the addition of protective material like sulfidic ores before irradiation. By exposure to UV-C, photoproducts were formed in the DNA of irradiated Archaea and Bacteria. The distribution of the main photoproducts was species specific, but the amount of the photoproducts was only partly dependent on the applied fluence. Overall, our results show that tolerance to radiation seems to be a common phenomenon among thermophilic and hyper-thermophilic microorganisms. (authors)

  14. Effect of micromineral and phenylpropionic acid on performances of coccus and rod-shaped cellulolytic bacteria degrading fibre of forage

    Directory of Open Access Journals (Sweden)

    Amlius Thalib

    2000-06-01

    Full Text Available Performances of coccus and rod-shaped cellulolytic bacteria as inoculum for fermentation of fibrous substrate treated with growth or stimulator factors have been conducted by in vitro. The bacteria were firstly separated and purified based on their morphological shape and followed by identification of their gram type. The treatments as follow : control, Cu (1,0 ppm, Zn (6,0 ppm, Se (0,02 ppm, Fe (16 ppm, Co (0,02 ppm, Mn (4,0 ppm, Mo (0,002 ppm, and phenylpropionic acid (PPA (30 ppm. These factors were added into fermentation media individually (F.P/S and as mixture (Mix F.P/S. Substrates used were cellulose and rice straw. Measurements were bacterial digestion of drymatter (DMD, bacterial count, volatile fatty acids (VFA and NH3-N contents. Gram test showed that inoculum cellulolytic cocci and rods are gram-positive and gram-negative consecutively. The results of treatments showed that Cu, Zn, Co, Mo and PPA improve digestibility of cellulose and rice straw substrates by cellulolytic cocci significantly (p<0.05, and beside Mn, these factors increased the total count of cellulolytic cocci in fermentation medium significantly (p<0.05. The growth or stimulator factors increasing digestibility values of the substrates by cellulolytic rods significantly (p<0.05 were Cu, Zn, Se, Fe, Co, Mn and Mo (except Mn for rice straw substrate. Only 4 elements of the growth and stimulator factors increasing the total count of cellulolytic rods during fermentation of cellulose and rice straw substrates significantly (p<0.05 that is Zn, Co, Mn and Mo. Digestibility of cellulose by cocci is higher than by rods (34.65% vs 29.87%, however, the digestibility of rice straw by both bacteria did not show difference. Digestibility of both cellulose and rice straw substrates was improved by cocci and rods combination and improved further when treated with Mix F.P/S. Parameters of fermentation media ecosystem measured (i.e. total count of bacteria, VFA and NH3-N were

  15. Thermophilic (55 - 65°C) and extreme thermophilic (70 - 80°C) sulfate reduction in methanol and formate-fed UASB reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Camarero, E.; Lettinga, G.; Lens, P.N.L.

    2004-01-01

    The feasibility of thermophilic (55-65 degreesC) and extreme thermophilic (70-80 degreesC) sulfate-reducing processes was investigated in three lab-scale upflow anaerobic sludge bed (UASB) reactors fed with either methanol or formate as the sole substrates and inoculated with mesophilic granular slu

  16. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high-OM). The...... biomass C concentration and activity of extracellular enzymes of the cellulolytic complex were observed. The temporal pattern was generally similar in the low-OM and high-OM cultivation systems. Temporal variations may have been driven by environmental factors (e.g., temperature and moisture) and crop...... growth, i.e. by factors common to both systems but not differences in organic matter input. Pronounced and constant increases in beta-glucosidase activity (40%) and endocellulase activity (30%) in high-OM were detected across all sampling periods. The increases in microbial biomass C concentration and...

  17. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: effects of organic matter input

    DEFF Research Database (Denmark)

    Debosz, K.; Rasmussen, Peter Have; Pedersen, A. R.

    1999-01-01

    Temporal variations in soil microbial biomass C concentration and in activity of extracellular enzymes of the cellulolytic complex were investigated in a field experiment after eight years of cultivation with either low organic matter input (low-OM) or high organic matter input (high-OM). The...... cultivation systems differed in whether their source of fertiliser was mainly mineral or organic, in whether a winter cover crop was grown, and whether straw was mulched or removed. Sampling occurred at approximately monthly intervals, over a period of two years. Distinct temporal variations in microbial...... biomass C concentration and activity of extracellular enzymes of the cellulolytic complex were observed. The temporal pattern was generally similar in the low-OM and high-OM cultivation systems. Temporal variations may have been driven by environmental factors (e.g., temperature and moisture) and crop...

  18. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression

    Science.gov (United States)

    McDonald, Bradon R.; Takasuka, Taichi E.; Wendt-Pienkowski, Evelyn; Doering, Drew T.; Raffa, Kenneth F.; Fox, Brian G.; Currie, Cameron R.

    2016-01-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  19. Evolution of High Cellulolytic Activity in Symbiotic Streptomyces through Selection of Expanded Gene Content and Coordinated Gene Expression.

    Science.gov (United States)

    Book, Adam J; Lewin, Gina R; McDonald, Bradon R; Takasuka, Taichi E; Wendt-Pienkowski, Evelyn; Doering, Drew T; Suh, Steven; Raffa, Kenneth F; Fox, Brian G; Currie, Cameron R

    2016-06-01

    The evolution of cellulose degradation was a defining event in the history of life. Without efficient decomposition and recycling, dead plant biomass would quickly accumulate and become inaccessible to terrestrial food webs and the global carbon cycle. On land, the primary drivers of plant biomass deconstruction are fungi and bacteria in the soil or associated with herbivorous eukaryotes. While the ecological importance of plant-decomposing microbes is well established, little is known about the distribution or evolution of cellulolytic activity in any bacterial genus. Here we show that in Streptomyces, a genus of Actinobacteria abundant in soil and symbiotic niches, the ability to rapidly degrade cellulose is largely restricted to two clades of host-associated strains and is not a conserved characteristic of the Streptomyces genus or host-associated strains. Our comparative genomics identify that while plant biomass degrading genes (CAZy) are widespread in Streptomyces, key enzyme families are enriched in highly cellulolytic strains. Transcriptomic analyses demonstrate that cellulolytic strains express a suite of multi-domain CAZy enzymes that are coregulated by the CebR transcriptional regulator. Using targeted gene deletions, we verify the importance of a highly expressed cellulase (GH6 family cellobiohydrolase) and the CebR transcriptional repressor to the cellulolytic phenotype. Evolutionary analyses identify complex genomic modifications that drive plant biomass deconstruction in Streptomyces, including acquisition and selective retention of CAZy genes and transcriptional regulators. Our results suggest that host-associated niches have selected some symbiotic Streptomyces for increased cellulose degrading activity and that symbiotic bacteria are a rich biochemical and enzymatic resource for biotechnology. PMID:27276034

  20. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.

    Science.gov (United States)

    Okeke, Benedict C; Hall, Rosine W; Nanjundaswamy, Ananda; Thomson, M Sue; Deravi, Yasaman; Sawyer, Leah; Prescott, Andrew

    2015-06-01

    Plant biomass is an abundant renewable natural resource that can be transformed into chemical feedstocks. Enzymes used in saccharification of lignocellulosic biomass are a major part of biofuel production costs. A cocktail of cellulolytic and xylanolytic enzymes are required for optimal saccharification of biomass. Accordingly, thirty-two fungal pure cultures were obtained from surface soil-biomass mixtures collected from Black Belt sites in Alabama by culturing on lignocellulosic biomass medium. The fungal strains were screened for the coproduction of cellulolytic and xylanolytic enzymes. Strains that displayed promising levels of cellulolytic and xylanolytic enzymes were characterized by molecular analysis of DNA sequences from the large subunit and internal transcribed spacer (ITS) of their ribosomal RNA gene. Nucleotide sequence analysis revealed that two most promising isolates FS22A and FS5A were most similar to Penicillium janthinellum and Trichoderma virens. Production dynamics of cellulolytic and xylanolytic enzymes from these two strains were explored in submerged fermentation. Volumetric productivity after 120 h incubation was 121.08 units/L/h and 348 units/L/h for the filter paper cellulase and xylanase of strain FS22A, and 90.83 units/L/h and 359 units/L/h, respectively for strain FS5A. Assays with 10 times dilution of enzymes revealed that the activities were much higher than that observed in the crude culture supernatant. Additionally, both FS22A and FS5A also produced amylase in lignocellulose medium. The enzyme profiles of these strains and their activities suggest potential applications in cost effective biomass conversion and biodegradation. PMID:25817459

  1. Thermophile-specific proteins: the gene product of aq_1292 from Aquifex aeolicus is an NTPase

    OpenAIRE

    Klinger, Claudia; Roßbach, Michael; Howe, Rebecca; Kaufmann, Michael

    2003-01-01

    Background To identify thermophile-specific proteins, we performed phylogenetic patterns searches of 66 completely sequenced microbial genomes. This analysis revealed a cluster of orthologous groups (COG1618) which contains a protein from every thermophile and no sequence from 52 out of 53 mesophilic genomes. Thus, COG1618 proteins belong to the group of thermophile-specific proteins (THEPs) and therefore we here designate COG1618 proteins as THEP1s. Since no THEP1 had been analyzed biochemic...

  2. Polysaccharide-Degrading Thermophiles Generated by Heterologous Gene Expression in Geobacillus kaustophilus HTA426

    OpenAIRE

    Suzuki, Hirokazu; Yoshida, Ken-ichi; Ohshima, Toshihisa

    2013-01-01

    Thermophiles have important advantages over mesophiles as host organisms for high-temperature bioprocesses, functional production of thermostable enzymes, and efficient expression of enzymatic activities in vivo. To capitalize on these advantages of thermophiles, we describe here a new inducible gene expression system in the thermophile Geobacillus kaustophilus HTA426. Six promoter regions in the HTA426 genome were identified and analyzed for expression profiles using β-galactosidase reporter...

  3. Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species

    OpenAIRE

    Haney, Paul J.; Jonathan H Badger; Buldak, Gerald L.; Reich, Claudia I.; Woese, Carl R.; Olsen, Gary J.

    1999-01-01

    The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include hig...

  4. In Vitro Inhibition of Cellulolytic Enzymes of Fusarium Oxysporum by Trichoderma spp and Pseudomonas Fluorescens on Arachis Hypogaea L

    Directory of Open Access Journals (Sweden)

    P. Rajeswari

    2015-03-01

    Full Text Available In an attempt to develop biocontrol system for management of Fusarium wilt in groundnut, Trichoderma viride, Trichoderma harzianum,and Pseudomonas fluorescens were evaluated for their antagonistic activity against Fusarium oxysporum in vitro. .Fusarium wilt diseasescaused by the fungus Fusarium oxysporum lead to significant yield losses of crops. Experiments were conducted on the effect of culture filtratesof T.viride (1%, T. harzianum (1.5%, and P. fluorescens (2% on the in vitro inhibition of cellulolytic enzymes of Fusarium oxysporum. Theactivity of 1,4 endoglucanases, 1,4exoglucanase Cellobiase produced by Fusariumoxysporum was higher, when compared to control.Maximum inhibition of above Cellulolytic enzymes (1, 4 endoglucanases, 1,4exoglucanase, Cellobiase was shown by T. viride treatment wasfollowed by T. harzianum and P. fluorescens. Of all the treatments, T. viride treatment showed higher rate of inhibition of Cellulolytic enzymesof Fusarium oxysporum followed by that of T. harzianum and P. fluorescens.This present study indicates that culture filtrate of T.viride(1%is the best biocontrol agent in the inhibition of Fusarium oxysporum causing Fusarium wilt of Arachis hypogaea .L

  5. State of the art and future perspectives of thermophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Mladenovska, Zuzana; Iranpour, R.;

    2002-01-01

    The slate of the art of thermophilic digestion is discussed. Thermophilic digestion is a well established technology in Europe for treatment of mixtures of waste in common large scale biogas plants or for treatment of the organic fraction of municipal solid waste. Due to a large number of failures......-up strategy based on the actual activity of key microbes can be used to ensure proper and fast transfer of mesophilic digesters into thermophilic operation. Extreme thermophilic temperatures of 65degreesC or more may be necessary in the future to meet the demands for full sanitation of the waste material...

  6. Identification of Mexican thermophilic and thermotolerant fungal isolates

    Directory of Open Access Journals (Sweden)

    J. Córdova

    2003-01-01

    Full Text Available Forty-four fungal strains capable of growing at temperatures above 50 C were isolated from different samples of soil and coconut residues collected in Mexican tropical and subtropical regions. These thermophilic and thermotolerant fungal strains were identified by microscopical analysis using standard procedures. Three species were identified: Rhizomucor pusillus (LindtSchipper (19 strains, Rhizopus microsporus van Tieghem (6 strains, and Aspergillus fumigatus Fresenius (19 strains. Four strains identified as Rhizopus microsporus were ascribed to the variety rhizopodiformis; however, the other two strains showed new characteristics which require further analysis, such as a homothallic sexual reproduction. Aspergillus fumigatus was found in coconut residues as a common contaminant during the isolation of other thermophilic species. Strains were isolated from samples containing a high content of lipids (mainly from coconut coprah, and accordingly extracellular lipase biosynthesis was directly confirmed in Petri dishes for every strain.

  7. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles.

    Science.gov (United States)

    Gan, Min; Jie, Shiqi; Li, Mingming; Zhu, Jianyu; Liu, Xinxing

    2015-08-15

    A moderately thermophilic consortium was applied in bioleaching multiple metals from contaminated sediment. The consortium got higher acidification and metals soubilization efficiency than that of the pure strains. The synergistic effect of the thermophilic consortium accelerated substrates utilization. The utilization of substrate started with sulfur in the early stage, and then the pH declined, giving rise to making use of the pyrite. Community dynamic showed that A. caldus was the predominant bacteria during the whole bioleaching process while the abundance of S. thermotolerans increased together with pyrite utilization. Solubilization efficiency of Zn, Cu, Mn and Cd reached 98%, 94%, 95%, and 89% respectively, while As, Hg, Pb was only 45%, 34%, 22%. Logistic model was used to simulate the bioleaching process, whose fitting degree was higher than 90%. Correlation analysis revealed that metal leaching was mainly an acid solubilization process. Fraction analysis revealed that metals decreased in mobility and bioavailability. PMID:26140749

  8. [Conversion of acetic acid to methane by thermophiles

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-01-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH[sub 4]. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  9. Startup and stability of thermophilic anaerobic digestion of OFMSW

    KAUST Repository

    El-Fadel, Mutasem E.

    2013-01-01

    Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and more recently as a greenhouse gas (GHG) mitigation measure. In this context, AD systems operating at thermophilic temperatures (55-60°C)-compared to mesophilic temperatures (35-40°C)-have the unique feature of producing hygienic soil conditioners with greater process efficiency, higher energy yield, and more GHG savings. Startup of AD systems is often constrained by the lack of acclimated seeds, leading to process instability and failure. The authors focus on strategies to startup thermophilic digesters treating OFMSW in the absence of acclimated seeds and examines constraints associated with process stability and ways to overcome them. Relevant gaps in the literature and future research needs are delineated. © 2013 Taylor & Francis Group, LLC.

  10. Sulfur Reduction by the Extremely Thermophilic Archaebacterium Pyrodictium occultum

    OpenAIRE

    Parameswaran, A. K.; Provan, C. N.; Sturm, F. J.; Kelly, R.M.

    1987-01-01

    The relationship between growth and biological sulfur reduction for the extremely thermophilic archaebacterium Pyrodictium occultum was studied over a temperature range of 98 to 105°C. The addition of yeast extract (0.2 g/liter) to the medium was found to increase hydrogen sulfide production significantly, especially at higher temperatures. Sulfide production in uninoculated controls with and without yeast extract was noticeable but substantially below the levels observed in samples containin...

  11. Solar Thermophilic Anaerobic Reactor (STAR) for Renewable Energy Production

    OpenAIRE

    Mashad, El, H.

    2003-01-01

    Liquid and solid cattle manures are major waste streams inEgypt. The main objective of this research was maximising the net energy production from these wastes by using a solar energy heating system. High concentration of ammonia can strongly affect the gross methane production via inhibition of methanogenesis and reduced hydrolysis. The latter is only limited addressed so far in literature and therefore taken as a second objective of this study.To be able to design a solar thermophilic anaer...

  12. Prevalence of Thermophiles and Mesophiles in Raw and UHT Milk

    OpenAIRE

    Abdul-Hadi A. Abd; Nadia I. AbdulA’Al; Aysar S. Abood

    2014-01-01

    The objective of the study was to evaluate the contamination level of cow’s raw milk and different brands of UHT milk in Baghdad local market for thermophilic and mesophilic bacteria. The numbers of colony counts in milk samples were determined by the culture method according to bacteriological standards methods. Investigations were carried out for seven weeks in college of veterinary dairy farms from March 2013 to May 2013. Six (29%) positive samples out of 21 samples were tested for thermop...

  13. Thermophilic biological nitrogen removal in industrial wastewater treatment.

    OpenAIRE

    Lopez-Vazquez, CM; Kubare, M.; Saroj, DP; Chikamba, C; Schwarz, J.; Daims, H.; Brdjanovic, D.

    2013-01-01

    Nitrification is an integral part of biological nitrogen removal processes and usually the limiting step in wastewater treatment systems. Since nitrification is often considered not feasible at temperatures higher than 40 °C, warm industrial effluents (with operating temperatures higher than 40 °C) need to be cooled down prior to biological treatment, which increases the energy and operating costs of the plants for cooling purposes. This study describes the occurrence of thermophilic biologic...

  14. Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community

    OpenAIRE

    Yamada, Chihaya; Kato, Souichiro; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2014-01-01

    The addition of ferrihydrite to methanogenic microbial communities obtained from a thermophilic anaerobic digester suppressed methanogenesis in a dose-dependent manner. The amount of reducing equivalents consumed by the reduction of iron was significantly smaller than that expected from the decrease in the production of CH4, which suggested that competition between iron-reducing microorganisms and methanogens was not the most significant cause for the suppression of methanogenesis. Microbial ...

  15. Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile

    DEFF Research Database (Denmark)

    Topakas, E.; Stamatis, H.; Biely, P.;

    2004-01-01

    . thermophile (a maximum of 34% total ferulic acid released after 1 h incubation). StFAE-A by itself could release FA, but at a level almost 47-fold lower than that obtained in the presence of xylanase. The potential of StFAE-A for the synthesis of various phenolic acid esters was tested using a ternary water......-organic mixture consisting of n-hexane, 1-butanol and water as a reaction system....

  16. [Construction of Producers of Cellulolytic and Pectinolytic Enzymes Based on the Fungus Penicillium verruculosum].

    Science.gov (United States)

    Bushina, E V; Rubtsova, E A; Rozhkova, A M; Sinitsyna, O A; Koshelev, A V; Matys, V Yu; Nemashkalov, V A; Sinitsyn, A P

    2015-01-01

    Based on the fungus Penicillium verruculosum, we created strains with a complex of extracellular enzymes that contains both cellulolytic enzymes of the fungus and heterologous pectin lyase A from P. canescens and endo- 1,4-α-polygalacturonase from Aspergillus niger. The endopolygalacturonase and pectin lyase activities of enzyme preparations obtained from culture media of the producer strains reached 46-53 U/mg of protein and 1.3-2.3 U/mg of protein, respectively. The optimal temperature and pH values for recombinant pectin lyase and endopolygalacturonase corresponded to those described in the literature for these enzymes. The content of heterologous endopolygalacturonase and pectin lyase in the studied enzyme preparations was 4-5% and 23% of the total protein content, respectively. The yield of reducing sugars upon the hydrolysis of sugar beet and apple processing wastes with the most efficient preparation was 41 and 71 g/L, respectively, which corresponded to a polysaccharide conversion of 49% and 65%. Glucose was the main product of the hydrolysis of sugar beet and apple processing wastes. PMID:26353405

  17. Cellulosic Ethanol Production by Recombinant Cellulolytic Bacteria Harbouring pdc and adh II Genes of Zymomonas mobilis

    Directory of Open Access Journals (Sweden)

    P. Sobana Piriya

    2012-01-01

    Full Text Available The ethanol fermenting genes such as pyruvate decarboxylase (pdc and alcohol dehydrogenase II (adh II were cloned from Zymomonas mobilis and transformed into three different cellulolytic bacteria, namely Enterobacter cloacae JV, Proteus mirabilis JV and Erwinia chrysanthemi and their cellulosic ethanol production capability was studied. Recombinant E. cloacae JV was found to produce 4.5% and 3.5% (v/v ethanol, respectively, when CMC and 4% NaOH pretreated bagasse were used as substrates, whereas recombinant P. mirabilis and E. chrysanthemi with the same substrates could only produce 4%, 3.5%, 1%, and 1.5 % of ethanol, respectively. The recombinant E. cloacae strain produced twofold higher percentage of ethanol than the wild type. The recombinant E. cloacae strain could be improved further by increasing its ethanol tolerance capability through media optimization and also by combining multigene cellulase expression for enhancing ethanol production from various types of lignocellulosic biomass so that it can be used for industrial level ethanol production.

  18. Streptomyces abietis sp. nov., a cellulolytic bacterium isolated from soil of a pine forest.

    Science.gov (United States)

    Fujii, Katsuhiko; Satomi, Masataka; Fukui, Youhei; Matsunobu, Shun; Morifuku, Youji; Enokida, Yuya

    2013-12-01

    Cellulolytic bacteria A191(T), A192 and A193 isolated from the soil of Sakhalin fir forest in Hokkaido, Japan were studied phenotypically, genotypically and phylogenetically. Analysis of their 16S rRNA gene and gyrB sequences and DNA base composition suggested that these isolates were conspecific and members of the genus Streptomyces. However, levels of 16S rRNA gene and gyrB sequence similarity between the isolates and the type strains of their closest relatives in the genus Streptomyces were no higher than 97.9 and 95.0 %, respectively, implying that these isolates were distinctive. Moreover, the results of DNA-DNA hybridization experiments and physiological characterization clearly differentiated these isolates from their closest neighbours. It is therefore concluded that these isolates represent a novel species of the genus Streptomyces, for which the name Streptomyces abietis is proposed. The type strain is A191(T) ( = NBRC 109094(T) = DSM 42080(T)). PMID:23990653

  19. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production

    Science.gov (United States)

    Liu, Zhuo; Ho, Shih-Hsin; Sasaki, Kengo; den Haan, Riaan; Inokuma, Kentaro; Ogino, Chiaki; van Zyl, Willem H.; Hasunuma, Tomohisa; Kondo, Akihiko

    2016-01-01

    Cellulosic biofuel is the subject of increasing attention. The main obstacle toward its economic feasibility is the recalcitrance of lignocellulose requiring large amount of enzyme to break. Several engineered yeast strains have been developed with cellulolytic activities to reduce the need for enzyme addition, but exhibiting limited effect. Here, we report the successful engineering of a cellulose-adherent Saccharomyces cerevisiae displaying four different synergistic cellulases on the cell surface. The cellulase-displaying yeast strain exhibited clear cell-to-cellulose adhesion and a “tearing” cellulose degradation pattern; the adhesion ability correlated with enhanced surface area and roughness of the target cellulose fibers, resulting in higher hydrolysis efficiency. The engineered yeast directly produced ethanol from rice straw despite a more than 40% decrease in the required enzyme dosage for high-density fermentation. Thus, improved cell-to-cellulose interactions provided a novel strategy for increasing cellulose hydrolysis, suggesting a mechanism for promoting the feasibility of cellulosic biofuel production. PMID:27079382

  20. Hemicellulases from the ethanologenic thermophile Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1998-05-01

    The SHORT TERM GOALS of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following TASKS: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-0-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium (one of our long term goals).

  1. Hemicellulases from the ethanologenic thermophile, Thermoanaerobacter ethanolicus and related anaerobic thermophiles. Final report, September 1992--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    Wiegel, J.

    1998-09-01

    The short term goals of this application were to characterize hemicellulases from anaerobic thermophiles on the biochemical and molecular level to extend the presently limited knowledge of hemicellulases in anaerobic thermophilic bacteria. This objective includes the following tasks: (1) Traditional purification and biochemical/biophysical characterization of xylanases from the newly isolated, slightly alkalitolerant strain NDF190, and the slightly acid-tolerant strain YS485, both with high xylanolytic activities, and of the 4-O-methyl glucuronidase and arabinosidase from strain NDF190 and the acetyl (xylan) esterase from T. ethanolicus. This also includes determining the N-terminal sequences and obtaining gene probes. (2) Elucidation of the regulation of hemicellulolytic enzymes in anaerobic thermophiles. (3) To clone into E. coli and identify the multiplicity of the enzymes involved in hemicellulose degradation by T. ethanolicus and other suitable organisms. (4) To purify and characterize the recombinant enzymes with the goal of identifying the best enzymes for cloning into the ethanologenic T. ethanolicus to obtain an optimized hemicellulose utilization by this bacterium.

  2. Vertical zonation and seed germination indices of chromium resistant cellulolytic and nitrogen fixing bacteria from a chronically metal exposed land area

    International Nuclear Information System (INIS)

    Twenty eight cellulolytic and 25 nitrogen fixing bacteria were isolated from 20, 40 and 60 cm depths of the chromium contaminated land area. The cellulolytic as well as nitrogen fixing microbial communities in soil profiles were dominated by genus Bacillus. More diverse nitrogen fixing bacterial isolates belonging to different genera Paenibacillus, Corynebacterium and Pseudomonas were observed as compared to cellulolytic bacterial community. Majority of the cellulolytic bacteria were found inhabitants of 20 cm soil layer while 40 cm depth was the preferred zone for the nitrogen fixing bacteria. Screening of the bacterial isolates for chromium resistance showed that isolates designated as ASK15 and ASK16 were able to resist up to 1800 mg/l of chromium while the nitrogen fixing isolates which offered a maximum resistant level up to 1650 mg/l of chromium were ASNt10 and ASNS13. Nitrogen fixing isolates enhanced seed germination by 33% and expressed efficient nitrogenase activity up to 0.80 (C/sub 2/H/sub 2/ nmol/ml/hr). Growth promoting assay proved ASNt10 a potential isolate which produced 90 meu g/ml of indoleacetic acid (IAA). Though cellulolytic isolates did not affect seed germination, a significant influence on root length similar to that of ASNt10 and ASNS13 with nearly 5-fold increase in comparison with uninoculated control was observed. The isolates ASK15, ASK16 were identified as Bacillus cereus while ASNt10 and ASNS13 as Paenibacillus barcinonensis and Bacillus megaterium, respectively. (author)

  3. Exceptional thermal stability and organic solvent tolerance of an esterase expressed from a thermophilic host

    DEFF Research Database (Denmark)

    Mei, Yuxia; Peng, Nan; Zhao, Shumiao; Hu, Yongmei; Wang, Huacai; Liang, Yunxiang; She, Qunxin

    2012-01-01

    A protein expression system recently developed for the thermophilic crenarchaeon Sulfolobus islandicus was employed to produce recombinant protein for EstA, a thermophilic esterase encoded in the same organism. Large amounts of protein were readily obtained by an affinity protein purification, gi...

  4. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy; Grigoriev, Igor V.; Otillar, Robert P.; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; john, tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott E.; Magnuson, Jon K.; LaBoissiere, Sylvie; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael; Tsang, Adrian

    2011-10-02

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  5. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris

    Energy Technology Data Exchange (ETDEWEB)

    Berka, Randy M.; Grigoriev, Igor V.; Otillar, Robert; Salamov, Asaf; Grimwood, Jane; Reid, Ian; Ishmael, Nadeeza; John, Tricia; Darmond, Corinne; Moisan, Marie-Claude; Henrissat, Bernard; Coutinho, Pedro M.; Lombard, Vincent; Natvig, Donald O.; Lindquist, Erika; Schmutz, Jeremy; Lucas, Susan; Harris, Paul; Powlowski, Justin; Bellemare, Annie; Taylor, David; Butler, Gregory; de Vries, Ronald P.; Allijn, Iris E.; van den Brink, Joost; Ushinsky, Sophia; Storms, Reginald; Powell, Amy J.; Paulsen, Ian T.; Elbourne, Liam D. H.; Baker, Scott. E.; Magnuson, Jon; LaBoissiere, Sylvie; Clutterbuck, A. John; Martinez, Diego; Wogulis, Mark; Lopez de Leon, Alfredo; Rey, Michael W.; Tsang, Adrian

    2011-05-16

    Thermostable enzymes and thermophilic cell factories may afford economic advantages in the production of many chemicals and biomass-based fuels. Here we describe and compare the genomes of two thermophilic fungi, Myceliophthora thermophila and Thielavia terrestris. To our knowledge, these genomes are the first described for thermophilic eukaryotes and the first complete telomere-to-telomere genomes for filamentous fungi. Genome analyses and experimental data suggest that both thermophiles are capable of hydrolyzing all major polysaccharides found in biomass. Examination of transcriptome data and secreted proteins suggests that the two fungi use shared approaches in the hydrolysis of cellulose and xylan but distinct mechanisms in pectin degradation. Characterization of the biomass-hydrolyzing activity of recombinant enzymes suggests that these organisms are highly efficient in biomass decomposition at both moderate and high temperatures. Furthermore, we present evidence suggesting that aside from representing a potential reservoir of thermostable enzymes, thermophilic fungi are amenable to manipulation using classical and molecular genetics.

  6. Use of a Mixture of Thermophilic Enzymes Produced by the Fungus Thermoascus aurantiacus to Enhance the Enzymatic Hydrolysis of the Sugarcane Bagasse Cellulose

    Directory of Open Access Journals (Sweden)

    J. R. Monte

    2010-01-01

    Full Text Available Problem statement: The production of hydrolytic enzymes by T. aurantiacus has been performed under solid-state fermentations using lignocellulosic materials. The influences of the inoculum size and of the fermentation medium on the production of hemicellulases and cellulases were studied. Filtrates from the cultures were used to hydrolyze a pulp of sugarcane bagasse and the produced enzymes were shown to be candidates for use as co-adjuvants in plant saccharification. Aproach: The present study focuses on the effect of different culture conditions on production of cellulases and hemicellulases by T. aurantiacus. It is also provides a possible application of T. aurantiacus enzymes in the degradation of sugarcane bagasse pulp, considering that this thermophilic fungus is a potential source of thermostable enzymes. Results: T. aurantiacus was cultivated on four different agricultural residues: sugarcane bagasse, sugarcane straw, wheat straw and corn cob. Xylanase was produced with much more expressive activity than cellulases. The highest titre of xylanase was obtained on sugarcane straw at 9 days (1679.8 IU g−1; the same was observed for β- glucosidase (29.9 IU g−1 at 6 days. With an inoculum load of 108 spores g−1, the amount of exoglucanase produced by the fungus considerably exceeds that produced with 104 spores g−1. Xylanases and cellulases purified from filtrates of the cultures were investigated to hydrolyze a bagasse pulp prepared with alkaline peroxide. Xylanase or sulphuric acid were used as pretreatments for xylan removal, increasing the cellulase performance on pulp bagasse. However, results revealed that the removal of hemicellulose is not the only main factor limiting the cellulose hydrolysis. Conclusion: Results indicate that the xylanase action on alkaline-pretreated sugar cane bagasse enhances the cellulolytic effect promoted by a commercial cellulase. This study thus presents an evaluation of the

  7. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    Science.gov (United States)

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  8. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist.

    Directory of Open Access Journals (Sweden)

    Garret Suen

    Full Text Available Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs, carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.

  9. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7.

    Science.gov (United States)

    Weimer, Paul J; Price, Neil P J; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M; Van Zyl, Willem H

    2006-12-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  10. Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Li, Yuyou; Chi, Yongzhi; Yang, Min

    2015-02-01

    The purpose of this study was to explore how fast the thermophilic anaerobic microbial community could be established during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Stable thermophilic anaerobic digestion was achieved within 20 days from a mesophilic digester treating sewage sludge by adopting the one-step startup strategy. The succession of archaeal and bacterial populations over a period of 60 days after the temperature increment was followed by using 454-pyrosequencing and quantitative PCR. After the increase of temperature, thermophilic methanogenic community was established within 11 days, which was characterized by the fast colonization of Methanosarcina thermophila and two hydrogenotrophic methanogens (Methanothermobacter spp. and Methanoculleus spp.). At the same time, the bacterial community was dominated by Fervidobacterium, whose relative abundance rapidly increased from 0 to 28.52 % in 18 days, followed by other potential thermophilic genera, such as Clostridium, Coprothermobacter, Anaerobaculum and EM3. The above result demonstrated that the one-step startup strategy could allow the rapid establishment of the thermophilic anaerobic microbial community. PMID:25463927

  11. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers.

    Science.gov (United States)

    Zhao, Yu; Caspers, Martien P M; Metselaar, Karin I; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    2013-09-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  12. Biodegradation of Aliphatic-aromatic Coplyester under Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-11-01

    Full Text Available The biodegradation of poly (tetramethylene adipate-co-tetramethylene terephthalate (BTA-copolyester as synthetic polyester was investigated under thermophilic conditions. Two efficient BTA degrading actinomycetes were isolated from compost at thermophilic phase. These strains were identified as Thermobifida fusca and Thermobispora bispora. The degradation rate for BTA films within 7 days was 17.12 and 16.96 mg/week.cm2 by T. fusca and T. bispora, respectively. The optimum BTA40:60 degradation conditions are obtained as pH7 and 55°C. The both strains exhibited a wider substrate spectrum as they are able to degrade synthetic polyesters (BTA40:60, PCL-S MaterBi ZF03U/A and natural polymers (poly-&beta-hydroxybutyric acid (PHB and carboxymethyl cellulose. It was shown that the extracellular hydrolyases activity from the both strains was induced in the presence of BTA-copolyester, while the presence of additional carbon sources such as glucose or a complex medium suppressed enzyme formation. Tributyrin as triglycerides was degraded by the both crude concentrated BTA-hydrolases. In contrast the enzyme was not capable to depolymerize the natural polymers PHB and carboxymethyl cellulose, although the organism itself degraded both types of polymers. The obtained results showed that the degradation rate with T. fusca BTA40:60-hydrolase was 3.67 mg/day.cm2 and was 3.5 mg/day.cm2 with T. bispora BTA40:60-hydrolase. The pH optimum for BTA-hydrolases was 7 with 20 and 100 mM phosphate buffer and it was 6 with 150 mM citrate buffer. Finally, it could be concluded that actinomycetes and their hydrolases play an outstanding role in recycling of biodegradable plastics under thermophilic phase during composting process.

  13. Biological hydrogen production from sweet sorghum by thermophilic bacteria

    OpenAIRE

    Claassen, P A M; Vrije, de, T.; Budde, M.A.W.; Koukios, E.G.; Gylnos, A.; Reczey, K.

    2004-01-01

    Sweet sorghum cultivation was carried out in South-west Greece. The fresh biomass yield was about 126 t/ha. Stalks weight accounts for 82% of total crop weight while leaves and panicle account for 17% and 1%, respectively. The major components in variety 'Keller' stalks were, based on dry weight, sugars (45%), (hemi)cellulose (35%), lignin (9%) and ash (3%). This means that per hectare, 14.5 ton sugars is produced for hydrogen fermentation. Hydrogen fermentations by the extreme thermophilic b...

  14. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes

    Directory of Open Access Journals (Sweden)

    Andrade Carolina M.M.C.

    1999-01-01

    Full Text Available Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those microorganisms growing from 70oC to 100°C and to indicate potential opportunities for useful applications derived from these features.

  15. Report: antibiotic production by thermophilic Bacillus specie SAT-4.

    Science.gov (United States)

    Muhammad, Syed Aun; Ahmad, Safia; Hameed, Abdul

    2009-07-01

    Production of antimicrobial compounds seems to be a general phenomenon for most bacteria. The prevalence of antimicrobial resistance among key microbial pathogens is increasing at an alarming rate worldwide. Current solutions involve development of a more rationale approach to antibiotic use and discover of new antimicrobials. Bacillus species produce a large number of biological compounds active against bacteria, fungi, protozoa and viruses. The process of production usually involves screening of wide range of microorganisms, testing and modification. Production is carried out using fermentation. Thermophilic spore-forming, gram positive, motile rod bacterial strains were isolated from the Thar Desserts, Sindh Province, Pakistan. These strains were screened and checked for antibacterial activity. The best activity was observed by SAT4 against Micrococcus luteus, Staphylococcus aureus and Pseudomonas aeroginosa. The activity was only observed against gram positive bacteria and no activity was seen against Pseudomonas aeroginosa. Thermophilic Bacillus specie SAT4 was found to be active in the fermentation process to produce the antimicrobial agents. Further optimizations of different conditions (time of incubation, media, pH, glucose concentrations, nitrogen concentrations, and temperature) for antimicrobial production by the selected bacterial strain was performed. Agar diffusion assay was performed to evaluate the antibacterial activity. Optimum conditions for the production of antimicrobials by selected isolate were observed to be 48 hour, pH 5, temperature 55 degrees C, 2% glucose and 1.5% nitrogen concentration. This newly isolated bacterial strain has great potential for antimicrobial production at industrial scale. PMID:19553186

  16. Genome Sequence and Analysis of the Soil Cellulolytic ActinomyceteThermobifida fusca

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Land, Miriam; DiBartolo, Genevieve; Martinez, Michele; Lapidus, Alla; Lucas, Susan; Copeland, Alex; Richardson, Paul; Wilson,David B.; Kyrpides, Nikos

    2007-02-01

    Thermobifida fusca is a moderately thermophilic soilbacterium that belongs to Actinobacteria. 3 It is a major degrader ofplant cell walls and has been used as a model organism for the study of 4secreted, thermostable cellulases. The complete genome sequence showedthat T. fusca has a 5 single circular chromosome of 3642249 bp predictedto encode 3117 proteins and 65 RNA6 species with a coding densityof 85percent. Genome analysis revealed the existence of 29 putative 7glycoside hydrolases in addition to the previously identified cellulasesand xylanases. The 8 glycosyl hydrolases include enzymes predicted toexhibit mainly dextran/starch and xylan 9 degrading functions. T. fuscapossesses two protein secretion systems: the sec general secretion 10system and the twin-arginine translocation system. Several of thesecreted cellulases have 11 sequence signatures indicating theirsecretion may be mediated by the twin-arginine12 translocation system. T.fusca has extensive transport systems for import of carbohydrates 13coupled to transcriptional regulators controlling the expression of thetransporters and14 glycosylhydrolases. In addition to providing anoverview of the physiology of a soil 15 actinomycete, this study presentsinsights on the transcriptional regulation and secretion of16 cellulaseswhich may facilitate the industrial exploitation of thesesystems.

  17. Exploration of the key functional proteins from an efficient cellulolytic microbial consortium using dilution-to-extinction approach.

    Science.gov (United States)

    Zhang, Qinghua; Li, Hanguang; Zhu, Xiangdong; Lai, Fenju; Zhai, Zhijun; Wang, Yuanxiu

    2016-05-01

    In the present study, the cellulose binding proteins (CBPs) secreted by a putative cellulolytic microbial consortium were isolated and purified by affinity digestion. The purified CBPs were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Using mass spectrometric analyses, eight CBPs were identified and annotated to be similar to known proteins secreted by Clostridium clariflavum DSM 19732 and Paenibacillus sp. W-61. In addition, in combination with dilution-to-extinction approach and zymogram analysis technique, CBPs 6 (97kDa) and 12 (52kDa) were confirmed to be the key functional proteins that influence cellulolytic activities. Moreover, structural domain analyses and enzymatic activity detection indicated that CBPs 6 and 12 contained glycoside hydrolase families (GH) 9 and 48 catalytic modules, which both revealed endoglucandase and xylanase activities. It was suggested that the coexistence of GH9 and GH48 catalytic domains present in these two proteins could synergistically promote the efficient degradation of cellulose. PMID:27155425

  18. RICHNESS, CELLULOLYTIC ACTIVITY, AND FUNGICIDE SUSCEPTIBILITY OF FUNGI FROM A BIRD BIOLOGICAL COLLECTION

    Directory of Open Access Journals (Sweden)

    Henry Arenas-Castro

    2015-11-01

    Full Text Available ABSTRACTBiological collections in natural history museums serve important purposes to the scientific community and the general public, however, their value and utility might be diminished by biodeterioration. We studied a biological collection that represents more than sixty years of avifauna sampling of Colombia, the country with the highest bird diversity. An initial inspection of the collection showed that the general appearance of some specimens was compromised by mold-like growth on their surfaces. We aimed at (i identifying the taxonomic affiliation of these fungi, (ii evaluating their cellulolytic activity, and (iii probing chemical agents that could be utilized to control their growth. The most common fungi genera were Aspergillus, Penicillium, Chaetomium, and Trichophyton, most of which can degrade cellulose. Zinc chloride and salicylic acid showed to be effective fungicides. Based on this, we propose some actions to control the fungi-pest in this biological collection of birds.RESUMENLas colecciones biológicas en los museos de historia natural juegan un papel importante tanto para la comunidad científica como para el público en general. Sin embargo, su valor y utilidad pueden verse afectados por la biodeterioración de sus ejemplares. Se estudio una colección biológica de aves que representa más de sesenta años de esfuerzo de muestreo de la avifauna del país más rico en aves. Una inspección inicial mostró que la apariencia general de algunos de los especímenes de la colección se encontraba afectada por hongos. Los objetivos de este estudio fueron (i identificar la afiliación taxonómica de los hongos, (ii determinar la actividad celulolítica y (iii probar agentes químicos que puedan ser utilizados para controlar su desarrollo. Los géneros de hongos más comunes fueron Aspergillus, Penicillium, Chaetomium y Trichophyton, de los cuales la mayoría presentan la capacidad de degradar celulosa. Adicionalmente, el cloruro de

  19. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  20. Microbiota Dynamics Associated with Environmental Conditions and Potential Roles of Cellulolytic Communities in Traditional Chinese Cereal Starter Solid-State Fermentation.

    Science.gov (United States)

    Li, Pan; Liang, Hebin; Lin, Wei-Tie; Feng, Feng; Luo, Lixin

    2015-08-01

    Traditional Chinese solid-state fermented cereal starters contain highly complex microbial communities and enzymes. Very little is known, however, about the microbial dynamics related to environmental conditions, and cellulolytic communities have never been proposed to exist during cereal starter fermentation. In this study, we performed Illumina MiSeq sequencing combined with PCR-denaturing gradient gel electrophoresis to investigate microbiota, coupled with clone library construction to trace cellulolytic communities in both fermentation stages. A succession of microbial assemblages was observed during the fermentation of starters. Lactobacillales and Saccharomycetales dominated the initial stages, with a continuous decline in relative abundance. However, thermotolerant and drought-resistant Bacillales, Eurotiales, and Mucorales were considerably accelerated during the heating stages, and these organisms dominated until the end of fermentation. Enterobacteriales were consistently ubiquitous throughout the process. For the cellulolytic communities, only the genera Sanguibacter, Beutenbergia, Agrobacterium, and Erwinia dominated the initial fermentation stages. In contrast, stages at high incubation temperature induced the appearance and dominance of Bacillus, Aspergillus, and Mucor. The enzymatic dynamics of amylase and glucoamylase also showed a similar trend, with the activities clearly increased in the first 7 days and subsequently decreased until the end of fermentation. Furthermore, β-glucosidase activity continuously and significantly increased during the fermentation process. Evidently, cellulolytic potential can adapt to environmental conditions by changes in the community structure during the fermentation of starters. PMID:26002897

  1. Microbial community dynamics in thermophilic undefined milk starter cultures.

    Science.gov (United States)

    Parente, Eugenio; Guidone, Angela; Matera, Attilio; De Filippis, Francesca; Mauriello, Gianluigi; Ricciardi, Annamaria

    2016-01-18

    Model undefined thermophilic starter cultures were produced from raw milk of nine pasta-filata cheesemaking plants using a selective procedure based on pasteurization and incubation at high temperature with the objective of studying the microbial community dynamics and the variability in performances under repeated (7-13) reproduction cycles with backslopping. The traditional culture-dependent approach, based on random isolation and molecular characterization of isolates was coupled to the determination of pH and the evaluation of the ability to produce acid and fermentation metabolites. Moreover, a culture-independent approach based on amplicon-targeted next-generation sequencing was employed. The microbial diversity was evaluated by 16S rRNA gene sequencing (V1-V3 regions), while the microdiversity of Streptococcus thermophilus populations was explored by using novel approach based on sequencing of partial amplicons of the phosphoserine phosphatase gene (serB). In addition, the occurrence of bacteriophages was evaluated by qPCR and by multiplex PCR. Although it was relatively easy to select for a community dominated by thermophilic lactic acid bacteria (LAB) within a single reproduction cycle, final pH, LAB populations and acid production activity fluctuated over reproduction cycles. Both culture-dependent and -independent methods showed that the cultures were dominated by either S. thermophilus or Lactobacillus delbrueckii subsp. lactis or by both species. Nevertheless, subdominant mesophilic species, including lactococci and spoilage organisms, persisted at low levels. A limited number of serB sequence types (ST) were present in S. thermophilus populations. L. delbrueckii and Lactococcus lactis bacteriophages were below the detection limit of the method used and high titres of cos type S. thermophilus bacteriophages were detected in only two cases. In one case a high titre of bacteriophages was concurrent with a S. thermophilus biotype shift in the culture

  2. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on indiv

  3. Solid-Phase Thermophilic Aerobic Reactor (STAR) Processing of Fecal, Food, and Plant Residues

    OpenAIRE

    2006-01-01

    A description of the Solid Waste Resource Recovery ALS-NSCORT projects: Solid Phase Thermophilic Aerobic Reactor (STAR), Nitrogen Cycling in Advanced Life Support Systems, and Plant-based Anaerobic-Aerobic Bioreactor Linked Operation (PAABLO). 26 pages.

  4. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are pro

  5. Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Bielen, A.A.M.; Willquist, K.; Engman, J.; Oost, van der J.; Niel, van E.W.J.; Kengen, S.W.M.

    2010-01-01

    The role of inorganic pyrophosphate (PPi) as an energy carrier in the central metabolism of the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus was investigated. In agreement with its annotated genome sequence, cell extracts were shown to exhibit PPi-dependent phosphofructokina

  6. Toxicity of heavy metals to thermophilic anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Westermann, P.

    1983-01-01

    The effects of heavy metals on the thermophilic digestion of sewage sludge was studied in three semicontinuous digesters step-fed with cadmium, copper and nickel, respectively. The daily gas production, gas composition, the quantitative accumulation of volatile fatty acids, and the distribution of the heavy metals were measured. The fermentations were carried out at 58 degrees C with a retention time of 10 days and an addition of 1.7 g volatile solids/l of reactor volume per day. Nickel was found to be 2-3 times more water soluble than cadmium and copper when the digesters were fed raw sludge containing heavy metals. The three digesters all showed tendencies to acclimate to the heavy metals up to a certain level. 200 mg nickel/l was completely inhibitory while the same response was observed for cadmium and copper at 300 mg/l. (Refs. 20).

  7. The bioleaching of different sulfide concentrates using thermophilic bacteria

    Science.gov (United States)

    Torres, F.; Blázquez, M. L.; González, F.; Ballester, A.; Mier, J. L.

    1995-05-01

    The bioleaching of different mineral sulfide concentrates with thermophilic bacteria (genus Sulfolobus @#@) was studied. Since the use of this type of bacteria in leaching systems involves stirring and the control of temperature, the influence of the type of stirring and the pulp density on dissolution rates was studied in order to ascertain the optimum conditions for metal recovery. At low pulp densities, the dissolution kinetic was favored by pneumatic stirring, but for higher pulp densities, orbital stirring produced the best results. A comparative study of three differential concentrates, one mixed concentrate, and one global concentrate was made. Copper and iron extraction is directly influenced by bacterial activity, while zinc dissolution is basically due to an indirect mechanism that is activated in the presence of copper ions. Galvanic interactions between the different sulfides favors the selective bioleaching of some phases (sphalerite and chalcopyrite) and leads to high metal recovery rates. However, the formation of galvanic couples depends on the type of concentrate.

  8. Bioleaching of pollymetallic sulphide concentrate using thermophilic bacteria

    Directory of Open Access Journals (Sweden)

    Vuković Milovan

    2014-01-01

    Full Text Available An extreme thermophilic, iron-sulphur oxidising bacterial culture was isolated and adapted to tolerate high metal and solids concentrations at 70°C. Following isolation and adaptation, the culture was used in a batch bioleach test employing a 5-l glass standard magnetic agitated and aerated reactor, for the bioleaching of a copper-lead-zinc collective concentrate. The culture exhibited stable leach performance over the period of leach operation and overall copper and zinc extractions higher than 97%. Lead sulphide is transformed into lead sulphate remaining in the bioleach residue due to the low solubility in sulphate media. Brine leaching of bioleach residue yields 95% lead extraction. [Projekat Ministarstva nauke Republike Srbije, br. 34023

  9. Ribotyping Identification of Thermophilic Bacterium from Papandayan Crater

    Directory of Open Access Journals (Sweden)

    Akhmaloka

    2006-05-01

    Full Text Available A few thermophilic bacteria were isolated from a hot spring located in Papandayan Crater, Garut. One of the organisms showed a well growth at temperature of up to 80oC. Chromosomal DNA from the organism was isolated and used to amplify 16S rRNA gene fragment. The gene was amplified by a set of universal primers (27F and 1492R resulting in a 1.5 kb DNA fragment. The gene was cloned and sequenced. The phylogenetic tree, homological analysis, and detailed comparison of the sequences showed that 16S rRNA gene sequence of the Papandayan isolate is unique compared to other known strains, however the sequence had closest similarities with Bacillus caldolyticus and Bacillus caldotenax.

  10. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  11. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  12. Cloning and sequencing of the gene encoding thermophilic beta-amylase of Clostridium thermosulfurogenes.

    OpenAIRE

    Kitamoto, N; Yamagata, H; Kato, T; Tsukagoshi, N; Udaka, S

    1988-01-01

    A gene coding for thermophilic beta-amylase of Clostridium thermosulfurogenes was cloned into Bacillus subtilis, and its nucleotide sequence was determined. The nucleotide sequence suggested that the thermophilic beta-amylase is translated from monocistronic mRNA as a secretory precursor with a signal peptide of 32 amino acid residues. The deduced amino acid sequence of the mature beta-amylase contained 519 residues with a molecular weight of 57,167. The amino acid sequence of the C. thermosu...

  13. Adaptive role of increased frequency of polypurine tracts in mRNA sequences of thermophilic prokaryotes

    OpenAIRE

    Paz, Arnon; Mester, David; Baca, Ivan; Nevo, Eviatar; Korol, Abraham

    2004-01-01

    The mechanism of an organism's adaptation to high temperatures has been investigated intensively in recent years. It was suggested that the macromolecules of thermophilic microorganisms (especially proteins) have structural features that enhance their thermostability. We compared mRNA sequences of 72 fully sequenced prokaryotic proteomes (14 thermophilic and 58 mesophilic species). Although the differences between the percentage of adenine plus guanine content of whole mRNAs of different prok...

  14. Mechanisms for stabilisation and the maintenance of solubility in proteins from thermophiles

    OpenAIRE

    Warwicker Jim; Greaves Richard B

    2007-01-01

    Abstract Background The database of protein structures contains representatives from organisms with a range of growth temperatures. Various properties have been studied in a search for the molecular basis of protein adaptation to higher growth temperature. Charged groups have emerged as key distinguishing factors for proteins from thermophiles and mesophiles. Results A dataset of 291 thermophile-derived protein structures is compared with mesophile proteins. Calculations of electrostatic inte...

  15. The impact of mesophilic and thermophilic anaerobic digestion on biogas production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; F. Cus

    2009-01-01

    Purpose: of this paper is to compare mesophilic and thermophilic anaerobic digestion of three maize varieties. Parameters such as biogas production and biogas composition from maize silage were measured and calculated. The amount of biogas production (methane) was observed by the mini digester.Design/methodology/approach: Biogas production and composition in mesophilic (35 degrees C) and thermophilic (55 degrees C) conditions were measured and compared. The measurements were performed with mi...

  16. Draft Genome Sequences of Four Thermophilic Spore Formers Isolated from a Dairy-Processing Environment

    Science.gov (United States)

    Caspers, Martien P. M.; Boekhorst, Jos; de Jong, Anne; Kort, Remco; Nierop Groot, Masja

    2016-01-01

    Spores of thermophilic spore-forming bacteria are a common cause of contamination in dairy products. Here, we report draft genome sequences of four thermophilic strains from a milk-processing plant or standard milk, namely, a Geobacillus thermoglucosidans isolate (TNO-09.023), Geobacillus stearothermophilus TNO-09.027, and two Anoxybacillus flavithermus isolates (TNO-09.014 and TNO-09.016). PMID:27516503

  17. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis

    OpenAIRE

    Yu Xia; Yubo Wang; Herbert H. P. Fang; Tao Jin; Huanzi Zhong; Tong Zhang

    2014-01-01

    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consorti...

  18. Hydrophobic and electrostatic cell surface properties of thermophilic dairy streptococci.

    Science.gov (United States)

    van der Mei, H C; de Vries, J; Busscher, H J

    1993-12-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose added, strains were relatively hydrophilic (showing low initial removal rates by hexadecane) and slightly negatively charged. A tendency exists for cells grown with sucrose added to be more hydrophilic than cells grown with glucose or lactose added. Also, the lowest isoelectric points, i.e., the pH values for which the zeta potentials are zero, were measured for strains with glucose added to the growth medium. The isoelectric points for the strains were all rather high, between pH 3 and 5, indicative of protein-rich surfaces, although X-ray photoelectron spectroscopy did not measure excessively large amounts of nitrogen on the cell surfaces. Both MATH and microelectrophoresis were done as a function of pH. Maxima in hydrophobicity were observed at certain pH values. Usually these pH values were in the range of the isoelectric points of the cells. Thus it appears that MATH measures an interplay of hydrophobicity and electrostatic interactions. MATH measures solely hydrophobicity only when electrostatic interactions are absent, i.e., close to the isoelectric points of the cells. Considering that these thermophilic streptococci are all rather hydrophilic, a possible pathway to prevent fouling in the pasteurization process might be to render the heat exchanger plates of the pasteurizer more hydrophobic. PMID:16349127

  19. Comparative economic assessment of ethanol production under mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Key technical factors affecting the economics of bioethanol production are critically analyzed with special reference to the relative merits of thermophilic and mesophilic fermentation. A number of novel process schemes to take advantage of thermophilic operation are discussed. Analysis of the capital and operating costs for a range of flowsheets then provides a basis for critical study. Estimates for thermophilic production are compared with those for a sugar cane based mesophilic process (using S. cerevisiae). For the thermophilic fermentation, the basic kinetic and yield constants are based on projected values for a strain of B. stearothermophilus. Compared to mesophilic operation, thermophilic operation results in reduced capital, operating and feed costs. The feed cost still accounts for a large proportion (75%) of the total production cost. However, on a feed-cost-free basis, a reduction in production cost of up to 32% could be realized by changing to thermophilic operation from existing yeast-based processes, after minor process modifications. 20 refs., 10 figs., 8 tabs

  20. Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2011-01-01

    The two-stage process for extreme thermophilic hydrogen and thermophilic methane production from wheat straw hydrolysate was investigated in up-flow anaerobic sludge bed (UASB) reactors. Specific hydrogen and methane yields of 89ml-H2/g-VS (190ml-H2/g-sugars) and 307ml-CH4/g-VS, respectively were...... achieved simultaneously with the overall VS removal efficiency of 81% by operating with total hydraulic retention time (HRT) of 4days . The energy conversion efficiency was dramatically increased from only 7.5% in the hydrogen stage to 87.5% of the potential energy from hydrolysate, corresponding to total...

  1. Start-up and HRT Influence in Thermophilic and Mesophilic Anaerobic Digesters Seeded with Waste Activated Sludge

    OpenAIRE

    Benabdallah, El-Hadj T.; Dosta, J.; Mata-Alvarez, J.

    2007-01-01

    Since thermophilic anaerobic digestion represents an efficient alternative to mesophilic anaerobic digestion, multiple studies have been developed to compare their performance and viability. One of the problems related to thermophilic anaerobic digestion is the availability of an adequate seed to start-up the process. The goal of this study is to evaluate the possibility of using waste activated sludge (WAS) as a seed for both mesophilic (35 °C) and thermophilic (55 °C) anaerobic digesters...

  2. Change in Microbial Numbers during Thermophilic Composting of Sewage Sludge with Reference to CO2 Evolution Rate

    OpenAIRE

    Nakasaki, Kiyohiko; Sasaki, Masayuki; Shoda, Makoto; Kubota, Hiroshi

    1985-01-01

    Dewatered sewage sludge was composted in a laboratory-scale autothermal reactor in which a constant temperature of 60°C was kept as long as possible by regulating the air feed rate. The change in CO2 evolution rate was measured continuously from the start up through the cessation of compositing. The succession of mesophilic bacteria, thermophilic bacteria, and thermophilic actinomycetes was also observed during the composting. Specific CO2 evolution rates of thermophilic bacteria and actinomy...

  3. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Stams, Alfons J M

    2002-07-01

    A novel, anaerobic, non-spore-forming, mobile, Gram-negative, thermophilic bacterium, strain TMOT, was isolated from a thermophilic sulfate-reducing bioreactor operated at 65 C with methanol as the sole substrate. The G+C content of the DNA of strain TMOT was 39.2 mol%. The optimum pH, NaCl concentration, and temperature for growth were 7.0, 1.0%, and 65 degrees C, respectively. Strain TMOT was able to degrade methanol to CO2 and H2 in syntrophic culture with Methanothermobacter thermautotrophicus AH or Thermodesulfovibrio yellowstonii. Thiosulfate, elemental sulfur, Fe(III) and anthraquinone-2,6-disulfonate were able to serve as electron acceptors during methanol degradation. In the presence of thiosulfate or elemental sulfur, methanol was converted to CO2 and partly to alanine. In pure culture, strain TMOT was also able to ferment methanol to acetate, CO2 and H2. However, this degradation occurred slower than in syntrophic cultures or in the presence of electron acceptors. Yeast extract was required for growth. Besides growing on methanol, strain TMOT grew by fermentation on a variety of carbohydrates including monomeric and oligomeric sugars, starch and xylan. Acetate, alanine, CO2, H2, and traces of ethanol, lactate and alpha-aminobutyrate were produced during glucose fermentation. Comparison of 16S rDNA genes revealed that strain TMOT is related to Thermotoga subterranea (98%) and Thermotoga elfii (98%). The type strain is TMOT (= DSM 14385T = ATCC BAA-301T). On the basis of the fact that these organisms differ physiologically from strain TMOT, it is proposed that strain TMOT be classified as a new species, within the genus Thermotoga, as Thermotoga lettingae. PMID:12148651

  4. Structural insights into cellulolytic and chitinolytic enzymes revealing crucial residues of insect β-N-acetyl-D-hexosaminidase.

    Directory of Open Access Journals (Sweden)

    Tian Liu

    Full Text Available The chemical similarity of cellulose and chitin supports the idea that their corresponding hydrolytic enzymes would bind β-1,4-linked glucose residues in a similar manner. A structural and mutational analysis was performed for the plant cellulolytic enzyme BGlu1 from Oryza sativa and the insect chitinolytic enzyme OfHex1 from Ostrinia furnacalis. Although BGlu1 shows little amino-acid sequence or topological similarity with OfHex1, three residues (Trp(490, Glu(328, Val(327 in OfHex1, and Trp(358, Tyr(131 and Ile(179 in BGlu1 were identified as being conserved in the +1 sugar binding site. OfHex1 Glu(328 together with Trp(490 was confirmed to be necessary for substrate binding. The mutant E328A exhibited a 8-fold increment in K(m for (GlcNAc(2 and a 42-fold increment in K(i for TMG-chitotriomycin. A crystal structure of E328A in complex with TMG-chitotriomycin was resolved at 2.5 Å, revealing the obvious conformational changes of the catalytic residues (Glu(368 and Asp(367 and the absence of the hydrogen bond between E328A and the C3-OH of the +1 sugar. V327G exhibited the same activity as the wild-type, but acquired the ability to efficiently hydrolyse β-1,2-linked GlcNAc in contrast to the wild-type. Thus, Glu(328 and Val(327 were identified as important for substrate-binding and as glycosidic-bond determinants. A structure-based sequence alignment confirmed the spatial conservation of these three residues in most plant cellulolytic, insect and bacterial chitinolytic enzymes.

  5. A culture-dependent survey of thermophilic bacteria from hot springs in Xiamen area in China

    Institute of Scientific and Technical Information of China (English)

    YANG Bo; OUYANG Jianping; AO Jingqun; CHEN Xinhua

    2009-01-01

    Microbes are believed to play important roles in ecosystem function in many environments. The hot springs of Xiamen Island are close to the Xiamen Sea, and may have some characteristics different from those of inland hot springs. Microbes living in the hot springs of Xiamen may have new characteristics. However, little is known about microbial communities of hot springs close to the Xiamen Sea. A cuhure-dependent survey of microbial population in the Xiamen hot springs was pcrformed by using an approach combining total cellular protein profile identification and 16S rRNA gene sequencing. A total of 328 isolates of bacteria were obtained from liquid and sediment samples from the Xiamen hot springs, including neutrophilie thermophilic bacteria and moderately thermophilic acidophiles. Neutrophilic thermophilic bacteria, which grow at a temperature range of 55-90℃ including Rhodothermus marinus (Strain 1) , Thermus thermophilus (Strain 2), Thermus thiopara (Strain 3) , Geobacillus stearothermophilus(Strain 4) , Geobacillus thermoleovorans (Strain 5) , and Pseudomonas pseudoal-caligenes (Strain 6), were recovered by 2216E plates. Moderately thermophilic acidophiles, which can grow at temperatures above 50℃ and a pH range of 1. 8-3.5 such as Alicyclobacillus acidoterrestris (Strain 8) , Sul-fobacillus acidophilus (Strain 9), and Sulfobacillus thermosulfidooxidans (Strain 10), were isolated on selective solid medium containing sulfur and Fe2+. Among these strains, Rhodothermus marinus, Thermus thermophilus and Geobacillus stearothermophilus are not only thermophilcs, but also halophiles. One bacterium strain (Strain 6) shared 99% nucleotide sequence homology with Pseudomonas pseudoalcaligenes on the 16S rRNA gene se-quence, but was quite different from Pseudomonas pseudoalcaligenes in biological characteristics, suggesting that it may represent a novel thermophilic species. Results indicated that various species of neutrophilic thermophiles and moderately thermophilic

  6. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    Science.gov (United States)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  7. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  8. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  9. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms

    Science.gov (United States)

    Sammond, Deanne W.; Kastelowitz, Noah; Himmel, Michael E.; Yin, Hang; Crowley, Michael F.; Bomble, Yannick J.

    2016-01-01

    Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions. PMID:26741367

  10. Dewaterability of thermophilically digested biosolids: effects of temperature and cellular polymeric substances

    International Nuclear Information System (INIS)

    Thermophilic processes digest sludge at high temperatures to produce Class A biosolids.Recent research work revealed that digestion temperature is the predominant factor affecting dewaterability of thermophilic biosolids. This paper presents findings of a laboratory study that investigated how various digestion temperatures affect dewaterability of digested biosolids, studied the phase partition of the substances affecting dewaterability in digested biosolids, and tested the role of cellular polymeric substances in affecting dewaterability.Secondary sludges were digested at 40-70oC or 22oC for up to 12 days. Centrate from thermophilically digested biosolids were treated with protease and boiling. This study found that, during the first few hours of digestion, higher temperatures resulted in more rapid and more significant deterioration in dewaterability than lower digestion temperatures. Continued digestion resulted in either improved (60oC or 70oC), or unchanged (40oC or 50oC), or gradually deteriorated dewaterability (22oC). The substances affecting dewaterability were primarily located in the liquid phase of thermophilically digested biosolids. Boiling treatment did not result in significant changes in dewaterability. Protease treatment of the liquid phase of thermophilic biosolids improved dewaterability by 13-19%. Such an improvement confirmed the role of proteins in affecting dewaterability. (author)

  11. Enzymatic Screening and Molecular Characterization of Thermophilic Bacterial Strains Isolated from Hotspring of Tatopani, Bhurung, Nepal

    Directory of Open Access Journals (Sweden)

    Hriush Adhikari

    2015-09-01

    Full Text Available Background and Aim: In Nepal not much of study of Thermophilic area and Thermophiles have been done. Thermophilic bacteria are less studied but are important group of microorganisms due to their ability to produce industrially important enzymes. Methods: In this study, thermophilic bacteria were isolated from hot spring of Bhurung, Nepal. Wide range of bacteria that could grow at high temperatures and tolerate extreme temperature were characterized by morphology, biochemistry and sequencing of its 16S rRNA gene sequence. The isolates were screened for production of extracellular enzymes like protease, amylase, lipase, cellulase, caseinase, pectinase and xylanase activity. Phylogenetic tree construction and G+C content evaluation of the isolate was also studied. Results: 15 isolates with ability to tolerate high temperatures were identified as Bacillus sp. by morphology, biochemistry and sequencing of its 16S rRNA gene sequence. BLAST search analysis of the sequence was performed and result showed maximum identity (99% similarity with Bacillus licheniformis, Bacillus subtilis and Bacillus pumilus. Isolated strains exhibited considerable amount of extracellular exozymes activity. Phylogenetic analysis of the isolates revealed the relatedness among the species. The G+C content of each species was also evaluated and was found to be in range of 54.87 to 55.54%. Conclusion: The study of isolates confirmed that the isolated Bacillus sp. to be a true thermophile and could be a source of various thermostable exozymes which can be exploited for pharmaceutical and industrials applications. Much detailed study of the isolates can

  12. Community dynamics and glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.M.; Allgaier, M.; Miller, C.S.; Hazen, T.C.; VanderGheynst, J.S.; Hugenholtz, P.; Simmons, B.A.; Singer, S.W.

    2011-05-01

    Industrial-scale biofuel production requires robust enzymatic cocktails to produce fermentable sugars from lignocellulosic biomass. Thermophilic bacterial consortia are a potential source of cellulases and hemicellulases adapted to harsher reaction conditions than commercial fungal enzymes. Compost-derived microbial consortia were adapted to switchgrass at 60 C to develop thermophilic biomass-degrading consortia for detailed studies. Microbial community analysis using small-subunit rRNA gene amplicon pyrosequencing and short-read metagenomic sequencing demonstrated that thermophilic adaptation to switchgrass resulted in low-diversity bacterial consortia with a high abundance of bacteria related to thermophilic paenibacilli, Rhodothermus marinus, and Thermus thermophilus. At lower abundance, thermophilic Chloroflexi and an uncultivated lineage of the Gemmatimonadetes phylum were observed. Supernatants isolated from these consortia had high levels of xylanase and endoglucanase activities. Compared to commercial enzyme preparations, the endoglucanase enzymes had a higher thermotolerance and were more stable in the presence of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), an ionic liquid used for biomass pretreatment. The supernatants were used to saccharify [C2mim][OAc]-pretreated switchgrass at elevated temperatures (up to 80 C), demonstrating that these consortia are an excellent source of enzymes for the development of enzymatic cocktails tailored to more extreme reaction conditions.

  13. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.

    Directory of Open Access Journals (Sweden)

    Deanne W Sammond

    Full Text Available Understanding how proteins adapt to function at high temperatures is important for deciphering the energetics that dictate protein stability and folding. While multiple principles important for thermostability have been identified, we lack a unified understanding of how internal protein structural and chemical environment determine qualitative or quantitative impact of evolutionary mutations. In this work we compare equivalent clusters of spatially neighboring residues between paired thermophilic and mesophilic homologues to evaluate adaptations under the selective pressure of high temperature. We find the residue clusters in thermophilic enzymes generally display improved atomic packing compared to mesophilic enzymes, in agreement with previous research. Unlike residue clusters from mesophilic enzymes, however, thermophilic residue clusters do not have significant cavities. In addition, anchor residues found in many clusters are highly conserved with respect to atomic packing between both thermophilic and mesophilic enzymes. Thus the improvements in atomic packing observed in thermophilic homologues are not derived from these anchor residues but from neighboring positions, which may serve to expand optimized protein core regions.

  14. Effect of salinity and acidity on bioleaching activity of mesophilic and extremely thermophilic bacteria

    Institute of Scientific and Technical Information of China (English)

    H.DEVECI; M.A.JORDAN; N.POWELL; I.ALP

    2008-01-01

    The effects of bacterial strain,salinity and pH on the bioleaching of a complex ore using mesophilic and extremely thermophilic bacteria were investigated and the statistical analysis of the results was performed using ERGUN's test.The extreme thermophiles were shown to display superior kinetics of dissolution of zinc compared with the mesophiles as confirmed by the statistical analysis.Bioleaching performance of the extreme thermophiles is found to improve in response to the increase in acidity (pH from 2.0 to 1.0) whilst the activity of the mesophiles is adversely affected by decreasing pH.Statistical analysis of the bioleaching data indicates that the effect of pH is insignificant in the range of pH 1.0-1.2 for the extreme thermophiles and pH 1.4-2.0 for the mesophiles.Salinity is shown to have a suppressing effect on the mesophiles.However,the extreme thermophiles appear to be halophilic in character as they could operate efficiently under saline conditions (1%-4%C1- (w/v)).

  15. Effect of Feeding Palm Oil By-Products Based Diets on Total Bacteria, Cellulolytic Bacteria and Methanogenic Archaea in the Rumen of Goats

    OpenAIRE

    Abubakr, Abdelrahim; Alimon, Abdul Razak; Yaakub, Halimatun; Abdullah, Norhani; Ivan, Michael

    2014-01-01

    Rumen microorganisms are responsible for digestion and utilization of dietary feeds by host ruminants. Unconventional feed resources could be used as alternatives in tropical areas where feed resources are insufficient in terms of quality and quantity. The objective of the present experiment was to evaluate the effect of diets based on palm oil (PO), decanter cake (DC) or palm kernel cake (PKC) on rumen total bacteria, selected cellulolytic bacteria, and methanogenic archaea. Four diets: cont...

  16. Selecting the best inoculation for anaerobic thermophilic treatment in sewage plants; Seleccion de inoculo para el tratamiento anaerobio termofilico de lodos de depuradora

    Energy Technology Data Exchange (ETDEWEB)

    Riau, V.; Rubia, M. A. de la; Forster, T.; Perez, M.

    2009-07-01

    The objective of the present work is to propose a suitable method to obtain an thermophilic inoculum source able for the anaerobic thermophilic digestion of sludge raw. Also, the acclimatization period to the temperature and the substrate is study as well as the thermophilic process at different solids retention of solids is analyzed. (Author) 18 refs.

  17. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tam-Anh D.; Kim, Kyoung-Rok; Sim, Sang Jun [Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Mi Sun [Bioenergy Research Center, Korea Institute of Energy Research, Daejeon 305-343 (Korea, Republic of)

    2010-12-15

    Rice straw, a low-cost lignocellulosic biomass was used as feedstock for thermophilic hydrogen fermentation by Thermotoga neapolitana. Hydrogen production, the growth and cellulose digestibility of the hyperthermophile in batch mode from untreated as well as chemically pretreated (ammonia and dilute sulfuric acid) Korean rice straws were investigated. Pretreatment method using combination of 10% ammonia and 1.0% dilute sulfuric acid was developed to increase the digestibility of rice straw for the hyperthermophilic H{sub 2} fermentation and to decrease the time consumption. In a typical fermentation using raw rice straw, 29% of the substrate was digested and 2.3 mmol H{sub 2}/g straw of hydrogen yield was consistently obtained. Compared with the pretreatments using only ammonia or dilute sulfuric acid, the combined pretreatment method using both chemical agents significantly increases the digestibility of rice straw with 85.4% of substrate consumption. H{sub 2} production on rice straw from this combined pretreatment showed the highest yield (2.7 mmol H{sub 2}/g straw) and the highest sugar conversions (72.9% of glucose and 95.7% of xylose). (author)

  18. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion.

    Science.gov (United States)

    Popat, Sudeep C; Yates, Marylynn V; Deshusses, Marc A

    2010-12-01

    Thermophilic anaerobic sludge digestion is a promising process to divert waste to beneficial use, but an important question is the required temperature and holding time to achieve a given degree of pathogen inactivation. In this study, the kinetics of inactivation of Ascaris suum and vaccine strain poliovirus type 1 (PVS-1), selected as indicators for helminth ova and enteric viruses respectively, were determined during anaerobic digestion at temperatures ranging from 51 to 56 °C. Inactivation of both indicator organisms was fast with greater than two log reductions achieved within 2 h for A. suum and three log reductions for PVS-1, suggesting that the current U.S. regulations are largely conservative. The first-order inactivation rate constants k followed Arrhenius relationship with activation energies of 105 and 39 KJ mol(-1) for A. suum and PVS-1, respectively indicating that A. suum was more sensitive to temperature. Although inactivation was fast, the presence of compounds in the sludge that are known to be protective of pathogen inactivation was observed, suggesting that composition-dependent time-temperature relationships are necessary. PMID:20692678

  19. Single gene insertion drives bioalcohol production by a thermophilic archaeon

    Energy Technology Data Exchange (ETDEWEB)

    Basen, M; Schut, GJ; Nguyen, DM; Lipscomb, GL; Benn, RA; Prybol, CJ; Vaccaro, BJ; Poole, FL; Kelly, RM; Adams, MWW

    2014-12-09

    Bioethanol production is achieved by only two metabolic pathways and only at moderate temperatures. Herein a fundamentally different synthetic pathway for bioalcohol production at 70 degrees C was constructed by insertion of the gene for bacterial alcohol dehydrogenase (AdhA) into the archaeon Pyrococcus furiosus. The engineered strain converted glucose to ethanol via acetate and acetaldehyde, catalyzed by the host-encoded aldehyde ferredoxin oxidoreductase (AOR) and heterologously expressed AdhA, in an energy-conserving, redox-balanced pathway. Furthermore, the AOR/AdhA pathway also converted exogenously added aliphatic and aromatic carboxylic acids to the corresponding alcohol using glucose, pyruvate, and/or hydrogen as the source of reductant. By heterologous coexpression of a membrane-bound carbon monoxide dehydrogenase, CO was used as a reductant for converting carboxylic acids to alcohols. Redirecting the fermentative metabolism of P. furiosus through strategic insertion of foreign genes creates unprecedented opportunities for thermophilic bioalcohol production. Moreover, the AOR/AdhA pathway is a potentially game-changing strategy for syngas fermentation, especially in combination with carbon chain elongation pathways.

  20. Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus.

    Science.gov (United States)

    Gaisin, Vasil A; Grouzdev, Denis S; Namsaraev, Zorigto B; Sukhacheva, Marina V; Gorlenko, Vladimir M; Kuznetsov, Boris B

    2016-03-01

    Isolated environments such as hot springs are particularly interesting for studying the microbial biogeography. These environments create an 'island effect' leading to genetic divergence. We studied the phylogeographic pattern of thermophilic anoxygenic phototrophic bacteria, belonging to the Roseiflexus genus. The main characteristic of the observed pattern was geographic and geochronologic fidelity to the hot springs within Circum-Pacific and Alpine-Himalayan-Indonesian orogenic belts. Mantel test revealed a correlation between genetic divergence and geographic distance among the phylotypes. Cluster analysis revealed a regional differentiation of the global phylogenetic pattern. The phylogeographic pattern is in correlation with geochronologic events during the break up of Pangaea that led to the modern configuration of continents. To our knowledge this is the first geochronological scenario of intercontinental prokaryotic taxon divergence. The existence of the modern phylogeographic pattern contradicts with the existence of the ancient evolutionary history of the Roseiflexus group proposed on the basis of its deep-branching phylogenetic position. These facts indicate that evolutionary rates in Roseiflexus varied over a wide range. PMID:26826142

  1. Use of thermophilic bacteria for bioremediation of petroleum contaminants

    International Nuclear Information System (INIS)

    Several strains of thermophilic bacteria were isolated from the environment of the United Arab Emirates. These bacteria show extraordinary resistance to heat and have their maximum growth rate around 60--80 C. This article investigates the potential of using these facultative bacteria for both in situ and ex situ bioremediation of petroleum contaminants. In a series of batch experiments, bacterial growth was observed using a computer image analyzer following a recently developed technique. These experiments showed clearly that the growth rate is enhanced in the presence of crude oil. This is coupled with a rapid degradation of the crude oil. These bacteria were found to be ideal for breaking down long-chain organic molecules at a temperature of 40 C, which is the typical ambient temperature of the Persian Gulf region. The same strains of bacteria are also capable of surviving in the presence of the saline environment that can prevail in both sea water and reservoir connate water. This observation prompted further investigation into the applicability of the bacteria in microbial enhanced oil recovery. In the United Arab Emirates, the reservoirs are typically at a temperature of around 85 C. Finally, the performance of the bacteria is tested in a newly developed bioreactor that uses continuous aeration through a transverse slotted pipe. This reactor also uses mixing without damaging the filamentous bacteria. In this process, the mechanisms of bioremediation are identified

  2. Isolation and characterization of novel thermophilic lipase-secreting bacteria

    Directory of Open Access Journals (Sweden)

    Mohammed Rabbani

    2013-12-01

    Full Text Available The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered.

  3. Isolation and characterization of novel thermophilic lipase-secreting bacteria.

    Science.gov (United States)

    Rabbani, Mohammed; Bagherinejad, Mohammad Reza; Sadeghi, Hamid MirMohammad; Shariat, Ziaedin Samsam; Etemadifar, Zahra; Moazen, Fatemeh; Rahbari, Manizheh; Mafakher, Ladan; Zaghian, Saeideh

    2013-12-01

    The purpose of the present study was to screen and identify the lipase-producing microorganisms from various regions of Iran. Samples collected from hot spring, Persian Gulf, desert area and oil-contaminated soil, were analyzed for thermophilic extracellular-lipase producing organisms. Six strains with high activity on rhodamine B plates were selected for chemical identification and further study. Among these isolated bacteria, four strains show higher activity in pH-Stat method at 55 °C. These strains were identified by PCR amplification of 16s rRNA genes using universal primers. Fermentation increased the activity up to 50%. The growth medium, designed for lipase production, increased the activity up to 4.55 folds. The crude supernatant of ZR-5 after fermentation and separation the cells, was lyophilized and the activity was measured. Total activity of this strain was 12 kU/g that shows its potential for industrial uses. Further study is required for purification of enzyme and calculation its specific activity. Immobilization is another approach should be considered. PMID:24688500

  4. A Novel Process Configuration for Anaerobic Digestion of Source-Sorted Household Waste Using Hyper-Thermophilic Post-Treatment

    DEFF Research Database (Denmark)

    Hartmann, H.; Ahring, Birgitte Kiær

    2005-01-01

    A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68°C) reactor R68 was implemented as a post–treatment step for the effluent of a thermophilic reactor R1 (55°C) in order to enhanc...

  5. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater

    DEFF Research Database (Denmark)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon;

    2015-01-01

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic...

  6. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents

    NARCIS (Netherlands)

    Harmsen, HJM; Prieur, D; Jeanthon, C

    1997-01-01

    Four 16S rRNA-targeted oligonucleotide probes were designed for the detection of thermophilic members of the domain Bacteria known to thrive in marine hydrothermal systems, We developed and characterized probes encompassing most of the thermophilic members of the genus Bacillus, most species of the

  7. Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors

    NARCIS (Netherlands)

    Vallero, M.V.G.; Hulshoff Pol, L.W.; Lettinga, G.; Lens, P.N.L.

    2003-01-01

    The effect of NaCl on thermophilic (55degreesC) methanol conversion in the presence of excess of sulfate (COD/SO42-=0.5) was investigated in two 6.5L lab-scale upflow anaerobic sludge bed reactors inoculated with granular sludge previously not adapted to NaCl
    The effect of NaCl on thermophilic (

  8. Characteristics of Recombinant Phytase (rSt-Phy) of the Thermophilic mold Sporotrichum thermophile and its applicability in dephytinizing foods.

    Science.gov (United States)

    Ranjan, Bibhuti; Singh, Bijender; Satyanarayana, T

    2015-12-01

    Sporotrichum thermophile produces very low titres of phytase (St-Phy) extracellularly, which is acidstable, thermostable, and protease insensitive with broad substrate specificity, and therefore, the gene encoding phytase (St-Phy) has been cloned and expressed in E. coli. The purified recombinant phytase (rSt-Phy) has the molecular mass of 55 kDa with Km and Vmax (calcium phytate), kcat and kcat/Km of 0.143 mM, 185.05 nmoles mg(-1)  s(-1), 5.1 × 10(3) s(-1), and 3.5 × 10(7) M(-1) s(-1), respectively. Mg(2+) and Ba(2+) display slight stimulatory effect on the enzyme, while it is inhibited by other ions to a varied extent. The enzyme is also inhibited by chaotropic agents (guanidinium hydrochloride, potassium iodide, and urea), Woodward's reagent K, and 2,3-butanedione but resistant to both pepsin and trypsin. The rSt-Phy is useful in dephytinization of tandoori and naan (unleavened flat Indian breads), and bread, liberating soluble inorganic phosphate that mitigates anti-nutrient effects of phytic acid. PMID:26433599

  9. Influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A laboratory-scale experiment was carried out to assess the influence of temperature fluctuation on thermophilic anaerobic digestion of municipal organic solid waste (MOSW). Heating failure was simulated by decreasing temperature suddenly from 55 ℃ to 20 ℃ suddenly; 2 h time is needed for temperature decrease and recovery. Under the conditions ofS.0 g/(L·d) and 15 d respectively for MOSW load and retention time, following results were noted: (1) biogas production almost stopped and VFA (volatile fatty acid) accumulated rapidly, accompanied by pH decrease; (2) with low temperature (20 ℃) duration of 1, 5, 12 and 24 h, it took 3, 11, 56 and 72 h for the thermophilic anaerobic digestion system to reproduce methane after temperature fluctuation;(3) the longer the low temperature interval lasted, the more the methanogenic bacteria would decay; hydrolysis, acidification and methanogenesis were all influenced by temperature fluctuation; (4) the thermophilic microorganisms were highly resilient to temperature fluctuation.

  10. Over-expression of carboxypeptidase of extreme thermophile pyrococcus furiosus in escherichia coli

    International Nuclear Information System (INIS)

    Thermophiles and extreme thermophiles are potential source of thermostable proteases for economical application. This study deals with cloning and over-expression of a carboxypeptidase (CBP) from the extreme thermophile archaeon Pyrococcus furiosus in E. coli. Using the forward and the reverse primers designed according to the putative CBP gene sequence analysed from the published genome sequence of P. furiosus, 1.5 kb fragment of CBP gene was PCR amplified. After TA-cloning in pTZ57R/T vector, the gene was ligated into pET-22b(+) and the recombinant plasmid thus obtained was used to transform E. coli BL21 (DE3)RIPL. On induction with IPTG for 6-8 hours CBP was expressed up to 30% of the total cell proteins. The enzyme, however, was expressed in an insoluble form which was refolded to an active state by treatment with urea. (author)

  11. A strict anaerobic extreme thermophilic hydrogen-producing culture enriched from digested household waste

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Kotay, Shireen Meher; Trably, Eric;

    2009-01-01

    The aim of this study was to enrich, characterize and identify strict anaerobic extreme thermophilic hydrogen (H-2) producers from digested household solid wastes. A strict anaerobic extreme thermophilic H-2 producing bacterial culture was enriched from a lab-scale digester treating household...... wastes at 70 degrees C. The enriched mixed culture consisted of two rod-shaped bacterial members growing at an optimal temperature of 80 degrees C and an optimal pH 8.1. The culture was able to utilize glucose, galactose, mannose, xylose, arabinose, maltose, sucrose, pyruvate and glycerol as carbon...... from digested household wastes. This study provided a culture with a potential to be applied in reactor systems for extreme thermophilic H-2 production from complex organic wastes....

  12. Comparison of multi-enzyme and thermophilic bacteria on the hydrolysis of mariculture organic waste (MOW).

    Science.gov (United States)

    Guo, Liang; Sun, Mei; Zong, Yan; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2016-01-01

    Mariculture organic waste (MOW) is rich in organic matter, which is a potential energy resource for anaerobic digestion. In order to enhance the anaerobic fermentation, the MOW was hydrolyzed by multi-enzyme and thermophilic bacteria. It was advantageous for soluble chemical oxygen demand (SCOD) release at MOW concentrations of 6 and 10 g/L with multi-enzyme and thermophilic bacteria pretreatments. For multi-enzyme, the hydrolysis was not obvious at substrate concentrations of 1 and 3 g/L, and the protein and carbohydrate increased with hydrolysis time at substrate concentrations of 6 and 10 g/L. For thermophilic bacteria, the carbohydrate was first released at 2-4 h and then consumed, and the protein increased with hydrolysis time. The optimal enzyme hydrolysis for MOW was determined by measuring the changes of SCOD, protein, carbohydrate, ammonia and total phosphorus, and comparing with acid and alkaline pretreatments. PMID:27120653

  13. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  14. Thermophilic Sulfate Reduction in Hydrothermal Sediment of Lake Tanganyika, East-Africa

    DEFF Research Database (Denmark)

    ELSGAARD, L.; PRIEUR, D.; MUKWAYA, GM;

    1994-01-01

    part of freshwater Lake Tanganyika (East Africa). Incubation of slurry samples at 8 to 90 degrees C demonstrated meso- and thermophilic sulfate reduction with optimum temperatures of 34 to 45 degrees C and 56 to 65 degrees C, respectively, and with an upper temperature limit of 80 degrees C. Sulfate...... up to 70 and 75 degrees C, with optima at 63 and 71 degrees C, respectively. Several sporulating thermophilic enrichments were morphologically similar to Desulfotomaculum spp. Dissimilatory sulfate reduction in the studied hydrothermal area of Lake Tanganyika apparently has an upper temperature limit...

  15. Interconversion of functional motions between mesophilic and thermophilic adenylate kinases.

    Directory of Open Access Journals (Sweden)

    Michael D Daily

    2011-07-01

    Full Text Available Dynamic properties are functionally important in many proteins, including the enzyme adenylate kinase (AK, for which the open/closed transition limits the rate of catalytic turnover. Here, we compare our previously published coarse-grained (double-well Gō simulation of mesophilic AK from E. coli (AKmeso to simulations of thermophilic AK from Aquifex aeolicus (AKthermo. In AKthermo, as with AKmeso, the LID domain prefers to close before the NMP domain in the presence of ligand, but LID rigid-body flexibility in the open (O ensemble decreases significantly. Backbone foldedness in O and/or transition state (TS ensembles increases significantly relative to AKmeso in some interdomain backbone hinges and within LID. In contact space, the TS of AKthermo has fewer contacts at the CORE-LID interface but a stronger contact network surrounding the CORE-NMP interface than the TS of AKmeso. A "heated" simulation of AKthermo at 375K slightly increases LID rigid-body flexibility in accordance with the "corresponding states" hypothesis. Furthermore, while computational mutation of 7 prolines in AKthermo to their AKmeso counterparts produces similar small perturbations, mutation of these sites, especially positions 8 and 155, to glycine is required to achieve LID rigid-body flexibility and hinge flexibilities comparable to AKmeso. Mutating the 7 sites to proline in AKmeso reduces some hinges' flexibilities, especially hinge 2, but does not reduce LID rigid-body flexibility, suggesting that these two types of motion are decoupled in AKmeso. In conclusion, our results suggest that hinge flexibility and global functional motions alike are correlated with but not exclusively determined by the hinge residues. This mutational framework can inform the rational design of functionally important flexibility and allostery in other proteins toward engineering novel biochemical pathways.

  16. Isolation and identification of the thermophilic alkaline desulphuricant strain

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A desulfurization strain that belongs to the thermophilic alkaline desulphuricant is designated as strain GDJ-3 and isolated from Inner Mongolia, China. The colony of the strain shows tiny, yellow, or white-yellow, and it becomes henna with the protracting of cultivated time. The cells are bacilliform (0.3 -0.6 × 1.0-1.2 μm), motive, and Gram negative. The strain GDJ-3 is able to utilize respectively the thiosulphate, sulfate, sulfite, or sulfide as sulfur source, utilize the carbon dioxide as the carbon source, and utilize the ammonium or nitrate as the nitrogen source. According to GenBank data, 16s RNA results of GDJ-3 are in good agreement with Alpha proteobacterrium sp. (97%) and Ochrobactrum sp. (98%). For GDJ-3, the optimum growth temperature is at 45℃, the optimum pH is at 8.5-8.8, and the optimum rocking speed of sorting table is at 150 r/min. Under the optimum culture condition, the cells of the strain can live for about 18 h. In the desulfurization solution, which is prepared according to the composition of DDS solution, the objectionable constituents of sodium thiosulphate and sodium sulfide were added factitiously, and the bacterial cell concentration was set at 107/mL. After the regeneration of the above desulfurization solution by the strain cells, the concentration of sodium thiosulphate was decreased by 14.75 g/L (percentage loss of content 13.21%), the concentration of sodium sulfide was decreased by 0.76 g/L (percentage loss of content 87.36%) in the desulfurization solution in 9.5 hours, and sulfur appeared. Maybe, this kind of strain can be used as the regeneration’s bacterial source of DDS solution.

  17. Continuous thermophilic biohydrogen production in packed bed reactor

    International Nuclear Information System (INIS)

    Highlights: • Continuous H2 production in whole cell immobilized system was compared with CSTR. • Suitability of environment friendly support matrix for immobilization of whole cells was explored. • Pack bed reactor showed higher stability as compared to CSTR at lower HRTs. • Flow cytometry study showed the influence of recycle ratio on viability of cells. • Novel approach to find out the effect of NADH/NAD+ ratio during H2 production. - Abstract: The present research work deals with the performance of packed bed reactor for continuous H2 production using cane molasses as a carbon source. Maximum H2 production rate of 1.7 L L−1 h−1 was observed at a dilution rate and recycle ratio of 0.8 h−1 and 0.6, respectively which was corresponding to the lowest NADH/NAD+ ratio. This suggests that the utilization of NADH pool for H2 and metabolite production might lead to decrement in NADH/NAD+ ratio. Thus NADH/NAD+ ratio show inverse relation with hydrogen production. The substrate degradation kinetics was investigated as a function of flow rate considering the external film diffusion model. At a flow rate of 245 mL h−1, the contribution of external film mass transfer coefficient and first order substrate degradation constant were 55.4% and 44.6% respectively. Recycle ratio of 0.6 improved the hydrogen production rates by 9%. The viable cell count was directly proportional to the recycle ratio (within the range 0.1–0.6). Taguchi design showed the significant influence of the feed pH on continuous H2 production followed by dilution rate and recycle ratio. Thus environmentally friendly and cheaper solid matrix like coconut coir could be efficiently used for thermophilic continuous hydrogen production

  18. A novel promising Trichoderma harzianum strain for the production of a cellulolytic complex using sugarcane bagasse in natura.

    Science.gov (United States)

    Benoliel, Bruno; Torres, Fernando Araripe Gonçalves; de Moraes, Lidia Maria Pepe

    2013-01-01

    Brazil is a major producer of agro-industrial residues, such as sugarcane bagasse, which could be used as raw material for microbial production of cellulases as an important strategy for the development of sustainable processes of second generation ethanol production. For this purpose, this work aimed at screening for glycosyl hydrolase activities of fungal strains isolated from the Brazilian Cerrado. Among 13 isolates, a Trichoderma harzianum strain (L04) was identified as a promising candidate for cellulase production when cultured on in natura sugarcane bagasse. Strain L04 revealed a well-balanced cellulolytic complex, presenting fast kinetic production of endoglucanases, exoglucanases and β-glucosidases, achieving 4,022, U.L(-1) (72 h), 1,228 U.L(-1) (120 h) and 1,968 U.L(-1) (48 h) as the highest activities, respectively. About 60% glucose yields were obtained from sugarcane bagasse after 18 hours hydrolysis. This new strain represents a potential candidate for on-site enzyme production using sugarcane bagasse as carbon source. PMID:24349958

  19. Cellulolytic potential of a novel strain of Paenibacillus sp. isolated from the armored catfish Parotocinclus maculicauda gut

    Directory of Open Access Journals (Sweden)

    André L. M. de Castro

    2011-12-01

    Full Text Available A cellulolytic bacterial strain, designated P118, isolated from the gut of the tropical fish Parotocinclus maculicauda was identified as belonging to the genus Paenibacillus based on phenotypic and chemotaxonomic characteristics and the 16S rRNA gene sequence. The novel strain was Gram-positive, spore-forming and rod-shaped. Catalase but not oxidase was produced. Carboxymethylcellulose was hydrolyzed but starch or gelatin was not. Acetoin production was negative whereas nitrate reduction and urease production were positive. Many carbohydrates served as carbon sources for growth. MK-7 was the predominant isoprenoid quinone. Anteiso-C15:0 (38.73% and C16:0 (20.85% were the dominant cellular fatty acids. Strain P118 was closely related to Paenibacillus amylolyticus NRRL NRS-290, P. pabuli HSCC 492, P. tundrae Ab10b, P. xylanexedens B22a, and P. tylopili MK2 with 98.3-98.8% 16S rRNA gene sequence similarity. The results presented here suggest that strain P118 represents a novel species of the genus Paenibacillus and it is a potential strain for further studies concerning its role in the production of industrially important products from cellulosic biomass.

  20. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose.

    Science.gov (United States)

    Yuki, Masahiro; Kuwahara, Hirokazu; Shintani, Masaki; Izawa, Kazuki; Sato, Tomoyuki; Starns, David; Hongoh, Yuichi; Ohkuma, Moriya

    2015-12-01

    Wood-feeding lower termites harbour symbiotic gut protists that support the termite nutritionally by degrading recalcitrant lignocellulose. These protists themselves host specific endo- and ectosymbiotic bacteria, functions of which remain largely unknown. Here, we present draft genomes of a dominant, uncultured ectosymbiont belonging to the order Bacteroidales, 'Candidatus Symbiothrix dinenymphae', which colonizes the cell surface of the cellulolytic gut protists Dinenympha spp. We analysed four single-cell genomes of Ca. S. dinenymphae, the highest genome completeness was estimated to be 81.6-82.3% with a predicted genome size of 4.28-4.31 Mb. The genome retains genes encoding large parts of the amino acid, cofactor and nucleotide biosynthetic pathways. In addition, the genome contains genes encoding various glycoside hydrolases such as endoglucanases and hemicellulases. The genome indicates that Ca. S. dinenymphae ferments lignocellulose-derived monosaccharides to acetate, a major carbon and energy source of the host termite. We suggest that the ectosymbiont digests lignocellulose and provides nutrients to the host termites, and hypothesize that the hydrolytic activity might also function as a pretreatment for the host protist to effectively decompose the crystalline cellulose components. PMID:26079531

  1. ISOLATION AND PHYSICO-CHEMICAL CHARACTERIZATION OF EXTRACELLULAR LIGNO-CELLULOLYTIC ENZYMES OF PLEUROTUS PULMONARIUS IN SUBMERGED FERMENTATION

    Directory of Open Access Journals (Sweden)

    Nirmalendu Das

    2015-07-01

    Full Text Available Pleurotus pulmonarius, a member of oyster mushroom can produced lignocellulosic enzymes laccase, peroxidise and cellulase in liquid potato-dextrose medium in submerged stationary condition. The lignocellulolytic activities were assayed using the extracellular culture filtrate which was partially purified using 0- 80% ammonium sulphate saturation. Different physico-chemical studies were performed using the partially purified culture filtrate. The fungus produced more laccase and peroxidase than the cellulase. The optimum laccase production was found on 17th day whereas cellulase & peroxidase productions were found on 9th& 10th day, respectively. Km of laccase is 4.1mM against guaiacol and 1.25 mM against o-dianisidine whereas Km of peroxidase was 0.72mM and cellulase was 0.06 mM. Optimum pH of laccase was 6.0 but for peroxidase and cellulase it was 7.0. The temperature optima of cellulase (50?C was more than laccase (40?C and peroxidase (30?C. All the lignocellulosic enzymes showed a wide range of temperature and pH stabilities. Laccase and peroxidase were fully inhibited by NaCl but it was not so effective against cellulase. P. pulmonarius showed higher ligninolytic (Laccase and peroxidase activity than cellulolytic (cellulase activity. The lignocellulosic enzymes isolated from submerged fermentation of P. pulmonarius might be industrially significant as they showed a wide range of temperature and pH stabilities.

  2. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen.

    Science.gov (United States)

    Denman, Stuart E; McSweeney, Christopher S

    2006-12-01

    Traditional methods for enumerating and identifying microbial populations within the rumen can be time consuming and cumbersome. Methods that involve culturing and microscopy can also be inconclusive, particularly when studying anaerobic rumen fungi. A real-time PCR SYBR Green assay, using PCR primers to target total rumen fungi and the cellulolytic bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes, is described, including design and validation. The DNA and crude protein contents with respect to the fungal biomass of both polycentric and monocentric fungal isolates were investigated across the fungal growth stages to aid in standard curve generation. The primer sets used were found to be target specific with no detectable cross-reactivity. Subsequently, the real-time PCR assay was employed in a study to detect these populations within cattle rumen. The anaerobic fungal target was observed to increase 3.6-fold from 0 to 12 h after feeding. The results also indicated a 5.4-fold increase in F. succinogenes target between 0 and 12 h after feeding, whereas R. flavefaciens was observed to maintain more or less consistent levels. This is the first report of a real-time PCR assay to estimate the rumen anaerobic fungal population. PMID:17117998

  3. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  4. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor.

    Science.gov (United States)

    Wang, Wei; Ma, Wencheng; Han, Hongjun; Li, Huiqiang; Yuan, Min

    2011-02-01

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35±2°C) reactor as a control, thermophilic anaerobic digestion (55±2°C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m(3) d) and HRT of 24 h; the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pretreatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW. PMID:21112778

  5. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    OpenAIRE

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Stephan C Schuster; Steinke, Laurey; Bryant, Donald A.

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  6. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood

    OpenAIRE

    Herring, Christopher D; Kenealy, William R.; Joe Shaw, A.; Covalla, Sean F.; Olson, Daniel G; Zhang, Jiayi; Ryan Sillers, W.; Tsakraklides, Vasiliki; Bardsley, John S.; Rogers, Stephen R.; Thorne, Philip G.; Johnson, Jessica P.; Foster, Abigail; Shikhare, Indraneel D.; Klingeman, Dawn M

    2016-01-01

    Background The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported. Results Here, we describe the highest ethanol titers achieved from T. saccharolyticum...

  7. Secondary thermophilic microaerobic treatment in the anaerobic digestion of corn straw.

    Science.gov (United States)

    Fu, Shan-Fei; Shi, Xiao-Shuang; Xu, Xiao-Hui; Wang, Chuan-Shui; Wang, Lin; Dai, Meng; Guo, Rong-Bo

    2015-06-01

    Thermophilic microaerobic pretreatment (TMP) has been proved to be an alternative pretreatment method during anaerobic digestion (AD) of corn straw. In this study, in order to improve the fermentation efficiency during late AD stage, improve the methane yield and volatile solid (VS) removal efficiency, a secondary thermophilic microaerobic treatment (STMT) was applied in the late AD stage of corn straw. Results showed STMT obviously improved the fermentation efficiency, methane yield and VS removal efficiency. The maximum methane yield and maximum VS removal efficiency were simultaneously obtained when the oxygen loads during STMT was 10 ml/g VS (VS of residual substrate). The maximum methane yield was 380.6 ml/g VS(substrate), which was 28.45% and 10.61% higher than those of untreated and once thermophilic microaerobic pretreated samples, respectively. The maximum VS removal efficiency was 81.85%, which was 29.43% and 17.23% higher than those of untreated and once thermophilic microaerobic pretreated samples, respectively. PMID:25818257

  8. Effect of xylose and nutrients concentration on ethanol production by a newly isolated extreme thermophilic bacterium

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    An extreme thermophilic ethanol-producing strain was isolated from an ethanol high-yielding mixed culture, originally isolated from a hydrogen producing reactor operated at 70 °C. Ethanol yields were assessed with increasing concentrations of xylose, up to 20 g/l. The ability of the strain to gro...

  9. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  10. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi;

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  11. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Prasertsan, P.; Karakashev, Dimitar Borisov;

    2008-01-01

    A thermophilic H(2)-producing bacterial strain was isolated from a biohydrogen reactor fed with palm oil mill effluent (POME) and identified as Thermoanaerobacterium thermosaccharolyticum using 16S rRNA gene analysis. The isolated bacterium, designated as T thermosaccharolyticum PSU-2, showed a...

  12. Growth characteristics of selected thermophilic strains of cyanobacteria using crossed gradients of temperature and light

    Czech Academy of Sciences Publication Activity Database

    Hindák, F.; Kvíderová, Jana; Lukavský, Jaromír

    2013-01-01

    Roč. 68, č. 5 (2013), s. 830-837. ISSN 0006-3088 R&D Projects: GA TA ČR TE01020080 Institutional support: RVO:67985939 Keywords : cyanobacteria * thermophiles * growth characteristics Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.696, year: 2013

  13. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    Science.gov (United States)

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  14. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    OpenAIRE

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb).

  15. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 oC

    International Nuclear Information System (INIS)

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre-treatment at 80 oC was also evaluated. To this end, anaerobic biodegradability tests were carried out at 35 oC and 55 oC, with raw and pre-treated water hyacinth. According to the results, the thermal pre-treatment enhanced the solubilisation of water hyacinth (i.e. increase in the soluble to total chemical oxygen demand (COD)) from 4% to 12% after 30 min. However, no significant effect was observed on the methane yields (150-190 L CH4/kg volatile solids). Initial methane production rates for thermophilic treatments were two fold those of mesophilic ones (6-6.5 L vs. 3-3.5 L CH4/kg COD.day). Thus, higher methane production rates might be expected from thermophilic reactors working at short retention times. The study of longer low temperature pre-treatments or pre-treatments at elevated temperatures coupled to thermophilic reactors should be considered in the future.

  16. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production.

    Science.gov (United States)

    Lin, Lu; Xu, Jian

    2013-11-01

    Interest in thermophilic bacteria as live-cell catalysts in biofuel and biochemical industry has surged in recent years, due to their tolerance of high temperature and wide spectrum of carbon-sources that include cellulose. However their direct employment as microbial cellular factories in the highly demanding industrial conditions has been hindered by uncompetitive biofuel productivity, relatively low tolerance to solvent and osmic stresses, and limitation in genome engineering tools. In this work we review recent advances in dissecting and engineering the metabolic and regulatory networks of thermophilic bacteria for improving the traits of key interest in biofuel industry: cellulose degradation, pentose-hexose co-utilization, and tolerance of thermal, osmotic, and solvent stresses. Moreover, new technologies enabling more efficient genetic engineering of thermophiles were discussed, such as improved electroporation, ultrasound-mediated DNA delivery, as well as thermo-stable plasmids and functional selection systems. Expanded applications of such technological advancements in thermophilic microbes promise to substantiate a synthetic biology perspective, where functional parts, module, chassis, cells and consortia were modularly designed and rationally assembled for the many missions at industry and nature that demand the extraordinary talents of these extremophiles. PMID:23510903

  17. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h. PMID:26233586

  18. Thermophilic Bacteria Colony Growwth and its Consequences in the Food Industry

    Czech Academy of Sciences Publication Activity Database

    Melzoch, K.; Votruba, Jaroslav; Sekavová, B.; Piterková, L.; Rychtera, M.

    2004-01-01

    Roč. 22, č. 1 (2004), s. 1-8. ISSN 1212-1800 R&D Projects: GA ČR GA525/03/0375 Institutional research plan: CEZ:AV0Z5020903 Keywords : thermophilic bacteria * colony growth Subject RIV: EE - Microbiology, Virology

  19. Autohydrolysis of plant xylans by apoplastic expression of thermophilic bacterial endo-xylanases

    DEFF Research Database (Denmark)

    Borkhardt, Bernhard; Harholt, Jesper; Ulvskov, Peter Bjarne; Ahring, Birgitte Kiær; Jørgensen, Bodil; Brinch-Pedersen, Henrik

    2010-01-01

    The genes encoding the two endo-xylanases XynA and XynB from the thermophilic bacterium Dictyoglomus thermophilum were codon optimized for expression in plants. Both xylanases were designed to be constitutively expressed under the control of the CaMV 35S promoter and targeted to the apoplast. Tra...

  20. State of the art and future perspectives of thermophilic anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Mladenovska, Zuzana; Iranpour, R.; Westermann, Peter

    2002-01-01

    over time with thermophilic digestion of sewage sludge this process has lost its appeal in the USA. New demands on sanitation of biosolids before land use will, however, bring the attention back to the use of elevated temperatures during sludge stabilization. In the paper we show how the use of a start-up...

  1. Fermentation of Corn Fiber Hydrolysate to Lactic Acid by the Moderate Thermophile Bacillus coagulans

    Science.gov (United States)

    Composted manure from a dairy farm in Texas was examined for thermophilic microorganisms by enrichment in xylose broth medium. Forty randomly picked isolates were identified as strains of Bacillus coagulans by sequence analysis of rRNA genes. One strain, designated as MXL-9, could convert mixed su...

  2. Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    D' haeseleer, Patrik; Gladden, John M.; Allgaier, Martin; Chain, Patrick; Tringe, Susannah G.; Malfatti, Stephanie; Aldrich, Joshua T.; Nicora, Carrie D.; Robinson, Errol W.; Pasa-Tolic, Ljiljana; Hugenholtz, Philip; Simmons, Blake A.; Singer, Steven W.

    2013-07-19

    Thermophilic bacteria are a potential source of enzymes for the deconstruction of lignocellulosic biomass. However, the complement of proteins used to deconstruct biomass and the specific roles of different microbial groups in thermophilic biomass deconstruction are not well-explored. Here we report on the metagenomic and proteogenomic analyses of a compost-derived bacterial consortium adapted to switchgrass at elevated temperature with high levels of glycoside hydrolase activities. Near-complete genomes were reconstructed for the most abundant populations, which included composite genomes for populations closely related to sequenced strains of Thermus thermophilus and Rhodothermus marinus, and for novel populations that are related to thermophilic Paenibacilli and an uncultivated subdivision of the littlestudied Gemmatimonadetes phylum. Partial genomes were also reconstructed for a number of lower abundance thermophilic Chloroflexi populations. Identification of genes for lignocellulose processing and metabolic reconstructions suggested Rhodothermus, Paenibacillus and Gemmatimonadetes as key groups for deconstructing biomass, and Thermus as a group that may primarily metabolize low molecular weight compounds. Mass spectrometry-based proteomic analysis of the consortium was used to identify .3000 proteins in fractionated samples from the cultures, and confirmed the importance of Paenibacillus and Gemmatimonadetes to biomass deconstruction. These studies also indicate that there are unexplored proteins with important roles in bacterial lignocellulose deconstruction.

  3. Optimisation of sulphate reduction in a methanol-fed thermophilic bioreactor

    NARCIS (Netherlands)

    Weijma, J.; Bots, E.A.A.; Tandlinger, G.; Stams, A.J.M.; Hulshoff Pol, L.W.; Lettinga, G.

    2002-01-01

    Several methods were tested to optimise sulphate reduction and minimise methane formation in thermophilic (65°) expanded granular sludge bed reactors fed with a medium containing sulphate and methanol. Lowering the pH from 7.5 to 6.75 resulted in a rapid decrease of methane formation and a concomita

  4. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura;

    2015-01-01

    This study proposes an innovative setup composed by two stage reactors to achieve biogas upgrading coupling the CO2 in the biogas with external H2 and subsequent conversion into CH4 by hydrogenotrophic methanogenesis. In this configuration, the biogas produced in the first reactor was transferred...... to the second one, where H2 was injected. This configuration was tested at both mesophilic and thermophilic conditions. After H2 addition, the produced biogas was upgraded to average CH4 content of 89% in the mesophilic reactor and 85% in the thermophilic. At thermophilic conditions, a higher...

  5. Fermentative Conversion of Cellulose to Acetic Acid and Cellulolytic Enzyme Production by a Bacterial Mixed Culture Obtained from Sewage Sludge †

    OpenAIRE

    Khan, A. W.; Wall, Duncan; L. Van Den Berg

    1981-01-01

    A simple procedure that uses a cellulose-enriched culture started from sewage sludge was developed for producing cellulolytic enzymes and converting cellulose to acetic acid rather than CH4 and CO2. In this procedure, the culture which converts cellulose to CH4 and CO2 was mixed with a synthetic medium and cellulose and heated to 80°C for 15 min before incubation. The end products formed were acetic acid, propionic acid, CO2, and traces of ethanol and H2. Supernatants from 6- to 10-day-old cu...

  6. Enzymatic activity of the cellulolytic complex produced by Trichoderma reesei. Enzymatic hydrolysis of cellulose; Actividad enzimatica del complejo celulolitico producido por Trichoderma reesei. Hidrolisis enzimatica de la celulosa

    Energy Technology Data Exchange (ETDEWEB)

    Alfonsel, M.; Negro, M. J.; Saez, R.; Martin, C.

    1986-07-01

    The enzymatic activity characterization of the cellulolytic complex obtained from Trichoderma reesei QM 9414 and the influence of the enzymatic hydrolysis conditions on the hydrolysis yield are studied. Pure cellulose and native or alkali pretreated biomass Onopordum nervosum have been used as substrates. The values of pH, temperature, substrate concentration and enzyme-substrate ratio for the optimum activity of that complex, evaluated as glucose and reducing sugars production, have been selected. Previous studies on enzymatic hydrolysis of 0. nervosum have shown a remarkable effect of the alkaline pretreatments on the final hydrolysis yield. (Author) 10 refs.

  7. Probing the redox metabolism in the strictly anaerobic, extremely thermophilic, hydrogen-producing Caldicellulosiruptor saccharolyticus using amperometry

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Willquist, Karin; Emnéus, Jenny;

    2011-01-01

    Changes in the redox metabolism in the anaerobic, extremely thermophilic, hydrogen-forming bacterium Caldicellulosiruptor saccharolyticus were probed for the first time in vivo using mediated amperometry with ferricyanide as a thermotolerant external mediator. Clear differences in the intracellul...

  8. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    NARCIS (Netherlands)

    Henstra, A.M.; Stams, A.J.M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial cat

  9. Ecology of Thermophilic Fungi in Mushroom Compost, with Emphasis on Scytalidium thermophilum and Growth Stimulation of Agaricus bisporus Mycelium

    OpenAIRE

    Straatsma, Gerben; Samson, Robert A.; Olijnsma, Tineke W.; Op den Camp, Huub J. M.; Gerrits, Jan P. G.; Van Griensven, Leo J. L. D.

    1994-01-01

    Twenty-two species of thermophilic fungi were isolated from mushroom compost. Scytalidium thermophilum was present in the compost ingredients, fresh straw, horse droppings, and drainage from compost and dominated the fungal biota of compost after preparation. Of 34 species of thermophilic fungi tested, 9 promoted mycelial growth of Agaricus bisporus on sterilized compost: Chaetomium thermophilum, an unidentified Chaetomium sp., Malbranchea sulfurea, Myriococcum thermophilum, S. thermophilum, ...

  10. Amino-acid interactions in psychrophiles, mesophiles, thermophiles, and hyperthermophiles: Insights from the quasi-chemical approximation

    OpenAIRE

    Richard A Goldstein

    2007-01-01

    We investigate the mechanisms used by proteins to maintain thermostability throughout a wide range of temperatures. We use the quasi-chemical approximation to estimate interaction strengths for psychrophiles, mesophiles, thermophiles, and hyperthermophiles. Our results highlight the importance of core packing in thermophilic stability. Although we observed an increase in the number of charged residues, the contribution of salt bridges appears to be relatively modest by comparison. We observed...

  11. Tryptophan Oxidative Metabolism Catalyzed by Geobacillus Stearothermophilus: A Thermophile Isolated from Kuwait Soil Contaminated with Petroleum Hydrocarbons

    OpenAIRE

    Al-Hassan, Jassim M.; Samira Al-Awadi; Sosamma Oommen; Abdulaziz Alkhamis; Mohammad Afzal

    2011-01-01

    Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M ph...

  12. Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species.

    Science.gov (United States)

    Mehrotra, A; Kundu, K; Sreekrishnan, T R

    2016-02-01

    A possibility of using simultaneous sewage sludge digestion and metal leaching (SSDML) process at the thermophilic temperature to remove heavy metals and suspended solids from sewage sludge is explored in this study. Though thermophilic sludge digestion efficiently produces a stable sludge, its inability to remove heavy metals requires it to be used in tandem with another process like bioleaching for metal reduction. Previously, different temperature optima were known for the heterotrophs (thermophilic) responsible for the sludge digestion and the autotrophs involved in bioleaching (mesophilic), because of which the metal concentration was brought down separately in a different reactor. In our study, SSDML process was carried out at 50 °C (thermophilic) by using ferrous sulfate (batch-1) and sulfur (batch-2) as the energy source in two reactors. The concentration of volatile suspended solids reduced by >40% in both batches, while that of heavy metals zinc, copper, chromium, cadmium and nickel decreased by >50% in both batch-1 and batch-2. Lead got leached out only in batch-1. Using 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis analysis, Alicyclobacillus tolerans was found to be the microorganism responsible for lowering the pH in both the reactors at thermophilic temperature. The indicator organism count was also below the maximum permissible limit making sludge suitable for agricultural use. Our results indicate that SSDML at thermophilic temperature can be effectively used for reduction of heavy metals and suspended solids from sewage sludge. PMID:26686075

  13. A semi-continuous culture system for production of cellulolytic and xylanolytic enzymes by the anaerobic fungus Piromyces sp. strain E2

    Energy Technology Data Exchange (ETDEWEB)

    Teunissen, M.J.; Baerends, R.J.S.; Knelissen, R.A.G.; Camp, H.J.M. op den; Vogels, G.D. (Katholieke Univ., Nijmegen (Netherlands). Dept. of Microbiology)

    1992-10-01

    A system was developed for the semi-continous cultivation of an anaerobic fungus, Piromyces sp. strain E2 (isolated from an Indian elephant), on Avicel (microcrystalline cellulose). The fungus was grown in a semi-continuous culture system: Solids and fungal biomass was retained by means of a simple filter construction whereas the culture fluid was removed continuously. The production of fermentation products (acetate, ethanol, formate, lactate, hydrogen or methane), cellulolytic and xylanolytic enzymes, and protein by the fungus in monoculture or co-culture with Methanobacterium formicicum during growth on Avicel was monitored up to 45 days. These productions stabilized after an adaptation period of 24 and 30 days in the semi-continuous co-culture and monoculture, respectively. After this period the average ([+-]SD) avicelase, [beta]-glucosidase, endoglucanase, and xylanase production in the semicontinuous monoculture were 27[+-]6, 140[+-]16, 1057[+-]120 and 5012[+-]583 IUxl[sup -1]xday[sup -1], respectively. Co-culture with the methanogen caused a shift in fermentation products to more acetate, and less ethanol and lactate. Furthermore, the production of all cellulolytic enzymes increased (40%) and xylanolytic enzyme production decreased (35%). (orig.).

  14. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia

    Directory of Open Access Journals (Sweden)

    W. P. Lokapirnasari

    2015-03-01

    Full Text Available Aim: This study aims to produce and assay cellulolytic enzyme activity (endo-(1,4-β-D-glucanase, exo-(1,4-β-Dglucanase, and β-glucosidase, at optimum temperature and optimum pH of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya Abbatoir, Indonesia. Materials and Methods: To produce enzyme from a single colony of E. cloacae WPL 214, 98 × 1010 CFU/ml of isolates was put into 20 ml of liquid medium and incubated in a shaker incubator for 16 h at 35°C in accordance with growth time and optimum temperature of E. cloacae WPL 214. Further on, culture was centrifuged at 6000 rpm at 4°C for 15 min. Pellet was discarded while supernatant containing cellulose enzyme activity was withdrawn to assay endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase, and β-glucosidase. Results: Cellulase enzyme of E. cloacae WPL 214 isolates had endoglucanase activity of 0.09 U/ml, exoglucanase of 0.13 U/ml, and cellobiase of 0.10 U/ml at optimum temperature 35°C and optimum pH 5. Conclusion: E. cloacae WPL 214 isolated from bovine rumen fluid waste produced cellulose enzyme with activity as cellulolytic enzyme of endo-(1,4-β-D-glucanase, exo-(1,4-β-D-glucanase and β-glucosidase.

  15. Thermophile-specific proteins: the gene product of aq_1292 from Aquifex aeolicus is an NTPase

    OpenAIRE

    Howe Rebecca; Roßbach Michael; Klinger Claudia; Kaufmann Michael

    2003-01-01

    Abstract Background To identify thermophile-specific proteins, we performed phylogenetic patterns searches of 66 completely sequenced microbial genomes. This analysis revealed a cluster of orthologous groups (COG1618) which contains a protein from every thermophile and no sequence from 52 out of 53 mesophilic genomes. Thus, COG1618 proteins belong to the group of thermophile-specific proteins (THEPs) and therefore we here designate COG1618 proteins as THEP1s. Since no THEP1 had been analyzed ...

  16. Potential for using thermophilic anaerobic bacteria for bioethanol production from hemicellulose

    DEFF Research Database (Denmark)

    Sommer, P.; Georgieva, Tania I.; Ahring, Birgitte Kiær

    2004-01-01

    A limited number of bacteria, yeast and fungi can convert hemicellulose or its monomers (xylose, arabinose, mannose and galactose) into ethanol with a satisfactory yield and productivity. In the present study we tested a number of thermophilic enrichment cultures, and new isolates of thermophilic...... anaerobic bacterial strains growing optimally at 70-80degreesC for their ethanol production from D-Xylose. The new isolates came from different natural and man-made systems such as hot springs, paper pulp mills and brewery waste water. The test was composed of three different steps; (i) test for conversion...... Of D-Xylose into ethanol; (ii) test for viability and ethanol production in pretreated wheat straw hemicellulose hydrolysate; (iii) test for tolerance against high D-xylose concentrations. A total of 86 enrichment cultures and 58 pure cultures were tested and five candidates were selected which...

  17. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1 to...... exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration...

  18. Thermophilic anaerobes in arctic marine sediments induced to mineralize complex organic matter at high temperature

    DEFF Research Database (Denmark)

    Hubert, Casey; Arnosti, Carol; Brüchert, Volker;

    2010-01-01

    well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high...... temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0°C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter......Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as...

  19. Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi

    Directory of Open Access Journals (Sweden)

    Bhat, M. K.

    2006-07-01

    Full Text Available Thirteen fungal isolates included in this study expressed multiple xylanase isoforms as observed by xylan zymograms of polyacrylamide gel electrophoresis (PAGE and isoelectrofocussing (IEF fractionated proteins. Eighty-three xylanases produced by these thermophilic and thermotolerant strains were detected using the IEF profiling technique. Xylanases identified on the basis of their isoelectric points (pI were functionally diverse and exhibited differential catalytic activities against various xylan types (birch wood xylan, larch wood xylan, oat spelt xylan, rye arabino xylan and wheat arabino xylan as well as debranched arabinan. Thermophilic isolates, Chaetomium thermophilum, Humicola insolens, Melanocarpus sp., Malbranchea sp. and Thermoascus aurantiacus, were found to produce alkaline active xylanases that showed a bleach boosting effect on Decker pulp resulting in increased brightness (1.60-2.04 ISO units.

  20. [Conversion of acetic acid to methane by thermophiles]. Progress report, May 15, 1989--May 14, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Zinder, S.H.

    1993-06-01

    The primary goal of this project is to obtain a better understanding of thermophilic microorganisms which convert acetic acid to CH{sub 4}. The previous funding period represents a departure from earlier research in this laboratory, which was more physiological and ecological. The present work is centered on the biochemistry of the thermophile Methanothrix sp. strain CALS-1. this organism presents a unique opportunity, with its purity and relatively rapid growth, to do comparative biochemical studies with the other major acetotrophic genus Methanosarcina. We previously found that Methanothrix is capable of using acetate at concentrations 100 fold lower than Methanosarcina. This finding suggests that there are significant differences in the pathways of methanogenesis from acetate in the two genera.

  1. Biocatalytic synthesis of poly(δ-valerolactone) using a thermophilic esterase from archaeoglobus fulgidus as catalyst.

    Science.gov (United States)

    Cao, Hong; Han, Haobo; Li, Guangquan; Yang, Jiebing; Zhang, Lingfei; Yang, Yan; Fang, Xuedong; Li, Quanshun

    2012-01-01

    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization. PMID:23202895

  2. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    Science.gov (United States)

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. PMID:26897469

  3. Thermophile-specific proteins: the gene product of aq_1292 from Aquifex aeolicus is an NTPase

    Directory of Open Access Journals (Sweden)

    Howe Rebecca

    2003-09-01

    Full Text Available Abstract Background To identify thermophile-specific proteins, we performed phylogenetic patterns searches of 66 completely sequenced microbial genomes. This analysis revealed a cluster of orthologous groups (COG1618 which contains a protein from every thermophile and no sequence from 52 out of 53 mesophilic genomes. Thus, COG1618 proteins belong to the group of thermophile-specific proteins (THEPs and therefore we here designate COG1618 proteins as THEP1s. Since no THEP1 had been analyzed biochemically thus far, we characterized the gene product of aq_1292 which is THEP1 from the hyperthermophilic bacterium Aquifex aeolicus (aaTHEP1. Results aaTHEP1 was cloned in E. coli, expressed and purified to homogeneity. At a temperature optimum between 70 and 80°C, aaTHEP1 shows enzymatic activity in hydrolyzing ATP to ADP + Pi with kcat = 5 × 10-3 s-1 and Km = 5.5 × 10-6 M. In addition, the enzyme exhibits GTPase activity (kcat = 9 × 10-3 s-1 and Km= 45 × 10-6 M. aaTHEP1 is inhibited competitively by CTP, UTP, dATP, dGTP, dCTP, and dTTP. As shown by gel filtration, aaTHEP1 in its purified state appears as a monomer. The enzyme is resistant to limited proteolysis suggesting that it consists of a single domain. Although THEP1s are annotated as "predicted nucleotide kinases" we could not confirm such an activity experimentally. Conclusion Since aaTHEP1 is the first member of COG1618 that is characterized biochemically and functional information about one member of a COG may be transferred to the entire COG, we conclude that COG1618 proteins are a family of thermophilic NTPases.

  4. Regularities of polymer substances transformation into methane by thermophilic anaerobic bacteria

    OpenAIRE

    V. І. Karpenko; L. S. Yastremska; І. G. Burun; Y. V. Lembey; O. S. Tatarchenko

    2006-01-01

    The paper shows the regularities of polymer substances transformation into methane by extracted thermophilic anaerobic bacteria. The sequence of substrate use by the methane generating bacteria corresponds to the energy efficiency of the methane genesis reactions as in the first place hydrogen is used and then acetate is. Combined cultivation of extracted different anaerobic cultures gives the opportunity to increase ethanol and hydrogen yield as well as the effectiveness of methane formation.

  5. Presence of thermophilic Campylobacter species in Broilers and pigs at certain abattoirs in Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Tambur Zoran

    2008-01-01

    Full Text Available Examinations were carried out during the period from January 2006 until March 2007 on a total of 449 samples of the cecum of broilers and the cecum and the colon of pigs. These samples included 251 samples originating from broilers and 198 samples of pig cecums and colons. All the listed samples were obtained by scraping the surface of these parts of the digestive system of broilers and pigs. At the site of sampling, the diluted material was sown on a medium (Karmali agar, in order to get individual colonies. After sowing, the bases were placed in anaerobic jars in which microaerophilic conditions were achieved using Campy Pak, BBL bags. On arrival at the laboratory, the jars containing the sown bases were placed in a thermostat, at a temperature of 42oC for 48 hours for the purpose of incubation. Following incubation, the grown colonies were examined macroscopically, and then microscopic preparations were made from them, which were stained with 2% carbol fuchsin after drying and fixation. Those isolates which were in the form of a comma, the letter S, or gull's wings in the microscopic preparations were considered Campylobacter species (Figures 1 and 2. The isolated thermophilic campylobacteria were identified using conventional and commercial biochemical tests API Campy, manufactured by Bio Mérieux, France. With the application of these microbiological methods, thermophilic Campylobacter species were isolated from 203 (80.88% of the 251 samples of broiler cecums. Furthermore, thermophilic campylobacteria were isolated from 153 (77.27% of the 198 samples from the cecum and colon of pigs taken within these investigations. The obtained results indicate that there is a somewhat greater prevalence of these bacteria among the broilers. However, such a high percentage of both broilers and pigs colonized by thermophilic Campylobacter species could pose a serious problem, in particular when it is known that infections of humans caused by the

  6. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    OpenAIRE

    Ivănuş D.; Ivănuş R.C.; Călmuc F.

    2010-01-01

    A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations o...

  7. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    OpenAIRE

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A.; Stott, Matthew B.; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y.; Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I; Rigden, Daniel J.

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, whic...

  8. A study of the oxygen and carbon dioxide requirements of thermophilic campylobacters.

    OpenAIRE

    Bolton, F J; Coates, D.

    1983-01-01

    The oxygen and carbon dioxide requirements of different biotypes of thermophilic campylobacters were investigated by means of (a) quantitative studies, and (b) total growth studies. Oxygen tolerance of the five test organisms differed markedly and varied with the carbon dioxide concentration. At most carbon dioxide concentrations tested, Campylobacter jejuni strains NCTC 11168 and NCTC 11392 tolerated 21% oxygen (growth reduced), C coli NCTC 11353 tolerated 15% oxygen (growth reduced), and C ...

  9. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus

    OpenAIRE

    Takahashi, Shouji; Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-01-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protei...

  10. Growth-promoting effect of thermophilic fungi on the mycelium of the edible mushroom Agaricus bisporus.

    OpenAIRE

    Wiegant, W.M.; Wery, J.; E. T. Buitenhuis; de Bont, J A

    1992-01-01

    The growth-promoting effect of the thermophilic fungus Scytalidium thermophilum in mushroom compost on the mycelium of the edible mushroom Agaricus bisporus was investigated. Results obtained by others were confirmed by showing that S. thermophilum leads to an increased hyphal extension rate of the mushroom mycelium. However, it was demonstrated that hyphal extension rates were not clearly related to mushroom biomass increase rates. A number of experiments pointed strongly towards CO2 as the ...

  11. Mesophilic and thermophilic anaerobic biodegradability of water hyacinth pre-treated at 80 °C

    OpenAIRE

    Ferrer Martí, Ivet; Campos Pozuelo, Elena; Flotats Ripoll, Xavier; Palatsi Civit, Jordi

    2010-01-01

    Water hyacinth (Eichornia crassipes) is a fast growing aquatic plant which causes environmental problems in continental water bodies. Harvesting and handling this plant becomes an issue, and focus has been put on the research of treatment alternatives. Amongst others, energy production through biomethanation has been proposed. The aim of this study was to assess the anaerobic biodegradability of water hyacinth under mesophilic and thermophilic conditions. The effect of a thermal sludge pre...

  12. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Li, Yu-You, E-mail: yyli@epl1.civil.tohoku.ac.jp [Department of Civil and Environmental Engineering, Graduate School of Engineering Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi’an University of Architecture and Technology, Xi’an (China)

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  13. Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins

    OpenAIRE

    Cherry, Joshua L.

    2009-01-01

    The sequences of proteins encoded by a genome evolve at different rates. A correlate of a protein's evolutionary rate is its expression level: highly expressed proteins tend to evolve slowly. Some explanations of rate variation and the correlation between rate and expression predict that more slowly evolving and more highly expressed proteins have more favorable equilibrium constants for folding. Proteins from thermophiles generally have more stable folds than proteins from mesophiles, and it...

  14. Naphthalene Degradation and Incorporation of Naphthalene-Derived Carbon into Biomass by the Thermophile Bacillus thermoleovorans

    OpenAIRE

    Annweiler, E.; Richnow, H.H.; Antranikian, G.; Hebenbrock, S.; Garms, C.; Franke, S; Francke, W.; Michaelis, W

    2000-01-01

    The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60°C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO2, was determined by the application of [1-13C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was conf...

  15. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins

    OpenAIRE

    Nakashima, Hiroshi; Kuroda, Yuka

    2011-01-01

    The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the the...

  16. Isolation and characterization of two novel thermophilic anaerobic bacteria from syngas - and carbon monoxide - degrading cultures

    OpenAIRE

    Alves, J.I.; Alves, M.M.; Stams, A. J. M.; Plugge, C.M.; Sousa, D. Z.

    2012-01-01

    Syn(thesis)gas is a mixture containing hydrogen, carbon monoxide and carbon dioxide, in variable ratios. Syngas is commonly produced from fossil fuels, but it can be generated from a vast array of feedstocks such as lignocellulosic biomass and carbon-based wastes, including recalcitrant wastes. Production of biofuels and bulk chemicals from syngas, both by thermochemical or microbial processes, is a field of promising technological developments. In this work, thermophilic (55ºC...

  17. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    International Nuclear Information System (INIS)

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV Sin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages

  18. Trends in occurrence of thermophilous dragonfly species in North Rhine-Westphalia (NRW

    Directory of Open Access Journals (Sweden)

    Klaus-Jürgen Conze

    2010-12-01

    Full Text Available Since 1996 the “Workgroup Odonata in North Rhine-Westphalia” (“AK Libellen NRW” has built up a data base including about 150.000 data sets concerning the occurrence of dragonflies in North Rhine-Westphalia (NRW. This data confirms an increase and spread of some thermophilous dragonfly species in NRW, and the effects of climate change evidenced by an increasing average temperature, are considered to be important reasons for this process.

  19. Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Jensen, K.; Nielsen, P.;

    1996-01-01

    Wheat straw was pretreated by wet oxidation (oxygen pressure, alkaline conditions, elevated temperature) or hydrothermal processing (without oxygen) in order to solubilize the hemicellulose, facilitating bio-conversion. The effect of oxygen pressure and sodium carbonate addition on hemicellulose...... solubilization was investigated. The two process parameters had little effect on the solubilization of hemicellulose. However alkaline conditions affected the furfural formation whereas oxygen had no effect. After pretreatment, the filtrate was used as a fermentation medium for thermophilic anaerobic bacterin...

  20. Production, purification and characterization of xylanase using alkalo-thermophilic Bacillus halodurans KR-1

    OpenAIRE

    Krityanand Kumar Mahatman; Neha Garg; Ranjeeta Chauhan; Anil Kumar

    2010-01-01

    Xylanase (EC. 3.2.1.8) has been isolated from an alkalo-thermophilic bacteria, Bacillus halodurans strain KR-1 isolated from the soil near river bed at Indore. The bacteria secreted xylanase in the growth medium in the presence of xylan. The production of the enzyme was induced in the presence of glucose, mannose, lactose and maltose whereas presence of starch, cellulose and sucrose retarded in enzyme production. The presence of casein, peptone, sodium nitrate and potassium nitrate as nitroge...

  1. Survey of thermophilic Campylobacter species in cats and dogs in north-western Nigeria

    OpenAIRE

    Adewale Kolawale; Junaidu U. Abdulkadir; Abdullahi A. Magaji; Mohammed D. Salihu

    2010-01-01

    This study was conducted in north-western Nigeria to investigate the role of cats and dogs as potential reservoirs of thermophilic Campylobacter species. Faecal samples were analysed from 104 cats and 141 dogs between March 2007 and March 2009. The samples were collected from animals in households, those presented to veterinary premises and feline colonies. Campylobacter spp. were isolated from 39 (27.7%) and 19 (18.3%) dogs and cats, respectively. There was no significant difference in isola...

  2. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Prieur, Daniel

    2010-01-01

    A thermophilic anaerobic bacterium was isolated from a sublacustrine hydrothermal vent site in Lake Tanganyika (East Africa) with recorded fluid temperatures of 66–103 °C and pH values of 7.7–8.9. The bacterium (strain TR10) was rod-shaped, about 1 by 5 μm in size, and readily formed distal...... organism to exploit the temporarily fluctuating growth conditions in the hydrothermal vent environments of Lake Tanganyika...

  3. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture

    OpenAIRE

    Lai, Zhicheng; Zhu, Muzi; Yang, Xiaofeng; Wang, JuFang; Li, Shuang

    2014-01-01

    Background Hydrogen is regarded as an attractive future energy carrier for its high energy content and zero CO2 emission. Currently, the majority of hydrogen is generated from fossil fuels. However, from an environmental perspective, sustainable hydrogen production from low-cost lignocellulosic biomass should be considered. Thermophilic hydrogen production is attractive, since it can potentially convert a variety of biomass-based substrates into hydrogen at high yields. Results Sugarcane baga...

  4. Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory

    OpenAIRE

    Zeidan Ahmad A; Willquist Karin; van Niel Ed WJ

    2010-01-01

    Abstract Global concerns about climate changes and their association with the use of fossil fuels have accelerated research on biological fuel production. Biological hydrogen production from hemicellulose-containing waste is considered one of the promising avenues. A major economical issue for such a process, however, is the low substrate conversion efficiency. Interestingly, the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus can produce hydrogen from carbohydrate-rich su...

  5. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium

    OpenAIRE

    Plugge, C. M.; Balk, M.; Stams, A.J.M.

    2002-01-01

    From granular sludge from a laboratory-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed, a novel anaerobic, moderately thermophilic, syntrophic, spore-forming bacterium, strain TPO, was enriched on propionate in co-culture with Methanobacterium thermoautotrophicum Z245. The axenic culture was obtained by using pyruvate as the sole source of carbon and energy. The cells were straight rods with pointed ends and became lens-shaped ...

  6. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila

    OpenAIRE

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Background Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Results Defluviitalea phaphyphila Alg1 can si...

  7. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes

    Institute of Scientific and Technical Information of China (English)

    LU Shu-guang; IMAI Tsuyoshi; UKITA Masao; SEKINE Masahiko

    2007-01-01

    Two dry anaerobic digestions of organic solid wastes were conducted for 6 weeks in a lab-scale batch experiment for investigating the start-up performances under mesophilic and thermophilic conditions. The enzymatic activities,i.e., β-glucosidase, β-glucosidase, N-α -benzoyl-L-argininamide (BAA)-hydrolysing protease, urease and phosphatase activities were analysed. The lower BAA-hydrolysing protease activity during the first 2-3 weeks was due to the inhibition of the low pH, but was enhanced simultaneously later with the pH increase. β-glucosidase activity showed the lowest values in weeks 1-2, and recovered simultaneously with the increase of BAA-hydrolysing protease activity. Acetic acid dominated most of the total VFAs in thermophilic digestion, while propionate and butyrate dominated in mesophilic digestion. Thermophilic digestion is confirmed more feasible for achieving better performance against misbalance, especially during the start-up period in a dry anaerobic digestion process.

  8. Mesophilic-hydrothermal-thermophilic (M-H-T) digestion of green corn straw.

    Science.gov (United States)

    Li, Dong; Wang, Qingjing; Li, Jiang; Li, Zhidong; Yuan, Yuexiang; Yan, Zhiying; Mei, Zili; Liu, Xiaofeng

    2016-02-01

    Mesophilic-hydrothermal (80-160 °C, 30 min)-thermophilic (M-H-T) digestion and control tests of mesophilic (M), thermophilic (T), hydrothermal-mesophilic (H-M), and mesophilic-thermophilic digestion (M-T) of green corn straw were conducted for a 20-day fermentation period. The results indicate that M-H-T is an efficient method to improve methane production. A maximum methane yield of 371.74 mL/g volatile solid was obtained by the M (3 days)-H (140 °C)-T (17 days) process, which was 20.44%, 16.55%, 31.44%, and 14.31% higher than the yields of the M, T, 140-M, and M-T processes. The enhanced methane production was attributed to (1) the improved hemicellulose degradation and lignin disorganization; (2) prevention of the degradation of soluble sugar, easily hydrolyzed hemicellulose and cellulose into furfural and methylfurfural; and (3) lack of formation of Maillard reaction products during initial hydrothermal treatment. PMID:26700755

  9. A Numerical Evaluation on the Viability of Heap Thermophilic Bioleaching of Chalcopyrite

    Science.gov (United States)

    Vilcaez, J.; Suto, K.; Inoue, C.

    2007-03-01

    The present numerical evaluation explores into the interactions among the many variables governing the mass and heat transport processes that take place in a heap thermophilic bioleaching system. The necessity of using mesophiles together with thermophiles is proved by tracing the activity of both microorganisms individually at each point throughout the heap. The role of key variables such as the fraction of FeS2 per CuFeS2 leached was quantified and its importance highlighted. In this evaluation, the heat transfer process plays the main role because of the heat accumulation required to maintain the heap temperature within the range of 60 °C to 80 °C where thermophilic microorganisms are capable of completing the unfinished dissolution of copper started by mesophilic microorganisms at 30 °C. The evaluation was done taking into consideration: biological activity as function of the temperature in the heap, heat loss due to conduction and advection from the top and bottom of the heap, and mass transfer between the gas and liquid phases as a function of temperature. The exothermic nature of the leaching reactions of CuFeS2 and FeS2 makes the system auto-thermal.

  10. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience.

    Science.gov (United States)

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-01

    While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000mg/L with free ammonia (FA) 2000mg/L compared to 16,000mg/L (FA1500mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gVSin in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages. PMID:26054964

  11. The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process.

    Science.gov (United States)

    Fu, Shan-Fei; He, Shuai; Shi, Xiao-Shuang; Katukuri, Naveen Reddy; Dai, Meng; Guo, Rong-Bo

    2015-12-01

    Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw. PMID:26433149

  12. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment.

    Science.gov (United States)

    Wang, Dianlong; Xi, Jiang; Ai, Ping; Yu, Liang; Zhai, Hong; Yan, Shuiping; Zhang, Yanlin

    2016-05-01

    Pretreatment with ozone combined with aqueous ammonia was used to recover residual organic carbon from recalcitrant solid digestate for ethanol production after anaerobic digestion (AD) of rice straw. Methane yield of AD at mesophilic and thermophilic conditions, and ethanol production of solid digestate were investigated. The results showed that the methane yield at thermophilic temperature was 72.2% higher than that at mesophilic temperature under the same conditions of 24days and 17% solid concentration. And also the ethanol production efficiency of solid digestate after thermophilic process was 24.3% higher than that of solid digestate after mesophilic process. In this study, the optimal conditions for integrated methane and ethanol processes were determined as 55°C, 17% solid concentration and 24days. 58.6% of glucose conversion, 142.8g/kg of methane yield and 65.2g/kg of ethanol yield were achieved, and the highest net energy balance was calculated as 6416kJ/kg. PMID:26868156

  13. Investigating the potential of thermophilic species for ethanol production from industrial spent sulfite liquor

    Directory of Open Access Journals (Sweden)

    Michaela Weissgram

    2015-10-01

    Full Text Available Thermophilic microorganisms hold a great potential for bioethanol production on waste biomass, due to their ability to utilize pentoses and hexoses alike. However, to date hardly any data on thermophiles growing directly on industrial substrates like spent sulfite liquor (SSL are available. This contribution investigates the ability of Thermoanaerobacter species to utilize the main sugars in the used SSL (mannose, glucose and xylose and the effect of process parameters (pH, temperature and sugar concentration on their growth. Based on these results the strain T. mathranii was chosen for further studies. The ability of T. mathranii to grow directly on SSL was investigated and the effect of several inhibiting substances on growth was elucidated. Furthermore it was tested whether pretreatment with activated charcoal can increase the fermentability of SSL. The fermentations were evaluated based on yields and specific rates. It could be shown that T. mathranii was able to ferment all sugars in the investigated softwood SSL and fermented diluted, untreated SSL (up to 2.7% (w/w dry matter. Pretreatment with activated charcoal could slightly reduce the amount of phenols in the substrate and thus facilitate growth and ethanol production on higher SSL concentrations (up to 4.7% (w/v dry matter. Ethanol yields of 0.29-0.44 Cmmol of ethanol per Cmmol sugar were obtained on untreated and pretreated spent sulfite liquor, respectively. These results on an industrial substrate strengthen the claim that thermophilic microorganisms might be the optimal candidates for forest biorefinery.

  14. Upflow anaerobic solid-state (UASS) digestion of horse manure: Thermophilic vs. mesophilic performance.

    Science.gov (United States)

    Böske, Janina; Wirth, Benjamin; Garlipp, Felix; Mumme, Jan; Van den Weghe, Herman

    2015-01-01

    Energetic use of complex lignocellulosic wastes has gained global interest. Thermophilic digestion of horse manure based on straw was investigated using the upflow anaerobic solid-state (UASS) process. Increasing the organic loading rate from 2.5 to 5.5gvsL(-)(1)d(-)(1) enhanced the average methane production rate from 0.387 to 0.687LCH4L(-)(1)d(-)(1), whereas the yield decreased from 154.8 to 124.8LCH4kgvs(-)(1). A single-stage and two-stage process design showed almost the same performance. Compared to prior experiments at mesophilic conditions, thermophilic conditions showed a significantly higher efficiency with an increase of 59.8% in methane yield and 58.1% in methane production rate. Additional biochemical methane potential (BMP) tests with two types of horse manure and four different bedding materials showed that wheat straw obtained the highest BMP. The results show that the thermophilic UASS process can be the key to an efficient energy recovery from straw-based manures. PMID:25459798

  15. High-solids enrichment of thermophilic microbial communities and their enzymes on bioenergy feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, A. P.; Allgaier, M.; Singer, S.W.; Hazen, T.C.; Simmons, B.A.; Hugenholtz, P.; VanderGheynst, J.S.

    2011-04-01

    Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switchgrass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment.

  16. Innovative two-stage mesophilic/thermophilic anaerobic degradation of sonicated sludge: performances and energy balance.

    Science.gov (United States)

    Gianico, A; Braguglia, C M; Gallipoli, A; Mininni, G

    2015-05-01

    This study investigates for the first time, on laboratory scale, the possible application of an innovative enhanced stabilization process based on sequential mesophilic/thermophilic anaerobic digestion of waste-activated sludge, with low-energy sonication pretreatment. The first mesophilic digestion step was conducted at short hydraulic retention time (3-5 days), in order to favor volatile fatty acid production, followed by a longer thermophilic step of 10 days to enhance the bioconversion kinetics, assuring a complete pathogen removal. The high volatile solid removals, up to 55%, noticeably higher compared to the performances of a single-stage process carried out in same conditions, can guarantee the stability of the final digestate for land application. The ultrasonic pretreatment influenced significantly the fatty acid formation and composition during the first mesophilic step, improving consequently the thermophilic conversion of these compounds into methane. Methane yield from sonicated sludge digestion reached values up to 0.2 Nm(3)/kgVSfed. Positive energy balances highlighted the possible exploitation of this innovative two-stage digestion in place of conventional single-stage processes. PMID:24906832

  17. Thermophilic degradation of phenolic compounds in lab scale hybrid up flow anaerobic sludge blanket reactors

    International Nuclear Information System (INIS)

    This Study describes the feasibility of anaerobic degradation of United States Environmental Protection Agency (USEPA) listed 4-chloro-2-nitrophenol (4C-2-NP), 2-chloro-4-nitrophenol (2C-4-NP), 2-chloro-5-methylphenol (2C-5-MP) from a simulated wastewater using four identical 7L bench scale hybrid up flow anaerobic sludge blankets (HUASBs) at five different hydraulic retention times (HRTs) under thermophilic condition (55 ± 3 deg. C). The substrate to co-substrate ratios were maintained between 1:33.3 and 1:166.6. Continuous monitoring of parameters like pH, volatile fatty acids (VFAs) accumulation, oxidation reduction potential, chemical oxygen demand (COD), alkalinity, gas productions, methane percentages were carried out along with compound reduction to asses the efficiency of biodegradation. The compound reduction was estimated by using spectrophotometric methods and further validated with high-performance liquid chromatography (HPLC). Optimum HRT values were observed at 24 h. Optimum ratio of substrate (phenolic compounds) to co-substrate (glucose) was 1:100. Scanning electron micrographs show that the granules were composed of thermophilic Methanobrevibacter and thermophilic Methanothrix like bacteria.

  18. Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans

    Energy Technology Data Exchange (ETDEWEB)

    Annweiler, E.; Richnow, H.H.; Antranikian, G.; Hebenbrock, S.; Garms, C.; Franke, S.; Francke, W.; Michaelis, W.

    2000-02-01

    The thermophilic aerobic bacterium Bacillus thermoleovorans Hamburg 2 grows at 60 C on naphthalene as the sole source of carbon and energy. In batch cultures, an effective substrate degradation was observed. The carbon balance, including naphthalene, metabolites, biomass, and CO{sub 2}, was determined by the application of [1-{sup 13}C]naphthalene. The incorporation of naphthalene-derived carbon into the bulk biomass as well as into specified biomass fractions such as fatty acids and amino acids was confirmed by coupled gas chromatography-mass spectrometry (GC-MS) and isotope analyses. Metabolites were characterized by GC-MS; the established structures allow tracing the degradation pathway under thermophilic conditions. Apart from typical metabolites of naphthalene degradation known from mesophiles, intermediates such as 2,3-dihydroxynaphthalene, 2-carboxycinnamic acid, and phthalic and benzoic acid were identified for the pathway of this bacterium. These compounds indicate that naphthalene degradation by the thermophilic B. thermoleovorans differs from the known pathways found for mesophilic bacteria.

  19. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.

    Science.gov (United States)

    Srichandan, Haragobinda; Singh, Sradhanjali; Pathak, Ashish; Kim, Dong-Jin; Lee, Seoung-Won; Heyes, Graeme

    2014-01-01

    The present work investigated the leaching potential of moderately thermophilic bacteria in the recovery of metals from spent petroleum catalyst of varying particle sizes. The batch bioleaching experiments were conducted by employing a mixed consortium of moderate thermophilic bacteria at 45°C and by using five different particle sizes (from 45 to >2000 μm) of acetone-washed spent catalyst. The elemental mapping by FESEM confirmed the presence of Al, Ni, V and Mo along with sulfur in the spent catalyst. During bioleaching, Ni (92-97%) and V (81-91%) were leached in higher concentrations, whereas leaching yields of Al (23-38%) were found to be lowest in all particle sizes investigated. Decreasing the particle size from >2000 μm to 45-106 μm caused an increase in leaching yields of metals during initial hours. However, the final metals leaching yields were almost independent of particle sizes of catalyst. Leaching kinetics was observed to follow the diffusion-controlled model showing the linearity more close than the chemical control. The results of the present study suggested that bioleaching using moderate thermophilic bacteria was highly effective in removing the metals from spent catalyst. Moreover, bioleaching can be conducted using spent catalyst of higher particle size (>2000 μm), thus saving the grinding cost and making process attractive for larger scale application. PMID:24679088

  20. Comparative microbiological-hygienic studies in mesophilic and thermophilic fouling of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Pohlig-Schmitt, M.; Philipp, W.; Wekerle, J.; Strauch, D.

    Investigations concerning the inactivation of microbial pathogens (bacteria, viruses and parasites) during anaerobic, alkaline dignestion of sludge are described. A thermophilic (54/sup 0/C) and a mesophilic (34/sup 0/C) operated biogas model plant were compared from the point of view of hygiene. Is was found that in the thermophilic process Salmonella senftenberg survived 13,5 h, Streptococcus faecium 55 h, Streptococcus faecalis 42 h and Klebsiella pneumoniae 0,5 h. Within 30 min eggs of Ascaris suum lost their infectivity Bovine Parvovirus was inactivated after 1 d to 2 d treatment. Survival times under mesophilic conditions of 13 d for Salmonella senftenberg and more than 8 mouth for Streptococcus faecium were found. Poliovirus Type 1 was inactivated in 8 d while Bovine Parvovirus survived no longer than 15 d. The results obtained in the thermophilic process were compared to those after heat treatment of the test microorganisms in ampules exposed in a wather-bath under defined conditions to 54/sup 0/C. It was found, that the bacteria survived only about half the time in this case. Poliovirus Type 1 was inactivated after 0,75 h and Bovine Parvovirus after 7 d exposure. (orig.RB)

  1. Screening of thermotolerant and thermophilic fungi aiming β-xylosidase and arabinanase production

    Directory of Open Access Journals (Sweden)

    Vivian Machado Benassi

    2014-12-01

    Full Text Available Plant cell wall is mainly composed by cellulose, hemicellulose and lignin. The heterogeneous structure and composition of the hemicellulose are key impediments to its depolymerization and subsequent use in fermentation processes. Thus, this study aimed to perform a screening of thermophilic and thermotolerant filamentous fungi collected from different regions of the São Paulo state, and analyze the production of β-xylosidase and arabinanase at different temperatures. These enzymes are important to cell wall degradation and synthesis of end products as xylose and arabinose, respectively, which are significant sugars to fermentation and ethanol production. A total of 12 fungal species were analyzed and 9 of them grew at 45 ºC, suggesting a thermophilic or thermotolerant character. Additionally Aspergillus thermomutatus anamorph of Neosartorya and A. parasiticus grew at 50 ºC. Aspergillus niger and Aspergillus thermomutatus were the filamentous fungi with the most expressive production of β-xylosidase and arabinanase, respectively. In general for most of the tested microorganisms, β-xylosidase and arabinanase activities from mycelial extract (intracellular form were higher in cultures grown at high temperatures (35-40 ºC, while the correspondent extracellular activities were favorably secreted from cultures at 30 ºC. This study contributes to catalogue isolated fungi of the state of São Paulo, and these findings could be promising sources for thermophilic and thermotolerant microorganisms, which are industrially important due to their enzymes.

  2. Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature.

    Science.gov (United States)

    Song, Qing; Ye, Ting; Zhang, Xiaobo

    2011-06-15

    The lytic and lysogenic life cycle switch of bacteriophages plays very important roles in virus-host interactions. However, the lysogeny of thermophilic bacteriophage infecting thermophile at high temperatures has not been addressed. In this study, two lysogeny-related genes encoding the CI protein and recombinase of GVE2, a thermophilic bacteriophage obtained from a deep-sea hydrothermal vent, were characterized. Temporal analyses showed that the two genes were expressed at early stages of GVE2 infection. Based on chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA), the GVE2 CI protein was bound with only one DNA fragment located at 24264-24036 bp in the GVE2 genome. This location might be the original transcription site and the lysis-lysogeny switch site, which was very different from mesophilic bacteriophages. The GVE2 CI and recombinase proteins could function only at high temperatures. Therefore our study improved our understanding of the lysogeny process of bacteriophages at high temperatures. PMID:21303688

  3. Characterization of a novel non-specific nuclease from thermophilic bacteriophage GBSV1

    Directory of Open Access Journals (Sweden)

    Zhang Xiaobo

    2008-04-01

    Full Text Available Abstract Background Thermostable enzymes from thermophiles have attracted extensive studies. In this investigation, a nuclease-encoding gene (designated as GBSV1-NSN was obtained from a thermophilic bacteriophage GBSV1 for the first time. Results After recombinant expression in Escherichia coli, the purified GBSV1-NSN exhibited non-specific nuclease activity, being able to degrade various nucleic acids, including RNA, single-stranded DNA and double-stranded DNA that was circular or linear. Based on sequence analysis, the nuclease shared no homology with any known nucleases, suggesting that it was a novel nuclease. The characterization of the recombinant GBSV1-NSN showed that its optimal temperature and pH were 60°C and 7.5, respectively. The results indicated that the enzymatic activity was inhibited by enzyme inhibitors or detergents, such as ethylene diamine tetraacetic acid, citrate, dithiothreitol, β-mercaptoethanol, guanidine hydrochloride, urea and SDS. In contrast, the nuclease activity was enhanced by TritonX-100, Tween-20 or chaps to approximately 124.5% – 141.6%. The Km of GBSV1-NSN nuclease was 231, 61 and 92 μM, while its kcat was 1278, 241 and 300 s-1 for the cleavage of dsDNA, ssDNA and RNA, respectively. Conclusion Our study, therefore, presented a novel thermostable non-specific nuclease from thermophilic bacteriophage and its overexpression and purification for scientific research and applications.

  4. Developing a thermophilic hydrogen-producing co-culture for efficient utilization of mixed sugars

    Energy Technology Data Exchange (ETDEWEB)

    Zeidan, Ahmad A.; Van Niel, Ed W.J. [Department of Applied Microbiology, Lund University, P.O. Box 124, SE-221 00 Lund (Sweden)

    2009-05-15

    Previous studies on the extreme thermophile Caldicellulosiruptor saccharolyticus revealed that the organism produces high yields of hydrogen on glucose and xylose, the major components of lignocellulosic hydrolysates. Preliminary experiments on mixed sugar substrates, however, indicated that xylose was preferred over glucose. The sugar preference of some other extreme thermophiles, including Caldicellulosiruptor owensensis, Caldicellulosiruptor kristjanssonii and newly enriched, thermophilic compost sludge microflora, was investigated in an attempt to find complementary organisms to C. saccharolyticus for rapid and efficient utilization of lignocellulosic sugars. The behavior of C. owensensis and C. kristjanssonii appeared to be similar to that of C. saccharolyticus, either in pure cultures or in co-cultures with the latter. Co-culturing C. saccharolyticus with the enriched compost microflora resulted in fast, simultaneous consumption of both glucose and xylose in the medium with a relatively high specific hydrogen production rate, 40 mmol (gCDW){sup -1} h{sup -1}, and high volumetric productivity, 22.5 mmol l{sup -1} h{sup -1}. (author)

  5. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Ozgura, E.; Afsar, N.; Eroglu, I. [Middle East Technical University, Department of Chemical Engineering, 06531 Ankara (Turkey); De Vrije, T.; Claassen, P.A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Yucel, M.; Gunduz, U. [Middle East Technical University, Department of Biology, 06531 Ankara (Turkey)

    2010-12-15

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous waste removal. In this study, photofermentative hydrogen production on effluents of thermophilic dark fermentations on glucose, potato steam peels (PSP) hydrolysate and molasses was investigated in indoor, batch operated bioreactors. An extreme thermophile Caldicellulosiruptor saccharolyticus was used in the dark fermentation step, and Rhodobacter capsulatus (DSM1710) was used in the photofermentation step. Addition of buffer, Fe and Mo to dark fermentor effluents (DFEs) improved the overall efficiency of hydrogen production. The initial acetate concentration in the DFE needed to be adjusted to 30-40 mM by dilution to increase the yield of hydrogen in batch light-supported fermentations. The thermophilic DFEs are suitable for photofermentative hydrogen production, provided that they are supplemented with buffer and nutrients. The overall hydrogen yield of the two-step fermentations was higher than the yield of single step dark fermentations.

  6. Temporal variation of microbial population in a thermophilic biofilter for SO2 removal.

    Science.gov (United States)

    Zhang, Jingying; Li, Lin; Liu, Junxin

    2016-01-01

    The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes (PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10months of operation time, with a maximum elimination capacity of 48.29g/m(3)/hr. Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid (DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic-anoxic-aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4months of operation. PMID:26899638

  7. Increased saccharification of kallar grass using ultrafiltrated enzyme from sporrotrichum thermophile

    International Nuclear Information System (INIS)

    The local wild type strain of sporotrichum thermophile when grown on untreated lingo cellulose was found to produce a greater level of B-glucosidase component along with other cellulase/xylanase components than most of the reported wild type potent strains. Culture filtrate obtained, when grown on 4% leptochloa fusca (kallar grass) was used as such and after concentration by ultrafiltration technique for saccharification purpose. Concentrated enzymes titre was increased to 1.2 and 4.0 U/ml for Fp-ase and B-glucosidase, respectively. There were losses in the enzyme titre obtained through ultrafiltration possibly due to adsorption on to the ultrafiltration membrane. Enzyme preparations used, saccharifide 5% kallar grass to 70, 55, 75 and 60% (theoretical basis) from cellulases of S. thermophile concentrate, dilute, T. reesei alone and in supplementation with B-glucosidase from A. niger, respectively. Analysis by HPLC revealed slightly higher glucose yield from S. thermophile enzyme preparations, whereas higher level of xylose was attained from T. reesei preparations. Rest of the sugars pooled as Oligo-sugars were found in almost similar concentrations. (author)

  8. Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on S(0) and Fe (2.).

    Science.gov (United States)

    Liu, Hong-Chang; Xia, Jin-Lan; Nie, Zhen-Yuan; Zhen, Xiang-Jun; Zhang, Li-Juan

    2015-08-01

    Bio-oxidation of elemental sulfur (S(0)) is very important in bioleaching and sulfur cycle. S(0) was proposed to be first activated by reacting with reactive thiol groups (-SH) of outer membrane proteins, forming -S n H (n ≥ 2) complexes. The differential expression of -SH of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on Fe(2+) and S(0) was investigated by synchrotron radiation-based scanning transmission X-ray microscopy (STXM) imaging and micro-beam X-ray fluorescence (μ-XRF) mapping. The STXM imaging and μ-XRF mapping of extracellular -SH were based on the analysis of Ca(2+) bound on the cell. By comparing Ca(2+) of the cells with and without labeling by Ca(2+), the distribution and content of thiol groups were obtained. The results showed that, for both S. thermosulfidooxidans and A. manzaensis, the expression of extracellular -SH of S(0)-grown cells was higher than that of Fe(2+)-grown cells. Statistical analysis indicated that the expression of extracellular -SH for S. thermosulfidooxidans and A. manzaensis grown on S(0) was 2.37 times and 2.14 times, respectively, to that on Fe(2+). These results evidently demonstrate that the extracellular thiol groups are most probably involved in elemental sulfur activation and oxidation of the acidophilic sulfur-oxidizing microorganisms. PMID:25983134

  9. The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov.

    Directory of Open Access Journals (Sweden)

    Melissa R Christopherson

    Full Text Available Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.

  10. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Space Agriculture Task Force; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.

    Manned Mars exploration, especially for extended periods of time, will require recycle of materials to support human life. Here, a conceptual design is developed for a Martian agricultural system driven by biologically regenerative functions. One of the core biotechnologies function is the use of hyper-thermophilic aerobic composting bacterial ecology. These thermophilic bacteria can play an important role in increasing the effectiveness of the processing of human metabolic waste and inedible biomass and of converting them to fertilizer for the cultivation of plants. This microbial technology has been already well established for the purpose of processing sewage and waste materials for small local communities in Japan. One of the characteristics of the technology is that the metabolic heat release that occurs during bacterial fermentation raises the processing temperature sufficiently high at 80 100 °C to support hyper-thermophilic bacteria. Such a hyper-thermophilic system is found to have great capability of decomposing wastes including even their normally recalcitrant components, in a reasonably short period of time and of providing a better quality of fertilizer as an end-product. High quality compost has been shown to be a key element in creating a healthy regenerative food production system. In ground-based studies, the soil microbial ecology after the addition of high quality compost was shown to improve plant growth and promote a healthy symbiosis of arbuscular mycorrhizal fungi. Another advantage of such high processing temperature is the ability to sterilize the pathogenic organisms through the fermentation process and thus to secure the hygienic safety of the system. Plant cultivation is one of the other major systems. It should fully utilize solar energy received on the Martian surface for supplying energy for photosynthesis. Subsurface water and atmospheric carbon dioxide mined on Mars should be also used in the plant cultivation system. Oxygen and

  11. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme.

    Science.gov (United States)

    Beadle, B M; Baase, W A; Wilson, D B; Gilkes, N R; Shoichet, B K

    1999-02-23

    Several models have been proposed to explain the high temperatures required to denature enzymes from thermophilic organisms; some involve greater maximum thermodynamic stability for the thermophile, and others do not. To test these models, we reversibly melted two analogous protein domains in a two-state manner. E2cd is the isolated catalytic domain of cellulase E2 from the thermophile Thermomonospora fusca. CenAP30 is the analogous domain of the cellulase CenA from the mesophile Cellulomonas fimi. When reversibly denatured in a common buffer, the thermophilic enzyme E2cd had a temperature of melting (Tm) of 72.2 degrees C, a van't Hoff enthalpy of unfolding (DeltaHVH) of 190 kcal/mol, and an entropy of unfolding (DeltaSu) of 0.55 kcal/(mol*K); the mesophilic enzyme CenAP30 had a Tm of 56.4 degrees C, a DeltaHVH of 107 kcal/mol, and a DeltaSu of 0. 32 kcal/(mol*K). The higher DeltaHVH and DeltaSu values for E2cd suggest that its free energy of unfolding (DeltaGu) has a steeper dependence on temperature at the Tm than CenAP30. This result supports models that predict a greater maximum thermodynamic stability for thermophilic enzymes than for their mesophilic counterparts. This was further explored by urea denaturation. Under reducing conditions at 30 degrees C, E2cd had a concentration of melting (Cm) of 5.2 M and a DeltaGu of 11.2 kcal/mol; CenAP30 had a Cm of 2.6 M and a DeltaGu of 4.3 kcal/mol. Under nonreducing conditions, the Cm and DeltaGu of CenAP30 were increased to 4.5 M and 10.8 kcal/mol at 30 degrees C; the Cm for E2cd was increased to at least 7.4 M at 32 degrees C. We were unable to determine a DeltaGu value for E2cd under nonreducing conditions due to problems with reversibility. These data suggest that E2cd attains its greater thermal stability (DeltaTm = 15.8 degrees C) through a greater thermodynamic stability (DeltaDeltaGu = 6.9 kcal/mol) compared to its mesophilic analogue CenAP30. PMID:10029552

  12. Semi-continuous solid substrate anaerobic reactors for H{sub 2} production from organic waste: Mesophilic versus thermophilic regime

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania; Rios-Leal, Elvira; Esparza-Garcia, Fernando; Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department Biotechnology and Bioengineering, Environmental Biotechnology, P.O. Box 14-740, Mexico D.F. 07000 (Mexico); Cecchi, Franco [Universita degli Studi di Verona, Verona (Italy)

    2005-11-01

    We evaluated the influence of the operation temperature (mesophilic vs. thermophilic regime) of semicontinuous, acidogenic solid substrate anaerobic digestion (A-SSAD) of the organic fraction of municipal solid waste (OFMSW) at lab scale. The H{sub 2} percentage was higher in the thermophilic regime than in the mesophilic operation (58% and 42%, respectively). The H{sub 2} yield of thermophilic A-SSAD was significantly higher than in our mesophilic reactors (360 vs. 165NmL H{sub 2}/g VS{sub rem}) and other studies reported in the literature (range of 62-180mL/g VS). Mesophilic A-SSAD showed a yield of 37% of the maximum yield based on 4molH{sub 2}/mol hexose, while thermophilic A-SSAD exhibited a yield of 80% of the maximum yield. This result is similar to works with pure cultures of extremophile microorganisms where H{sub 2} yields of 83% of the maximum were reported. We found higher concentrations of acetic acid in the digestates of thermophilic A-SSAD, while butyrate was in higher proportion in mesophilic A-SSAD spent solids. The moderate-to-high yields obtained with the semicontinuous process used in this work are in disagreement with previous reports claiming that batch and semicontinuous processes are less efficient than continuous ones. (author)

  13. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge.

    Science.gov (United States)

    Samaras, Vasilios G; Stasinakis, Athanasios S; Thomaidis, Nikolaos S; Mamais, Daniel; Lekkas, Themistokles D

    2014-06-01

    The removal of endocrine disrupting compounds (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) was studied in three lab-scale anaerobic digestion (AD) systems; a single-stage mesophilic, a single-stage thermophilic and a two-stage thermophilic/mesophilic. All micropollutants underwent microbial degradation. High removal efficiency (>80%) was calculated for diclofenac, ibuprofen, naproxen and ketoprofen; whereas triclosan, bisphenol A and the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate were moderately removed (40-80%). NSAIDs removal was not affected by the type of AD system used; whereas slightly higher EDCs removal was observed in two-stage system. In this system, most microcontaminants were removed in thermophilic digester. Biotransformation of NP1EO and NP was affected by the temperature applied to bioreactors. Under mesophilic conditions, higher removal of NP1EO and accumulation of NP was noticed; whereas the opposite was observed under thermophilic conditions. For most analytes, higher specific removal rates were calculated under thermophilic conditions and 20 days SRT. PMID:24768891

  14. Draft Genome Sequence of Geobacillus subterraneus Strain K, a Hydrocarbon-Oxidizing Thermophilic Bacterium Isolated from a Petroleum Reservoir in Kazakhstan

    Science.gov (United States)

    Poltaraus, Andrey B.; Sokolova, Diyana S.; Grouzdev, Denis S.; Ivanov, Timophey M.; Malakho, Sophia G.; Korshunova, Alena V.; Tourova, Tatiyana P.

    2016-01-01

    The draft genome sequence of Geobacillus subterraneus strain K, a thermophilic aerobic oil-oxidizing bacterium isolated from production water of the Uzen high-temperature oil field in Kazakhstan, is presented here. The genome is annotated for elucidation of the genomic and phenotypic diversity of thermophilic alkane-oxidizing bacteria. PMID:27491973

  15. Investigations on potato pulp as a dietary fiber source. The influence of pectolytic and cellulolytic enzymes. Untersuchungen an Kartoffelpuelpe als Ballaststoffquelle. Zum Einfluss von pektolytischen und cellulolytischen Enzymen

    Energy Technology Data Exchange (ETDEWEB)

    Dongowski, G. (Deutsches Inst. fuer Ernaehrungsforschung Potsdam-Rehbruecke, Bergholz-Rehbruecke (Germany))

    1993-05-01

    The influence of treatment with pectolytic and cellulolytic enzyme preparations was investigated with reference to the separation of water and the composition of potato pulp. In contrast to pectinesterase, pectate lyase or cellulase it was found an intensive action on the pulp after incubation with Pectinex Ultra SP-L or pectinase/cellulase combinations. The content of pectin, starch and protein as well as the water binding capacity are varied in dependence of the used enzyme preparations. The occurring changes in the supermolecular structure of the potato pulp tissue are investigated by scanning electron microscopy. The grown biological structure is partly or extensive destroyed especially after action of pectinases and cellulases. The content of starch in the potato pulp preparations remains relatively high even after intensive treatment with cell wall degrading enzymes. (orig.)

  16. Effects of Neutral Detergent Soluble Fiber and Sucrose Supplementation on Ruminal Fermentation, Microbial Synthesis, and Populations of Ruminal Cellulolytic Bacteria Using the Rumen Simulation Technique (RUSITEC)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-hui; LIU Chan-juan; LI Chao-yun; YAO Jun-hu

    2013-01-01

    We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2×2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, low-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate;however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSF×sucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solid-associated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low-NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcus flavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies of R. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.

  17. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigne-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2013-12-01

    Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes are required, including endoglucanase, exoglucanase, and β-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.

  18. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-related Lactobacillus helveticus strains

    DEFF Research Database (Denmark)

    Jensen, Marie Elisabeth Penderup; Ardö, Ylva Margareta; Vogensen, Finn Kvist

    2009-01-01

    Aims: To isolate cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and compare them with dairy-related Lactobacillus helveticus strains using molecular typing methods. Methods and Results: The number of thermophilic bacteria in seven commercial cheeses...... was identical to the rep-PCR profile of the Lact. helveticus adjunct culture used in the specific cheese, but their pulsed field gel electrophoresis profiles differed slightly. Conclusion: It was possible to isolate cultivable thermophilic bacteria from ripened cheeses manufactured with mesophilic...... starter and thermophilic adjunct cultures by using an enumeration step. Significance and Impact of the Study: Isolation of cultivable thermophilic bacteria from ripened cheeses made with mesophilic starters offers an original source for new dairy-relevant cultures....

  19. Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years

    DEFF Research Database (Denmark)

    Rezende, Julia Rosa de; Kjeldsen, Kasper Urup; Hubert, Casey RJ; Finster, Kai; Loy, Alexander; Jørgensen, Bo Barker

    2013-01-01

    natural model for investigating passive dispersal in the ocean. We investigated the activity, diversity and abundance of thermophilic endospore-forming sulfate-reducing bacteria (SRB) in Aarhus Bay by incubating pasteurized sediment between 28 and 85°C, and by subsequent molecular diversity analyses of 16...... decreased exponentially to 100 per cm3 at 6.5m depth, corresponding to 4500 years of sediment age. Thus, a half-life of ca. 300 years was estimated for the thermophilic SRB endospores deposited in Aarhus Bay sediments. These endospores were similarly detected in the overlying water column, indicative of...... passive dispersal in water masses preceding sedimentation. The sources of these thermophiles remain enigmatic, but at least one source may be common to both Aarhus Bay and Arctic sediments....

  20. Study on the production of enzymes from thermophiles%嗜热菌产酶现状的研究

    Institute of Scientific and Technical Information of China (English)

    潘丽贞; 陆利霞; 熊晓辉

    2012-01-01

    嗜热菌是应用最广泛的一种极端微生物,而其产生的酶在工业催化中有着广泛的应用。阐述了嗜热菌产脂肪酶、脱卤酶以及葡糖醛酸酯酶等几种酶的研究现状。%Thermophiles are a kind of extremophiles which are most widely used,and the enzymes produced by thermophiles are also widely used in industrial catalysis.The recent studies on the production of enzymes from thermophiles,such as lipase,dehalogenase,glucuronoyl esterase etc were summarized.

  1. Prevalence and antibiotic resistance of thermophilic campylobacter spp. isolates from raw beef, mutton and camel meat in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Salihu, M. D, Junaidu,

    2011-07-01

    Full Text Available Campylobacter is one of the common causes of human gastroenteritis worldwide. The organism is transmitted mostly via foods of animal origin. The study was conducted to investigate the prevalence of contamination of raw beef, mutton and camel meat in Sokoto, Nigeria, with thermophilic Campylobacter spp. and determined antibiotic susceptibilities of thermophilic Campylobacter spp. isolated from these carcasses. From March 2008 to February 2009, a total of 531 raw meat samples from beef (n=242, mutton (n=181 and camel (n=108 were collected randomly from meat processing facilities and retail stalls in Sokoto, and were evaluated for the presence of thermophilic Campylobacter spp. Thermophilic Campylobacter spp. were isolated from139 (26.33% of the tested samples and the individual prevalence are 22.08%, 37.22% and 17.49% for beef, mutton and camel meat respectively. The most prevalent thermophilic Campylobacter spp. isolates from the raw meat samples was Campylobacter jejuni (74.10%. The antibiotic susceptibility of the isolates were determined for 10 antibiotic, revealed that resistance to tetracycline was the most common (71.4% resistance observed, followed by ciprofloxacin (42.9% and nalidixic acid (37.1%. All the isolates tested were susceptible to chloramphenicol and gentamycin. The results of our study have demonstrated that high proportion of meat samples are contaminated by thermophilic Campylobacter spp. which may have serious effects on public health. Most of the isolates are antimicrobial resistant strains. Campylobacteriosis is transmitted primarily through food of animal origin, the presence of antimicrobial-resistant strains in meat is of serious concern to food safety and public health.

  2. Effective Thermophilic Composting of Crop Residues for Inactivation of Tobacco Mosaic Virus

    Directory of Open Access Journals (Sweden)

    Abdel E. Ghaly

    2006-01-01

    Full Text Available An effective thermophilic composting bioreactor, in which a homogenous distribution of temperature was maintained at 63-65°C by the addition of a bioavailable carbon and low mixing, was developed. The bioreactor operated on a mixture of tomato plant residues-wood shavings-municipal solid waste compost infected with tobacco mosaic virus (TMV. The initial C: N ratio and moisture content of the compost mixture were adjusted to 30:1 and 60%, respectively. The composting process was successful in destroying the tobacco mosaic virus. The results showed that the ability of the untreated virus (inoculum to infect tobacco plants (150 LL L-1 was much higher than its ability to infect tomato plants (22 LL L-1. The TMV completely lost its ability to infect the leaves of susceptible hosts (tobacco and tomato plants after 96 hrs of controlled thermophilic (63-65°C composting (or 126 h from the start of the composting process. Semilog plots of the ratio of the infection ability of the surviving virus to that of the initial inoculum (as measured by the number of local lesions were developed. The decimal reduction time (the time necessary to reduce the infection ability of TMV by 1-log or 90% was found to be 62.4 and 109.7 hrs for tobacco and tomato plants, respectively. The relatively short time required for complete inactivation of TMV in this study was achieved as a result of the extension of the thermophilic stage and maintaining a constant high temperature with a uniform temperature distribution by the continuous addition of the proper amount of bioavailable carbon (used cooking oil and low mixing.

  3. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    Science.gov (United States)

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p co-digestion of sewage sludge under mesophilic and thermophilic conditions. PMID:26300352

  4. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferases from thermophilic microorganisms.

    Science.gov (United States)

    Marc, F; Weigel, P; Legrain, C; Almeras, Y; Santrot, M; Glansdorff, N; Sakanyan, V

    2000-08-01

    The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences. PMID:10931207

  5. Conversion of hemicelluloses and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmosphere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. Thermophilic anaerobic ethanol producing bacteria can be used for fermentation of the hemicelluloses fraction of lignocellulosic biomass. However, physiological studies of thermophilic anaerobic bacteria have shown that the ethanol yield decreases at increasing substrate concentration. The biochemical limitations causing this phenomenon are not known in detail. Physiological and biochemical studies of a newly characterized thermophilic anaerobic ethanol producing bacterium, Thermoanaerobacter mathranii, was performed. This study included extraction of intracellular metabolites and enzymes of the pentose phosphate pathway and glycolysis. These studies revealed several bottlenecks in the D-xylose metabolism. This knowledge makes way for physiological and genetic engineering of this strain to improve the ethanol yield and productivity at high concentration of D-xylose. (au)

  6. Methane Emission from Digestion of Palm Oil Mill Effluent (POME in a Thermophilic Anaerobic Reactor

    Directory of Open Access Journals (Sweden)

    I Irvan

    2012-04-01

    Full Text Available As the issue of global warming draws increasing concern, many studies to reduce CO2 and CH4 gases (greenhouse gases, GHG have been implemented in several countries, including in Indonesia. Considering that Indonesia has a huge numbers of palm oil mills, no doubt if their waste water treatment as one of the major sources in GHG.  This paper presents the results from a research project between Metawater Co., Ltd.-Japan and University of Sumatera Utara-Indonesia. The objective of the research is to study the methane emission of thermophilic fermentation in the treatment of palm oil mill effluent (POME on a laboratory scale. Anaerobic digestion was performed in two-litre water jacketed biodigester type continuous stirred tank reactor (CSTR and operated at a thermophilic temperature (55 oC. As raw material, a real liquid waste (POME from palm oil mill was used. Fresh POME was obtained from seeding pond of PTPN II waste water treatment facility which has concentration of 39.7 g of VS/L and COD value of 59,000 mg/L. To gain precise results, complete recording and reliable equipment of reactor was employed. As the experimental results, for hydraulic retention time (HRT 8 days, VS decomposition rate of 63.5% and gas generation of 6.05-9.82 L/day were obtained, while for HRT 6 and 4 days, VS decomposition rate of 61.2, 53.3% and gas generation of  6.93-8.94  and  13.95-16.14 L/day were obtained respectively. Keywords—methane (CH4, palm oil mill effluent (POME, anaerobic digestion, thermophilic, green house gases (GHG

  7. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile

    DEFF Research Database (Denmark)

    Amlacher, Stefan; Sarges, Phillip; Flemming, Dirk;

    2011-01-01

    Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ~30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein. The...... thermophilic proteins show improved properties for structural and biochemical studies compared to their mesophilic counterparts, and purified ctNups enabled the reconstitution of the inner pore ring module that spans the width of the NPC from the anchoring membrane to the central transport channel. This module...

  8. Analysis of an Effective Antibiotic (Chaetomacin) Isolated from a Thermophilic Bacillus sp. Against Olive Green Mold

    OpenAIRE

    Tautorus, T. E.; Townsley, P. M.

    1984-01-01

    Successful methods to control the damaging weed mold Chaetomium olivaceum (olive green mold) in mushroom beds are not known. An effective antibiotic (named chaetomacin) against C. olivaceum was isolated from a thermophilic Bacillus sp. This compound was shown to be an extremely potent and stable antibiotic, effective over a wide range of both pH (2 to 10) and temperature (−15 to 150°C). Chaetomacin is soluble in most polar solvents and insoluble in nonpolar solvents. It is produced only at me...

  9. Biosynthesis of fructo-oligosaccharides by Sporotrichum thermophile during submerged batch cultivation in high sucrose media

    DEFF Research Database (Denmark)

    Katapodis, P.; Kalogeris, E.; Kekos, D.; Macris, B.J.; Christakopoulos, Paul

    2004-01-01

    were found to be the predominant compatible solutes. The fungus accumulated glutamic acid, arginine, alanine, leucine and lysine, in order to balance the outer osmotic pressure. Fatty acid analysis of the membrane lipids showed a relatively high percentage of unsaturated lipids, which is known to be....../l. The FOS mixture obtained was composed of three sugars, which were isolated by size-exclusion chromatography. They were characterized by acid hydrolysis and HPLC as 1-kestose, 6-kestose and neokestose. The mechanism of osmotic adaptation of S. thermophile was investigated and sugars and amino acids...

  10. Mass and Energy Balances of Dry Thermophilic Anaerobic Digestion Treating Swine Manure Mixed with Rice Straw

    OpenAIRE

    Sheng Zhou; Jining Zhang; Guoyan Zou; Shohei Riya; Masaaki Hosomi

    2015-01-01

    To evaluate the feasibility of swine manure treatment by a proposed Dry Thermophilic Anaerobic Digestion (DT-AD) system, we evaluated the methane yield of swine manure treated using a DT-AD method with rice straw under different C/N ratios and solid retention time (SRT) and calculated the mass and energy balances when the DT-AD system is used for swine manure treatment from a model farm with 1000 pigs and the digested residue is used for forage rice production. A traditional swine manure trea...

  11. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.

    Science.gov (United States)

    Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F

    2001-03-01

    This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite. PMID:11257551

  12. Cloning, Expression and Characterization of a Novel Thermophilic Polygalacturonase from Caldicellulosiruptor bescii DSM 6725

    OpenAIRE

    Yanyan Chen; Dejun Sun; Yulai Zhou; Liping Liu; Weiwei Han; Baisong Zheng; Zhi Wang; Zuoming Zhang

    2014-01-01

    We cloned the gene ACM61449 from anaerobic, thermophilic Caldicellulosiruptor bescii, and expressed it in Escherichia coli origami (DE3). After purification through thermal treatment and Ni-NTA agarose column extraction, we characterized the properties of the recombinant protein (CbPelA). The optimal temperature and pH of the protein were 72 °C and 5.2, respectively. CbPelA demonstrated high thermal-stability, with a half-life of 14 h at 70 °C. CbPelA also showed very high activity for polyga...

  13. Multiple Serotypes of the Moderate Thermophile Thiobacillus caldus, a Limitation of Immunological Assays for Biomining Microorganisms

    OpenAIRE

    Hallberg, K B; Lindstrom, E. B.

    1996-01-01

    Phylogenetic and phenotypic analysis indicates that a moderately thermophilic isolate, C-SH12, from Australia belongs to the species Thiobacillus caldus. Antiserum generated against whole cells of T. caldus KU recognized protein antigens common to cell lysates of the three T. caldus strains KU, BC13, and C-SH12 but did not recognize whole cells of isolate C-SH12. Differences in the lipopolysaccharide (LPS) of strain C-SH12 and those of the other two T. caldus strains were found, and the anti-...

  14. Modulation of Nucleotide Specificity of Thermophilic FoF1-ATP Synthase by ϵ-Subunit

    OpenAIRE

    Suzuki, Toshiharu; Wakabayashi, Chiaki; TANAKA, Kazumi; Feniouk, Boris A.; Yoshida, Masasuke

    2011-01-01

    The C-terminal two α-helices of the ϵ-subunit of thermophilic Bacillus FoF1-ATP synthase (TFoF1) adopt two conformations: an extended long arm (“up-state”) and a retracted hairpin (“down-state”). As ATP becomes poor, ϵ changes the conformation from the down-state to the up-state and suppresses further ATP hydrolysis. Using TFoF1 expressed in Escherichia coli, we compared TFoF1 with up- and down-state ϵ in the NTP (ATP, GTP, UTP, and CTP) synthesis reactions. TFoF1 with the up-state ϵ was achi...

  15. Genomic restriction map of the extremely thermophilic bacterium Thermus thermophilus HB8.

    OpenAIRE

    Borges, K M; Bergquist, P L

    1993-01-01

    A physical map of the chromosome of the extremely thermophilic eubacterium Thermus thermophilus HB8 has been constructed by using pulsed-field gel electrophoresis techniques. A total of 26 cleavage sites for the rarely cutting restriction endonucleases HpaI, MunI, and NdeI were located on the genome. On the basis of the sizes of the restriction fragments generated, the genome size was estimated to be 1.74 Mbp, which is significantly smaller than the chromosomes of Escherichia coli and other m...

  16. Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus

    OpenAIRE

    Takami, Hideto; Takaki, Yoshihiro; Chee, Gab-Joo; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Hiroko; Matsui, Satomi; Uchiyama, Ikuo

    2004-01-01

    We present herein the first complete genome sequence of a thermophilic Bacillus-related species, Geobacillus kaustophilus HTA426, which is composed of a 3.54 Mb chromosome and a 47.9 kb plasmid, along with a comparative analysis with five other mesophilic bacillar genomes. Upon orthologous grouping of the six bacillar sequenced genomes, it was found that 1257 common orthologous groups composed of 1308 genes (37%) are shared by all the bacilli, whereas 839 genes (24%) in the G.kaustophilus gen...

  17. Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures

    OpenAIRE

    Abreu Angela A; Karakashev Dimitar; Angelidaki Irini; Sousa Diana Z; Alves M.

    2012-01-01

    Abstract Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. T...

  18. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring

    OpenAIRE

    Hatzenpichler, Roland; Elena V Lebedeva; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; WAGNER, Michael

    2008-01-01

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46°C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints fo...

  19. Characterization and Metal Detoxification Potential of Moderately Thermophilic Bacillus cereus from Geothermal Springs of Himalaya

    OpenAIRE

    Aslam Khan Ghalib; Muhammad Yasin; Muhammad Faisal

    2014-01-01

    Two thermophilic Bacillus cereus strains (B. cereus-TA2 and B. cereus-TA4) used in the present study were isolated from the geothermal spring of Hunza valley, Gilgit, Pakistan. They showed the ability to withstand and grow at high temperature (85°C). Both these strains could resist multiple metals (copper, cadmium, mercury, manganese, zinc, arsenic, chromium and selenium). Strain B. cereus-TA4 reduced Cr (VI) at pH 5.0 to 9.0 but maximum reduction (83%) was observed at pH 7.0 after 48 h when ...

  20. An experimental evaluation of energy economics of biogas production at mesophilic and thermophilic temperatures

    International Nuclear Information System (INIS)

    Process economy, with regard to and energy content predicts the potentialities of biogas production options. Experimental study reveal from the kinetic data of daily biogas production that biomethanation reaction is faster in thermophilic digestion, with a higher yield of gas per reactor volume per day. Energy calculations show that it will take 3.55*105 kWh to produce 1 m3 of methane from our feedstock with biogas energy equivalent of 1.25 kWh. The cost implication of this is enormous amounting to US $2,641.95 for the production of 1 m3 of methane using brewers spent grins

  1. Production and Purification of Extracellular D-Xylose Isomerase from an Alkaliphilic, Thermophilic Bacillus sp. †

    OpenAIRE

    Chauthaiwale, Jyoti; Rao, Mala

    1994-01-01

    An alkaliphilic, thermophilic Bacillus sp. (NCIM 59) produced extracellular xylose isomerase at pH 10 and 50°C by using xylose or wheat bran as the carbon source. The distribution of xylose isomerase as a function of growth in comparison with distributions of extra- and intracellular marker enzymes such as xylanase and β-galactosidase revealed that xylose isomerase was truly secreted as an extracellular enzyme and was not released because of sporulation or lysis. The enzyme was purified to ho...

  2. Removal of Sulfur Compounds from Coal by the Thermophilic Organism Sulfolobus acidocaldarius

    OpenAIRE

    KARGI, Fikret; Robinson, James M.

    1982-01-01

    The thermophilic, reduced-sulfur, iron-oxidizing bacterium Sulfolobus acidocaldarius was used for the removal of sulfur compounds from coal. The inclusion of complex nutrients such as yeast extract and peptone, and chemical oxidizing agents, 0.01 M FeCl3 into leaching medium, reduced the rate and the extent of sulfur removal from coal. The rate of sulfur removal by S. acidocaldarius was strongly dependent on the sulfur content of the coal and on the total external surface area of coal particl...

  3. Isolation of Alpha-amylase Producing Thermophilic Bacillus Strains and Partial Characterization of the Enzymes

    OpenAIRE

    Celal Türker; Bahri Devrim Özcan

    2015-01-01

    In the present study, we isolated three thermophilic Bacillus strains from the soil samples collected from the coast sediments of the Burnaz Stream located in Erzin. The isolates were entitled as Bacillus sp. CT1, CT2, and CT3, respectively. The maximum α-amylase production was revealed at 60°C for CT1 strain, and at 80°C for CT2 and CT3 strains, respectively. The optimum enzyme activity was observed at 90°C for CT1 α-amylase, whereas at 60°C for CT2 and CT3 α-amylases. On the other hand, opt...

  4. Pressure and Temperature Effects on Growth and Methane Production of the Extreme Thermophile Methanococcus jannaschii

    OpenAIRE

    Miller, Jay F.; Shah, Nilesh N.; Nelson, Chad M.; Ludlow, Jan M.; Clark, Douglas S.

    1988-01-01

    The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperatur...

  5. Effects of Temperature on Methanogenesis in a Thermophilic (58°C) Anaerobic Digestor

    OpenAIRE

    Zinder, S H; Anguish, T.; Cardwell, S.C.

    1984-01-01

    The short-term effects of temperature on methanogenesis from acetate or CO2 in a thermophilic (58°C) anaerobic digestor were studied by incubating digestor sludge at different temperatures with 14C-labeled methane precursors (14CH3COO− or 14CO2). During a period when Methanosarcina sp. was numerous in the sludge, methanogenesis from acetate was optimal at 55 to 60°C and was completely inhibited at 65°C. A Methanosarcina culture isolated from the digestor grew optimally on acetate at 55 to 58°...

  6. Selective Inhibition by 2-Bromoethanesulfonate of Methanogenesis from Acetate in a Thermophilic Anaerobic Digestor

    OpenAIRE

    Zinder, S H; Anguish, T.; Cardwell, S.C.

    1984-01-01

    The effects of 2-bromoethanesulfonate, an inhibitor of methanogenesis, on metabolism in sludge from a thermophilic (58°C) anaerobic digestor were studied. It was found from short-term experiments that 1 μmol of 2-bromoethanesulfonate per ml completely inhibited methanogenesis from 14CH3COO−, whereas 50 μmol/ml was required for complete inhibition of 14CO2 reduction. When 1 μmol of 2-bromoethanesulfonate per ml was added to actively metabolizing sludge which was then incubated for 24 h. it cau...

  7. Changes of resistome, mobilome and potential hosts of antibiotic resistance genes during the transformation of anaerobic digestion from mesophilic to thermophilic.

    Science.gov (United States)

    Tian, Zhe; Zhang, Yu; Yu, Bo; Yang, Min

    2016-07-01

    This study aimed to reveal how antibiotic resistance genes (ARGs) and their horizontal and vertical transfer-related items (mobilome and bacterial hosts) respond to the transformation of anaerobic digestion (AD) from mesophilic to thermophilic using one-step temperature increase. The resistomes and mobilomes of mesophilic and thermophilic sludge were investigated using metagenome sequencing, and the changes in 24 representative ARGs belonging to three categories, class 1 integron and bacterial genera during the transition period were further followed using quantitative PCR and 454-pyrosequencing. After the temperature increase, resistome abundance in the digested sludge decreased from 125.97 ppm (day 0, mesophilic) to 50.65 ppm (day 57, thermophilic) with the reduction of most ARG types except for the aminoglycoside resistance genes. Thermophilic sludge also had a smaller mobilome, including plasmids, insertion sequences and integrons, than that of mesophilic sludge, suggesting the lower horizontal transfer potential of ARGs under thermophilic conditions. On the other hand, the total abundance of 18 bacterial genera, which were suggested as the possible hosts for 13 ARGs through network analysis, decreased from 23.27% in mesophilic sludge to 11.92% in thermophilic sludge, indicating fewer hosts for the vertical expansion of ARGs after the increase in temperature. These results indicate that the better reduction of resistome abundance by thermophilic AD might be associated with the decrease of both the horizontal and vertical transferability of ARGs. PMID:27108212

  8. The detection of thermophilous forest hotspots in Poland using geostatistical interpolation of plant richness

    Directory of Open Access Journals (Sweden)

    Marcin Kiedrzyński

    2014-07-01

    Full Text Available Attempts to study biodiversity hotspots on a regional scale should combine compositional and functionalist criteria. The detection of hotspots in this study uses one ecologically similar group of high conservation value species as hotspot indicators, as well as focal habitat indicators, to detect the distribution of suitable environmental conditions. The method is assessed with reference to thermophilous forests in Poland – key habitats for many rare and relict species. Twenty-six high conservation priority species were used as hotspot indicators, and ten plant taxa characteristic of the Quercetalia pubescenti-petraeae phytosociological order were used as focal habitat indicators. Species distribution data was based on a 10 × 10 km grid. The number of species per grid square was interpolated by the ordinary kriging geostatistical method. Our analysis largely determined the distribution of areas with concentration of thermophilous forest flora, but also regional disjunctions and geographical barriers. Indicator species richness can be interpreted as a reflection of the actual state of habitat conditions. It can also be used to determine the location of potential species refugia and possible past and future migration routes.

  9. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    International Nuclear Information System (INIS)

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m3 d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m3 CH4/kg CODremoved. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  10. Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 C) mixed culture

    DEFF Research Database (Denmark)

    Chenxi, Zhao; Karakashev, Dimitar Borisov; Lu, W.; Wang, H.; Angelidaki, Irini

    2010-01-01

    Combined biohydrogen and bioethanol (CHE) production from xylose was achieved by an extreme thermophilic (70 degrees C) mixed culture. Effect of initial pH, xylose, peptone, FeSO4, NaHCO3, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations on bioethanol and biohydro......Combined biohydrogen and bioethanol (CHE) production from xylose was achieved by an extreme thermophilic (70 degrees C) mixed culture. Effect of initial pH, xylose, peptone, FeSO4, NaHCO3, yeast extract, trace mineral salts, vitamins, and phosphate buffer concentrations on bioethanol and...... biohydrogen yield was investigated in batch experiments. Results obtained showed that initial pH, concentration of xylose, peptone, and FeSO4 significantly affected biohydrogen and bioethanol production, while the concentration of NaHCO3 was only significant for bioethanol production. By changing cultivation......-xylose corresponding to 55% of the theoretical hydrogen yield based on acetate metabolic pathway. An empirical model was established to reveal the quantitative effect of factors significant for biohydrogen (quadratic model) production and for bioethanol (linear model) production. Changes in hydrogen/ethanol yields...

  11. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions.

    Science.gov (United States)

    Jahren, Sigrun J; Rintala, Jukka A; Odegaard, Hallvard

    2002-02-01

    The continuously operated laboratory scale Kaldnes moving bed biofilm reactor (MBBR) was used for thermophilic (55 degrees C) aerobic treatment of TMP whitewater. In the MBBR, the biomass is grown on carrier elements that move along with the water in the reactor. Inoculation with mesophilic activated sludge gave 60-65% SCOD removal from the first day onwards. During the 107 days of experiment, the 60-65% SCOD removals were achieved at organic loading rates of 2.5-3.5 kg SCODm(-3) d(-1), the highest loading rates applied during the run and HRT of 13-22h. Carbohydrates, which contributed to 50-60% of the influent SCOD. were removed by 90-95%, while less than 15% of the lignin-like material (30-35% of SCODin) was removed. The sludge yield was 0.23g VSSg SCOD(-1)removed. The results show that the aerobic biofilm process can be successfully operated under thermophilic conditions. PMID:11848344

  12. Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters

    International Nuclear Information System (INIS)

    Immunomagnetic beads (IMB) were used to recover thermophilic sulfate-reducing bacteria from oil field waters from oil production platforms in the Norwegian sector of the North Sea. IMB coated with polyclonal antibodies against whole-cell antigens of the thermophilic Thermodesulfobacterium mobile captured strains GFA1, GFA2, and GFA3. GFA1 was serologically and morphologically identical to T. mobile. GFA2 and GFA3 were spore forming and similar to the Desulgotomaculum strains T90A and T93B previously isolated from North Sea oil field waters by a classical enrichment procedure. Western blots (immunoblots) of whole cells showed that GFA2, GFA3, T90A, and T93B are different serotypes of the same Desulfotomaculum species. Monoclonal antibodies (MAb) against T. mobile type strain cells were produced and used as capture agents on IMB. These MAb, named A4F4, were immunoglobulin M; they were specific to T. mobile and directed against lipopolysaccharides. The prevailing cells immunocaptured with MAb A4F4 were morphologically and serologically similar to T. mobile type strain cells T. mobile was not detected in these oil field waters by classical enrichment procedures. Furthermore, extraction with antibody-coated IMB allowed pure strains to be isolated directly from primary enrichment cultures without prior time-consuming subculturing and consecutive transfers to selective media

  13. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    Directory of Open Access Journals (Sweden)

    Ivănuş D.

    2010-06-01

    Full Text Available A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.

  14. Bioleaching of electronic scrap by mixed culture of moderately thermophilic microorganisms

    Science.gov (United States)

    Ivǎnuş, D.; ǎnuş, R. C., IV; Cǎlmuc, F.

    2010-06-01

    A process for the metal recovery from electronic scrap using bacterial leaching was investigated. A mixed culture of moderately thermophilic microorganisms was enriched from acid mine drainages (AMDs) samples collected from several sulphide mines in Romania, and the bioleaching of electronic scrap was conducted both in shake flask and bioreactor. The results show that in the shake flask, the mixture can tolerate 50 g/L scrap after being acclimated to gradually increased concentrations of scrap. The copper extraction increases obviously in bioleaching of scrap with moderately thermophilic microorganisms supplemented with 0.4 g/L yeast extract at 180 r/min, 74% copper can be extracted in the pulp of 50 g/L scrap after 20 d. Compared with copper extractions of mesophilic culture, unacclimated culture and acclimated culture without addition of yeast extract, that of accliniated culture with addition of yeast extract is increased by 53%, 44% and 16%, respectively. In a completely stirred tank reactor, the mass fraction of copper and total iron extraction reach up to 81% and 56%, respectively. The results also indicate that it is necessary to add a large amount of acid to the pulp to extract copper from electronic scrap effectively.

  15. Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Vrije, Truus de; Budde, Miriam A.W.; Lips, Steef J.; Bakker, Robert R.; Mars, Astrid E.; Claassen, Pieternel A.M. [Wageningen UR, Food and Biobased Research, P.O. Box 17, 6700 AA Wageningen (Netherlands)

    2010-12-15

    Hydrogen was produced from carrot pulp hydrolysate, untreated carrot pulp and (mixtures of) glucose and fructose by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana in pH-controlled bioreactors. Carrot pulp hydrolysate was obtained after enzymatic hydrolysis of the polysaccharide fraction in carrot pulp. The main sugars in the hydrolysate were glucose, fructose, and sucrose. In fermentations with glucose hydrogen yields and productivities were similar for both strains. With fructose the hydrogen yield of C. saccharolyticus was reduced which might be related to uptake of glucose and fructose by different types of transport systems. With T. neapolitana the fructose consumption rate and consequently the hydrogen productivity were low. The hydrogen yields of both thermophiles were 2.7-2.8 mol H{sub 2}/mol hexose with 10 g/L sugars from carrot pulp hydrolysate. With 20 g/L sugars the yield of T. neapolitana was 2.4 mol H{sub 2}/mol hexose while the yield of C. saccharolyticus was reduced to 1.3 mol H{sub 2}/mol hexose due to high lactate production in the stationary growth phase. C. saccharolyticus was able to grow on carrot pulp and utilized soluble sugars and, after adaptation, pectin and some (hemi)cellulose. No growth was observed with T. neapolitana when using carrot pulp in agitated fermentations. Enzymatic hydrolysis of the polysaccharide fraction prior to fermentation increased the hydrogen yield with almost 10% to 2.3 g/kg of hydrolyzed carrot pulp. (author)

  16. Evaluation of two-phase thermophilic anaerobic methane fermentation for the treatment of garbage

    International Nuclear Information System (INIS)

    Municipal solid wastes (MSW) in Japan are generally incinerated. However, in recent years, garbage has been recognized as a renewable energy source. This has resulted in an increase in the use of biological processes, such as anaerobic digestion, to treat organic waste such as sewage sludge and garbage. The two phases of anaerobic digestion are the acidogenic phase and the methane producing phase. Both differ significantly in their nutritional and physiological requirements. This study evaluated the effectiveness of treating garbage with the two-phase thermophilic methane fermentation system (TPS). The performance of the acid fermentation phase in TPS was examined with particular reference to operational parameters such as pH, hydraulic retention time and organic loading rate on volatile fatty acid fermentation. It was shown that TPS was more efficient than the single-phase thermophilic methane fermentation system (SPS). Acidification control in the first stage resulted in better stability of methane fermentation in the second stage. VFA formation was optimized at a pH of 6. The recovery ratios of VFAs and methane were achieved in the range of 42 to 44 per cent and 88 to 91 per cent of garbage by high organic loading rate respectively. 12 refs., 6 tabs., 4 figs

  17. Auto heated Thermophilic Aerobic Digestion of sewage sludge; Digestion aerobia termofila autosostenida de lodos urbanos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia de las Heras, J. L.; Gutierrez, I.

    2002-07-01

    Auto heated Thermophilic Aerobic Digestion (ATAD) is one of the most promising technologies for applying the digested sludge to soil amendment. The system was studied in the 60's and developed mostly in Europe since the 70's. The full-scale facilities improvement ran in parallel to the scientific and legislative worry about the presence of pathogenic organisms both in the raw and the digested sewage sludge. ATAD is usually a two stage aerobic process working in the thermophilic temperature range (40 to 80 degree centigree) without any external heat source; the heat produced by the biochemical exergonic reactions during the aerobic degradation of the organic sludge holds the desired temperature values. A comparison of this system with the existing anaerobic stabilisation processes shows as main advantages a high hygienization capacity, small reactor volume for the same organic loading, is resistant to overloading and temperature shocks, is easily manageable, and is economically feasible for small.medium size populations. This process is specially suitable to fulfill the law requirements imposed by the most demanding countries regarding the application of treated sewage sludge to soil improvement. (Author) 19 refs.

  18. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis

    Science.gov (United States)

    Alkhalili, Rawana N.; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15–20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase and dd-carboxypeptidase. PMID:27548162

  19. X-ray Crystallographic Structure of Thermophilic Rhodopsin: IMPLICATIONS FOR HIGH THERMAL STABILITY AND OPTOGENETIC FUNCTION.

    Science.gov (United States)

    Tsukamoto, Takashi; Mizutani, Kenji; Hasegawa, Taisuke; Takahashi, Megumi; Honda, Naoya; Hashimoto, Naoki; Shimono, Kazumi; Yamashita, Keitaro; Yamamoto, Masaki; Miyauchi, Seiji; Takagi, Shin; Hayashi, Shigehiko; Murata, Takeshi; Sudo, Yuki

    2016-06-01

    Thermophilic rhodopsin (TR) is a photoreceptor protein with an extremely high thermal stability and the first characterized light-driven electrogenic proton pump derived from the extreme thermophile Thermus thermophilus JL-18. In this study, we confirmed its high thermal stability compared with other microbial rhodopsins and also report the potential availability of TR for optogenetics as a light-induced neural silencer. The x-ray crystal structure of TR revealed that its overall structure is quite similar to that of xanthorhodopsin, including the presence of a putative binding site for a carotenoid antenna; but several distinct structural characteristics of TR, including a decreased surface charge and a larger number of hydrophobic residues and aromatic-aromatic interactions, were also clarified. Based on the crystal structure, the structural changes of TR upon thermal stimulation were investigated by molecular dynamics simulations. The simulations revealed the presence of a thermally induced structural substate in which an increase of hydrophobic interactions in the extracellular domain, the movement of extracellular domains, the formation of a hydrogen bond, and the tilting of transmembrane helices were observed. From the computational and mutational analysis, we propose that an extracellular LPGG motif between helices F and G plays an important role in the thermal stability, acting as a "thermal sensor." These findings will be valuable for understanding retinal proteins with regard to high protein stability and high optogenetic performance. PMID:27129243

  20. ATP as an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work investigated the biomass activity in a thermophilic upflow anaerobic sludge blanket (UASB) reactor of wastewater treatment. Synthetic textile wastewater with pH 10-11, COD level of 2000-3000 mg/L was tested. Cellular adenosine triphosphate (ATP) in volatile solids (VS; mg ATP/gVS) was measured and expressed as specific ATP content to compare the biomass activity in up zone and lower zone in UASB reactor. The result shows that the specific ATP content based on total volatile solids (VS)in lower zone (0. 046 mgATP/gVS average) is much lower than that in up zone (0.62 mgATP/gVS average) due to high content of inactive biomass and high pH in lower zone. The SATP in up zone increases as HRT increases and approaches to a maximum value of 0.85 mgATP/gVS at HRT of 7h, then decreases. It shows most of the total VS in up zone represent active bacterial biomass at HRT of 7h. Rate of subtract utilization is directly related to the activity of microorganisms in the reactor. The effect of HRT on SATP in lower zone is not as significant as on SATP in up zone. The buffer capacity of the thermophilic UASB reactor is very good. It is the activity of sludge granules in lower zone that give the UASB reactor such a good buffer capacity to the inlet high pH.

  1. Solubilization, Solution Equilibria, and Biodegradation of PAH's under Thermophilic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Viamajala, S.; Peyton, B. M.; Richards, L. A.; Petersen, J. N.

    2007-01-01

    Biodegradation rates of PAHs are typically low at mesophilic conditions and it is believed that the kinetics of degradation is controlled by PAH solubility and mass transfer rates. Solubility tests were performed on phenanthrene, fluorene and fluoranthene at 20 C, 40 C and 60 C and, as expected, a significant increase in the equilibrium solubility concentration and of the rate of dissolution of these polycyclic aromatic hydrocarbons (PAHs) was observed with increasing temperature. A first-order model was used to describe the PAH dissolution kinetics and the thermodynamic property changes associated with the dissolution process (enthalpy, entropy and Gibb's free energy of solution) were evaluated. Further, other relevant thermodynamic properties for these PAHs, including the activity coefficients at infinite dilution, Henry's law constants and octanol-water partition coefficients, were calculated in the temperature range 20-60 C. In parallel with the dissolution studies, three thermophilic Geobacilli were isolated from compost that grew on phenanthrene at 60 C and degraded the PAH more rapidly than other reported mesophiles. Our results show that while solubilization rates of PAHs are significantly enhanced at elevated temperatures, the biodegradation of PAHs under thermophilic conditions is likely mass transfer limited due to enhanced degradation rates.

  2. [Screening and Enzyme Production Characteristics of Thermophilic Cellulase-producing Strains].

    Science.gov (United States)

    Feng, Hong-mei; Qin, Yong-sheng; Li, Xiao-fan; Zhou, Jin-xing; Peng, Xia-wei

    2016-04-15

    A total of 6 thermophilic cellulase-producing strainswere isolated from organic garden waste mixed chicken composting at thermophilic period. These isolates were identified as Streptomyces thermoviolaceus, S. thermodiastaticus, S. thermocarboxydus, S. albidoflavus, S. thermovulgaris and Brevibacillus borstelensis through 16S rRNA gene sequence alignment and phylogenetic tree analysis. The cellulose-degrading microbial community has been investigated in few researches so far both at home and abroad. In this study, the mixed strains M-1 was made up of the 6 cellulose-decomposing microorganisms. The CMCase activity of the mixed strains M- 1 was stronger than any of the 6 single strains. Production of CMCase from mixed strains M-1 was studied by optimizing different physico-chemical parameters. The Maximum CMCase production (135.9 U · mL⁻¹) of strains M-1 was achieved at 45 °C in a liquid medium (pH 4) inoculated with 1% (volume fraction), containing a mixture of wheat bran and starch, corn flour and KNO₃. After optimization of separation conditions, CMCase production capacity was improved by 1.8 times. PMID:27548981

  3. Performance and methanogenic community of rotating disk reactor packed with polyurethane during thermophilic anaerobic digestion

    International Nuclear Information System (INIS)

    A newly developed anaerobic rotating disk reactor (ARDR) packed with polyurethane was used in continuous mode for organic waste removal under thermophilic (55 oC) anaerobic conditions. This paper reports the effects of the rotational speed on the methanogenic performance and community in an ARDR supplied with acetic acid synthetic wastewater as the organic substrate. The best performance was obtained from the ARDR with the rotational speed (ω) of 30 rpm. The average removal of dissolved organic carbon was 98.5%, and the methane production rate was 393 ml/l-reactor/day at an organic loading rate of 2.69 g/l-reactor/day. Under these operational conditions, the reactor had a greater biomass retention capacity and better reactor performance than those at other rotational speeds (0, 5 and 60 rpm). The results of 16S rRNA phylogenetic analysis indicated that the major methanogens in the reactor belonged to the genus Methanosarcina spp. The results of real-time polymerase chain reaction (PCR) analysis suggested that the cell density of methanogenic archaea immobilized on the polyurethane foam disk could be concentrated more than 2000 times relative to those in the original thermophilic sludge. Scanning electron microphotographs showed that there were more immobilized microbes at ω of 30 rpm than 60 rpm. A rotational speed on the outer layer of the disk of 6.6 m/min could be appropriate for anaerobic digestion using the polyurethane ARDR

  4. Survey of thermophilic Campylobacter species in cats and dogs in north-western Nigeria

    Directory of Open Access Journals (Sweden)

    Adewale Kolawale

    2010-12-01

    Full Text Available This study was conducted in north-western Nigeria to investigate the role of cats and dogs as potential reservoirs of thermophilic Campylobacter species. Faecal samples were analysed from 104 cats and 141 dogs between March 2007 and March 2009. The samples were collected from animals in households, those presented to veterinary premises and feline colonies. Campylobacter spp. were isolated from 39 (27.7% and 19 (18.3% dogs and cats, respectively. There was no significant difference in isolation rate observed between dogs (27.7% and cats (18.3% and there was also no significance difference between younger and older dogs; 23.1% (young compared to 30.3% (older dogs, but a significant difference was seen between young (4.3% and older (29.3% cats. Campylobacter upsaliensis predominated in the isolates, accounting for 89.5% and 74.4% of the positive samples in cats and dogs, respectively, C. jejuni constituted 21.1% and 23.1% of the positive samples from cats and dogs, respectively. This finding is an indication that dogs and cats frequently shed thermophilic Campylobacter spp. which could be of public health importance. To establish the zoonotic significance of canine and feline Campylobacter, isolates need to be further characterised and compared. This is the first study on the prevalence of campylobacter in cats and dogs in the region.

  5. [Numerical taxonomy of a thermophilic "Bacillus" species isolated from West African rice soils (author's transl)].

    Science.gov (United States)

    Garcia, J L; Roussos, S; Bensoussan, M; Bianchi, A; Mandel, M

    1982-01-01

    Fifty-seven strains of endospore-forming thermophilic bacteria, 37 of which were capable of denitrification, were isolated from rice soils of West Africa. They were compared with 17 strains of similar bacteria from culture collections, utilizing a total of 123 morphological, physiological and biochemical characteristics. A numerical analysis was performed using the complete linkage-clustering method and the Khi2 test. Seventy-five percent (55 strains) could be included in 12 groups at a taxonomic distance of 0.015. Wild strains of denitrifiers issued in phenons 8 to 12 and strains of phenon 4 (not denitrifying) were related to the named strains of phenons 1 and 7 (Bacillus stearothermophilus). Twenty-two wild strains, and 5 strains from culture collections, were only thermotolerating without growth at 65 degrees C. The strains of phenon 3 were related to the 3 named strains of B. coagulans. Phenons 5 and 6 were composed of strains related to B. circulans. The strains of phenon 2 denitrified and showed a swollen central endospore; they were closely related to B. brevis. The denitrifying thermophilic strains isolated from rice soils (phenons 8 to 12) were related to the first group (B. kaustophilus) of Walker and Wolf but their base compositions of DNA were significantly different from those found for the reference strains. PMID:7103312

  6. Treatment efficiency and VFA composition of a thermophilic anaerobic contact reactor treating food industry wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sentuerk, E.; Ince, M. [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey); Onkal Engin, G., E-mail: guleda@gyte.edu.tr [Gebze Institute of Technology, Department of Environmental Engineering, Gebze, 41400, Kocaeli (Turkey)

    2010-04-15

    The objective of this study was to examine the effects of organic loading rate and hydraulic retention time on volatile fatty acid composition and treatment efficiency of high rate thermophilic anaerobic contact reactor (TACR) treating potato-chips wastewaters. The operational performance of TACR was monitored from start-up by assessing chemical oxygen demand (COD) removal efficiencies, volatile fatty acid (VFA) production and biogas composition. The reactor was studied at different organic loading rates (OLRs) ranging from 0.6 to 8 kg COD/m{sup 3} d. The COD removal efficiencies were found to be 86-97% and the methane percentage of the biogas produced was 68-89% during the OLRs studied. The approximate methane yield was found to be 0.42 m{sup 3} CH{sub 4}/kg COD{sub removed}. The major intermediate products of anaerobic digestion were acetate, propionate, iso-butyrate, butyrate, iso-valerate, valerate, iso-caproate and caproate. The use of thermophilic anaerobic contact reactor offers a sustainable technology for the treatment of potato-chips wastewaters since high COD removal efficiencies and high methane percentage in the biogas produced can be attained even at high OLRs.

  7. Continuous thermophilic composting (CTC) for rapid biodegradation and maturation of organic municipal solid waste.

    Science.gov (United States)

    Xiao, Yong; Zeng, Guang-Ming; Yang, Zhao-Hui; Shi, Wen-Jun; Huang, Cui; Fan, Chang-Zheng; Xu, Zheng-Yong

    2009-10-01

    Fewer and fewer municipal solid wastes are treated by composting in China because of the disadvantages of enormous investment, long processing cycle and unstable products in a conventional composting treatment. In this study, a continuous thermophilic composting (CTC) method, only a thermophilic phase within the process, has been applied to four bench-scale composting runs, and further compared with a conventional composting run by assessing the indexes of pH, total organic carbon (TOC), total Kjeldahl nitrogen (TKN), C/N ratio, germination index (GI), specific oxygen uptake rate (SOUR), dissolved organic carbon (DOC) and dehydrogenase activity. After composting for 14 days, 16 days, 18 days and 19 days in the four CTC runs, respectively, mature compost products were obtained, with quality similar to or better than which had been stabilized for 28 days in run A. The products from the CTC runs also showed favorable stability in room temperature environment after the short-term composting at high temperature. The study suggested CTC as a novel method for rapid degradation and maturation of organic municipal solid wastes. PMID:19487122

  8. Thermophilic campylobacters in surface waters around Lancaster, UK: negative correlation with Campylobacter infections in the community.

    Science.gov (United States)

    Jones, K; Betaieb, M; Telford, D R

    1990-11-01

    The incidence of campylobacter enteritis in Lancaster City Health Authority is three times the UK average for similar sizes of population and has marked seasonal peaks in May and June. Environmental monitoring of surface waters around Lancaster showed that thermophilic campylobacters were absent from drinking water from the fells and from the clean upper reaches of the River Conder but were present in the main rivers entering Morecambe Bay, the lower reaches of the River Conder, the Lancaster canal, and seawater from the Lune estuary and Morecambe Bay. All the surface waters tested showed the same seasonality, namely, higher numbers in the winter months and low numbers or none in May, June and July. The absence of thermophilic campylobacters in the summer months may be due to high sunshine levels because experiments on the effects of light showed that campylobacters in sewage effluent and seawater were eliminated within 60 and 30 min of daylight respectively but survived for 24 h in darkness. As the concentrations of campylobacters in surface waters were at their lowest precisely at the time of peak infections in the community it is unlikely that surface waters form Lancaster's reservoir of campylobacter infection for the community. PMID:2276990

  9. Antimicrobial Protein Candidates from the Thermophilic Geobacillus sp. Strain ZGt-1: Production, Proteomics, and Bioinformatics Analysis.

    Science.gov (United States)

    Alkhalili, Rawana N; Bernfur, Katja; Dishisha, Tarek; Mamo, Gashaw; Schelin, Jenny; Canbäck, Björn; Emanuelsson, Cecilia; Hatti-Kaul, Rajni

    2016-01-01

    A thermophilic bacterial strain, Geobacillus sp. ZGt-1, isolated from Zara hot spring in Jordan, was capable of inhibiting the growth of the thermophilic G. stearothermophilus and the mesophilic Bacillus subtilis and Salmonella typhimurium on a solid cultivation medium. Antibacterial activity was not observed when ZGt-1 was cultivated in a liquid medium; however, immobilization of the cells in agar beads that were subjected to sequential batch cultivation in the liquid medium at 60 °C showed increasing antibacterial activity up to 14 cycles. The antibacterial activity was lost on protease treatment of the culture supernatant. Concentration of the protein fraction by ammonium sulphate precipitation followed by denaturing polyacrylamide gel electrophoresis separation and analysis of the gel for antibacterial activity against G. stearothermophilus showed a distinct inhibition zone in 15-20 kDa range, suggesting that the active molecule(s) are resistant to denaturation by SDS. Mass spectrometric analysis of the protein bands around the active region resulted in identification of 22 proteins with molecular weight in the range of interest, three of which were new and are here proposed as potential antimicrobial protein candidates by in silico analysis of their amino acid sequences. Mass spectrometric analysis also indicated the presence of partial sequences of antimicrobial enzymes, amidase, and dd-carboxypeptidase. PMID:27548162

  10. [Effects of Thermophilic Composting on Antibiotic Resistance Genes (ARGs) of Swine Manure Source].

    Science.gov (United States)

    Zheng, Ning-guo; Huang, Nan; Wang, Wei-wei; Yu, Man; Chen, Xiao-yang; Yao, Yan-lai; Wang, Wei-ping; Hong, Chun-lai

    2016-05-15

    To investigate the effects of thermophilic composting process on antibiotic resistance genes (ARGs) of swine manure source at a field scale, the abundance of four erythromycin resistance genes (ermA, ermB, ermC and ermF), three β-lactam resistance genes (blaTEM, blaCTX and blaSHV) and two quinolone resistance genes (qnrA and qnrS) were quantified by quantitative PCR ( qPCR) during the composting process. The results suggested that the erm genes' copy numbers were significantly higher than those of the bla and qnr genes in the early stage of composting (P < 0.01). The maximum abundance of erm genes was ermB (9.88 x 10⁸ copies · g⁻¹), following by ermF (9.4 x 10⁸ copies · g⁻¹). At the end of the composting process, bla and qnr genes were at low levels, while erm genes were still at high levels. Even through ermF was proliferated comparing with the initial copies. These results indicated that thermophilic composting process could not effectively remove all ARGs. For some ARGs, compost may be a good bioreactor resulting in their proliferation. Application of composting products on farmland may cause transference of ARGs. PMID:27506057

  11. Boosting dark fermentation with co-cultures of extreme thermophiles for biohythane production from garden waste.

    Science.gov (United States)

    Abreu, Angela A; Tavares, Fábio; Alves, Maria Madalena; Pereira, Maria Alcina

    2016-11-01

    Proof of principle of biohythane and potential energy production from garden waste (GW) is demonstrated in this study in a two-step process coupling dark fermentation and anaerobic digestion. The synergistic effect of using co-cultures of extreme thermophiles to intensify biohydrogen dark fermentation is demonstrated using xylose, cellobiose and GW. Co-culture of Caldicellulosiruptor saccharolyticus and Thermotoga maritima showed higher hydrogen production yields from xylose (2.7±0.1molmol(-1) total sugar) and cellobiose (4.8±0.3molmol(-1) total sugar) compared to individual cultures. Co-culture of extreme thermophiles C. saccharolyticus and Caldicellulosiruptor bescii increased synergistically the hydrogen production yield from GW (98.3±6.9Lkg(-1) (VS)) compared to individual cultures and co-culture of T. maritima and C. saccharolyticus. The biochemical methane potential of the fermentation end-products was 322±10Lkg(-1) (CODt). Biohythane, a biogas enriched with 15% hydrogen could be obtained from GW, yielding a potential energy generation of 22.2MJkg(-1) (VS). PMID:27484669

  12. Population dynamics during startup of thermophilic anaerobic digesters: The mixing factor

    KAUST Repository

    Ghanimeh, Sophia A.

    2013-11-01

    Two thermophilic digesters were inoculated with manure and started-up under mixed and stagnant conditions. The Archaea in the mixed digester (A) were dominated by hydrogenotrophic Methanobateriaceae (61%) with most of the methane being produced via syntrophic pathways. Methanosarcinales (35%) were the only acetoclastic methanogens present. Acetate dissipation seems to depend on balanced hydrogenotrophic-to-acetotrophic abundance, which in turn was statistically correlated to free ammonia levels. Relative abundance of bacterial community was associated with the loading rate. However, in the absence of mixing (digester B), the relationship between microbial composition and operating parameters was not discernible. This was attributed to the development of microenvironments where environmental conditions are significantly different from average measured parameters. The impact of microenvironments was accentuated by the use of a non-acclimated seed that lacks adequate propionate degraders. Failure to disperse the accumulated propionate, and other organics, created high concentration niches where competitive and inhibiting conditions developed and favored undesired genera, such as Halobacteria (65% in B). As a result, digester B experienced higher acid levels and lower allowable loading rate. Mixing was found necessary to dissipate potential inhibitors, and improve stability and loading capacity, particularly when a non-acclimated seed, often lacking balanced thermophilic microflora, is used. © 2013 Elsevier Ltd.

  13. Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite.

    Science.gov (United States)

    Angelidaki, I; Petersen, S P; Ahring, B K

    1990-07-01

    The effect of bentonite-bound oil on thermophilic anaerobic digestion of cattle manure was investigated. In digestor experiments, addition of oil was found to be inhibitory during start-up and the inhibitory effect was less pronounced when the oil was added in the form of bentonite-bound oil compared to when the oil was added alone. After adaptation of the digestors, very rapid degradation of oil was observed and more than 80% of the oil was degraded within a few hours after daily feeding. In batch experiments, glyceride trioleate was found to be inhibitory to thermophilic anaerobic digestion when the concentrations were higher than 2.0 g/l. However, addition of bentonite (a clay mineral) at concentrations of 0.15% and 0.45% was found to partly overcome this inhibition. Addition of calcium chloride in concentration of 3 mM (0.033% w/v) showed a similar positive effect on the utilization of oil, but the effect was lower than with bentonite. PMID:1366749

  14. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27.

    Science.gov (United States)

    Schwarzenlander, Cornelia; Averhoff, Beate

    2006-09-01

    Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 microg DNA.(mg protein)(-1).min(-1), demonstrating an extremely efficient binding and uptake rate of 40 kb.s(-1).cell(-1). Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments. PMID:16939619

  15. Conversion of hemicellulose and D-xylose into ethanol by the use of thermophilic anaerobic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Peter

    1998-02-01

    Ethanol is a CO{sub 2} neutral liquid fuel that can substitute the use of fossil fuels in the transportation sector, thereby reducing the CO{sub 2} emission to the atmoshpere. CO{sub 2} emission is suspected to contribute significantly to the so-called greenhouse effect, the global heating. Substrates for production of ethanol must be cheap and plentiful. This can be met by the use of lignocellulosic biomass such as willow, wheat straw, hardwood and softwood. However, the complexity of these polymeric substrates and the presence of several types of carbohydrates (glucose, xylose, mannose, galactose, arabinose) require additional treatment to release the useful carbohydrates and ferment the major carbohydrates fractions. The costs related to the ethanol-production must be kept at a minimum to be price competitive compared to gasoline. Therefore all of the carbohydrates present in lignocellulose need to be converted into ethanol. Glucose can be fermented to ethanol by yeast strains such as Saccharomyces cerevisiae, which, however, is unable to ferment the other major carbohydrate fraction, D-xylose. The need for a microorganism able to ferment D-xylose is therefore apparent. Thermophilic anaerobic ethanol producing bacteria can therefore be considered for fermentation of D-xylose. Screening of 130 thermophilic anaerobic bacterial strains, from hot-springs, mesophilic and thermophilic biogas plants, paper pulp industries and brewery waste, were examined for production of ethanol from D-xylose and wet-oxidized hemicellulose hydrolysate. Several strains were isolated and one particular strain was selected for best performance during the screening test. This strain was characterized as a new species, Thermoanaerobacter mathranii. However, the ethanol yield on wet-oxidized hemicellulose hydrolysate was not satisfactory. The bacterium was adapted by isolation of mutant strains, now resistant to the inhibitory compounds present in the hydrolysate. Growth and ethanol yield

  16. Draft Genome Sequence of Bacillus subtilis GXA-28, a Thermophilic Strain with High Productivity of Poly-γ-Glutamic Acid

    OpenAIRE

    Zeng, Wei; Chen, Guiguang; Tang, Zhen; Wu, Hao; Shu, Lin; Liang, Zhiqun

    2014-01-01

    Bacillus subtilis GXA-28 is a thermophilic strain that can produce high yield and high molecular weight of poly-γ-glutamic acid under high temperature. Here, we report the draft genome sequence of this strain, which may provide the genomic basis for the high productivity of poly-γ-glutamic acid.

  17. Non-thermophilic Crenarchaeota sequences dominate archaeal community of bat guano hill in cave Domica, Slovak Karst

    Czech Academy of Sciences Publication Activity Database

    Chroňáková, Alica; Krištůfek, Václav; Petrásek, Jiří; Elhottová, Dana

    Braunschweig : Bba - Federal Biological Research Centre for Agriculture and Forestry, 2007. s. 108. [Symposium on Bacterial Genetics and Ecology. BAGECO 9. Microbial Community Networks /9./. 23.06.2007-27.06.2007, Wernigerode] Institutional research plan: CEZ:AV0Z60660521 Keywords : non-thermophilic Crenarchaeota sequences * bat guano hill * cave Domica Subject RIV: EH - Ecology, Behaviour

  18. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    An extremely thermophilic, xylanolytic, spore-forming and strict anaerobic bacterium DTU01(T) was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter...

  19. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    DEFF Research Database (Denmark)

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transm...

  20. Effect of hydraulic retention time on sulfate reduction in a carbon monoxide fed thermophilic gas lift reactor

    NARCIS (Netherlands)

    Sipma, J.; Osuna, M.B.; Lettinga, G.; Stams, A.J.M.; Lens, P.N.L.

    2007-01-01

    Thermophilic hydrogenogenic carbon monoxide (CO) converting microorganisms present in anaerobic sludge play a crucial role in the application of CO as electron donor for sulfate reduction. Hydrogenogenic CO conversion was investigated in a gas lift reactor (55 °C) at different hydraulic retention ti

  1. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2006-01-01

    The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the...

  2. Formation of metabolites during biodegradation of linear alkylbenzene sulfonate in an upflow anaerobic sludge bed reactor under thermophilic conditions

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Ahring, Birgitte Kiær

    2002-01-01

    Biodegradation of linear alkylbenzene sulfonate (LAS) was shown in an upflow anaerobic sludge blanket reactor under thermophilic conditions. The reactor was inoculated with granular biomass and fed with a synthetic medium and 3 mumol/L of a mixture of LAS with alkylchain length of 10 to 13 carbon...

  3. Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana

    NARCIS (Netherlands)

    Mars, A.E.; Veuskens, T.; Budde, M.A.W.; Doeveren, van P.F.N.M.; Lips, S.J.J.; Bakker, R.R.; Vrije, de G.J.; Claassen, P.A.M.

    2010-01-01

    Production of hydrogen by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana was studied in serum flasks and in pH-controlled bioreactors with glucose, and hydrolyzed and untreated potato steam peels (PSP) as carbon sources. Two types of PSP hydrolysates were us

  4. Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities

    DEFF Research Database (Denmark)

    Symsaris, Evangelos C.; Fotidis, Ioannis; Stasinakis, Athanasios S.;

    2015-01-01

    In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion...

  5. Deep-Subterranean Microbial Habitats in the Hishikari Epithermal Gold Mine: Active Thermophilic Microbial Communities and Endolithic Ancient Microbial Relicts.

    Science.gov (United States)

    Hirayama, H.; Takai, K.; Inagaki, F.; Horikoshi, K.

    2001-12-01

    Deep subterranean microbial community structures in an epithermal gold-silver deposit, Hishikari gold mine, southern part of Kyusyu Japan, were evaluated through the combined use of enrichment culture methods and culture-independent molecular surveys. The geologic setting of the Hishikari deposit is composed of three lithologies; basement oceanic sediments of the Cretaceous Shimanto Supergroup, Quaternary andesites, and auriferous quartz vein. We studied the drilled core rock of these, and the geothermal hot waters from the basement aquifers collected by means of the dewatering system located at the deepest level in the mining sites. Culture-independent molecular phylogenetic analyses of PCR-amplified ribosomal DNA (rDNA) recovered from drilled cores suggested that the deep-sea oceanic microbial communities were present as ancient indigenous relicts confined in the Shimanto basement. On the other hand, genetic signals of active thermophilic microbial communities, mainly consisting of thermophilic hydrogen-oxidizer within Aquificales, thermophilic methanotroph within g-Proteobacteria and yet-uncultivated bacterium OPB37 within b-Proteobacteria, were detected with these of oceanic relicts from the subterranean geothermal hot aquifers (temp. 70-100ºC). Successful cultivation and FISH analyses strongly supported that these thermophilic lithotrophic microorganisms could be exactly active and they grew using geochemically produced hydrogen and methane gasses as nutrients. Based on these results, the deep-subsurface biosphere occurring in the Hishikari epithermal gold mine was delineated as endolithic ancient microbial relicts and modern habitats raising active lithotrophic thermophiles associated with the geological and geochemical features of the epithermal gold deposit.

  6. Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions

    International Nuclear Information System (INIS)

    Highlights: ► We investigate the digestion of two algae biomasses in hybrid flow-through reactors. ► We determine the bio-methane potential of these biomasses through batch assays. ► Conversion efficiencies of 20–50% with an HRT of 2.2 days are possible. ► We valorise microalgae biomass by anaerobic digestion in a high rate reactor. -- Abstract: Two types of non-axenic algal cultures, one dominated by the freshwater microalgae Scenedesmus obliquus and the other by the marine microalgae Phaeodactylum tricornutum, were cultivated in two types of simple photobioreactor systems. The production rates, expressed on dry matter (DM) basis, were in the order of 0.12 and 0.18 g DM L−1 d−1 for S. obliquus and P. tricornutum respectively. The biogas potential of algal biomass was assessed by performing standardized batch digestion as well as digestion in a hybrid flow-through reactor (combining a sludge blanket and a carrier bed), the latter under mesophilic and thermophilic conditions. Biomethane potential assays revealed the ultimate methane yield (B0) of P. tricornutum biomass to be about a factor of 1.5 higher than that of S. obliquus biomass, i.e. 0.36 and 0.24 L CH4 g−1 volatile solids (VS) added respectively. For S. obliquus biomass, the hybrid flow-through reactor tests operated at volumetric organic loading rate (Bv) of 2.8 gVS L−1 d−1 indicated low conversion efficiencies ranging between 26–31% at a hydraulic retention time (HRT) of 2.2 days for mesophilic and thermophilic conditions respectively. When digesting P. tricornutum at a Bv of 1.9 gVS L−1 d−1 at either mesophilic or thermophilic conditions and at an HRT of 2.2 days, an overall conversion efficiency of about 50% was obtained. This work indicated that the hydrolysis of the algae cells is limiting the anaerobic processing of intensively grown S. obliquus and P. tricornutum biomass.

  7. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    Directory of Open Access Journals (Sweden)

    Getachew D. Gebreeyessus

    2016-06-01

    Full Text Available During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH. In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so

  8. Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia

    Directory of Open Access Journals (Sweden)

    Salleh Abu

    2007-08-01

    Full Text Available Abstract Background Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78°C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0 as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5–99.2%. Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification. Results Twenty-nine putative lipase producers were screened and isolated from palm oil mill effluent in Malaysia. Of these, isolate T1T was chosen for further study as relatively higher lipase activity was detected quantitatively. The crude T1 lipase showed high optimum temperature of 70°C and was also stable up to 60°C without significant loss of crude enzyme activity. Strain T1T was a Gram-positive, rod-shaped, endospore forming bacterium. On the basic of 16S rDNA analysis, strain T1T was shown to belong to the Bacillus rRNA group 5 related to Geobacillus thermoleovorans (DSM 5366T and Geobacillus kaustophilus (DSM 7263T. Chemotaxonomic data of cellular fatty acids supported the affiliation of strain T1T to the genus Geobacillus. The results of physiological and biochemical tests, DNA/DNA hybridization, RiboPrint analysis, the length of lipase gene and protein pattern allowed genotypic and phenotypic differentiation of strain T1T from its validly published closest phylogenetic neighbors. Strain T1T therefore represents a novel species, for which the name Geobacillus zalihae sp. nov. is proposed, with the type strain T1T (=DSM 18318T; NBRC 101842T. Conclusion Strain T1T was able to secrete extracellular

  9. Enhancing xylanase production in the thermophilic fungus Myceliophthora thermophila by homologous overexpression of Mtxyr1.

    Science.gov (United States)

    Wang, Juan; Wu, Yaning; Gong, Yanfen; Yu, Shaowen; Liu, Gang

    2015-09-01

    The xylanase regulator 1 protein in Myceliophthora thermophila ATCC42464 (MtXyr1) is 60 % homologous with that of Trichoderma reesei. However, MtXyr1's regulatory role on cellulolytic and xylanolytic genes in M. thermophila is unknown. Herein, MtXyr1 was overexpressed under the control of the MtPpdc (pyruvate decarboxylase) promoter. Compared with the wild type, the extracellular xylanase activities of the transformant cultured in non-inducing and inducing media for 120 h were 25.19- and 9.04-fold higher, respectively. The Mtxyr1 mRNA level was 300-fold higher than in the wild type in corncob-containing medium. However, the filter paper activity and endoglucanase activities were unchanged in corncob-containing medium and glucose-containing medium. The different zymograms between the transformant and the wild type were analyzed and identified by mass spectrometry as three xylanases of the glycoside hydrolase (GH) family 11. Thus, overexpression of xyr1 resulted in enhanced xylanase activity in M. thermophila. Xylanase production could be improved by overexpressing Mtxyr1 in M. thermophila. PMID:26173497

  10. Isolation, Screening, and Identification of Cellulolytic Bacteria from Natural Reserves in the Subtropical Region of China and Optimization of Cellulase Production by Paenibacillus terrae ME27-1

    Directory of Open Access Journals (Sweden)

    Yan-Ling Liang

    2014-01-01

    Full Text Available From different natural reserves in the subtropical region of China, a total of 245 aerobic bacterial strains were isolated on agar plates containing sugarcane bagasse pulp as the sole carbon source. Of the 245 strains, 22 showed hydrolyzing zones on agar plates containing carboxymethyl cellulose after Congo-red staining. Molecular identification showed that the 22 strains belonged to 10 different genera, with the Burkholderia genus exhibiting the highest strain diversity and accounting for 36.36% of all the 22 strains. Three isolates among the 22 strains showed higher carboxymethyl cellulase (CMCase activity, and isolate ME27-1 exhibited the highest CMCase activity in liquid culture. The strain ME27-1 was identified as Paenibacillus terrae on the basis of 16S rRNA gene sequence analysis as well as physiological and biochemical properties. The optimum pH and temperature for CMCase activity produced by the strain ME27-1 were 5.5 and 50°C, respectively, and the enzyme was stable at a wide pH range of 5.0–9.5. A 12-fold improvement in the CMCase activity (2.08 U/mL of ME27-1 was obtained under optimal conditions for CMCase production. Thus, this study provided further information about the diversity of cellulose-degrading bacteria in the subtropical region of China and found P. terrae ME27-1 to be highly cellulolytic.

  11. Biosynthesis of omega-alicyclic fatty acids induced by cyclic precursors and change of membrane fluidity in thermophilic bacteria Geobacillus stearothermophilus and Meiothermus ruber

    Czech Academy of Sciences Publication Activity Database

    Siřišťová, L.; Luhový, R.; Sigler, Karel; Řezanka, Tomáš

    2011-01-01

    Roč. 15, č. 3 (2011), 423-429. ISSN 1431-0651 Institutional research plan: CEZ:AV0Z50200510 Keywords : Thermophilic bacteria * Geobacillus * Meiothermus Subject RIV: EE - Microbiology, Virology Impact factor: 2.941, year: 2011

  12. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis.

    Science.gov (United States)

    Sadaf, Ayesha; Khare, S K

    2014-02-01

    De-oiled Jatropha curcas seed cake, a plentiful by-product of biodiesel industry was used as substrate for the production of a useful xylanase from Sporotrichum thermophile in solid state fermentation. Under the optimized conditions, 1025U xylanase/g (deoiled seed cake) was produced. The xylanase exhibited half life of 4h at 45°C and 71.44min at 50°C respectively. It was stable in a broad pH range of 7.0-11.0. Km and Vmax were 12.54mg/ml and 454.5U/ml/min respectively. S. thermophile xylanase is an endoxylanase free of exoxylanase activity, hence advantageous for xylan hydrolysis to produce xylooligosachharides. Hydrolysis of oat spelt xylan by S. thermophile xylanase yielded 73% xylotetraose, 15.4% xylotriose and 10% xylobiose. The S. thermophile endoxylanase thus seem potentially useful in the food industries. PMID:24362246

  13. Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: kinetic studies.

    Science.gov (United States)

    Zhang, Peng; Chen, Yinguang; Zhou, Qi

    2010-09-01

    In the presence of surfactant sodium dodecylbenzene sulfonate (SDBS) the hydrolysis products accumulation and the short-chain fatty acids (SCFA) production during waste activated sludge fermentation under mesophilic and thermophilic conditions was compared with that at room temperature. In order to understand the mechanism of significant amounts of mesophilic and thermophilic hydrolysis products and SCFA observed in the presence of surfactant, the kinetic models at different SDBS dosages were developed. It was found that SDBS increased the mesophilic and thermophilic hydrolysis rate significantly, and the maximum specific utilization of hydrolysis products increased at low SDBS and decreased at high one. However, the observed maximum specific utilization of SCFA decreased seriously with SDBS increase. In the presence of SDBS the decay rate of acidogenic bacteria not only was lower than that in the absence of SDBS but decreased with the increase of SDBS under either mesophilic or thermophilic conditions. PMID:20409704

  14. Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus

    Science.gov (United States)

    Berendsen, Erwin M.; Wells-Bennik, Marjon H. J.; Krawczyk, Antonina O.; de Jong, Anne; van Heel, Auke; Holsappel, Siger; Eijlander, Robyn T.

    2016-01-01

    Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria. PMID:27151781

  15. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared......Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...... thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of...

  16. Isolation and identification of thermophilic and mesophylic proteolytic bacteria from shrimp paste "Terasi"

    Science.gov (United States)

    Murwani, R.; Supriyadi, Subagio, Trianto, A.; Ambariyanto

    2015-12-01

    Terasi is a traditional product generally made of fermented shrimp. There were many studies regarding lactic acid bacteria of terasi but none regarding proteolitic bacteria. This study was conducted to isolate and identify the thermophilic and mesophylic proteolytic bacteria from terasi. In addition, the effect of different salt concentrations on the growth of the isolated proteolytic bacteria with the greatest proteolytic activity was also studied. Terasi samples were obtained from the Northern coast region of Java island i.e. Jepara, Demak and Batang. The study obtained 34 proteolytic isolates. Four isolates were identified as Sulfidobacillus, three isolates as Vibrio / Alkaligenes / Aeromonas, two isolates as Pseudomonas, 21 isolates as Bacillus, three isolates as Kurthia/ Caryophanon and one isolates as Amphibacillus. The growth of proteolytic bacteria was affected by salt concentration. The largest growth was found at 0 ppm salt concentrations and growth was declined as salt concentration increased. Maximum growth at each salt concentration tested was found at 8 hours incubation.

  17. Biotyping of thermophilic Campylobacter spp. isolated from poultry in and around Anand city, Gujarat, India

    Directory of Open Access Journals (Sweden)

    R. S. Tayde

    2014-05-01

    Full Text Available Aim: To study the prevalence of different biotypes of thermophilic Campylobacter spp. in the study area. Materials and Methods: A total of 150 samples comprising 90 chicken and 60 caecal content were collected from retail meat market and processed for isolation of Campylobacter spp. 52 Campylobacter isolates obtained from raw poultry meat (6 and caecal content (46 were subjected to biotyping using Lior's biotyping scheme. Results: Among the 52 Campylobacter isolates studied, 60.46 % isolates were identified as Campylobacter jejuni Biotype I and 39.53% were C. jejuni Biotype II, whereas 83.33 % were C. coli Biotype I and 16.66 % C. coli Biotype II. No other biotypes were identified. Conclusions: The present study revealed that C. jejuni Biotype I was more prevalent than Biotype II whereas in case of C. coli, Biotype I was more prevalent than Biotype II providing basis for further epidemiological study.

  18. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Nielsen, N. L.; Sommer, Helle Mølgaard;

    2003-01-01

    A quantitative risk assessment comprising the elements hazard identification, hazard characterization, exposure assessment, and risk characterization has been prepared to assess the effect of different mitigation strategies on the number of human cases in Denmark associated with thermophilic...... Campylobacter spp. in chickens. To estimate the human exposure to Campylobacter from a chicken meal and the number of human cases associated with this exposure, a mathematical risk model was developed. The model details the spread and transfer of Campylobacter in chickens from slaughter to consumption and the...... covers the transfer of Campylobacter during food handling in private kitchens. The age and sex of consumers were included in this module to introduce variable hygiene levels during food preparation and variable sizes and compositions of meals. Finally, the outcome of the exposure assessment modules was...

  19. The glutathione response to salt stress in the thermophilic fungus thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Friborg Jepsen, Helene; Posci, Istvan; Jensen, Bo

    2008-01-01

    In order to investigate the role of glutathione in response to salt stress in the thermophilic fungus, Thermomyces lanuginosus, the biomass and the intracellular pool of protein and the glutathione + glutathione disulphid (GSH + GSSG) was measured for four days in a medium with NaCl or KCl added...... and in the basal medium. Due to the osmotic and ionic stress imposed by the salts, the growth of T. lanuginosus was delayed and the inhibitory effect of KCl exceeded that of NaCl. Glutathione seemed to be involved in the response of T. lanuginosus towards high concentrations of salt, as the level of...... stress was negatively correlated with the amount of total glutathione. Salt stress did not result in an increased intracellular protein production. GSH accumulated while nutrients were abundant and were subsequently degraded later, suggesting that nutrients stored in GSH are used when the medium is...

  20. Bioleaching of chalcopyrite and bornite by moderately thermophilic bacteria: an emphasis on their interactions

    Science.gov (United States)

    Zhao, Hong-bo; Wang, Jun; Gan, Xiao-wen; Qin, Wen-qing; Hu, Ming-hao; Qiu, Guan-zhou

    2015-08-01

    Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by both Acidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the galvanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390-480 mV vs. Ag/AgCl promoted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.

  1. Performance optimization and validation of ADM1 simulations under anaerobic thermophilic conditions

    KAUST Repository

    Atallah, Nabil M.

    2014-12-01

    In this study, two experimental sets of data each involving two thermophilic anaerobic digesters treating food waste, were simulated using the Anaerobic Digestion Model No. 1 (ADM1). A sensitivity analysis was conducted, using both data sets of one digester, for parameter optimization based on five measured performance indicators: methane generation, pH, acetate, total COD, ammonia, and an equally weighted combination of the five indicators. The simulation results revealed that while optimization with respect to methane alone, a commonly adopted approach, succeeded in simulating methane experimental results, it predicted other intermediary outputs less accurately. On the other hand, the multi-objective optimization has the advantage of providing better results than methane optimization despite not capturing the intermediary output. The results from the parameter optimization were validated upon their independent application on the data sets of the second digester.

  2. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    DEFF Research Database (Denmark)

    Tomás, Ana Faria

    Second-generation bioethanol is produced from residual biomass such as industrial and municipal waste or agricultural and forestry residues. However, Saccharomyces cerevisiae, the microorganism currently used in industrial first-generation bioethanol production, is not capable of converting all...... of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered...... by the recalcitrance of the lignocellulosic biomass, and by the lack of a microorganism capable of converting this feedstock to bioethanol with high yield, efficiency and productivity. In this study, a new extreme thermophilic ethanologenic bacterium was isolated from household waste. When assessed for ethanol...

  3. Application of thermophilic enzymes and water jet system to cassava pulp.

    Science.gov (United States)

    Chaikaew, Siriporn; Maeno, Yuka; Visessanguan, Wonnop; Ogura, Kota; Sugino, Gaku; Lee, Seung-Hwan; Ishikawa, Kazuhiko

    2012-12-01

    Co-production of fermentable sugars and nanofibrillated cellulose from cassava pulp was achieved by the combination of thermophilic enzymes (endoglucanase, β-glucosidase, and α-amylase) and a new atomization system (Star Burst System; SBS), which employs opposing water jets. The SBS represents a key technology for providing cellulose nanofibers and improving the enzymatic saccharification of cassava pulp. Depending on the enzymes used, the production of glucose from cassava pulp treated with the SBS was 1.2- to 2.5-fold higher than that from pulp not treated with the SBS. Nanofibrillated cellulose with the gel-like property in suspension was produced (yield was over 90%) by α-amylase treatment, which completely released trapped starch granules from the fibrous cell wall structure of cassava pulp pretreated with the SBS. The SBS provides an environmentally low-impact pretreatment system for processing biomass material into value-added products. PMID:23073093

  4. Multiple Serotypes of the Moderate Thermophile Thiobacillus caldus, a Limitation of Immunological Assays for Biomining Microorganisms.

    Science.gov (United States)

    Hallberg, K B; Lindstrom, E B

    1996-11-01

    Phylogenetic and phenotypic analysis indicates that a moderately thermophilic isolate, C-SH12, from Australia belongs to the species Thiobacillus caldus. Antiserum generated against whole cells of T. caldus KU recognized protein antigens common to cell lysates of the three T. caldus strains KU, BC13, and C-SH12 but did not recognize whole cells of isolate C-SH12. Differences in the lipopolysaccharide (LPS) of strain C-SH12 and those of the other two T. caldus strains were found, and the anti-KU antiserum did not recognize the LPS from strain C-SH12. These data indicate that this T. caldus isolate belongs to a serotype different from that of strains KU and BC13. PMID:16535449

  5. Effect of oxygen on the microbial activities of thermophilic anaerobic biomass.

    Science.gov (United States)

    Pedizzi, C; Regueiro, L; Rodriguez-Verde, I; Lema, J M; Carballa, M

    2016-07-01

    Low oxygen levels (μgO2L(-1)) in anaerobic reactors are quite common and no relevant consequences are expected. On the contrary, higher concentrations could affect the process. This work aimed to study the influence of oxygen (4.3 and 8.8mgO2L(-1), respectively) on the different microbial activities (hydrolytic, acidogenic and methanogenic) of thermophilic anaerobic biomass and on the methanogenic community structure. Batch tests in presence of oxygen were conducted using specific substrates for each biological activity and a blank (with minimum oxygen) was included. No effect of oxygen was observed on the hydrolytic and acidogenic activities. In contrast, the methane production rate decreased by 40% in all oxygenated batches and the development of active archaeal community was slower in presence of 8.8mgO2L(-1). However, despite this sensitivity of methanogens to oxygen at saturation levels, the inhibition was reversible. PMID:27020398

  6. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors

    DEFF Research Database (Denmark)

    Palatsi, J.; Laureni, M.; Andres, M.V.;

    2009-01-01

    Long chain fatty acids (LCFA) concentrations over 1.0 g L1 were inhibiting manure thermophilic digestion, in batch and semi-continuous experiments, resulting in a temporary cease of the biogas production. The aim of the work was to test and evaluate several recovery actions, such as reactor feeding...... patterns, dilution and addition of adsorbents, in order to determine the most appropriate strategy for fast recovery of the reactor activity in manure based plants inhibited by LCFA. Dilution with active inoculum for increasing the biomass/LCFA ratio, or addition of adsorbents for adsorbing the LCFA...... and reducing the bioavailable LCFA concentration, were found to be the best recovery strategies, improving the recovery time from 10 to 2 days, in semi-continuously fed systems. Moreover, acclimatization was introduced by repeated inhibition and process recovery. The subsequent exposure of the anaerobic...

  7. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.

    Science.gov (United States)

    Bharadwaj, Abhilasha; Ting, Yen-Peng

    2013-02-01

    Bioleaching of spent hydrotreating catalyst by thermophillic archae Acidianus brierleyi was investigated. The spent catalyst (containing Al, Fe, Ni and Mo as major elements) was characterized, and the effect of pretreatment (decoking) on two-step and spent medium leaching was examined at 1% w/v pulp density. Decoking resulted in removal of carbonaceous deposits and volatile impurities, and affected the solubility of metal compounds through oxidization of the metal sulfides. Nearly 100% extraction was achieved using spent medium leaching for Fe, Ni and Mo, and 67% for Al. Bioleaching reduced nickel concentration in the leachate below the regulated levels for safe waste disposal. Chemical (i.e. abiotic) leaching using equimolar concentration of sulfuric acid produced by the bacteria during two-step process achieved a lower leaching efficiency (by up to 30%). Results indicated that A. brierleyi successfully leached heavy metals from spent catalyst. PMID:23334026

  8. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65 ℃ .

  9. Expression, purification, and characterization of a thermophilic neutral protease from Bacillus stearothermophilus in Bacillus subtilis

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The gene coding for a thermophilic neutral protease from Bacillus stearothermophilus was expressed in Bacillus subtilis DB104, under the control of the sacB gene promoter. This was followed by either the native signal peptide sequence of this protease or the signal peptide sequence of the sacB gene. The protease was purified 3.8-fold, with a specific activity of 16530 U mg-1. As analyzed by SDS-PAGE, the molecular mass of the expressed protease was about 35 kDa, and the optimal temperature and pH of the protease were 65℃ and 7.5, respectively. Moreover, it still had about 80% activity after 1 h reaction at 65℃.

  10. Thermophilic Campylobacter spp. in turkey samples: evaluation of two automated enzyme immunoassays and conventional microbiological techniques

    DEFF Research Database (Denmark)

    Borck, Birgitte; Stryhn, H.; Ersboll, A.K.; Pedersen, Karl

    2002-01-01

    Aims: To determine the sensitivity and specificity of two automated enzyme immunoassays (EIA), EiaFoss and Minividas, and a conventional microbiological culture technique for detecting thermophilic Campylobacter spp. in turkey samples. Methods and Results: A total of 286 samples (faecal, meat......, neckskin and environmental samples) were collected over a period of 4 months at a turkey slaughterhouse and meat-cutting plant in Denmark. Faecal and environmental samples were tested by the conventional culture method and by the two EIAs, whereas meat and neckskin samples were tested by the two EIAs only....... Two enrichment broths were used, Campylobacter Enrichment Broth (CEB) and Preston Broth (PB). Verification of positive test results was carried out by conventional culture on selective solid media. The specificities of all methods were high. The sensitivities of the EIAs were higher than that of the...

  11. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus.

    Science.gov (United States)

    Kunamneni, Adinarayana; Permaul, Kugen; Singh, Suren

    2005-08-01

    The production of extracellular amylase by the thermophilic fungus Thermomyces lanuginosus was studied in solid state fermentation (SSF). Solid substrates such as wheat bran, molasses bran, rice bran, maize meal, millet cereal, wheat flakes, barley bran, crushed maize, corncobs and crushed wheat were studied for enzyme production. Growth on wheat bran gave the highest amylase activity. The maximum enzyme activity obtained was 534 U/g of wheat bran under optimum conditions of an incubation period of 120 h, an incubation temperature of 50 degrees C, an initial moisture content of 90%, a pH of 6.0, an inoculum level of 10% (v/w), a salt solution concentration of 1.5:10 (v/w) and a ratio of substrate weight to flask volume of 1:100 with soluble starch (1% w/w) and peptone (1% w/w) as supplements. PMID:16198259

  12. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x102 erg/mm2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  13. Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor

    International Nuclear Information System (INIS)

    The effects of 2-bromoethanesulfonate, an inhibitor of methanogenesis, on metabolism in sludge from a thermophilic (580C) anaerobic digestor were studied. It was found from short-term experiments that 1 μmol of 2-bromoethanesulfonate per ml completely inhibited methanogenesis from 14CH3COO-, whereas 50 μmol/ml was required for complete inhibition of 14CO2 reduction. When 1 μmol of 2-bromoethansulfonate per ml was added to actively metabolizing sludge which was then incubated for 24 h, it caused a 60% reduction in methanogenesis and a corresponding increase in acetate accumulation; at 50 μmol/ml it caused complete inhibition of methanogenesis and accumulation of acetate, H2, and ethanol

  14. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion.

    Science.gov (United States)

    Dong, Ze Hua; Liu, Tao; Liu, Hong Fang

    2011-05-01

    Extracellular polymeric substances (EPS) were isolated by centrifugation of thermophilic sulphate-reducing bacteria (SRB) grown in API-RP38 culture medium. The protein and polysaccharide fractions were quantified and the highest concentrations were extracted from a 14-day old culture. The effect of EPS on carbon steel corrosion was investigated by electrochemical techniques. At 30°C, a small amount of EPS in 3% NaCl solution inhibited corrosion, whilst excessive amounts of EPS facilitated corrosion. In addition, the inhibition efficiency of EPS decreased with temperature due to thermal desorption of the EPS. The results suggest that adsorbed EPS layers could be beneficial to anti-corrosion by hindering the reduction of oxygen. However, the accumulation of an EPS film could stimulate the anodic dissolution of the underlying steel by chelation of Fe2+ ions. PMID:21604218

  15. Glycerol acts as alternative electron sink during syngas fermentation by thermophilic anaerobe Moorella thermoacetica.

    Science.gov (United States)

    Kimura, Zen-ichiro; Kita, Akihisa; Iwasaki, Yuki; Nakashimada, Yutaka; Hoshino, Tamotsu; Murakami, Katsuji

    2016-03-01

    Moorella thermoacetica is an anaerobic thermophilic acetogen that is capable of fermenting sugars, H(2)/CO(2) and syngas (H(2)/CO). For this reason, this bacterium is potentially useful for biotechnology applications, particularly the production of biofuel from CO(2). A soil isolate of M. thermoacetica, strain Y72, produces both ethanol and acetate from H(2)/CO(2); however, the maximum concentrations of these two products are too low to enable commercialization of the syngas fermentation process. In the present study, glycerol was identified as a novel electron sink among the fermentation products of strain Y72. Notably, a 1.5-fold increase in the production of ethanol (1.4 mM) was observed in cultures supplemented with glycerol during syngas fermentation. This discovery is expected to aid in the development of novel methods that allow for the regulation of metabolic pathways to direct and increase the production of desirable fermentative compounds. PMID:26452417

  16. Influence of mode of storage and drying of fodder on thermophilic actinomycete aerocontamination in dairy farms of the Doubs region of France.

    OpenAIRE

    Dalphin, J.C.; Pernet, D; Reboux, G; Martinez, J.; Dubiez, A.; Barale, T; Depierre, A

    1991-01-01

    Airborne contamination by thermophilic actinomycetes, micromycetes and Gram negative bacteria was determined on 34 dairy farms and related to fodder drying and storage methods. Eighteen farms had a barn drying system, eight with additional heating; the remaining 16 had traditional fodder storage methods. Three air samples were obtained for each farm with a six stage Andersen sampler. The thermophilic actinomycetes were identified as Streptomyces and the dominant micromycetes as Aspergillus sp...

  17. Antimicrobial susceptibility profiles of thermophilic campylobacters isolated from patients in the town of Niš

    Directory of Open Access Journals (Sweden)

    Miljković-Selimović Biljana

    2009-01-01

    Full Text Available Background/Aim. In some clinical forms of human Campylobacter infections, such as prolonged diarrhea or associated with postinfections sequels, antibacterial treatment is necessary. The aim of the present study was to evaluate the antimicrobial susceptibility of thermophilic Campylobacter strains isolated from patients with diarrhea, as well as from patients with diarrhea followed by postinfections sequels, to drugs used in the therapy of enterocolitis, and to nalidixic acid used in laboratory identification and differentiation of thermophilic Campylobacter spp. Methods. We studied the antimicrobial susceptibility profiles of 131 Campylobacter strains isolated from patients with diarrhea (122 strains, diarrhea associated with rheumatic disorders (8 strains, and one strain isolated from a patient with Guillain-Barré Syndrome following Campylobacter enterocolitis. Susceptibility testing to erythromycin, gentamicin, tetracycline, chloramphenicol, ciprofloxacin and nalidixic acid was performed by the agar dilution method. Results. In the strains we investigated, resistance to gentamicin and chloramphenicol was not recorded, whereas a low rate of strains resistant to erythromycin (2.4%, a higher prevalence of strains resistant to tetracycline (9.9%, and a high level of resistance to ciprofloxacin (29.8% and nalidixic acid (33.3% were registered. All strains resistant to nalidixic acid were also resistant to ciprofloxacin. In addition, there was no difference in the occurrence of resistance between strains isolated from patients with diarrhea as compared to those isolated from patients with diarrhea followed by postinfection disorders. Conclusion. The fact that the most of Campylobacter strains were sensitive to erythromycin and all to gentamicin, makes erythromycin an antibiotic of choice in the treatment of Campylobacter diarrhea and gentamicin when parenteral therapy should be administered. Resistance to tetracycline and, especially, ciprofloxacin

  18. Start-up strategies for thermophilic anaerobic digestion of pig manure

    International Nuclear Information System (INIS)

    Sludge physicochemical composition, methane (CH4) yield, and methanogenic community structure and dynamics using quantitative real-time polymerase chain reaction were determined after start-up of anaerobic digestion of pig manure. Eight thermophilic continuous stirred anaerobic digesters were used during 126 days. Four management strategies were investigated: a feedless and a non-feedless period followed by a gradual or an abrupt addition of pig manure (two digesters per strategy). During the first 43 days, VFA (volatile fatty acids) accumulations and low CH4 yield were observed in all digesters. After this period, digesters recovered their initial status being propionic acid the last parameter to be re-established. Non-feedless digesters with an abrupt addition of pig manure showed the best performances (lower VFA accumulation and higher CH4 yield). Differences in microbial orders and dynamics, however, were less evident among treatments. Hydrogenotrophic methanogenesis, Methanomicrobiales first and Methanobacteriales second, was the dominant metabolic pathway in all digesters. Further research is needed to clarify the role and activity of hydrogenotrophic methanogens during the recovery start-up period and to identify the best molecular tools and methodologies to monitor microbial populations and dynamics reliably and accurately in anaerobic digesters. - Highlights: • Four start-up strategies for thermophilic anaerobic digestion of pig manure were tested. • Physicochemical composition, methane yield and methanogenic community were determined. • During the first 43 days, a decline in reactor's performance occurred. • The best start-up strategy was non-feedless with an abrupt addition of pig slurry. • Hydrogenotrophic methanogenesis was the dominant metabolic pathway

  19. Enhancement of thermophilic anaerobic digestion of thickened waste activated sludge by combined microwave and alkaline pretreatment

    Institute of Scientific and Technical Information of China (English)

    Yongzhi Chi; Yuyou Li; Xuening Fei; Shaopo Wang; Hongying Yun

    2011-01-01

    Pretreatment of thickened waste activated sludge (TWAS) by combined microwave and alkaline pretreatment (MAP) was studied to improve thermophilic anaerobic digestion efficiency.Uniform design was applied to determine the combination of target temperature (110-210℃),microwave holding time (1-51 min),and NaOH dose (0-2.5 g NaOH/g suspended solids (SS)) in terms of their effect on volatile suspended solids (VSS) solubilization.Maximum solubilization ratio (85.1%) of VSS was observed at 210℃ with 0.2 g-NaOH/g-SS and 35 min holding time.The effects of 12 different pretreatment methods were investigated in 28 thermophilic batch reactors by monitoring cumulative methane production (CMP).Improvements in methane production in the TWAS were directly related to the microwave and alkaline pretreatment of the sludge.The highest CMP was a 27% improvement over the control.In spite of the increase in soluble chemical oxygen demand concentration and the decrease in dewaterability of digested sludge,a semi-continuous thennophilic reactor fed with pretreated TWAS without neutralization (at 170℃ with 1 rain holding time and 0.05 g NaOH/g SS) was stable and functioned well,with volatile solid (VS) and total chemical oxygen demand (TCOD) reductions of 28% and 18%,respectively,which were higher than those of the control system.Additionally,methane yields (L@STP/g-CODadded,at standard temperature and pressure (STP) conditions of 0℃ and 101.325 kPa) and (L@STP/g VSadded) increased by 17% and 13%,respectively,compared to the control reactor.

  20. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.

    Science.gov (United States)

    Zhang, Likui; Huang, Yanchao; Xu, Dandan; Yang, Lixiang; Qian, Kaicheng; Chang, Guozhu; Gong, Yong; Zhou, Xiaojian; Ma, Kesen

    2016-09-01

    His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology. PMID:27131500

  1. Biosynthesis of membrane lipids of thermophilic archaebacteria and its implication to early evolution of life

    International Nuclear Information System (INIS)

    The unit lipid of cell membranes of archaebacteria is unique ether lipids, O-dialkylated glycerol with a polar head group at sn-1 position. The chirality of glycerol moiety of the lipids is opposite to that of other kingdoms. The hydrophobic potion consists of saturated C20 isoprenoid hydrocarbon backbone and is connected to glycerol by an ether linkage. In addition, cell membrane of some of thermophilic archaebacteria are monolayer (in stead of bilayer) of tetraether lipids in which both tails of hydrocarbon chains of two diether lipids are covalently connected in a tail-to-tail fashion. Although the host cell from which contemporary eukaryotes have been derived by endosymbiosis, is speculated to be an archaebacterium, the unique ether lipids raised a serious question to the idea of archabacterial origin of eukaryote cells; why the unique ether lipids are not used to construct cytoplasmic membranes of eukaryotes? The author and his colleagues have studied biosynthesis of membrane liquids of two thermo-acidophilic archaebacteria, Thermoplasma and Sulfolobus. It was found that origins of stereospecificity of glycerol moiety of archaebacterial ether lipids differs form species to species. In Sulfolobus sn-glycerol-1-phosphate (the abnormal isomer of glycerol phosphate) seems to be directly synthesized from glycerol, whereas in Halobacterium stereospecificity of glycerol phosphate is inverted during the lipid synthesis. Recently we found that specific inhibitors for eukaryotes squalene epoxidase inhibit the condensation of diether lipids to tetraether lipids in cell-free extracts of these thermophilic archaebacteria. The results suggest evolutionary implication of archaebacterial tetraether condensing enzyme to eukaryote sterol biosynthesis. Relationships between chemical structures of membrane lipids and early evolution of life will be discussed. (author). Abstract only

  2. [Cobalt(III)-EDTA]- Reduction by Thermophilic Methanogen Methanothermobacter Thermautotrophicus

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rajesh [Miami Univ., Oxford, OH (United States); Dong, Hailiang [Miami Univ., Oxford, OH (United States); China Univ. of Geosciences, Beijing (China); Liu, Deng [Miami Univ., Oxford, OH (United States); China Univ. of Geosciences, Wuhan (China); Marts, Amy R. [Miami Univ., Oxford, OH (United States); Tierney, David L. [Miami Univ., Oxford, OH (United States); Almquist, Catherine B. [Miami Univ., Oxford, OH (United States)

    2015-06-30

    Cobalt is a metal contaminant at high temperature radioactive waste disposal sites. In previous studies have largely focused on mesophilic microorganisms to remediate cobalt, despite the presence of thermophilic microorganisms at such sites. In this study,Methanothermobacter thermautotrophicus, a thermophilic methanogen, was used to reduce Co(III) in the form of [Co(III)–EDTA]-. Bioreduction experiments were conducted in a growth medium with H2/CO2 as a growth substrate at initial Co(III) concentrations of 1, 2, 4, 7, and 10 mM. At low Co(III) concentrations (< 4 mM), a complete reduction was observed within a week. Wet chemistry, X-ray absorption near-edge structure (XANES) and electron paramagnetic resonance (EPR) analyses were all consistent in revealing the reduction kinetics. But, at higher concentrations (7 and 10 mM) the reduction extents only reached 69.8% and 48.5%, respectively, likely due to the toxic effect of Co(III) to the methanogen cells as evidenced by a decrease in total cellular protein at these Co(III) concentrations. Methanogenesis was inhibited by Co(III) bioreduction, possibly due to impaired cell growth and electron diversion from CO2 to Co(III). Overall, our results demonstrated the ability of M. thermautotrophicus to reduce Co(III) to Co(II) and its potential application for remediating 60Co contaminant at high temperature subsurface radioactive waste disposal sites.

  3. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C14:1 (48.8%) and C15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m2 and 60Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  4. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. PMID:25151068

  5. Improving the stability of thermophilic anaerobic digesters treating SS-OFMSW through enrichment with compost and leachate seeds

    KAUST Repository

    Ghanimeh, Sophia A.

    2013-03-01

    This paper examines the potential of improving the stability of thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste (SS-OFMSW) by adding leachate and compost during inoculation. For this purpose, two stable thermophilic digesters, A (control) and B (with added leachate and compost), were subjected to a sustained substrate shock by doubling the organic loading rate for one week. Feeding was suspended then gradually resumed to reach the pre-shock loading rate (2. gVS/l/d). Digester A failed, exhibiting excessive increase in acetate and a corresponding decrease in pH and methane generation, and lower COD and solids removal efficiencies. In contrast, digester B was able to restore its functionality with 90% recovery of pre-shock methane generation rate at stable pH, lower hydrogen levels, and reduced VFAs and ammonia accumulation. © 2012 Elsevier Ltd.

  6. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  7. Glutaraldehyde Cross-Linking of Immobilized Thermophilic Esterase on Hydrophobic Macroporous Resin for Application in Poly(ε-caprolactone Synthesis

    Directory of Open Access Journals (Sweden)

    Min Wang

    2014-07-01

    Full Text Available The immobilized thermophilic esterase from Archaeoglobus fulgidus was successfully constructed through the glutaraldehyde-mediated covalent coupling after its physical adsorption on a hydrophobic macroporous resin, Sepabeads EC-OD. Through 0.05% glutaraldehyde treatment, the prevention of enzyme leaching and the maintenance of catalytic activity could be simultaneously realized. Using the enzymatic ring-opening polymerization of ε-caprolactone as a model, effects of organic solvents and reaction temperature on the monomer conversion and product molecular weight were systematically investigated. After the optimization of reaction conditions, products were obtained with 100% monomer conversion and Mn values lower than 1010 g/mol. Furthermore, the cross‑linked immobilized thermophilic esterase exhibited an excellent operational stability, with monomer conversion values exceeding 90% over the course of 12 batch reactions, still more than 80% after 16 batch reactions.

  8. Prevalence, antimicrobial resistance and risk factors for thermophilic Campylobacter infections in symptomatic and asymptomatic humans in Tanzania

    DEFF Research Database (Denmark)

    Komba, E. V. G.; Mdegela, R. H.; Msoffe, P. L. M.;

    2015-01-01

    testing employed the disc diffusion method. A small proportion of the test isolates was also subjected to agar dilution method. Risk factors for human illness were determined in an unmatched case-control study. Thermophilic Campylobacter were isolated from 11.4% of the screened individuals (n = 1195). The...... sulphate and lowest for ciprofloxacin (22.1%). The rates of resistance for other antibiotics (azithromycin, erythromycin, tetracycline, cephalothin, gentamycin, nalidixic acid, ampicillin, amoxycillin, norfloxacin, chloramphenicol) ranged from 44.1% to 89%. Comparison between disc diffusion and agar...... dilution methods indicated a good correlation, and the tests were in agreement to each other (κ ≥ 0.75). Human illness was found to be associated with young age and consumption of chicken meat and pre-prepared salad. Our data indicate the presence of antibiotic-resistant thermophilic Campylobacter in...

  9. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions

    DEFF Research Database (Denmark)

    Johansen, Anders; Bangsø Nielsen, Henrik; Hansen, Christian M.;

    2013-01-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit...... from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs......, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was...

  10. Biocatalytic Synthesis of Poly(δ-Valerolactone Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst

    Directory of Open Access Journals (Sweden)

    Hong Cao

    2012-09-01

    Full Text Available The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone, and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization.

  11. Effect of mercaptoethylamine on DNA degradation in thermophilic bacteria Bac. stearothermophilus exposed to γ-, UV-radiation or methylnitrosourea

    International Nuclear Information System (INIS)

    The effect of mercaptoethylamine (MEA) on degradation of DNA in thermophilic bacteria Bac. stear. exposed to γ-, UV-rays or methylnitrosourea (MNU) was studied. Using centrifugation on alkaline and neutral sucrose gradients, it was shown that MEA inhibits the accumulation of breaks in the DNA of Bac. stear. It also lowers the level of DNA degradation in toluene-treated cells of Bac. stear. under the action of the intrinsic nuclease, reduces the activity of the endonuclease specific for apurinic DNA, as well as that of S1-nuclease and DNase-I in vitro. The inhibition in the accumulation of DNA breaks is assumed to be due to a decrease of the endonuclease activity in the cells of thermophilic bacteria. (orig.)

  12. Extremely thermophilic microorganisms and their polymer-hidrolytic enzymes Microrganismos extremotermofílicos e suas enzimas despolimerizantes

    OpenAIRE

    Andrade, Carolina M. M. C.; Nei Pereira Jr.; Garo Antranikian

    1999-01-01

    Thermophilic and hyperthermophilic microorganisms are found as normal inhabitants of continental and submarine volcanic areas, geothermally heated sea-sediments and hydrothermal vents and thus are considered extremophiles. Several present or potential applications of extremophilic enzymes are reviewed, especially polymer-hydrolysing enzymes, such as amylolytic and hemicellulolytic enzymes. The purpose of this review is to present the range of morphological and metabolic features among those m...

  13. Thermophilic Anaerobic Biodegradation of [14C]Lignin, [14C]Cellulose, and [14C]Lignocellulose Preparations

    OpenAIRE

    Benner, Ronald; Hodson, Robert E.

    1985-01-01

    Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were ...

  14. Deep Conversion of Carbon Monoxide to Hydrogen and Formation of Acetate by the Anaerobic Thermophile Carboxydothermus hydrogenoformans

    OpenAIRE

    Henstra, Anne M.; Stams, Alfons J. M.

    2011-01-01

    Carboxydothermus hydrogenoformans is a thermophilic strictly anaerobic bacterium that catalyses the water gas shift reaction, the conversion of carbon monoxide with water to molecular hydrogen and carbon dioxide. The thermodynamically favorable growth temperature, compared to existing industrial catalytic processes, makes this organism an interesting alternative for production of cheap hydrogen gas suitable to fuel CO-sensitive fuel cells in a future hydrogen economy, provided sufficiently lo...

  15. Progressive Degradation of Crude Oil n-Alkanes Coupled to Methane Production under Mesophilic and Thermophilic Conditions

    OpenAIRE

    Cheng, Lei; Shi, Shengbao; Li, Qiang; Chen, Jianfa; Hui ZHANG; Lu, Yahai

    2014-01-01

    Although methanogenic degradation of hydrocarbons has become a well-known process, little is known about which crude oil tend to be degraded at different temperatures and how the microbial community is responded. In this study, we assessed the methanogenic crude oil degradation capacity of oily sludge microbes enriched from the Shengli oilfield under mesophilic and thermophilic conditions. The microbial communities were investigated by terminal restriction fragment length polymorphism (T-RFLP...

  16. Comparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium

    OpenAIRE

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K.; de Farias, Sávio Torres; Rai, Anil

    2013-01-01

    A comparative genomics analysis among all forty whole genome sequences available for cyanobacteria (3 thermophiles– Thermosynechococcus elongatus BP-1, Synechococcus sp. JA-2-3B'a (2-13), Synechococcus sp. JA-3-3Ab and 37 mesophiles) was performed to identify genomic and proteomic factors responsible for the behaviour of T. elongatus BP-1, a thermophilic unicellular cyanobacterium with optimum growth temperature [OGT] of 55°C. Majority of genomic and proteomic characteristics for this cyanoba...

  17. Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls

    OpenAIRE

    Prabhu, Ashok K; Maheshwari, Ramesh

    1999-01-01

    Melanocarpus albomyces, a thermophilic fungus isolated from compost by enrichment culture in a liquid medium containing sugarcane bagasse, produced cellulase-free xylanase in culture medium. The fungus was unusual in that xylanase activity was inducible not only by hemicellulosic material but also by the monomeric pentosan unit of xylan but not by glucose. Concentration of bagasse-grown culture filtrate protein followed by size-exclusion and anion-exchange chromatography separated four xylana...

  18. Thermoadaptation-Directed Enzyme Evolution in an Error-Prone Thermophile Derived from Geobacillus kaustophilus HTA426

    OpenAIRE

    Suzuki, Hirokazu; Kobayashi, Jyumpei; Wada, Keisuke; Furukawa, Megumi; Doi, Katsumi

    2014-01-01

    Thermostability is an important property of enzymes utilized for practical applications because it allows long-term storage and use as catalysts. In this study, we constructed an error-prone strain of the thermophile Geobacillus kaustophilus HTA426 and investigated thermoadaptation-directed enzyme evolution using the strain. A mutation frequency assay using the antibiotics rifampin and streptomycin revealed that G. kaustophilus had substantially higher mutability than Escherichia coli and Bac...

  19. Biocatalytic Synthesis of Poly(δ-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst

    OpenAIRE

    Xuedong Fang; Lingfei Zhang; Yan Yang; Jiebing Yang; Guangquan Li; Haobo Han; Hong Cao; Quanshun Li

    2012-01-01

    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conve...

  20. Occurrence, species distribution and antimicrobial resistance of thermophilic Campylobacter isolates from farm and laboratory animals in Morogoro, Tanzania

    OpenAIRE

    Komba, Erick V. G.; Mdegela, Robinson H.; Peter L. M. Msoffe; Denis E. Matowo; Makori J. Maro

    2014-01-01

    Aim: To determine the carriage and antimicrobial resistance of Thermophilic Campylobacter species in the gastrointestinal tracts of farm and laboratory animals in Morogoro, Tanzania Materials and Methods: Faecal samples were collected from farm (n=244) and laboratory (n=466) animals and were subjected to the Cape Town protocol for isolation of Campylobacter. Isolates were preliminarily identified based on potassium hydroxide string and hippurate hydrolysis tests. Polymerase chain reaction ...

  1. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    Directory of Open Access Journals (Sweden)

    Azhari S. Baharuddin

    2010-01-01

    Full Text Available Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB and Palm Oil Mill Effluent (POME as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile at day 7 treatment were 58.3, 8.1 and 65.5°C, respectively. The morphological analysis of the isolated microbes was conducted using Scanning Electron Microscope (SEM and Gram stain method. The congo red test was conducted in order to detect 1% CMC agar degradation activities. Total genomic DNAs were extracted from approximately 1.0 g of mixed compost and amplified by using PCR primers. The PCR product was sequent to identify the nearest relatives of 16S rRNA genes. The localization of bacteria chromosomes was determined by Fluorescence In Situ Hybridization (FISH analysis. Results: Single isolated bacteria species was successfully isolated from Empty Fruit Bunch (EFB-Palm Oil Mill Effluent (POME compost at thermophilic stage. Restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs with the phylogenetic analysis showed that the isolated bacteria from EFB-POME thermophilic compost gave the highest homology (99% with similarity to Geobacillus pallidus. The strain was spore forming bacteria and able to grow at 60°C with pH 7. Conclusion: Thermophilic bacteria strain, Geobacillus pallidus was successfully isolated from Empty Fruit Bunch (EFB and Palm Oil Mil Effluent (POME compost and characterized.

  2. Isolation and Characterization of Thermophilic Cellulase-Producing Bacteria from Empty Fruit Bunches-Palm Oil Mill Effluent Compost

    OpenAIRE

    Azhari S. Baharuddin; Mohamad N.A. Razak; Lim S. Hock; Mohd N. Ahmad; , Suraini Abd-Aziz,; Nor A.A. Rahman; Umi K.M Shah; Mohd A. Hassan; Kenji Sakai; Yoshihito Shirai

    2010-01-01

    Problems statement: Lack of information on locally isolated cellulase-producing bacterium in thermophilic compost using a mixture of Empty Fruit Bunch (EFB) and Palm Oil Mill Effluent (POME) as composting materials. Approach: The isolation of microbes from compost heap was conducted at day 7 of composting process where the mixture of composting materials consisted of 45.8% cellulose, 17.1% hemicellulose and 28.3% lignin content. The temperature, pH and moisture content of the composting pile ...

  3. Acid-Tolerant Moderately Thermophilic Methanotrophs of the Class Gammaproteobacteria Isolated From Tropical Topsoil with Methane Seeps

    OpenAIRE

    Islam, Tajul; Torsvik, Vigdis; Larsen, Øivind; Bodrossy, Levente; Øvreås, Lise; Birkeland, Nils-Kåre

    2016-01-01

    Terrestrial tropical methane seep habitats are important ecosystems in the methane cycle. Methane oxidizing bacteria play a key role in these ecosystems as they reduce methane emissions to the atmosphere. Here, we describe the isolation and initial characterization of two novel moderately thermophilic and acid-tolerant obligate methanotrophs, assigned BFH1 and BFH2 recovered from a tropical methane seep topsoil habitat. The new isolates were strictly aerobic, non-motile, coccus-shaped and uti...

  4. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    Science.gov (United States)

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. PMID:27423372

  5. Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    Zhi-Wu Wang; Seung-Hwan Lee; James G.Elkins; Yongchao Li; Scott Hamilton-Brehm; Jennifer L.Morrell-Falvey

    2013-01-01

    Live cell imaging methods provide important insights into the dynamics of cellular processes that cannot be derived easily from population-averaged datasets.In the bioenergy field,much research is focused on fermentation of cellulosic biomass by thermophilic microbes to produce biofuels; however,little effort is dedicated to the development of imaging tools to monitor this dynamic biological process.This is,in part,due to the experimental challenges of imaging ceils under both anaerobic and thermophilic conditions.Here an imaging system is described that integrates confocal microscopy,a flow cell device,and a lipophilic dye to visualize cells.Solutions to technical obstacles regarding suitable fluorescent markers,photodamage during imaging,and maintenance of environmental conditions during imaging are presented.This system was utilized to observe cellulose colonization by Clostridium thermocellum under anaerobic conditions at 60℃.This method enables live cell imaging of bacterial growth under anaerobic and thermophilic conditions and should be widely applicable to visualizing different cell types or processes in real time.

  6. Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery.

    Science.gov (United States)

    Micolucci, Federico; Gottardo, Marco; Cavinato, Cristina; Pavan, Paolo; Bolzonella, David

    2016-02-01

    Deep separate collection of the organic fraction of municipal solid waste generates streams with relatively low content of inert material and high biodegradability. This material can be conveniently treated to recovery both energy and material by means of simplified technologies like screw-press and extruder: in this study, the liquid fraction generated from pressed biowaste from kerbside and door-to-door collection was anaerobically digested in both mesophilic and thermophilic conditions while for the solid fraction composting is suggested. Continuous operation results obtained both in mesophilic and thermophilic conditions indicated that the anaerobic digestion of pressed biowaste was viable at all operating conditions tested, with the greatest specific gas production of 0.92m(3)/kgVSfed at an organic loading rate of 4.7kgVS/m(3)d in thermophilic conditions. Based on calculations the authors found that the expected energy recovery is highly positive. The contents of heavy metals and pathogens of fed substrate and effluent digestates were analyzed, and results showed low levels (below End-of-Waste 2014 criteria limits) for both the parameters thus indicating the good quality of digestate and its possible use for agronomic purposes. Therefore, both energy and material were effectively recovered. PMID:26427935

  7. Cellulolytic potential of probiotic Bacillus Subtilis AMS6 isolated from traditional fermented soybean (Churpi): An in-vitro study with regards to application as an animal feed additive.

    Science.gov (United States)

    Manhar, Ajay K; Bashir, Yasir; Saikia, Devabrata; Nath, Dhrubajyoti; Gupta, Kuldeep; Konwar, Bolin K; Kumar, Rahul; Namsa, Nima D; Mandal, Manabendra

    2016-01-01

    The aim of the present study is to evaluate the probiotic attributes of Bacillus subtilis AMS6 isolated from fermented soybean (Churpi). This isolate exhibited tolerance to low pH (pH 2.0) and bile salt (0.3%), capability to autoaggregate and coaggregate. AMS6 also showed highest antibacterial activity against the pathogenic indicator strain Salmonella enterica typhimurium (MTCC 1252) and susceptibility towards different antibiotics tested. The isolate was effective in inhibiting the adherence of food borne pathogens to Caco-2 epithelial cell lines, and was also found to be non-hemolytic which further strengthen the candidature of the isolate as a potential probiotic. Further studies revealed B. subtilis AMS6 showed cellulolytic activity (0.54±0.05 filter paper units mL(-1)) at 37°C. The isolate was found to hydrolyze carboxymethyl cellulose, filter paper and maize (Zea mays) straw. The maize straw digestion was confirmed by scanning electron microscopy studies. The isolate was able to degrade filter paper within 96h of incubation. A full length cellulase gene of AMS6 was amplified using degenerate primers consisting of 1499 nucleotides. The ORF encoded for a protein of 499 amino acids residues with a predicted molecular mass of 55.04kDa. The amino acids sequence consisted of a glycosyl hydrolase family 5 domain at N-terminal; Glycosyl hydrolase catalytic core and a CBM-3 cellulose binding domain at its C terminal. The study suggests potential probiotic B. subtilis AMS6 as a promising candidate envisaging its application as an animal feed additive for enhanced fiber digestion and gut health of animal. PMID:27242144

  8. Synergistic Effect of Simple Sugars and Carboxymethyl Cellulose on the Production of a Cellulolytic Cocktail from Bacillus sp. AR03 and Enzyme Activity Characterization.

    Science.gov (United States)

    Manfredi, Adriana P; Pisa, José H; Valdeón, Daniel H; Perotti, Nora I; Martínez, María A

    2016-04-01

    A cellulase-producing bacterium isolated from pulp and paper feedstock, Bacillus sp. AR03, was evaluated by means of a factorial design showing that peptone and carbohydrates were the main variables affecting enzyme production. Simple sugars, individually and combined with carboxymethyl cellulose (CMC), were further examined for their influence on cellulase production by strain AR03. Most of the mono and disaccharides assayed presented a synergistic effect with CMC. As a result, a peptone-based broth supplemented with 10 g/L sucrose and 10 g/L CMC maximized enzyme production after 96 h of cultivation. This medium was used to produce endoglucanases in a 1-L stirred tank reactor in batch mode at 30 °C, which reduced the fermentation period to 48 h and reaching 3.12 ± 0.02 IU/mL of enzyme activity. Bacillus sp. AR03 endoglucanases showed an optimum temperature of 60 °C and a pH of 6.0 with a wide range of pH stability. Furthermore, presence of 10 mM Mn(2+) and 5 mM Co(2+) produced an increase of enzyme activity (246.7 and 183.7 %, respectively), and remarkable tolerance to NaCl, Tween 80, and EDTA was also observed. According to our results, the properties of the cellulolytic cocktail from Bacillus sp. AR03 offer promising features in view of potential biorefinery applications. PMID:26797928

  9. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity.

    Directory of Open Access Journals (Sweden)

    Sonia Y Lam

    2011-03-01

    Full Text Available BACKGROUND: Thermophilic enzymes are often less active than their mesophilic homologues at low temperatures. One hypothesis to explain this observation is that the extra stabilizing interactions increase the rigidity of thermophilic enzymes and hence reduce their activity. Here we employed a thermophilic acylphosphatase from Pyrococcus horikoshii and its homologous mesophilic acylphosphatase from human as a model to study how local rigidity of an active-site residue affects the enzymatic activity. METHODS AND FINDINGS: Acylphosphatases have a unique structural feature that its conserved active-site arginine residue forms a salt-bridge with the C-terminal carboxyl group only in thermophilic acylphosphatases, but not in mesophilic acylphosphatases. We perturbed the local rigidity of this active-site residue by removing the salt-bridge in the thermophilic acylphosphatase and by introducing the salt-bridge in the mesophilic homologue. The mutagenesis design was confirmed by x-ray crystallography. Removing the salt-bridge in the thermophilic enzyme lowered the activation energy that decreased the activation enthalpy and entropy. Conversely, the introduction of the salt-bridge to the mesophilic homologue increased the activation energy and resulted in increases in both activation enthalpy and entropy. Revealed by molecular dynamics simulations, the unrestrained arginine residue can populate more rotamer conformations, and the loss of this conformational freedom upon the formation of transition state justified the observed reduction in activation entropy. CONCLUSIONS: Our results support the conclusion that restricting the active-site flexibility entropically favors the enzymatic activity at high temperatures. However, the accompanying enthalpy-entropy compensation leads to a stronger temperature-dependency of the enzymatic activity, which explains the less active nature of the thermophilic enzymes at low temperatures.

  10. ESTIMATION OF EXTRACELLULAR LIPOLYTIC ENZYME ACTIVITY BY THERMOPHILIC BACILLUS SP. ISOLATED FROM ARID AND SEMI-ARID REGION OF RAJASTHAN, INDIA

    Directory of Open Access Journals (Sweden)

    Deeksha Gaur

    2012-10-01

    Full Text Available Thermophilic organisms can be defined as, micro-organisms which are adapted to survive at high temperatures. The enzymes secreted by thermophilic bacteria are capable of catalyzing biochemical reactions at high temperatures. Thermophilic bacteria are able to produce thermostable lipolytic enzymes (capable of degradation of lipid at temperatures higher than mesophilic bacteria. Therefore, the isolation of thermophilic bacteria from natural sources and their identification are quite beneficial in terms of discovering thermostable lipase enzymes. Due to great temperature fluctuation in hot arid and semi-arid region of Rajasthan, this area could serve as a good source for new thermophilic lipase producing bacteria with novel industrially important properties. The main objective of this research is the isolation and estimation of industrially important thermophilic lipase enzyme produced by thermophilic bacteria, isolated from arid and semi-arid region of Rajasthan. For this research purpose soil samples were collected from Churu, Sikar and Jhunjunu regions of Rajasthan. Total 16 bacterial strains were isolated and among only 2 thermostable lipolytic enzyme producing bacteria were charcterized. The thermostable lipolytic enzyme was estimated by qualitative and quantitative experiments. The isolates were identified as Bacillus sp. by microscopic, biochemical and molecular characterization. The optimum enzyme activity was observed at pH 8, temperature 60°C and 6% salt concentrations at 24 hrs time duration. Lipolytic enzyme find useful in a variety of biotechnological fields such as food and dairy (cheese ripening, flavour development, detergent, pharmaceutical (naproxen, ibuprofen, agrochemical (insecticide, pesticide and oleochemical (fat and oil hydrolysis, biosurfactant synthesis industries. Lipolytic enzyme can be further used in many newer areas where they can serve as potential biocatalysts.

  11. High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study

    International Nuclear Information System (INIS)

    Highlights: ► High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. ► The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. ► The temperature phased anaerobic digestion process (65 + 55 °C) showed the best performances with yields of 0.49 m3/kgVSfed. ► Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 °C), thermophilic (55 °C) and temperature phased (65 + 55 °C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m3d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m3d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m3d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m3/kgVSfed at 35, 55, and 65 + 55 °C, respectively. The extreme thermophilic reactor working at 65 °C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVSfed. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were

  12. Complete Genome Sequence of Herbinix luporum SD1D, a New Cellulose-Degrading Bacterium Isolated from a Thermophilic Biogas Reactor

    Science.gov (United States)

    Koeck, Daniela E.; Maus, Irena; Wibberg, Daniel; Winkler, Anika; Zverlov, Vladimir V.; Liebl, Wolfgang; Pühler, Alfred; Schwarz, Wolfgang H.

    2016-01-01

    A novel cellulolytic bacterial strain was isolated from an industrial-scale biogas plant. The 16S rRNA gene sequence of the strain SD1D showed 96.4% similarity to Herbinix hemicellulosilytica T3/55T, indicating a novel species within the genus Herbinix (family Lachnospiraceae). Here, the complete genome sequence of Herbinix luporum SD1D is reported. PMID:27445379

  13. Complete Genome Sequence of Herbinix luporum SD1D, a New Cellulose-Degrading Bacterium Isolated from a Thermophilic Biogas Reactor.

    Science.gov (United States)

    Koeck, Daniela E; Maus, Irena; Wibberg, Daniel; Winkler, Anika; Zverlov, Vladimir V; Liebl, Wolfgang; Pühler, Alfred; Schwarz, Wolfgang H; Schlüter, Andreas

    2016-01-01

    A novel cellulolytic bacterial strain was isolated from an industrial-scale biogas plant. The 16S rRNA gene sequence of the strain SD1D showed 96.4% similarity to Herbinix hemicellulosilytica T3/55(T), indicating a novel species within the genus Herbinix (family Lachnospiraceae). Here, the complete genome sequence of Herbinix luporum SD1D is reported. PMID:27445379

  14. Biohydrogen production from pig slurry in a CSTR reactor system with mixed cultures under hyper-thermophilic temperature (70 oC)

    International Nuclear Information System (INIS)

    A continuous stirred tank reactor (CSTR) (750 cm3 working volume) was operated with pig slurry under hyper-thermophilic (70 oC) temperature for hydrogen production. The hydraulic retention time (HRT) was 24 h and the organic loading rate was 24.9 g d-1 of volatile solid (VS). The inoculum used in the hyper-thermophilic reactor was sludge obtained from a mesophilic methanogenic reactor. The continuous feeding with active biomass (inoculum) from the mesophilic methanogenic reactor was necessary in order to achieve hydrogen production. The hyper-thermophilic reactor started to produce hydrogen after a short adapted period of 4 days. During the steady state period the mean hydrogen yield was 3.65 cm3 g-1 of volatile solid added. The high operation temperature of the reactor enhanced the hydrolytic activity in pig slurry and increased the volatile fatty acids (VFA) production. The short HRT (24 h) and the hyper-thermophilic temperature applied in the reactor were enough to prevent methanogenesis. No pre-treatment methods or other control methods for preventing methanogenesis were necessary. Hyper-thermophilic hydrogen production was demonstrated for the first time in a CSTR system, fed with pig slurry, using mixed culture. The results indicate that this system is a promising one for biohydrogen production from pig slurry.

  15. Monitoring transitory profiles of leachate humic substances in landfill aeration reactors in mesophilic and thermophilic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Huanhuan [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Yin, Ke; Ge, Liya; Giannis, Apostolos [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); Chuan, Valerie W.L. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Wang, Jing-Yuan, E-mail: JYWANG@ntu.edu.sg [Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141 (Singapore); School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-04-28

    Highlights: • Polymerization and condensation of humic substances (HS) were enhanced by aeration. • Carboxylic group was enriched in HS by aeration presenting improved hydrophilicity. • Mobility of humic acid, as a result was enhanced by aeration especially in young landfill. • Waste age plays an important role in leachate management during aeration. - Abstract: The presence of humic substances (HS) in landfill leachate is of great interest because of their structural stability and potential toxicity. This study examined the effects of temperature and waste age on the transformation of HS during in situ aeration of bioreactor landfills. By establishing aerobic conditions, dissolved organic carbon (DOC) rapidly accumulated in the bioreactor leachate. Fractional analysis showed that the elevated concentration of humic acids (HAs) was primarily responsible for the increment of leachate strength. Further structural characterization indicated that the molecular weight (MW) and aromacity of HS were enhanced by aeration in conjunction with thermophilic temperature. Interestingly, elevation of HAs concentration was not observed in the aeration reactor with a prolonged waste age, as the mobility of HAs was lowered by the high MW derived from extended waste age. Based on these results, aeration may be more favorable in aged landfills, since dissolution of HAs could be minimized by the evolution to larger MW compared to young landfills. Moreover, increased operation temperature during aeration likely offers benefits for the rapid maturation of HS.

  16. Chemical behaviors of different arsenic-bearing sulphides bio-oxidated by thermophilic bacteria

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-ying; GONG En-pu; YANG Li-li; WANG Da-wen

    2005-01-01

    The study on arsenopyrite and realgar of bacterial oxidation shows that the chemical behaviors of different arsenic-bearing sulphides oxidated by thermophilic bacteria are quite distinct. Arsenopyrite is active and quickly eroded in bacteria-bearing solution. With a high leaching rate over 95%, the arsenopyrite phase cannot be detected by X-ray diffraction(XRD). Arsenopyrite is highly toxic to bacteria that at the initial stage of bio-oxidation, bacterial growth is inhibited and the number of bacterium cell drops from 2.26 × 108/mL to the lowest 2.01 × 105/mL. At the later stages of bio-oxidation, bacteria grow fast and reach 2.23 × 108/mL. Comparably, realgar is inertial and resistive to bacterial corrosion and oxidation. Arsenic in realgar crystal is hard to be leached and the residue is still realgar phase, as indicated by XRD. The cell number of bacteria varies a little, decreasing from 2.26 × 108/mL to 2.01 × 107/mL, during the bacterial oxidation. The results show that the crystal structure and arsenic valency of arsenic-bearing sulphides play a vital role during the leaching process of bacterial oxidation.

  17. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  18. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol.

    Science.gov (United States)

    Müller, Jonas E N; Heggeset, Tonje M B; Wendisch, Volker F; Vorholt, Julia A; Brautaset, Trygve

    2015-01-01

    Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids L-glutamate and L-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids. PMID:25431011

  19. Molecular phylogenetical studies of the thermophilic spore-forming desulfotomaculum isolated from oil-field

    Institute of Scientific and Technical Information of China (English)

    Chen Wu; Li Chunyan; Xiang Fu; Yu Longjiang

    2005-01-01

    A novel thermophilic and heterotrophic sulfate-reducing bacteria, strain CW-03, was isolated from crude oil well whose depth was 3.2 kilometer. The bacterium was strictly anaerobic; it does not endure acid and itsmaximum surviving temperature was 70℃. Many short chain organic compounds can be utilized as electron donors, which were acetate, formate, lactate, propionate, pyruvate, butyrate, succinate, malate, fumarate,valerate, caproate, heptanoate, octanoate, decanoate, tridecanoate, pentadecanoate, palmitate, heptadecanoate or ethanol, while sulfate and sulfite were used as electron acceptors. The following substrates were not utilized: benzoate undecanoate, dodecanoate, tetradecane, propanol, butanol, H2+CO2 (80/20%; v/v) and acetate (1mM)+ H2. When lactate was used as electron donors, sulfite and thiosulfate, but not sulfer and nitrate, can be used as electron acceptors. Strain CW-03 was motile, curved rod, Gram-positive, pole flagellum and spore-forming. On the basis of 16S rRNA sequence alignment (accession numbers: AY703032), CW-03 should be included in the genus Desulfotomaculum with BIAST analysis on line. However, some of its physiology and multiple sequence alignments were different from other members of this genus. Therefore, CW-03 should be recognized as a new species, for which we propose the name Desulfotomaculum chinamiddle (Bacteria, Firmicutes, Clostridia, Clostridiales, Peptococcaceae).

  20. Three novel halotolerant and thermophilic Geobacillus strains from shallow marine vents.

    Science.gov (United States)

    Maugeri, Teresa L; Gugliandolo, Concetta; Caccamo, Daniela; Stackebrandt, Erko

    2002-10-01

    During a polyphasic taxonomic analysis performed on isolates from shallow marine hydrothermal vents of Eolian Islands (Italy), three thermophilic, halotolerant bacilli, designated as strain 1bw, strain 5-2 and strain 10-1, could not be affiliated to any described species. Physiological and biochemical characteristics, membrane lipids composition, mol % G+C content, and phylogenetic relationships determined on the basis of the 16S rRNA gene sequence analysis, placed these strains within the genus Geobacillus. The three strains were only moderately related to species of Geobacillus and their relatives, members of Saccharococcus. Determination of the relatedness among each other at a higher taxonomic level by DNA-DNA reassociation experiments demonstrated the three isolates to represent three different novel Geobacillus genomospecies. The taxonomic novelty of these three marine strains was substantiated by their physiological properties and by fatty acid patterns that did not match closely those of any Geobacillus type strain. These three novel strains could be of interest to biotechnology because of their ability to produce exopolysaccharides and to adhere on polystirene, characteristics undescribed so far for other Geobacillus species. They are also able to utilise hydrocarbons such as gas oil, kerosene and mineral lubricating oil. Strain 5-2 is tolerant to zinc. PMID:12421083